WorldWideScience

Sample records for exergy research corporation

  1. Exergy sustainability.

    Energy Technology Data Exchange (ETDEWEB)

    Robinett, Rush D. III (.; ); Wilson, David Gerald; Reed, Alfred W.

    2006-05-01

    Exergy is the elixir of life. Exergy is that portion of energy available to do work. Elixir is defined as a substance held capable of prolonging life indefinitely, which implies sustainability of life. In terms of mathematics and engineering, exergy sustainability is defined as the continuous compensation of irreversible entropy production in an open system with an impedance and capacity-matched persistent exergy source. Irreversible and nonequilibrium thermodynamic concepts are combined with self-organizing systems theories as well as nonlinear control and stability analyses to explain this definition. In particular, this paper provides a missing link in the analysis of self-organizing systems: a tie between irreversible thermodynamics and Hamiltonian systems. As a result of this work, the concept of ''on the edge of chaos'' is formulated as a set of necessary and sufficient conditions for stability and performance of sustainable systems. This interplay between exergy rate and irreversible entropy production rate can be described as Yin and Yang control: the dialectic synthesis of opposing power flows. In addition, exergy is shown to be a fundamental driver and necessary input for sustainable systems, since exergy input in the form of power is a single point of failure for self-organizing, adaptable systems.

  2. Exergy analysis

    DEFF Research Database (Denmark)

    Dovjak, M.; Simone, Angela; Kolarik, Jakub

    2011-01-01

    Exergy analysis enables us to make connections among processes inside the human body and processes in a building. So far, only the effect of different combinations of air temperatures and mean radiant temperatures have been studied, with constant relative humidity in experimental conditions...... al. (1998). The effect of different levels of RH, Ta and effective clothing insulation on human body exergy balance chain, changes in human body exergy consumption rate (hbExCr) and predicted mean vote (PMV) index were analyzed. The results show that thermal comfort conditions do not always results...

  3. EXERGY OF TEXTILE MATERIALS

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The article presents solution for the task of evaluating exergy of the substance in the flow for textile and woven fabrics based on thermodynamic analysis of the corresponding technical systems. The exergy method allows estimating the energy effectiveness for the most problematic heat-technological systems of substance transformation and thus outlining the ways for decreasing the electric-power component in the production prime cost. The actuality of the issue stems from the renowned scenario alteration on the world energy market and is aggravated by necessity of retaining and building up the export potential of the light industry as an important component of the republic national-economic complex. The exergy method has been here for quite a long time and saw the interest fading and appearing again with periodicity of the research-generations alternation. Cooling down of every new generation towards the specified method is explained mostly by unresolved problem of the exergy evaluation for diverse materials, which poses a problem in the course of analysis of the substance transformation systems. The specified problem as a general rule does not create obstacles for energyconversion systems. However, the situation with substance-transformation systems is by far more complicated primarily due to diversity of the materials and respectively of the specification peculiarities of such component of the substance exergy in the flow as chemical component. Abeyance of conclusion in finding the chemical component of the substance exergy does not allow performing thermodynamic valuation of the energy provision for the heat-technological process in full measure. Which complicates the matters of decision-making and finding a medium for reduction of their energy consumption. All stated above relates to the textile industry and in the first instance to the finishing production departments.The authors present the exergy-evaluation problem solution for the

  4. Exergy in School?

    Directory of Open Access Journals (Sweden)

    Tomaž Kranjc

    2017-04-01

    Full Text Available Students at all levels of physics instruction have difficulties dealing with energy, work and heat in general and, in particular, with the concepts of efficiency and ideal heat engine, and the maximum performance of refrigerators and heat pumps (Cochran & Heron, 2006; Bucher, 1986. The reason for the difficulties is an insufficient understanding of the second law of thermodynamics (Kesidou & Duit, 1992. In order to make these topics less difficult, the concept of exergy — well established as a powerful analytical tool in technical thermodynamics — describing the “quality” of energy, seems in our judgment to be worthy of inclusion in the physics curriculum at all levels. Its introduction does not add another law. It facilitates the understanding of irreversibilities (as the destruction of exergy and gives a deeper meaning to the second law. In the treatment of heat engines the second-law efficiency throws a new light on the notions of an ideal and a real engine (similarly for a refrigerator or a heat pump. Exergy introduces, in a natural way, a distinction between various forms of energy according to its quality — availability for performing work. “Energy reserves”, which can be better understood with the help of exergy, are of practical interest. From the thermodynamic point of view, a more correct term would be “availability reserves”; all around us, there are huge quantities of energy (in atmosphere, in oceans etc, but of very limited availability, i.e., of limited exergy. In order to identify common misconceptions and difficulties encountered by students in the learning of the first and second law of thermodynamics, particularly in connection with heat engines and similar cyclic devices, we conducted a combined research among students of the Primary School Education at the Faculty of Education (UPR PeF and of Biodiversity, Bioinformatics and Mediterranean Agriculture at the Faculty of Mathematics, Natural Sciences and

  5. The Research Frontier in Corporate Governance

    DEFF Research Database (Denmark)

    Ahrens, Thomas; Filatotchev, Igor; Thomsen, Steen

    2011-01-01

    In this paper we attempt to identify the research frontier in corporate governance using three different approaches: (1) what challenges does the financial crisis 2007–2009 pose for corporate governance research? We show that the financial crisis is a huge natural experiment which has exposed gaps...... in our knowledge of corporate governance and is likely to lead of a rethink of central concepts like shareholder value, debt governance, and management incentives (2) what do we know and what do we need to how about the impact of national institutions on corporate governance? (3) What research questions...

  6. Exergy Analysis of Operating Lignite Fired Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    K. Murugesan

    2009-01-01

    Full Text Available The energy assessment must be made through the energy quantity as well as the quality. But the usual energy analysisevaluates the energy generally on its quantity only. However, the exergy analysis assesses the energy on quantity as well asthe quality. The aim of the exergy analysis is to identify the magnitudes and the locations of real energy losses, in order toimprove the existing systems, processes or components. The present paper deals with an exergy analysis performed on anoperating 50MWe unit of lignite fired steam power plant at Thermal Power Station-I, Neyveli Lignite Corporation Limited,Neyveli, Tamil Nadu, India. The exergy losses occurred in the various subsystems of the plant and their components havebeen calculated using the mass, energy and exergy balance equations. The distribution of the exergy losses in several plantcomponents during the real time plant running conditions has been assessed to locate the process irreversibility. The Firstlaw efficiency (energy efficiency and the Second law efficiency (exergy efficiency of the plant have also been calculated.The comparison between the energy losses and the exergy losses of the individual components of the plant shows that themaximum energy losses of 39% occur in the condenser, whereas the maximum exergy losses of 42.73% occur in the combustor.The real losses of energy which has a scope for the improvement are given as maximum exergy losses that occurredin the combustor.

  7. The Importance of Qualitative Market Research in Corporate Research

    OpenAIRE

    Werner Kaiser

    2004-01-01

    As a corporate market researcher, I believe that qualitative and quantitative research cannot be seen as a contradiction but as two cohesive and supplementary areas. My definition is decision- not methodology-orientated and shows them as the poles of a continuum. Since corporate market research takes place in a business environment, it is per se primarily quantitative. Nevertheless this paper points out practical areas for qualitative research for the corporate setting. Qualitative research c...

  8. The exergy release mechanism and exergy analysis for coal oxidation in supercritical water atmosphere and a power generation system based on the new technology

    International Nuclear Information System (INIS)

    Yan, Qiuhui; Hou, Yanwan; Luo, Jieren; Miao, Haijun; Zhang, Hong

    2016-01-01

    Graphical abstract: The exergy release mechanism of coal oxidation in SCW is revealed, and energy level, exergy losses as well as exergy efficiency are quantitatively investigated. Finally, based on the SCWO technology of coal, a new power generation system is constructed, and the exergy efficiency of the new system and conventional system is compared and analyzed. - Highlights: • Revealed release mechanism of exergy in supercritical water oxidation of coal. • Energy level, exergy losses and exergy efficiency are quantitatively investigated. • Exergy efficiency of supercritical water oxidation reactors is 80.1%. • Built a new power generation system based on supercritical water oxidation of coal. • Exergy efficiency of new power generation system is 21% higher than the conventional. - Abstract: The oxidation environment has important influence on the transformation of the energy contained in fuel and generation of pollutants. To the problem of nearly 50% exergy losses in coal oxidation at air atmosphere, this research intends to change oxidation atmosphere from air to supercritical water/oxidant and achieve efficient release of exergy in coal at about 650 °C with the aid of a high solubility and unique performance of heat and mass transfer of supercritical water. Therefore, firstly, based on the exergy analysis theory and the energy-utilization diagrams, the release mechanism of exergy of coal in supercritical water oxidation process is revealed. It is pointed out that supercritical water oxidation has changed the release pathways of chemical exergy, and decreased the level difference between chemical exergy and thermal energy, and more exergy is released. Meanwhile, there is also no exergy loss of physical heat transfer. As a result, supercritical water oxidation has higher exergy efficiency than conventional oxidation. Secondly, the exergy losses, level difference between chemical exergy and thermal energy as well as exergy efficiency, are

  9. Exergy analysis of the energy use in Greece

    International Nuclear Information System (INIS)

    Koroneos, Christopher J.; Nanaki, Evanthia A.; Xydis, George A.

    2011-01-01

    In this work, an analysis is being done on the concept of energy and exergy utilization and an application to the residential and industrial sector of Greece. The energy and exergy flows over the period from 1990 to 2004 were taken into consideration. This period was chosen based on the data reliability. The energy and exergy efficiencies are calculated for the residential and industrial sectors and compared to the findings of a previous study concerning the exergy efficiency of the Greek transport sector. The residential energy and exergy efficiencies for the year 2003 were 22.36% and 20.92%, respectively, whereas the industrial energy and exergy efficiencies for the same year were 53.72% and 51.34%, respectively. The analysis of energy and exergy utilization determines the efficiency of the economy as a whole. The results can play an important role in the establishment of efficiency standards of the energy use in various economy sectors. These standards could be utilized by energy policy makers. - Research highlights: → This work analyzes energy and exergy utilization in the energy sector of Greece by considering the energy and exergy flows for the years of 1990-2004. → Energy and exergy analyses and hence efficiencies for the residential and industrial sector are then obtained and compared to transport energy and exergy efficiencies. → The industrial sector appears to be the most energy and exergy efficient one. → It should be noted that due to non-availability of data concerning the fuel energy consumption of the appliances as well as of industrial processes, a general methodology was employed in order to calculate the energy and exergy efficiencies. → It may also be concluded that the exergy analysis offers constructive suggestions for the optimization and improvement of the energy utilization effectiveness of the sectors under study.

  10. Pitfalls of Exergy Analysis

    Science.gov (United States)

    Vágner, Petr; Pavelka, Michal; Maršík, František

    2017-04-01

    The well-known Gouy-Stodola theorem states that a device produces maximum useful power when working reversibly, that is with no entropy production inside the device. This statement then leads to a method of thermodynamic optimization based on entropy production minimization. Exergy destruction (difference between exergy of fuel and exhausts) is also given by entropy production inside the device. Therefore, assessing efficiency of a device by exergy analysis is also based on the Gouy-Stodola theorem. However, assumptions that had led to the Gouy-Stodola theorem are not satisfied in several optimization scenarios, e.g. non-isothermal steady-state fuel cells, where both entropy production minimization and exergy analysis should be used with caution. We demonstrate, using non-equilibrium thermodynamics, a few cases where entropy production minimization and exergy analysis should not be applied.

  11. Exergy analysis of heating, refrigerating and air conditioning methods and applications

    CERN Document Server

    Dincer, Ibrahim

    2015-01-01

    Improve and optimize efficiency of HVAC and related energy systems from an exergy perspective. From fundamentals to advanced applications, Exergy Analysis of Heating, Air Conditioning, and Refrigeration provides readers with a clear and concise description of exergy analysis and its many uses. Focusing on the application of exergy methods to the primary technologies for heating, refrigerating, and air conditioning, Ibrahim Dincer and Marc A. Rosen demonstrate exactly how exergy can help improve and optimize efficiency, environmental performance, and cost-effectiveness. The book also discusses the analysis tools available, and includes many comprehensive case studies on current and emerging systems and technologies for real-world examples. From introducing exergy and thermodynamic fundamentals to presenting the use of exergy methods for heating, refrigeration, and air conditioning systems, this book equips any researcher or practicing engineer with the tools needed to learn and master the application of exergy...

  12. Recapturing the corporate environmental management research agenda

    DEFF Research Database (Denmark)

    Ulhøi, John Parm; Madsen, Henning

    2009-01-01

    The article focuses on the identification of the subjective contradictions and tensions which exists between an industry and its various stakeholders. It provides information on the purpose of the article, which is to pause and take stock of the most recent developments within the field of corpor......The article focuses on the identification of the subjective contradictions and tensions which exists between an industry and its various stakeholders. It provides information on the purpose of the article, which is to pause and take stock of the most recent developments within the field...... of corporate environmental management, and to identify any new critical and innovative research which moves beyond the compliance and certification approach. It discusses the threatening effects of consumption and industrialization which the decision makers worldwide have continuously face during the past....

  13. Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method

    International Nuclear Information System (INIS)

    Rocco, M.V.; Colombo, E.; Sciubba, E.

    2014-01-01

    additional insight in and more relevant information for every comparative analysis of energy conversion systems, both at a global and a local level. In the paper, traditional and advanced exergy analysis methods are briefly discussed and EEA theoretical foundations and details for its application are described in detail. Methods: The method converts not only material and energy flows, but externalities as well (labour, capital and environmental costs) into flows of equivalent primary exergy, so that all exchanges between the system and the environment can be completely accounted for on a rigorous thermodynamic basis. The current emphasis decision makers and by public opinion alike seem to be placing on sustainability generates the need for continue research in the field of systems analysis, and a preliminary review confirms that exergy may constitute a coherent and rational basis for developing global and local analysis methods. Moreover, extended exergy accounting possesses some specific and peculiar characteristics that make it more suitable for life-cycle and cradle-to-grave (or well-to-wheel) applications. Results: Taxonomy for the classification of exergy-based methods is proposed. A novel assessment of the EEA method is provided, its advantages and drawbacks are discussed and areas in need of further theoretical investigation are identified. Conclusions: Since EEA is a life-cycle method, it is argued that it represents an improvement with regard to other current methods, in that it provides additional insight into the phenomenological aspects of any “energy conversion chain”. The paper demonstrates that the Extended Exergy cost function can be used within the traditional and very well formalized Thermoeconomic framework, replacing the economic cost function in order to evaluate and optimize the consumption of resources of a system in a more complete and rational way. Practical implications: This paper contains some specific proposals as to the further development

  14. Research in Corporate Communication: An Overview of an Emerging Field.

    Science.gov (United States)

    van Riel, Cees B. M.

    1997-01-01

    Provides an overview of research in corporate communication, focusing on achievements found in the international academic literature in both communication and business school disciplines. Gives three key concepts in such research: corporate identity, corporate reputation, and orchestration of communication. Advocates an interdisciplinary approach…

  15. BubbleZERO—Design, Construction and Operation of a Transportable Research Laboratory for Low Exergy Building System Evaluation in the Tropics

    Directory of Open Access Journals (Sweden)

    Arno Schlueter

    2013-09-01

    Full Text Available We present the design, construction and operation of a novel building systems laboratory, the BubbleZERO—Zero Emission Research Operation. Our objective was to design a space to evaluate the performance of Swiss-developed low exergy building systems in the tropical climate of Singapore using an integrated design approach. The method we employed for evaluation in the tropics was to design and build a test bed out of the shipping containers that transported the prototype low exergy systems from Switzerland to Singapore. This approach resulted in a novel laboratory environment containing radiant cooling panels and decentralized air supply, along with a self-shading, inflated “bubble” skin, experimental low emissivity (LowE glazing, LED lighting, wireless sensors and distributed control. The laboratory evaluates and demonstrates for the first time in Singapore an integrated high-temperature cooling system with separate demand-controlled ventilation adapted for the tropics. It is a functional lab testing system in real tropical conditions. As such, the results showing the ability to mitigate the risk of condensation by maintaining a dew point below 18 °C by the separate decentralized ventilation are significant and necessary for potential future implementation in buildings. In addition, the control system provides new proof of concept for distributed wireless sensors and control for reliable automation of the systems. These key results are presented along with the integrated design process and real-life tropical operation of the laboratory.

  16. Exergy analysis of waste emissions from gas flaring

    Directory of Open Access Journals (Sweden)

    Olawale Saheed ISMAIL

    2016-07-01

    Full Text Available Gas flaring produces a stream of waste gases at high temperature and pressure which contains carbon monoxide, Hydrogen Sulphide etc. The resultant effect of which is detrimental to our planet and, consequently, to the life of both the living and the non-living things. It’s well known that gas flaring contributes in no small measure to the global warming. Exergy analysis is applied in this work to analyze waste emissions from gas flaring so as to have a model through which impact of gas flaring can be measured. The study considers both the thermo-mechanical exergy and the chemical exergy of these gases. Relevant data on gas flaring activities in the Niger-Delta region of Nigeria between the periods of fifteen (15 years was obtained from the Nigerian National Petroleum Corporation (NNPC. A computer program (Exergy Calculator was developed based on the equations generated in the Model. Exergy associated with gas flaring activities in Nigeria between the periods of 1998 through 2012 was calculated. The results show that 1 mscf (in thousand cubic feet of flared gases generate 0.000041 MWh of energy leading to a value of 440158.607 MWh of energy for the period under review.The analysis provides important conclusions and recommendations for improving oil platforms operationsin in order to safeguard the environment, health of the populace, and maximize recovered exergy from gas flaring.

  17. Research in corporate communication: An overview of an emerging field

    NARCIS (Netherlands)

    C.B.M. van Riel (Cees)

    1997-01-01

    textabstractVan Riel provides an overview of research in corporate communication, focusing on achievements found in the international academic literature in both communication and business school disciplines.

  18. Solar and wind exergy potentials for Mars

    International Nuclear Information System (INIS)

    Delgado-Bonal, Alfonso; Martín-Torres, F. Javier; Vázquez-Martín, Sandra; Zorzano, María-Paz

    2016-01-01

    The energy requirements of the planetary exploration spacecrafts constrain the lifetime of the missions, their mobility and capabilities, and the number of instruments onboard. They are limiting factors in planetary exploration. Several missions to the surface of Mars have proven the feasibility and success of solar panels as energy source. The analysis of the exergy efficiency of the solar radiation has been carried out successfully on Earth, however, to date, there is not an extensive research regarding the thermodynamic exergy efficiency of in-situ renewable energy sources on Mars. In this paper, we analyse the obtainable energy (exergy) from solar radiation under Martian conditions. For this analysis we have used the surface environmental variables on Mars measured in-situ by the Rover Environmental Monitoring Station onboard the Curiosity rover and from satellite by the Thermal Emission Spectrometer instrument onboard the Mars Global Surveyor satellite mission. We evaluate the exergy efficiency from solar radiation on a global spatial scale using orbital data for a Martian year; and in a one single location in Mars (the Gale crater) but with an appreciable temporal resolution (1 h). Also, we analyse the wind energy as an alternative source of energy for Mars exploration and compare the results with those obtained on Earth. We study the viability of solar and wind energy station for the future exploration of Mars, showing that a small square solar cell of 0.30 m length could maintain a meteorological station on Mars. We conclude that the low density of the atmosphere of Mars is responsible of the low thermal exergy efficiency of solar panels. It also makes the use of wind energy uneffective. Finally, we provide insights for the development of new solar cells on Mars. - Highlights: • We analyse the exergy of solar radiation under Martian environment • Real data from in-situ instruments is used to determine the maximum efficiency of radiation • Wind

  19. 76 FR 33416 - Proposed Information Collection (Nonprofit Research and Education Corporations (NPCs) Data...

    Science.gov (United States)

    2011-06-08

    ... AFFAIRS Proposed Information Collection (Nonprofit Research and Education Corporations (NPCs) Data.... Titles: Nonprofit Research and Education Corporations (NPCs) Data Collection: a. Nonprofit Research and Education Corporations (NPCs) PC Annual Report Template, VA Form 10-0510. b. Nonprofit Research and...

  20. Sugarcane exergy calculation; Calculo de la exergia de la cana de azucar

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez P, Maria I.; Nebra P, Silvia A. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mails: mariai@fem.unicamp.br.; sanebra@fem.unicamp.br; Martinez R, Arnaldo [Universidade de Oriente, Santiago de Cuba (Cuba). Facultad de Ingenieria Mecanica. Centro de Estudios de Refrigeracion Luis Fernando Brossard Perez]. E-mail: arnaldo@fim.ceefe.uo.edu.cu

    2000-07-01

    This paper presents a sugarcane exergy calculation, carried out considering the material as constituted by dry fiber and juice, being the last one that includes all the sucrose and water present in sugarcane. The variation intervals of sugarcane chemical composition and consequently the chemical composition of fibre and juice were obtained from a bibliography research. the finals results show that, the fibre exergy, as was considered totally dry and without sucrose, is a function of it chemical composition only. The quotient between the exergy and low calorific value has a middle value of 1,14 and the middle value of it exergy was 2329 kJ/kg of cane. Based on the environmental reference proposed by Szargut for the sugarcane juice exergy determination, it was obtained that the mixture component of the juice exergy has no piratical influence in the total exergy juice value, being the value of the reactive exergy component the determining of a middle value of sugarcane juice exergy of 2814,25 kJ/kg of juice and 2380Kj/Kg of cane. The sugarcane exergy value obtained for 8-18% of fiber, 75-82% of water and 14.5-22% of sucrose was 4709Kj/kg of cane. (author)

  1. 78 FR 53508 - Proposed Information Collection (Nonprofit Research and Education Corporations (NPCs) Data...

    Science.gov (United States)

    2013-08-29

    ... AFFAIRS Proposed Information Collection (Nonprofit Research and Education Corporations (NPCs) Data... to ``OMB Control No. 2900-0783 (Nonprofit Research and Education Corporations (NPCs) Data Collection.... Titles: Nonprofit Research and Education Corporations (NPCs) Data Collection a. Annual Report Template...

  2. Positive Leadership and Corporate Entrepreneurship: Theoretical Considerations and Research Propositions

    Directory of Open Access Journals (Sweden)

    Przemysław Zbierowski

    2016-09-01

    Full Text Available Objective: The objective of the paper is to describe the approaches to positive leadership and propose research directions on its impact on corporate entrepreneurship. There is much debate within positive leadership domain and the question arises if positive style of leadership supports the entrepreneurship within corporations conceptualised as entrepreneurial orientation. Research Design & Methods: The main method employed in the paper is critical literature review. Based on that, some research propositions are formulated. Findings: Four research propositions concern the possible impact of positive leadership on corporate entrepreneurship. It is proposed that authentic leadership, fundamental state of leadership, psychological capital and positive deviance all positively influence corporate entrepreneurship. Implications & Recommendations: The main implications of the paper concern future research in corporate entrepreneurship domain. Moreover, the indirect impact is expected on managerial practice in future research results concerning supporting corporate entrepreneurship by enhancing positive leadership behaviours. Contribution & Value Added: The paper opens new line of research on the cross-roads of positive organizational scholarship research and entrepreneurship theory. The main contribution of the paper is to draw attention to the models of leadership that might be critical for entrepreneurship inside organisations.

  3. Positive Leadership and Corporate Entrepreneurship: Theoretical Considerations and Research Propositions

    OpenAIRE

    Przemysław Zbierowski

    2016-01-01

    Objective: The objective of the paper is to describe the approaches to positive leadership and propose research directions on its impact on corporate entrepreneurship. There is much debate within positive leadership domain and the question arises if positive style of leadership supports the entrepreneurship within corporations conceptualised as entrepreneurial orientation. Research Design & Methods: The main method employed in the paper is critical literature review. Based on that, some r...

  4. Energy and exergy analyses of Angra-2 nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Marques, João G.O.; Costa, Antonella L.; Pereira, Claubia; Fortini, Ângela, E-mail: jgabrieloliveira2010@bol.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: fortini@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Nuclear Power Plants (NPPs) based on Pressurized Water Reactors (PWRs) technology are considered an alternative to fossil fuels plants due to their reliability with low operational cost and low CO{sub 2} emissions. An example of PWR plant is Angra-2 built in Brazil. This NPP has a nominal electric power output of 1300 MW and made it possible for the country save its water resources during electricity generation from hydraulic plants, and improved Brazilian knowledge and technology in nuclear research area. Despite all these benefits, PWR plants generally have a relatively low thermal efficiency combined with a large amount of irreversibility generation or exergy destruction in their components, reducing their capacity to produce work. Because of that, it is important to assess such systems to understand how each component impacts on system efficiency. Based on that, the aim of this work is to evaluate Angra-2 by performing energy and exergy analyses to quantify the thermodynamic performance of this PWR plant and its components. The methodology consists in the development of a mathematical model in EES (Engineering Equation Solver) software based on thermodynamic states in addition to energy and exergy balance equations. According to the results, Angra 2 has energy efficiency of 36.18% and exergy efficiency of 49.24%. Reactor core is the most inefficient device in the NPP; it has exergy efficiency of 67.16% and is responsible for 63.88% of all exergy destroyed in Angra-2. (author)

  5. Energy and exergy analyses of Angra-2 nuclear power plant

    International Nuclear Information System (INIS)

    Marques, João G.O.; Costa, Antonella L.; Pereira, Claubia; Fortini, Ângela

    2017-01-01

    Nuclear Power Plants (NPPs) based on Pressurized Water Reactors (PWRs) technology are considered an alternative to fossil fuels plants due to their reliability with low operational cost and low CO 2 emissions. An example of PWR plant is Angra-2 built in Brazil. This NPP has a nominal electric power output of 1300 MW and made it possible for the country save its water resources during electricity generation from hydraulic plants, and improved Brazilian knowledge and technology in nuclear research area. Despite all these benefits, PWR plants generally have a relatively low thermal efficiency combined with a large amount of irreversibility generation or exergy destruction in their components, reducing their capacity to produce work. Because of that, it is important to assess such systems to understand how each component impacts on system efficiency. Based on that, the aim of this work is to evaluate Angra-2 by performing energy and exergy analyses to quantify the thermodynamic performance of this PWR plant and its components. The methodology consists in the development of a mathematical model in EES (Engineering Equation Solver) software based on thermodynamic states in addition to energy and exergy balance equations. According to the results, Angra 2 has energy efficiency of 36.18% and exergy efficiency of 49.24%. Reactor core is the most inefficient device in the NPP; it has exergy efficiency of 67.16% and is responsible for 63.88% of all exergy destroyed in Angra-2. (author)

  6. An investigation on the assessed thermal sensation and human body exergy consumption rate

    DEFF Research Database (Denmark)

    Simone, Angela; Kolarik, Jakub; Iwamatsu, Toshiya

    2010-01-01

    perception of the indoor environment is rare. As the building should provide healthy and comfortable environment for its occupants, it is reasonable to consider both the exergy flows in the building and within the human body. A relatively new approach of the relation between the exergy concept and the built......-environment research has been explored in the present work. The relationship of subjectively assessed thermal sensation data, from earlier thermal comfort studies, to the calculated human-body exergy consumption has been analysed. The results show that the minimum human body exergy consumption rate was related...... to the thermal sensation votes close to thermal neutrality, tending to the slightly cool side....

  7. Corporate reputation index: empirical research in banking sector

    Directory of Open Access Journals (Sweden)

    Damir Grgić

    2012-07-01

    Full Text Available This paper focuses on presenting an improved model of corporate reputation measurement. This research builds on to the research conducted so far in relation to the instruments used for measuring corporate reputation. It aimed at widening the current theoretical knowledge and research on the instrument of bank reputation measurement, on the impact of individual aspects of business on the reputation of banks as well as on the impact of reputation on attaining competitive advantage. Accordingly, the main issues in this research were the understanding of dimensions of bank reputation measurement as well as the understanding of the direction and intensity of a bank’s reputation in relation to attaining its competitive advantage. Moreover, the aim was to suggest and test an improved model of corporate reputation measurement. A corporate reputation index (indeks reputacije poduzeća, IRP – an improved model of measuring corporate reputation developed in this work, is firmly based on the current instruments used for measuring corporate reputation which are founded on the concept of social expectations. The model was tested through regression and SEM analysis. The data necessary for the empirical analysis was obtained through the CATI method of research on a sample of 798 respondents. Research results show unambiguously that a bank’s relations with its stakeholders contribute to its reputation. Therefore, it is justifiable to include them in the instrument used for measuring corporate reputation. On the other hand, the results show that the vision and leadership of the bank’s top figures do not contribute to its reputation. Although it is not possible to generalize the findings in relation to all the users of banking sector services, thanks to the size of the sample, they can be considered as indicative of the population of the Republic of Croatia. Future research, as a response to critique by certain authors, should include research on other

  8. Modeling the exergy behavior of human body

    International Nuclear Information System (INIS)

    Keutenedjian Mady, Carlos Eduardo; Silva Ferreira, Maurício; Itizo Yanagihara, Jurandir; Hilário Nascimento Saldiva, Paulo; Oliveira Junior, Silvio de

    2012-01-01

    Exergy analysis is applied to assess the energy conversion processes that take place in the human body, aiming at developing indicators of health and performance based on the concepts of exergy destroyed rate and exergy efficiency. The thermal behavior of the human body is simulated by a model composed of 15 cylinders with elliptical cross section representing: head, neck, trunk, arms, forearms, hands, thighs, legs, and feet. For each, a combination of tissues is considered. The energy equation is solved for each cylinder, being possible to obtain transitory response from the body due to a variation in environmental conditions. With this model, it is possible to obtain heat and mass flow rates to the environment due to radiation, convection, evaporation and respiration. The exergy balances provide the exergy variation due to heat and mass exchange over the body, and the exergy variation over time for each compartments tissue and blood, the sum of which leads to the total variation of the body. Results indicate that exergy destroyed and exergy efficiency decrease over lifespan and the human body is more efficient and destroys less exergy in lower relative humidities and higher temperatures. -- Highlights: ► In this article it is indicated an overview of the human thermal model. ► It is performed the energy and exergy analysis of the human body. ► Exergy destruction and exergy efficiency decreases with lifespan. ► Exergy destruction and exergy efficiency are a function of environmental conditions.

  9. A research agenda for international corporate social responsibility

    NARCIS (Netherlands)

    Putten, van der F.P.

    2005-01-01

    This paper builds on a recent article by Elisabet Garriga and Domènec Melé, in which they provided an overview of the main approaches in current CSR (Corporate Social Responsibility) research. It applies their general approach to CSR research aimed specifically at the international level, and

  10. Japanese Research Institutes Funded by Private Corporations.

    Science.gov (United States)

    1983-12-01

    vibration, and noise are also items of interest to the company. With a view toward be- er economics of investment and operations, the Center is...28% Cake, doughnut mixes, and others ......... 11% 105 R & D ACTIVITIES The Central Research Laboratory, in medical research studies, is...energy. The laboratories are trying to establish economical techniques in producing materials other than iron, such as titanium, carbon, and amorphous

  11. Research in corporate communication: An overview of an emerging field

    NARCIS (Netherlands)

    C.B.M. van Riel (Cees)

    1997-01-01

    textabstractThis commentary is intended as an amendment to Argenti's (1996) viewpoint, published in Volume 10, Issue 1, of Management Communication Quarterly. Van Riel provides an overview of research in corporate communication, focusing on achievements found in the international academic literature

  12. The Link between Corporate Environmental and Corporate Financial Performance—Viewpoints from Practice and Research

    Directory of Open Access Journals (Sweden)

    Anne Bergmann

    2016-11-01

    Full Text Available For more than 40 years, a tremendous number of studies have empirically explored the relationship between Corporate Environmental Performance (CEP and Corporate Financial Performance (CFP. This study considers the relationship from a new perspective—via a qualitative research approach based on expert interviews. First, practitioners are queried for their view on the link between CEP and CFP and how to measure it. Since the vast majority see a positive relationship, this study contributes with a new form of evidence that it pays to be green. The chosen qualitative approach also allows a more detailed analysis of underlying cause-and-effect mechanisms. For instance, interviewed practitioners emphasize a direct and indirect impact from CEP on CFP. Second, the study conducts interviews with experts from research and associations (non-practitioners and compares the viewpoints of the two interview groups. One prevalent difference refers to the fact that non-practitioners do not focus on the two impact levels. Moreover, business experts perceive the link between CEP and CFP as much less complex and reveal more pragmatically oriented considerations. The study then discusses how the interview results and identified differences can be used to direct future research and to support corporations in their move towards sustainability.

  13. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zelong; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficiency and other performances are analyzed by numerical calculations.

  14. The role of market research information in corporate decision making

    OpenAIRE

    Csilla Máthé

    2008-01-01

    This paper aims at understanding the role of market research information in the corporate decision making process concerning marketing decisions (4Ps). Information is an asset and resource that is essential for decision-makers so that they can define the company’s short and long term goals, execute and evaluate them. The whole process can be supported by customized research and retail measurement results.

  15. Exergy method technical and ecological applications

    CERN Document Server

    Szargut, J

    2005-01-01

    The exergy method makes it possible to detect and quantify the possibilities of improving thermal and chemical processes and systems. The introduction of the concept ""thermo-ecological cost"" (cumulative consumption of non-renewable natural exergy resources) generated large application possibilities of exergy in ecology. This book contains a short presentation on the basic principles of exergy analysis and discusses new achievements in the field over the last 15 years. One of the most important issues considered by the distinguished author is the economy of non-renewable natural exergy.

  16. Exergy and the economic process

    Science.gov (United States)

    Karakatsanis, Georgios

    2016-04-01

    The Second Law of Thermodynamics (2nd Law) dictates that the introduction of physical work in a system requires the existence of a heat gradient, according to the universal notion of Carnot Heat Engine. This is the corner stone for the notion of exergy as well, as exergy is actually the potential of physical work generation across the process of equilibration of a number of unified systems with different thermodynamic states. However, although energy concerns the abstract ability of work generation, exergy concerns the specific ability of work generation, due to the requirement for specifying an environment of reference, in relation to which the thermodynamic equilibration takes place; also determining heat engine efficiencies. Consequently, while energy is always conserved, exergy -deriving from heat gradient equilibration- is always consumed. According to this perspective, the availability of heat gradients is what fundamentally drives the evolution of econosystems, via enhancing -or even substituting- human labor (Boulding 1978; Chen 2005; Ayres and Warr 2009). In addition, exergy consumption is irreversible, via the gradual transformation of useful physical work to entropy; hence reducing its future economic availability. By extending Roegen's relative approach (1971), it could be postulated that this irreversible exhaustion of exergy comprises the fundamental cause of economic scarcity, which is the corner stone for the development of economic science. Conclusively, scarcity consists in: (a) the difficulty of allocating -in the Earth System- very high heat gradients that would make humanity's heat engines very efficient and (b) the irreversible depletion of existent heat gradients due to entropy production. In addition, the concept of exergy could be used to study natural resource degradation and pollution at the biogeochemical level and understand why heat gradient scarcity in the Earth System was eventually inevitable. All of these issues are analyzed both

  17. 76 FR 54002 - Agency Information Collection (Nonprofit Research and Education Corporations (NPCs) Data...

    Science.gov (United States)

    2011-08-30

    ... AFFAIRS Agency Information Collection (Nonprofit Research and Education Corporations (NPCs) Data... (NPCs) Data Collection: a. Nonprofit Research and Education Corporations (NPCs) PC Annual Report... expected cost and burden and includes the actual data collection instrument. ] DATES: Comments must be...

  18. Environmental exergy analysis of wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Mora Bejarano, C.H.; Oliveira Junior, S. de [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Mecanica]. E-mail: carlos.bejarano@poli.usp.br; silvio.oliveira@poli.usp.br

    2006-12-15

    This work evaluates the environmental impact of Wastewater Treatment Plants (WTP) based on data generated by the exergy analysis, calculating and applying environmental impact indexes for two WTP located in the Metropolitan Area of Sao Paulo. The environmental impact of the waste water treatment plants was done by means of evaluating two environmental impact exergy based indexes: the environmental exergy efficiency and the total pollution rate (Rpol,t). The environmental exergy efficiency is defined as the ratio of the exergy of the useful effect of the WTP to the total exergy consumed by human and natural resources, including all the exergy inputs. That relation is an indication of the theoretical potential of future improvements of the process. Besides the environmental exergy efficiency, it is also used the total pollution rate, based on the definition done by Makarytchev (1997), as the ratio of the destroyed exergy associated to the process wastes to the exergy of the useful effect of the process. The analysis of the results shows that this method can be used to quantify and also optimise the environmental performance of Wastewater Treatment Plants. (author)

  19. Energy and exergy assessments for an enhanced use of energy in buildings

    Science.gov (United States)

    Goncalves, Pedro Manuel Ferreira

    supply options are proposed and assessed as primary energy demand and exergy efficiency, showing it as a possible benchmarking method for future legislative frameworks regarding the energy performance assessment of buildings. Case study IV proposes a set of complementary indicators for comparing cogeneration and separate heat and electricity production systems. It aims to identify the advantages of exergy analysis relative to energy analysis, giving particular examples where these advantages are significant. The results demonstrate that exergy analysis can reveal meaningful information that might not be accessible using a conventional energy analysis approach, which is particularly evident when cogeneration and separated systems provide heat at very different temperatures. Case study V follows the exergy analysis method to evaluate the energy and exergy performance of a desiccant cooling system, aiming to assess and locate irreversibilities sources. The results reveal that natural gas boiler is the most inefficient component of the plant in question, followed by the chiller and heating coil. A set of alternative heating supply options for desiccant wheel regeneration is proposed, showing that, while some renewables may effectively reduce the primary energy demand of the plant, although this may not correspond to the optimum level of exergy efficiency. The thermal and chemical exergy components of moist air are also evaluated, as well as, the influence of outdoor environmental conditions on the energy/exergy performance of the plant. This research provides knowledge that is essential for the future development of complementary energy- and exergy-based indicators, helping to improve the current methodologies on performance assessments of buildings, cogeneration and desiccant cooling systems. The significance of exergy analysis is demonstrated for different types of buildings, which may be located in different climates (reference states) and be supplied by different types

  20. Exergy accounting - the energy that matters

    Energy Technology Data Exchange (ETDEWEB)

    Fachina, V. [Petroleo do Brasil S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mail: vicentefachina@petrobras.com.br

    2009-07-01

    The exergy concept is introduced by utilizing a general framework on which are based the model equations. An exergy analysis is performed on a case study: a control volume for a power module is created by comprising gas turbine, reduction gearbox, AC generator, exhaustion ducts and heat regenerator. The implementation of the equations is carried out by collecting test data of the equipment data sheets from the respective vendors. By utilizing an exergy map, one proposes both mitigating and contingent countermeasures for maximizing the exergy efficiency. An exergy accounting is introduced by showing how the exergy concept might eventually be brought up to the traditional money accounting. At last, one devises a unified approach for efficiency metrics in order to bridge the gaps between the physical and the economical realms. (author)

  1. 75 FR 43162 - Tetrahedron, Inc., with Subcontractors: Syracuse Research Corporation; Tox Path, Inc; and...

    Science.gov (United States)

    2010-07-23

    ... Corporation, Tox Path, Inc., and Pathology Associates, have been awarded a contract to perform work for OPP... AGENCY Tetrahedron, Inc., with Subcontractors: Syracuse Research Corporation; Tox Path, Inc; and... subcontractors: Syracuse Research Corporation, Tox Path, Inc., and Pathology Associates, in accordance with 40...

  2. Knowledge, loyalty and the dividual corporate researcher body

    DEFF Research Database (Denmark)

    Møhl, Perle; Simonsen, Anja

    It could be assumed that in order to analyze a complex and highly contentious assemblage such as a border world where a multitude of different actors, technological practices, epistemes, and political, commercial and individual interests are at play, nothing would be more obvious than a collabora...... a dividual corporate researcher body where positions can be upheld and where knowledge can be protected because not shared. As a result, our corporate researcher body becomes dividual, a body with organs that operate independently of each other....... a collaborative project that illuminates that field from several contrasting perspectives by having different researchers position themselves within different constituents of the assemblage. And that is indeed the basic assumption of our collaborative project, that to understand, simply speaking, what goes...... on at the border, where some people try to filter movement and manage flows while others try to circumvent or breach such filters, and where biometric technologies are taken into use and altered for both purposes, we could operate through a simple division of knowledge labour. We are thus doing as a group what we...

  3. Exergy. Concept, challenges and usages for industry

    International Nuclear Information System (INIS)

    2013-04-01

    The increasing pressure on natural resources makes reduction of energy consumption a critical stake. The exergy concept offers a global, standard and rigorous framework to energy systems analysis, and as such, contributes to tackle the energy challenge. ENEA has released a publication that popularizes the exergy concept, explains its application within the energy efficiency field, and highlights its value for industrial actors

  4. The Exergy Loss Distribution and the Heat Transfer Capability in Subcritical Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Chao He

    2017-06-01

    Full Text Available Taking net power output as the optimization objective, the exergy loss distribution of the subcritical Organic Rankine Cycle (ORC system by using R245fa as the working fluid was calculated under the optimal conditions. The influences of heat source temperature, the evaporator pinch point temperature difference, the expander isentropic efficiency and the cooling water temperature rise on the exergy loss distribution of subcritical ORC system are comprehensively discussed. It is found that there exists a critical value of expander isentropic efficiency and cooling water temperature rise, respectively, under certain conditions. The magnitude of critical value will affect the relative distribution of exergy loss in the expander, the evaporator and the condenser. The research results will help to better understand the characteristics of the exergy loss distribution in an ORC system.

  5. Exergy analysis of encapsulation of photochromic dye by spray drying

    Science.gov (United States)

    Çay, A.; Akçakoca Kumbasar, E. P.; Morsunbul, S.

    2017-10-01

    Application of exergy analysis methodology for encapsulation of photochromic dyes by spray drying was presented. Spray drying system was investigated considering two subsystems, the heater and the dryer sections. Exergy models for each subsystem were proposed and exergy destruction rate and exergy efficiency of each subsystem and the whole system were computed. Energy and exergy efficiency of the system were calculated to be 5.28% and 3.40%, respectively. It was found that 90% of the total exergy inlet was destroyed during encapsulation by spray drying and the exergy destruction of the heater was found to be higher.

  6. Current Debates in Corporate Social Responsibility: An Agenda for Research

    Directory of Open Access Journals (Sweden)

    David Crowther

    2007-06-01

    Full Text Available Corporate Social Responsibility (CSR has a particular prominence at this point in time, featuring heavily in the discourses of both academe and business. The understanding of what is meant by CSR continues to evolve as a consensus is reached. Nevertheless some important debates continue – or are commencing – which need to be resolved. It is the purpose of this paper to highlight these as some of the current debates within the CSR community – and hence form a significant part of an agenda for research in the area. Specifically we focus upon three key areas for the management of business, namely setting standards for reporting, identifying and implementing sustainable practice, and the management of risk.

  7. Exergy Analysis of Combined Cycle Power Plant: NTPC Dadri, India

    OpenAIRE

    Tiwari, Arvind; Hasan, M; Islam, Mohd.

    2012-01-01

    The aim of the present paper is to exergy analysis of combined Brayton/Rankine power cycle of NTPC Dadri India. Theoretical exergy analysis is carried out for different components of dadri combined cycle power plant which consists of a gas turbine unit, heat recovery steam generator without extra fuel consumption and steam turbine unit. The results pinpoint that more exergy losses occurred in the gas turbine combustion chamber. Its reached 35% of the total exergy losses while the exergy losse...

  8. Research findings can change attitudes about corporal punishment.

    Science.gov (United States)

    Holden, George W; Brown, Alan S; Baldwin, Austin S; Croft Caderao, Kathryn

    2014-05-01

    Positive attitudes toward the use of corporal punishment (CP) predict subsequent spanking behavior. Given that CP has frequently been associated with behavior problems in children and child maltreatment, this prevention work was designed to test whether adults' attitudes could be changed by informing participants about the research findings on problematic behaviors associated with CP. Two random assignment studies are reported. In Study 1, we tested whether an active reading condition would result in more attitude change than a passive condition. With a sample of 118 non-parent adults, we found that after reading very brief research summaries on the problems associated with CP, there was a significant decrease in favorable attitudes toward CP. Contrary to expectations, the magnitude of the change was comparable for active and passive processing conditions. In Study 2, we extended our approach to a sample of 520 parents and included a control group. A significant decrease in positive attitudes toward spanking was observed in the intervention group, but no change for the control group. Parents who were unaware of the research showed more change after reading the summaries. Thus, these studies demonstrate that a brief and cost-effective approach to raise awareness of research findings can reduce positive attitudes toward CP. Implications for prevention and intervention are discussed. Copyright © 2013. Published by Elsevier Ltd.

  9. Exergy analysis of a MSF distillation plant

    International Nuclear Information System (INIS)

    Kahraman, Nafiz; Cengel, Yunus A.

    2005-01-01

    In this paper, a large MSF distillation plant in the gulf area is analyzed thermodynamically using actual plant operation data. Exergy flow rates are evaluated throughout the plant, and the exergy flow diagram is prepared. The rates of exergy destruction and their percentages are indicated on the diagram so that the locations of highest exergy destruction can easily be identified. The highest exergy destruction (77.7%) occurs within the MSF unit, as expected, and this can be reduced by increasing the number of flashing stages. The exergy destruction in the pumps and motors account for 5.3% of the total, and this also can be reduced by using high efficiency motors and pumps. The plant is determined to have a second law efficiency of just 4.2%, which is very low. This indicates that there are major opportunities in the plant to reduce exergy destruction and, thus, the amount of electric and thermal energy supplied, making the operation of the plant more cost effective

  10. Exergy analysis of a MSF distillation plant

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Nafiz [Department of Mechanical Engineering, Erciyes University, Kayseri (Turkey)]. E-mail: nafiz@erciyes.edu.tr; Cengel, Yunus A. [Department of Mechanical Engineering/312, University of Nevada, Reno, NV 89557 (United States)

    2005-09-15

    In this paper, a large MSF distillation plant in the gulf area is analyzed thermodynamically using actual plant operation data. Exergy flow rates are evaluated throughout the plant, and the exergy flow diagram is prepared. The rates of exergy destruction and their percentages are indicated on the diagram so that the locations of highest exergy destruction can easily be identified. The highest exergy destruction (77.7%) occurs within the MSF unit, as expected, and this can be reduced by increasing the number of flashing stages. The exergy destruction in the pumps and motors account for 5.3% of the total, and this also can be reduced by using high efficiency motors and pumps. The plant is determined to have a second law efficiency of just 4.2%, which is very low. This indicates that there are major opportunities in the plant to reduce exergy destruction and, thus, the amount of electric and thermal energy supplied, making the operation of the plant more cost effective.

  11. EXERGY ANALYSIS OF PRODUCTION LINE CANDIED FRUIT

    Directory of Open Access Journals (Sweden)

    V. D. Dem'шanov

    2014-01-01

    Full Text Available Summary. The task of exergy analysis - evaluation based on the second law of thermodynamics, thermodynamic degree of technical perfection of the whole system, as well as to identify those stages of a technical process, which contains the bulk of the loss of exergy in order to improve its efficiency. Using exergy analysis allows to solve a wide range of technical problems on the basis of a unified thermodynamic methods. Exergy analysis was performed by the method whereby thermotechnological system candied fruit production, conventionally separated from the environment of the closed control surface. Exchange scheme under consideration thermotechnological candied fruit production material, thermal and energy flows to the environment, as well as between the control surfaces. Exergy in external input material streams: air and water and citric acid, as well as output streams without having increment Shih-exergy in the process of passing through the reference surface - of running air-water and after washing, are in thermodynamic equilibrium with the surroundings is zero. In the total number of internal exergy losses include losses from the final result of the temperature difference in the heat exchange between the raw material to be dried and heated air electromechanical arising from irreversible alteration of structural and mechanical properties of the product, and the hydraulic loss due to the sudden increase of the specific volume of air as it enters the working chamber dryer. The resulting exergy efficiency is 8.87 %, which is 3.7 % higher than when using the technology of the prototype based on solar air-dried product. This indicates an increase in the degree of perfection of the thermodynamic system by using microwave heating of the product in combination with the removal of moisture in the atmosphere low temperature coolant, which precludes significant outside exergy loss on drying step.

  12. The nuclear power corporation's foreign exchange risk management research

    International Nuclear Information System (INIS)

    Zhang Yi

    2012-01-01

    To manage and control foreign exchange rate risk under the floating exchange rate system, historical simulation method of VaR model has been utilized to evaluate the nuclear power corporation's foreign exchange risk and the risk causation has been analyzed. Finally, the measure of enhancing the nuclear power corporation's foreign exchange rate risk management level has been exposed for sharing. (author)

  13. Critical of the concept of exergy

    International Nuclear Information System (INIS)

    Mora Casal, Rene Alejandro

    2015-01-01

    Exergy is a concept that, since its invention sixty years ago, has gained popularity and has extended beyond engineering applications. However, a deep study of this concept reveals problems and inconsistencies, both of theoretical type and of application. Six problems are identified and discussed: ambiguous notation, ambiguous reference states, applicability to real processes, redundancy with respect to other thermodynamic properties, inconsistency between the concepts of exergy and lost work, and applicability of the exergetic analysis results. Some roads to solution for these problems are proposed, being the fifth one the most difficult to solve, as it requires a redefinition of exergy. (author) [es

  14. Energy, Exergy and Advanced Exergy Analysis of a Milk Processing Factory

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Jensen, Jonas Kjær

    2016-01-01

    Energy, exergy and advanced exergy methods are used in this study to analyse a milk processing facility which is one of the largest energy consumers within the food industry in Denmark. While a conventional energy analysis maps the energy flows of the system and suggests opportunities for process......, cream and milk powder. The results show the optimisation potential based on 1st and 2nd law analyses. An evaluation and comparison of the applicability of exergy methods, including advanced exergy methods, to the dairy industry is made. The comparison includes typical energy mappings conducted onsite...

  15. Exergy analysis of a novel CHP–GSHP coupling system

    International Nuclear Information System (INIS)

    Kang, Shushuo; Li, Hongqiang; Liu, Lifang; Lei, Jing; Zhang, Guoqiang

    2016-01-01

    Highlights: • Exergy loss distributions and efficiency of the novel system are carried out and discussed. • Essential energy saving character of the novel system is revealed. • Influences of key operation parameter on thermodynamic performance are investigated. - Abstract: A novel natural gas based combined heating and power (CHP) and ground source heat pump (GSHP) coupling system has been suggested and analyzed in terms of first law of thermodynamics. In this paper, the performance of the novel system is investigated from the perspective of second law of thermodynamics, and the calculations are completed by the combination of Aspen plus simulation and theoretical derivation. The research results show that, the novel system can obtain total exergy efficiency 22.58%, about 3.7% higher than the reference system. So as to reveal the essential energy saving character about the novel system, the exergy loss distribution differences between the novel and reference system are discussed. Moreover, the key operation parameter which will affect the performance of the novel system is also investigated. The final research results show that, the novel integration approach will provide a good reference for the other similar high-efficiency energy system.

  16. Characterization and Exergy Analysis of Triphenyl Borate

    International Nuclear Information System (INIS)

    Acarali, N. B.

    2015-01-01

    In this study, unlike from the literature, boron oxide, borax decahydrate, boric acid and borax pentahydrate as boron sources were used to synthesize Triphenyl Borate (TPB). The reactions of TPB were carried out by using both phenol and various boron sources in inert water-immiscible organic solvent successfully. On the basis of analyzes (FT-IR, SEM, TGA/DSC) obtained, it was seen that phenol acted as a support to borate structure framework and thermal characterisation of the amorphous solid under determined conditions suggested that usage of different boron sources had effects for glass transition temperature in TPB production. The exergy analysis was performed to the TPB production to determine efficiency. The exergy analysis showed that the highest exergy efficiency was obtained by using boron oxide as a boron source. Consequently, all analyses results showed that TPB was produced successfully. Accordingly, characterization and exergy analysis supported each other. (author)

  17. Exergy Analysis of Complex Ship Energy Systems

    Directory of Open Access Journals (Sweden)

    Pierre Marty

    2016-04-01

    Full Text Available With multiple primary and secondary energy converters (diesel engines, steam turbines, waste heat recovery (WHR and oil-fired boilers, etc. and extensive energy networks (steam, cooling water, exhaust gases, etc., ships may be considered as complex energy systems. Understanding and optimizing such systems requires advanced holistic energy modeling. This modeling can be done in two ways: The simpler approach focuses on energy flows, and has already been tested, approved and presented; a new, more complicated approach, focusing on energy quality, i.e., exergy, is presented in this paper. Exergy analysis has rarely been applied to ships, and, as a general rule, the shipping industry is not familiar with this tool. This paper tries to fill this gap. We start by giving a short reminder of what exergy is and describe the principles of exergy modeling to explain what kind of results should be expected from such an analysis. We then apply these principles to the analysis of a large two-stroke diesel engine with its cooling and exhaust systems. Simulation results are then presented along with the exergy analysis. Finally, we propose solutions for energy and exergy saving which could be applied to marine engines and ships in general.

  18. Exergy analysis of industrial ammonia synthesis

    International Nuclear Information System (INIS)

    Kirova-Yordanova, Zornitza

    2004-01-01

    Exergy consumption of ammonia production plants depends strongly on the ammonia synthesis loop design. Due to the thermodynamically limited low degree of conversion of hydrogen-nitrogen mixture to ammonia, industrial ammonia synthesis is implemented as recycle process (so-called 'ammonia synthesis loop'). Significant quantities of reactants are recycled back to reactor, after the removal of ammonia at low temperatures. Modern ammonia synthesis plants use well-developed heat- and cold recovery to improve the reaction heat utilisation and to reduce the refrigeration costs. In this work, the exergy method is applied to estimate the effect of the most important process parameters on the exergy efficiency of industrial ammonia synthesis. A specific approach, including suitable definitions of the system boundaries and process parameters, is proposed. Exergy efficiency indexes are discussed in order to make the results applicable to ammonia synthesis loops of various designs. The dependence of the exergy losses on properly selected independent process parameters is studied. Some results from detailed exergy analysis of the most commonly used ammonia synthesis loop design configurations at a wide range of selected parameters values are shown

  19. 77 FR 10506 - Access to Confidential Business Information by Syracuse Research Corporation, Inc., and Its...

    Science.gov (United States)

    2012-02-22

    ... AGENCY Access to Confidential Business Information by Syracuse Research Corporation, Inc., and Its... Syracuse, NY, and its identified subcontractor BeakerTree Corporation to access information which has been... information may be claimed or determined to be Confidential Business Information (CBI). DATES: Access to the...

  20. Exergy performance of human body under physical activities

    International Nuclear Information System (INIS)

    Mady, Carlos Eduardo Keutenedjian; Albuquerque, Cyro; Fernandes, Tiago Lazzaretti; Hernandez, Arnaldo José; Saldiva, Paulo Hilário Nascimento; Yanagihara, Jurandir Itizo; Oliveira, Silvio de

    2013-01-01

    The aim of this work is to apply performance indicators for individuals under physical activity based on the concepts of exergy destroyed and exergy efficiency. The cardiopulmonary exercise test is one of the most used tests to assess the functional capacity of individuals with varying degrees of physical training. To perform the exergy analysis during the test, it is necessary to calculate heat and mass flow rates, associated with radiation, convection, vaporization and respiration, determined from the measurements and some relations found in the literature. The energy balance allowed the determination of the internal temperature over time and the exergy variation of the body along the experiment. Eventually, it was possible to calculate the destroyed exergy and the exergy efficiency from the exergy analysis. The exergy rates and flow rates are dependent of the exercise level and the body metabolism. The results show that the relation between the destroyed exergy and the metabolism is almost constant during the test, furthermore its value has a great dependence of the subject age. From the exergy analysis it was possible to divide the subjects according to their training level, for the same destroyed exergy, subjects with higher lactate threshold can perform more work. - Highlights: • Exergy analysis was applied to the human body under physical activities. • Concept of maximum available work from ATP hydrolysis was compared with exergy analysis results. • For the same destroyed exergy, subjects with higher lactate threshold can perform more work. • Runners during physical activities tend to a state of minimum destroyed exergy and maximum exergy efficiency

  1. Exergy as a Tool for Ecosystem Health Assessment

    OpenAIRE

    Eugene A. Silow; Andrew V. Mokry

    2010-01-01

    Exergy is demonstrated to be a useful measurable parameter reflecting the state of the ecosystem, and allowing estimation of the severity of its anthropogenous damage. Exergy is shown to have advantages such as good theoretical basis in thermodynamics, close relation to information theory, rather high correlation with others ecosystem goal functions and relative ease of computation. Nowadays exergy is often used in ecological assessment. This paper reviews the application of exergy in ecology...

  2. Flexible Work Styles in the Corporate Research Center.

    Science.gov (United States)

    Baker, Katherine

    2000-01-01

    Explores the appropriateness for flexible work schedules for corporate librarians and provides insight into the benefits of flexible work arrangements in other industries. Highlights include technological changes that have changed roles and made resources available electronically; telecommuters; job sharing; and the effects of flexible…

  3. Exergy in the built environment. The added value of exergy in the assessment and development of energy systems for the built environment.

    NARCIS (Netherlands)

    Jansen, S.C.

    2013-01-01

    This doctoral research studied the added value of exergy for the assessment and development of energy systems for the built environment, aiming at a reduced need for high-quality energy input. Currently the analysis and development of energy systems for the built environment is based on the energy

  4. The relation between exergy and sustainability according to literature

    NARCIS (Netherlands)

    Stougie, L.; Van der Kooi, H.J.

    2011-01-01

    A thorough investigation of literature about the relation between exergy and sustainability was conducted in September 2010. An overview of opinions and methods in the field of exergy analysis and sustainability is briefly presented. Exergy analysis has several advantages compared to energy

  5. Corporate sustainability and inclusive development: highlights from international business and management research

    NARCIS (Netherlands)

    Kourula, A.; Pisani, N.; Kolk, A.

    Sustainability has attracted increasing attention from business scholars as corporations have started to take more responsibility for their environmental, social, and development impacts. In this review, we focus on the latest sustainability-related research published in the international business

  6. CORPORATE SOCIAL RESPONSIBILITY IN THE AGRIBUSINESS: A RESEARCH FRAMEWORK

    OpenAIRE

    Heyder, Matthias; Theuvsen, Ludwig

    2008-01-01

    In this paper we analyze the relevance of a corporate social responsibility (CSR) strategy for enterprises in the agribusiness. Based on an overview about existing approaches to cope with conflicts in the agribusiness, we define CSR and introduce a conceptual framework that provides insights into the determinants of CSR and its effects. These are in particular, the legitimacy and reputation, and finally, the performance of enterprises in the agribusiness. Being mutually confronted with multip...

  7. Adopting exergy analysis for use in aerospace

    Science.gov (United States)

    Hayes, David; Lone, Mudassir; Whidborne, James F.; Camberos, José; Coetzee, Etienne

    2017-08-01

    Thermodynamic analysis methods, based on an exergy metric, have been developed to improve system efficiency of traditional heat driven systems such as ground based power plants and aircraft propulsion systems. However, in more recent years interest in the topic has broadened to include applying these second law methods to the field of aerodynamics and complete aerospace vehicles. Work to date is based on highly simplified structures, but such a method could be shown to have benefit to the highly conservative and risk averse commercial aerospace sector. This review justifies how thermodynamic exergy analysis has the potential to facilitate a breakthrough in the optimization of aerospace vehicles based on a system of energy systems, through studying the exergy-based multidisciplinary design of future flight vehicles.

  8. Exergy analysis of photovoltaic solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Othman, M.Y.Hj.

    1998-01-01

    The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)

  9. Sustainability Indicators for the Use of Resources—The Exergy Approach

    DEFF Research Database (Denmark)

    Koroneos, Christopher J.; Nanaki, Evanthia A.; Xydis, George

    2012-01-01

    -consumption, and mass-disposal type economic society into a sustainable society. The Rio Conference on Environment and Development in 1992, and other similar environmental milestone activities and happenings, documented the need for better and more detailed knowledge and information about environmental conditions......, trends, and impacts. New thinking and research with regard to indicator frameworks, methodologies, and actual indicators are also needed. The value of the overall indicators depends on the production procedure of each material, and indicates their environmental impact. The use of “exergy indicators......” based on the exergy content of materials and the use of the second law of thermodynamics in this work presents the relationship between exergy content and environmental impact....

  10. Modeling and Exergy Analysis of District Cooling

    DEFF Research Database (Denmark)

    Nguyen, Chan

    in the gas cooler, pinch temperature in the evaporator and effectiveness of the IHX. These results are complemented by the exergy analysis, where the exergy destruction ratio of the CO2 system’s component is found. Heat recovery from vapour compression heat pumps has been investigated. The heat is to be used...... based system is the investment cost for the pipes. To overcome this, a combined district heating and cooling system based on CO2 as refrigerant and transport fluid is proposed. Exergoeconomic analysis has been used to evaluate and optimize a CO2 based system for combined heating and cooling...

  11. Nuclear research and development: a program of the Atomic Energy Corporation of South Africa Limited

    International Nuclear Information System (INIS)

    Sonnekus, D.

    1985-01-01

    The research and development activities of the Atomic Energy Corporation of South Africa are briefly discussed. The activities consists of the following components: geotecnics, research and development, reactor development, research reactor, radiation technology, post-reactor fuel service, safety, research computers and library service

  12. The Impact of Sustainability Practices on Corporate Financial Performance: Literature Trends and Future Research Potential

    Directory of Open Access Journals (Sweden)

    Ali Alshehhi

    2018-02-01

    Full Text Available This paper presents an analysis of the literature concerning the impact of corporate sustainability on corporate financial performance. The relationship between corporate sustainable practices and financial performance has received growing attention in research, yet a consensus remains elusive. This paper identifies developing trends and the issues that hinder conclusive consensus on that relationship. We used content analysis to examine the literature and establish the current state of research. A total of 132 papers from top-tier journals are shortlisted. We find that 78% of publications report a positive relationship between corporate sustainability and financial performance. Variations in research methodology and measurement of variables lead to the divergent views on the relationship. Furthermore, literature is slowly replacing total sustainability with narrower corporate social responsibility (CSR, which is dominated by the social dimension of sustainability, while encompassing little to nothing of environmental and economic dimensions. Studies from developing countries remain scarce. More research is needed to facilitate convergence in the understanding of the relationship between corporate sustainable practices and financial performance.

  13. A RESEARCH ON CORPORATE SOCIAL RESPONSIBILITY PERCEPTIONS OF MARITIME FACULTY STUDENTS

    OpenAIRE

    KAYA ÖZBAĞ, Gönül

    2017-01-01

    Corporate Social Responsibility(CSR) concept has attracted considerable interest in recent years byresearchers and practitioners. Due to an increased awareness of theneed for CSR this study examines corporate social responsibility perceptions ofmaritime faculty students (MFS).  MFSwere chosen for this research since these students are usually employed by aninternational organization and have diffuculties in interpreting ethical issuesin a business context because of...

  14. The analysis of exergy and cash flow

    International Nuclear Information System (INIS)

    Weimin, H.

    1989-01-01

    The paper presents the analysis of the economic content of exergy parameter and the thermodynamical analogy of the analysis of cash flow, and gives out the reasonable foundations of the analysis of heat economy. The thoughts of optimum design of the combination of heat economic analysis and investment policy are also put forward

  15. Examining corporate governance and corporate tax management

    Directory of Open Access Journals (Sweden)

    Martin Surya Mulyadi

    2014-07-01

    Full Text Available Taxation play an essential role both in a country and in a corporation. For a country it is one of the primary income source, while for the corporation taxes will reduce corporate net income. To minimize the tax payment, corporation conduct a corporate tax management. According to some of previous research, there is a correlation between corporate governance and corporate tax management. While there are many corporate governance proxies could be used in corporate governance research, in this research we are focusing on three: number of board, number of independent board and board compensation. We measure corporate tax management by using effective tax rate (GAAP ETR and current ETR are used in this research. By using several other control variables, we run the regression and conduct the statistical analysis to examine the correlation between corporate governance and corporate tax management. Our result show that corporate governance have a significant correlation to corporate tax management.

  16. An attempt to introduce dynamics into generalised exergy considerations

    International Nuclear Information System (INIS)

    Grubbstroem, Robert W.

    2007-01-01

    In previous research, the author developed a general abstract framework for the exergy content of a system of finite objects [Grubbstroem RW. Towards a generalized exergy concept. In: van Gool W, Bruggink JJC, editors. Energy and time in the economic and physical sciences. Amsterdam: North-Holland; 1985. p. 41-56]. Each such object is characterised by its initial extensive properties and has an inner energy written as a function of these properties. It was shown that if these objects were allowed to interact, there is a maximum amount of work that can be extracted from the system as a whole, and a general formula for this potential was provided. It was also shown that if one of the objects was allowed to be of infinite magnitude initially, taking on the role as an environment having constant intensive properties, then the formula provided took on the same form as the classical expression for exergy. As a side result, the theoretical considerations demonstrated that the second law of thermodynamics could be interpreted as the inner energy function being a (weakly) convex function of its arguments, when these are chosen as the extensive properties. Since exergy considerations are based on the principle that total entropy is conserved when extracting work, these processes would take an infinite time to complete. In the current paper, instead, a differential-equation approach is introduced to describe the interaction in finite time between given finite objects of a system. Differences in intensive properties between the objects provide a force enabling an exchange of energy and matter. An example of such an interaction is heat conduction. The resulting considerations explain how the power extracted from the system will be limited by the processes being required to perform within finite-time constraints. Applying finite-time processes, in which entropy necessarily is generated, leads to formulating a theory for a maximal power output from the system. It is shown that

  17. Thermodynamic analysis of air refrigerator on exergy graph

    Directory of Open Access Journals (Sweden)

    Nikulshin Vladimir

    2006-01-01

    Full Text Available Improving mechanical system efficiency is the goal of many engineers and scientists. Commonly, the solutions to these types of problems are uncovered using thermodynamic analysis and optimization. An innovative method for the thermodynamic analysis of a complex energy-intensive system with an arbitrary structure is described in this paper. The method is based on a novel general equation to calculate the total system exergy efficiency using an exergy flow graph proposed by the authors. Discuss in this paper exergy efficiency and exergy loss models as well this approach allows a user to obtain not only the exergy losses and efficiency of the total system, but also to show the relationship between the exergy efficiency of an individual element and that of the entire system. An example is provided that employs this method to the thermodynamic analysis of an air refrigerator.

  18. Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses

    Directory of Open Access Journals (Sweden)

    Kamyar Darvish

    2015-11-01

    Full Text Available The thermodynamic performance of a regenerative organic Rankine cycle that utilizes low temperature heat sources to facilitate the selection of proper organic working fluids is simulated. Thermodynamic models are used to investigate thermodynamic parameters such as output power, and energy efficiency of the ORC (Organic Rankine Cycle. In addition, the cost rate of electricity is examined with exergo-economic analysis. Nine working fluids are considered as part of the investigation to assess which yields the highest output power and exergy efficiency, within system constraints. Exergy efficiency and cost rate of electricity are used as objective functions for system optimization, and each fluid is assessed in terms of the optimal operating condition. The degree of superheat and the pressure ratio are independent variables in the optimization. R134a and iso-butane are found to exhibit the highest energy and exergy efficiencies, while they have output powers in between the systems using other working fluids. For a source temperature was equal to 120 °C, the exergy efficiencies for the systems using R134a and iso-butane are observed to be 19.6% and 20.3%, respectively. The largest exergy destructions occur in the boiler and the expander. The electricity cost rates for the system vary from 0.08 USD/kWh to 0.12 USD/kWh, depending on the fuel input cost, for the system using R134a as a working fluid.

  19. Exergy Analysis of Operating Lignite Fired Thermal Power Plant

    OpenAIRE

    K. Murugesan; R. P. Gakkhar; N. Alagumurthi; T. Ganapathy

    2009-01-01

    The energy assessment must be made through the energy quantity as well as the quality. But the usual energy analysisevaluates the energy generally on its quantity only. However, the exergy analysis assesses the energy on quantity as well asthe quality. The aim of the exergy analysis is to identify the magnitudes and the locations of real energy losses, in order toimprove the existing systems, processes or components. The present paper deals with an exergy analysis performed on anoperating 50M...

  20. The Infernal Alternatives of Corporate Pharmaceutical Research: Abandoning Psychiatry.

    Science.gov (United States)

    Dumit, Joseph

    2017-07-31

    What happens when health research is measured by market size? How does this change the dynamics of medical research, and how is its growth envisioned and managed? In this article, I build on my arguments in Drugs for Life: How Pharmaceutical Companies Define our Health, which focused primarily on the development and marketing of mass medications for heart disease and I examine the market dynamics that are used to drive research into and out of psychiatric and other neuromedicines, such as the closing of mental health research at most major pharmaceutical companies. Industry compares entire sectors of medical research to evaluate their relative chances of profits and growth; it is willing to sacrifice a whole region of effective and profitable medicine if it can grow profits more in other regions. Baudrillard, Pignarre, and Stengers are used to consider whether this situation can best be described as one of infernal alternatives, and how to analyze the responses of psychiatric leaders.

  1. Collective systems:physical and information exergies.

    Energy Technology Data Exchange (ETDEWEB)

    Robinett, Rush D. III (.; ); Wilson, David Gerald

    2007-04-01

    Collective systems are typically defined as a group of agents (physical and/or cyber) that work together to produce a collective behavior with a value greater than the sum of the individual parts. This amplification or synergy can be harnessed by solving an inverse problem via an information-flow/communications grid: given a desired macroscopic/collective behavior find the required microscopic/individual behavior of each agent and the required communications grid. The goal of this report is to describe the fundamental nature of the Hamiltonian function in the design of collective systems (solve the inverse problem) and the connections between and values of physical and information exergies intrinsic to collective systems. In particular, physical and information exergies are shown to be equivalent based on thermodynamics and Hamiltonian mechanics.

  2. Sensitivity analysis of exergy destruction in a real combined cycle power plant based on advanced exergy method

    International Nuclear Information System (INIS)

    Boyaghchi, Fateme Ahmadi; Molaie, Hanieh

    2015-01-01

    Highlights: • The advanced exergy destruction components of a real CCPP are calculated. • The TIT and r c variation are investigated on exergy destruction parts of the cycle. • The TIT and r c growth increase the improvement potential in the most of components. • The TIT and r c growth decrease the unavoidable part in some components. - Abstract: The advanced exergy analysis extends engineering knowledge beyond the respective conventional methods by improving the design and operation of energy conversion systems. In advanced exergy analysis, the exergy destruction is splitting into endogenous/exogenous and avoidable/unavoidable parts. In this study, an advanced exergy analysis of a real combined cycle power plant (CCPP) with supplementary firing is done. The endogenous/exogenous irreversibilities of each component as well as their combination with avoidable/unavoidable irreversibilities are determined. A parametric study is presented discussing the sensitivity of various performance indicators to the turbine inlet temperature (TIT), and compressor pressure ratio (r c ). It is observed that the thermal and exergy efficiencies increase when TIT and r c rise. Results show that combustion chamber (CC) concentrates most of the exergy destruction (more than 62%), dominantly in unavoidable endogenous form which is decreased by 11.89% and 13.12% while the avoidable endogenous exergy destruction increase and is multiplied by the factors of 1.3 and 8.6 with increasing TIT and r c , respectively. In addition, TIT growth strongly increases the endogenous avoidable exergy destruction in high pressure superheater (HP.SUP), CC and low pressure evaporator (LP.EVAP). It, also, increases the exogenous avoidable exergy destruction of HP.SUP and low pressure steam turbine (LP.ST) and leads to the high decrement in the endogenous exergy destruction of the preheater (PRE) by about 98.8%. Furthermore, r c growth extremely rises the endogenous avoidable exergy destruction of gas

  3. A bibliometric analysis of 30 years of research and theory on Corporate Social Responsibility and Corporate Social Performance

    NARCIS (Netherlands)

    de Bakker, F.G.A.; Groenewegen, P.; den Hond, F.

    2005-01-01

    Social responsibilities of businesses and their managers have been discussed since the 1950s. Yet no consensus about progress has been achieved in the corporate social responsibility/corporate social performance literature. In this article, we seek to analyze three views on this literature. One view

  4. Hazardous Waste Cleanup: IBM Corporation-TJ Watson Research Center in Yorktown Heights, New York

    Science.gov (United States)

    IBM Corporation -TJ Watson Research Center is located in southern Yorktown near the boundary separating the Town of Yorktown from the Town of New Castle. The site occupies an area of approximately 217 acres and adjoins land uses are predominantly residenti

  5. Enhancement of exergy efficiency in combustion systems using flameless mode

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Exergy efficiency in flameless combustion mode is 13% more than conventional combustion. • The maximum exergy efficiency in flameless combustion mode is achieved when oxidizer contains 10% oxygen. • Exergy destruction of flameless combustion is maximized when CO 2 is used for dilution of oxidizer. - Abstract: An exergitic-based analysis of methane (CH 4 ) conventional and flameless combustion in a lab-scale furnace is performed to determine the rate of pollutant formation and the effective potential of a given amount of fuel in the various combustion modes. The effects of inlet air temperature on exergy efficiency and pollutant formation of conventional combustion in various equivalence ratios are analyzed. The rate of exergy destruction in different conditions of flameless combustion (various equivalence ratios, oxygen concentration in the oxidizer and the effects of diluent) are computed using three-dimensional (3D) computational fluid dynamic (CFD). Fuel consumption reduction and exergy efficiency augmentation are the main positive consequences of using preheated air temperature in conventional combustion, however pollutants especially NO x formation increases dramatically. Low and moderate temperature inside the chamber conducts the flameless combustion system to low level pollutant formation. Fuel consumption and exergy destruction reduce drastically in flameless mode in comparison with conventional combustion. Exergy efficiency of conventional and flameless mode is 75% and 88% respectively in stoichiometric combustion. When CO 2 is used for dilution of oxidizer, chemical exergy increases due to high CO 2 concentration in the combustion products and exergy efficiency reduces around 2% compared to dilution with nitrogen (N 2 ). Since the rate of irreversibilities in combustion systems is very high in combined heat and power (CHP) generation and other industries, application of flameless combustion could be effective in terms of pollutant

  6. Energy and exergy analysis of solar power tower plants

    International Nuclear Information System (INIS)

    Xu Chao; Wang Zhifeng; Li Xin; Sun Feihu

    2011-01-01

    Establishing the renewable electricity contribution from solar thermal power systems based on energy analysis alone cannot legitimately be complete unless the exergy concept becomes a part of that analysis. This paper presents a theoretical framework for the energy analysis and exergy analysis of the solar power tower system using molten salt as the heat transfer fluid. Both the energy losses and exergy losses in each component and in the overall system are evaluated to identify the causes and locations of the thermodynamic imperfection. Several design parameters including the direct normal irradiation (DNI), the concentration ratio, and the type of power cycle are also tested to evaluate their effects on the energy and exergy performance. The results show that the maximum exergy loss occurs in the receiver system, followed by the heliostat field system, although main energy loss occurs in the power cycle system. The energy and exergy efficiencies of the receiver and the overall system can be increased by increasing the DNI and the concentration ratio, but that increment in the efficiencies varies with the values of DNI and the concentration ratio. It is also found that the overall energy and exergy efficiencies of the solar tower system can be increased to some extent by integrating advanced power cycles including reheat Rankine cycles and supercritical Rankine cycles. - Highlights: →We presented a theoretical framework for the energy and exergy analysis of the solar tower system. →We tested the effects of several design parameters on the energy and exergy performance. →The maximum exergy loss occurs in the receiver system, followed by the heliostat field system. →Integrating advanced power cycles leads to increases in the overall energy and exergy efficiencies.

  7. Corporate Branding and Corporate Reputation

    DEFF Research Database (Denmark)

    Karmark, Esben

    2013-01-01

    expressions of corporate brand identity. The chapter introduces notions that reputations, like corporate brands, may be considered as co-constructed by stakeholders, formed through multiple meanings and the subject of stakeholder negotiation, and discusses such ideas in the context of a future research agenda......Corporate branding has been seen as developing in “waves”. This chapter explores the links between corporate branding and corporate reputation as they emerge in the context of three waves of corporate branding. It highlights the way in which the two constructs have related to each other through...... organizational culture and identity, and how, although characterized by parallel developments, new ideas and models from a “third” wave of corporate branding challenge prevailing assumptions of corporate reputation particularly in terms of the assumptions that reputations emerge from authentic and transparent...

  8. Exergoenvironmental optimization of Heat Recovery Steam Generators in combined cycle power plant through energy and exergy analysis

    International Nuclear Information System (INIS)

    Kaviri, Abdolsaeid Ganjeh; Jaafar, Mohammad Nazri Mohd.; Lazim, Tholudin Mat; Barzegaravval, Hassan

    2013-01-01

    Highlights: ► Comprehensive thermodynamic modeling of a heat recovery steam generator used in CCPP. ► To conduct exergy analysis to find the location of reversibility. ► To increase the system performance using optimization. ► Better performance assessment of the system. - Abstract: Combined cycle power plants (CCPPs) are preferred technology for electricity generation due to less emission and high efficiency. These cycles are made of a gas turbine, a steam turbine and Heat Recovery Steam Generator (HRSG). In the present research study, a combined cycle power plant with dual pressure and supplementary firing is selected. The optimum design procedure included designing objective function, exergy destruction per unit of inlet gas to the HRSG subject to a list of constraints. The design parameters (design variables) were drum pressure and pinch temperature difference as well as steam mass flow of HRSG high and low pressure levels. The influence of HRSG inlet gas temperature on the steam cycle efficiency is discussed. The result show increasing HRSG inlet gas temperature until 650 °C leads to increase the thermal efficiency and exergy efficiency of the cycle and after that has less improvement and start to decrease them. And also from the exergy analysis of each part of HRSG, it is cleared that the HP-EV and 2st HP-SH have the most exergy destruction respectively. In other hand, effects of HRSG inlet gas temperature on SI (sustainability index) and CO 2 emission are considered

  9. Addressing Different Approaches for Evaluating Low-Exergy Communities

    NARCIS (Netherlands)

    Jansen, S.C.; Meggers, Forrest; Heiselberg, Per Kvols

    2016-01-01

    The IEA Annex 64 focusing on low-ex communities aims at the improvement of energy conversion chains on a community scale, using exergy analysis as the primary evaluation mode. Within this Annex the participants discuss important aspects and available methods for energy and exergy assessment as well

  10. Energy and exergy analysis of an annular thermoelectric cooler

    International Nuclear Information System (INIS)

    Manikandan, S.; Kaushik, S.C.

    2015-01-01

    Highlights: • Exergy analysis in the annular thermoelectric cooler (ATEC) system is proposed. • Analytical expressions for the cooling power, exergy efficiency of an ATEC is derived. • The effects of S r and θ in Q c and exergy efficiency of an ATEC is studied. - Abstract: In this paper the concept of annular thermoelectric cooler (ATEC) has been introduced. An exoreversible thermodynamic model of the annular thermoelectric cooler considering Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for optimum current at the maximum energy/exergy efficiency, maximum cooling power conditions and dimensionless irreversibilities in the ATEC are derived. The modified expression for figure of merit of a thermoelectric cooler considering the Thomson effect has also been obtained. The results show that the cooling power, energy and exergy efficiency of the ATEC is lower than the flat plate thermoelectric cooler. The effects of annular shape parameter (S r = r 2 /r 1 ), dimensionless temperature ratio (θ = T h /T c ) and the electrical contact resistances on cooling power, energy/exergy efficiency of an ATEC have been studied. It has also been proved that because of the influence of Thomson effect, the cooling power and energy/exergy efficiency of the ATEC is increased. This study will help in the designing of the actual annular thermoelectric cooling systems.

  11. Comparison between exergy and energy analysis for biodiesel production

    International Nuclear Information System (INIS)

    Amelio, A.; Van de Voorde, T.; Creemers, C.; Degrève, J.; Darvishmanesh, S.; Luis, P.; Van der Bruggen, B.

    2016-01-01

    This study investigates the exergy concept for use in chemical engineering applications, and compares the energy and exergy methodology for the production process of biodiesel. A process for biodiesel production was suggested and simulated in view of the energy and exergy analysis. A method was developed to implement the exergy concept in Aspen Plus 7.3. A comparison between the energy and the exergy approach reveals that the concepts have similarities but also some differences. In the exergy study, the reaction section has the largest losses whereas in the energy study separation steps are the most important. An optimization, using both concepts, was carried out using the same parameters. The optimized results were different depending on the objective function. It was concluded that exergy analysis is crucial during the design or redesign step in order to investigate thermodynamic efficiencies in each part of the process. - Highlights: • New flowsheet for the production of biodiesel simulated with Aspen Plus. • Calculation of the exergetic costs and several interesting indexes. • Comparison of exergy and energy analysis for the process studied.

  12. Advanced exergy analysis of transcritical CO2 heat pump system ...

    Indian Academy of Sciences (India)

    The novelty of the present study is the advanced exergy analysis (with modified methodology) of transcritical superheat cycle based on experimental data. Endogenous, exogenous, avoidable and unavoidable exergy destructions are determined for each component of this system. Results showthat compressor is having ...

  13. Realizing the value of Family Business Identity as Corporate Brand Element – A Research Model

    OpenAIRE

    Blombäck, Anna

    2011-01-01

    Recent publications among family business scholars reveal an emerging interest to investigate questions related to marketing communications and brand management. An underlying question for this research is whether, how, and under what circumstances the portrayal of a family business identity influences corporate brand equity. Research in brand management clarifies the importance of learning how consumer behavior is influenced by brand leveraging beyond the core product or company. Such knowle...

  14. The correlation of energy with entropy and exergy; Die Vernetzung der Energie mit Entropie und Exergie

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Gernot (Dr. Gernot Weber, Energie-Gebaeudetechnik, Kleinostheim)

    2011-07-01

    Thermodynamics generally is regarded as one of the most difficult fields of knowledge. This may be particularly due to the difficulties and due to the often very complicated described correlations between the terms energy, entropy and exergy in the technical literature. The contribution under consideration tries to explain these correlations to the (scientifically trained) technically interested readers understandable.

  15. Energy and Exergy Analysis of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2015-01-01

    % to 56% in 2012. Industries with high-temperature processes, such as the cement and metal production sectors, present the highest exergy efficiencies but the lowest energy ones. The opposite conclusion is drawn for the food, paper and chemical industries. The exergy losses, which indicate the potential......A detailed analysis of the Danish industry is presented in this paper using the energy, exergy and embodied exergy methods. The 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industry, were modelled and analysed in details for the years...... is not seen with the embodied exergy efficiency, which remains at around 29% for the Danish industry. This analysis shows that there are still large potentials to recover waste heat in most Danish industrial sectors and thus to increase their efficiencies....

  16. Empirical modeling of solar radiation exergy for Turkey

    International Nuclear Information System (INIS)

    Arslanoglu, Nurullah

    2016-01-01

    Highlights: • Solar radiation exergy is an important parameter in solar energy applications. • Empirical models are developed for estimate solar radiation exergy for Turkey. • The accuracy of the models is evaluated on the basis of statistical indicators. • The new models can be used to predict global solar radiation exergy. - Abstract: In this study, three different empirical models are developed to predict the monthly average daily global solar radiation exergy on a horizontal surface for some provinces in different regions of Turkey by using meteorological data from Turkish State Meteorological Services. To indicate the performance of the models, the following statistical test methods are used: the coefficient of determination (R 2 ), mean bias error (MBE), mean absolute bias error (MABE), mean percent error (MPE), mean absolute percent error (MAPE), root mean square error (RMSE) and the t-statistic method (t sta ). By the improved empirical models in this paper do not need exergy-to-energy ratio (ψ) and monthly average daily global solar radiation to calculate solar radiation exergy. Consequently, the average exergy-to-energy ratio (ψ) for all provinces are found to be 0.93 for Turkey. The highest and lowest monthly average daily values of solar radiation exergy are obtained at 23.4 MJ/m 2 day in June and 4 MJ/m 2 day in December, respectively. The empirical models providing the best results here can be reliably used to predict solar radiation exergy in Turkey and in other locations with similar climatic conditions in the world. The predictions of solar radiation exergy from regression models could enable the scientists to design the solar-energy systems precisely.

  17. The Tenuous Use of Exergy as a Measure of Resource Value or Waste Impact

    Directory of Open Access Journals (Sweden)

    Roydon A. Fraser

    2009-12-01

    Full Text Available Exergy is a thermodynamic concept that has been widely promoted for assessing and improving sustainability, notably in the characterization of resources and wastes. Despite having many notable benefits, exergy is often misused by authors who tend to apply it as an intrinsic characteristic of an object (i.e., as a static thermodynamic variable. Using both theoretical and empirical evidence the authors present five key limitations that must be overcome before exergy can be applied to characterize objects: (1 the incompatibility between exergy quality and resource quality; (2 the inability of exergy to characterize non work-producing resources via the concentration exergy; (3 the constraints placed on the derivation of exergy; (4 problems with the exergy reference environment; and (5 the multiple perspectives applied to exergy analysis. Until the limitations are addressed, exergy should only be used for its original purpose as a decision making tool for engineering systems analysis.

  18. Corporate governance – research of key indicators on market of processing industry in the Czech Republic via cluster analysis

    Directory of Open Access Journals (Sweden)

    Iveta Šimberová

    2012-01-01

    Full Text Available The discussion on corporate governance has oriented on practical problems, including corporate fraud, the abuse of managerial power and social irresponsibility. Contemporary cognition implicates the fact that the questions regarding to corporate governance are very actual especially in relation to company competitiveness, company performance and sustainability of success (long term viability. Paper is focused to the current questions regarding to the definition of corporate governance, looking for the appropriate conceptual framework and identification of key corporate governance indicators in selected industrial market in the Czech Republic via cluster analysis. The scientific aim is looking for the appropriate key indicators in processing industry as a base for the corporate governance performance measurement. The presentations of the results in the paper are just part of selected results in the framework of the elaborated research project titled “Construction of Methods for Multifactor Assessment of Company Complex Performance in Selected Sectors”.

  19. Approaching a Conceptual Framework for Research on Sustainability Performance in Corporate Value Chains

    DEFF Research Database (Denmark)

    Kjærgaard, Thomas

    The literature on sustainability in supply chains is growing rapidly, leading to the manifestation of conceptualizations like Sustainable Supply Chain Management. More recently the concept of Sustainable Value Chain Management has emerged, extending the view to included suppliers in multiple tiers...... and corporate engagement with other primary and secondary stakeholders. Conducting research on Supply Chain Management is challenging and adding the ambiguously defined concept of sustainability and a value chain perspective increases the complexity almost exponentially. As a result, researchers tend to focus...... variations of stakeholder engagement and adopt a value chain narrative in their sustainability reporting. Multi-stakeholder reporting standards like the Global Reporting Initiative (GRI) and the UN Global Compact (UNGC) are adopted by corporations across industries, but only target sustainability issues...

  20. Sustainability in the hospitality industry: some personal reflections on corporate challenges and research agendas

    OpenAIRE

    Jones, Peter; Hillier, David; Comfort, Daphne

    2016-01-01

    The purpose of this commissioned paper is to offer some personal reflections on\\ud sustainability within the hospitality industry.\\ud The paper opens by identifying sustainability as a teasing\\ud paradox for the hospitality industry and a short discussion of the characteristics of sustainability. It\\ud then explores the growing interest in corporate sustainability and offers a review of the range of\\ud academic research into sustainability within the hospitality industry literature. More gene...

  1. Understanding the Sustainability of Fuel from the Viewpoint of Exergy

    Directory of Open Access Journals (Sweden)

    Yaning Zhang

    2018-01-01

    Full Text Available At the same time of providing a huge amount of energy to the world population (social sustainability and global economy (economic sustainability, the fuel itself also releases a great amount of emissions to the environment the world people live in in the forms of gaseous pollutants (SOx, NOx, CO, CO2, CH4, etc. and ash compositions (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SO3, SiO2, TiO2, etc., seriously impacting the environment (environmental sustainability for the world population and global economy. Sustainability generally encompasses economic sustainability, environmental sustainability, and social sustainability, and all of these are significantly related to the energy/resource sustainability. This study addresses the sustainability of fuel from the viewpoint of exergy. It is demonstrated that the energy of a fuel is best evaluated by its chemical exergy, and the environmental impact of a fuel can be assessed through the chemical exergy of its emissions (the specific impacts such as toxicity or greenhouse effect are not detailed. Then, the sustainability of fuel can be understood from the viewpoint of exergy through three ways: (a high chemical exergy of the fuel, (b high exergy efficiency of the fuel conversion process, and (c low chemical exergy of the emissions.

  2. Comparative exergy analyses of gasoline and hydrogen fuelled ices

    International Nuclear Information System (INIS)

    Nieminen, J.; Dincer, I.; Yang, Y.

    2009-01-01

    Comparative exergy models for naturally aspirated gasoline and hydrogen fuelled spark ignition internal combustion engines were developed according to the second laws of thermodynamics. A thorough graphical analysis of heat transfer, work, thermo mechanical, and intake charge exergy functions was made. An irreversibility function was developed as a function of entropy generation and graphed. A second law analysis yielded a proportional exergy distribution as a fraction of the intake charge exergy. It was found that the hydrogen fuelled engine had a greater proportion of the intake charge exergy converted into work exergy, indicating a second law efficiency of 50.13% as opposed to 44.34% for a gasoline fuelled engine. The greater exergy due to heat transfer or thermal availability associated with the hydrogen fuelled engine is postulated to be a part of the reason for decreased work output of a hydrogen engine. Finally, a second law analysis of both hydrogen and gasoline combustion reactions indicate a greater combustion irreversibility associated with gasoline combustion. A percentage breakdown of the combustion irreversibilities were also constructed according to information found in literature searches. (author)

  3. Thermodynamic exergy analysis for small modular reactor in nuclear hybrid energy system

    Directory of Open Access Journals (Sweden)

    Boldon Lauren

    2016-01-01

    Full Text Available Small modular reactors (SMRs provide a unique opportunity for future nuclear development with reduced financial risks, allowing the United States to meet growing energy demands through safe, reliable, clean air electricity generation while reducing greenhouse gas emissions and the reliance on unstable fossil fuel prices. A nuclear power plant is comprised of several complex subsystems which utilize materials from other subsystems and their surroundings. The economic utility of resources, or thermoeconomics, is extremely difficult to analyze, particularly when trying to optimize resources and costs among individual subsystems and determine prices for products. Economics and thermodynamics cannot provide this information individually. Thermoeconomics, however, provides a method of coupling the quality of energy available based on exergy and the value of this available energy – “exergetic costs”. For an SMR exergy analysis, both the physical and economic environments must be considered. The physical environment incorporates the energy, raw materials, and reference environment, where the reference environment refers to natural resources available without limit and without cost, such as air input to a boiler. The economic environment includes market influences and prices in addition to installation, operation, and maintenance costs required for production to occur. The exergetic cost or the required exergy for production may be determined by analyzing the physical environment alone. However, to optimize the system economics, this environment must be coupled with the economic environment. A balance exists between enhancing systems to improve efficiency and optimizing costs. Prior research into SMR thermodynamics has not detailed methods on improving exergetic costs for an SMR coupled with storage technologies and renewable energy such as wind or solar in a hybrid energy system. This process requires balancing technological efficiencies and

  4. Exergy-based comparison of two Greek industries

    DEFF Research Database (Denmark)

    Xydis, George; Koroneos, C.; Naniki, E.

    2011-01-01

    In this work, the potential of the increase in exergy and energy efficiency of the Greek construction and Food, Drink and Tobacco (FDT) industries has been examined using energy and exergy analysis methodology. These two industries play a vital role towards sustainable development of the country....... The continuous increase in energy use in these two industries during the years 1971–2000 shows that both remain steadily in an ascendant orbit. The aim was to analyse and compare the energy use and exergy consumption in the Greek construction and FDT industries to gain insights into each sector's efficiency...

  5. Corporate Foundations

    DEFF Research Database (Denmark)

    Herlin, Heidi; Thusgaard Pedersen, Janni

    2013-01-01

    -sector partnerships. The results of this paper are based on interviews, participant observations, and organizational documents from a 19-month empirical study of a Danish corporate foundation. Findings suggest that corporate foundations have potential to act as boundary organizations and facilitate collaborative......This paper aims to explore the potential of Danish corporate foundations as boundary organizations facilitating relationships between their founding companies and non-governmental organizations (NGOs). Hitherto, research has been silent about the role of corporate foundations in relation to cross...... action between business and NGOs through convening, translation, collaboration, and mediation. Our study provides valuable insights into the tri-part relationship of company foundation NGO by discussing the implications of corporate foundations taking an active role in the realm of corporate social...

  6. Mapping the growth and direction of corporate governance research: A broad overview of literature between 1930 and 2014

    Directory of Open Access Journals (Sweden)

    Malla Praveen Bhasa

    2015-03-01

    Full Text Available In the past two decades, corporate governance (CG literature has grown in leaps and bounds. The quick succession with which some corporate scandals surfaced in the early 2000s and their extensive media coverage have prodded the social science researchers to go back to their story boards and examine the reasons for such scandals. Interestingly, corporate behaviour was no more the exclusive preserve of micro-economists and finance researchers. Instead, researchers from different disciplines like philosophy, psychology, sociology and law too joined in examining issues related to what is today popularly known as corporate governance. Each scholar tested hypothesis and offered explanations in a language native to her own discipline. Given the pervasiveness of the social sciences, very soon corporate governance begun to be explained and understood in an increasingly multi-disciplinary perspective. Each discipline brought in its own unique flavour in picking and explaining the nuances of corporate governance. With so many disciplines contributing to a single overarching theme, it is no surprise that today there is a surfeit of corporate governance literature and more continues to get added every single day. This paper reviews the growth and development of CG literature over the past eight decades. In doing so, it studies 1789 published research papers to track how literature organized itself to build the CG discourse.

  7. Energy and Exergy Analyses of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    with data for the years 2006 and 2012. The sectoral energy and exergy losses, as well as the exergy destruction, were further established to quantify the potential for recovering and valorising heat otherwise lost. By also considering transformation processes occurring in the utility sector, the impact......A detailed analysis of the Danish industry is presented in this paper using the energy and exergy methods. For the 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industrial sector, detailed end-use models were created and analysed...... of using electricity and district heat in the industry is shown. The exergy efficiencies for each process industry were found to be in the range of 12% to 56% in 2012. However variations in the efficiencies within the sectors for individual process industries occur, underlining the need for detailed...

  8. Energy and exergy analysis of a cruise ship

    DEFF Research Database (Denmark)

    Baldi, Francesco; Ahlgren, Fredrik; Nguyen, Tuong-Van

    2015-01-01

    The shipping sector is today facing numerous challenges. Fuel prices are expected to increase in the medium - long term , and a sharp turn in environmental regulations will require several companies to switch to more expensive distillate fuels. In this context, passenger ships represent a small...... to its final use on board. To illustrate this, we perform ed an analysis of the energy and exergy flow rates of a cruise ship sailing in the Baltic Sea based on a combination of available measurements from ship operations and of mechanistic knowledge of the system . The energy analys is allows...... identifying propulsion as the main energy user (41% of the total) followed by heat (34%) and electric power (25%) generation ; the exergy analysis allow ed instead identifying the main inefficiencies of the system: exergy is primarily destroyed in all processes involving combustion (88% of the exergy...

  9. Exergy performance of different space heating systems: A theoretical study

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems......, the effects of floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans. The low temperature floor heating system...... performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied...

  10. Exergy Analysis of a Solar Humidification- Dehumidification Desalination Unit

    OpenAIRE

    Mohammed A. Elhaj; Jamal S. Yassin

    2013-01-01

    This paper presents the exergy analysis of a desalination unit using humidification-dehumidification process. Here, this unit is considered as a thermal system with three main components, which are the heating unit by using a solar collector, the evaporator or the humidifier, and the condenser or the dehumidifier. In these components the exergy is a measure of the quality or grade of energy and it can be destroyed in them. According to the second law of thermodynamics thi...

  11. Energy and exergy analysis of the silicon production process

    International Nuclear Information System (INIS)

    Takla, M.; Kamfjord, N.E.; Tveit, Halvard; Kjelstrup, S.

    2013-01-01

    We used energy and exergy analysis to evaluate two industrial and one ideal (theoretical) production process for silicon. The industrial processes were considered in the absence and presence of power production from waste heat in the off-gas. The theoretical process, with pure reactants and no side-reactions, was used to provide a more realistic upper limit of performance for the others. The energy analysis documented the large thermal energy source in the off-gas system, while the exergy analysis documented the potential for efficiency improvement. We found an exergetic efficiency equal to 0.33 ± 0.02 for the process without power production. The value increased to 0.41 ± 0.03 when waste heat was utilized. For the ideal process, we found an exergetic efficiency of 0.51. Utilization of thermal exergy in an off-gas of 800 °C increased this exergetic efficiency to 0.71. Exergy destructed due to combustion of by-product gases and exergy lost with the furnace off-gas were the largest contributors to the thermodynamic inefficiency of all processes. - Highlights: • The exergetic efficiency for an industrial silicon production process when silicon is the only product was estimated to 0.33. • With additional power production from thermal energy in the off-gas we estimated the exergetic efficiency to 0.41. • The theoretical silicon production process is established as the reference case. • Exergy lost with the off-gas and exergy destructed due to combustion account for roughly 75% of the total losses. • With utilization of the thermal exergy in the off-gas at a temperature of 800 °C the exergetic efficiency was 0.71

  12. Exergy Losses in the Szewalski Binary Vapor Cycle

    OpenAIRE

    Kowalczyk, Tomasz; Ziółkowski, Paweł; Badur, Janusz

    2015-01-01

    In this publication, we present an energy and exergy analysis of the Szewalski binary vapor cycle based on a model of a supercritical steam power plant. We used energy analysis to conduct a preliminary optimization of the cycle. Exergy loss analysis was employed to perform a comparison of heat-transfer processes, which are essential for hierarchical cycles. The Szewalski binary vapor cycle consists of a steam cycle bottomed with an organic Rankine cycle installation. This coupling has a negat...

  13. Production of exergy from labour and energy resources

    International Nuclear Information System (INIS)

    Fukuda, Kenji

    2003-01-01

    An indivisible relation between exergy of labour as well as of the energy resources and real economics are theoretically shown. In discussions on historical changes of productive activities of human beings from agriculture to industries, the proof of the theory of labour and the existence of an upper ceiling on Gross National Product (GNP) are given. The essential role of exergy in the market economy system in terms of productivities of goods, as well as their exchange are discussed. (Author)

  14. Modeling and Exergy Analysis of District Cooling

    DEFF Research Database (Denmark)

    Nguyen, Chan

    in a district heating system based on combined heat and power plants (CHP). A theoretical comparison of trigeneration (cooling, heating and electricity) systems, a traditional system and a recovery system is carried out. The comparison is based on the systems overall exergy efficiency. The traditional system......, R22 and R143a) are chosen to be representative for current refrigeration plants of the traditional and recovery system. Also different refrigeration cycle, one and two stage cycle is considered. The CHP plants considered is back-pressure and extraction plant. In general heat recovery is more...... beneficial if the district heating system is based on back-pressure rather than on extraction CHP plant. Heat recovery with extraction CHP plant is in general questionable. If heat recovery is considered it is recommendable to use two stage cycle rather than one stage cycle heat pump. Apportioning the costs...

  15. Further optimization of a parallel double-effect organosilicon distillation scheme through exergy analysis

    International Nuclear Information System (INIS)

    Sun, Jinsheng; Dai, Leilei; Shi, Ming; Gao, Hong; Cao, Xijia; Liu, Guangxin

    2014-01-01

    In our previous work, a significant improvement in organosilicon monomer distillation using parallel double-effect heat integration between a heavies removal column and six other columns, as well as heat integration between methyltrichlorosilane and dimethylchlorosilane columns, reduced the total exergy loss of the currently running counterpart by 40.41%. Further research regarding this optimized scheme demonstrated that it was necessary to reduce the higher operating pressure of the methyltrichlorosilane column, which is required for heat integration between the methyltrichlorosilane and dimethylchlorosilane columns. Therefore, in this contribution, a challenger scheme is presented with heat pumps introduced separately from the originally heat-coupled methyltrichlorosilane and dimethylchlorosilane columns in the above-mentioned optimized scheme, which is the prototype for this work. Both schemes are simulated using the same purity requirements used in running industrial units. The thermodynamic properties from the simulation are used to calculate the energy consumption and exergy loss of the two schemes. The results show that the heat pump option further reduces the flowsheet energy consumption and exergy loss by 27.35% and 10.98% relative to the prototype scheme. These results indicate that the heat pumps are superior to heat integration in the context of energy-savings during organosilicon monomer distillation. - Highlights: • Combine the paralleled double-effect and heat pump distillation to organosilicon distillation. • Compare the double-effect with the heat pump in saving energy. • Further cut down the flowsheet energy consumption and exergy loss by 27.35% and 10.98% respectively

  16. Exergy analysis on the irreversibility of rotary air preheater in thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hongyue [Division of Energy Systems, Graduate School, Ajou University, Suwon 443749 (Korea, Republic of)], E-mail: seuwhy100@ajou.ac.kr; Zhao Lingling; Zhou Qiangtai; Xu Zhigao [College of Energy and Environment, Southeast University, Nanjing 210096 (China); Kim, Hyung Taek [Division of Energy Systems, Graduate School, Ajou University, Suwon 443749 (Korea, Republic of)], E-mail: htkim@ajou.ac.kr

    2008-04-15

    Energy recovery devices can have a substantial impact on process efficiency and their relevance to the problem of conservation of energy resources is generally recognized to be beyond dispute. One type of such a device, which is commonly used in thermal power plants and air conditioning systems, is the rotary air preheater. A major disadvantage of the rotary air preheater is that there is an unavoidable leakage due to carry over and pressure difference. There are gas streams involved in the heat transfer and mixing processes. There are also irreversibilities, or exergy destruction, due to mixing, pressure losses and temperature gradients. Therefore, the purpose of this research paper is based from the second law of thermodynamics, which is to build up the relationship between the efficiency of the thermal power plant and the total process of irreversibility in the rotary air preheater using exergy analysis. For this, the effects of the variation of the principal design parameters on the rotary air preheater efficiency, the exergy efficiency, and the efficiency of the thermal power plant are examined by changing a number of parameters of rotary air preheater. Furthermore, some conclusions are reached and recommendations are made so as to give insight on designing some optimal parameters.

  17. Exergy analysis on the irreversibility of rotary air preheater in thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong Yue; Kim, Hyung Taek [Division of Energy Systems, Graduate School, Ajou University, Suwon 443749 (Korea); Zhao, Ling Ling; Zhou, Qiang Tai; Xu, Zhi Gao [College of Energy and Environment, Southeast University, Nanjing 210096 (China)

    2008-04-15

    Energy recovery devices can have a substantial impact on process efficiency and their relevance to the problem of conservation of energy resources is generally recognized to be beyond dispute. One type of such a device, which is commonly used in thermal power plants and air conditioning systems, is the rotary air preheater. A major disadvantage of the rotary air preheater is that there is an unavoidable leakage due to carry over and pressure difference. There are gas streams involved in the heat transfer and mixing processes. There are also irreversibilities, or exergy destruction, due to mixing, pressure losses and temperature gradients. Therefore, the purpose of this research paper is based from the second law of thermodynamics, which is to build up the relationship between the efficiency of the thermal power plant and the total process of irreversibility in the rotary air preheater using exergy analysis. For this, the effects of the variation of the principal design parameters on the rotary air preheater efficiency, the exergy efficiency, and the efficiency of the thermal power plant are examined by changing a number of parameters of rotary air preheater. Furthermore, some conclusions are reached and recommendations are made so as to give insight on designing some optimal parameters. (author)

  18. Nearly Net-Zero Exergy Districts as Models for Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Şiir Kilkiş

    2017-03-01

    Full Text Available The planning of urban settlements requires a targeted approach towards more sustainable energy, water, and environment systems. This research work analyses the city of Uppsala and a district that is an urban renewal project at the site of former high voltage power lines, namely Östra Sala backe, which will have a new energy concept. The latter is analysed based on proposals for two phases that aim to reach a net-zero district target based on the quality of energy (exergy. An indicator set with five main categories is introduced based on per capita values to enable a comparable basis between the scales of the city and the district, including exergy per capita as a new indicator. The present status of Uppsala is further analysed based on Sankey diagrams to provide insight into the present urban metabolism of the city. The results indicate that the best practice values of Östra Sala backe based on phase two can achieve significant savings in per capita values, which include 5.5 MWh of energy usage, 6.1 MWh of exergy consumption, 33 m3 of water consumption, 22 kg of waste generation, and 4.2 tonnes of carbon dioxide (CO2 emissions. Additional scenarios for Uppsala indicate that the district can be about 10 years ahead of the city’s existing performance.

  19. Sustainability Indicators for the Use of Resources—The Exergy Approach

    Directory of Open Access Journals (Sweden)

    George A. Xydis

    2012-08-01

    Full Text Available Global carbon dioxide (CO2 emissions reached an all-time high in 2010, rising 45% in the past 20 years. The rise of peoples’ concerns regarding environmental problems such as global warming and waste management problem has led to a movement to convert the current mass-production, mass-consumption, and mass-disposal type economic society into a sustainable society. The Rio Conference on Environment and Development in 1992, and other similar environmental milestone activities and happenings, documented the need for better and more detailed knowledge and information about environmental conditions, trends, and impacts. New thinking and research with regard to indicator frameworks, methodologies, and actual indicators are also needed. The value of the overall indicators depends on the production procedure of each material, and indicates their environmental impact. The use of “exergy indicators” based on the exergy content of materials and the use of the second law of thermodynamics in this work presents the relationship between exergy content and environmental impact.

  20. Exergy analysis on the irreversibility of rotary air preheater in thermal power plant

    International Nuclear Information System (INIS)

    Wang Hongyue; Zhao Lingling; Zhou Qiangtai; Xu Zhigao; Kim, Hyung Taek

    2008-01-01

    Energy recovery devices can have a substantial impact on process efficiency and their relevance to the problem of conservation of energy resources is generally recognized to be beyond dispute. One type of such a device, which is commonly used in thermal power plants and air conditioning systems, is the rotary air preheater. A major disadvantage of the rotary air preheater is that there is an unavoidable leakage due to carry over and pressure difference. There are gas streams involved in the heat transfer and mixing processes. There are also irreversibilities, or exergy destruction, due to mixing, pressure losses and temperature gradients. Therefore, the purpose of this research paper is based from the second law of thermodynamics, which is to build up the relationship between the efficiency of the thermal power plant and the total process of irreversibility in the rotary air preheater using exergy analysis. For this, the effects of the variation of the principal design parameters on the rotary air preheater efficiency, the exergy efficiency, and the efficiency of the thermal power plant are examined by changing a number of parameters of rotary air preheater. Furthermore, some conclusions are reached and recommendations are made so as to give insight on designing some optimal parameters

  1. Energy, exergy and economic analysis of industrial boilers

    International Nuclear Information System (INIS)

    Saidur, R.; Ahamed, J.U.; Masjuki, H.H.

    2010-01-01

    In this paper, the useful concept of energy and exergy utilization is analyzed, and applied to the boiler system. Energy and exergy flows in a boiler have been shown in this paper. The energy and exergy efficiencies have been determined as well. In a boiler, the energy and exergy efficiencies are found to be 72.46% and 24.89%, respectively. A boiler energy and exergy efficiencies are compared with others work as well. It has been found that the combustion chamber is the major contributor for exergy destruction followed by heat exchanger of a boiler system. Furthermore, several energy saving measures such as use of variable speed drive in boiler's fan energy savings and heat recovery from flue gas are applied in reducing a boiler energy use. It has been found that the payback period is about 1 yr for heat recovery from a boiler flue gas. The payback period for using VSD with 19 kW motor found to be economically viable for energy savings in a boiler fan.

  2. Exergy in near-field electromagnetic heat transfer

    Science.gov (United States)

    Iizuka, Hideo; Fan, Shanhui

    2017-09-01

    The maximum amount of usable work extractable from a given radiative heat flow defines the exergy. It was recently noted that the exergy in near-field radiative heat transfer can exceed that in the far-field. Here, we derive a closed form formula of exergy in the near-field heat transfer between two parallel surfaces. This formula reveals that, for a given resonant frequency, the maximum exergy depends critically on the resonant linewidth, and there exists an optimal choice of the linewidth that maximizes the exergy. Guided by the analytical result, we show numerically that with a proper choice of doping concentration, the heat flow between two properly designed SiC-coated heavily doped silicon regions can possess exergy that is significantly higher compared to the heat flow between two SiC regions where the heat flow is carried out by phonon-polaritons. Our work indicates significant opportunities for either controlling material properties or enhancing the fundamental potential for near-field heat transfer in thermal energy conversion through the approach of meta-material engineering.

  3. Chemical exergy assessment of organic matter in a water flow

    International Nuclear Information System (INIS)

    Martinez, Amaya; Uche, Javier

    2010-01-01

    In recent years, exergy analysis has been successfully applied to natural resources assessment. The consumption of any natural resource is unavoidably joined to dispersion and degradation. Therefore, exergy analysis can be applied to study the depletion of natural resources and, particularly, to water resources. Different studies range from global fresh water resources evaluation to specific water bodies' detailed analysis. Physical Hydronomics is a new approach based on the specific application of Thermodynamics to physically characterize the state of a river and to help in the Governance of water bodies. The core task in the methodology is the construction of the exergy profiles of the river and it requires the calculation of the different specific exergy components in the water body: potential, thermal, mechanical, kinetic and chemical exergy. This paper is focused on the exergy assessment for the organic chemical matter present in water bodies. Different parameters such as chemical oxygen demand (COD), biological oxygen demand (BOD) or total organic carbon (TOC), among others, can be used as raw data for the calculation. Starting from available sampling data, previous approaches are analyzed, completed and compared. The well-known and most simple average molecule representing the organic matter in the river (CH 2 O) is proposed. Results show that, considering surface waters, TOC parameter is the most convenient one, but also that the BOD and COD can be reasonably useful.

  4. Efficiency dilution: long-term exergy conversion trends in Japan.

    Science.gov (United States)

    Williams, Eric; Warr, Benjamin; Ayres, Robert U

    2008-07-01

    This analysis characterizes century-scale trends in exergy efficiency in Japan. Exergy efficiency captures the degree to which energy inputs (such as coal) are converted into useful work (such as electricity or power to move a vehicle). This approach enables the estimation of net efficiencies which aggregate different technologies. Sectors specifically analyzed are electricity generation, transport, steel production, and residential space heating. One result is that the aggregate exergy efficiency of the Japanese economy declined slightly over the last half of the 20th century, reaching a high of around 38% in the late 1970s and falling to around 33% by 1998. The explanation for this is that while individual technologies improved dramatically over the century, less exergy-efficient ones were progressively adopted, yielding a net stabilization or decline. In the electricity sector, for instance, adoption of hydropower was followed by fossil-fired plants and then by nuclear power, each technology being successively less efficient from an exergy perspective. The underlying dynamic of this trend is analogous to declining ore grades in the mining sector. Increasing demand for exergy services requires expended utilization of resources from which it is more difficult to extract utility (e.g., falling water versus coal). We term this phenomenon efficiency dilution.

  5. Energy and exergy utilizations of the Jordanian SMEs industries

    International Nuclear Information System (INIS)

    Al-Ghandoor, A.; Al Salaymeh, M.; Al-Abdallat, Y.; Al-Rawashdeh, M.

    2013-01-01

    Highlights: ► We analyze the energy and exergy utilizations of the Jordanian SMEs industries. ► We developed an energy balance for the Jordanian SMEs industries. ► The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist. - Abstract: This study presents detailed analysis of the energy and exergy utilizations of the Jordanian Small-Medium Enterprises (SMEs) by considering the flows of energy and exergy through the main end uses in the Jordanian industrial sector. To achieve this purpose, a survey covering 180 facilities was conducted and energy consumption data was gathered to establish detailed end-use balance for the Jordanian industrial sector. The energy end-use balance provides a starting point to estimate the site and embodied energy and exergy efficiencies. The average site energy and exergy efficiencies of the Jordanian SMEs industries sector are estimated as 78.3% and 37.9% respectively, while the embodied energy and exergy efficiencies are estimated as 58.9% and 21.2% respectively. The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist.

  6. Corporate Entrepreneurship

    DEFF Research Database (Denmark)

    Lassen, Astrid Heidemann

    Corporate entrepreneurship is often highlighted as being more relevant than ever, as a viable means for existing organizations to pursue creative new solutions to the complex challenges facing firms today. This includes continuously exploring and exploiting previously unexploited opportunities......, and thereby moving the organization to a new state of being. In spite of a general consensus on a strong interlinkage between the concepts of innovation and corporate entrepreneurship, the nature of this linkage is rarely addressed directly. This has made further research in the two areas problematic, mainly...... nature of corporate entrepreneurship and innovation by exploring the role played by innovation in corporate entrepreneurship. - Develop a framework of corporate entrepreneurial innovation which facilitates an understanding of challenges related hereto and practices applied to overcome these challenges...

  7. Energy and exergy analysis of low temperature district heating network

    International Nuclear Information System (INIS)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.

  8. Corporate Entrepreneurship Training Evaluation: A Model and a New Research Perspective

    Science.gov (United States)

    Byrne, Janice; Fayolle, Alain

    2009-01-01

    This paper looks at corporate entrepreneurship (CE) training and proposes some insights for its evaluation. The literature review begins by outlining what corporate entrepreneurship entails and the rationale for a firm adopting a more entrepreneurial posture. Subsequently, organizational devices for encouraging corporate entrepreneurship are…

  9. A review of research on corporate social responsibility in the banking sector

    Directory of Open Access Journals (Sweden)

    Yenni Viviana Duque Orozco

    2012-07-01

    Full Text Available This paper reviews the studies on corporate social responsibility (CSR in the banking sector. It seeks to identify the main issues analyzed in this regard in scientific literature, as well as the methodologies used, through an extensive review of research articles, books and book chapters published in the Scopus and Journal Citation Index (previously ISI databases between 1998 and 2011. Results show a high interest among researchers in studying the dissemination of CSR in the banking sector using quantitative and qualitative methods; however, phenomena such as the perception of stakeholders in regards to the social and environmental performance of banks, the impact of CSR practices in the local or national development in developing countries (especially in Latin America and the sector’s responsibility in bankarization have not been addressed in depth.

  10. The Veterans Affairs's Corporate Data Warehouse: Uses and Implications for Nursing Research and Practice.

    Science.gov (United States)

    Price, Lauren E; Shea, Kimberly; Gephart, Sheila

    2015-01-01

    The Department of Veterans Affairs Veterans Healthcare Administration (VHA) is supported by one of the largest integrated health care information systems in the United States. The VHA's Corporate Data Warehouse (CDW) was developed in 2006 to accommodate the massive amounts of data being generated from more than 20 years of use and to streamline the process of knowledge discovery to application. This article describes the developments in research associated with the VHA's transition into the world of Big Data analytics through CDW utilization. The majority of studies utilizing the CDW also use at least one other data source. The most commonly occurring topics are pharmacy/medications, systems issues, and weight management/obesity. Despite the potential benefit of data mining techniques to improve patient care and services, the CDW and alternative analytical approaches are underutilized by researchers and clinicians.

  11. Advanced exergy analysis for a bottoming organic rankine cycle coupled to an internal combustion engine

    International Nuclear Information System (INIS)

    Galindo, J.; Ruiz, S.; Dolz, V.; Royo-Pascual, L.

    2016-01-01

    Highlights: • Advanced exergy analysis were carried out using experimental data of an ORC. • Exergy destruction analyzed as endogenous/exogenous and unavoidable/avoidable. • Exergy destruction was estimated by considering technological restrictions. - Abstract: This paper deals with the evaluation and analysis of a bottoming ORC cycle coupled to an IC engine by means of conventional and advanced exergy analysis. Using experimental data of an ORC coupled to a 2 l turbocharged engine, both conventional and advanced exergy analysis are carried out. Splitting the exergy in the advanced exergy analysis into unavoidable and avoidable provides a measure of the potential of improving the efficiency of this component. On the other hand, splitting the exergy into endogenous and exogenous provides information between interactions among system components. The result of this study shows that there is a high potential of improvement in this type of cycles. Although, from the conventional analysis, the exergy destruction rate of boiler is greater than the one of the expander, condenser and pump, the advanced exergy analysis suggests that the first priority of improvement should be given to the expander, followed by the pump, the condenser and the boiler. A total amount of 3.75 kW (36.5%) of exergy destruction rate could be lowered, taking account that only the avoidable part of the exergy destruction rate can be reduced.

  12. Advanced exergy analyses of an ejector expansion transcritical CO2 refrigeration system

    International Nuclear Information System (INIS)

    Bai, Tao; Yu, Jianlin; Yan, Gang

    2016-01-01

    Highlights: • Advanced exergy analyses are performed on CO 2 EERC cycle. • Compressor should be improved first, followed by ejector, evaporator and gas cooler. • Interactions among the system components are assessed with advanced exergy analysis. • Real potential for exergy destruction reduction of the system is 43.44%. - Abstract: This paper presents a thermodynamic investigation on an ejector expansion transcritical CO 2 refrigeration system with advanced exergy analysis. By splitting the exergy destruction into endogenous/exogenous and unavoidable/avoidable parts, more valuable information of the interactions among the system components and the components improvement potential is provided. The results indicate that the compressor with largest avoidable endogenous exergy destruction possesses the highest priority of improvement, followed by the ejector, evaporator and gas cooler. The system exergy destruction is dominantly endogenous, and 43.44% of the total exergy destruction can be avoided by improving the system components. The evaporator has a serious impact on the exogenous exergy destruction within the compressor and ejector, and its own exergy destruction is entirely belongs to endogenous part. The effects of the discharge pressure, compressor efficiency and ejector efficiency on the system exergetic performance are discussed. There is an optimal discharge pressure with respect to the minimum endogenous exergy destruction in the compressor. Avoidable endogenous exergy destruction rates of the compressor and ejector are respectively reduced by 93.6% and 81.7% when the corresponding component efficiency varies from 0.5 to 0.9.

  13. Minimization of local impact of energy systems through exergy analysis

    International Nuclear Information System (INIS)

    Cassetti, Gabriele; Colombo, Emanuela

    2013-01-01

    Highlights: • The model proposed aims at minimizing local impact of energy systems. • The model is meant to minimize the impact starting from system thermodynamics. • The formulation combines exergy analysis and quantitative risk analysis. • The approach of the model is dual to Thermoeconomics. - Abstract: For the acceptability of energy systems, environmental impacts are becoming more and more important. One primary way for reducing impacts related to processes is by improving efficiency of plants. A key instrument currently used to verify such improvements is exergy analysis, extended to include also the environmental externalities generated by systems. Through exergy-based analyses, it is possible indeed to evaluate the overall amount of resources consumed along all the phases of the life cycle of a system, from construction to dismantling. However, resource consumption is a dimension of the impact of a system at global level, while it may not be considered a measure of its local impact. In the paper a complementary approach named Combined Risk and Exergy Analysis (CRExA) to assess impacts from major accidents in energy systems is proposed, based on the combination of classical exergy analysis and quantitative risk analysis (QRA). Impacts considered are focused on effects on human health. The approach leads to the identification of solutions to minimize damages of major accidents by acting on the energy system design

  14. A RESEARCH ON RELATIONSHIP BETWEEN CORPORATE GOVERNANCE RATINGS OF BANKS LISTED IN ISTANBUL STOCK EXCHANGE (BIST) CORPORATE GOVERNANCE INDEX AND SOME OF THEIR CHARACTERISTICS

    OpenAIRE

    Ozlem I. Koc

    2014-01-01

    Capital Markets Board of Turkey principles of corporate governance consist of four categories: Shareholders, Public Disclosure and Transparency, Stakeholders, Board of Directors. The corporate governance rating is determined by the rating institutions incorporated by Capital Markets Board of Turkey in its list of rating agencies as a result of their assessment of the company's compliance with the corporate governance principles. Publicly held corporations are listed in BIST Corporate Governan...

  15. Energy, Entropy and Exergy in Communication Networks

    Directory of Open Access Journals (Sweden)

    Slavisa Aleksic

    2013-10-01

    Full Text Available The information and communication technology (ICT sector is continuously growing, mainly due to the fast penetration of ICT into many areas of business and society. Growth is particularly high in the area of technologies and applications for communication networks, which can be used, among others, to optimize systems and processes. The ubiquitous application of ICT opens new perspectives and emphasizes the importance of understanding the complex interactions between ICT and other sectors. Complex and interacting heterogeneous systems can only properly be addressed by a holistic framework. Thermodynamic theory, and, in particular, the second law of thermodynamics, is a universally applicable tool to analyze flows of energy. Communication systems and their processes can be seen, similar to many other natural processes and systems, as dissipative transformations that level differences in energy density between participating subsystems and their surroundings. This paper shows how to apply thermodynamics to analyze energy flows through communication networks. Application of the second law of thermodynamics in the context of the Carnot heat engine is emphasized. The use of exergy-based lifecycle analysis to assess the sustainability of ICT systems is shown on an example of a radio access network.

  16. Comprehensive exergy analysis of a commercial tomato paste plant with a double-effect evaporator

    International Nuclear Information System (INIS)

    Mojarab Soufiyan, Mohamad; Dadak, Ali; Hosseini, Seyed Sina; Nasiri, Farshid; Dowlati, Majid; Tahmasebi, Maryam; Aghbashlo, Mortaza

    2016-01-01

    In this study, a detailed exergy evaluation of a commercial tomato paste plant with a double-effect evaporator was conducted in order to provide information on the system thermodynamic inefficiencies. Using energy and exergy balance equations, all components of the plant were analyzed individually and their exergetic parameters were calculated on the basis of actual operational data. The required data were obtained from Nazchin tomato paste factory located in Tehran, Iran. In addition, it was attempted to quantify the exergy utilized for processing a given amount of the tomato paste. The results showed that over 82% of the total destroyed exergy in the plant occurred in the boiler combination as the main component wasting exergy. Furthermore, exergy analysis introduced this combination as the main equipment rejecting exergy to the ambient where 4.79% of its total exergy input was lost. The rational exergy efficiency of the first- and second-effect evaporative units was found to be 65.33% and 56.60%, respectively. The specific exergy consumption of the tomato paste production was also determined as 16.83 MJ/kg. Generally, exergy concept and its extensions could be served as a powerful assessment technique to optimize the design and performance of multiple-effect evaporation systems employed in food industry. - Highlights: • Exergy analysis of a tomato paste plant with a double-effect evaporator was done. • 82% of the total exergy destruction rate occurred in the boiler combination. • 16.83 MJ exergy was utilized for production of 1 kg tomato paste. • Optimal number of effects could be potentially found using exergy-based approaches.

  17. Exergy analysis of biomass organic Rankine cycle for power generation

    Science.gov (United States)

    Nur, T. B.; Sunoto

    2018-02-01

    The study examines proposed small biomass-fed Organic Rankine Cycle (ORC) power plant through exergy analysis. The system consists of combustion burner unit to utilize biomass as fuel, and organic Rankine cycle unit to produce power from the expander. The heat from combustion burner was transfered by thermal oil heater to evaporate ORC working fluid in the evaporator part. The effects of adding recuperator into exergy destruction were investigated. Furthermore, the results of the variations of system configurations with different operating parameters, such as the evaporating pressures, ambient temperatures, and expander pressures were analyzed. It was found that the largest exergy destruction occurs during processes are at combustion part, followed by evaporator, condenser, expander, and pump. The ORC system equipped with a recuperator unit exhibited good operational characteristics under wide range conditions compared to the one without recuperator.

  18. Assessing exergy of forest ecosystem using airborne and satellite data

    Science.gov (United States)

    Brovkina, Olga; Fabianek, Tomas; Lukes, Petr; Zemek, Frantisek

    2017-04-01

    Interactions of the energy flows of forest ecosystem with environment are formed by a suite of forest structure, functions and pathways of self-control. According to recent thermodynamic theory for open systems, concept of exergy of solar radiation has been applied to estimate energy consumptions on evapotranspiration and biomass production in forest ecosystem or to indicate forest decline and human land use impact on ecosystem stability. However, most of the methods for exergy estimation in forest ecosystem is not stable and its physical meaning remains on the surface. This study was aimed to contribute to understanding the exergy of forest ecosystem using combination of remote sensing (RS) and eddy covariance technologies, specifically: 1/to explore exergy of solar radiation depending on structure of solar spectrum (number of spectral bands of RS data), and 2/to explore the relationship between exergy and flux tower eddy covariance measurements. Two study forest sites were located in Western Beskids in the Czech Republic. The first site was dominated by young Norway spruce, the second site was dominated by mature European beech. Airborne hyperspectral data in VNIR, SWIR and TIR spectral regions were acquired 9 times for study sites during a vegetation periods in 2015-2016. Radiometric, geometric and atmospheric corrections of airborne data were performed. Satellite multispectral Landsat-8 cloud-free 21 scenes were downloaded and atmospherically corrected for the period from April to November 2015-2016. Evapotranspiration and latent heat fluxes were collected from operating flux towers located on study sites according to date and time of remote sensing data acquisition. Exergy was calculated for each satellite and airborne scene using various combinations of spectral bands as: Ex=E^out (K+ln E^out/E^in )+R, where Ein is the incoming solar energy, Eout is the reflected solar energy, R = Ein-Eout is absorbed energy, Eout/Ein is albedo and K is the Kullback increment

  19. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted...... in parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated...

  20. Exergy analysis of the FIGUEIRA thermal power plant operation - state of Parana, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Stanescu, George; Lima, Joao E. [Parana Univ., Curitiba, PR (Brazil). Dept. de Engenharia Mecanica]. E-mails: stanescu@demec.ufpr.br; joeduli@demec.ufpr.br; Andrade, Carlos de [FIGUEIRA Thermal Power Plant, Figueira, PR (Brazil)]. E-mail: ccarlosaandrade@zipmail.com.br

    2000-07-01

    Exergy analysis is a powerful tool to evaluate, design and improve the thermal systems. The method of exergy analysis or availability analysis is well suited for furthering the goal of increasing the efficiency of existing power generation systems, and the capability of more effective energy resource use. Exergy analysis of the FIGUEIRA thermal power plant is presented. Exergy losses occurring in various components are considered and the exergy balance is shown in tabular form. Results clearly reveal that the steam generator is the principal site of thermodynamic losses, while the condenser is relatively unimportant. (author)

  1. EXERGY ANALYSIS OF GEOTHERMAL POWER PLANT KAMOJANG 68, 3 MW IN CAPACITY

    OpenAIRE

    Aziz, Amiral

    2018-01-01

    The importance of exergy analysis in preliminary design of geothermal power has been proven. An exergy analysis was carried out and the locations and quantities of exergy losses, wastes and destructions in the different processes of the plan were pinpointed. The obtained results show that the total exergy available from production wells KMJ 68 was calculated to be 6967.55 kW. The total exergy received from wells which is connected during the analysis and enter into the separator was found to ...

  2. Research on the Intrinsic Relationship of Customer Value and Corporate Core Competence

    Science.gov (United States)

    Ji, Guoping

    The article defined customer value and corporate core competence using induction method and described the characteristics of these two concepts. Then the author analyzed the intrinsic relationship of customer value and corporate core competence via the survey and case analysis methods. The author found that customer value was the basic point to cultivate corporate core competence which was the platform to achieve customer value. The article is of great help to provide some ideas of cultivating and developing corporate core competence based on customer value.

  3. Visualization technology in neuropsychological research: A case study on corporal imaginary

    Directory of Open Access Journals (Sweden)

    Heidi Figueroa Sarriera

    2013-11-01

    Full Text Available Psychology, as a discipline, adopts a dualistic imaginary of the body: as a porous yet closed boundary. Therefore, accessing the "truth" of the subject requires all sorts of techniques and tools. The psychological discourse often considers these devices in exteriority of the subject. As a counterpoint, I propose that the artifacts are a constituent part of the corporal imaginary. The argument compares the Skinner Air Crib and Gesell’s Laboratory, two inventions of the mid-twentieth century, and a XXI century neuropsychological research about the location of the self. In the first two cases, the body is constructed as a porous barrier that participates within hygienic parameters, both operating and optimizing individual performance and military metaphors that has shaped social policy practices. The discussion of the neuropsychological research, as a case study, does not intend to question the results of the research from the neuropsychological field. It points towards those understandings and assumptions that reveal the connection of the neuropsychological discourse with its cultural context. Special attention is paid to gender construction, ways of mediating scientific knowledge, the hybridity between the neuropsychological reductionism of the scientific framing and the entertainment industry; as well as to the new forms of identity formation and the complementarity of the visuals and performance in the contemporary scene. 

  4. Exergy analysis of a solar-powered vacuum membrane distillation unit using two models

    International Nuclear Information System (INIS)

    Miladi, Rihab; Frikha, Nader; Gabsi, Slimane

    2017-01-01

    A detailed exergy analysis of a solar powered VMD unit was performed using two models: the ideal mixture model and the model using the thermodynamics properties of seawater. The exergy flow rates of process steam, given by the two models differed of about 18%, on average. Despite these differences, the two models agree that during the step of condensation, the most important fraction of exergy was destroyed. Moreover, in this work, two forms of exergy efficiency are calculated. The overall exergy efficiency of the unit with reference to the exergy collected by the solar collector was 3.25% and 2.30% according to Cerci and Sharqawy models, respectively. But, it was 0.182% and 0.128%, when referenced to the exergy of solar radiation, according to Cerci and Sharqawy models, respectively. Besides, the utilitarian exergy efficiency was 9.96%. Since the heat exchanger, the hollow-fiber module and the condenser have a very high exergy performance, then it can be concluded that the enhancement or reduction of exergy losses will be mainly by recovering heat lost in brine discharges and in the rejection of the cooling water. In addition, the influence of the rejection rate on exergy efficiencies was studied. - Highlights: • Two exergy models were compared using a VMD plant dataset. • Two forms of exergy efficiency were evaluated and discussed. • The components responsible for the biggest losses in the system were identified. • The direction for performance enhancement of the desalination device was pointed out. • The influence of the rejection rate on exergy efficiencies was studied.

  5. Exergy analysis of wine production: Red wine production process as a case study

    International Nuclear Information System (INIS)

    Genc, Mahmut; Genc, Seda; Goksungur, Yekta

    2017-01-01

    Highlights: • Red wine production process was studied thermodynamically by exergy analysis method. • The first study on exergetic analysis of a red wine production process. • Energetic and exergetic efficiencies are calculated as 57.2 and 41.8%, respectively. • Cumulative exergy loss is computed as 2692.51 kW for 1 kg/s grape. • Specific exergy loss is found as 5080.20 kW/kg wine. - Abstract: This paper performs exergy analysis of a red wine production line and defines the exergy destruction rates to assess the system performance in terms of sustainability. A model study with necessary data is chosen for the calculations. The total exergy destruction rate of the overall system was determined to be 344.08 kW while the greatest destruction rate of the exergy in the whole system occurred in the open fermenter (333.6 kW). The system thermal efficiency was obtained to be 57.2% while the exergy efficiency was calculated as 41.8%. The total exergy destruction rate of the overall system increases with the increase both in the grape flow rate and the reference temperature when the reference pressure is assumed as 101.325 kPa. Furthermore, the chemical exergy of streams was found much higher than the physical exergy for each stream. The exergy results were illustrated through the Grassmann diagram. Furthermore, cumulative exergy loss and specific exergy loss values were determined as 2692.51 kW/1 kg/s grape processed and 5080.20 kW/kg wine, respectively.

  6. Exergy and extended exergy accounting of very large complex systems with an application to the province of Siena, Italy.

    Science.gov (United States)

    Sciubba, Enrico; Bastianoni, Simone; Tiezzi, Enzo

    2008-01-01

    This paper describes the application of exergy and extended exergy analyses to large complex systems. The system to be analysed is assumed to be at steady state, and the input and output fluxes of matter and energy are expressed in units of exergy. Human societies of any reasonable extent are indeed Very Large Complex Systems and can be represented as interconnected networks of N elementary "components", their Subsystems; the detail of the disaggregation depends on the type and quality of the available data. The structural connectivity of the "model" of the System must correctly describe the interactions of each mass or energy flow with each sector of the society: since it is seldom the case that all of these fluxes are available in detail, some preliminary mass- and energy balances must be completed and constitute in fact a part of the initial assumptions. Exergy accounting converts the total amount of resources inflow into their equivalent exergetic form with the help of a table of "raw exergy data" available in the literature. The quantification of each flow on a homogeneous exergetic basis paves the way to the evaluation of the efficiency of each energy and mass transfer between the N sectors and makes it possible to quantify the irreversible losses and identify their sources. The advantage of the EEA, compared to a classical exergy accounting, is the inclusion in the system balance of the exergetic equivalents of three additional "Production Factors": human Labour, Capital and Environmental Remediation costs. EEA has an additional advantage: it allows for the calculation of the efficiency of the domestic sector (impossible to evaluate with any other energy- or exergy-based method) by considering the working hours as its product. As implied in the title, an application of the method was made to a model of the province of Siena (on a year 2000 database): the results show that the sectors of this Province have values of efficiency close to the Italian average

  7. A critical review on energy, exergy, exergoeconomic and economic (4-E analysis of thermal power plants

    Directory of Open Access Journals (Sweden)

    Ravinder Kumar

    2017-02-01

    Full Text Available The growing energy supply, demand has created an interest towards the plant equipment efficiency and the optimization of existing thermal power plants. Also, a thermal power plant dependency on fossil fuel makes it a little bit difficult, because of environmental impacts has been always taken into consideration. At present, most of the power plants are going to be designed by the energetic performance criterion which is based on the first law of thermodynamics. Sometimes, the system energy balance is not sufficient for the possible finding of the system imperfections. Energy losses taking place in a system can be easily determined by using exergy analysis. Hence, it is a powerful tool for the measurement of energy quality, thereby helps to make complex thermodynamic systems more efficient. Nowadays, economic optimization of plant is also a big problem for researchers because of the complex nature. At a viewpoint of this, a comprehensive literature review over the years of energy, exergy, exergoeconomic and economic (4-E analysis and their applications in thermal power plants stimulated by coal, gas, combined cycle and cogeneration system have been done thoroughly. This paper is addressed to those researchers who are doing their research work on 4-E analysis in various thermal power plants. If anyone extracts an idea for the development of the concept of 4-E analysis using this article, we will achieve our goal. This review also indicates the scope of future research in thermal power plants.

  8. Corporate Responsibility

    DEFF Research Database (Denmark)

    Waddock, Sandra; Rasche, Andreas

    2015-01-01

    We define and discuss the concept of corporate responsibility. We suggest that corporate responsibility has some unique characteristics, which makes it different from earlier conceptions of corporate social responsibility. Our discussion further shows commonalities and differences between corporate...... responsibility and related concepts, such as corporate citizenship and business ethics. We also outline some ways in which corporations have implemented corporate responsibility in practice....

  9. Energy and exergy optimization of food waste pretreatment and incineration.

    Science.gov (United States)

    Tang, Yuanjun; Dong, Jun; Chi, Yong; Zhou, Zhaozhi; Ni, Mingjiang

    2017-08-01

    With the aim of upgrading current food waste (FW) management strategy, a novel FW hydrothermal pretreatment and air-drying incineration system is proposed and optimized from an energy and exergy perspective. Parameters considered include the extracted steam quality, the final moisture content of dehydrated FW, and the reactor thermal efficiency. Results show that optimal working condition can be obtained when the temperature and pressure of extracted steam are 159 °C and 0.17 MPa, the final moisture content of dehydrated FW is 10%, and the reactor thermal efficiency is 90%. Under such circumstance, the optimal steam energy and exergy increments reach 194.92 and 324.50 kJ/kg-FW, respectively. The novel system is then applied under the local conditions of Hangzhou, China. Results show that approximately 2.7 or 11.6% (from energy or exergy analysis perspective) of electricity can be additionally generated from 1 ton of MSW if the proposed novel FW system is implemented. Besides, comparisons between energy and exergy analysis are also discussed.

  10. More efficient mushroom canning through pinch and exergy analysis

    NARCIS (Netherlands)

    Paudel, Ekaraj; Sman, van der Ruud G.M.; Westerik, Nieke; Awasthi, Ashutosh; Dewi, Belinda P.C.; Boom, Remko M.

    2017-01-01

    Conventional production of canned mushrooms involves multiple processing steps as vacuum hydration, blanching, sterilization, etc. that are intensive in energy and water usage. We analyzed the current mushroom processing technique plus three alternative scenarios via pinch and exergy analysis.

  11. Exergy analysis of an IGCC design configuration for Plant Wansley

    International Nuclear Information System (INIS)

    Tsatsaronis, G.; Tawfik, T.; Lin, L.; Gallaspy, D.T.

    1989-01-01

    An integrated gasification-combined-cycle power plant design was developed for Georgia Power Company's Plant Wansley. This paper discusses the plant configuration and presents the most important results obtained from a detailed exergy analysis of the plant design. This analysis will be completed in a subsequent paper through an exergoeconomic analysis to identify design improvements for reducing the electricity cost

  12. Thermodynamic optimization of heat exchanger tanks by exergy ...

    African Journals Online (AJOL)

    The paper introduces heat exchanger tanks, detailing their dominant thermodynamic relations to obtain the exergy analysis relations of heat exchanger tanks. Heat exchanger tank is examined under various laboratory conditions, including the power of heat element inside the tank, mass flow rate of cooling water of tank ...

  13. Quality of Institutions and Import Substitution of Capital: Cross-country Research on the Corporate Bond Markets

    Directory of Open Access Journals (Sweden)

    Teplova Tamara V.

    2017-06-01

    Full Text Available We have analyzed the institutional determinants of local currency (LCY corporate bond markets development during the period of 2010–2016 on a cross–country sample. We have considered a wide range of indicators of the quality of the institutional environment including the Heritage Foundation's Index of Economic Freedom, the World Bank’s indicators of the development of political and legal institutions, the World Economic Forum’s indicators of corporate culture, the development and regulation of financial markets. Unlike most previous studies, we have tested not only static regression models (multifactor linear regressions but also dynamic models based on the generalized method of moments (GMM, which allows to solve the problem of endogeneity of variables. The sample consists of 420 quarterly observations on 15 emerging markets, which were the leaders by the issuance volume of corporate bonds in the pre–crisis 2013. The results show that the low quality of institutional environment as well as macroeconomic and financial instability stimulate the growth of the share of LCY corporate bonds in the total issuance volume. In the periods of instability, local currency corporate bonds become less attractive for foreign investors, therefore, issuers are forced to raise capital in the domestic market, i.e. to realize the import substitution of capital. We rank factors by the significance of their influence on the explained variable. The most significant factors in both static and dynamic model specifications are the World Bank’s indicators of regulatory quality and rule of law. A decline in sovereign credit ratings also gives impetus to the development of LCY corporate bond markets. The results of our research show that more developed stock markets suppress the growth of LCY corporate bond markets: equity corporate bonds are competing financing sources for companies from developing countries. On the contrary, a developed banking sector

  14. Using research to change public policy: reflections on 20 years of effort to eliminate corporal punishment in schools.

    Science.gov (United States)

    Hyman, I A

    1996-10-01

    In the past 20 years, over half of the states have abolished corporal punishment in schools. Without the use of ethically questionable, experimental studies in which students were randomly assigned to paddlings, advocacy researchers were able to integrate the literature and experimental research on reward, punishment, and motivation, and conduct enough studies to provide sufficient data for policy changes. Further, every popular school discipline training program promotes well-proven positive and preventive techniques and punishments that do not inflict physical pain. Research on alternatives, naturalistic evidence from schools that eliminated corporal punishment, and survey research prove that schools do not need to use corporal punishment. The movement to eliminate parental spanking is at a stage similar to the beginning of the school corporal punishment debate in 1976. Even though some studies may show that moderate parental spanking may do no short-term harm, there is little scientific evidence that it is necessary. There are no data to indicate that schools which eliminated corporal punishment became any worse. The same demographic factors and political polarizations that have kept about half of American school children from the protections against paddling afforded students in almost all other Western democracies also impede the movement to eliminate parental spanking. Since we know that corporal punishment too often leads to excesses, and since we have a multitude of effective positive approaches, what is the worst thing that would happen if all Americans stopped hitting children in any setting? The same children who are hit for misbehavior would continue that misbehavior and other ineffective punishments would be used. Most parents and teachers would discover what behavioral scientists already know. A combination of reward, positive motivational techniques and appropriate, nonphysical punishments would prevent most misbehavior. Other factors being equal, in

  15. Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector

    International Nuclear Information System (INIS)

    Bai, Tao; Yu, Jianlin; Yan, Gang

    2016-01-01

    This paper presents a study on a modified ejector enhanced auto-cascade freezer cycle with conventional thermodynamic and advanced exergy analysis methods. The energetic analysis shows that the modified cycle exhibits better performance than the conventional auto-cascade freezer cycle, and the system COP and volumetric refrigeration capacity could be improved by 19.93% and 28.42%. Furthermore, advanced exergy analysis is adopted to better evaluate the performance of the proposed cycle. The exergy destruction within a system component is split into endogenous/exogenous and unavoidable/avoidable parts in the advanced exergy analysis. The results show that the compressor with the largest avoidable endogenous exergy destruction has highest improvement priority, followed by the condenser, evaporator and ejector, which is different from the conclusion obtained from the conventional exergy analysis. The evaporator/condenser greatly affects the exogenous exergy destruction within the system components, and the compressor has large impact on the exergy destruction within the condenser. Improving the efficiencies of the compressor efficiency and the ejector could effectively reduce the corresponding avoidable endogenous exergy destruction. The exergy destruction within the evaporator almost entirely belongs to the endogenous part, and reducing the temperature difference at the evaporator is the main approach of reducing its exergy destruction. - Highlights: • A modified ejector enhanced auto-cascade freezer cycle is proposed. • Conventional and advanced exergy analyses are performed in this study. • Compressor should be firstly improved first, followed by condenser and evaporator. • Interactions among the system components are assessed with advanced exergy analysis.

  16. How do Companies Invest in Corporate Social Responsibility? An Ordonomic Contribution for Empirical CSR Research

    Directory of Open Access Journals (Sweden)

    Matthias Georg Will

    2014-07-01

    Full Text Available This paper takes both a conceptual and an empirical approach to answer the question as to how Corporate Social Responsibility (CSR can be connected to the company’s role as an agent of social value creation when it operates within an imperfect institutional framework of market competition. To develop a functional design for an empirical study, we draw on the concept of ordonomics, which provides a heuristics for responsible business activities in society. Drawing on ordonomics, we devise three questions: Referring to action responsibility we ask in which CSR activities companies do invest in their day-to-day business. Referring to governance responsibility we ask as to how companies realize win-win solutions through strategic commitments. In addition, with regard to discourse responsibility we ask in which stakeholder dialogues companies engage in order to discuss and find functional rules for organizing win-win solutions. In our empirical study, we reveal insights into the micro-level analysis of the CSP-CFP link and generate several new questions to be the subject of future research.

  17. Impact of Corporate Governance on Research and Development Investment in the Pharmaceutical Industry in South Korea.

    Science.gov (United States)

    Lee, Munjae

    2015-08-01

    The purpose of this study is to analyze the influence of the corporate governance of pharmaceutical companies on research and development (R&D) investment. The period of the empirical analysis is from 2000 to 2012. Financial statements and comments in general, and internal transactions were extracted from TS-2000 of the Korea Listed Company Association. Sample firms were those that belong to the medical substance and drug manufacturing industries. Ultimately, 786 firm-year data of 81 firms were included in the sample (unbalanced panel data). The shareholding ratio of major shareholders and foreigners turned out to have a statistically significant influence on R&D investment (p < 0.05). No statistical significance was found in the shareholding ratio of institutional investors and the ratio of outside directors. The higher the shareholding ratio of the major shareholders, the greater the R&D investment. There will be a need to establish (or switch to) a holding company structure. Holding companies can directly manage R&D in fields with high initial risks, and they can diversify these risks. The larger the number of foreign investors, the greater the R&D investment, indicating that foreigners directly or indirectly impose pressure on a manager to make R&D investments that bring long-term benefits.

  18. Research of corporate social responsibility in an energy efficient technologies development section

    Directory of Open Access Journals (Sweden)

    Lyashenko O.

    2013-06-01

    Full Text Available The article considered the concept of corporate social responsibility (CSR and its components. The Jevons paradox is examined, the mechanism of rebound effect on the example of energy efficient technologies is analyzed.

  19. Corporate Entrepreneurship: Sensing and Seizing Opportunities for a Prosperous Research Agenda

    NARCIS (Netherlands)

    J.J.P. Jansen (Justin)

    2011-01-01

    textabstractStrategic and corporate entrepreneurship have been widely acknowledged by scholars and executives alike as an effective means of revitalizing organizations to improve performance. Spurring entrepreneurial behavior and exploration within established organizations, however, remains a big

  20. CORPORATE GOVERNANCE TERHADAP KINERJA PERUSAHAAN

    Directory of Open Access Journals (Sweden)

    Herman Darwis

    2017-03-01

    Full Text Available The research aimed to provide empirical evidence that corporate governance implementation,managerial ownership, institutional ownership, board of executive, and independent executiveaffected corporate performance. Population of the research was companies listed at IndonesianStock Exchange (ISX between 2006 – 2008; sampling method used was purposive sampling as well asmultiple regression analysis. The result showed the implementation of GCG affected corporate performance.This meant that if the listed companies at BEI and have been surveyed by IICG implement agood corporate governance, the performance would increase. The higher corporate governance wasmeasured by corporate governance index perception, the higher corporate obedience and result ina good corporate performance. Institutional ownership affected corporate performance. The greaterinstitutional share ownership, the better corporate performance. The result showed that controlfunction from the ownership did determine improving corporate performance. Managerial ownership,board of commissioner, and commissioner independent did not affect corporate.

  1. Analysis of cumulative exergy losses in the chains of technological processes

    International Nuclear Information System (INIS)

    Szargut, J.

    1989-01-01

    This paper reports on cumulative exergy consumption (CExC) which characterizes the chain of technological processes leading from natural resources to the final product under consideration. The difference of CExC and exergy of material or energy carrier expresses the cumulative exergy loss (CExL) in the mentioned technological chain. Two apportionment methods of CExL have been proposed. Partial exergy losses appear in particular links of the technological chain and characterize the influence of irreversibility of these links. Constituent exergy losses express the influence of thermodynamic imperfection of constituent technological chains leading to the final link of the total technological chain. Analysis of the partial and constituent exergy losses informs about the possibilities of improvement of the technological chains

  2. A relation between calculated human body exergy consumption rate and subjectively assessed thermal sensation

    DEFF Research Database (Denmark)

    Simone, Angela; Kolarik, Jakub; Iwamatsu, Toshiya

    2011-01-01

    . Generally, the relationship between air temperature and the exergy consumption rate, as a first approximation, shows an increasing trend. Taking account of both convective and radiative heat exchange between the human body and the surrounding environment by using the calculated operative temperature, exergy...... occupants, it is reasonable to consider both the exergy flows in building and those within the human body. Until now, no data have been available on the relation between human-body exergy consumption rates and subjectively assessed thermal sensation. The objective of the present work was to relate thermal...... sensation data, from earlier thermal comfort studies, to calculated human-body exergy consumption rates. The results show that the minimum human body exergy consumption rate is associated with thermal sensation votes close to thermal neutrality, tending to the slightly cool side of thermal sensation...

  3. A meta-analysis of the published research on the affective, cognitive, and behavioral effects of corporal punishment.

    Science.gov (United States)

    Paolucci, Elizabeth Oddone; Violato, Claudio

    2004-05-01

    The present study is a meta-analysis of the published research on the effects of corporal punishment on affective, cognitive, and behavioral outcomes. The authors included 70 studies published between 1961 and 2000 and involving 47,751 people. Most of the studies were published between 1990 and 2000 (i.e., 53 or 68%) and were conducted in the United States (65 or 83.3%). Each of the dependent variables was coded, and effect sizes (ds) were computed. Average unweighted and weighted ds for each of the outcome variables were .35 and .20 for affective outcomes, .33 and .06 for cognitive outcomes, and .25 and .21 for behavioral outcomes, respectively. The analyses suggested small negative behavioral and emotional effects of corporal punishment and almost no effect of such punishment on cognition. Analyses of several potentially moderating variables, such as gender or socioeconomic status, and the frequency or age of first experience of corporal punishment, the relationship of the person administering the discipline, and the technique of the discipline all had no affect on effect size outcome. There was insufficient data about a number of the moderator variables to conduct meaningful analyses. The results of the present meta-analysis suggest that exposure to corporal punishment does not substantially increase the risk to youth of developing affective, cognitive, or behavioral pathologies.

  4. Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modeling results

    International Nuclear Information System (INIS)

    Sami, Samaneh; Etesami, Nasrin; Rahimi, Amir

    2011-01-01

    In the present study, using a previously developed dynamic mathematical model for performance analysis of an indirect cabinet solar dryer , a microscopic energy and exergy analysis for an indirect solar cabinet dryer is carried out. To this end, appropriate energy and exergy models are developed and using the predicted values for temperature and enthalpy of gas stream and the temperature, enthalpy and moisture content of the drying solid, the energy and exergy efficiencies are estimated. The validity of the model for predicting variations in gas and solid characteristics along the time and the length of the solar collector and/or dryer length was examined against some existing experimental data. The results show that in spite of high energy efficiency, the indirect solar cabinet dryer has relatively low exergy efficiency. Results show that the maximum exergy losses are in midday. Also the minimums of total exergy efficiency are 32.3% and 47.2% on the first and second days, respectively. Furthermore, the effect of some operating parameters, including length of the collector, its surface, and air flow rate was investigated on the exergy destruction and efficiency. -- Highlights: → In the literature, there are few studies on the energy and exergy analysis of solar cabinet dryers. → In the present study a microscopic energy and exergy analysis for an indirect solar cabinet dryer is carried out. → Effect of operating parameters, including collector length, and air flow rate was investigated on the exergy destruction and efficiency. → For collector section, the maximum values for outlet air temperature, outlet exergy and energy are 69 o C, 2.5 kW and 1.12 kW, respectively. → Increasing the air flow rate decreases the exergy efficiency of solar collector.

  5. Performance analysis of ventilation systems with desiccant wheel cooling based on exergy destruction

    International Nuclear Information System (INIS)

    Tu, Rang; Liu, Xiao-Hua; Hwang, Yunho; Ma, Fei

    2016-01-01

    Highlights: • Ventilation systems with desiccant wheel were analyzed from exergy destruction. • Main performances influencing factors for ventilation systems are put forward. • Improved ventilation systems with lower exergy destruction are suggested. • Performances of heat pumps driven ventilation systems are greatly increased. - Abstract: This paper investigates the performances of ventilation systems with desiccant wheel cooling from the perspective of exergy destructions. Based on the inherent influencing factors for exergy destructions of heat and mass transfer and heat sources, provide guidelines for efficient system design. First, performances of a basic ventilation system are simulated, which is operated at high regeneration temperature and low coefficient of performance (COP). Then, exergy analysis of the basic ventilation system shows that exergy destructions mainly exist in the heat and mass transfer components and the heat source. The inherent influencing factors for the heat and mass transfer exergy destruction are heat and mass transfer capacities, which are related to over dehumidification of the desiccant wheel, and unmatched coefficients, which represent the uniformity of the temperature or humidity ratio differences fields for heat and mass transfer components. Based on these findings, two improved ventilation systems are suggested. For the first system, over dehumidification is avoided and unmatched coefficients for each component are reduced. With lower heat and mass transfer exergy destructions and lower regeneration temperature, COP and exergy efficiency of the first system are increased compared with the basic ventilation system. For the second system, a heat pump, which recovers heat from the process air to heat the regeneration air, is adopted to replace the electrical heater and cooling devices. The exergy destruction of the heat pump is considerably reduced as compared with heat source exergy destruction of the basic ventilation

  6. General methodology for exergy balance in ProSimPlus® process simulator

    International Nuclear Information System (INIS)

    Ghannadzadeh, Ali; Thery-Hetreux, Raphaële; Baudouin, Olivier; Baudet, Philippe; Floquet, Pascal; Joulia, Xavier

    2012-01-01

    This paper presents a general methodology for exergy balance in chemical and thermal processes integrated in ProSimPlus ® as a well-adapted process simulator for energy efficiency analysis. In this work, as well as using the general expressions for heat and work streams, the whole exergy balance is presented within only one software in order to fully automate exergy analysis. In addition, after exergy balance, the essential elements such as source of irreversibility for exergy analysis are presented to help the user for modifications on either process or utility system. The applicability of the proposed methodology in ProSimPlus ® is shown through a simple scheme of Natural Gas Liquids (NGL) recovery process and its steam utility system. The methodology does not only provide the user with necessary exergetic criteria to pinpoint the source of exergy losses, it also helps the user to find the way to reduce the exergy losses. These features of the proposed exergy calculator make it preferable for its implementation in ProSimPlus ® to define the most realistic and profitable retrofit projects on the existing chemical and thermal plants. -- Highlights: ► A set of new expressions for calculation of exergy of material streams is developed. ► A general methodology for exergy balance in ProSimPlus ® is presented. ► A panel of solutions based on exergy analysis is provided to help the user for modifications on process flowsheets. ► The exergy efficiency is chosen as a variable in a bi-criteria optimization.

  7. Exergy costing analysis and performance evaluation of selected gas turbine power plants

    OpenAIRE

    S.O. Oyedepo; R.O. Fagbenle; S.S. Adefila; Md.Mahbub Alam

    2015-01-01

    In this study, exergy costing analysis and performance evaluation of selected gas turbine power plants in Nigeria are carried out. The results of exergy analysis confirmed that the combustion chamber is the most exergy destructive component compared to other cycle components. The exergetic efficiency of the plants was found to depend significantly on a change in gas turbine inlet temperature (GTIT). The increase in exergetic efficiency with the increase in turbine inlet temperature is limited...

  8. Thermodynamic modeling and Exergy Analysis of Gas Turbine Cycle for Different Boundary conditions

    OpenAIRE

    Lalatendu Pattanayak

    2015-01-01

    In this study an exergy analysis of 88.71 MW 13D2 gas turbine (GT) topping cycle is carried out. Exergy analysis based on second law was applied to the gas cycle and individual components through a modeling approach. The analysis shows that the highest exergy destruction occurs in the combustion chamber (CC). In addition, the effects of the gas turbine load and performance variations with ambient temperature, compression ratio and turbine inlet temperature (TIT) are investigated to analyse th...

  9. Comparison of different gas turbine cycles and advanced exergy analysis of the most effective

    International Nuclear Information System (INIS)

    Fallah, M.; Siyahi, H.; Ghiasi, R. Akbarpour; Mahmoudi, S.M.S.; Yari, M.; Rosen, M.A.

    2016-01-01

    Four gas turbine systems are compared: simple gas turbine (SGT), gas turbine with evaporative inlet air cooler (EVGT), steam injection gas turbine (STIG) and steam injection gas turbine with evaporative inlet air cooler (ESTIG). These comparisons are done on the basis of conventional exergy analysis and the results show that the ESTIG cycle is the most advantageous for the designer. After determining the ESTIG optimum conditions from maximum net work and maximum second law efficiency perspectives using conventional exergy analysis, advanced exergy analysis is performed for this system at its optimum conditions to provide detailed information about the improvement potential of the system components. The analysis is carried out on the basis of the engineering method and the thermodynamic cycle method is used to validate the endogenous exergy destruction rates of the system components. The results show that the optimization priority order for the system components is different when determined with advanced exergy analysis compared to conventional exergy analysis. - Highlights: • Four gas turbine systems are compared on the basis of conventional exergy analysis. • Evaporative cooled steam injection gas turbine (ESTIG) cycle is found to be the best option. • Optimum conditions of the ESTIG cycle is determined from conventional exergy analysis. • Advanced exergy analysis is carried out for this optimum conditions. • The priority of components and their interactions for performance enhancement is presented.

  10. Dynamic Exergy Analysis for the Thermal Storage Optimization of the Building Envelope

    Directory of Open Access Journals (Sweden)

    Valentina Bonetti

    2017-01-01

    Full Text Available As a measure of energy “quality”, exergy is meaningful for comparing the potential for thermal storage. Systems containing the same amount of energy could have considerably different capabilities in matching a demand profile, and exergy measures this difference. Exergy stored in the envelope of buildings is central in sustainability because the environment could be an unlimited source of energy if its interaction with the envelope is optimised for maintaining the indoor conditions within comfort ranges. Since the occurring phenomena are highly fluctuating, a dynamic exergy analysis is required; however, dynamic exergy modelling is complex and has not hitherto been implemented in building simulation tools. Simplified energy and exergy assessments are presented for a case study in which thermal storage determines the performance of seven different wall types for utilising nocturnal ventilation as a passive cooling strategy. Hourly temperatures within the walls are obtained with the ESP-r software in free-floating operation and are used to assess the envelope exergy storage capacity. The results for the most suitable wall types were different between the exergy analysis and the more traditional energy performance indicators. The exergy method is an effective technique for selecting the construction type that results in the most favourable free-floating conditions through the analysed passive strategy.

  11. The concept 'environment' in exergy analysis Some special cases

    International Nuclear Information System (INIS)

    Serova, E.N.; Brodianski, V.M.

    2004-01-01

    The concept 'environment' is of considerable importance in present-day engineering thermodynamics. Introduction of this concept in operation brings not only simplification of the methods of solving classical thermodynamic problems, but also gives the exergy method which forms the major new part of thermodynamics, including some parts of biology, economics and other fields of science. But practice shows that it is necessary to define the concept 'environment' more precisely in some cases

  12. Ecological accounting based on extended exergy: a sustainability perspective.

    Science.gov (United States)

    Dai, Jing; Chen, Bin; Sciubba, Enrico

    2014-08-19

    The excessive energy consumption, environmental pollution, and ecological destruction problems have gradually become huge obstacles for the development of societal-economic-natural complex ecosystems. Regarding the national ecological-economic system, how to make explicit the resource accounting, diagnose the resource conversion, and measure the disturbance of environmental emissions to the systems are the fundamental basis of sustainable development and coordinated management. This paper presents an extended exergy (EE) accounting including the material exergy and exergy equivalent of externalities consideration in a systematic process from production to consumption, and China in 2010 is chosen as a case study to foster an in-depth understanding of the conflict between high-speed development and the available resources. The whole society is decomposed into seven sectors (i.e., Agriculture, Extraction, Conversion, Industry, Transportation, Tertiary, and Domestic sectors) according to their distinct characteristics. An adaptive EE accounting database, which incorporates traditional energy, renewable energy, mineral element, and other natural resources as well as resource-based secondary products, is constructed on the basis of the internal flows in the system. In addition, the environmental emission accounting has been adjusted to calculate the externalities-equivalent exergy. The results show that the EE value for the year 2010 in China was 1.80 × 10(14) MJ, which is greatly increased. Furthermore, an EE-based sustainability indices system has been established to provide an epitomized exploration for evaluating the performance of flows and storages with the system from a sustainability perspective. The value of the EE-based sustainability indicator was calculated to be 0.23, much lower than the critical value of 1, implying that China is still developing in the stages of high energy consumption and a low sustainability level.

  13. Energy and Exergy Analysis of Cogeration System with Biogas Engines

    OpenAIRE

    Doseva, Nadezhda; Chakyrova, Daniela

    2015-01-01

    In this paper, an existing cogeneration system driven by biogas internal combustion engines (ICE) is a subject of an investigation by energy and exergy analyses. The system is installed in the Varna Wastewater Treatment Plant (Varna WWTP), Bulgaria and its purpose is to utilize the methane produced as a byproduct of the solids stabilization process at Varna WWTP. Otherwise, the produced methane would pollute the environment. The presented paperhas been organised in the following way: first, i...

  14. Analysis of exergy parameters of biogas power plant

    OpenAIRE

    Denysova, A.; Ngo, Minh

    2014-01-01

    The techniques of an exergy analysis concerning various circuits of biogas units, which allows replacing traditional energy resources and improving environmental conditions, has been presented. The heat schemes of biogas units were proposed, and analysis of their effectiveness was made. The comparison of different cycle parameters of various biogas units (i.e. a combustion turbine unit, a combined cycle gas turbine unit with gas discharges into the boiler and a combined cycle gas turbine with...

  15. Evaluation of Corporate Training Programs: Perspectives and Issues for Further Research.

    Science.gov (United States)

    Lee, Sung Heum; Pershing, James A.

    2000-01-01

    Discusses performance improvement interventions, including training, and the need for evaluation to measure training effectiveness. Reviews six evaluation perspectives of corporate training programs and recommends four areas for further study, including overall evaluation models and appropriate uses of the results of evaluations. (Contains 63…

  16. ANALYSIS OF EXERGY PARAMETERS OF BIOGAS POWER PLANT

    Directory of Open Access Journals (Sweden)

    Denysova A.E.

    2014-08-01

    Full Text Available The techniques of an exergy analysis concerning various circuits of biogas units, which allows replacing traditional energy resources and improving environmental conditions, has been presented. The heat schemes of biogas units were proposed, and analysis of their effectiveness was made. The comparison of different cycle parameters of various biogas units (i.e. a combustion turbine unit, a combined cycle gas turbine unit with gas discharges into the boiler and a combined cycle gas turbine with a high-temperature vapor generator and a reheating stage was made, and the comparison of their exergy characteristics was carried out. The results of exergy analysis had demonstrated that the cycle of biogas CCGT (combined cycle gas turbine with a reheating stage and using a high-pressure steam generator is the most effective, that can be explained by the fact that the thermal energy proportions of combustion products, accounting for the steam cycle and the gas cycle are approximately equal, comparing to conventional combined cycle gas turbine units.

  17. Exergy optimization in a steady moving bed heat exchanger.

    Science.gov (United States)

    Soria-Verdugo, A; Almendros-Ibáñez, J A; Ruiz-Rivas, U; Santana, D

    2009-04-01

    This work provides an energy and exergy optimization analysis of a moving bed heat exchanger (MBHE). The exchanger is studied as a cross-flow heat exchanger where one of the phases is a moving granular medium. The optimal MBHE dimensions and the optimal particle diameter are obtained for a range of incoming fluid flow rates. The analyses are carried out over operation data of the exchanger obtained in two ways: a numerical simulation of the steady-state problem and an analytical solution of the simplified equations, neglecting the conduction terms. The numerical simulation considers, for the solid, the convection heat transfer to the fluid and the diffusion term in both directions, and for the fluid only the convection heat transfer to the solid. The results are compared with a well-known analytical solution (neglecting conduction effects) for the temperature distribution in the exchanger. Next, the analytical solution is used to derive an expression for the exergy destruction. The optimal length of the MBHE depends mainly on the flow rate and does not depend on particle diameter unless they become very small (thus increasing sharply the pressure drop). The exergy optimal length is always smaller than the thermal one, although the difference is itself small.

  18. Energy-, exergy- and emergy analysis of biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Hovelius, K.

    1997-11-01

    In this report, results from analyzing salix-, winter wheat-, and winter rape cultivations from energy, exergy, and EMERGY perspectives are presented. The exchange in terms of energy for this Salix cultivation is 28 times , but if instead an exergy analysis is done the exchange for exactly the same process is 36 times. The energy analysis gives an energy exchange of 8.1 for winter wheat cultivation, and 5.7 for winter rape cultivation. Corresponding exchanges for the exergy analysis are 9.3 for winter wheat and 6.6 for winter rape. The EMERGY analysis gives a transformity for salix of 1.04E+11 sej/kg DM, for winter wheat 3.85E+11 sej/kg DM, and for winter rape 1.03E+12 sej/kg DM. Thus, the EMERGY need is bigger for rape cultivation than for winter wheat and salix cultivations. The NEYR is the ratio between the EMERGY yield and the EMERGY invested from society (economy, services and other resources), and it is 1.10 for this salix cultivation, and 0.66 for both the winter wheat and the winter rape cultivations. The EIR is the ratio between the EMERGY invested from society and the EMERGY invested from the environment, and it is 2.23 for this salix cultivation, 11.5 for the winter wheat cultivation , and 11.8 for the winter rape cultivation. 26 refs, 11 figs, 25 tabs

  19. Exergy Losses in the Szewalski Binary Vapor Cycle

    Directory of Open Access Journals (Sweden)

    Tomasz Kowalczyk

    2015-10-01

    Full Text Available In this publication, we present an energy and exergy analysis of the Szewalski binary vapor cycle based on a model of a supercritical steam power plant. We used energy analysis to conduct a preliminary optimization of the cycle. Exergy loss analysis was employed to perform a comparison of heat-transfer processes, which are essential for hierarchical cycles. The Szewalski binary vapor cycle consists of a steam cycle bottomed with an organic Rankine cycle installation. This coupling has a negative influence on the thermal efficiency of the cycle. However, the primary aim of this modification is to reduce the size of the power unit by decreasing the low-pressure steam turbine cylinder and the steam condenser. The reduction of the “cold end” of the turbine is desirable from economic and technical standpoints. We present the Szewalski binary vapor cycle in addition to a mathematical model of the chosen power plant’s thermodynamic cycle. We elaborate on the procedure of the Szewalski cycle design and its optimization in order to attain an optimal size reduction of the power unit and limit exergy loss.

  20. Advantages and limitations of exergy indicators to assess sustainability of bioenergy and biobased materials

    International Nuclear Information System (INIS)

    Maes, Dries; Van Passel, Steven

    2014-01-01

    Innovative bioenergy projects show a growing diversity in biomass pathways, transformation technologies and end-products, leading to complex new processes. Existing energy-based indicators are not designed to include multiple impacts and are too constrained to assess the sustainability of these processes. Alternatively, indicators based on exergy, a measure of “qualitative energy”, could allow a more holistic view. Exergy is increasingly applied in analyses of both technical and biological processes. But sustainability assessments including exergy calculations, are not very common and are not generally applicable to all types of impact. Hence it is important to frame the use of exergy for inclusion in a sustainability assessment. This paper reviews the potentials and the limitations of exergy calculations, and presents solutions for coherent aggregation with other metrics. The resulting approach is illustrated in a case study. Within the context of sustainability assessment of bioenergy, exergy is a suitable metric for the impacts that require an ecocentric interpretation, and it allows aggregation on a physical basis. The use of exergy is limited to a measurement of material and energy exchanges with the sun, biosphere and lithosphere. Exchanges involving services or human choices are to be measured in different metrics. This combination provides a more inclusive and objective sustainability assessment, especially compared to standard energy- or carbon-based indicators. Future applications of this approach in different situations are required to clarify the potential of exergy-based indicators in a sustainability context. -- Highlights: • Innovative bioenergy projects require more advanced sustainability assessments to incorporate all environmental impacts. • Exergy-based indicators provide solutions for objective and robust measurements. • The use of exergy in a sustainability assessment is limited to material exchanges, excluding exchanges with society

  1. Hubungan Corporate Governance, Corporate Social Responsibilities Dan Corporate Financial Performance Dalam Satu Continuum

    OpenAIRE

    Murwaningsari, Etty

    2009-01-01

    This research aims to identify the influence of Good Corporate Governance, represented by institutional ownership and managerial ownership, on Corporate Social Responsibility and Corporate Financial Performance, and also to observe the possible influence of Corporate Social Responsibility on Corporate Financial Performance. This research examines 126 manufacturing companies which are listed in Indonesian Stock Exchange (ISX) and have issued an audited financial statement for 2006. The statist...

  2. Raccoon ecological management area: partnership between Forest Service research and Mead Corporation

    Science.gov (United States)

    Daniel Yaussy; Wayne Lashbrook; Walt Smith

    1997-01-01

    The Chief of the Forest Service and the Chief Executive Officer of Mead Corporation signed a Memorandum of Understating (MOU) that created the Raccoon Ecological Management Area (REMA). This MOU designated nearly 17,000 acres as a special area to be co-managed by Mead and the Forest Service. The REMA is a working forest that continues to produce timber and pulpwood for...

  3. An application of energy and exergy analysis in agricultural sector of Malaysia

    International Nuclear Information System (INIS)

    Ahamed, J.U.; Saidur, R.; Masjuki, H.H.; Mekhilef, S.; Ali, M.B.; Furqon, M.H.

    2011-01-01

    Thermodynamic losses usually take place in machineries used for agricultural activities. Therefore, it is important to identify and quantify the losses in order to devise strategies or policies to reduce them. An exergy analysis is a tool that can identify the losses occurred in any sector. In this study, an analysis has been carried out to estimate energy and exergy consumption of the agricultural sector in Malaysia. Energy and exergy efficiencies have been determined for the devices used in the agricultural sector of Malaysia, where petrol, diesel and fuel oil are used to run the machineries. Energy and exergy flow diagrams for the overall efficiencies of Malaysian agricultural sector are presented as well. The average overall energy and exergy efficiencies of this sector were found to be 22% and 20.728%, respectively, within the period from 1991 to 2009. These figures were found to be lower than those of Norway but higher than Turkey. - Highlights: ► Highest exergy efficiency was found about 20.7% for the year 2007. ► The exergy efficiency of the agro-sector in Malaysia was lower than that of energy efficiency. ► It was also found that this sector of Malaysia is less efficient than Saudi Arabia and Norway. ► Energy and exergy losses were identified through this analysis. ► Part of the losses can be reduced using appropriate technology, management and policy.

  4. Energy and exergy analysis in double-pass solar air heater

    Indian Academy of Sciences (India)

    The effect of varied mass flow rate and solar intensity on temperature rise of air, energy efficiency, exergy gain and pressure drop at steady state condition was determined for different types of solar air heaters utilizing an indoor solar simulator. The temperature rise of air, thermal efficiency and exergy gain depends on mass ...

  5. Exergy costing analysis and performance evaluation of selected gas turbine power plants

    Directory of Open Access Journals (Sweden)

    S.O. Oyedepo

    2015-12-01

    Full Text Available In this study, exergy costing analysis and performance evaluation of selected gas turbine power plants in Nigeria are carried out. The results of exergy analysis confirmed that the combustion chamber is the most exergy destructive component compared to other cycle components. The exergetic efficiency of the plants was found to depend significantly on a change in gas turbine inlet temperature (GTIT. The increase in exergetic efficiency with the increase in turbine inlet temperature is limited by turbine material temperature limit. This was observed from the plant efficiency defect curve. As the turbine inlet temperature increases, the plant efficiency defect decreases to minimum value at certain GTIT (1,200 K, after which it increases with GTIT. This shows degradation in performance of gas turbine plant at high turbine inlet temperature. Exergy costing analysis shows that the combustion chamber has the greatest cost of exergy destruction compared to other components. Increasing the GTIT, both the exergy destruction and the cost of exergy destruction of this component are found to decrease. Also, from exergy costing analysis, the unit cost of electricity produced in the power plants varies from cents 1.99/kWh (N3.16/kWh to cents 5.65/kWh (N8.98/kWh.

  6. An application of energy and exergy analysis in residential sector of Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Masjuki, H.H.; Jamaluddin, M.Y.

    2007-01-01

    In this paper, the useful concept of energy and exergy utilization is defined, analyzed and applied to the residential sector of Malaysia by taking into account the energy and exergy flows for a period of 8 years from the year 1997 to 2004. The energy and exergy efficiencies are determined for the devices used in this sector and found to be 70% and 28%, respectively. Energy and exergy flow diagrams for the overall efficiencies of Malaysian residential sector are also illustrated in this paper. It is found that the current methodology applied in Saudi Arabia is suitable to analyze energy and exergy use in Malaysian residential sector. It has been found that the exergy efficiency of the Malaysian residential sector appears to be much lower than its corresponding energy efficiency. It has been observed that about 21% of total exergy losses are caused by refrigerator-freezer and 12% of total loss is caused by air conditioner. Washing machine, fan and rice cooker contribute about 11%, 10% and 8% of total exergy losses, respectively

  7. On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Voldsund, Mari; Elmegaard, Brian

    2014-01-01

    Exergy-based efficiencies are measures of the thermodynamic perfection of systems and processes. A meaningful formulation of these performance criteria for petroleum systems is difficult because of (i) the high chemical exergy of hydrocarbons, (ii) the large variety of chemical components, and (i...

  8. Energy and exergy evaluation of a 220MW thermal power plant ...

    African Journals Online (AJOL)

    At the variation of environmental or dead state temperature, ther e were no appreciable changes in the values of exergy efficiency of the boiler/steam generator. The outcomes of this work provide the exergy consumption and distribution profile s of the thermal power plant, making it possible to adopt effective energy - saving ...

  9. Energy and advanced exergy analysis of an existing hydrocarbon recovery process

    International Nuclear Information System (INIS)

    Mehrpooya, Mehdi; Lazemzade, Roozbeh; Sadaghiani, Mirhadi S.; Parishani, Hossein

    2016-01-01

    Highlights: • Advanced exergoeconomic analysis is performed for propane refrigerant system. • Avoidable/unavoidable & endogenous/exogenous irreversibilities were calculated. • Advanced exergetic analysis identifies the potentials for improving the system. - Abstract: An advanced exergy analysis of the Ethane recovery plant in the South Pars gas field is presented. An industrial refrigeration cycle with propane refrigerant is investigated by the exergy analysis method. The equations of exergy destruction and exergetic efficiency for the main cycle units such as evaporators, condensers, compressors, and expansion valves are developed. Exergetic efficiency of the refrigeration cycle is determined to be 33.9% indicating a high potential for improvements. The simulation results reveal that the exergy loss and exergetic efficiencies of the air cooler and expansion sections respectively are the lowest among the compartments of the cycle. The coefficient of performance (COP) is obtained as 2.05. Four parts of irreversibility (avoidable/unavoidable) and (endogenous/exogenous) are calculated for the units with highest inefficiencies. The advanced exergy analysis reveals that the exergy destruction has two major contributors: (1) 59.61% of the exergy is lost in the unavoidable form in all units and (2) compressors contribute to 25.47% of the exergy destruction. So there is a high potential for improvement for these units, since 63.38% of this portion is avoidable.

  10. Exergy analysis of a gas turbine power plant | Oko | Journal of ...

    African Journals Online (AJOL)

    Exergy analysis of a 100MW gas turbine power plant that works on the. Brayton cycle is presented. The average increase in the thermodynamic degradation of the plant over the period of six (6) years at three different levels of load was assessed. The exergy analysis of the plant was done on two sets of data: one from the ...

  11. Energy system analysis of a pilot net-zero exergy district

    International Nuclear Information System (INIS)

    Kılkış, Şiir

    2014-01-01

    Highlights: • Östra Sala backe is analyzed as a pilot district for the net-zero exergy target. • An analysis tool is developed for proposing an energy system for Östra Sala backe. • A total of 8 different measures are included and integrated in the energy system. • The exergy produced on-site is 49.7 GW h, the annual exergy consumed is 54.3 GW h. • The average value of the level of exergy match in the supply and demand is 0.84. - Abstract: The Rational Exergy Management Model (REMM) provides an analytical model to curb primary energy spending and CO 2 emissions by means of considering the level of match between the grade/quality of energy resources (exergy) on the supply and demand sides. This model is useful for developing forward-looking concepts with an energy systems perspective. One concept is net-zero exergy districts, which produce as much energy at the same grade or quality as consumed on an annual basis. This paper analyzes the district of Östra Sala backe in Uppsala Municipality in Sweden as a pilot, near net-zero exergy district. The district is planned to host 20,000 people at the end of four phases. The measures that are considered include an extension of the combined heat and power based district heating and cooling network, heat pumps driven on renewable energy, district heating driven white goods, smart home automation, efficient lighting, and bioelectricity driven public transport. A REMM Analysis Tool for net-zero exergy districts is developed and used to analyze 5 scenarios based on a Net-Zero Exergy District Option Index. According to the results, a pilot concept for the first phase of the project is proposed. This integrates a mix of 8 measures considering an annual electricity load of 46.0 GW h e and annual thermal load of 67.0 GW h t . The exergy that is produced on-site with renewable energy sources is 49.7 GW h and the annual exergy consumed is 54.3 GW h. The average value of the level of match between the demand and supply of

  12. Energy and exergy analysis at the utility and commercial sectors of Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Sattar, M.A.; Masjuki, H.H.; Abdessalam, H.; Shahruan, B.S.

    2007-01-01

    In this paper, sectoral energy and exergy analysis model is applied to the utility and commercial sectors of Malaysia by considering the energy and exergy flows from 1990 to 2003. The energy and exergy efficiencies are determined for the sub-sectors and devices used in these two sectors. It has been found the hydroelectric power plant sub-sector is more energy and exergy efficient compared to the thermal power plant sub-sector. The energy and exergy efficiencies of utility and commercial sectors of Malaysia are compared with a few other countries around the world as well. The utility and commercial sectors of Malaysia are found to be more efficient than that of Thailand, Brunei, China, and Vietnam in 1999

  13. Analysis on exergy consumption patterns for space heating in Slovenian buildings

    DEFF Research Database (Denmark)

    Dovjak, Mateja; Shukuya, Masanori; Olesen, Bjarne W.

    2010-01-01

    Problem of high energy use for heating in Slovenian buildings is analyzed with exergy and energy analysis. Results of both are compared and discussed. Three cases of exterior building walls are located in three climatic zones in winter conditions. Results of energy analyses show that the highest...... heating energy demand appears in the case with less thermal insulation, especially in colder climate. lithe comparison is made only on the energy supply and exergy supply, the results of exergy analysis are the same as those of energy analysis. The main difference appears, if the whole chain of supply...... and demand is taken into consideration. Exergy calculations enable us to analyze how much exergy is consumed in which part, from boiler to building envelope. They also reveal how much energy is supplied for the purpose of heating. Results show that insulation has much bigger effect than effect of boiler...

  14. Subjective thermal sensation and human body exergy consumption rate: analysis and correlation

    DEFF Research Database (Denmark)

    Simone, Angela; Dovjak, M.; Kolarik, Jakub

    2011-01-01

    The exergy approach to design and operation of climate conditioning systems is relatively well established, while its exploitation in connection to human perception of the indoor environment is relatively rare. As a building should provide healthy and comfortable environment for its occupants......, it is reasonable to consider both the exergy flows in building and those within the human body. There is a need to verify the human-body exergy model with the Thermal-Sensation (TS) response of subjects exposed to different combinations of indoor climate parameters (temperature, humidity, etc.). First results...... available on the relation between human-body exergy consumption rates and subjectively assessed thermal sensation showed that the minimum human body exergy consumption rate is associated with thermal sensation votes close to thermal neutrality, tending to slightly cool side of thermal sensation. By applying...

  15. WEXA: exergy analysis for increasing the efficiency of air/water heat pumps - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, L.; Wellig, B.; Hilfiker, K.

    2008-04-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study at the made by the Engineering and Architecture department at the Lucerne University of Applied Sciences and Arts. The subject of the WEXA study (Waermepumpen-Exergie-Analyse - heat pump exergy analysis) is the analysis of the operation of air/water heat-pumps using exergy analysis methods. The basic thermodynamics of heating systems using heat-pumps is discussed. The exergy analyses and exergy balances for the various components and processes of an air/water heat-pump are presented and discussed. Comparisons are presented for heat-pumps with on/off and continuous control systems for their compressors and fans. The paper is concluded with a collection of appendices on the subject.

  16. Current and future energy and exergy efficiencies in the Iran’s transportation sector

    International Nuclear Information System (INIS)

    Zarifi, F.; Mahlia, T.M.I.; Motasemi, F.; Shekarchian, M.; Moghavvemi, M.

    2013-01-01

    Highlights: • The overall energy and exergy efficiencies of the sector were calculated. • The overall efficiencies were compared to other countries. • The overall energy and exergy efficiencies have been predicted by scenario approach. • A summary of recommendations to improve the sector is provided. - Abstract: Transportation is the second largest energy consumer sector in Iran which accounts for 24% of total energy consumption in 2009. This large percentage (almost a quarter) of energy consumption necessitates the determination of energy and exergy flows and their respective losses, which will enable the reduction of both energy growth and its consequent environmental impacts in the near future. This paper attempts to analyze and investigate the energy and exergy utilization of the transportation sector in Iran for the period of 1998–2009. Additionally, the total energy consumption in each subsector and the overall energy and exergy efficiencies are predicted via scenario approach. A comparison of the overall energy and exergy efficiencies of Iran with six other countries is also presented. The results show that the overall energy and exergy efficiencies of transportation sector in Iran is higher than China and Norway, while it is lower than Saudi Arabia, Jordan, Turkey, and Malaysia for the year 2000. Road appears to be the most efficient subsector. The overall energy efficiency is determined to be in the range of 22.02% in 1998, to 21.49% in 2009, while the overall exergy efficiency is determine to be in the range of 21.47% in 1998, to 21.19% in 2009. The energy consumption in each subsector is predicted from 2010 to 2035. It was discovered that the overall energy and exergy efficiencies possesses an upward trend during this time period. Finally, some recommendations vis-à-vis the improvement of the energy and exergy efficiencies in Iranian transportation sector in the future was provided and duly discussed

  17. Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application

    International Nuclear Information System (INIS)

    Wang, Xurong; Yang, Yi; Zheng, Ya; Dai, Yiping

    2017-01-01

    Detailed exergy and exergoeconomic analyses are performed for a combined cogeneration cycle in which the waste heat from a recompression supercritical CO 2 Brayton cycle (sCO 2 ) is recovered by a transcritical CO 2 cycle (tCO 2 ) for generating electricity. Thermodynamic and exergoeconomic models are developed on the basis of mass and energy conservations, exergy balance and exergy cost equations. Parametric investigations are then conducted to evaluate the influence of key decision variables on the sCO 2 /tCO 2 performance. Finally, the combined cycle is optimized from the viewpoint of exergoeconomics. It is found that, combining the sCO 2 with a tCO 2 cycle not only enhances the energy and exergy efficiencies of the sCO 2 , but also improves the cycle exergoeconomic performance. The results show that the most exergy destruction rate takes place in the reactor, and the components of the tCO 2 bottoming cycle have less exergy destruction. When the optimization is conducted based on the exergoeconomics, the overall exergoeconomic factor, the total cost rate and the exergy destruction cost rate are 53.52%, 11243.15 $/h and 5225.17 $/h, respectively. The optimization study reveals that an increase in reactor outlet temperature leads to a decrease in total cost rate and total exergy destruction cost rate of the system. - Highlights: • Exergy and exergoeconomic analyses of a combined sCO 2 /tCO 2 cycle were performed. • Exergoeconomic optimization of the sCO 2 /tCO 2 cycle was presented. • The reactor had the highest exergy loss among sCO 2 /tCO 2 cycle components. • The overall exergoeconomic factor was up to 53.5% for the optimum case.

  18. Exergy analysis of single effect absorption refrigeration systems: The heat exchange aspect

    International Nuclear Information System (INIS)

    Joybari, Mahmood Mastani; Haghighat, Fariborz

    2016-01-01

    Highlights: • Exergy analysis of LiBr/H 2 O absorption systems with identical COP was carried out. • Exergy destruction rank: absorber followed by generator, condenser and evaporator. • Lower heat source and chilled water inlet temperature reduced exergy destruction. • Higher cooling water inlet temperature reduced exergy destruction. • Lower HTF mass flow rate increased exergy efficiency even for fixed system COP. - Abstract: The main limitation of conventional energy analysis for the thermal performance of energy systems is that this approach does not consider the quality of energy. On the other hand, exergy analysis not only provides information about the systems performance, but also it can specify the locations and magnitudes of losses. A number of studies investigated the effect of parameters such as the component temperature, and heat transfer fluid (HTF) temperature and mass flow rate on the exergetic performance of the same absorption refrigeration system; thus, reported different coefficient of performance (COP) values. However, in this study, the system COP was considered to remain constant during the investigation. This means comparing systems with different heat exchanger designs (based on HTF mass flow rate and temperature) having the same COP value. The effect of HTF mass flow rate and inlet temperature of the cooling water, chilled water and heat source on the outlet specific exergy and exergy destruction rate of each component was investigated. It was found that the lower HTF mass flow rate decreased exergy destruction of the corresponding component. Moreover, the lower temperature of heat source and chilled water inlet increased the system exergetic efficiency. That was also the case for the higher cooling water inlet temperature. Based on the analysis, since the absorber and condenser accounted for a large portion of the total exergy destruction, cooling tower modification with lower cooling water mass flow rate is recommended

  19. Corporate Fictions

    DEFF Research Database (Denmark)

    Staunæs, Dorthe; Søndergaard, D. M.

    2006-01-01

    The article describes a particular strategy of communication called a social science fiction. The strategy was taken up following an empirical research project on gender and management, in order to communicate results to the company's managers and Human Resource Staff. The research results showed...... fiction was the kind of narrative therapy, which aims to reconfigure the problem in focus by a process of externalisation that allows a reconstruction and retelling of the issue. The article describes how three cultural mechanisms in the company were condensed into three imaginary figures: Mr. Corporate...

  20. Nonlinear Power Flow Control Design Utilizing Exergy, Entropy, Static and Dynamic Stability, and Lyapunov Analysis

    CERN Document Server

    Robinett III, Rush D

    2011-01-01

    Nonlinear Powerflow Control Design presents an innovative control system design process motivated by renewable energy electric grid integration problems. The concepts developed result from the convergence of three research and development goals: • to create a unifying metric to compare the value of different energy sources – coal-burning power plant, wind turbines, solar photovoltaics, etc. – to be integrated into the electric power grid and to replace the typical metric of costs/profit; • to develop a new nonlinear control tool that applies power flow control, thermodynamics, and complex adaptive systems theory to the energy grid in a consistent way; and • to apply collective robotics theories to the creation of high-performance teams of people and key individuals in order to account for human factors in controlling and selling power into a distributed, decentralized electric power grid. All three of these goals have important concepts in common: exergy flow, limit cycles, and balance between compe...

  1. Environmental emissions by Chinese industry: Exergy-based unifying assessment

    International Nuclear Information System (INIS)

    Bo Zhang; Chen, G.Q.; Xia, X.H.; Li, S.C.; Chen, Z.M.; Xi Ji

    2012-01-01

    Based on chemical exergy as an objective measure for the chemical deviation between the emission and the environment, a unifying assessment is carried out for major environmental emissions covering COD, ammonia nitrogen, SO 2 , soot, dust, NO x and solid waste by Chinese industry over 1997–2006, with emphasis on the sectoral and regional levels in 2006. Of the total emission in exergy up to 274.1 PJ in 2006, 67.7% is estimated from waste gases, 29.9% from waste water and 2.4% from solid waste. Five of 40 sectors and 12 of 30 regions are responsible for 72.7% and 65.5% of the total emission, respectively. SO 2 is the leading emission type in 9 sectors and 25 regions, and COD in another 28 sectors and 5 regions. Some pollution-intensive sectors such as Production and Distribution of Electric Power and Heat Power and Manufacture of Paper and Paper Products, and western and inland regions such as Guangxi and Ningxia with high emission intensities are identified. By clustering and disjoint principal component analysis with intensities of emissions and fuel coal use as variables, three principal components are extracted, and four statistically significant clusters are pinpointed in the sectoral and regional analysis. Corresponding policy-making implications are addressed. - Highlights: ► A chemical exergy-based unifying assessment for industrial emissions is performed. ► The emissions at the sectoral/regional levels in 2006 are systematically revealed. ► The main principal components and clusters for emission intensities are pinpointed.

  2. Comparison of Corporate Image a nd Patient Loyalty Perceptions of Outpatients and Inpatients: Example of a Training and Research Hospital in Ankara

    Directory of Open Access Journals (Sweden)

    Ömer Rıfkı Önder

    2014-12-01

    Full Text Available The purpose of this study is to determine the level of corporate image and patient loyalty of outpatients and inpatients who get services from a hospital and to evaluate the relationship between corporate images’ factors and patient loyalty. Totally 600 patients from a training and research hospitals in Ankara, formed the study sample. As a result, outpatients’ loyalty and image perceptions found medium level; while inpatients’ level found high. In addition, the effect of corporate image factors on patient loyalty was determined that there is a statistically significant , strong and positive correlation and 83% of patient loyalty is explained by corporate image factors. Based on the research findings, making improvements especially in quality and also physical, communication, social responsibility factors can obtain loyal patients. It is suggested to adopt different strategies to outpatients and inpatients while implementing these improvements.

  3. Emergy and exergy analyses: Complementary methods or irreducible ideological options?

    International Nuclear Information System (INIS)

    Sciubba, Enrico; Ulgiati, Sergio

    2005-01-01

    The paper discusses the similarities and the incompatibilities between two forms of Energy Analysis (exergy and emergy, 'EXA' and 'EMA' in the following), both of which try to represent the behavior of physical systems by means of cumulative energy input/output methods that result in a double integration over space and time domains. Theoretical background, definitions and balance algebra are discussed first, in a 'statement-counterstatement' format that helps pinpointing differences and similarities. A significant, albeit simplified, benchmark case (ethanol production from corn) is used to compare the results and analytically assess the merits of each approach as well as possible synergic aspects. Corn production, transport and industrial conversion to ethanol are included in the analysis. First, mass balance and energy accounting are performed in each step of the process, then, exergy and emergy evaluations are carried out separately to lead to a set of performance indicators, the meaning of which is discussed with reference to their proper scale of application. The Authors underline that each method has its own preferred field of application and conclude that the two approaches appear to be characterized not much as different (and therefore competing) tools, but as different paradigms, whose meta-levels (their 'philosophies') substantially differ. In particular, EXA is found to provide the most correct and insightful assessment of thermodynamic features of any process and to offer a clear quantitative indication of both the irreversibilities and the degree of matching between the used resources and the end-use material or energy flows. EXA combined with costing considerations results in Thermo-Economics (TE), presently the best engineering method for System optimization. One of EXA recent extensions, Extended Exergy Accounting (EEA) includes all externalities in the exergy resource accounting, thus providing a more complete picture of how a process is interacting

  4. A METHOD FOR EXERGY ANALYSIS OF SUGARCANE BAGASSE BOILERS

    Directory of Open Access Journals (Sweden)

    CORTEZ L.A.B.

    1998-01-01

    Full Text Available This work presents a method to conduct a thermodynamic analysis of sugarcane bagasse boilers. The method is based on the standard and actual reactions which allows the calculation of the enthalpies of each process subequation and the exergies of each of the main flowrates participating in the combustion. The method is presented using an example with real data from a sugarcane bagasse boiler. A summary of the results obtained is also presented together based on the 1st Law of Thermodynamics analysis, the exergetic efficiencies, and the irreversibility rates. The method presented is very rigorous with respect to data consistency, particularly for the flue gas composition.

  5. Energy and exergy analysis of counter flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Saravanan Mani

    2008-01-01

    Full Text Available Cooling tower is an open system direct contact heat exchanger, where it cools water by both convection and evaporation. In this paper, a mathematical model based on heat and mass transfer principle is developed to find the outlet condition of water and air. The model is solved using iterative method. Energy and exergy analysis infers that inlet air wet bulb temperature is found to be the most important parameter than inlet water temperature and also variation in dead state properties does not affect the performance of wet cooling tower. .

  6. Conceptual model of elements and dimensions of corporal punishment according to internal and external researches

    Directory of Open Access Journals (Sweden)

    Fariba Khoshbakht

    2012-04-01

    Full Text Available Corporal punishment is using physical force to discipline or correct a child`s behavior so that they experience pain without any harm. Corporal punishment occurs mainly at home or at school. The present study investigated corporal punishment within the family (punishment of children by parents. Reviewing the studies conducted on corporal punishment, the present study examined factors affecting corporal punishment as well as the factors affected by corporal punishment and finally presented a conceptual model of elements and dimensions of corporal punishment applied by parents. The results of the review showed that many background and personality characteristics of both children and parents are involved in corporal punishment. The use of corporal punishment can result in behavioral problems in children both at individual and social levels and all this is influenced by the culture of a society. And since there are some religious instructions regarding the disciplining of children in their religious culture, corporal punishment is not prohibited in Muslim societies. Furthermore, there are some limits and conditions which are difficult to observe. تنبیه بدنی یعنی استفاده از نیروی فیزیکی، برای اصلاح یا کنترل رفتار کودک با هدف و قصد اینکه کودک درد را تجربه کند، اما صدمه‌ای نبیند. تنبیه‌ بدنی عمدتاً در دو سطح خانواده و مدرسه مطرح می‌باشد. در مطالعه حاضر تنبیه‌ بدنی در سطح خانواده (تنبیه کودک توسط والدین مورد بررسی قرار گرفته است. پژوهش حاضر با مطالعه‌ تحقیقات انجام شده در زمینه‌ تنبیه ‌بدنی به بررسی عوامل تأثیر‌گذار بر تنبیه ‌بدنی و تأثیر‌پذیر از آن پرداخته است و در نهایت به ارائه‌ مدلی

  7. Human Body Exergy Balance: Numerical Analysis of an Indoor Thermal Environment of a Passive Wooden Room in Summer

    Directory of Open Access Journals (Sweden)

    Koichi Isawa

    2015-09-01

    Full Text Available To obtain a basic understanding of the resultant changes in the human body exergy balance (input, consumption, storage, and output accompanying outdoor air temperature fluctuations, a “human body system and a built environmental system” coupled with numerical analysis was conducted. The built environmental system assumed a wooden room equipped with passive cooling strategies, such as thermal insulation and solar shading devices. It was found that in the daytime, the cool radiation exergy emitted by surrounding surfaces, such as walls increased the rate of human body exergy consumption, whereas the warm radiant exergy emitted by the surrounding surfaces at night decreased the rate of human body exergy consumption. The results suggested that the rates and proportions of the different components in the exergy balance equation (exergy input, consumption, storage, and output vary according to the outdoor temperature and humidity conditions.

  8. Corporate Governance in Post-Socialist Countries - Theoretical Dilemmas, Peculiarities, Research Opportunities / Külliki Tafel, Erik Terk, Alari Purju

    Index Scriptorium Estoniae

    Tafel, Külliki

    2006-01-01

    Äriühingute valitsemine postsotsialistlikes riikides - teoreetilised dilemmad, eripärad, uurimisvõimalused. Skeemid: Internal and external relations of corporate governanace; The changing context of corporate governance

  9. Sustainability Efficiency Factor: Measuring Sustainability in Advanced Energy Systems through Exergy, Exergoeconomic, Life Cycle, and Economic Analyses

    Science.gov (United States)

    Boldon, Lauren

    The Encyclopedia of Life Support Systems defines sustainability or industrial ecology as "the wise use of resources through critical attention to policy, social, economic, technological, and ecological management of natural and human engineered capital so as to promote innovations that assure a higher degree of human needs fulfilment, or life support, across all regions of the world, while at the same time ensuring intergenerational equity" (Encyclopedia of Life Support Systems 1998). Developing and integrating sustainable energy systems to meet growing energy demands is a daunting task. Although the technology to utilize renewable energies is well understood, there are limited locations which are ideally suited for renewable energy development. Even in areas with significant wind or solar availability, backup or redundant energy supplies are still required during periods of low renewable generation. This is precisely why it would be difficult to make the switch directly from fossil fuel to renewable energy generation. A transition period in which a base-load generation supports renewables is required, and nuclear energy suits this need well with its limited life cycle emissions and fuel price stability. Sustainability is achieved by balancing environmental, economic, and social considerations, such that energy is produced without detriment to future generations through loss of resources, harm to the environment, etcetera. In essence, the goal is to provide future generations with the same opportunities to produce energy that the current generation has. This research explores sustainability metrics as they apply to a small modular reactor (SMR)-hydrogen production plant coupled with wind energy and storage technologies to develop a new quantitative sustainability metric, the Sustainability Efficiency Factor (SEF), for comparison of energy systems. The SEF incorporates the three fundamental aspects of sustainability and provides SMR or nuclear hybrid energy system

  10. CONSEQUENCES OF INTERNAL CONTROL AND COSO FOR AUDITING AND CORPORATE GOVERNANCE - AN EXPLORATORY RESEARCH

    Directory of Open Access Journals (Sweden)

    Eloir Trindade Vasques Vieira

    2015-12-01

    Full Text Available This study has demonstrated that the Committee of Sponsoring Organizations of the Treadway Commission (COSO, internal control, internal auditing and corporate governance are efficient means of ensuring the continuity of the organization. Reaffirming that the developed process can provide security and reliability to enterprise managers. It has realized the importance of internal control and its consequences for organizations, making use of internal auditing techniques, which gives information for better controlling, increasing the value of the organization and the interests of investors or shareholders. This way they are able to know how finances, equity and the ability to honor commitments are. Moreover, the use of internal control and the principles of governance make better practices for management and control.

  11. How corporate clients and consumers surf the Internet: A review and future directions for research

    DEFF Research Database (Denmark)

    Gattiker, U.E.; Perlusz, S.; Bohmann, K.

    1999-01-01

    ) assessment of on-line information for different categories of products; (3) influence of people's technology resistance on beliefs and behaviours regarding on-line shopping; and (4), how these factors affect people's attempt to externalise costs (e.g., transaction costs) will be outlined. Few studies address...... the role of socialisation, cultural and situational factors in on-line shopping versus physical store shopping. Moreover, studies on how modifications in the sales channel affect the customer's processing and judgement of information are limited. The article analyses different decisional contexts for Web...... shopping, comparing commodity products to products that require engineering support; while the hype is generally on the first, customised and speciality products may be more attractive from a business perspective. Internet commerce of technical products, in the context of corporate purchasing, has been...

  12. Exergy-based performance analysis for proper O and M decisions in a steam power plant

    International Nuclear Information System (INIS)

    Ray, Tapan K.; Datta, Amitava; Gupta, Amitava; Ganguly, Ranjan

    2010-01-01

    Exergy analysis of a 500 MWe steam turbine cycle of an operating power plant is conducted under the design and off-design conditions with different degrees of superheat and reheat sprays. The analysis shows how a first law-based analysis shows an apparent (false) improvement in a feed water heater under an off-design condition, while the actual performance degradation is reflected through an exergy analysis. The analysis also helps identifying the contribution of individual equipment in the overall increase of exergy destruction under off-design condition. Exergy analysis is also performed using off-line performance guarantee (PG) tests conducted before and after a unit overhauling. Pre-overhauling exergy efficiency figures of the major cycle equipment are compared with their respective design values to assess the need and extent of maintenance work, whereas post-overhaul exergy data is used to quantify the compliance with the guaranteed performance. Results of the study provide a quantifiable basis for formulating exergy-economy driven maintenance scheduling and PG test procedures.

  13. Exergy analysis of an HCFC-22 and HC-290 operated air conditioning system

    Science.gov (United States)

    Ahamed, Jamal Uddin; Raiyan, Muhammad Ferdous; Salam, Md. Abdus

    2017-06-01

    The present work discusses exergy analysis of a split type air conditioning system. Typical domestic air conditioners use R22 which is a Hydrochloroflurocarbon (HCFC) refrigerant. Due to its destructive impact on ozone layer, search for alternative refrigerants is going on. Propane (R290), a pure Hydrocarbon (HC) is considered here along with R22 to make different blends of refrigerants. Two HCFC-22 and HC-290 mixtures (P1 and P2) were prepared with mass ratios of (R22:R290) 90:10 and 85:15 respectively. Using experimentally obtained data of pressure and temperature, other properties in the vapor compression system were found by REFPROP 7 software. Finally, exergy analysis was done for all the refrigerants (R22, P1 and P2). Exergy destruction in each component was also inspected. Total exergy loss of mixture P2 was found to be greater than the exergy loss of R22 and P1. Variations in exergy losses were observed with respect to evaporator temperature at two different ambient conditions. In all cases, exergy destruction in condenser was found to be the highest among the four main components of the cycle.

  14. Application of exergy analysis for improving energy efficiency of natural gas liquids recovery processes

    International Nuclear Information System (INIS)

    Shin, Jihoon; Yoon, Sekwang; Kim, Jin-Kuk

    2015-01-01

    Thermodynamic analysis and optimization method is applied to provide design guidelines for improving energy efficiency and cost-effectiveness of natural gas liquids recovery processes. Exergy analysis is adopted in this study as a thermodynamic tool to evaluate the loss of exergy associated with irreversibility in natural gas liquids recovery processes, with which conceptual understanding on inefficient design feature or equipment can be obtained. Natural gas liquids processes are modeled and simulated within UniSim ® simulator, with which detailed thermodynamic information are obtained for calculating exergy loss. The optimization framework is developed by minimizing overall exergy loss, as an objective function, subject to product specifications and engineering constraints. The optimization is carried out within MATLAB ® with the aid of a stochastic solver based on genetic algorithms. The process simulator is linked and interacted with the optimization solver, in which optimal operating conditions can be determined. A case study is presented to illustrate the benefit of using exergy analysis for the design and optimization of natural gas liquids processes and to demonstrate the applicability of design method proposed in this paper. - Highlights: • Application of exergy analysis for natural gas liquids (NGL) recovery processes. • Minimization of exergy loss for improving energy efficiency. • A systematic optimization framework for the design of NGL recovery processes

  15. Exergy and exergoeconomic analysis of a petroleum refinery utilities plant using the condensing to power method

    Energy Technology Data Exchange (ETDEWEB)

    Mendes da Silva, Julio Augusto; Pellegrini, Luiz Felipe; Oliveira Junior, Silvio [Polytechnic School of the University of Sao Paulo, SP (Brazil)], e-mails: jams@usp.br, luiz.pellegrini@usp.br, soj@usp.br; Plaza, Claudio; Rucker, Claudio [Petrobras - Petroleo Brasileiro S.A., Rio de Janeiro, RJ (Brazil)], e-mails: claudioplaza@petrobras.com.br, rucker@petrobras.com.br

    2010-07-01

    In this paper a brief description of the main processes present in a modern high capacity refinery is done. The methodology used to evaluate, through exergy analysis, the performance of the refinery's utilities plant since it is responsible for a very considerable amount of the total exergy destruction in a refinery is presented. The utilities plant products: steam, electricity, shaft power and high pressure water had their exergy unit cost determined using exergoeconomic approach. A simple and effective method called condensing to power was used to define the product of the condensers in exergy basis. Using this method it is possible to define the product of the condenser without the use of negentropy concept nor the aggregation of condensers to the steam turbines. By using this new approach, the costs obtained for the plant's products are exactly the same costs obtained when the condenser is aggregated to the steam turbine but with the advantage that the information about the stream between condenser and the steam turbine is not lost and the condenser can be evaluated singly. The analysis shows that the equipment where attention and resources should be focused are the boilers followed by the gas turbine, that together, are responsible for 80% of total exergy destruction in the utilities plant. The total exergy efficiency found for the utilities plant studied is 35% while more than 280 MW of exergy is destroyed in the utilities processes. (author)

  16. Advanced exergy analysis applied to a single-stage heat transformer

    International Nuclear Information System (INIS)

    Colorado, D.

    2017-01-01

    Highlights: • Endogenous, exogenous, avoidable and unavoidable exergy destruction was calculated for a heat transformer. • 14.78% of the total exergy destruction could be reduced assuming improvements in the efficiency and design of the equipment. • A parametric study was discussed considering variations in the operation conditions. - Abstract: This study presents an advanced exergy analysis of a single-state absorption heat transformer operating with a lithium bromide water solution. A traditional exergy analysis was also conducted to identify the components with the highest contribution to the exergy destruction, and an advanced exergy approach was developed to estimate a realistic design and improve the operating conditions of the system. According to the base case of this study, when calculating the total reversibility of the cycle, only 14.78% could be reduced by improving its design and configuration. In addition, a parametric study was presented to discuss the sensitivity of splitting exergy destruction concepts taking into account temperature variations in the heat source, sink, and seawater outlet. Considering improvements to the generator a top priority, followed by improving the absorber, the condenser and finally the evaporator. The numerical results of this work have been developed to help design engineers experiment and assemble future equipment.

  17. STAKEHOLDER PERCEPTION OF CORPORATE SOCIAL RESPONSIBILITY

    OpenAIRE

    Petra F.A. Dilling

    2011-01-01

    As corporate social responsibility receives increased attention by company stakeholders, researchers are also increasingly exploring corporate social responsibility, its causes and implications. However little is known about the perception of corporate social responsibility. This study explores the link between stakeholder perception of corporate social responsibility and its relationship with underlying factors. The findings suggest that age of the corporation, community involvement, and cul...

  18. An exergy approach to efficiency evaluation of desalination

    KAUST Repository

    Ng, Kim Choon

    2017-05-02

    This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today\\'s combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.

  19. A general exergy-based environmental impact index

    International Nuclear Information System (INIS)

    Diaz-Mendez, Sosimo E.; Rodriguez-Lelis, Jose Maria; Hernandez-Guerrero, Abel

    2011-01-01

    An ecosystem is a complex system in which biotic and abiotic factors interact and influence each other both directly and indirectly. Each of these factors has to comply with a specific function in the different processes that occur inside the ecosystem, whether transporting or transforming energy or both. When anthropogenic emissions are produced, part of the useful energy of the ecosystem is used to assimilate or absorb those emissions, and the energy spent, loses its function and becomes lost work in accordance with the Gouy-Stodola theorem. Thus, the work that an ecosystem can carry out varies as a function of the lost work produced by anthropogenic sources. The permanency or loss of the ecosystem depends on how many irreversibilities it can support. The second law of thermodynamics through a systematic use of the exergy and lost work is the basis of this paper where a general environmental impact index, based on exergy, is proposed. For the purpose of this work, the ecosystem is divided in subsystems--water, soil, atmosphere, organisms and society- -all of them inter-related. The ideal work variation can be obtained from each subsystem within the selected ecosystem, and a global index can be determined by adding the partial lost work of each subsystem. This global index is then used to determine the trend followed by the ecosystem from its pristine, original or environmental line base state. This environmental impact index applicability is presented for a simple combustion example

  20. An exergy approach to efficiency evaluation of desalination

    Science.gov (United States)

    Ng, Kim Choon; Shahzad, Muhammad Wakil; Son, Hyuk Soo; Hamed, Osman A.

    2017-05-01

    This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today's combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.

  1. Exergy analysis of a distillation tower for crude oil fractionation

    International Nuclear Information System (INIS)

    Rivero, R.

    1990-01-01

    In this paper the application of the exergy method to a crude oil atmospheric distillation tower is presented. The fundamentals and procedures are presented as well as the main parameters used to describe the thermodynamic performance of the system, such as Exergy Losses, Effectiveness and Improvement Potential. A parametric analysis of the influence on the effectiveness of the tower is then performed as a function of the number of trays, the amount of stripping steam, the use of reboilers and the operation pressure. The results obtained are discussed. As expected, the effectiveness of the tower increases with the overall number of trays in the tower and in the stripping columns for a constant operation pressure and a constant amount of stripping steam but there is a limit at which the pressure drop across the trays and the stripping steam requirements make the effectiveness decrease. The use of reboilers in the stripping columns adjacent to the main tower allows an increase in the effectiveness basically due to a greater heat integration. Finally, the increase in the operation pressure of the tower produces an increase of the effectiveness but also an increase in the stripping steam requirements

  2. Exergy Analysis of the Revolving Vane Compressed Air Engine

    Directory of Open Access Journals (Sweden)

    Alison Subiantoro

    2016-01-01

    Full Text Available Exergy analysis was applied to a revolving vane compressed air engine. The engine had a swept volume of 30 cm3. At the benchmark conditions, the suction pressure was 8 bar, the discharge pressure was 1 bar, and the operating speed was 3,000 rev·min−1. It was found that the engine had a second-law efficiency of 29.6% at the benchmark conditions. The contributors of exergy loss were friction (49%, throttling (38%, heat transfer (12%, and fluid mixing (1%. A parametric study was also conducted. The parameters to be examined were suction reservoir pressure (4 to 12 bar, operating speed (2,400 to 3,600 rev·min−1, and rotational cylinder inertia (0.94 to 2.81 g·mm2. The study found that a higher suction reservoir pressure initially increased the second-law efficiency but then plateaued at about 30%. With a higher operating speed and a higher cylinder inertia, second-law efficiency decreased. As compared to suction pressure and operating speed, cylinder inertia is the most practical and significant to be modified.

  3. Assessment of energy utilization in Iran’s industrial sector using energy and exergy analysis method

    International Nuclear Information System (INIS)

    Sanaei, Sayyed Mohammad; Furubayashi, Takaaki; Nakata, Toshihiko

    2012-01-01

    The purpose of this study is to assess the use of quality of energy in Iran’s industrial sector. The exergy analysis has been performed along with energy analysis, in order to gain deeper and more realistic understanding of the sector’s condition. Primary energy utilization from seventeen different industries has been considered for calculation of the exergy and energy efficiencies for each industry, and later for Iran’s industrial sector. The exergy efficiency is much lower than energy efficiency in all industries and also in the industrial sector. It is shown that based on the results from exergy analysis the priorities for efficiency improvement are different from that of energy analysis; this in turn suggests that exergy analysis as a proper tool for policy makers. The sources of energy degradation and the mechanisms which cause degradation of quality of energy have been identified. Moreover remedial actions for better utilization of quality of energy are proposed. The energy and exergy efficiencies for the entire industrial sector of Iran were approximated as 63% and 42%, respectively. The oil, iron and steel, plastic and cement industries are found to have the highest share in destruction of quality of total input energy to the industrial sector. The aluminum industry has the highest exergy efficiency of 52.5%. Mean entropic temperature is also proposed as a tool for understanding the degree of quality of energy required in each industry and consequently better quality matching which leads to better energy quality utilization. - Highlights: ► Exergy is used to assess the use of quality of energy in Iran's Industrial sector. ► Energy degradation mechanisms have been identified. ► Mean entropic temperature is proposed as a metric for energy quality matching. ► Improvement priorities based on exergy are different from those of energy analysis.

  4. Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production

    International Nuclear Information System (INIS)

    Wang, Zhe; Fan, Weiyu; Zhang, Guangqing; Dong, Shuang

    2016-01-01

    Highlights: • A novel MC–CLC process for H 2 production is proposed. • Energy utilisation of three MC processes is analysed by exergy analysis. • MC–CLC has the highest exergy efficiency compared with MC-CH 4 and MC-H 2. • MC-H 2 provides an advantage of absence of CO 2 generation. - Abstract: This paper proposes a novel hydrogen production process by Methane Cracking thermally coupled with Chemical Looping Combustion (MC–CLC) which provides an advantage of inherent capture of CO 2 . The energy utilisation performance of the MC–CLC process is compared with that of conventional Methane Cracking with combusting CH 4 (MC-CH 4 ) and Methane Cracking with combusting H 2 (MC-H 2 ) using exergy analysis, with focus on exergy flows, destruction and efficiency. The three MC processes are simulated using Aspen Plus software with detailed heat integration. In these processes, the majority of the exergy destruction occurs in the combustors or CLC mostly due to the high irreversibility of combustion. The CO 2 capture unit has the lowest exergy efficiency in the MC-CH 4 process, leading to a lower overall exergy efficiency of the process. The combustor in the MC-H 2 process has a much higher energy efficiency than that in the MC-CH 4 process or the CLC in the MC–CLC process. Although the use of H 2 as fuel decreases the H 2 production rate, the MC-H 2 process provides the advantage of an absence of CO 2 generation, and stores more chemical exergy in the solid carbon which can be utilised appropriately. The MC–CLC process obtains the highest exergy efficiency among the three models and this is primarily due to the absence of a CO 2 capture penalty and the CLC’s higher fuel utilization efficiency than the conventional combustion process.

  5. Parametric study of an absorption refrigeration machine using advanced exergy analysis

    International Nuclear Information System (INIS)

    Gong, Sunyoung; Goni Boulama, Kiari

    2014-01-01

    An advanced exergy analysis of a water–lithium bromide absorption refrigeration machine was conducted. For each component of the machine, the proposed analysis quantified the irreversibility that can be avoided and the irreversibility that is unavoidable. It also identified the irreversibility originating from inefficiencies within the component and the irreversibility that does not originate from the operation of the considered component. It was observed that the desorber and absorber concentrated most of the exergy destruction. Furthermore, the exergy destruction at these components was found to be dominantly endogenous and unavoidable. A parametrical study has been presented discussing the sensitivity of the different performance indicators to the temperature at which the heat source is available, the temperature of the refrigerated environment, and the temperature of the cooling medium used at the condenser and absorber. It was observed that the endogenous avoidable exergy destruction at the desorber, i.e. the portion of the desorber irreversibility that could be avoided by improving the design and operation of the desorber, decreased when the heat source or the temperature at which the cooling effect was generated increased, and it decreased when the heat sink temperature increased. The endogenous avoidable exergy destruction at the absorber displayed the same variations, though it was observed to be less affected by the heat source temperature. Contrary to the aforementioned two components, the exergy destruction at the evaporator and condenser were dominantly endogenous and avoidable, with little sensitivity to the cycle operating parameters. - Highlights: • Endogenous, exogenous, avoidable and unavoidable irreversibilities were calculated for a water–LiBr absorption machine. • Overall, desorber and absorber concentrated most of the exergy destruction of the cycle. • The exergy destruction was mainly endogenous and unavoidable for the desorber and

  6. Thermodynamic energy and exergy analysis of three different engine combustion regimes

    International Nuclear Information System (INIS)

    Li, Yaopeng; Jia, Ming; Chang, Yachao; Kokjohn, Sage L.; Reitz, Rolf D.

    2016-01-01

    Highlights: • Energy and exergy distributions of three different combustion regimes are studied. • CDC demonstrates the highest utilization efficiency of heat transfer and exhaust. • HCCI achieves the highest energy and exergy efficiencies over CDC and RCCI. • HCCI and RCCI demonstrate lower exergy destruction than CDC. • Combustion temperature, rate, duration and regime affect exergy destruction. - Abstract: Multi-dimensional models were coupled with a detailed chemical mechanism to investigate the energy and exergy distributions of three different combustion regimes in internal combustion engines. The results indicate that the 50% heat release point (CA50) considerably affects fuel efficiency and ringing intensity (RI), in which RI is used to quantify the knock level. Moreover, the burn duration from the 10% heat release point (CA10) to CA50 dominates RI, and the position of 90% heat release point (CA90) affects fuel efficiency. The heat transfer losses of conventional diesel combustion (CDC) strongly depend on the local temperature gradient, while it is closely related to the heat transfer area for homogeneous charge compression ignition (HCCI) and reactivity controlled compression ignition (RCCI). Among the three combustion regimes, CDC has the largest utilization efficiency for heat transfer and exhaust energy due to its higher temperature in the heat transfer layer and higher exhaust pressure and temperature. The utilization efficiency of heat transfer and exhaust in RCCI is less affected by the variation of CA50 compared to those in CDC and HCCI. Exergy destruction is closely related to the homogeneity of in-cylinder temperature and equivalence ratio during combustion process, the combustion temperature, the chemical reaction rate, and the combustion duration. Under the combined effect, HCCI and RCCI demonstrate lower exergy destruction than CDC at the same load. Overall, the variations of the exergy distribution for the three combustion regimes

  7. Exergy balance and efficiency of the absorptive and adsorptive processes via example of deaerator

    Directory of Open Access Journals (Sweden)

    О.O. Kardasevich

    2016-05-01

    Full Text Available The work is devoted to assessing of the effectiveness of chemical-technological processes on the basis of exergy analysis method by the example of the processes in the deaerator. Aim: The aim of the work is to demonstrate the features of the application of exergy analysis method for sorption and desorption processes via example of the deaerator. Materials and Methods: The advantage of the exergy method is in the accounting not only the quantity but also the quality of energy flows and multicomponent material flows that characterize the energy balance of any power technology system that puts this method on the first place on their objectivity in comparison with traditional methods of thermodynamic analysis. Complexity of the exergy analysis devices with multi-component flows, where separation processes such as water solutions occur, is that the main technical effect of the process is shown in two ways: in one case, the major problem is to obtain clean water flow, and in another case to obtain the concentrate flow. For those processes, where the main objective is to obtain clean water, an exergy effect is manifested in the increase of the exergy flow. In processes where the main task is solution thickening the useful effect is in the growing of exergy concentrate. Results: The exergy flows value was illustrated numerically and graphically including exergy gases sorption and desorption that characterizing the chemical and thermal transformations in the deaerator. It is showing an extremely low efficiency of the processes of oxygen removing in the deaerator from the standpoint of transformation of exergy and the ability to identify ways to improve the processes of gases removing based on exergy method. Calculations of heat and physic-chemical exergy flows indicate that the deaerator is effective as a heat exchanger (95%, and absolutely no effective as mass exchanger (0.071%. This technique makes it possible to evaluate the chemical

  8. THE ROLE OF THE UNIVERSITY IN THE KNOWLEDGE SOCIETY: ETHICAL PERSPECTIVES ON ACADEMIC RESEARCH IN THE AGE OF CORPORATE SCIENCE

    Directory of Open Access Journals (Sweden)

    MARIA CERNAT

    2011-04-01

    Full Text Available Knowledge society lies on the ruins of national culture that thought people to function in a single universal form of science. This type of society is tightly related to a post-national multicultural world that nourishes the erosion of classical (Kantian and Humboldian cultural and scientific foundations of the university. We are now witnessing it’s transformation into a “multiversity” dominated by the competitive international academic market for students and scholars and “commodified” knowledge. The fiscal crisis of publicly financed universities forced them to constantly pursue other forms of income, the industry being the most obvious solution. In the place of universities of reason and culture the drastic decrease of public funding generated the commercialization of the universities. This is because there is an “asymmetric convergence”: while universities are adopting corporate values and principles the industry itself is not influenced by the academic values and norms. The pursuit of knowledge for mere intellectual curiosity and also the conception of the knowledge as a public good have been abandoned in favor of applied research serving corporate interests. The resulting academic capitalism is far from being the best solution to budget cuts and this study is trying to highlight some of advantages but also the most important shortcomings of this present trend in our universities.

  9. Eco-exergy and emergy based self-organization of three forest plantations in lower subtropical China.

    Science.gov (United States)

    Lu, Hongfang; Fu, Fangyan; Li, Hao; Campbell, Daniel E; Ren, Hai

    2015-10-21

    The bio-thermodynamic structures of a mixed native species plantation, a conifer plantation and an Acacia mangium plantation in Southern China were quantified over a period of 15 years based on eco-exergy methods. The efficiencies of structural development and maintenance were quantified through an integrated application of eco-exergy and emergy methods. The results showed that the storage of eco-exergy increased over 3 times in all three plantations, as predicted by the maximum eco-exergy principle. This trend was primarily seen due to the accumulation of biomass, instead of an increase in the specific eco-exergy (eco-exergy per unit biomass), although species richness did increase. The eco-exergy to emergy and eco-exergy to empower ratios of the three plantations generally increased during the study period, but the rate of increase slowed down after 20 years. The dominant trees are the largest contributors to the eco-exergy stored in the plantations, and thus, the introduction of suitable indigenous tree species should be considered after the existing trees pass through their period of most rapid growth or around 20 years after planting. The combined application of C-values and suggested weighting factors in the eco-exergy calculation can imply opposite results, but may also supply useful information for forest management.

  10. Corporate Awakening

    DEFF Research Database (Denmark)

    LaFrance, Julie; Lehmann, Martin

    2005-01-01

    Predominantly since the 1992 Rio Summit, corporations have been increasingly pursuing partnerships with public institutions including governments, international organisations and NGOs that aim to contribute to sustainable development activities. Partnerships have become more common as corporations...... react to mounting pressure from corporate stakeholders, civil society and government on the responsible nature of their business practices. The corporate awakening towards a broader role of business in society and the trend of corporations embracing partnerships has led many to question the driving...... factors that motivate corporations to pursue partnerships. In this paper, the authors examine the underlying drivers of corporate organisational behaviour from the theoretical perspectives of both legitimacy and stakeholder needs, and discuss the challenges of gaining insight into why corporations embrace...

  11. Exergy Analysis of Vapor Compression Cycle Driven by Organic Rankine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Hoon [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2013-12-15

    In this study, exergy analysis of a thermally activated refrigeration cycle, a combined organic Rankine cycle (ORC), and a vapor compression cycle (VCC) were conducted. It is considered that a system uses a low-temperature heat source in the form of sensible heat, such as various renewable energy sources or waste heat from industries, and one of eight working fluids: R143a, R22, R134a, propane, isobutane, butane, R245fa, or R123. The effects of turbine inlet pressure and the working fluid selected on the exergy destructions (anergies) at various system components as well as the COP and exergy efficiency of the system were analyzed and discussed. The results show that the component of the greatest exergy destruction in the system varies sensitively with the turbine inlet pressure and/or working fluid.

  12. Exergy and CO2 Analyses as Key Tools for the Evaluation of Bio-Ethanol Production

    Directory of Open Access Journals (Sweden)

    Qian Kang

    2016-01-01

    Full Text Available The background of bioethanol as an alternative to conventional fuels is analyzed with the aim of examining the efficiency of bioethanol production by first (sugar-based and second (cellulose-based generation processes. Energy integration is of paramount importance for a complete recovery of the processes’ exergy potential. Based upon literature data and our own findings, exergy analysis is shown to be an important tool in analyzing integrated ethanol production from an efficiency and cost perspective.

  13. Energy and exergy utilization efficiencies and emission performance of Canadian transportation sector, 1990–2035

    International Nuclear Information System (INIS)

    Motasemi, F.; Afzal, Muhammad T.; Salema, Arshad Adam; Moghavvemi, M.; Shekarchian, M.; Zarifi, F.; Mohsin, R.

    2014-01-01

    Transportation sector of Canada is the second largest energy consuming sector which accounts for 30% of the total energy consumption of the country in 2009. The purpose of this work was to analyze the energy, exergy, and emission performance for four different modes of transport (road, air, rail, and marine) from the year 1990–2035. For historical period, the estimated overall energy efficiency ranges from 22.41% (1991) to 22.55% (2006) with a mean of 22.48 ± 0.07% and the overall exergy efficiency ranges from 21.61% (2001) to 21.87 (2006) with a mean of 21.74 ± 0.13%. Energy and exergy efficiencies may reach 20.95% and 20.97% in the year 2035 respectively based on the forecasted data. In comparison with other countries, we found that in the year 2000 the overall energy and exergy efficiencies for Canadian transportation sector were higher than Jordan, China, Norway, and Saudi Arabia but lower than Turkey and Malaysia. Between the year 1990–2009, the highest amount of emission produced in each subsector was: road CO 2 (80%), NO x (72%), and CO (carbon monoxide) (96%); air SO 2 (86%); rail NO x (6%) and marine NO x (7%). The road subsector produced the highest amount of emissions. - Highlights: • Energy, exergy and emission performance for Canadian transport was analyzed. • Maximum energy and exergy efficiencies were 22.55% and 21.87% in 2006 respectively. • Energy and exergy efficiencies may decrease in the year 2035. • CO 2 was the largest pollutant emitted followed by CO, NO x , and SO 2 . • Utilization of green fuels can improve exergy and emission performance

  14. Exergy Based Performance Analysis of a Gas Turbine Unit at Various Ambient Conditions

    OpenAIRE

    Idris A. Elfeituri

    2017-01-01

    This paper studies the effect of ambient conditions on the performance of a 285 MW gas turbine unit using the exergy concept. Based on the available exergy balance models developed, a computer program has been constructed to investigate the performance of the power plant under varying ambient temperature and relative humidity conditions. The variations of ambient temperature range from zero to 50 ºC and the relative humidity ranges from zero to 100%, while the unit load kept constant at 100% ...

  15. Behavioral Science in the Army: A Corporate History of the Army Research Institute

    Science.gov (United States)

    1988-06-01

    H. Hiller (Training Research) . These three laboratories and a basic research office carry out ARI research. Three scientific coordination offices...Rosenberger E. Kenneth Karcher Howard L. Roy Aaron Katz Edward L. Rundquist Carol Kehr Eva Russell Frank Kellmayer Robert Sadacca Samuel H. King Taube Sass...Evans Allyn Hertzbach Beatrice J. Farr Otto H. Heuckroth Francis M. Farrell Jack M. Hicks John P. Farrell Jack H. Hiller Theo-Dric Feng Patty Hoke

  16. Exergy and Energy Analysis of Low Temperature District Heating Network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    Low temperature district heating (LTDH) with reduced network supply and return temperature provides better match of the low quality building thermal demand and the low quality waste heat supply. In this paper, an exemplary LTDH network was designed for 30 low energy demand residential houses, which...... is in line with a pilot project that is carrying out in Denmark with network supply/return temperature at 55oC/25 oC. The consumer domestic hot water (DHW) demand is supplied with a special designed district heating (DH) storage tank. The space heating (SH) demand is supplied with a low temperature radiator....... The network thermal and hydraulic conditions were simulated under steady state with an in-house district heating network design and simulation code. Through simulation, the overall system energetic and exergetic efficiencies were calculated and the exergy losses for the major district heating system...

  17. Exergy efficient production, storage and distribution of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Sandnes, Bjoernar

    2003-07-01

    There are two main themes in this thesis. 1) Exergy efficient utilization of solar energy, where the introduction of alternative technologies such as photovoltaic/thermal collectors and phase change energy storage in a low temperature solar system is investigated. 2) The possibility of storing thermal energy in supercooled liquids is investigated. The introductory chapters introduce the concept of exergy, and focus on the use of solar heat as an inherently low quality source for covering low quality demands associated with space heating and hot water. The different stages of solar energy production, storage, and distribution of heat is discussed, with emphasis on exergy relevant issues. With the low temperature solar heating system as background, the introduction of some additional technologies that are investigated. A section of this thesis presents a study of a small scale PV/T collector as a possible component in a low temperature system. In another section the instrumentation that has been built for studies of full-size PV and thermal systems is described, and the possibility of using the PV unit outputs as parameters for controlling the thermal system operation is briefly discussed. It is suggested that the design of the PV/T unit in terms of whether priority should be given to electricity or heat production should be based on how consumption of high quality auxiliary energy is minimized, and not on adding up the combined exergy which is being produced. Solar combisystems require larger heat storage capacities compared to the more common solar hot water systems. Increased volumetric heat storage capacity can be achieved by latent heat storage systems where thermal energy is stored as heat of fusion in phase change materials (PCMs). A section presents a study where spherically encapsulated PCM is incorporated in a solar heat store. Solar combisystems are often complex, and have a relatively large number of interacting components. Another section describes a

  18. Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria

    International Nuclear Information System (INIS)

    Ust, Yasin; Arslan, Feyyaz; Ozsari, Ibrahim; Cakir, Mehmet

    2015-01-01

    Miller cycle engines are one of the popular engine concepts that are available for improving performance, reducing fuel consumption and NO x emissions. There are many research studies that investigated the modification of existing conventional engines for operation on a Miller cycle. In this context, a comparative performance analysis and optimization based on exergetic performance criterion, total exergy output and exergy efficiency has been carried out for an irreversible Dual–Miller Cycle cogeneration system having finite-rate of heat transfer, heat leak and internal irreversibilities. The EPC (Exergetic Performance Coefficient) criterion defined as the ratio of total exergy output to the loss rate of availability. Performance analysis has been also extended to the Otto–Miller and Diesel-Miller cogeneration cycles which may be considered as two special cases of the Dual–Miller cycle. The effect of the design parameters such as compression ratio, pressure ratio, cut-off ratio, Miller cycle ratio, heat consumer temperature ratio, allocation ratio and the ratio of power to heat consumed have also been investigated. The results obtained from this paper will provide guidance for the design of Dual–Miller Cycle cogeneration system and can be used for selection of optimal design parameters. - Highlights: • A thermodynamic performance estimation tool for DM cogeneration cycle is presented. • Using the model two special cases OM and dM cogeneration cycles can be analyzed. • The effects of r M , ψ, χ 2 and R have been investigated. • The results evaluate exergy output and environmental aspects together.

  19. Numerical analysis and field study of time dependent exergy-energy of a gas-steam combined cycle

    Directory of Open Access Journals (Sweden)

    Barari Bamdad

    2012-01-01

    Full Text Available In this study, time dependent exergy analysis of the Fars Combined Power Plant Cycle has been investigated. Exergy analysis has been used for investigating each part of actual combined cycle by considering irreversibility from Apr 2006 to Oct 2010. Performance analysis has been done for each part by evaluating exergy destruction in each month. By using of exergy analysis, aging of each part has been evaluated respect to time duration. In addition, the rate of lost work for each month has been calculated and variation of this parameter has been considered as a function of aging rate. Finally, effects of exergy destruction of each part have been investigated on exergy destruction of whole cycle. Entire analysis has been done for Unit 3 and 4 of gas turbine cycle which combined by Unit B of steam cycle in Fars Combined Power Plant Cycle located in Fars province in Iran.

  20. Exergy analysis of an industrial-scale ultrafiltrated (UF) cheese production plant: a detailed survey

    Science.gov (United States)

    Nasiri, Farshid; Aghbashlo, Mortaza; Rafiee, Shahin

    2017-02-01

    In this study, a detailed exergy analysis of an industrial-scale ultrafiltrated (UF) cheese production plant was conducted based on actual operational data in order to provide more comprehensive insights into the performance of the whole plant and its main subcomponents. The plant included four main subsystems, i.e., steam generator (I), above-zero refrigeration system (II), Bactocatch-assisted pasteurization line (III), and UF cheese production line (IV). In addition, this analysis was aimed at quantifying the exergy destroyed in processing a known quantity of the UF cheese using the mass allocation method. The specific exergy destruction of the UF cheese production was determined at 2330.42 kJ/kg. The contributions of the subsystems I, II, III, and IV to the specific exergy destruction of the UF cheese production were computed as 1337.67, 386.18, 283.05, and 323.51 kJ/kg, respectively. Additionally, it was observed through the analysis that the steam generation system had the largest contribution to the thermodynamic inefficiency of the UF cheese production, accounting for 57.40 % of the specific exergy destruction. Generally, the outcomes of this survey further manifested the benefits of applying exergy analysis for design, analysis, and optimization of industrial-scale dairy processing plants to achieve the most cost-effective and environmentally-benign production strategies.

  1. Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer

    International Nuclear Information System (INIS)

    Akbulut, Abdullah; Durmus, Aydin

    2010-01-01

    This paper is concerned with the energy and exergy analyses of the thin layer drying process of mulberry via forced solar dryer. Using the first law of thermodynamics, energy analysis was carried out to estimate the ratios of energy utilization and the amounts of energy gain from the solar air collector. However, exergy analysis was accomplished to determine exergy losses during the drying process by applying the second law of thermodynamics. The drying experiments were conducted at different five drying mass flow rate varied between 0.014 kg/s and 0.036 kg/s. The effects of inlet air velocity and drying time on both energy and exergy were studied. The main values of energy utilization ratio were found to be as 55.2%, 32.19%, 29.2%, 21.5% and 20.5% for the five different drying mass flow rate ranged between 0.014 kg/s and 0.036 kg/s. The main values of exergy loss were found to be as 10.82 W, 6.41 W, 4.92 W, 4.06 W and 2.65 W with the drying mass flow rate varied between 0.014 kg/s and 0.036 kg/s. It was concluded that both energy utilization ratio and exergy loss decreased with increasing drying mass flow rate while the exergetic efficiency increased.

  2. Exergy analysis of integrated waste management in the recovery and recycling of used cooking oils.

    Science.gov (United States)

    Talens Peiró, Laura; Villalba Méndez, Gara; Gabarrell i Durany, Xavier

    2008-07-01

    Used cooking oil (UCO) is a domestic waste generated daily by food industries, restaurants, and households. It is estimated that in Europe 5 kg of UCO are generated per inhabitant, totalling 2.5 million metric tons per year. Recovering UCO for the production of biodiesel offers a way of minimizing and avoiding this waste and related pollution. An exergy analysis of the integrated waste management (IWM) scheme for UCO is used to evaluate such a possibility by accounting for inputs and outputs in each stage, calculating the exergy loss and the resource input and quantifying the possible improvements. The IWM includes the collection, pretreatment, and delivery of UCO and the production of biodiesel. The results show that the greatest exergy loss occurs during the transport stages (57%). Such exergy loss can be minimized to 20% by exploiting the full capacity of collecting vans and using biodiesel in the transport stages. Further, the cumulative exergy consumption helps study how the exergy consumption of biodiesel can be further reduced by using methanol obtained from biogas in the transesterification stage. Finally, the paper discusses how increasing the collection of UCO helps minimize uncontrolled used oil disposal and consequently provides a sustainable process for biodiesel production.

  3. Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application

    International Nuclear Information System (INIS)

    Khalili-Garakani, Amirhossein; Ivakpour, Javad; Kasiri, Norollah

    2016-01-01

    Highlights: • Presenting an evolutionary synthesis algorithm. • Reducing configuration nominees based on exergy loss diagram of distillation columns. • Reduction of search space without decreasing the comprehensiveness and precision of the synthesis algorithm. • Rigorous simulation and optimization of sequences. - Abstract: Exergy analysis proved to be important in understanding of regions with poor energy efficiency and improve the design of distillation processes. In this study a new method based on exergy analysis is developed for the synthesis of a light ends recovery unit. The algorithm is some kinds of evolutionary one which employ total exergy loss diagrams of distillation columns for limiting the search space and reducing configuration nominees. The new method presented here for the light end separation unit, applies exergy loss diagrams as a powerful tool in locating the weak spot in the distillation columns of the Brugma sequence (as a first guess) and change the structure of the sequence step by step to achieve the best sequence. The results show that the new method could reduce the amount of calculations between 16% and 55% of the cases considered in this case study. The reduction of the search space takes place without decreasing the comprehensiveness and precision of the synthesis algorithm. Besides the amount of reduction in total annual cost and exergy loss of the optimum sequence is considerable.

  4. Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle

    International Nuclear Information System (INIS)

    Dai Yiping; Wang Jiangfeng; Gao Lin

    2009-01-01

    A new combined power and refrigeration cycle is proposed, which combines the Rankine cycle and the ejector refrigeration cycle. This combined cycle produces both power output and refrigeration output simultaneously. It can be driven by the flue gas of gas turbine or engine, solar energy, geothermal energy and industrial waste heats. An exergy analysis is performed to guide the thermodynamic improvement for this cycle. And a parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the performance of the combined cycle. In addition, a parameter optimization is achieved by means of genetic algorithm to reach the maximum exergy efficiency. The results show that the biggest exergy loss due to the irreversibility occurs in heat addition processes, and the ejector causes the next largest exergy loss. It is also shown that the turbine inlet pressure, the turbine back pressure, the condenser temperature and the evaporator temperature have significant effects on the turbine power output, refrigeration output and exergy efficiency of the combined cycle. The optimized exergy efficiency is 27.10% under the given condition.

  5. Impact of a Corporate Merger on the Information Seeking Behaviors of Research Practitioners.

    Science.gov (United States)

    Hirsh, Sandra; Dinkelacker, Jamie

    2003-01-01

    To assess the current state of practices and expectations regarding information seeking and collaboration in the newly merged research labs of Hewlett Packard and Compaq Computer, a survey research project was conducted over the Summer of 2002. This paper presents partial findings from this larger study, focusing on the information seeking…

  6. The University-Academic Connection in Research: Corporate Purposes and Social Responsibilities.

    Science.gov (United States)

    David, Edward E., Jr.

    1982-01-01

    The growth of industry-supported research in universities is described, and ethical issues and the role of universities in commercial activities are debated. Industrial objectives, a comparison of some specific agreements, and desirable directions for industry support of university research are discussed. (MLW)

  7. CORPORATE ENTREPRENEURSHIP: A STRATEGIC AND STRUCTURAL PERSPECTIVE

    OpenAIRE

    João Ferreira

    2005-01-01

    Recently there has been a growing interest in the use of corporate entrepreneurship as a means for corporations to enhance the innovative abilities of their employees and, at the same time, increase corporate success through the creation of new corporate ventures. However, the creation of corporate activity is difficult since it involves radically changing internal organisational behaviour patterns. Researchers have attempted to understand the factors that stimulate or impede corporate entrep...

  8. Accelerating Corporate Research in the Development, Application and Deployment of Human Language Technologies

    National Research Council Canada - National Science Library

    Ferrucci, David; Lally, Adam

    2003-01-01

    ... accelerate scientific advance. Furthermore, the ability to reuse and combine results through a common architecture and a robust software framework would accelerate the transfer of research results in HLT into IBM's product platforms...

  9. Strategic corporate sustainability

    DEFF Research Database (Denmark)

    Grewatsch, Sylvia; Rohrbeck, René; Madsen, Henning

    This paper aims to advance the understanding of the circumstances under which corporate sustainability (CS) pays off. On the basis of a review of 129 major papers from both the sustainability and general management literature, we discuss the development of the research field. In addition we discuss...... antecedents and outcomes. To overcome this limitation we propose an integrated typology which may facilitate more research on the link between corporate sustainability performance (CSP) and corporate financial performance (CFP). Our expectation is that the strategy type might play a moderating or mediating...

  10. Accelerating Science to Action: NGOs Catalyzing Scientific Research using Philanthropic/Corporate Funding

    Science.gov (United States)

    Hamburg, S.

    2017-12-01

    While government funding of scientific research has been the bedrock of scientific advances in the US, it is seldom quick or directly responsive to societal needs. If we are to effectively respond to the increasingly urgent needs for new science to address the environmental and social challenges faced by humanity and the environment we need to deploy new scientific models to augment government-centric approaches. The Environmental Defense Fund has developed an approach that accelerates the development and uptake of new science in pursuit of science-based policy to fill the gap while government research efforts are initiated. We utilized this approach in developing the data necessary to quantify methane emissions from the oil and gas supply chain. This effort was based on five key principles: studies led by an academic researchers; deployment of multiple methods whenever possible (e.g. top-down and bottom-up); all data made public (identity but not location masked when possible); external scientific review; results released in peer-reviewed scientific journals. The research to quantify methane emissions involved > 150 scientists from 40 institutions, resulting in 35 papers published over four years. In addition to the research community companies operating along the oil and gas value chain participated by providing access to sites/vehicles and funding for a portion of the academic research. The bulk of funding came from philanthropic sources. Overall the use of this alternative research/funding model allowed for the more rapid development of a robust body of policy-relevant knowledge that addressed an issue of high societal interest/value.

  11. When Corporate Social Responsibility (CSR) Meets Organizational Psychology: New Frontiers in Micro-CSR Research, and Fulfilling a Quid Pro Quo through Multilevel Insights.

    Science.gov (United States)

    Jones, David A; Willness, Chelsea R; Glavas, Ante

    2017-01-01

    Researchers, corporate leaders, and other stakeholders have shown increasing interest in Corporate Social Responsibility (CSR)-a company's discretionary actions and policies that appear to advance societal well-being beyond its immediate financial interests and legal requirements. Spanning decades of research activity, the scholarly literature on CSR has been dominated by meso- and macro-level perspectives, such as studies within corporate strategy that examine relationships between firm-level indicators of social/environmental performance and corporate financial performance. In recent years, however, there has been an explosion of micro-oriented CSR research conducted at the individual level of analysis, especially with respect to studies on how and why job seekers and employees perceive and react to CSR practices. This micro-level focus is reflected in 12 articles published as a Research Topic collection in Frontiers in Psychology (Organizational Psychology Specialty Section) titled "CSR and organizational psychology: Quid pro quo." In the present article, the authors summarize and integrate findings from these Research Topic articles. After describing some of the "new frontiers" these articles explore and create, the authors strive to fulfill a "quid pro quo" with some of the meso- and macro-oriented CSR literatures that paved the way for micro-CSR research. Specifically, the authors draw on insights from the Research Topic articles to inform a multilevel model that offers multiple illustrations of how micro-level processes among individual stakeholders can explain variability in meso (firm)-level relationships between CSR practices and corporate performance. The authors also explore an important implication of these multilevel processes for macro-level societal impact.

  12. When Corporate Social Responsibility (CSR) Meets Organizational Psychology: New Frontiers in Micro-CSR Research, and Fulfilling a Quid Pro Quo through Multilevel Insights

    Science.gov (United States)

    Jones, David A.; Willness, Chelsea R.; Glavas, Ante

    2017-01-01

    Researchers, corporate leaders, and other stakeholders have shown increasing interest in Corporate Social Responsibility (CSR)—a company’s discretionary actions and policies that appear to advance societal well-being beyond its immediate financial interests and legal requirements. Spanning decades of research activity, the scholarly literature on CSR has been dominated by meso- and macro-level perspectives, such as studies within corporate strategy that examine relationships between firm-level indicators of social/environmental performance and corporate financial performance. In recent years, however, there has been an explosion of micro-oriented CSR research conducted at the individual level of analysis, especially with respect to studies on how and why job seekers and employees perceive and react to CSR practices. This micro-level focus is reflected in 12 articles published as a Research Topic collection in Frontiers in Psychology (Organizational Psychology Specialty Section) titled “CSR and organizational psychology: Quid pro quo.” In the present article, the authors summarize and integrate findings from these Research Topic articles. After describing some of the “new frontiers” these articles explore and create, the authors strive to fulfill a “quid pro quo” with some of the meso- and macro-oriented CSR literatures that paved the way for micro-CSR research. Specifically, the authors draw on insights from the Research Topic articles to inform a multilevel model that offers multiple illustrations of how micro-level processes among individual stakeholders can explain variability in meso (firm)-level relationships between CSR practices and corporate performance. The authors also explore an important implication of these multilevel processes for macro-level societal impact. PMID:28439247

  13. In search of effective corporate governance: an explorative research within the context of semi public housing management in the Netherlands

    NARCIS (Netherlands)

    Dreven, C.F. van; Koolma, H.M.

    2016-01-01

    In this paper the authors elaborate, supported by literature on trust, a framework for corporate governance that might overcome lacunas in the classical frameworks of the principal agency theory and the stewardship theory. A historical analysis of the development of corporate governance in the

  14. Energy-exergy analysis of compressor pressure ratio effects on thermodynamic performance of ammonia water combined cycle

    International Nuclear Information System (INIS)

    Mohtaram, Soheil; Chen, Wen; Zargar, T.; Lin, Ji

    2017-01-01

    Highlights: • Energy exergy analysis is conducted to find the effects of RP. • EES software is utilized to perform the detailed energy-exergy analyses. • Effects investigated through energy and exergy destruction, enthalpy, yields, etc. • Detailed results are reported showing the performance of gas and combined cycle. - Abstract: The purpose of this study is to investigate the effect of compressor pressure ratio (RP) on the thermodynamic performances of ammonia-water combined cycle through energy and exergy destruction, enthalpy temperature, yields, and flow velocity. The energy-exergy analysis is conducted on the ammonia water combined cycle and the Rankine cycle, respectively. Engineering Equation Solver (EES) software is utilized to perform the detailed analyses. Values and ratios regarding heat drop and exergy loss are presented in separate tables for different equipments. The results obtained by the energy-exergy analysis indicate that by increasing the pressure ratio compressor, exergy destruction of high-pressure compressors, intercooler, gas turbine and the special produced work of gas turbine cycle constantly increase and the exergy destruction of recuperator, in contrast, decreases continuously. In addition, the least amount of input fuel into the combined cycle is observed when the pressure ratio is no less than 7.5. Subsequently, the efficiency of the cycle in gas turbine and combined cycle is reduced because the fuel input into the combined cycle is increased.

  15. Resource recovery from residual household waste: An application of exergy flow analysis and exergetic life cycle assessment.

    Science.gov (United States)

    Laner, David; Rechberger, Helmut; De Soete, Wouter; De Meester, Steven; Astrup, Thomas F

    2015-12-01

    Exergy is based on the Second Law of thermodynamics and can be used to express physical and chemical potential and provides a unified measure for resource accounting. In this study, exergy analysis was applied to four residual household waste management scenarios with focus on the achieved resource recovery efficiencies. The calculated exergy efficiencies were used to compare the scenarios and to evaluate the applicability of exergy-based measures for expressing resource quality and for optimizing resource recovery. Exergy efficiencies were determined based on two approaches: (i) exergy flow analysis of the waste treatment system under investigation and (ii) exergetic life cycle assessment (LCA) using the Cumulative Exergy Extraction from the Natural Environment (CEENE) as a method for resource accounting. Scenario efficiencies of around 17-27% were found based on the exergy flow analysis (higher efficiencies were associated with high levels of material recycling), while the scenario efficiencies based on the exergetic LCA lay in a narrow range around 14%. Metal recovery was beneficial in both types of analyses, but had more influence on the overall efficiency in the exergetic LCA approach, as avoided burdens associated with primary metal production were much more important than the exergy content of the recovered metals. On the other hand, plastic recovery was highly beneficial in the exergy flow analysis, but rather insignificant in exergetic LCA. The two approaches thereby offered different quantitative results as well as conclusions regarding material recovery. With respect to resource quality, the main challenge for the exergy flow analysis is the use of exergy content and exergy losses as a proxy for resource quality and resource losses, as exergy content is not per se correlated with the functionality of a material. In addition, the definition of appropriate waste system boundaries is critical for the exergy efficiencies derived from the flow analysis, as it

  16. Hubungan Corporate Governance, Corporate Social Responsibilities dan Corporate Financial Performance Dalam Satu Continuum

    Directory of Open Access Journals (Sweden)

    Etty Murwaningsari

    2009-01-01

    Full Text Available This research aims to identify the influence of Good Corporate Governance, represented by institutional ownership and managerial ownership, on Corporate Social Responsibility and Corporate Financial Performance, and also to observe the possible influence of Corporate Social Responsibility on Corporate Financial Performance. This research examines 126 manufacturing companies which are listed in Indonesian Stock Exchange (ISX and have issued an audited financial statement for 2006. The statistical method used to test the hypothesis is Path Analysis. The result suggests that Good Corporate Governance influences both the disclosure of Corporate Social Responsibility and Corporate Financial Performance and that Corporate Social Responsibility significantly influences Corporate Financial Performance. The result also suggests that CEO Tenure, the controlling variable, holds a significant influence on the disclosure of Corporate Social Responsibility. Yet, there is no strong evidence to support the type of industries as an influencing factor of Corporate Social Responsibility. Furthermore, we found that the latter condition would also apply when we analyze the influence of Corporate Secretary and Nomination and Remuneration Committee on Corporate Financial Performance. Abstract in Bahasa Indonesia: Penelitian ini bertujuan untuk mengidentifikasi pengaruh antara struktur Coorporate Governance yang diproksikan sebagai kepemilikan institusional, kepemilikan manajerial terhadap corporate social responsibility dan corporate social responsibility terhadap corporate financial performance. Penelitian menggunakan data sekunder dari laporan tahunan 2006 perusahaan publik yang terdapat di Pusat Referensi Pasar Modal (PRPM Bursa Efek Indonesia (BEI. Sampel dalam penelitian ini sebanyak 126 perusahaan. Melalui pendekatan analisa jalur (path analysis menunjukkan Good Corporate Governance yaitu kepemilikan managerial dan institusional mempunyai pengaruh terhadap

  17. Corporate Language Policies

    DEFF Research Database (Denmark)

    Sanden, Guro Refsum

    This paper offers a review of literature dealing with language policies in general and corporate language policies in particular. Based on a discussion of various definitions of these concepts within two research traditions, i.e. sociolinguistics and international management, a three......-level definition of corporate language policies is presented, emphasising that a corporate language policy is a context-specific policy about language use. The three-level definition is based on the argument that in order to acquire a complete understanding of what corporate language policies involve, one needs...... to consider three progressive questions; 1) what is a policy? 2) what is a language policy?, and ultimately, 3) what is a corporate language policy?...

  18. Corporate Language Policies

    DEFF Research Database (Denmark)

    Sanden, Guro Refsum

    2015-01-01

    This paper offers a review of literature dealing with language policies in general and corporate language policies in particular. Based on a discussion of various definitions of these concepts within two research traditions, i.e. sociolinguistics and international management, a three......-level definition of corporate language policies is presented, emphasising that a corporate language policy is a context-specific policy about language use. The three-level definition is based on the argument that in order to acquire a complete understanding of what corporate language policies involve, one needs...... to consider three progressive questions; 1) what is a policy? 2) what is a language policy?, and ultimately, 3) what is a corporate language policy?...

  19. Alliances and the innovation performance of corporate and public research spin-off firms

    NARCIS (Netherlands)

    Hagedoorn, John; Lokshin, Boris; Malo, Stéphane

    2016-01-01

    We explore the innovation performance benefits of alliances for spin-off firms, in particular spin-offs from either other firms or from public research organizations. During the early years of the emerging combinatorial chemistry industry, the industry on which our empirical analysis focuses,

  20. Corporate Awakening

    DEFF Research Database (Denmark)

    LaFrance, Julie; Lehmann, Martin

    2004-01-01

    Predominantly since the 1992 Rio Summit, corporations have been increasingly pursuing partnerships with public institutions including governments, international organisations and NGOs that aim to contribute to sustainable development activities. Both the business community and public organisations...... are recognizing the potential benefits of public-private partnerships for furthering the Millennium Development Goals while having a positive impact on business. Partnerships have become more common as corporations react to mounting pressure from corporate stakeholders, civil society and government...... on the responsible nature of their business practices. The accountability of corporations has moved beyond the traditional obligations of addressing shareholder demands and today, corporations must be accountable to society and all stakeholders affected by global development. The corporate awakening towards...

  1. Evaluation of Independent Audit and Corporate Go vernance Practices in Turkey Under The Turkish Commercıal Code No. 6102: A Qualitative Research

    Directory of Open Access Journals (Sweden)

    Yasin Karadeniz

    2015-12-01

    Full Text Available The purpose of this study is as follows: To explain the new dimension that the corporate governance practices, which have had troubles for years in Turkey, have acquired with the Turkish Commercial Code and, while explaining such relations, to reveal the importance of independent auditing, which could not become fully functional and has gone through many problems again in the practices of our country, and also the importance of present situation and the situation in future with the help of Turkish Commercial Code and corporate governance relations.Interviews as a way of qualitative research has been done face to face with at least one chief auditor (mostly CPAs working in any of the independent auditing firms in İzmir and Çanakkale cities.Following interviews with auditors it has been revealed that the Turkish Commercial Code, corporate governance in Turkey would contribute positively to development of independent auditing.

  2. Corporate design

    OpenAIRE

    Bejr, Štěpán

    2012-01-01

    The Master's Thesis deals with the issue of corporate design. The theoretical part specifies the integration of corporate design into marketing theory, introduces its basic components, principles and process of its creation. The practical part explores corporate identity changes in four significant Czech organizations - Czech Television, Czech Radio, Zoo Praha and Česká pojišťovna. It reveals specifics of each case, its positive and negative aspects and aims to find important factors that aff...

  3. Exergy costing for energy saving in combined heating and cooling applications

    International Nuclear Information System (INIS)

    Nguyen, Chan; Veje, Christian T.; Willatzen, Morten; Andersen, Peer

    2014-01-01

    Highlights: • We investigate the basis for cost apportioning of simultaneous heating and cooling. • Two thermoeconomic methods based on energy and exergy costing is demonstrated. • The unit cost of heating and cooling for a heat pump system is found and compared. • Energy costing may obstruct efficient use of energy. • Exergy costing provides the most rational cost apportioning for energy saving. - Abstract: The aim of this study is to provide a price model that motivates energy saving for a combined district heating and cooling system. A novel analysis using two thermoeconomic methods for apportioning the costs to heating and cooling provided simultaneously by an ammonia heat pump is demonstrated. In the first method, referred to as energy costing, a conventional thermoeconomic analysis is used. Here the ammonia heat pump is subject to a thermodynamic analysis with mass and energy balance equations. In the second method referred to as exergy costing, an exergy based economic analysis is used, where exergy balance equations are used in conjunction with mass and energy balance equations. In both costing methods the thermodynamic analysis is followed by an economic analysis which includes investment and operating costs. For both methods the unit costs of heating and cooling are found and compared. The analysis shows that the two methods yield significantly different results. Rather surprisingly, it is demonstrated that the exergy costing method results in about three times higher unit cost for heating than for cooling as opposed to equal unit costs when using the energy method. Further the exergy-based cost for heating changes considerably with the heating temperature while that of cooling is much less affected

  4. Exergy and environmental comparison of the end use of vehicle fuels: The Brazilian case

    International Nuclear Information System (INIS)

    Flórez-Orrego, Daniel; Silva, Julio A.M.; Oliveira Jr, Silvio de

    2015-01-01

    Highlights: • Total and non-renewable exergy costs of Brazilian transportation service are evaluated. • Specific CO 2 emissions of the Brazilian transportation service are determined. • Overall exergy efficiency of the end use of vehicle fuels in transportation sector is calculated. • A comparative extended analysis of the production and end use of transportation fuels is presented. - Abstract: In this work, a comparative exergy and environmental analysis of the vehicle fuel end use is presented. This analysis comprises petroleum and natural gas derivatives (including hydrogen), biofuels (ethanol and biodiesel), and their mixtures, besides of the electricity generated in the Brazilian electricity mix, intended to be used in plug in electric vehicles. The renewable and non-renewable unit exergy costs and CO 2 emission cost are proposed as suitable indicators for assessing the renewable exergy consumption intensity and the environmental impact, and for quantifying the thermodynamic performance of the transportation sector. This allows ranking the energy conversion processes along the vehicle fuels production routes and their end use, so that the best options for the transportation sector can be determined and better energy policies may be issued. It is found that if a drastic CO 2 emissions abatement of the sector is pursued, a more intensive utilization of ethanol in the Brazilian transportation sector mix is advisable. However, as the overall exergy conversion efficiency of the sugar cane industry is still very low, which increases the unit exergy cost of ethanol, better production and end use technologies are required. Nonetheless, with the current scenario of a predominantly renewable Brazilian electricity mix, based on more than 80% of renewable sources, this source consolidates as the most promising energy source to reduce the large amount of greenhouse gas emissions which transportation sector is responsible for

  5. Operation optimization of a distributed energy system considering energy costs and exergy efficiency

    International Nuclear Information System (INIS)

    Di Somma, M.; Yan, B.; Bianco, N.; Graditi, G.; Luh, P.B.; Mongibello, L.; Naso, V.

    2015-01-01

    Highlights: • Operation optimization model of a Distributed Energy System (DES). • Multi-objective strategy to optimize energy cost and exergy efficiency. • Exergy analysis in building energy supply systems. - Abstract: With the growing demand of energy on a worldwide scale, improving the efficiency of energy resource use has become one of the key challenges. Application of exergy principles in the context of building energy supply systems can achieve rational use of energy resources by taking into account the different quality levels of energy resources as well as those of building demands. This paper is on the operation optimization of a Distributed Energy System (DES). The model involves multiple energy devices that convert a set of primary energy carriers with different energy quality levels to meet given time-varying user demands at different energy quality levels. By promoting the usage of low-temperature energy sources to satisfy low-quality thermal energy demands, the waste of high-quality energy resources can be reduced, thereby improving the overall exergy efficiency. To consider the economic factor as well, a multi-objective linear programming problem is formulated. The Pareto frontier, including the best possible trade-offs between the economic and exergetic objectives, is obtained by minimizing a weighted sum of the total energy cost and total primary exergy input using branch-and-cut. The operation strategies of the DES under different weights for the two objectives are discussed. The operators of DESs can choose the operation strategy from the Pareto frontier based on costs, essential in the short run, and sustainability, crucial in the long run. The contribution of each energy device in reducing energy costs and the total exergy input is also analyzed. In addition, results show that the energy cost can be much reduced and the overall exergy efficiency can be significantly improved by the optimized operation of the DES as compared with the

  6. Evaluation of alternatives for microalgae oil extraction based on exergy analysis

    International Nuclear Information System (INIS)

    Peralta-Ruiz, Y.; González-Delgado, A.-D.; Kafarov, V.

    2013-01-01

    Highlights: ► Exergy analysis was used as decision-making tool for evaluation of microalgae oil extraction. ► A robust composition of Chlorella sp. biomass was modeled and used for simulation. ► Three solvent-based microalgae oil extraction methods at large scale were compared. ► Hexane based extraction presented the highest exergetic efficiency. -- Abstract: Several technologies for microalgae oil extraction are being evaluated in order to find the most adequate for large scale microalgae processing. In this work, exergy analysis was used as an instrument for screening three design alternatives for microalgae oil extraction in a large-scale process and as a decision-making tool for evaluation and selection of novel technologies from the energy point of view. Routes were simulated using dedicated industrial process simulation software, taking as feedstock a representative and robust modeled composition of Chlorella sp. microalgae biomass. Mass, energy and exergy balances were performed for each alternative, and physical and chemical exergies of streams and all specific microalgae constituents modeled were calculated with the help of the thermodynamic properties of biomass components and operating conditions of streams. Exergetic efficiencies, total process irreversibilities, energy consumption and exergy destruction were calculated for all solvent-based microalgae oil extraction pathways evaluated. It was shown that exergy analysis led to identify the hexane-based oil extraction (HBE) as the most adequate alternative of the routes assessed for scaling up from the energy point of view, presenting a maximum exergy efficiency of 51% and exergetic losses of 982,000 MJ considering a production of 104,000 t of microalgae oil per year.

  7. Corporate Taxation and Corporate Governance

    DEFF Research Database (Denmark)

    Köthenbürger, Marko; Stimmelmayr, Michael

    2009-01-01

    The effects of corporate taxation on firm behavior have been extensively discussed in the neoclassical model of firm behavior which abstracts from agency problems. As emphasized by the corporate governance literature, corporate investment behavior is however crucially influenced by diverging...... interests between shareholders and managers. We set up an agency model and analyze the crucial issue in corporate taxation of whether the normal return on investment should be exempted from taxation. The findings suggest that the divergence of interests may be intensified and welfare reduced...... if the corporate tax system exempts the normal return on investment from taxation. The optimal system may well use the full return on investment as a tax base. Hence, tax systems such as an Allowance for Corporate Equity (ACE) or a Cash-flow tax do not have the familiar efficiency-enhancing effects in the presence...

  8. Using corporate stories to build the corporate brand:an impression management perspective

    OpenAIRE

    Spear, Sara; Roper, Stuart

    2013-01-01

    Purpose – A recent area of academic interest within corporate branding and reputation is the use of storytelling in order to differentiate the corporate brand, however there is little empirical research exploring the contents of corporate stories, and how they are used by organisations to build the corporate brand. This paper aims to utilise impression management theory to bring insight into the potential role of corporate stories in shaping the corporate brand. Design/methodology/approach – ...

  9. Exergy efficiency enhancement of MSF desalination by heat recovery from hot distillate water stages

    International Nuclear Information System (INIS)

    Al-Weshahi, Mohammed A.; Anderson, Alexander; Tian, Guohong

    2013-01-01

    This detailed exergy analysis of a 3800 m 3 /h Multi-Stage Flash (MSF) desalination plant is based on the latest published thermodynamics properties of water and seawater. The parameters of the study were extracted from a validated model of MSF desalination using IPSEpro software. The results confirmed that the overall exergy efficiency of the unit is lower than would be desirable at only 5.8%. Exergy inputs were destroyed by 55%, 17%, 10%, 4.3%, and 14% respectively, in the heat recovery stages, brine heater, heat rejection stages, pumps and brine streams disposal. Moreover, the detail of the study showed that the lowest exergy destruction occurs in the first stage, increasing gradually in heat recovery stages and sharply in heat rejection stages. The study concludes that recovering the heat from the hot distillate water stages can improve unit exergy efficiency from its low 5.8% to a more economical 14%, with the hot water parameters suitable for powering other thermal systems such as absorption chiller and multi-effect desalination

  10. Exergy Analysis of the Supply of Energy and Material Resources in the Swedish Society

    Directory of Open Access Journals (Sweden)

    Mei Gong

    2016-09-01

    Full Text Available Exergy is applied to the Swedish energy supply system for the period 1970–2013. Exergy flow diagrams for the systems of electricity and district heating as well as for the total supply system of energy and material resources for 2012 are presented. The share of renewable use has increased in both electricity and district heat production. The resource use is discussed in four sectors: residential and service, transportation, industry and agriculture. The resource use is also analyzed with respect to exergy efficiency and renewable share. The total exergy input of energy and material resources amounts to about 2700 PJ of which about 530 PJ was used for final consumption in 2012. The results are also compared with similar studies. Even though the share of renewable resource use has increased from 42% in 1980 to 47% in 2012, poor efficiency is still occurring in transportation, space heating, and food production. A strong dependence on fossil and nuclear fuels also implies a serious lack of sustainability. A more exergy efficient technology and a higher renewable energy share are needed in order to become a more sustainable society.

  11. A Thermorisk framework for the analysis of energy systems by combining risk and exergy analysis

    International Nuclear Information System (INIS)

    Cassetti, G.; Colombo, E.; Zio, E.

    2016-01-01

    Highlights: • An exergy based analysis for improving efficiency and safety of energy systems is presented. • The relation between thermodynamic parameters and the safety characteristics is identified. • Possible modifications in the process are indicated to improve the safety of the system. - Abstract: The impact of energy production, transformation and use on the environmental resources encourage to understand the mechanisms of resource degradation and to develop proper analyses to reduce the impact of the energy systems on the environment. At the technical level, most attempts for reducing the environmental impact of energy systems focus on the improvement of process efficiency. One way toward an integrated approach is that of adopting exergy analysis for assessing efficiency and test improving design and operation solutions. The paper presents an exergy based analysis for improving efficiency and safety of energy systems, named Thermorisk analysis. The purpose of the Thermorisk analysis is to supply information to control, and eventually reduce, the risk of the systems (i.e. risk of accidents) by acting on the thermodynamic parameters and safety characteristics in the same frame. The proper combination of exergy and risk analysis allows monitoring the effects of efficiency improvement on the safety of the systems analyzed. A case study is presented, showing the potential of the analysis to identify the relation between the exergy efficiency and the risk of the system analyzed, and the contribution of inefficiencies on the safety of the process. Possible modifications in the process are indicated to improve the safety of the system.

  12. Exergy Analysis of Air-Gap Membrane Distillation Systems for Water Purification Applications

    Directory of Open Access Journals (Sweden)

    Daniel Woldemariam

    2017-03-01

    Full Text Available Exergy analyses are essential tools for the performance evaluation of water desalination and other separation systems, including those featuring membrane distillation (MD. One of the challenges in the commercialization of MD technologies is its substantial heat demand, especially for large scale applications. Identifying such heat flows in the system plays a crucial role in pinpointing the heat loss and thermal integration potential by the help of exergy analysis. This study presents an exergetic evaluation of air-gap membrane distillation (AGMD systems at a laboratory and pilot scale. A series of experiments were conducted to obtain thermodynamic data for the water streams included in the calculations. Exergy efficiency and destruction for two different types of flat-plate AGMD were analyzed for a range of feed and coolant temperatures. The bench scale AGMD system incorporating condensation plate with more favorable heat conductivity contributed to improved performance parameters including permeate flux, specific heat demand, and exergy efficiency. For both types of AGMD systems, the contributions of the major components involved in exergy destruction were identified. The result suggested that the MD modules caused the highest fraction of destructions followed by re-concentrating tanks.

  13. Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading

    International Nuclear Information System (INIS)

    Peters, Jens F.; Petrakopoulou, Fontina; Dufour, Javier

    2015-01-01

    This paper presents the first assessment of the exergetic performance of a biorefinery process based on catalytic hydroupgrading of bio-oil from fast pyrolysis. Lignocellulosic biomass is converted into bio-oil through fast pyrolysis, which is then upgraded to synthetic fuels in a catalytic hydrotreating process. The biorefinery process is simulated numerically using commercial software and analyzed using exergetic analysis. Exergy balances are defined for each component of the plant and the exergetic efficiencies and exergy destruction rates are calculated at the component, section and plant level, identifying thermodynamic inefficiencies and revealing the potential for further improvement of the process. The overall biofuel process results in an exergetic efficiency of 60.1%, while the exergetic efficiency of the upgrading process in the biorefinery alone is 77.7%. Within the biorefinery, the steam reforming reactor is the main source of inefficiencies, followed by the two hydrotreating reactors. In spite of the high operating pressures in the hydrotreating section, the compressors have little impact on the total exergy destruction. Compared to competing lignocellulosic biofuel processes, like gasification with Fischer–Tropsch synthesis or lignocellulosic ethanol processes, the examined system achieves a significantly higher exergetic efficiency. - Highlights: • Exergetic analysis of a biorefinery for bio-oil hydroupgrading. • Detailed simulation model using 83 model compounds. • Exergy destruction quantified in each component of the plant. • Exergetic efficiency and potential for improvement determined on component level. • Highest exergy destruction in the pyrolysis plant and the steam reformer

  14. Exergy optimization for a novel combination of organic Rankine cycles, Stirling cycle and direct expander turbines

    Science.gov (United States)

    Moghimi, Mahdi; Khosravian, Mohammadreza

    2018-01-01

    In this paper, a novel combination of organic Rankine cycles (ORCs), Stirling cycle and direct expander turbines is modeled and optimized using the genetic algorithm. The Exergy efficiency is considered as an objective function in the genetic algorithm. High efficiency is the main advantage of Stirling cycle, however, it needs nearly isothermal compressor and turbine. Therefore, an argon ORC and a R14 ORC are placed before and after the Striling cycle along with two expander turbines at the end of the line. Each component and cycle of the proposed plant in this article is verified by the previous works available in the literature and good agreement is achieved. The obtained results reveal that 27.98%, 20.86% and 12.90% of the total cold exergy are used by argon ORC, Stirling cycle and R14 ORC, respectively. Therefore, utilization of the Stirling cycle is a good idea for the LNG line cold exergy. The maximum exergy destruction occurs in the heat exchanger after the argon ORC (85.786 kJ/s per one kg/s LNG) due to the wasted cold exergy, which can be used for air conditioning systems in the plant. Finally, it would be shown that the maximum efficiency of the proposed plant is 54.25% and the maximum output power is 355.72 kW.

  15. Exergetic Analysis, Optimization and Comparison of LNG Cold Exergy Recovery Systems for Transportation

    Directory of Open Access Journals (Sweden)

    Paweł Dorosz

    2018-01-01

    Full Text Available LNG (Liquefied Natural Gas shares in the global energy market is steadily increasing. One possible application of LNG is as a fuel for transportation. Stricter air pollution regulations and emission controls have made the natural gas a promising alternative to liquid petroleum fuels, especially in the case of heavy transport. However, in most LNG-fueled vehicles, the physical exergy of LNG is destroyed in the regasification process. This paper investigates possible LNG exergy recovery systems for transportation. The analyses focus on “cold energy” recovery systems as the enthalpy of LNG, which may be used as cooling power in air conditioning or refrigeration. Moreover, four exergy recovery systems that use LNG as a low temperature heat sink to produce electric power are analyzed. This includes single-stage and two-stage direct expansion systems, an ORC (Organic Rankine Cycle system, and a combined system (ORC + direct expansion. The optimization of the above-mentioned LNG power cycles and exergy analyses are also discussed, with the identification of exergy loss in all components. The analyzed systems achieved exergetic efficiencies in the range of 20 % to 36 % , which corresponds to a net work in the range of 214 to 380 kJ/kg L N G .

  16. An estimation of the energy and exergy efficiencies for the energy resources consumption in the transportation sector in Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Sattar, M.A.; Masjuki, H.H.; Ahmed, S.; Hashim, U.

    2007-01-01

    The purpose of this work is to apply the useful energy and exergy analysis models for different modes of transport in Malaysia and to compare the result with a few countries. In this paper, energy and exergy efficiencies of the various sub-sectors are presented by considering the energy and exergy flows from 1995 to 2003. Respective flow diagrams to find the overall energy and exergy efficiencies of Malaysian transportation sector are also presented. The estimated overall energy efficiency ranges from 22.74% (1999) to 22.98% (1998) with a mean of 22.82+/-0.06% and that of overall exergy efficiency ranges from 22.44% (2000) to 22.82% (1998) with a mean of 22.55+/-0.12%. The results are compared with respect to present energy and exergy efficiencies in each sub-sector. The transportation sector used about 40% of the total energy consumed in 2002. Therefore, it is important to identify the energy and exergy flows and the pertinent losses. The road sub-sector has appeared to be the most efficient one compared to the air and marine sub-sectors. Also found that the energy and exergy efficiencies of Malaysian transportation sector are lower than that of Turkey but higher than Norway

  17. Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity

    International Nuclear Information System (INIS)

    Szczygieł, Ireneusz; Stanek, Wojciech; Szargut, Jan

    2016-01-01

    LNG (liquefied natural gas) delivered by means of sea-ships is pressurized and then regasified before its introduction to the system of pipelines. The utilization of cryogenic exergy of LNG for electricity production without combustion of any its portion is analyzed. For the conversion of LNG cryogenic exergy into electricity, the Stirling engine is proposed to be applied. The theoretical thermodynamic model of Stirling engine has been applied. This model is used to investigate the influence of pinch temperature in heat exchangers, engine compression ratio and dead volumes ratios on the thermodynamic parameters of the Stirling engine. The results of simulation represent the input data for investigations of thermodynamic performance of the proposed system. In order to evaluate the thermodynamic performance of the proposed process, an exergy analysis has been applied. The exergy efficiency and influence of design and operational parameters on exergy losses are determined for each of the proposed system configurations. The obtained results represent the background for advanced exergy-based analyses, including thermo-ecological cost. - Highlights: • Application of Stirling engine in LNG regasification. • Thermodynamic model of Stirling engine for cryogenic exergy recovery is applied. • Sensitivity analysis of operational parameters on system behaviour is applied. • Exergy analysis is conducted.

  18. Empirical research on correlation between other comprehensive income and corporate value based on data of listed companies in the construction industry

    Directory of Open Access Journals (Sweden)

    Xiuping Wang

    2017-11-01

    Full Text Available Based on China’s constantly improving accounting standards on the regulations of other comprehensive income, this paper selects the annual report data of listed companies in the construction industry in 2015 as samples, and establishes a price model to carry out empirical research on the correlation between other comprehensive income and corporate value of listed companies in the construction industry through the research methods of descriptive statistics and regression analysis. The research results show that, there is not a significant correlation between other comprehensive income and corporate value of listed companies in the construction industry. For such a conclusion, this paper analyzes the reasons and puts forward suggestions to promote stable development of the construction industry.

  19. Year-round monitoring reveals prevalence of fatal bird-window collisions at the Virginia Tech Corporate Research Center

    Directory of Open Access Journals (Sweden)

    Rebecca M. Schneider

    2018-04-01

    Full Text Available Collisions with glass are a serious threat to avian life and are estimated to kill hundreds of millions of birds per year in the United States. We monitored 22 buildings at the Virginia Tech Corporate Research Center (VTCRC in Blacksburg, Virginia, for collision fatalities from October 2013 through May 2015 and explored possible effects exerted by glass area and surrounding land cover on avian mortality. We documented 240 individuals representing 55 identifiable species that died due to collisions with windows at the VTCRC. The relative risk of fatal collisions at all buildings over the study period were estimated using a Bayesian hierarchical zero-inflated Poisson model adjusting for percentage of tree and lawn cover within 50 m of buildings, as well as for glass area. We found significant relationships between fatalities and surrounding lawn area (relative risk: 0.96, 95% credible interval: 0.93, 0.98 as well as glass area on buildings (RR: 1.30, 95% CI [1.05–1.65]. The model also found a moderately significant relationship between fatal collisions and the percent land cover of ornamental trees surrounding buildings (RR = 1.02, 95% CI [1.00–1.05]. Every building surveyed had at least one recorded collision death. Our findings indicate that birds collide with VTCRC windows during the summer breeding season in addition to spring and fall migration. The Ruby-throated Hummingbird (Archilochus colubris was the most common window collision species and accounted for 10% of deaths. Though research has identified various correlates with fatal bird-window collisions, such studies rarely culminate in mitigation. We hope our study brings attention, and ultimately action, to address this significant threat to birds at the VTCRC and elsewhere.

  20. Corporate Governance Terhadap Kinerja Perusahaan

    OpenAIRE

    Darwis, Herman

    2009-01-01

    The research aimed to provide empirical evidence that corporate governance implementation,managerial ownership, institutional ownership, board of executive, and independent executiveaffected corporate performance. Population of the research was companies listed at IndonesianStock Exchange (ISX) between 2006 – 2008; sampling method used was purposive sampling as well asmultiple regression analysis. The result showed the implementation of GCG affected corporate performance.This meant that if th...

  1. Corporate Brand Trust as a Mediator in the Relationship between Consumer Perception of CSR, Corporate Hypocrisy, and Corporate Reputation

    Directory of Open Access Journals (Sweden)

    Hanna Kim

    2015-03-01

    Full Text Available The aim of this research is to investigate the relationship between consumer perception of Corporate Social Responsibility (CSR, corporate brand trust, corporate hypocrisy, and corporate reputation. Based on the one-to-one interview method using a structured questionnaire of 560 consumers in South Korea, the proposed model was estimated by structural equation modeling analysis. The model suggests that consumer perception of CSR influences consumer attitudes toward a corporation (i.e., perceived corporate hypocrisy and corporate reputation by developing corporate brand trust. This in turn further enhances corporate reputation while decreasing corporate hypocrisy. The findings of our study demonstrate that consumer perception of CSR is an antecedent to corporate brand trust, which fully mediates the relationship between consumer perception of CSR and corporate reputation. In addition, corporate brand trust has the role of partial mediator in the relationship between consumer perception of CSR and corporate hypocrisy. These results imply that to better understand the relationship between consumer perception of CSR and consumer attitudes toward a corporation, it is necessary to consider corporate brand trust as an important mediating variable. The theoretical and practical implications of this study are discussed, together with its limitations and potential for future research.

  2. Resource recovery from residual household waste: An application of exergy flow analysis and exergetic life cycle assessment

    DEFF Research Database (Denmark)

    Laner, David; Rechberger, Helmut; De Soete, Wouter

    2015-01-01

    Exergy is based on the Second Law of thermodynamics and can be used to express physical and chemical potential and provides a unified measure for resource accounting. In this study, exergy analysis was applied to four residual household waste management scenarios with focus on the achieved resource...... of the waste treatment system under investigation and (ii) exergetic life cycle assessment (LCA) using the Cumulative Exergy Extraction from the Natural Environment (CEENE) as a method for resource accounting. Scenario efficiencies of around 17-27% were found based on the exergy flow analysis (higher...... with the functionality of a material. In addition, the definition of appropriate waste system boundaries is critical for the exergy efficiencies derived from the flow analysis, as it is constrained by limited information available about the composition of flows in the system as well as about secondary production...

  3. Unsteady-state human-body exergy consumption rate and its relation to subjective assessment of dynamic thermal environments

    DEFF Research Database (Denmark)

    Schweiker, Marcel; Kolarik, Jakub; Dovjak, Mateja

    2016-01-01

    Few examples studied applicability of exergy analysis on human thermal comfort. These examples relate the human-body exergy consumption rate with subjectively obtained thermal sensation votes and had been based on steady-state calculation methods. However, humans are rarely exposed to steady...... between the human-body exergy consumption rate and subjective assessment of thermal environment represented by thermal sensation as well as to extend the investigation towards thermal acceptability votes. Comparison of steady-state and unsteady-state model showed that results from both models were...... of the present study confirmed previously indicated trends that lowest human body exergy consumption rate is associated with thermal sensation close to neutrality. Moreover, higher acceptability was in general associated with lower human body exergy consumption rate. (C) 2016 Elsevier B.V. All rights reserved....

  4. The role of exergy in increasing utilization of green energy and technologies. Paper no. IGEC-1-Keynote-Rosen

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2005-01-01

    The use of exergy is described as a measure for identifying and explaining the benefits of green energy and technologies, so the benefits can be clearly understood and appreciated by experts and non-experts alike, and the utilization of green energy and technologies can be increased. Exergy can be used to assess and improve energy systems, and can help better understand the benefits of utilizing green energy by providing more useful and meaningful information than energy provides. Exergy clearly identifies efficiency improvements and reductions in thermodynamic losses attributable to green technologies. Exergy can also identify better than energy the environmental benefits and economics of energy technologies. Exergy should be utilized to engineers and scientists, as well as decision and policy makers, involved in green energy and technologies. (author)

  5. A novel human body exergy consumption formula to determine indoor thermal conditions for optimal human performance in office buildings

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Olesen, Bjarne W.

    2013-01-01

    obtained in simulated office environments in winter. The results show that human body exergy consumption and human performance are inversely as operative temperature changes from 17 to 28°C or human thermal sensation changes from −1.0 to +1.4, and that optimum thermal comfort cannot be expected to lead......In this paper, a novel human body exergy consumption formula was derived strictly according to Gagge's two-node thermal transfer model. The human body exergy consumption calculated by the formula was compared with values calculated using Shukuya's formula for a typical office environment....... The results show that human body exergy consumption calculated by either of these formulas reaches a minimum under the same thermal condition. It is shown that this is in accordance with expectation. The relation between human performance and human body exergy consumption was studied by analyzing the data...

  6. Corporate communications impact on corporate image and corporate competitiveness

    Directory of Open Access Journals (Sweden)

    Valentina Pirić

    2008-12-01

    Full Text Available The subject of this paper is an analysis of the impact of corporate communications and of the intensity of their application on a company’s image management, and an emphasis of the role that a company’s image plays as one of the fundamental sources of its competitiveness in contemporary market conditions. Through review and analysis of theoretical contributions, the paper shows how corporate communications integrate management, organization and the marketing communication dimension at the level of the company and how, by adequate intensity of their application and an adequate degree of integration, they may have an impact on the company’s image management. The need to understand the concept of company image as a significant source of competitiveness is also stressed. For that purpose, the work includes comprehensive research of the impact of the intensity of corporate communications on the company’s image on the market of the Republic of Croatia while also researching the impact of the company’s positive image on its competitiveness. The methodology used in this work comprised a public opinion poll, carried out on a convenient sample of persons. Gathered data were analyzed using multiple regression and correlation analysis methods. Research results confirmed the impact of the intensity of corporate communications on the company’s image as well as the statement that the company’s positive image contributes to increasing its competitiveness. In that sense, it is possible to attribute to corporate communications a strategically important role for the company’s business operations within the framework of newly emerging market conditions.

  7. How Corporate Governance Affects Strategy of Corporations : - Lessons from Enron Corporation -

    OpenAIRE

    Ahmed, Hameed; Najam, Ali

    2006-01-01

    Corporate governance is a subject of academic and professional debate. It has and it will continue to be a topic under scrutiny for subsequent deliberations since there are many different research dimensions and contexts associated with it. However, it has been observed that the linkage between corporate governance and strategy of a corporation remains as an untapped area with considerable avenues of research. This paper tends to explore this linkage, using Enron scandal as backdrop. In the a...

  8. Exergy costing for energy saving in combined heating and cooling applications

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian T.; Willatzen, Morten

    2014-01-01

    . In the first method, referred to as energy costing, a conventional thermoeconomic analysis is used. Here the ammonia heat pump is subject to a thermodynamic analysis with mass and energy balance equations. In the second method referred to as exergy costing, an exergy based economic analysis is used, where...... exergy balance equations are used in conjunction with mass and energy balance equations. In both costing methods the thermodynamic analysis is followed by an economic analysis which includes investment and operating costs. For both methods the unit costs of heating and cooling are found and compared......The aim of this study is to provide a price model that motivates energy saving for a combined district heating and cooling system. A novel analysis using two thermoeconomic methods for apportioning the costs to heating and cooling provided simultaneously by an ammonia heat pump is demonstrated...

  9. Application of eco-exergy for assessment of ecosystem health and development of structurally dynamic models

    DEFF Research Database (Denmark)

    Zhang, J.; Gürkan, Zeren; Jørgensen, S.E.

    2010-01-01

    Eco-exergy has been widely used in the assessment of ecosystem health, parameter estimations, calibrations, validations and prognoses. It offers insights into the understanding of ecosystem dynamics and disturbance-cl riven changes. Particularly, structurally dynamic models (SDMs), which...... are developed using eco-exergy as the goal function, have been applied in explaining and exploring ecosystem properties and changes in community structure driven by biotic and abiotic factors. In this paper, we review the application of eco-exergy for the assessment of ecosystem health and development...... of structurally dynamic models (SDMs). The limitations and possible future applications of the approach are also addressed. (C) 2009 Elsevier B.V. All rights reserved....

  10. Exergy characteristics of a ceiling-type residential air conditioning system operating under different climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Arif [Dept. of Mechanical Engineering, Ceyhan Engineering Faculty, Cukurova University, Adana (Turkmenistan)

    2016-11-15

    In this study an energy and exergy analysis of a Ceiling-type residential air conditioning (CTRAC) system operating under different climatic conditions have been investigated for provinces within the different geographic regions of Turkey. Primarily, the hourly cooling load capacities of a sample building (Q{sub evap}) during the months of April, May, June, July, August and September were determined. The hourly total heat gain of the sample building was determined using the Hourly analysis program (HAP). The Coefficient of performance (COP), exergy efficiency (η) and exergy destruction (Ex{sub dest}) values for the whole system and for each component were obtained. The results showed that lower atmospheric temperature (T{sub atm}) influenced the performance of the system and each of its components.

  11. Energy and exergy analysis of a combined refrigeration and waste heat driven organic Rankine cycle system

    Directory of Open Access Journals (Sweden)

    Cihan Ertugrul

    2017-01-01

    Full Text Available Energy and exergy analysis of a combined refrigeration and waste heat driven organic Rankine cycle system were studied theoretically in this paper. In order to complete refrigeration process, the obtained kinetic energy was supplied to the compressor of the refrigeration cycle. Turbine, in power cycle, was driven by organic working fluid that exits boiler with high temperature and pressure. Theoretical performances of proposed system were evaluated employing five different organic fluids which are R123, R600, R245fa, R141b, and R600a. Moreover, the change of thermal and exergy efficiencies were examined by changing the boiling, condensing, and evaporating temperatures. As a result of energy and exergy analysis of the proposed system, most appropriate organic working fluid was determined as R141b.

  12. Energy and exergy analyses of energy consumptions in the industrial sector in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Oladiran, M.T. [Department of Mechanical Engineering, University of Botswana, P/Bag 0061, Gaborone (Botswana)]. E-mail: Oladiran@mopipi.ub.bw; Meyer, J.P. [Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria (South Africa)]. E-mail: jmeyer@up.ac.za

    2007-10-15

    The energy-utilization over a 10-year period (1994-2003) has been analysed for the South African industrial sector, which consumes more primary energy than any other sector of the economy. Four principal sub-sectors, namely iron and steel, chemical and petrochemical, mining and quarrying, and non-ferrous metals/non-metallic minerals were considered in this study. Primary-energy utilization data were used to calculate the weighted mean energy and exergy efficiencies for the sub-sectors and then overall values for the industrial sector were obtained. The results indicate that exergy efficiency is considerably lower than energy efficiency in all the sub-sectors, particularly in mining and quarrying processes, for which the values were approximately 83% and 16%, respectively. The performance of exergy utilization in the industrial sector can be improved by introducing various conservation strategies. Results from this study were compared with those for other countries.

  13. Exergy analysis of an ethanol fuelled proton exchange membrane (PEM) fuel cell system for automobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shuqin; Douvartzides, Savvas; Tsiakaras, Panagiotis [Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 383 34 Volos (Greece)

    2005-08-18

    An integrated ethanol fuelled proton exchange membrane fuel cell (PEMFC) power system was investigated following a second law exergy analysis. The system was assumed to have the typical design for automobile applications and was comprised of a vaporizer/mixer, a steam reformer, a CO-shift reactor, a CO-remover (PROX) reactor, a PEMFC and a burner. The exergy analysis was applied for different PEMFC power and voltage outputs assuming the ethanol steam reforming at about 600K and the CO-shift reaction at about 400K. A detailed parametric analysis of the plant is presented and operation guidelines are suggested for effective performance. In every case, the exergy analysis method is proved to allow an accurate allocation of the deficiencies of the subsystems of the plant and serves as a unique tool for essential technical improvements. (author)

  14. Theoretical analysis of the performance of different cooling strategies with the concept of cool exergy

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air...... for the ventilation system being outdoor air vs. air from the crawl-space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on system exergy performance were investigated. It is crucial to minimize the cooling demand because it is possible to use a wide range of heat sinks (ground, lake, sea......-water, etc.) and indoor terminal units, only with a minimized demand. The water-based floor cooling system performed better than the air-based cooling system; when an air-to-water heat pump was used as the cooling source, the required exergy input was 28% smaller for the floor cooling system. The auxiliary...

  15. Determinants of Corporate Philanthropy in Pakistan

    OpenAIRE

    Muhammad Abdul Majid Makki; Dr. Suleman Aziz Lodhi

    2008-01-01

    The importance of corporate philanthropy and its related philosophy of corporate social responsibility have captured the attention of researchers and humanitarian groups in WTO era. Corporate donations have been considered as a critical tool to improve corporate image in a highly competitive environment. This paper explores the determinants of corporate donations based on LSE-25 index companies over the five year period 2002-06. Multiple regression techniques have been used for gauging the de...

  16. Energy and exergy analyses of a bi-evaporator compression/ejection refrigeration cycle

    International Nuclear Information System (INIS)

    Geng, Lihong; Liu, Huadong; Wei, Xinli; Hou, Zhonglan; Wang, Zhenzhen

    2016-01-01

    Highlights: • A bi-evaporator compression/ejection refrigeration cycle was studied experimentally. • Experiments were operated at the same external conditions and cooling capacities. • COP improvement was 16.94–30.59% higher than that of the conventional system. • The exergy efficiency of the R134a cycle was improved by 7.57–28.29%. - Abstract: Aiming to reduce the throttling loss in the vapor compression refrigeration cycle, a bi-evaporator compression/ejection refrigeration cycle (BCERC) using an ejector as the expansion device was experimentally investigated with R134a refrigerant. The effects of the compressor frequency and the operating conditions on the coefficient of performance (COP) and the amount of exergy destruction of each component were studied. The results were compared with that of the conventional vapor compression refrigeration cycle under the same external operating conditions and cooling capacities. Results showed that the refrigeration cycle with an ejector as the expansion device exhibited lower irreversibility for each component and total system in comparison with the conventional vapor compression refrigeration cycle. The COP and the exergy efficiency of the BCERC were higher than that of the conventional system. The COP and exergy efficiency improvements became more significant as the condenser water temperature increased, the evaporator water temperature decreased and the compressor frequency increased. In the BCERC with a constant frequency compressor, the COP and the exergy efficiency could be improved by 16.94–30.59%, 7.57–28.29%, respectively. The COP and the exergy efficiency of the BCERC with a variable frequency compressor could increase by around 32.64% and 23.32%, respectively.

  17. Comparative energy and exergy performance assessments of a microcogenerator unit in different electricity mix scenarios

    International Nuclear Information System (INIS)

    Gonçalves, Pedro; Angrisani, Giovanni; Roselli, Carlo; Gaspar, Adélio R.; Gameiro da Silva, Manuel

    2013-01-01

    Highlights: • Experimental and energy–exergy modelling of a 6 kW micro-combined heat and power unit. • Evaluation of energy and exergy efficiencies for performance assessment. • Use of exergy and energy indicators for comparison with a reference system. • Use of different renewables supply options into the electric and heat reference system. • The electric grid mix of Portugal and Italy is used and discussed. - Abstract: The Directive 2004/8/EC on the promotion of cogeneration proposes a comparative indicator based on primary energy savings, neglecting some important thermodynamic aspects, such as exergy. This study aims to compare and discuss the usefulness of a set of complementary indicators for performance assessments of cogeneration systems, concerning thermodynamic principles based on first and second law (the exergy approach). As case study, a 6 kW electric output micro-combined heat and power unit was experimentally tested and a model of the unit was developed in TRNSYS. Considering as reference a set of different heat and electricity scenarios, including the actual electric mixes of Portugal and Italy, the indicators case incon (PES) and Primary and Total Irreversibilities Savings (PIS and TIS), as well as energy and exergy renewability ratios were assessed and discussed. The results show that the use of MCHP has higher advantages for the Italian electric grid, than an equivalent scenario considering the Portuguese electric network as reference. As result, for a particular scenario analysed, PES and PIS have 3% and 6% for Portugal, and 10% and 18% for Italy, respectively. Furthermore, for one particular scenario evaluated, the indicators energetic and exergetic renewability ratios have 23% and 14%, respectively for the Portuguese electric grid, and 19% and 10% for the Italian electric system

  18. On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Voldsund, Mari; Elmegaard, Brian; Ertesvåg, Ivar Ståle; Kjelstrup, Signe

    2014-01-01

    Exergy-based efficiencies are measures of the thermodynamic perfection of systems and processes. A meaningful formulation of these performance criteria for petroleum systems is difficult because of (i) the high chemical exergy of hydrocarbons, (ii) the large variety of chemical components, and (iii) the differences in operating conditions between facilities. This work focuses on offshore processing plants, considering four oil platforms that differ by their working conditions and designs. Several approaches from the scientific literature for similar processes are presented and applied to the four cases. They showed a low sensitivity to performance improvements, gave inconsistent results, or favoured facilities operating under certain conditions. We suggest an alternative formulation, called the component-by-component exergy efficiency, which builds on the decomposition of the exergy flows at the level of the chemical compounds. It allows therefore for sound comparisons of separation systems, while it successfully evaluates their theoretical improvement potentials. The platform displaying the lowest efficiency (1.7%) is characterised by little pumping and compression works, at the opposite of the one displaying the highest performance (29.6%). A more realistic measure of the technical potential for improving these systems can be carried out by splitting further the exergy destruction into its avoidable and unavoidable parts. - Highlights: • Different exergy efficiency definitions for petroleum systems are reviewed. • These definitions are applied to four oil and gas platforms and are revealed to be inapplicable. • A new formulation, namely the component-by-component efficiency, is proposed. • The performance of the offshore platforms under study varies between 1.7% and 29.6%

  19. Assessment of a closed thermochemical energy storage using energy and exergy methods

    International Nuclear Information System (INIS)

    Abedin, Ali Haji; Rosen, Marc A.

    2012-01-01

    Highlights: ► Thermodynamics assessments are reported for a general closed thermochemical thermal energy storage system. ► Energy and exergy efficiencies of various processes in a closed thermochemical TES are evaluated and compared. ► Understanding is enhanced of thermochemical TES technologies and their potential implementations. ► Exergy analysis is observed to be useful when applied to thermochemical TES, with or in place of energy analysis. - Abstract: Thermal energy storage (TES) is an important technology for achieving more efficient and environmentally benign energy systems. Thermochemical TES is a type of TES with the potential for high energy density and is only recently being considered intensively. To improve understanding of thermochemical TES systems and their implementation, energy and exergy analyses are beneficial. Here, thermodynamics assessments are presented for a general closed thermochemical TES system, including assessments and comparisons of the efficiencies of the overall thermochemical TES cycle and its charging, storing and discharging processes. Locations and causes of thermodynamic losses in thermochemical TES systems are being specified using exergy analysis. The analytical methodology applied in this study identifies that energy and exergy efficiencies differ for thermochemical TESs, e.g. the energy efficiency for a case study is approximately 50% while the exergy efficiency is about 10%. Although the focus is to evaluate thermodynamic efficiencies, other design parameters such as cost, and environmental impact also need to be examined in assessing thermochemical storage. The efficiencies for thermochemical TES provided here should be helpful for designing these energy systems and enhancing their future prospects.

  20. Corporate entrepreneurship

    DEFF Research Database (Denmark)

    Christensen, Karina

    2005-01-01

    Corporate entreprenørskab kan blive svaret på, hvordan Danmark fremmer en mere videnintensiv produktion. Begrebet er blevet anvendt til at forklare forskellige organisatoriske fænomener alt fra strategi over ledelse i al almindelighed til innovation, hvilket har medført en mangfoldighed af begreber...... og perspektiver, som har skabt stor uklarhed omkring corporate entreprenørskab. Med henblik på at skabe fundamentet for et fælles fodslag redegøres der i denne artikel for corporate entreprenørskabsbegrebet ud fra forskellige perspektiver. Der gives i artiklen endvidere et overblik ved hjælp af en...... model, der indeholder intraprenørskab og exoprenørskab, samt fire organisatoriske perspektiver: corporate venturing, interne ressourcer, internationalisering og eksterne netværk....

  1. On exergy analysis of industrial plants and significance of ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rian, Berit

    2011-07-01

    The exergy analysis has been a relatively mature theory for more than 30 years. However, it is not that developed in terms of procedures for optimizing systems, which partly explains why it is not that common. Misconceptions and prejudices, even among scientists, are also partly to blame.The main objective of this work was to contribute to the development of an understanding and methodology of the exergy analysis. The thesis was mainly based on three papers, two of which provided very different examples from existing industrial systems in Norway, thus showing the societal perspective in terms of resource utilization and thermodynamics. The last paper and the following investigation were limited to certain aspects of ambient conditions. Two Norwegian operational plants have been studied, one operative for close to 30 years (Kaarstoe steam production and distribution system), while the other has just started its expected 30 years of production (Snoehvit LNG plant). In addition to mapping the current operational status of these plants, the study of the Kaarstoe steam production and distribution system concluded that the potential for increasing the thermodynamic performance by rather cautious actions was significant, whereas the study of the Snoehvit LNG plant showed the considerable profit which the Arctic location provided in terms of reduced fuel consumption. The significance of the ambient temperature led to the study of systems with two ambient bodies (i.e. ambient water and ambient air) of different temperatures, here three different systems were investigated: A regenerative steam injection gas turbine (RSTIG), a simple Linde air liquefaction plant (Air Liq) and an air-source heat pump water heater (HPWH). In particular, the effect of the chosen environment on exergy analysis was negligible for RSTIG, modest for Air Liq and critical for HPWH. It was found that the amount of exergy received from the alternative ambient body, compared to the main exergy flow of

  2. Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering

    Directory of Open Access Journals (Sweden)

    Yunus A. Cengel

    2001-08-01

    Full Text Available Abstract: Energy, entropy and exergy concepts come from thermodynamics and are applicable to all fields of science and engineering. Therefore, this article intends to provide background for better understanding of these concepts and their differences among various classes of life support systems with a diverse coverage. It also covers the basic principles, general definitions and practical applications and implications. Some illustrative examples are presented to highlight the importance of the aspects of energy, entropy and exergy and their roles in thermal engineering.

  3. Corporate environmental responsibility – a key determinant of corporate reputation

    OpenAIRE

    Cristina Ganescu; Laura Dindire

    2014-01-01

    This paper aims to determine the trend of the relationship between corporate environmental responsibility and corporate reputation by focusing on a study of the European automotive sector. The starting point of our research is content analysis of the sustainability or social responsibility reports published in 2010, 2011, and 2012 by 13 businesses operating in the European automotive industry. Content analysis was carried out in order to identify the indicators used to assess corporate enviro...

  4. THE SOUND OF CORPORATE GOVERNANCE

    Directory of Open Access Journals (Sweden)

    DUMITRASCU LUMINITA MIHAELA

    2012-07-01

    Full Text Available The paper explores the corporate governance and corporate social responsibility in music industry, by reviewing the literature and investigating the aspects in the context of a sample made by top companies in this domain. The paper spotlighting the mutual connections between corporate governance and corporate social responsibility. The research methodology used consists in investigate the corporate governance codes. It’s about a qualitative interpretive research methodology that was adopted. The findings suggest the intercorelation of corporate governance with corporate social responsibility. The main contribution of the author consists in the fact that the added value of this paper and the original contribution leads in the intercorelation of these two aspects of corporate governance and corporate social responsibility, the findings beeing interesting, implying that recent preoccupation with corporate governance in music industry is starting to be equable by some attention to social responsibility aspects, with growing appreciation of their interdependencies. Previous literature has researched corporate governance and corporate social responsibility independently. Due to this fact, this paper is considering them jointly. The paper is important for both practical and theoretical aspects: for managers and also can serve as the basis for future research on this topic. The current paper is realized in the doctoral program entitled “PhD in Economics at the Standards of European Knowledge- DoEsEc”, scientific coordinator Prof. PhD Niculae Feleaga, Institution: The Academy of Economic Studies Bucharest, Faculty of Accounting and Management Informatic System, Department of International Accounting, period of research 2009-2012.

  5. Reinforcement learning for optimal control of low exergy buildings

    International Nuclear Information System (INIS)

    Yang, Lei; Nagy, Zoltan; Goffin, Philippe; Schlueter, Arno

    2015-01-01

    Highlights: • Implementation of reinforcement learning control for LowEx Building systems. • Learning allows adaptation to local environment without prior knowledge. • Presentation of reinforcement learning control for real-life applications. • Discussion of the applicability for real-life situations. - Abstract: Over a third of the anthropogenic greenhouse gas (GHG) emissions stem from cooling and heating buildings, due to their fossil fuel based operation. Low exergy building systems are a promising approach to reduce energy consumption as well as GHG emissions. They consists of renewable energy technologies, such as PV, PV/T and heat pumps. Since careful tuning of parameters is required, a manual setup may result in sub-optimal operation. A model predictive control approach is unnecessarily complex due to the required model identification. Therefore, in this work we present a reinforcement learning control (RLC) approach. The studied building consists of a PV/T array for solar heat and electricity generation, as well as geothermal heat pumps. We present RLC for the PV/T array, and the full building model. Two methods, Tabular Q-learning and Batch Q-learning with Memory Replay, are implemented with real building settings and actual weather conditions in a Matlab/Simulink framework. The performance is evaluated against standard rule-based control (RBC). We investigated different neural network structures and find that some outperformed RBC already during the learning phase. Overall, every RLC strategy for PV/T outperformed RBC by over 10% after the third year. Likewise, for the full building, RLC outperforms RBC in terms of meeting the heating demand, maintaining the optimal operation temperature and compensating more effectively for ground heat. This allows to reduce engineering costs associated with the setup of these systems, as well as decrease the return-of-invest period, both of which are necessary to create a sustainable, zero-emission building

  6. Biomass gasification with preheated air: Energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    Karamarkovic Rade M.

    2012-01-01

    Full Text Available Due to the irreversibilities that occur during biomass gasification, gasifiers are usually the least efficient units in the systems for production of heat, electricity, or other biofuels. Internal thermal energy exchange is responsible for a part of these irreversibilities and can be reduced by the use of preheated air as a gasifying medium. The focus of the paper is biomass gasification in the whole range of gasification temperatures by the use of air preheated with product gas sensible heat. The energetic and exergetic analyses are carried with a typical ash-free biomass feed represented by CH1.4O0.59N0.0017 at 1 and 10 bar pressure. The tool for the analyses is already validated model extended with a heat exchanger model. For every 200 K of air preheating, the average decrease of the amount of air required for complete biomass gasification is 1.3% of the amount required for its stoichiometric combustion. The air preheated to the gasification temperature on the average increases the lower heating value of the product gas by 13.6%, as well as energetic and exergetic efficiencies of the process. The optimal air preheating temperature is the one that causes gasification to take place at the point where all carbon is consumed. It exists only if the amount of preheated air is less than the amount of air at ambient temperature required for complete gasification at a given pressure. Exergy losses in the heat exchanger, where the product gas preheats air could be reduced by two-stage preheating.

  7. The Engagement Continuum Model Using Corporate Social Responsibility as an Intervention for Sustained Employee Engagement: Research Leading Practice

    Science.gov (United States)

    Valentin, Marie Anttonitte; Valentin, Celestino C.; Nafukho, Fredrick Muyia

    2015-01-01

    Purpose: The purpose of this paper is to explore implications of motivational potential that are highly correlated to the self-determination theory (SDT) (intrinsic motivating factors), in relation to corporate social responsibility (CSR). This paper specifies key antecedents of engagement within the theoretical framework of the self-determination…

  8. ExRET-Opt: An automated exergy/exergoeconomic simulation framework for building energy retrofit analysis and design optimisation

    International Nuclear Information System (INIS)

    García Kerdan, Iván; Raslan, Rokia; Ruyssevelt, Paul; Morillón Gálvez, David

    2017-01-01

    Highlights: • Development of a building retrofit-oriented exergoeconomic-based optimisation tool. • A new exergoeconomic cost-benefit indicator is developed for design comparison. • Thermodynamic and thermal comfort variables used as constraints and/or objectives. • Irreversibilities and exergetic cost for end-use processes are substantially reduced. • Robust methodology that should be pursued in everyday building retrofit practice. - Abstract: Energy simulation tools have a major role in the assessment of building energy retrofit (BER) measures. Exergoeconomic analysis and optimisation is a common practice in sectors such as the power generation and chemical processes, aiding engineers to obtain more energy-efficient and cost-effective energy systems designs. ExRET-Opt, a retrofit-oriented modular-based dynamic simulation framework has been developed by embedding a comprehensive exergy/exergoeconomic calculation method into a typical open-source building energy simulation tool (EnergyPlus). The aim of this paper is to show the decomposition of ExRET-Opt by presenting modules, submodules and subroutines used for the framework’s development as well as verify the outputs with existing research data. In addition, the possibility to perform multi-objective optimisation analysis based on genetic-algorithms combined with multi-criteria decision making methods was included within the simulation framework. This addition could potentiate BER design teams to perform quick exergy/exergoeconomic optimisation, in order to find opportunities for thermodynamic improvements along the building’s active and passive energy systems. The enhanced simulation framework is tested using a primary school building as a case study. Results demonstrate that the proposed simulation framework provide users with thermodynamic efficient and cost-effective designs, even under tight thermodynamic and economic constraints, suggesting its use in everyday BER practice.

  9. Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases

    International Nuclear Information System (INIS)

    Kianifar, Ali; Zeinali Heris, Saeed; Mahian, Omid

    2012-01-01

    An exergy analysis has been conducted to show the effect of a small fan on the exergy efficiency in a pyramid-shaped solar still. The tests were carried out in Mashhad (36° 36′ N), for two solar still systems. One of them was equipped with a small fan (active system), to enhance the evaporation rate while the other one was tested in passive condition (no fan). To examine the effects of radiation and water depth on exergy efficiency, experiments in two seasons and two different depths of water in the solar still basin were performed. The results show that during summer, active unit has higher exergy efficiency than passive one while in winter there is no considerable difference between the exergy efficiency of the units. Results also reveal that the exergy efficiency is higher when the water depth in the basin is lower. Finally, the economic analysis shows a considerable reduction in production cost of the water (8–9%) when the active system is used. -- Highlights: ► Using a small fan in the solar still; reduces the productive cost of fresh water up to 9%. ► Effects of the fan and basin depth on the exergy efficiency during summer and winter were examined. ► Utilizing an active system will increase the daily productivity of fresh water by 20%.

  10. Pengungkapan Corporate Social Responsibility, Struktur Corporate Governance dan Nilai Perusahaan

    Directory of Open Access Journals (Sweden)

    Salmah Pattisahusiwa

    2017-06-01

    Full Text Available The concept of the corporate social responsibility has a significant interest in Indonesia because believed to increase corporate’s value for shareholders. This study aims to find the effect of corporate social responsibility disclosure and corporate governance structure on corporate value. The data were taken from annual report of mining companies listed in Indonesian Stock Exchange for period of 2014-2015. The sample collection has been done by using purposive sampling with the certain criteria so that 18 companies which meet criteria have been obtained as samples. Multiple Regression analysis was employed to analyze data. The result of this research show that corporate social responsibility disclosure and corporate governance structure have significant effect to thecorporate value.

  11. Organisational Conditions for Corporate Entrepreneurship in Dutch Organisations

    NARCIS (Netherlands)

    Veenker, S.; Veenker, Simon; van der Sijde, Peter; During, W.E.; Nijhof, A.H.J.

    2008-01-01

    Corporate entrepreneurship is a topic of attraction for many managers in corporate enterprises. In the early 1980s, several researchers discovered the importance of entrepreneurship and its role in organisational renewal, innovation, risk taking and creation of new businesses. Corporate

  12. Modelling the energy and exergy utilisation of the Mexican non-domestic sector: A study by climatic regions

    International Nuclear Information System (INIS)

    García Kerdan, Iván; Morillón Gálvez, David; Raslan, Rokia; Ruyssevelt, Paul

    2015-01-01

    This paper presents the development of a bottom-up stock model to perform a holistic energy study of the Mexican non-domestic sector. The current energy and exergy flows are shown based on a categorisation by climatic regions with the aim of understanding the impact of local characteristics on regional efficiencies. Due to the limited data currently available, the study is supported by the development of a detailed archetype-based stock model using EnergyPlus as a first law analysis tool combined with an existing exergy analysis method. Twenty-one reference models were created to estimate the electric and gas use in the sector. The results indicate that sectoral energy and exergy annual input are 95.37 PJ and 94.28 PJ, respectively. Regional exergy efficiencies were found to be 17.8%, 16.6% and 23.2% for the hot-dry, hot-humid and temperate climates, respectively. The study concludes that significant potential for improvements still exists, especially in the cases of space conditioning, lighting, refrigeration, and cooking where most exergy destructions occur. Additionally, this work highlights that the method described may be further used to study the impact of large-scale refurbishments and promote national regulations and standards for sustainable buildings that takes into consideration energy and exergy indicators. - Highlights: • A bottom-up physics model was developed to analyse the Mexican commercial stock. • A detailed energy analysis by climate, buildings and end-uses is presented. • The Mexican non-domestic sector as a whole has an exergy efficiency of 19.7%. • The lowest regional exergy efficiency is found at the hot-humid region with 16.6%. • By end use, the highest exergy destructions are caused by HVAC and lighting

  13. An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings

    International Nuclear Information System (INIS)

    García Kerdan, Iván; Raslan, Rokia; Ruyssevelt, Paul

    2016-01-01

    While the building sector has a significant thermodynamic improvement potential, exergy analysis has been shown to provide new insight for the optimisation of building energy systems. This paper presents an exergy-based multi-objective optimisation tool that aims to assess the impact of a diverse range of retrofit measures with a focus on non-domestic buildings. EnergyPlus was used as a dynamic calculation engine for first law analysis, while a Python add-on was developed to link dynamic exergy analysis and a Genetic Algorithm optimisation process with the aforementioned software. Two UK archetype case studies (an office and a primary school) were used to test the feasibility of the proposed framework. Different measures combinations based on retrofitting the envelope insulation levels and the application of different HVAC configurations were assessed. The objective functions in this study are annual energy use, occupants' thermal comfort, and total building exergy destructions. A large range of optimal solutions was achieved highlighting the framework capabilities. The model achieved improvements of 53% in annual energy use, 51% of exergy destructions and 66% of thermal comfort for the school building, and 50%, 33%, and 80% for the office building. This approach can be extended by using exergoeconomic optimisation. - Highlights: • Integration of dynamic exergy analysis into a retrofit-oriented simulation tool. • Two UK non-domestic building archetypes are used as case studies. • The model delivers non-dominated solutions based on energy, exergy and comfort. • Exergy destructions of ERMs are optimised using GA algorithms. • Strengths and limitations of the proposed exergy-based framework are discussed.

  14. The effect of injection timing on energy and exergy analysis of a diesel engine with biodiesel fuel

    Directory of Open Access Journals (Sweden)

    A Farhadi

    2017-05-01

    Full Text Available Introduction Nowadays, due to higher environmental pollution and decreasing fossil fuels many countries make decisions to use renewable fuels and restrict using of fossil fuels. Renewable fuels generally produce from biological sources. Biodiesel is an alternative diesel fuel derived from the transesterification of vegetable oils, animal fats, or waste frying oils. Considering the differences between diesel and biodiesel fuels, engine condition should be modified based on the fuel or fuel blends to achieve optimum performance. One of the simplest and yet the most widely used models is the thermodynamic model. After verification of the data obtained by model with experimental data it is possible to generalize the extracted data to an unlimited number of functional conditions or unlimited number of fuel types which saves time and reduces costs for experimental engine tests. Using the second law of thermodynamics, it is possible to calculate and analyze the exergy of the engine.4 Materials and Methods In this work, the zero-dimensional model was used to account for internal energy variations, pressure work, heat transfer losses to the solid walls and heat release. The applied assumptions include: The cylinder mixture temperature, pressure and composition were assumed uniform throughout the cylinder. Furthermore, the one-zone thermodynamic model assumes instantaneous mixing between the burned and unburned gases. The cylinder gases were assumed to behave as an ideal gas mixture, Gas properties, include enthalpy, internal energy modeled using polynomial equations associated with temperature. In this research, the equations 1 to 20 were used in Fortran programming language. The results of incylinder pressure obtained by the model were validated by the results of experimental test of OM314 engine. Then the effects of injection timing on Energy and Exergy of the engine were analyzed for B20 fuel. Results and Discussion Comparing the results of the model

  15. Corporate citizenship : Cultural antecedents and business benefits

    NARCIS (Netherlands)

    Maignan, I.S.J.; Ferrell, O.C.; Hult, G.T.M.

    The article explores the nature of corporate citizenship and its relevance for marketing practitioners and academic researchers. Specifically, a conceptualization and operationalization of corporate citizenship are first proposed. Then, an empirical investigation conducted in two independent samples

  16. An application of the extended exergy accounting method to the Turkish society, year 2006

    International Nuclear Information System (INIS)

    Seckin, C.; Sciubba, E.; Bayulken, A.R.

    2012-01-01

    The Turkish society is analyzed, on the basis of a 2006 database, by means of the EEA (Extended Exergy Accounting) method. A brief synthesis of EEA is also presented, with the purpose of clarifying some of the issues related to its accounting technique. The system to be analyzed is assumed to be at steady state, and the input and output fluxes of matter and energy are expressed in terms of their respective exergy content. This study is intended to provide support for possible structural interventions aimed at the improvement of the degree of sustainability of the Country: since EEA allows for the conversion of the so-called “externalities”, i.e., of the immaterial fluxes of labour, capital and environmental remediation, into their exergetic equivalents, a more comprehensive and deeper insight of the resource consumption and of the environmental impact becomes possible. As usual in EEA analyses, the Turkish society has been modelled as an open thermodynamic system interacting with two “external” systems, namely “Environment” and “Abroad”, and consisting itself of seven internal subsystems: Extraction-, Conversion-, Transportation-, Agricultural-, Industrial-, Tertiary- and Domestic sector. -- Highlights: ► Extended Exergy Accounting Application to Turkish society 2006. ► Exergy transfers between sectors, environment and abroad. ► Exergetic equivalent of labour and capital fluxes. ► Environmental remediation cost computing for different sectors in Turkey. ► Sectoral efficiencies.

  17. Energy and exergy performance of residential heating systems with separate mechanical ventilation

    International Nuclear Information System (INIS)

    Zmeureanu, Radu; Yu Wu, Xin

    2007-01-01

    The paper brings new evidence on the impact of separate mechanical ventilation system on the annual energy and exergy performance of several design alternatives of residential heating systems, when they are designed for a house in Montreal. Mathematical models of residential heating, ventilation and domestic hot water (HVAC-DHW) systems, which are needed for this purpose, are developed and furthermore implemented in the Engineering Equation Solver (EES) environment. The Coefficient of Performance and the exergy efficiency are estimated as well as the entropy generation and exergy destruction of the overall system. The equivalent greenhouse gas emissions due to the on-site and off-site use of primary energy sources are also estimated. The addition of a mechanical ventilation system with heat recovery to any HVAC-DHW system discussed in the paper increases the energy efficiency; however, it decreases the exergy efficiency, which indicates a potential long-term damaging impact on the natural environment. Therefore, the use of a separate mechanical ventilation system in a house should be considered with caution, and recommended only when other means for controlling the indoor air quality cannot be applied

  18. Exergy losses of resource recovery from a waste-to-energy plant

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Laner, D.; Astrup, Thomas Fruergaard

    2013-01-01

    Metal resources recovered from waste incineration bottom ash (BA) are of lower quality as compared to primary resources, but to date no framework for expressing the quality losses exists. Exergy is a concept that may have the potential to evaluate the resource quality in waste management. In this...

  19. Energy and exergy analysis in double-pass solar air heater

    Indian Academy of Sciences (India)

    P VELMURUGAN

    Abstract. In this study, an attempt is made to improve the energy and exergy performance of solar air heater by employing double pass with different absorber surface geometries (roughened, finned, and v-corrugated wire mesh) in the second pass, and also by mounting longitudinal fins in the back side of the absorber plate ...

  20. Energy and exergy analysis in double-pass solar air heater

    Indian Academy of Sciences (India)

    P VELMURUGAN

    paint spraying operations. Numerous solar air heating devices have been devel- oped and used experimentally. The effects of materials and construction of the absorber upon the energy and exergy per- formance of the solar air heaters were also reported in the literature widely. Sopian et al [1] conducted indoor experi-.

  1. The challenge of introducing an exergy indicator in a local law on energy

    International Nuclear Information System (INIS)

    Favrat, D.; Marechal, F.; Epelly, O.

    2008-01-01

    Extending the exergy concept to practitioners and policy makers is still a major challenge. Recently the 'Canton of Geneva' in Switzerland introduced a new law governing the procedures of attribution of building permits for new or retrofitted city areas. Authorities were asked to define a procedure including the calculation of an exergy indicator to be quantified in each file concerning large projects submitted for acceptance. This paper summarizes the problem definition, a clarification of the limits expected from the exergy indicator as well as the spreadsheet tool and the tables used to facilitate this quantification both for heating and air conditioning. For simplification the overall system was divided into a superstructure formed by four subsystems including the room convector, the plant of the building, a possible district heating and cooling plant and an external power plant. Three temperature ranges were considered for the building distribution networks both in heating and cooling. Ten different technology combinations were considered ranking from the lowest heating exergy efficiency with nuclear electricity and joule heating to the best efficiency with hydroelectricity and District heating electric heat pumps using lake water

  2. Numerical Calculation and Exergy Equations of Spray Heat Exchanger Attached to a Main Fan Diffuser

    Science.gov (United States)

    Cui, H.; Wang, H.; Chen, S.

    2015-04-01

    In the present study, the energy depreciation rule of spray heat exchanger, which is attached to a main fan diffuser, is analyzed based on the second law of thermodynamics. Firstly, the exergy equations of the exchanger are deduced. The equations are numerically calculated by the fourth-order Runge-Kutta method, and the exergy destruction is quantitatively effected by the exchanger structure parameters, working fluid (polluted air, i.e., PA; sprayed water, i.e., SW) initial state parameters and the ambient reference parameters. The results are showed: (1) heat transfer is given priority to latent transfer at the bottom of the exchanger, and heat transfer of convection and is equivalent to that of condensation in the upper. (2) With the decrease of initial temperature of SW droplet, the decrease of PA velocity or the ambient reference temperature, and with the increase of a SW droplet size or initial PA temperature, exergy destruction both increase. (3) The exergy efficiency of the exchanger is 72.1 %. An approach to analyze the energy potential of the exchanger may be provided for engineering designs.

  3. Modeling of a Novel Low-Exergy System for Office Buildings with Modelica

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Afshari, Alireza; Hultmark, Göran

    2016-01-01

    This paper aims to investigate the thermal behavior of a novel low-exergy system for office buildings. The main characteristic of the system is its ability to provide simultaneous heating and cooling by operating one water circuit. Inlet water temperature of about 22 °C is delivered to all...

  4. Exergy Analysis of the Musculoskeletal System Efficiency during Aerobic and Anaerobic Activities

    Directory of Open Access Journals (Sweden)

    Gabriel Marques Spanghero

    2018-02-01

    Full Text Available The first and second laws of thermodynamics were applied to the human body in order to evaluate the quality of the energy conversion during muscle activity. Such an implementation represents an important issue in the exergy analysis of the body, because there is a difficulty in the literature in evaluating the performed power in some activities. Hence, to have the performed work as an input in the exergy model, two types of exercises were evaluated: weight lifting and aerobic exercise on a stationary bicycle. To this aim, we performed a study of the aerobic and anaerobic reactions in the muscle cells, aiming at predicting the metabolic efficiency and muscle efficiency during exercises. Physiological data such as oxygen consumption, carbon dioxide production, skin and internal temperatures and performed power were measured. Results indicated that the exergy efficiency was around 4% in the weight lifting, whereas it could reach values as high as 30% for aerobic exercises. It has been shown that the stationary bicycle is a more adequate test for first correlations between exergy and performance indices.

  5. Energy and exergy evaluation of an integrated solar heat pipe wall ...

    Indian Academy of Sciences (India)

    The rate of increasing in temperature of air becomes negligible after 30 heat pipes and the trend of the thermal efficiency is descending with increasing heat pipes. The results also indicate that at a cold winter day of January, the proposed system with a 20 heat pipe collector shows maximum energy and exergy efficiency of ...

  6. Exergy Analysis of a Subcritical Reheat Steam Power Plant with Regression Modeling and Optimization

    Directory of Open Access Journals (Sweden)

    MUHIB ALI RAJPER

    2016-07-01

    Full Text Available In this paper, exergy analysis of a 210 MW SPP (Steam Power Plant is performed. Firstly, the plant is modeled and validated, followed by a parametric study to show the effects of various operating parameters on the performance parameters. The net power output, energy efficiency, and exergy efficiency are taken as the performance parameters, while the condenser pressure, main steam pressure, bled steam pressures, main steam temperature, and reheat steam temperature isnominated as the operating parameters. Moreover, multiple polynomial regression models are developed to correlate each performance parameter with the operating parameters. The performance is then optimizedby using Direct-searchmethod. According to the results, the net power output, energy efficiency, and exergy efficiency are calculated as 186.5 MW, 31.37 and 30.41%, respectively under normal operating conditions as a base case. The condenser is a major contributor towards the energy loss, followed by the boiler, whereas the highest irreversibilities occur in the boiler and turbine. According to the parametric study, variation in the operating parameters greatly influences the performance parameters. The regression models have appeared to be a good estimator of the performance parameters. The optimum net power output, energy efficiency and exergy efficiency are obtained as 227.6 MW, 37.4 and 36.4, respectively, which have been calculated along with optimal values of selected operating parameters.

  7. COMPARISON OF ENERGY AND EXERGY EFFICIENCIES OF ABSORPTION REFRIGERATION SYSTEM WITH MECHANICAL COMPRESSION REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Gülay YAKAR

    2005-02-01

    Full Text Available In this study, energy and exergy analysis of absorption refrigeration system using LiBr- water and mechanical compression refrigeration system using R134-a were performed at different evaporation temperatures. The results are presented in tables and figures.

  8. Tetra-combined cogeneration system. Exergy and thermo economic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

    2000-07-01

    This paper presents the description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller. The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

  9. Exergy destruction and losses on four North Sea offshore platforms: A comparative study of the oil and gas processing plants

    DEFF Research Database (Denmark)

    Voldsund, Mari; Nguyen, Tuong-Van; Elmegaard, Brian

    2014-01-01

    conditions, which implies that some platforms need less heat and power than others. Reservoir properties and composition vary over the lifetime of an oil field, and therefore maintaining a high efficiency of the processing plant is challenging. The results of the analysis show that 27%-57% of the exergy......The oil and gas processing plants of four North Sea offshore platforms are analysed and compared, based on the exergy analysis method. Sources of exergy destruction and losses are identified and the findings for the different platforms are compared. Different platforms have different working...

  10. Tetra-combined cogeneration system. Exergy and thermoeconomic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

    2000-07-01

    The description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam is presented. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller.The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

  11. Investigation on the effectiveness of various methods of information dissemination aiming at a change of occupant behaviour related to thermal comfort and exergy consumption

    International Nuclear Information System (INIS)

    Schweiker, Marcel; Shukuya, Masanori

    2011-01-01

    These days the number of projects trying to urge a change in the occupant's behaviour towards a sustainable one is increasing. However, still less is known about the effect of such measures. This paper describes the findings of two investigations, a field measurement and an Internet-based survey, both including the dissemination of information about strategies for a high level of comfort without much energy usage. The focus was on the ability to quantify the effect of such measures on the heating and cooling behaviour. As a result, those who participated in a workshop were more likely to change their behaviour than those who received an information brochure only; whether this was due to the method employed or the type of participants could not be ascertained. However, the workshop participants reduced their cooling device usage by up to 16%. The concept of exergy was used to show how this reduction affects the exergy consumption of the cooling device, because it enables us to consider the qualitative aspect of energy as a quantity to be calculated. This showed that the exergy consumed by the workshop group was reduced by up to 20% comparing their behaviour before and after the information dissemination. - Research Highlights: → Data collection through field measurement and an Internet-based survey. → Both surveys included the distribution of information about strategies for a high level of comfort without much energy usage. → Logistic regression analysis in order to quantify the effect of such knowledge transfer measures on the heating and cooling behaviour. → Those participating in the workshop reduced their cooling device usage by up to 20% compared to a control group. → As constraints, time limitations and tediousness are identified.

  12. Corporal punishment.

    Science.gov (United States)

    Zolotor, Adam J

    2014-10-01

    Corporal punishment is used for discipline in most homes in the United States. It is also associated with a long list of adverse developmental, behavioral, and health-related consequences. Primary care providers, as trusted sources for parenting information, have an opportunity to engage parents in discussions about discipline as early as infancy. These discussions should focus on building parents' skills in the use of other behavioral techniques, limiting (or eliminating) the use of corporal punishment and identifying additional resources as needed. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Energy and exergy efficiencies in Turkish transportation sector, 1988-2004

    International Nuclear Information System (INIS)

    Ediger, Volkan S.; Camdali, Unal

    2007-01-01

    This study aims at examining energy and exergy efficiencies in Turkish transportation sector. Unlike the previous studies, historical data is used to investigate the development of efficiencies of 17 years period from 1988 to 2004. The energy consumption values in tons-of-oil equivalent for eight transport modes of four transportation subsectors of the Turkish transportation sector, including hard coal, lignite, oil, and electricity for railways, oil for seaways and airways, and oil and natural gas for highways, are used. The weighted mean energy and exergy efficiencies are calculated for each mode of transport by multiplying weighting factors with efficiency values of that mode. They are then summed up to calculate the weighted mean overall efficiencies for a particular year. Although the energy and exergy efficiencies in Turkish transport sector are slightly improved from 1988 to 2004, the historical pattern is cyclic. The energy efficieny is found to range from 22.16% (2002) to 22.62% (1998 and 2004) with a mean of 22.42±0.14% and exergy efficiency to range from 22.39% (2002) to 22.85% (1998 and 2004) with a mean of 22.65±0.15%. Overall energy and exergy efficiencies of the transport sector consist mostly of energy and exergy efficiencies of the highways subsector in percentages varying from 81.5% in 2004 to 91.7% in 2002. The rest of them are consisted of other subsectors such as railways, seaways, and airways. The overall efficiency patterns are basically controlled by the fuel consumption in airways in spite of this subsector's consisting only a small fraction of total. The major reasons for this are that airways efficiencies and the rate of change in fuel consumption in airways are greater than those of the others. This study shows that airway transportation should be increased to improve the energy and exergy efficiencies of the Turkish transport sectors. However, it should also be noted that no innovations and other advances in transport technologies are

  14. West Angeles Community Development Corporation final technical report on export market feasibility planning and research for the solar medical autoclave

    Energy Technology Data Exchange (ETDEWEB)

    Power, G.D.

    1998-04-20

    This report summarizes core findings from an investigation performed by the staff of West Angeles Community Development Corporation (CDC) regarding the feasibility of marketing the Solar Medical Autoclave (``autoclave``) in South Africa. The investigation was completed during 1997, the period prescribed by the Grant Award made by the U.S. Department of Energy on January 1, 1997, and was monitored by the National Renewable Energy Laboratory.

  15. Tensions of Corporate Social Responsibility

    DEFF Research Database (Denmark)

    Strand, Robert

    I engaged with the top management team (TMT) and employees of American Cafes Corporation as an action/intervention researcher in the 20 months immediately following the TMT’s decision to formalize the company’s corporate social responsibility (CSR) activities. This led to the establishment...

  16. Corporate Mobility: Effects on Children.

    Science.gov (United States)

    Stroh, Linda K.; Brett, Jeanne M.

    This study investigated the effect of relocation on 309 children of randomly selected employees of 10 Fortune 500 corporations. Even through U.S. corporations transfer over 400,000 households annually, there is little research on the effects of such moves on employees' children. This study tested hypotheses drawn from child development theory…

  17. Extended exergy-based sustainability accounting of a household biogas project in rural China

    International Nuclear Information System (INIS)

    Yang, J.; Chen, B.

    2014-01-01

    Biogas has been earmarked as one of the leading renewable energy sources capable of mitigating environmental emissions in rural areas. Thus, developing an accounting technique is of particular importance in coping with increasing problems related to renewable agriculture and rural energy supply. In this study, extended exergy was generalised for the sustainability evaluation of biogas projects. Furthermore, a series of extended exergy-based indicators was presented as benchmarking from the perspectives of resources, economics and greenhouse gas (GHG) emissions. The sustainability of a “Three-in-One” biogas production system in southern China was thereby evaluated based on the proposed framework. The results show that economic costs concentrate in the construction phase. GHG emissions are mainly derived from bricks and cement, with proportions of 36.23% and 34.91%, respectively. The largest resource depletion occurs during the consumption of feedstock (87.06%) in the operation phase. Compared with other renewable energy conversion systems, the biogas project has a higher renewability (0.925) and economic return on investment ratio (6.82) and a lower GHG emission intensity (0.012). With the merit of bridging thermodynamics and externality, the extended exergy-based approach presented in this study may effectively appraise the energy and environmental performance of biogas projects. - Highlights: • Extended exergy is used to describe the sustainability level of biogas projects. • A set of extended exergy based sustainability indicator is established. • Biogas project has high renewability and greenhouse gas emission abatement potential. • Multiple utilization of biogas digestate is a promising way to improve sustainability

  18. Thermodynamic and economic evaluations of a geothermal district heating system using advanced exergy-based methods

    International Nuclear Information System (INIS)

    Tan, Mehmet; Keçebaş, Ali

    2014-01-01

    Highlights: • Evaluation of a GDHS using advanced exergy-based methods. • Comparison of the results of the conventional and advanced exergy-based methods. • The modified exergetic efficiency and exergoeconomic factor are found as 45% and 13%. • Improvement and total cost-savings potentials are found to be 3% and 14%. • All the pumps have the highest improvement potential and total cost-savings potential. - Abstract: In this paper, a geothermal district heating system (GDHS) is comparatively evaluated in terms of thermodynamic and economic aspects using advanced exergy-based methods to identify the potential for improvement, the interactions among system components, and the direction and potential for energy savings. The actual operational data are taken from the Sarayköy GDHS, Turkey. In the advanced exergetic and exergoeconomic analyses, the exergy destruction and the total operating cost within each component of the system are split into endogenous/exogenous and unavoidable/avoidable parts. The advantages of these analyses over conventional ones are demonstrated. The results indicate that the advanced exergy-based method is a more meaningful and effective tool than the conventional one for system performance evaluation. The exergetic efficiency and the exergoeconomic factor of the overall system for the Sarayköy GDHS were determined to be 43.72% and 5.25% according to the conventional tools and 45.06% and 12.98% according to the advanced tools. The improvement potential and the total cost-savings potential of the overall system were also determined to be 2.98% and 14.05%, respectively. All of the pumps have the highest improvement potential and total cost-savings potential because the pumps were selected to have high power during installation at the Sarayköy GDHS

  19. Comparative exergy analyses of Jatropha curcas oil extraction methods: Solvent and mechanical extraction processes

    International Nuclear Information System (INIS)

    Ofori-Boateng, Cynthia; Keat Teong, Lee; JitKang, Lim

    2012-01-01

    Highlights: ► Exergy analysis detects locations of resource degradation within a process. ► Solvent extraction is six times exergetically destructive than mechanical extraction. ► Mechanical extraction of jatropha oil is 95.93% exergetically efficient. ► Solvent extraction of jatropha oil is 79.35% exergetically efficient. ► Exergy analysis of oil extraction processes allow room for improvements. - Abstract: Vegetable oil extraction processes are found to be energy intensive. Thermodynamically, any energy intensive process is considered to degrade the most useful part of energy that is available to produce work. This study uses literature values to compare the efficiencies and degradation of the useful energy within Jatropha curcas oil during oil extraction taking into account solvent and mechanical extraction methods. According to this study, J. curcas seeds on processing into J. curcas oil is upgraded with mechanical extraction but degraded with solvent extraction processes. For mechanical extraction, the total internal exergy destroyed is 3006 MJ which is about six times less than that for solvent extraction (18,072 MJ) for 1 ton J. curcas oil produced. The pretreatment processes of the J. curcas seeds recorded a total internal exergy destructions of 5768 MJ accounting for 24% of the total internal exergy destroyed for solvent extraction processes and 66% for mechanical extraction. The exergetic efficiencies recorded are 79.35% and 95.93% for solvent and mechanical extraction processes of J. curcas oil respectively. Hence, mechanical oil extraction processes are exergetically efficient than solvent extraction processes. Possible improvement methods are also elaborated in this study.

  20. Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Chen, Yaping; Guo, Zhanwei; Wu, Jiafeng; Zhang, Zhi; Hua, Junye

    2015-01-01

    The integrated system of AWKRC (ammonia–water Kalina–Rankine cycle) is a novel cycle operated on KC (Kalina cycle) for power generation in non-heating seasons and on AWRC (ammonia–water Rankine cycle) for cogeneration of power and heating water in winter. The influences of inlet temperatures of both heat resource and cooling water on system efficiencies were analyzed based on the first law and the second law of thermodynamics. The calculation is based on following conditions that the heat resource temperature keeps 300 °C, the cooling water temperature for the KC or AWRC is respectively 25 °C or 15 °C; and the temperatures of heating water and backwater are respectively 90 °C and 40 °C. The results show that the evaluation indexes of the power recovery efficiency and the exergy efficiency of KC were respectively 18.2% and 41.9%, while the composite power recovery efficiency and the composite exergy efficiency of AWRC are respectively 21.1% and 43.0% accounting both power and equivalent power of cogenerated heating capacity, including 54.5% heating recovery ratio or 12.4% heating water exergy efficiency. The inventory flow diagrams of both energy and exergy gains and losses of the components operating on KC or AWRC are also demonstrated. - Highlights: • An integrated system of AWKRC (ammonia–water Kalina–Rankine cycle) is investigated. • NH 3 –H 2 O Rankine cycle is operated for cogenerating power and heating-water in winter. • Heating water with 90 °C and capacity of 54% total reclaimed heat load is cogenerated. • Kalina cycle is operated for power generation in other seasons with high efficiency. • Energy and exergy analysis draw similar results in optimizing the system parameters.

  1. Energy and exergy recovery in a natural gas compressor station – A technical and economic analysis

    International Nuclear Information System (INIS)

    Kostowski, Wojciech J.; Kalina, Jacek; Bargiel, Paweł; Szufleński, Paweł

    2015-01-01

    Highlights: • Energy and exergy flow in a natural gas compressor station. • Operational efficiency only 18.3% vs. 35.1% nominal. • 3 energy/exergy recovery systems proposed. • Up to 168.9 GW h/y electricity and 6.5 GW h/y heat recoverable. • Legal obstacles: operators not allowed to produce electricity. - Abstract: The paper presents possible solutions to improve the thermodynamic performance of a natural gas compressor station equipped with various type of compressor units and operated at part-load conditions. A method for setting a simplified energy and exergy balance based on the available metering information has been presented. For a case study plant, it has been demonstrated that the current part-load operation leads to a significant decrease in energy and exergy efficiency compared to the nominal state of machinery. Three alternative improvement strategies have been proposed: (1) installation of a heat recovery hot water generator for covering the existing heat demand of the plant; (2) installation of a heat recovery thermal oil heater for covering the existing heat demand and driving an organic Rankine cycle (ORC) for electricity generation; (3) installation of a heat recovery thermal oil heater with and ORC and gas expanders for switching into full-load operation of the gas turbine unit. Energy and exergy performance of the proposed strategies as well as their economic feasibility have been analyzed. The second scenario involving an ORC unit provides the highest local energy savings, however, its economic feasibility is not achieved under the current part-load operating conditions. A hypothetic scenario of the same station operated at full-load due to an increased gas transmission capacity demonstrate the economic feasibility (possible under optimistic price conditions). Finally, it has been shown that the possibility of waste energy recovery from natural gas transmission systems (in particular, from compressor stations) depends on legal

  2. Environmental and exergy benefit of nanofluid-based hybrid PV/T systems

    International Nuclear Information System (INIS)

    Hassani, Samir; Saidur, R.; Mekhilef, Saad; Taylor, Robert A.

    2016-01-01

    Highlights: • Environmental and ExPBT analysis of different PV/T configurations is presented. • The exergy payback time of nanofluid-based hybrid PV/T system is about 2 years. • Nanofluid-based hybrid PV/T system is a reliable solution for pollution prevention. • Nanofluid-based hybrid PV/T system is highly recommended at high solar concentration. - Abstract: Photovoltaic/thermal (PV/T) solar systems, which produce both electrical and thermal energy simultaneously, represent a method to achieve very high conversion rates of sunlight into useful energy. In recent years, nanofluids have been proposed as efficient coolants and optical filter for PV/T systems. Aim of this paper is to theoretically analyze the life cycle exergy of three different configurations of nanofluids-based PV/T hybrid systems, and compare their performance to a standard PV and PV/T system. Electrical and thermal performance of the analyzed solar collectors was investigated numerically. The life cycle exergy analysis revealed that the nanofluids-based PV/T system showed the best performance compared to a standard PV and PV/T systems. At the optimum value of solar concentration C, nanofluid-based PV/T configuration with optimized optical and thermal properties produces ∼1.3 MW h/m 2 of high-grade exergy annually with the lowest exergy payback time of 2 years, whereas these are ∼0.36, ∼0.79 MW h/m 2 and 3.48, 2.55 years for standard PV and PV/T systems, respectively. In addition, the nanofluids-based PV/T system can prevent the emissions of about 448 kg CO 2 eq m −2 yr −1 . Overall, it was found that the nanofluids-based PV/T with optimized optical and thermal properties has potential for further development in a high-concentration solar system.

  3. Exergy based performance analysis of hydrogen production from rice straw using oxygen blown gasification

    International Nuclear Information System (INIS)

    Bhattacharya, Atmadeep; Das, Anirban; Datta, Amitava

    2014-01-01

    An exergetic analysis has been performed on a gasification-based bio-hydrogen generation system consisting of an ASU (air separation unit), a gasifier and a water gas shift reactor. The biomass feed in the system is rice straw. The influences of oxygen percentage in the gasifying agent (in the range 85–99%) and gasifier equivalence ratio (in the range 2–4) on the system exergetic efficiency have been studied. The analysis also investigates the effect of the above mentioned operating parameters on the hydrogen yield and cold gas efficiency. It is observed that, with 95% oxygen in the gasifying agent and with gasifier equivalence ratio of 4.0, the process generates 107.8 g hydrogen per kg of dry biomass (on ash free basis) with a cold gas efficiency of 70%. An increase in gasifier equivalence ratio is found to increase the exergetic efficiency of the system. However, the exergetic efficiency remains almost immune to the change in oxygen percentage in the gasifying agent. The maximum destruction of exergy, in quantitative term, is found to be in the gasifier due to the irreversible chemical reactions occurring there. However, in terms of percentage of exergy input, the highest exergy destruction and exergy loss are observed to occur in the ASU. - Highlights: • Hydrogen generation from biomass gasification analyzed for exergetic performance. • Oxygen-rich stream from air separation used as gasification agent. • Performance evaluated at varying equivalence ratio and % oxygen in gasifying agent. • Component-wise exergy analysis has been done for the system

  4. Negative employee corporate brand identification: A case study of a prominent Malaysian University corporate brand

    OpenAIRE

    Syed alwi, SF; Balmer, JMT; CheHa, N; Yen, D

    2014-01-01

    The purpose of this paper is to investigate negative employee corporate brand identification towards a business school in Malaysia. The research marshals the nascent literature of corporate brand identification (Balmer and Liao 2007; Balmer, Liao and Wang 2008) which marked new ground by drawing on social identity theory in corporate branding contexts. Corporate brand identification is relatively new concept but has been recognized as very important facet of corporate marketing (Balmer and Li...

  5. Splitting the exergy destruction into avoidable and unavoidable parts of a gas engine heat pump (GEHP) for food drying processes based on experimental values

    International Nuclear Information System (INIS)

    Gungor, Aysegul; Erbay, Zafer; Hepbasli, Arif; Gunerhan, Huseyin

    2013-01-01

    Highlights: • Advanced exergy analysis of a gas engine heat pump drying system for the first time. • Varying exergy efficiency values from 79.71% to 81.66% for the overall drying system. • Obtaining modified exergy efficiencies of 84.50–86.00% for the overall drying system. - Abstract: Some limitations in a conventional exergy analysis may be significantly reduced through an advanced exergy analysis. In this regard, the latter is a very useful tool to assess the real potential for improving a system component by splitting the exergy destruction into unavoidable and avoidable parts. This may provide a realistic measure to deduct the improvement potential for the thermodynamic efficiency of a component. For this purpose, improvement efforts are then made by focusing only on these avoidable parts. In this paper, a gas engine heat pump (GEHP) drying system was analyzed using both conventional and advanced exergy analyses. Three medicinal and aromatic plants (Foeniculum vulgare, Malva sylvestris L. and Thymus vulgaris) were dried in a pilot scale GEHP drier, which was designed, constructed and installed in Ege University, Izmir, Turkey. Drying experiments were performed at an air temperature of 45 °C with an air velocity of 1 m/s. For each system component, avoidable and unavoidable exergy destructions, modified exergy efficiency values and modified exergy destruction ratios were determined. Except for the compressor, the evaporator and the drying cabinet, most of the exergy destructions in the system components were avoidable and these avoidable parts can be reduced by design improvements. For the HP unit and the overall drying system, the values for exergy efficiency were obtained to be in the range of 82.51–85.11% and 79.71–81.66% while those for the modified exergy efficiency were calculated to be in the range of 85.70–89.26% and 84.50–86.00%, respectively

  6. Corporate Governance and Corporate Creditworthiness

    Directory of Open Access Journals (Sweden)

    Dror Parnes

    2011-12-01

    Full Text Available We examine the relation between corporate governance and bankruptcy risk as an underlying force affecting a bond’s yield. The level of corporate governance is captured by the G-index, along with the explicit groups of governance provisions. We estimate bankruptcy risk by Z-score, by cash-flow-score, by O-score, through Merton structural model default probabilities, and by S&P credit ratings. After addressing endogeneity and while controlling for firm-specific factors, based on the four objective methodologies we find that corporate governance is inversely related to bankruptcy risk. Yet, rating agencies take a mixed approach towards this association likely because of the conflicting impact of different governance provisions.

  7. Corporate Venturing

    DEFF Research Database (Denmark)

    Vintergaard, Christian

    involved in recognition and discovery. Consequently thepaper offers insight to a diversified group of actors who mix and match technological and marketcapabilities in a constant process of recognition and discovery.Key words: Corporate venturing, entrepreneurship, discovery, networks, opportunities,recognition....

  8. Corporate Governance

    International Development Research Centre (IDRC) Digital Library (Canada)

    control and management information systems;. · monitor corporate performance against strategic and business plans;. · assess its own performance in fulfilling Board responsibilities;. · measure and monitor the performance of the. President and Chief Executive Officer; and. · ensure that the Centre has an effective.

  9. Corporate Language and Corporate Talk

    DEFF Research Database (Denmark)

    Zølner, Mette

    2013-01-01

    the geographical borders by the medium of common corporate values for knowledge management, collection of data and analysis in these studies inspired by approach of ground theory and presents a usefulness of distinguishing between corporate language and talks to enable the headquarters learning. Also it concludes......The article presents the case studies of two Danish based multinational companies (MNCs) which provides the an insight into the role of languages in organizational learning. It mentions that the studies focus on the sharing of the understanding and practices among their employees across...... that both of the MNCs are of Danish origin but executives of both companies are proficient in English language....

  10. Corporate plan 1989

    International Nuclear Information System (INIS)

    1988-12-01

    The paper presents the United Kingdom Science and Engineering Research Council's second Corporate Plan 1989. The Corporate Plan comprises statements of the current objectives of the Astronomy and Planetary Science Board, the Engineering Board, the Nuclear Physics Board, the Atmospheric Sciences and Computing Centre, along with a discussion of the mechanisms for their attainment. The Annex contains a description of some scientific highlights between 1985-1989, as well as a review of progress between 1984-5 to 1987-8. (U.K.)

  11. APL: a corporate strategy.

    Science.gov (United States)

    Fox, J; Nyatanga, L; Ringer, C; Greaves, J

    1992-06-01

    This paper is based on, and summarises, papers read at the second annual international conference of Nurse Education Tomorrow held at the University of Durham (UK) September 1991. To this end this paper will offer: Some Accreditation of Prior Learning (APL) definition and process as reflected in the literature available. A distinction will be made between APL and Accreditation of Prior Experiential Learning (APEL) although the procedures and processes for assessing them will be shown to be the same. A brief outline of corporate strategy, as it applies to APL, will be given to form the basis for logical demonstration of how Derbyshire Institute of Health and Community Studies has employed such a corporate strategy. Insights developed and gained from APL research currently being undertaken through the college of nursing and midwifery will be used to inform the development and nature of corporate strategy. A flowchart of the operationalisation of the corporate strategy is offered as an integrative summary of how all the APL ideas have had a positive cumulative effect. The paper finishes by highlighting the possible strengths and limitations of APL corporate strategy.

  12. Corporate environmental responsibility – a key determinant of corporate reputation

    Directory of Open Access Journals (Sweden)

    Cristina GĂNESCU

    2014-06-01

    Full Text Available This paper aims to determine the trend of the relationship between corporate environmental responsibility and corporate reputation by focusing on a study of the European automotive sector. The starting point of our research is content analysis of the sustainability or social responsibility reports published in 2010, 2011, and 2012 by 13 businesses operating in the European automotive industry. Content analysis was carried out in order to identify the indicators used to assess corporate environmental responsibility. The methodology aimed to produce an evaluation model for corporate environmental responsibility based on the following variables reported by companies: carbon dioxide emissions, water consumption, energy consumption, and amount of waste. Corporate reputation of sampled organizations was assessed based on content analysis of the 2010, 2011, and 2012 reports of the Reputation Institute. We applied the correlation of panel data and emphasised the fact that high levels of corporate environmental responsibility sustain high levels of corporate reputation. The study highlights the theoretical considerations that support this relationship. As companies become increasingly accountable, the methodology described in our study can be developed in further research by using other variables to measure corporate environmental responsibility.

  13. China general nuclear power corporation--The recent research and application of the modular technology in nuclear power engineering

    International Nuclear Information System (INIS)

    Lu Qinwu

    2014-01-01

    Modular design and construction is one of the distinctive features of the 3 rd generation nuclear power technology. In order to promote the technological innovations in nuclear power engineering design and construction and develop the self-owned modular technology, China General Nuclear Power Corporation (CGN) has carried out the R and D and application of the modular technology based on the CPR1000-type nuclear power plants, and has made the national-level achievements in the establishment of modular design technology system, development of 3D modular design system and application of modular construction of containment steel liner in the demonstration projects. (author)

  14. Corporate Risk Disclosure and Corporate Governance

    Directory of Open Access Journals (Sweden)

    Kaouthar Lajili

    2009-12-01

    Full Text Available To date, research which integrates corporate governance and risk management has been limited. Yet, risk exposure and management are increasingly becoming the core function of modern business enterprises in various sectors and industries domestically and globally. Risk identification and management are crucial in any business strategy design and implementation. From the investors’ point of view, knowledge of the risk profile, risk appetite and risk management are key elements in making sound portfolio investment decisions. This paper examines the relationships between corporate governance mechanisms and risk disclosure behavior using a sample of Canadian publicly-traded companies (TSX 230. Results show that Canadian public companies are more likely to disclose risk management information over and above the mandatory risk disclosures, if they are larger in size and if their boards of directors have more independent members. Minority voting control ownership structures appear to negatively impact risk disclosure and CEO incentive compensation shows mixed results. The paper concludes that more research is needed to further assess the impact of various governance mechanisms on corporate risk management and disclosure behavior.

  15. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system

    International Nuclear Information System (INIS)

    Tchanche, B.F.; Lambrinos, Gr.; Frangoudakis, A.; Papadakis, G.

    2010-01-01

    Exergy analysis of micro-organic Rankine heat engines is performed to identify the most suitable engine for driving a small scale reverse osmosis desalination system. Three modified engines derived from simple Rankine engine using regeneration (incorporation of regenerator or feedliquid heaters) are analyzed through a novel approach, called exergy-topological method based on the combination of exergy flow graphs, exergy loss graphs, and thermoeconomic graphs. For the investigations, three working fluids are considered: R134a, R245fa and R600. The incorporated devices produce different results with different fluids. Exergy destruction throughout the systems operating with R134a was quantified and illustrated using exergy diagrams. The sites with greater exergy destruction include turbine, evaporator and feedliquid heaters. The most critical components include evaporator, turbine and mixing units. A regenerative heat exchanger has positive effects only when the engine operates with dry fluids; feedliquid heaters improve the degree of thermodynamic perfection of the system but lead to loss in exergetic efficiency. Although, different modifications produce better energy conversion and less exergy destroyed, the improvements are not significant enough and subsequent modifications of the simple Rankine engine cannot be considered as economically profitable for heat source temperature below 100 °C. As illustration, a regenerator increases the system's energy efficiency by 7%, the degree of thermodynamic perfection by 3.5% while the exergetic efficiency is unchanged in comparison with the simple Rankine cycle, with R600 as working fluid. The impacts of heat source temperature and pinch point temperature difference on engine's performance are also examined. Finally, results demonstrate that energy analysis combined with the mathematical graph theory is a powerful tool in performance assessments of Rankine based power systems and permits meaningful comparison of different

  16. Bridging Corporate and Organizational Communication

    DEFF Research Database (Denmark)

    Christensen, Lars Thøger; Cornelissen, Joep

    2011-01-01

    organizational communication as well. We provide a formative and critical review of research on corporate communication as a platform for highlighting crucial intersections with select research traditions in organizational communication to argue for a greater integration between these two areas of research......The theory and practice of corporate communication is usually driven by other disciplinary concerns than the field of organizational communication. However, its particular mind-set focusing on wholeness and consistency in corporate messages increasingly influence the domain of contemporary....... Following this review, we relax the assumptions underlying traditional corporate communication research and show how these dimensions interact in organizational and communication analysis, thus, demonstrating the potential for a greater cross-fertilization between the two areas of research. This cross...

  17. Application of the exergy method to the environmental impact estimation: The nitric acid production as a case study

    International Nuclear Information System (INIS)

    Kirova-Yordanova, Zornitza

    2011-01-01

    In this work the exergy method is used to compare various methods for removal of NO x from waste (tail) gas released into the atmosphere from nitric acid production plants with respect to their overall environmental impact. Three basic methods for NO x abatement are analysed: selective catalytic reduction (SCR), non-selective catalytic reduction (NSCR) and extended absorption. The positive and negative effects and the net effect from the NO x abatement are calculated. The following exergy-based indicators are used for comparing the energy efficiency and the environmental impact of different treatment processes as a result from pollutants removal: reduction of the exergy of the emissions from the whole process route (ammonia and nitric acid production units); exergy of the additional emissions, arising as a result of the treatment process; total net reduction of the exergy consumption, Cumulative Energy Consumption (CEnC) and Cumulative Exergy Consumption (CExC) of natural resources as a result of the waste flows treatment. -- Highlights: → A thermodynamic study of the effects of three NO x abatement methods. → A comparison of the positive, negative and overall net effects of the three methods. → The best overall results are obtained for the extended absorption method. → The selective catalytic reduction method is estimated as unsatisfactory. → The non-selective catalytic reduction method could benefit from improved catalysts.

  18. Industrial and ecological cumulative exergy consumption of the United States via the 1997 input-output benchmark model

    International Nuclear Information System (INIS)

    Ukidwe, Nandan U.; Bakshi, Bhavik R.

    2007-01-01

    This paper develops a thermodynamic input-output (TIO) model of the 1997 United States economy that accounts for the flow of cumulative exergy in the 488-sector benchmark economic input-output model in two different ways. Industrial cumulative exergy consumption (ICEC) captures the exergy of all natural resources consumed directly and indirectly by each economic sector, while ecological cumulative exergy consumption (ECEC) also accounts for the exergy consumed in ecological systems for producing each natural resource. Information about exergy consumed in nature is obtained from the thermodynamics of biogeochemical cycles. As used in this work, ECEC is analogous to the concept of emergy, but does not rely on any of its controversial claims. The TIO model can also account for emissions from each sector and their impact and the role of labor. The use of consistent exergetic units permits the combination of various streams to define aggregate metrics that may provide insight into aspects related to the impact of economic sectors on the environment. Accounting for the contribution of natural capital by ECEC has been claimed to permit better representation of the quality of ecosystem goods and services than ICEC. The results of this work are expected to permit evaluation of these claims. If validated, this work is expected to lay the foundation for thermodynamic life cycle assessment, particularly of emerging technologies and with limited information

  19. The Use of Exergy and Decomposition Techniques in the Development of Generic Analysis, and Optimization Methodologies Applicable to the Synthesis/Design of Aircraft/Aerospace Systems

    Science.gov (United States)

    2006-04-21

    0.2 to 0.6 and the up/Takeoff Acceleration) of the vehicle exergy destruction rate with vehicle specific thrust, fan bypass ratio, and turbine inlet...temperature is varied from turbine inlet temperature for a fixed compressor pressure 1400 K to 1700 K. As can be seen, the ratio of 8 [9]. exergy ...variation of the rate of exergy destruction with specific fuel consumption, fan bypass ratio and turbine inlet temperature for a fixed compressor ratio of 8

  20. A net-zero building application and its role in exergy-aware local energy strategies for sustainability

    International Nuclear Information System (INIS)

    Kılkış, Şiir

    2012-01-01

    Highlights: ► Net-zero exergy targets are put forth for more energy-sufficient buildings and districts. ► A premier building that is the first LEED Platinum building in Turkey exemplifies this target. ► The building integrates low-exergy measures with PV/BIPV, CHP, GSHP, solar collectors and TES. ► Two districts in the south heating network of Stockholm are compared with this technology bundle. ► Net-zero exergy targets are related to a re-structuring of an exergy-aware energy value chain. - Abstract: Based on two case studies, this paper explores the nexus of exergy, net-zero targets, and sustainable cities as a means of analyzing the role of exergy-aware strategies at the building and district level. The first case study is a premier building in Ankara that is ready to meet the net-zero exergy target. It is also the first building in Turkey to receive the highest Platinum rating in Leadership in Energy and Environmental Design. A net-zero exergy building (NZEXB) is a building that has an annual sum of net-zero exergy transfer across the building-district boundary. This new target is made possible by lowered annual exergy consumption, (AEXC), and increased on-site production from a bundle of sustainable energy technologies. The modeled results of the building indicate that the reduced AEXC of 60 kW h/m 2 yr is met with on-site production of 62 kW h/m 2 yr. On-site production includes PV and building integrated PV, a micro-wind turbine, combined heat and power, GSHP, and solar collectors. Diversified thermal energy storage tanks further facilitate the exergy supply to meet with the exergy demand. The results of this case study provide key lessons to structure an energy value chain that is more aware of exergy, which are up-scalable to the district level when the bundle of sustainable energy technologies is zoomed out across a larger spatial area. These key lessons are then compared with the second case study of two districts in the south heating network

  1. Euphemisms and Hypocrisy in Corporate Philanthropy

    DEFF Research Database (Denmark)

    la Cour, Anders; Kromann, Joakim

    2011-01-01

    philanthropic while remaining economically responsible. In this situation, some researchers have argued, corporations run the risk of being caught out as hypocrites. Through an analysis of the corporate social responsibility reports of the biggest multinational corporations, this article shows how the risk......Over the past two decades, a growing number of large multinational corporations have come to view philanthropy as an important part of their business operations. This has stimulated research on the many different strategies that are pursued by these corporations in their attempts to become more...

  2. Analysis of first and second law of an engine operating with Bio diesel from palm oil. Part 2: global exergy balance

    International Nuclear Information System (INIS)

    Agudelo, John R; Agudelo, Andres F; Cuadrado, Ilba G

    2006-01-01

    An exergy analysis of a diesel engine operating with palm oil bio diesel and its blends with diesel fuel is presented. Measurements were carried out in a test bench under stationary conditions varying engine load at constant speed and vice versa. The variation in exergy distribution and second law efficiency were obtained under several operating points. It was found that fuel type do not affect exergy distribution but it does affect the second law efficiency, which is slightly higher for diesel fuel. In contrast with energy balance results, exergy flows of exhaust and coolant streams are low, specially for the latter. This result is relevant for the implementation of cogeneration systems.

  3. Corporate contestability and corporate expropriation

    Directory of Open Access Journals (Sweden)

    Abdul Hadi Zulkafli

    2016-12-01

    Full Text Available This paper presents evidence on the role of ownership in dealing with corporate expropriation of listed companies in Malaysia. From the perspective of expropriation, a single controlling shareholder is always associated with such behavior due to their power and control at the expense of minority shareholder. However, subsequent individual or coalition of large shareholders can be an important corporate governance tool by providing effective monitoring that would lessen the possibility of expropriation by the controlling shareholder. Relating to that, this study evaluates the role of controlling and large shareholders in dealing with corporate expropriation. It is found that there is a negative relationship between single controlling shareholders and dividend payout ratio indicating that firms with only controlling shareholder will pay a lower dividend due to possible expropriation through profit diversion by controlling shareholder. Using Herfindahl Index as a proxy for ownership contestability, the presence of large shareholders along with controlling shareholder has a positive relationship with dividend payout implying that increased contestability helps to curb the power of controlling shareholder to expropriate fund for their own benefit. In accordance with agency theory, the outcome suggests that large shareholders play a monitoring role in minimizing the Type II agency problem. It is also verifying the argument made based on the Catering Theory of Dividend that the presence of large shareholder brings benefit to all shareholders as they are able to reduce profit diversion by demanding for higher dividend

  4. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    2014-01-01

    Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol...... production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible...... in the ethanol facility. The calculated standard exergy efficiency of the ethanol facility varied from 0.564 to 0.855, of which the highest was obtained for integrated operation at reduced CHP load and full district heating production in the ethanol facility, and the lowest for separate operation with zero...

  5. Basis of combined Pinch Technology and exergy analysis and its application to energy industry in Mexico

    International Nuclear Information System (INIS)

    Rodriguez T, M.A.; Rangel D, H.

    1994-01-01

    The energy industry scheme in Mexico has an enormous potential to do re adaptations with the intention of increase the efficiency in the use of energy. One of the most modern engineering tools to make such re adaptations consist in a suitable combination of analysis of exergy and Pinch technology. In this work, the basis of this new technology are presented, besides the potential areas of application in the Mexican energy industry are also considered. So then, it is shown that a combined analysis of exergy and Pinch technology (ACETP) is useful to analyze, in a conceptual and easy to understand way, systems that involve heat and power. The potential areas of application of ACETP are, cryogenic processes, power generation systems and cogeneration systems. (Author)

  6. Teaching chemistry teachers constructal law and exergy for a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Horta, L.M.P. [Agrupamento de Escolas D. Miguel de Almeida Barreiras do Tejo (Portugal)

    2010-07-01

    Recent developments in science must be considered when designing a teacher training course in order to establish connections with the teacher's own field of work. As constructal law and exergy develop, several scientific fields are benefiting from the input of new knowledge. Chemistry teachers in particular can benefit from a greater understanding of constructal law and how exergy works, their society and environment connections and applications, through the Science, Technology, Society and Environment perspective present in the Portuguese National curricula. The input of new knowledge can boost pedagogical innovation and sustainable development. With advances in information technology, it is easier the access recent developments. This paper described the web 2.0 as a great vehicle to all that new knowledge and encouraged modern chemistry teachers to explore new theories and ideas within chemistry, biotechnology, green energy, biomaterials, astrobiology, nuclear power generation or any chemistry related disciplines. 13 refs.

  7. Exergy analysis of offshore processes on North Sea oil and gas platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Pierobon, Leonardo; Elmegaard, Brian

    2012-01-01

    Offshore processes are associated with significant energy consumption and large CO2 emissions. Conventional North Sea oil and gas facilities include the following operations: crude oil separation, gas compression and purification, wastewater treatment, gas lifting, seawater injection and power...... exergy losses amount to 22.3 MW. The gas lifting train and the production-separation module are the most exergy-destructive operations of the oil and gas processing system, consuming 8.83 MW and 8.17 MW respectively, while the power generation system alone is responsible for 46.7 MW. The exergetic...... efficiency of the oil and gas processing is about 39%, while the exergetic efficiency of the utility system is about 21-27%....

  8. Energy and Exergy Analysis and Optimization of Combined Heat and Power Systems. Comparison of Various Systems

    Directory of Open Access Journals (Sweden)

    Monica Costea

    2012-09-01

    Full Text Available The paper presents a comparison of various CHP system configurations, such as Vapour Turbine, Gas Turbine, Internal Combustion Engine, External Combustion Engine (Stirling, Ericsson, when different thermodynamic criteria are considered, namely the first law efficiency and exergy efficiency. Thermodynamic optimization of these systems is performed intending to maximize the exergy, when various practical related constraints (imposed mechanical useful energy, imposed heat demand, imposed heat to power ratio or main physical limitations (limited heat availability, maximum system temperature allowed, thermo-mechanical constraints are taken into account. A sensitivity analysis to model parameters is given. The results have shown that the various added constraints were useful for the design allowing to precise the influence of the model main parameters on the system design. Future perspective of the work and recommendations are stated.

  9. Comparative study of the sources of exergy destruction on four North Sea oil and gas platforms

    DEFF Research Database (Denmark)

    Voldsund, Mari; Nguyen, Tuong-Van; Elmegaard, Brian

    2013-01-01

    the lifetime of an oil field, and to maintain the efficiency of an offshore platform is therefore challenging. In practice, variations in the process feed result in the use of control strategies such as anti-surge recycling, which cause additional power consumption and exergy destruction. For all four...... platforms, more than 27% of the total exergy destruction takes place in the gas treatment section while at least 16% occurs in the production manifold systems. The exact potential for energy savings and for enhancing system performances differ across offshore platforms. However, the results indicate...... that the largest potential for improvement lie (i) in gas compression systems where large amounts of gas are often compressed and might be recycled to prevent surge, and (ii) in production manifolds where well-streams are depressurised and mixed before being sent to the separation system....

  10. Engineering design and exergy analyses for combustion gas turbine based power generation system

    International Nuclear Information System (INIS)

    Sue, D.-C.; Chuang, C.-C.

    2004-01-01

    This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection

  11. Energy and exergy analyses of a biomass-based hydrogen production system.

    Science.gov (United States)

    Cohce, M K; Dincer, I; Rosen, M A

    2011-09-01

    In this paper, a novel biomass-based hydrogen production plant is investigated. The system uses oil palm shell as a feedstock. The main plant processes are biomass gasification, steam methane reforming and shift reaction. The modeling of the gasifier uses the Gibbs free energy minimization approach and chemical equilibrium considerations. The plant, with modifications, is simulated and analyzed thermodynamically using the Aspen Plus process simulation code (version 11.1). Exergy analysis, a useful tool for understanding and improving efficiency, is used throughout the investigation, in addition to energy analysis. The overall performance of the system is evaluated, and its efficiencies become 19% for exergy efficiency and 22% energy efficiency while the gasifier cold gas efficiency is 18%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Corporate Social Responsibility for Sustainability

    Directory of Open Access Journals (Sweden)

    Wojciech Przychodzeń

    2014-06-01

    Full Text Available Purpose: The purpose of this paper is to is to provide insights on implementing corporate social responsibility for sustainability (CSRS concept and show how it differs from basic corporate social responsibility (CSR. Methodology: The paper discusses major issues with references to existing literature and real business cases from S&P500 consumer discretionary sector. Findings: The main fi nding of this paper is that CSRS could provide the company with a competitive advantage as a growing number of consumers become more sustainable conscious. It could also help to overcome the increasing consumers’ skepticism towards corporate social responsibility practices. Finally, it can also be seen as a step forward in defi ning what types of corporate activities are associated with desirable social and environmental gains. Research limitations: Our sample was restricted to the U.S. fi rms from the consumer discretionary sector. Therefore, conclusions should not be generalized to other markets. Our study is based on the analysis of environmental and social responsibility statements and assumes that they accurately represent corporate commitment in majority of the cases. Practical implications: CSRS offers corporations the opportunity to use their unique skills, culture, values, resources, and management capabilities to lead social progress by making sustainability part of its internal corporate logic. Originality: The paper raises the importance of the different conditions necessary for making sustainable development concept an important part of corporate strategy.

  13. The concept 'environment' in exergy analysis Some special cases

    Energy Technology Data Exchange (ETDEWEB)

    Serova, E.N.; Brodianski, V.M

    2004-12-01

    The concept 'environment' is of considerable importance in present-day engineering thermodynamics. Introduction of this concept in operation brings not only simplification of the methods of solving classical thermodynamic problems, but also gives the exergy method which forms the major new part of thermodynamics, including some parts of biology, economics and other fields of science. But practice shows that it is necessary to define the concept 'environment' more precisely in some cases.

  14. Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process

    International Nuclear Information System (INIS)

    Sorgüven, Esra; Özilgen, Mustafa

    2012-01-01

    This paper investigates the impact of food production processes on the environment in terms of energy and exergy utilization and carbon dioxide emission. There are three different energy utilization mechanisms in food production: Utilization of solar energy by plants to produce agricultural goods; feed consumption by herbivores to produce meat and milk; fossil fuel consumption by industrial processes to perform mixing, cooling, heating, etc. Production of strawberry-flavored yogurt, which involves these three mechanisms, is investigated here thermodynamically. Analysis starts with the cultivation of the ingredients and ends with the transfer of the final product to the market. The results show that 53% of the total exergy loss occurs during the milk production and 80% of the total work input is consumed during the plain yogurt making. The cumulative degree of perfection is 3.6% for the strawberry-flavored yogurt. This value can rise up to 4.6%, if renewable energy resources like hydropower and algal biodiesel are employed instead of fossil fuels. This paper points the direction for the development of new technology in food processing to decrease waste of energy and carbon dioxide accumulation in the atmosphere. -- Highlights: ► Energy and exergy utilization and carbon dioxide emission during strawberry-flavored yogurt production. ► Cumulative degree of perfection of strawberry-flavored yogurt is 3.6%. ► 53% of the total exergy loss occurs during the milk production. ► 80% of the total work input is consumed during the plain yogurt making.

  15. Energy and exergy assessments for an enhanced use of energy in buildings

    OpenAIRE

    Gonçalves, Pedro

    2013-01-01

    Tese de doutoramento em Sistemas Sustentáveis de Energia , apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra Exergy analysis has been found to be a useful method for improving the conversion efficiency of energy resources, since it helps to identify locations, types and true magnitudes of wastes and losses. It has also been applied for other purposes, such as distinguishing high- from low-quality energy sources or defining the engineering technological limits in d...

  16. Exergy and exergoeconomic analysis of a Compressed Air Energy Storage combined with a district energy system

    International Nuclear Information System (INIS)

    Bagdanavicius, Audrius; Jenkins, Nick

    2014-01-01

    Highlights: • CAES and CAES with thermal storage systems were investigated. • The potential for using heat generated during the compression stage was analysed. • CAES-TS has the potential to be used both as energy storage and heat source. • CAES-TS could be a useful tool for balancing overall energy demand and supply. - Abstract: The potential for using heat generated during the compression stage of a Compressed Air Energy Storage system was investigated using exergy and exergoeconomic analysis. Two Compressed Air Energy Storage systems were analysed: Compressed Air Energy Storage (CAES) and Compressed Air Energy Storage combined with Thermal Storage (CAES-TS) connected to a district heating network. The maximum output of the CAES was 100 MWe and the output of the CAES-TS was 100 MWe and 105 MWth. The study shows that 308 GW h/year of electricity and 466 GW h/year of fuel are used to generate 375 GW h/year of electricity. During the compression of air 289 GW h/year of heat is generated, which is wasted in the CAES and used for district heating in the CAES-TS system. Energy efficiency of the CAES system was around 48% and the efficiency of CAES-TS was 86%. Exergoeconomic analysis shows that the exergy cost of electricity generated in the CAES was 13.89 ¢/kW h, and the exergy cost of electricity generated in the CAES-TS was 11.20 ¢/kW h. The exergy cost of heat was 22.24 ¢/kW h in the CAES-TS system. The study shows that CAES-TS has the potential to be used both as energy storage and heat source and could be a useful tool for balancing overall energy demand and supply

  17. Corporate Entrepreneurship

    DEFF Research Database (Denmark)

    Lassen, Astrid Heidemann; Sørensen, Suna

    2006-01-01

    The recognition of the importance of entrepreneurial dynamics in corporate context is increasingly acknowledged in both entrepreneurship and strategic management literature, as firms today face a reality in which frame-breaking innovation is an important element of survival. From this understanding......, the concept of Strategic Entrepreneurship (SE) has arisen, arguing a logic of focusing on the intersections between the two fields. This paper sets out to explore the SE construct empirically. Through seven case studies evolving around radical technological innovations, evidence is found of the importance...

  18. Going Corporate

    CERN Document Server

    Kadre, Shailendra

    2011-01-01

    Going Corporate: A Geek's Guide shows technology workers how to gain the understanding and skills necessary for becoming an effective, promotable manager or sought-after consultant or freelancer. Technology professionals typically dive deeply into small pieces of technology - like lines of code or the design of a circuit. As a result, they may have trouble seeing the bigger picture and how their work supports an organization's goals. But ignoring or dismissing the business or operational aspects of projects and products can lead to career stagnation. In fact, understanding the larger business

  19. Corporate Foresight

    DEFF Research Database (Denmark)

    Rohrbeck, René; Gemünden, Hans Georg

    2011-01-01

    Although in the last three decades much knowledge has been produced on how best to conduct foresight exercises, but little is known on how foresight should be integrated with the innovation effort of a company. Drawing on empirical evidence from 19 case studies and 107 interviews, we identify three...... roles that corporate foresight should play to maximize the innovation capacity of a firm: (1) the strategist role, which explores new business fields; (2) the initiator role, which increases the number of innovation concepts and ideas; and (3) the opponent role, which challenges innovation projects...

  20. Exergy as a Measure of Resource Use in Life Cycle Assessment and Other Sustainability Assessment Tools

    Directory of Open Access Journals (Sweden)

    Goran Finnveden

    2016-06-01

    Full Text Available A thermodynamic approach based on exergy use has been suggested as a measure for the use of resources in Life Cycle Assessment and other sustainability assessment methods. It is a relevant approach since it can capture energy resources, as well as metal ores and other materials that have a chemical exergy expressed in the same units. The aim of this paper is to illustrate the use of the thermodynamic approach in case studies and to compare the results with other approaches, and thus contribute to the discussion of how to measure resource use. The two case studies are the recycling of ferrous waste and the production and use of a laptop. The results show that the different methods produce strikingly different results when applied to case studies, which indicates the need to further discuss methods for assessing resource use. The study also demonstrates the feasibility of the thermodynamic approach. It identifies the importance of both energy resources, as well as metals. We argue that the thermodynamic approach is developed from a solid scientific basis and produces results that are relevant for decision-making. The exergy approach captures most resources that are considered important by other methods. Furthermore, the composition of the ores is shown to have an influence on the results. The thermodynamic approach could also be further developed for assessing a broader range of biotic and abiotic resources, including land and water.

  1. Exergetic evaluation on photovoltaic/thermal hybrid panel; Taiyoko netsu hybrid panel no exergy hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Iwaki, H.; Morita, Y.; Fujisawa, T.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1996-10-27

    The photovoltaic/thermal hybrid panel (PV/T) is an energy converter that was designed for the composite use of electricity and heat. In this paper, the validity of PV/T designed for trial was evaluated based on an exergetic theory. As the result of an experiment, the electric exergetic value of PV/T and PV is each 65.8 kWh/m{sup 2} and 58.6 kWh/m{sup 2}. The former is higher than the latter by 11.2%. The total exergetic value of PV/T is also 1.2 and 8.2 times as high as those of a PV and solar collector (SC), respectively. The calculation result of the optimum temperature operation showed that the exergetic value of PV/T is 3.1 times as high as the electric exergetic value. Therefore, the operation must be performed with the electric and thermal exergetic values set in a ratio of 3.1 to 1. In this paper, the operating mode is handled in which importance was more attached to the electric exergy than the thermal exergy. The flow rate of a heating medium on PV/T is not thus the flow control that maximizes the PV/T exergy. In the future, studies including these points will be promoted. 7 refs., 7 figs., 3 tabs.

  2. The exergy of a phase shift: Ecosystem functioning loss in seagrass meadows of the Mediterranean Sea

    Science.gov (United States)

    Montefalcone, Monica; Vassallo, Paolo; Gatti, Giulia; Parravicini, Valeriano; Paoli, Chiara; Morri, Carla; Bianchi, Carlo Nike

    2015-04-01

    Sustained functioning of ecosystems is predicted to depend upon the maintenance of their biodiversity, structure and integrity. The large consensus achieved in this regard, however, faces to the objective difficulty of finding appropriate metrics to measure ecosystem functioning. Here, we aim at evaluating functional consequence of the phase shift occurring in meadows of the Mediterranean seagrass Posidonia oceanica, a priority habitat that is undergoing regression in many coastal areas due to multiple human pressures. Structural degradation of the P. oceanica ecosystem, consequent to increasing coastal exploitation and climate change, may result in the progressive replacement of this seagrass by opportunistic macrophytes, either native or alien. Reviewing published information and our personal records, we measured changes in biological habitat provisioning, species richness and biomass associated to each of the alternative states characterizing the phase shift. Then, ecosystem functioning was assessed by computing the exergy associated to each state, exergy being a state variable that measures the ecosystem capacity to produce work. Phase shift was consistently shown to imply loss in habitat provision, species richness, and biomass; structural and compositional loss was parallelled by a reduction of exergy content, thus providing for the first time an objective and integrative measure of the loss of ecosystem functioning following the degradation of healthy seagrass meadows.

  3. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    2013-01-01

    Integrating second generation bioethanol production in combined heat and power units is expected to increase system energy efficiencies while producing sustainable fuel for the transportation sector at a competitive price. By applying exergy analysis, this study assessed the efficiency of an inte......Integrating second generation bioethanol production in combined heat and power units is expected to increase system energy efficiencies while producing sustainable fuel for the transportation sector at a competitive price. By applying exergy analysis, this study assessed the efficiency...... of an integrated system in which steam extracted from an existing combined heat and power unit is used for covering the heating demand of a lignocellulosic ethanol production facility. The integration solution was designed and optimized using already existing steam extraction points in the combined heat and power...... and losses in the system was in the range of 0.46-0.87 depending on the system operation. This study suggests that a well-designed heat integration network can increase the exergy efficiency of the integrated system markedly....

  4. Exergy analysis on industrial boiler energy conservation and emission evaluation applications

    Science.gov (United States)

    Li, Henan

    2017-06-01

    Industrial boiler is one of the most energy-consuming equipments in china, the annual consumption of energy accounts for about one-third of the national energy consumption. Industrial boilers in service at present have several severe problems such as small capacity, low efficiency, high energy consumption and causing severe pollution on environment. In recent years, our country in the big scope, long time serious fog weather, with coal-fired industrial boilers is closely related to the regional characteristics of high strength and low emissions [1]. The energy-efficient and emission-reducing of industry boiler is of great significance to improve China’s energy usage efficiency and environmental protection. Difference in thermal equilibrium theory is widely used in boiler design, exergy analysis method is established on the basis of the first law and second law of thermodynamics, by studying the cycle of the effect of energy conversion and utilization, to analyze its influencing factors, to reveal the exergy loss of location, distribution and size, find out the weak links, and a method of mining system of the boiler energy saving potential. Exergy analysis method is used for layer combustion boiler efficiency and pollutant emission characteristics analysis and evaluation, and can more objectively and accurately the energy conserving potential of the mining system of the boiler, find out the weak link of energy consumption, and improve equipment performance to improve the industrial boiler environmental friendliness.

  5. Data on energy, exergy analysis and optimisation for a sugar factory

    Directory of Open Access Journals (Sweden)

    Tolga Taner

    2015-12-01

    Full Text Available A huge amount of energy is consumed during sugar production in the food industry. The large amount of steam used and the power of the turbine power plant are key factors. This makes energy and exergy analysis important in sugar factories. The data given in the following paper are related to input and output information of the paper entitled Energy – exergy analysis and optimisation of a model sugar factory in Turkey by Taner and Sivrioglu (2015 [1]. Factory total energy efficiency and exergy efficiency are found to be ηenT=72.2% and ηexT=37.4%, respectively, and according to these results, the total energy quality ∅T=0.64. These results indicate higher efficiency than similar studies (Vuckovic et al., 2014; Pellegrini and Oliviera Junior, 2011; Deshmukh et al., 2013; Palacios-Bereche et al., 2015 [2–5]. This study can be a model for these similar factories by Taner and Sivrioglu (2015 [1].

  6. Data on energy, exergy analysis and optimisation for a sugar factory☆

    Science.gov (United States)

    Taner, Tolga; Sivrioglu, Mecit

    2015-01-01

    A huge amount of energy is consumed during sugar production in the food industry. The large amount of steam used and the power of the turbine power plant are key factors. This makes energy and exergy analysis important in sugar factories. The data given in the following paper are related to input and output information of the paper entitled Energy – exergy analysis and optimisation of a model sugar factory in Turkey by Taner and Sivrioglu (2015) [1]. Factory total energy efficiency and exergy efficiency are found to be ηenT=72.2% and ηexT=37.4%, respectively, and according to these results, the total energy quality ∅T=0.64. These results indicate higher efficiency than similar studies (Vuckovic et al., 2014; Pellegrini and Oliviera Junior, 2011; Deshmukh et al., 2013; Palacios-Bereche et al., 2015) [2], [3], [4], [5]. This study can be a model for these similar factories by Taner and Sivrioglu (2015) [1]. PMID:26958601

  7. Data on energy, exergy analysis and optimisation for a sugar factory.

    Science.gov (United States)

    Taner, Tolga; Sivrioglu, Mecit

    2015-12-01

    A huge amount of energy is consumed during sugar production in the food industry. The large amount of steam used and the power of the turbine power plant are key factors. This makes energy and exergy analysis important in sugar factories. The data given in the following paper are related to input and output information of the paper entitled Energy - exergy analysis and optimisation of a model sugar factory in Turkey by Taner and Sivrioglu (2015) [1]. Factory total energy efficiency and exergy efficiency are found to be η enT=72.2% and η exT=37.4%, respectively, and according to these results, the total energy quality ∅ T=0.64. These results indicate higher efficiency than similar studies (Vuckovic et al., 2014; Pellegrini and Oliviera Junior, 2011; Deshmukh et al., 2013; Palacios-Bereche et al., 2015) [2], [3], [4], [5]. This study can be a model for these similar factories by Taner and Sivrioglu (2015) [1].

  8. Inferring community properties of benthic macroinvertebrates in streams using Shannon index and exergy

    Science.gov (United States)

    Nguyen, Tuyen Van; Cho, Woon-Seok; Kim, Hungsoo; Jung, Il Hyo; Kim, YongKuk; Chon, Tae-Soo

    2014-03-01

    Definition of ecological integrity based on community analysis has long been a critical issue in risk assessment for sustainable ecosystem management. In this work, two indices (i.e., Shannon index and exergy) were selected for the analysis of community properties of benthic macroinvertebrate community in streams in Korea. For this purpose, the means and variances of both indices were analyzed. The results found an extra scope of structural and functional properties in communities in response to environmental variabilities and anthropogenic disturbances. The combination of these two parameters (four indices) was feasible in identification of disturbance agents (e.g., industrial pollution or organic pollution) and specifying states of communities. The four-aforementioned parameters (means and variances of Shannon index and exergy) were further used as input data in a self-organizing map for the characterization of water quality. Our results suggested that Shannon index and exergy in combination could be utilized as a suitable reference system and would be an efficient tool for assessment of the health of aquatic ecosystems exposed to environmental disturbances.

  9. Vested interests in addiction research and policy. The challenge corporate lobbying poses to reducing society's alcohol problems: insights from UK evidence on minimum unit pricing.

    Science.gov (United States)

    McCambridge, Jim; Hawkins, Benjamin; Holden, Chris

    2014-02-01

    There has been insufficient research attention to alcohol industry methods of influencing public policies. With the exception of the tobacco industry, there have been few studies of the impact of corporate lobbying on public health policymaking more broadly. We summarize here findings from documentary analyses and interview studies in an integrative review of corporate efforts to influence UK policy on minimum unit pricing (MUP) of alcohol 2007-10. Alcohol producers and retailers adopted a long-term, relationship-building approach to policy influence, in which personal contacts with key policymakers were established and nurtured, including when they were not in government. The alcohol industry was successful in achieving access to UK policymakers at the highest levels of government and at all stages of the policy process. Within the United Kingdom, political devolution and the formation for the first time of a Scottish National Party (SNP) government disrupted the existing long-term strategy of alcohol industry actors and created the conditions for evidence-based policy innovations such as MUP. Comparisons between policy communities within the United Kingdom and elsewhere are useful to the understanding of how different policy environments are amenable to influence through lobbying. Greater transparency in how policy is made is likely to lead to more effective alcohol and other public policies globally by constraining the influence of vested interests. ©2013 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of The Society for the Study of Addiction.

  10. Vested Interests in Addiction Research and Policy The challenge corporate lobbying poses to reducing society’s alcohol problems: insights from UK evidence on minimum unit pricing

    Science.gov (United States)

    McCambridge, Jim; Hawkins, Benjamin; Holden, Chris

    2014-01-01

    Background There has been insufficient research attention to alcohol industry methods of influencing public policies. With the exception of the tobacco industry, there have been few studies of the impact of corporate lobbying on public health policymaking more broadly. Methods We summarize here findings from documentary analyses and interview studies in an integrative review of corporate efforts to influence UK policy on minimum unit pricing (MUP) of alcohol 2007–10. Results Alcohol producers and retailers adopted a long-term, relationship-building approach to policy influence, in which personal contacts with key policymakers were established and nurtured, including when they were not in government. The alcohol industry was successful in achieving access to UK policymakers at the highest levels of government and at all stages of the policy process. Within the United Kingdom, political devolution and the formation for the first time of a Scottish National Party (SNP) government disrupted the existing long-term strategy of alcohol industry actors and created the conditions for evidence-based policy innovations such as MUP. Conclusions Comparisons between policy communities within the United Kingdom and elsewhere are useful to the understanding of how different policy environments are amenable to influence through lobbying. Greater transparency in how policy is made is likely to lead to more effective alcohol and other public policies globally by constraining the influence of vested interests. PMID:24261642

  11. Intelligence analysis in corporate security

    Directory of Open Access Journals (Sweden)

    Manojlović Dragan

    2014-01-01

    Full Text Available Located in the survey indicate that the protection of a corporation, its internal and external interest from the perspective of quality data for intelligence analysis and the need for kroporacije and corporate security. Furthermore, the results indicate that the application is not only practical knowledge of intelligence analysis, but also its scientific knowledge, provides epistemologically oriented critique of traditional techniques undertaken in corporate security in connection with the analysis of the challenges, risks and threats. On the question of whether it can and should be understood only as a form of corporate espionage, any aspect of such a new concept in the theory and practice of corporate security, competitive intelligence activities, as well as an activity or involves a range of different methods and techniques meaningful and expedient activities to be implemented integrally and continuously within corporate security, given the multiple responses to the work. The privatization of intelligence activities as an irreversible process that was decades ago engulfed the western hemisphere, in the first decade of the third millennium has been accepted in Europe, in the sense that corporations at national and multinational levels of system intelligence analysis used not only for your safety but also for the competition, and nothing and less for growth companies and profits. It has become a resource that helps control their managers in corporations to make timely and appropriate decisions. Research has shown that intelligence analysis in corporate security one factor that brings the diversity of the people and give corporations an advantage not only in time, but much more on the market and product.

  12. Corporate social responsibility in hospitality

    Directory of Open Access Journals (Sweden)

    Snježana Gagić

    2016-01-01

    Full Text Available Responsible management of global hospitality companies increasingly recognizes how important are concerns about the society, the environment as well as all stakeholders in maintaining a good market position. In Serbia, the concept of corporate social responsibility is relatively unknown and insufficiently researched in all business areas, especially in the hospitality industry where small businesses are dominated. The papers task is to present particular activities that demonstrate social responsibility to employees, customers-guests, local communities as well as the environment. The paper aims to highlight the benefits of adopting the principles of corporate social responsibility and innovation applied in catering enterprises as an example of good corporate social responsibility practices.

  13. Quantifying Systemic Efficiency using Exergy and Energy Analysis for Ground Source Heat Pumps: Domestic Space Conditioning and Water Heating Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL; Munk, Jeffrey D [ORNL

    2017-01-01

    Although air temperatures over land surfaces show wide seasonal and daily variations, the ground, approximately 10 meters below the earth s surface, remains relatively stable in temperature thereby serving as an energy source or sink. Ground source heat pumps can heat, cool, and supply homes with hot water efficiently by utilizing the earth s renewable and essentially inexhaustible energy resources, saving fossil fuels, reducing greenhouse gas emissions, and lowering the environmental footprint. In this paper, evidence is shown that ground source heat pumps can provide up to 79%-87% of domestic hot water energy needs, and up to 77% of space heating needs with the ground s thermal energy resources. The case refers to a 12-month study conducted at a 253 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days and CDD of 723 C-days under simulated occupancy conditions. A single 94.5m vertical bore interfaced the heat pump with the ground. The research shows that this technology is capable of achieving US DOE targets of 25 % and 35% energy savings in HVAC, and in water heating, respectively by 2030. It is also a viable technology to meet greenhouse gas target emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources. The paper quantifies systemic efficiencies using Exergy analysis of the major components, clearly pointing areas for further improvement.

  14. Corporate visual identity: a case in hospitals.

    Science.gov (United States)

    Alkibay, Sanem; Ozdogan, F Bahar; Ermec, Aysegul

    2007-01-01

    This paper aims to present a perspective to better understand corporate identity through examining the perceptions of Turkish patients and develop a corporate visual identity scale. While there is no study related to corporate identity research on hospitals in Turkey as a developing country, understanding consumer's perceptions about corporate identity efforts of hospitals could provide different perspectives for recruiters. When the hospitals are considered in two different groups as university and state hospitals, the priority of the characteristics of corporate visual identity may change, whereas the top five characteristics remain the same for all the hospitals.

  15. Corporate creativity and innovation

    OpenAIRE

    Ericsson, Camilla; Dahlby, Tove

    2009-01-01

    This essay discusses organizational culture and focus on corporate creativity and innovation. The aim is to see which organizational factors that foster creativity and innovation in organizations. The essay will provide answer on how organizational culture can encourage creativity and innovation and how organizations can promote the rise of a creative work environment. The research design of this essay is a qualitative case study with interviews at Gotland Energi AB (GEAB). The interviews pro...

  16. Corporate Universities and Corporation- University Partnerships in Thailand: Complimenting Education in Learning, Leadership and Change

    Directory of Open Access Journals (Sweden)

    Oliver S. Crocco

    2017-04-01

    Full Text Available With an estimated workforce of 285 million and the establishment of the Association of Southeast Asian Nations (ASEAN Economic Community in 2015, ASEAN faces vast challenges in human resource development (HRD and higher education. These challenges in Thailand have resulted in the rise of corporate universities and corporation-university partnerships. Corporate partnerships in education adapt quickly to industry needs and are increasingly popular and complimentary to traditional higher education. This research looks at one corporate university and one corporation-university partnership to investigate how, if at all, corporate universities and partnerships address HRD issues such as adult learning, leadership development, organisational change, corporate social responsibility (CSR, as well as ethical and global issues. This research finds initial evidence that corporate educational strategies address a variety of HRD issues and have the potential to revolutionise and compliment higher education in Thailand in a way that drives the nation toward a more sustainable future.

  17. Risk management and corporate value

    Directory of Open Access Journals (Sweden)

    Milan Cupic

    2015-12-01

    Full Text Available The paper presents a theoretical framework for assessing the impact of risk management on corporate value. As the relevant factors that determine this impact, the paper analyzes market imperfections and investors’ risk aversion. The results of the present research indicate that risk management contributes to an increase in corporate value if, under the influence of market imperfections, corporate risk exposure is concave. As an expression of market imperfections, the paper analyzes the costs of financial distress, agency costs, and taxation. The results of the research also indicate that the risk management policy should not aim to minimize, but rather optimize risk exposure, by taking into account the costs of risk management, investors’ risk aversion and the competitive advantage a corporation has on the relevant market.

  18. Corporate responsibility

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint

    2007-01-01

    of a private business; but then again, a private business would appear to be exempted from ethical responsibility. This is what Kenneth Goodpaster has called the stakeholder paradox: either we have ethics without business or we have business without ethics. Through a different route, I reach the same solution...... to this paradox as Goodpaster, namely that a corporation is the instrument of the shareholders only, but that shareholders still have an obligation to act ethically responsibly. To this, I add discussion of Friedman's claim that this responsibility consists in increasing profits. I show that most of his arguments...... fail. Only pragmatic considerations allow to a certain extent that some of the ethical responsibility is left over to democratic regulation....

  19. Transnational Corporations and Corporate Citizenship: Analyzing New Roles of Organization Development Practitioners

    Science.gov (United States)

    Stolz, Ingo Stephan

    2012-01-01

    Research shows that too few transnational corporations (TNCs) have the organizational capacity to manage corporate citizenship. Evidence exists that ever more TNCs adopt programs of corporate citizenship development in order to increase this capacity. However, both in academic and practical literature, there is a general lack of a strategic…

  20. Possibilities and consequences of the Total Cumulative Exergy Loss method in improving the sustainability of power generation

    International Nuclear Information System (INIS)

    Stougie, Lydia; Kooi, Hedzer J. van der

    2016-01-01

    Highlights: • The TCExL method can be applied to all kinds of technological systems. • All exergy losses during the lifetime of a technological system are considered. • The results of the TCExL method are independent of time and weighting factors. • Applying the TCExL method can improve the sustainability of power generation. • The system with the lowest TCExL score is not always economically favourable. - Abstract: It is difficult to decide which power generation system is the most sustainable when environmental, economic and social sustainability aspects are taken into account. Problems with conventional environmental sustainability assessment methods are that no consensus exists about the applied models and weighting factors and that exergy losses are not considered. Economic sustainability assessment methods do not lead to results that are independent of time because they are influenced by market developments, while social sustainability assessment methods suffer from the availability and qualitative or semi-quantitative nature of data. Existing exergy analysis methods do not take into account all exergy losses and/or are extended with factors or equations that are not commonly accepted. The new Total Cumulative Exergy Loss (TCExL) method is based on fundamental thermodynamic equations and takes into account all exergy losses caused by a technological system during its life cycle, i.e. internal exergy losses, exergy losses caused by emission abatement and exergy losses related to land use. The development of the TCExL method is presented as well as the application of this method and environmental, economic and social sustainability assessment methods to two case studies: power generation in combination with LNG evaporation and Fossil versus renewable energy sources for power generation. According to the results of the assessments, large differences exist between the environmental sustainability assessment and TCExL methods in the sense that different

  1. Corporate identity through graphic design

    OpenAIRE

    Valtersson, Sofia; Matsson, Anna

    2002-01-01

    The degree project has been implemented abroad in Brisbane, Australia. A literature study has beenperformed parallel to the practical work within the subject »Corporate identity through graphicaldesign«. In this study deeper research has been made concerning the establishment and manifestationof a corporate identity and its program. The knowledge given from this study has been put into practicethrough two larger projects.The first project was carried out at De Pasquale, advertising agency in ...

  2. Managing Corporate Reputation Through Corporate Branding

    DEFF Research Database (Denmark)

    Schultz, Majken; Hatch, Mary Jo; Adams, Nick

    2012-01-01

    This article, which concentrates on symbolic management by explaining the role of corporate branding in managing corporate reputation, using Novo Nordisk as a case study, presents three perspectives on corporate branding: the marketing perspective, the organisational perspective and the co...... is a way to influence corporate reputation. The Novo Nordisk management believes the data indicate that corporate branding influenced reputation more than the other way around. Formal brand management practices may work considerably better when they complement rather than try to control existing forces......-creation perspective. The three perspectives reviewed show the possibility of developing a multidisciplinary conceptualisation of corporate branding. They all offer insights important to managing organisations as corporate brands in a multi-stakeholder context and thus to the likelihood that corporate branding...

  3. Measuring instruments of corporate reputation

    Directory of Open Access Journals (Sweden)

    Damir Grgić

    2008-12-01

    Full Text Available The subject of this paper is focused on the instruments for the measurement of corporate reputation. Recent research of the elements which influence the success of a company shows a growing interest in intangible values. Corporate reputation itself has been identified as one of the key intangible assets which create the company’s added value. Understanding of the importance of corporate reputation has been determined as a significant component of the company’s competitiveness, that is, of its competitive edge. Reputation is a normal part of our life and an integral part of our society. Our interest in the honesty and integrity of others is firmly established in all cultures and nowadays the focus of this interest is switching increasingly on companies. Corporate reputation can be acquired by means of strong, well-developed strategies, which are crucial for the opinion of stakeholders regarding future stability and competitive sustainability of the company. On the other hand, it should be emphasized that in order to manage it, corporate reputation has to be measured first. However, although the concept of corporate reputation is universally accepted and its significance has been recognized especially in the last two decades, the process of its measurement is still at an early stage and there is no universally accepted instrument for its measurement. Therefore, the author of this paper gives an overview of the instruments used for the measurement of corporate reputation which have gained a foothold through former practical usage.

  4. Corporate Social Communication and Corporate Social Performance

    OpenAIRE

    Ziggers, Gerrit Willem

    2013-01-01

    The purpose of this paper is to provide firms in the food and agricultural sector a model that enables them to assess their corporate social initiatives in conjunction with their stakeholders. Building on the concepts of corporate social responsibility (CSR), corporate social performance (CSP) and the relational view the paper argues that firms can improve the results of their corporate social initiatives by setting up a dialogue with their stakeholders and to relate this to their internal or...

  5. The role of corporal punishment in children

    OpenAIRE

    Ioannis Koutelekos; Maria Kikila

    2011-01-01

    Corporal punishment consists the most common method of discipline and it is frequently accepted as a necessary tool of parents behavior, globally. Aim: The aim of the present study was to review the literature about corporal punishment as a method of discipline. The method οf this study included bibliography research from both the review and the research literature, mainly in the pub med data base which referred to corporal punishment as a method of discipline Results: Though it is internatio...

  6. Corporate Governance Quality in Selected Transition Countries

    Directory of Open Access Journals (Sweden)

    Danila Djokic

    2017-12-01

    Full Text Available Important questions that concern the notion of good corporate governance focus on what good corporate governance is, who benefits from good corporate governance, and how corporate governance quality can be measured. The aim of our study was to broaden our understanding of the role of standards and codes of good corporate governance in improving governance practices.We found that not only formal regulations, standards, and governance codes, but also corporate governance indices-which make the assessment of companies’ governance practices possible-are important in measuring and improving governance quality. The results of the research based on the SEECGAN Index methodology indicated that mandatory requirements and voluntary recommendations of high governance standards had a positive impact on the corporate governance practice in Slovenia.

  7. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  8. Tensions of Corporate Social Responsibility

    DEFF Research Database (Denmark)

    Strand, Robert

    I engaged with the top management team (TMT) and employees of American Cafes Corporation as an action/intervention researcher in the 20 months immediately following the TMT’s decision to formalize the company’s corporate social responsibility (CSR) activities. This led to the establishment...... CSR agenda is considered, which brings with it a multiplicity of substantively rational ends for which the corporation could pursue. I show the CSR bureaucracy can create a space for reflection in which the multiplicity of substantively rational ends can be considered, negotiated, and selected...... for reflection within the corporation. But I also show tensions can arise from the establishment of the CSR bureaucracy itself. This suggests the CSR bureaucracy itself resides in a tension....

  9. Renewable and non-renewable exergy costs and CO2 emissions in the production of fuels for Brazilian transportation sector

    International Nuclear Information System (INIS)

    Flórez-Orrego, Daniel; Silva, Julio A.M. da; Velásquez, Héctor; Oliveira, Silvio de

    2015-01-01

    An exergy and environmental comparison between the fuel production routes for Brazilian transportation sector, including fossil fuels (natural gas, oil-derived products and hydrogen), biofuels (ethanol and biodiesel) and electricity is performed, and the percentage distribution of exergy destruction in the different units of the processing plants is characterized. An exergoeconomy methodology is developed and applied to properly allocate the renewable and non-renewable exergy costs and CO 2 emission cost among the different products of multiproduct plants. Since Brazilian electricity is consumed in the upstream processing stages of the fuels used in the generation thereof, an iterative calculation is used. The electricity mix comprises thermal (coal, natural gas and oil-fired), nuclear, wind and hydroelectric power plants, as well as bagasse-fired mills, which, besides exporting surplus electricity, also produce sugar and bioethanol. Oil and natural gas-derived fuels production and biodiesel fatty acid methyl-esters (FAME) derived from palm oil are also analyzed. It was found that in spite of the highest total unit exergy costs correspond to the production of biofuels and electricity, the ratio between the renewable to non-renewable invested exergy (cR/cNR) for those fuels is 2.69 for biodiesel, 4.39 for electricity, and 15.96 for ethanol, whereas for fossil fuels is almost negligible. - Highlights: • Total and non-renewable exergy costs of Brazilian transportation fuels are evaluated. • Specific CO 2 emissions in the production of Brazilian transportation fuels are determined. • Representative production routes for fossil fuels, biofuels and electricity are reviewed. • Exergoeconomy is used to distribute costs and emissions in multiproduct processes

  10. Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis

    International Nuclear Information System (INIS)

    Sarhaddi, Faramarz; Farshchi Tabrizi, Farshad; Aghaei Zoori, Halimeh; Mousavi, Seyed Amir Hossein Seyed

    2017-01-01

    Highlights: • Performance evaluation of cascade solar stills with PCM storage is carried out. • Model of cascade solar still is weir type. • Present study is based on numerical simulation. • Effect of operating parameters is studies on yield, energy and exergy efficiencies. - Abstract: In this paper, the comparative study of energy and exergy performance of two weir type cascade solar stills with and without PCM storage in sunny and semi-cloudy days is carried out. The governing equations of energy analysis include a set of nonlinear equations which is obtained by writing energy balance for the various components of a solar still (i.e. glass cover, brackish water, absorber plate, phase change materials). A detailed exergy analysis is carried out and various irreversibility rates in the solar still system and its exergy efficiency are introduced. In order to solve the governing equations a computer simulation program is developed. The results of a numerical simulation of the present study are in good agreement with the experimental data of previous literatures. The numerical results of the present study show that the energy and exergy performance of solar still without PCM storage is better than the solar still with PCM storage in sunny days. On the other hand, the solar still with PCM storage is preferred for semi-cloudy days due to its better energy and exergy performance. The maximum value of the energy and exergy efficiencies of the solar still without PCM for a typical sunny day are 76.69% and 6.53%, respectively. While, the maximum energy and exergy efficiencies of the solar still with PCM for a sample semi-cloudy day are 74.35% and 8.59%, respectively. Furthermore, it is observed that the highest irreversibility rate belongs to the absorber plate and its value for the solar still without PCM on typical sunny day and the solar still with PCM on semi-cloudy days is 83.1% and 78.8% of the whole of system irreversibility rates, respectively. Whereas, the

  11. Exergy and Thermoeconomic Analyses of Central Receiver Concentrated Solar Plants Using Air as Heat Transfer Fluid

    Directory of Open Access Journals (Sweden)

    Claudia Toro

    2016-10-01

    Full Text Available The latest developments in solar technologies demonstrated that the solar central receiver configuration is the most promising application among concentrated solar power (CSP plants. In CSPs solar-heated air can be used as the working fluid in a Brayton thermal cycle and as the heat transfer fluid for a Rankine thermal cycle as an alternative to more traditional working fluids thereby reducing maintenance operations and providing the power section with a higher degree of flexibility To supply thermal needs when the solar source is unavailable, an auxiliary burner is requested. This configuration is adopted in the Julich CSP (J-CSP plant, operating in Germany and characterized by a nominal power of 1.5 MW, the heat transfer fluid (HTF is air which is heated in the solar tower and used to produce steam for the bottoming Rankine cycle. In this paper, the J-CSP plant with thermal energy storage has been compared with a hybrid CSP plant (H-CSP using air as the working fluid. Thermodynamic and economic performances of all the simulated plants have been evaluated by applying both exergy analysis and thermoeconomic analysis (TA to determine the yearly average operation at nominal conditions. The exergy destructions and structure as well as the exergoeconomic costs of products have been derived for all the components of the plants. Based on the obtained results, the thermoeconomic design evaluation and optimization of the plants has been performed, allowing for improvement of the thermodynamic and economic efficiency of the systems as well as decreasing the exergy and exergoeconomic cost of their products.

  12. Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle

    International Nuclear Information System (INIS)

    Yan, Gang; Chen, Jiaheng; Yu, Jianlin

    2015-01-01

    Highlights: • A new ejector enhanced auto-cascade refrigeration cycle using R134a/R23 is proposed. • The performance of new and basic cycles is compared by simulation method. • The new cycle outperforms the basic cycle in both energetic and exergy aspects. • Both cycles have optimum mixture compositions to obtain optimal performance. - Abstract: A new ejector enhanced auto-cascade refrigeration cycle using R134a/R23 refrigerant mixture is proposed in this paper. In the new cycle, an ejector is used to recover part of the work that would otherwise be lost in the throttling processes. The performance comparison between the new cycle and a basic auto-cascade refrigeration cycle is carried out based on the first and second laws of thermodynamics. The simulation results show that both the coefficient of performance and exergy efficiency of the new cycle can be improved by 8.42–18.02% compared with those of the basic cycle at the same operation conditions as the ejector has achieved pressure lift ratios of 1.12–1.23. It is found that in the new cycle, the highest exergy destruction occurs in the compressor followed by the condenser, cascade condenser, expansion valve, ejector and evaporator. The effect of some main parameters on the cycle performance is further investigated. The results show that for the new cycle, the achieved performance improvement over the basic cycle is also dependent on the mixture composition and the vapor quality at the condenser outlet. The coefficient of performance improvement of the new cycle over the basic cycle degrades with increasing vapor quality. In addition, there exists an optimum mixture composition to obtain the maximum coefficient of performance for the new cycle when other operation conditions are given. The optimum mixture composition of both cycles may be fixed at about 0.5 under the given evaporating temperature.

  13. Economic analysis of exergy efficiency based control strategy for geothermal district heating system

    International Nuclear Information System (INIS)

    Keçebaş, Ali; Yabanova, İsmail

    2013-01-01

    Highlights: • The ExEBCS for exergy efficiency maximization in real GDHS is economically evaluated. • The initial cost for ExEBCS is more expensive than that for old one by 6.33 kUS$/year. • The cost saving makes the ExEBCS profitable by up to 7% of annual energy saving. • This results in a short payback period of 3.8 years. • The use of newly ExEBCS in GDHSs is quite suitable. - Abstract: In this study, the exergy efficiency based control strategy (ExEBCS) for exergy efficiency maximization in geothermal district heating systems (GDHSs) is economically evaluated. As a real case study, the Afyon GDHS in the city of Afyonkarahisar/Turkey is considered. Its actual thermal data as of average weekly data are collected in heating seasons during the period 2006–2010 for artificial neural network (ANN) modeling. The ANN modeling of the Afyon GDHS is used as a test system to demonstrate the effectiveness and economic impact of the ExEBCS under various operating conditions. Then, the ExEBCS is evaluated economically in case of application to real Afyon GDHS of the ExEBCS. The results show that the initial cost for the ExEBCS is more expensive than that for the old one by 6.33 kUS$/year as a result of replacing automatic controller. The saving in heat production makes the ExEBCS profitable by up to 7% of annual energy saving as a result of the increase in the heat production by 88% when the control system is operated. This results in a short payback period of 3.8 years. This study confirms that the use of ExEBCS in district heating systems (especially GDHS) is quite suitable

  14. Global business management for sustainability and competitiveness: The role of corporate branding, corporate identity and corporate reputation

    OpenAIRE

    Gupta, Suraksha; Melewar, T.C.; Czinkota, Michael C.

    2013-01-01

    This special issue of the Journal of World Business is devoted to the role of intangibles of a firm in building sustainable business for success in competitive markets. The research articles included in this issue have contributed to the on-going academic knowledge about the ability of marketing and management practices to drive business sustainability. This special issue on business sustainabili- ty focuses on the role of corporate branding, corporate identity and corporate reputation.

  15. The concept ''environment'' in exergy analysis. Some special cases

    Energy Technology Data Exchange (ETDEWEB)

    Serova, E.N.; Brodianski, V.M. [Technical University, Moscow (Russian Federation). Moscow Power Engineering Institute

    2002-12-01

    The concept ''environment'' is of considerable importance in present-day engineering thermodynamics. Introduction of this concept in operation brings not only simplification of the methods of solving classical thermodynamic problems, but also gives the exergy method which forms the major new part of thermodynamics, including some parts of biology, economics and other fields of science. But practice shows that it is necessary to define the concept ''environment'' more precisely in some cases. (author)

  16. The wind chill temperature effect on a large-scale PV plant—an exergy approach

    DEFF Research Database (Denmark)

    Xydis, George

    2013-01-01

    In this paper, a detailed exergetic analysis based on the variation of meteorological parameters was performed for a solar power generation system. All wind and solar energy and exergy characteristics were examined in order to identify the variables that affect the power output of the photovoltaic...... disregarded atmospheric variables in planning new PV plants, in fact, do play a significant role on the plant's overall exergetic efficiency as wind chill temperature. The solar potential around a windy coastal hilly area was studied and presented on the basis of field measurements and simulations...

  17. Exergy Analysis and Second Law Efficiency of a Regenerative Brayton Cycle with Isothermal Heat Addition

    Directory of Open Access Journals (Sweden)

    Naser M. Jubeh

    2005-07-01

    Full Text Available Abstract: The effect of two heat additions, rather than one, in a gas turbine engine is analyzed from the second law of thermodynamics point of view. A regenerative Brayton cycle model is used for this study, and compared with other models of Brayton cycle. All fluid friction losses in the compressor and turbine are quantified by an isentropic efficiency term. The effect of pressure ratio, turbine inlet temperature, ambient temperature, altitude, and altitude with variable ambient temperature on irreversibility "exergy destroyed" and second law efficiency was investigated and compared for all models. The results are given graphically with the appropriate discussion and conclusion.

  18. Advanced exergy analysis of a R744 booster refrigeration system with parallel compression

    DEFF Research Database (Denmark)

    Gullo, Paride; Elmegaard, Brian; Cortella, Giovanni

    2016-01-01

    efficiencies of all the chosen compressors were extrapolated from some manufactures' data and appropriated optimization procedures of the performance of the investigated solution were implemented.According to the results associated with the conventional exergy evaluation, the gas cooler/condenser, the HS (high...... the real achievable improvements. The avoidable irreversibilities of the HS compressor and that of the MT evaporator were mainly and completely endogenous, respectively. On the other hand, the gas cooler/condenser could be predominantly improved by decreasing the inefficiencies of the MT evaporator...

  19. Features of the content of corporate contracts

    Directory of Open Access Journals (Sweden)

    Elena Petrovna Gladneva

    2015-09-01

    Full Text Available Objective to study the legal nature to reveal the peculiarities of the subject and other essential terms of corporate contracts as a technique and means of legal regulation of corporate relations. Methods general and specific methods of cognition dialectical formal logic analysis synthesis modeling structural and systemicfunctional methods as well as comparative legal logical legal historical legal grammatical methods and systemic interpretation. Results it is concluded that the object of corporate contracts includes terms about the features of implementation of corporate rights for shares and share in capital assets conditions order of the implementation of corporate rights and approval of other actions related to company management activity reorganization and liquidation the passive duty of corporate organizations to refrain from committing any action authority arising from the nature of corporate agreements as well as the active responsibilities associated with the certain implementation of corporate rights certified by stocks shares rights to stocks shares. In addition to the subject the content of corporate contractsincludes other essential necessary conditions stipulated by the corporate legislation norms and the agreement of the participants of economic entity. Scientific novelty for the first time taking into account modern achievements of civilistic jurisprudence and practice the authors investigate the relationship between the concepts of a civil contract and corporate contract give the definition of corporate contract show the specificity of the subject and other material terms of corporate contracts. Practical significance the findings can be taken into account in the further research of corporate law issues as subbranch of civil law used in law making and enforcement activities in the educational process as a teaching material in civil law. nbsp

  20. Corporate spirituality as organizational praxis

    NARCIS (Netherlands)

    drs. Eelco van den Dool

    2009-01-01

    A methodology for doing research into corporate spirituality should enable us to deal with the religious component of spirituality instead of trying to separate spirituality from religious beliefs, as the positivist school proposes. Waaijman’s phenomenological-dialogical research cycle enables us to

  1. Navigating the “paradox of openness” in energy and transport innovation: Insights from eight corporate clean technology research and development case studies

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Jeppesen, Jakob; Bandsholm, Jesper; Asmussen, Joakim; Balachandran, Rakulan; Vestergaard, Simon; Andersen, Thomas Hauerslev; Sørensen, Thomas Klode; Bjørn-Thygesen, Frans

    2017-01-01

    Using an inductive case study approach drawn from original interview data, this article investigates the innovation approaches among a sample of international energy companies, or corporate firms. It first presents a conceptual framework synthesized from the business studies, entrepreneurship, evolutionary economics, innovation studies, management science, organization studies, political science, and sociology literature. This framework suggests that corporate approaches to clean technology innovation will cut across the four dimensions of organizational multiplicity and stakeholder involvement, information sharing, coordination and control, and market orientation. It then explores how eight firms—the Algal Carbon Conversion Flagship and Aurora Algae (biofuel), DONG and Statoil (carbon capture and storage), Tesla and Volkswagen (electric vehicles), and Siemens and Vestas (offshore wind turbines)—approach clean technology development with “open innovation” attributes mixed with “closed” attributes. Although the study finds striking similarities among the particular approaches embraced by each corporate actor, it also notes that approaches are technology and firm specific, and the potential for different permutations leads to an almost endless number of possible stylistic combinations. The innovation profiles depicted also reveal conflict and competition among various stakeholders, the implication being that corporate innovation in the energy sector remains a conflicted, disjointed, and messy process. - Highlights: • Corporate firms remain under-examined in the energy studies literature. • Corporate approaches to clean technology innovation cut across “open” and “closed” attributes. • The corporate innovation profiles depicted reveal elements of conflict and competition.

  2. Evaluation of the cryogenic helium recovery process from natural gas based on flash separation by advanced exergy cost method - Linde modified process

    Science.gov (United States)

    Ansarinasab, Hojat; Mehrpooya, Mehdi; Parivazh, Mohammad Mehdi

    2017-10-01

    In this paper, exergy cost analysis method is used to evaluate a new cryogenic Helium recovery process from natural gas based on flash separation. Also advanced exergoeconomic analysis was made to determine the amount of avoidable exergy destruction cost of the process component. This proposed process can extract Helium from a feed gas stream with better efficiency than other existing processes. The results indicate that according to the avoidable endogenous exergy destruction cost C-4 (287.2/hr), C-5 (257.3/hr) and C-6 (181.6/hr) compressors should be modified first, respectively. According to the endogenous investment and exergy destruction cost, the interactions between the process components are not strong. In compressors, a high proportion of the cost of exergy destruction is avoidable while in these components, investment costs are unavoidable. In heat exchangers and air coolers, a high proportion of the exergy destruction cost is unavoidable while in these components, investment costs are avoidable. Finally, three different strategies are suggested to improve performance of each component, and the sensitivity of exergoeconomic factor and cost of exergy destruction to operating variables of the process are studied.

  3. The Corporate Marketing Department

    DEFF Research Database (Denmark)

    Ritter, Thomas; Eggert, Andreas; Münkhoff, Eva

    Corporate marketing has been downsized or eliminated in many firms. At the same time, firms that still own a corporate marketing department struggle with organizing and positioning their commercial front‐end. The question arises whether firms need a corporate marketing department, and if so, how ...... successful outcomes of corporate marketing activities. In sum, our framework provides important insights on how to successfully organize corporate marketing activities.......Corporate marketing has been downsized or eliminated in many firms. At the same time, firms that still own a corporate marketing department struggle with organizing and positioning their commercial front‐end. The question arises whether firms need a corporate marketing department, and if so, how...... it can best add value to the firm. Based on a qualitative study among B2B companies, we develop a conceptual framework highlighting the various parental roles through which corporate marketing can contribute to overall firm and business unit performance. In addition, we identify five gaps that restrain...

  4. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... to think in alternative ways such as issuing corporate bonds. A market for corporate bonds exists in countries such as Norway, Germany, France, the United Kingdom and the United States, while Denmark is still behind in this trend. Some large Danish corporations have instead used foreign corporate bonds...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...

  5. Industrial Research as a "Corporate Counterculture"? The Development of the HPO Caprolactam Process at DSM, 1956-77.

    Science.gov (United States)

    van Rooij, Arjan

    2007-07-01

    This paper focuses on the development of the hydroxylamine phosphate oxime (HPO) process for the manufacture of caprolactam, an intermediate for nylon, by Central Laboratory, the R&D organisation of the Dutch chemical company DSM. The example of the HPO process shows that Central Laboratory was independent rather than isolated. This position enabled it to develop its own view of the interest of the company and start research projects regardless of the opinion of the production and marketing functions. The example of the HPO process shows the potency of such a position but also the problems involved. As a medium-sized chemical company, DSM is a company that may be more typical for the practice of R&D between 1945 and 1970 than the large companies that historians have typically chosen for analysis.

  6. Advances in the corporate governance practices of Johannesburg ...

    African Journals Online (AJOL)

    Given the paucity of research on corporate governance in the country, the researchers set out to investigate the corporate governance practices of 230 companies listed on the Johannesburg Stock Exchange over the period 2002 to 2010. Annual corporate governance scores were compiled by means of content analysis of ...

  7. Optimal selection among different domestic energy consumption patterns based on energy and exergy analysis

    International Nuclear Information System (INIS)

    Lu, S.; Wu, J.Y.

    2010-01-01

    In China market, people have many choices for air conditioning of their apartments, including heat-pump systems or gas-fired boilers for heating and air conditioners for cooling. Domestic hot water is usually provided by domestic water heaters making use of electricity or natural gas, which are known for their great energy costs. These systems consume much energy and increase the total cost of required domestic energy. A novel system combining heat pump with water heater is proposed in this paper, and it is named domestic energy system. The system can realize the provision of space heating, cooling and domestic hot water throughout a year. Based on different types of air conditioners, space heating equipments and water heaters, domestic energy consumption patterns are concluded to be eight categories. This study describes and compares the eight domestic energy consumption patterns by economic analysis and prime energy analysis method. Results show that the domestic energy system can provide good economy and save energy significantly. Furthermore, exergy analysis method is employed to compare the exergy efficiencies of different energy consumption systems. The results show that the domestic energy system has the highest energy conversion efficiency and can make remarkable contribution to social energy saving.

  8. Exergy loss analysis of heat transfer across the wall of the dividing-wall distillation column

    International Nuclear Information System (INIS)

    Suphanit, B.; Bischert, A.; Narataruksa, P.

    2007-01-01

    The dividing-wall distillation column is thermodynamically equivalent to the Petlyuk column on the condition that no heat transfer is allowed across the dividing wall. However, better energy efficiency of the column may be obtained if heat transfer occurs within a certain part of the wall. The effects of heat transfer across the dividing wall can be analyzed by using the column grand composite curve (CGCC). The heat transfer potential across the wall can be observed by looking at the CGCC of both column sections alongside the dividing wall. However, the possibility of whether heat should be added or rejected at any stage is not clearly known ahead of the CGCC. Consequently, in this work, the exergy analysis is applied to the dividing-wall column in order to determine whether heat should be added or rejected at any particular stage. Also, the minimum exergy loss value in the column is set as the criterion for determining the heat load targets at any stage. These load targets can then be plotted as a T-H profile similar to the CGCC. This methodology was reported to successfully apply to the column with multiple feeds and products. After having identified the locations and quantities of the feasible heat transfer across the dividing wall, the benefits are discussed via three case studies

  9. Preliminary Assessment of Noise Pollution Prevention in Wind Turbines Based on an Exergy Approach

    Directory of Open Access Journals (Sweden)

    Ofelia A. Jianu

    2017-06-01

    Full Text Available Most existing methods for energy transformation and use are inadvertently contaminating our watersupplies, releasing greenhouse gasses into the atmosphere, emitting compounds that diminish the earth'sprotective blanket of ozone, and depleting the earth's crust of natural resources. As a result, scientists andengineers are increasingly pursuing sustainable technologies so that costs associated with global warmingcan be minimized and adverse impact on living organisms can be prevented. A promising sustainablemethod is to harness energy from the wind via wind turbines. However, the noise generated by wind turbinesproves to be one of the most significant hindrances to the extensive use of wind turbines. In this study,noise generation produced by flow over objects is investigated to characterize the noise generated due toflow-structure interaction and aeroacoustics. As a benchmark, flow over a cylinder has been chosen for thisstudy, with the aim of correlating three main characteristics in noise generation. Hence, the generated soundpressure level, exergy destroyed and the normal flow velocity (∪ ∞ are employed to characterize the systemin order to relate the exergy destruction to the noise generated in the flow. The correlation has the potentialto be used in wind turbine designs to minimize noise pollution due to aerodynamic noise.

  10. Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Gholampour, Maysam; Ameri, Mehran

    2016-01-01

    Highlights: • A Photovoltaic/Thermal flat transpired collector was theoretically and experimentally studied. • Performance of PV/Thermal flat transpired plate was evaluated using equivalent thermal, first, and second law efficiencies. • According to the actual exergy gain, a critical radiation level was defined and its effect was investigated. • As an appropriate tool, equivalent thermal efficiency was used to find optimum suction velocity and PV coverage percent. - Abstract: PV/Thermal flat transpired plate is a kind of air-based hybrid Photovoltaic/Thermal (PV/T) system concurrently producing both thermal and electrical energy. In order to develop a predictive model, validate, and investigate the PV/Thermal flat transpired plate capabilities, a prototype was fabricated and tested under outdoor conditions at Shahid Bahonar University of Kerman in Kerman, Iran. In order to develop a mathematical model, correlations for Nusselt numbers for PV panel and transpired plate were derived using CFD technique. Good agreement was obtained between measured and simulated values, with the maximum relative root mean square percent deviation (RMSE) being 9.13% and minimum correlation coefficient (R-squared) 0.92. Based on the critical radiation level defined in terms of the actual exergy gain, it was found that with proper fan and MPPT devices, there is no concern about the critical radiation level. To provide a guideline for designers, using equivalent thermal efficiency as an appropriate tool, optimum values for suction velocity and PV coverage percent under different conditions were obtained.

  11. Energy and Exergy Analysis of Ocean Compressed Air Energy Storage Concepts

    Directory of Open Access Journals (Sweden)

    Vikram C. Patil

    2018-01-01

    Full Text Available Optimal utilization of renewable energy resources needs energy storage capability in integration with the electric grid. Ocean compressed air energy storage (OCAES can provide promising large-scale energy storage. In OCAES, energy is stored in the form of compressed air under the ocean. Underwater energy storage results in a constant-pressure storage system which has potential to show high efficiency compared to constant-volume energy storage. Various OCAES concepts, namely, diabatic, adiabatic, and isothermal OCAES, are possible based on the handling of heat in the system. These OCAES concepts are assessed using energy and exergy analysis in this paper. Roundtrip efficiency of liquid piston based OCAES is also investigated using an experimental liquid piston compressor. Further, the potential of improved efficiency of liquid piston based OCAES with use of various heat transfer enhancement techniques is investigated. Results show that adiabatic OCAES shows improved efficiency over diabatic OCAES by storing thermal exergy in thermal energy storage and isothermal OCAES shows significantly higher efficiency over adiabatic and diabatic OCAES. Liquid piston based OCAES is estimated to show roundtrip efficiency of about 45% and use of heat transfer enhancement in liquid piston has potential to improve roundtrip efficiency of liquid piston based OCAES up to 62%.

  12. Energy and exergy evaluation of a tri-generation system driven by the geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Akrami, Ehsan; Mahmoudi, S. M. S. [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Chitsaz, Ata [Faculty of Mechanical Engineering, Urmia University, Urmia (Iran, Islamic Republic of); Ghamari, Pooria [Faculty of Mechanical Engineering, Urmia University of Technology Urmia (Iran, Islamic Republic of)

    2017-01-15

    In this paper, a geothermal-based tri-generation energy system with three useful outputs is clearly developed to produce electricity, heating and hydrogen. To have a better view of the thermodynamic performance of the present integrated system, parametric studies upon the effects of geofluid mass flow rate, turbine inlet temperature and pressure on the energy and exergy efficiencies of the system are undertaken. Under the specified circumstances, the related efficiencies of energy and exergy for the overall system are estimated around 26.14 % and 44.45 %, respectively, while these efficiencies for this system with electricity and heating generation, amount to 25.32 % and 39.75 %, and these amounts for solely electricity generation are 6 % and 33.47 %, respectively. Also the amount of net electricity power and heating generation in specific design parameter values are estimated around 43.47 (kW) and 149.8 (kW), respectively. In addition, for every 10.4 kW of electrical energy consumption in the electrolysis unit, pure hydrogen will be produced at a rate of 0.2 kg/hour.

  13. Exergy-analysis based comparative study of absorption refrigeration and electric compression refrigeration in CCHP systems

    International Nuclear Information System (INIS)

    Li, Yajun; Hu, Rentian

    2016-01-01

    Highlights: • Performs a comparative study between two different refrigeration systems in CCHP. • Focuses on the impact of steam transport distance on energy and exergy efficiency. • The choice of refrigeration system in CCHP under given conditions is presented. - Abstract: Fueling with natural gas, combined cooling, heating and power (CCHP) system is expected to be widely applied in China, for its potential on energy efficiency and CO 2 emissions reduction. In the design of CCHP, the choice of refrigeration system is now a hot topic because it greatly influences the performance. This paper has made a comparative study between the absorption refrigeration system and electric compression refrigeration system, in terms of exergy efficiency of refrigeration system in CCHP and energy efficiency of CCHP. A GE 9171E gas–steam combined cycle based CCHP system is chosen and analyzed as an example. The comparative study shows that the distance between power station and refrigeration station, namely the steam transport distance, has an effect on the performances of absorption refrigeration system in CCHP and CCHP based on it. As a result, under the conditions studied, absorption refrigeration is more effective when the distance is shorter than 5 km, and if longer than 9.3 km, electric compression refrigeration is a better choice. With distance between 5 and 9.3 km, the kind of refrigeration should depend on specific conditions. This paper does make important guiding significance for the choice of refrigeration system in the design of CCHP.

  14. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  15. Customers' values, beliefs on sustainable corporate performance, and buying behavior

    NARCIS (Netherlands)

    Collins, Christy M.; Steg, Linda

    Sustainable corporate performance (SCP) requires balancing a corporation's economic, social, and environmental performance. This research explores values, beliefs about the importance of SCP, and buying behaviors of supermarket customers from within a stakeholder framework. Beliefs about the

  16. Energy and Exergy Analysis of Kalina Cycle for the Utilization of Waste Heat in Brine Water for Indonesian Geothermal Field

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2015-04-01

    Full Text Available The utilization of waste heat in a power plant system—which would otherwise be released back to the environment—in order to produce additional power increases the efficiency of the system itself. The purpose of this study is to present an energy and exergy analysis of Kalina Cycle System (KCS 11, which is proposed to be utilized to generate additional electric power from the waste heat contained in geothermal brine water available in the Lahendong Geothermal power plant site in North Sulawesi, Indonesia. A modeling application on energy and exergy system is used to study the design of thermal system which uses KCS 11. To obtain the maximum power output and maximum efficiency, the system is optimized based on the mass fraction of working fluid (ammonia-water, as well as based on the turbine exhaust pressure. The result of the simulation is the optimum theoretical performance of KCS 11, which has the highest possible power output and efficiency. The energy flow diagram and exergy diagram (Grassman diagram was also presented for KCS 11 optimum system to give quantitative information regarding energy flow from the heat source to system components and the proportion of the exergy input dissipated in the various system components.

  17. Energy and exergy analysis of cookstove by using Cedrus deodara (deodar wood) and saccharum officinarum (sugar cane) waste

    Science.gov (United States)

    Chouhan, A. P. Singh; Yaseen, S.; Pruthi, A.

    2017-07-01

    Deodar (Cedrus deodara) wood collected from the Kashmir region in India. This study is focused on energy and exergy analysis of cook stove by using deodar wood, demand of a cookstove is higher in rural areas. In ancient time U-shaped and three stone cook stove was used, but they emitted greenhouse gases CO and CO2 in the environment and these toxic emissions are also dangerous for human being and the environment. Sampada model cook stove used for the analysis of energy an exergy by using water boiling test with using deodar wood and bagasse samples and a mixture of wood and bagasse also used. Wood and bagasse characterized for the ultimate, proximate, calorific value before the water boiling test of the cookstove. Results carried out that the efficiency of cook stove with deodar wood was 33.33 % and exergy calculated 2.1 % and energy efficiency and energy efficiency by using bagasse were 23.23 % and 0.43 %, respectively, and wood and bagasse mixture ratio given energy and exergy efficiencies for ratios 75:25 is the best ratio of energy production. These results indicated that deodar wood is more stable because thermal stability of wood is greater than bagasse. Deodar is a suitable source for the combustion purposes of higher energy production.

  18. Two Examples of Exergy Optimization Regarding the “Thermo-Frigopump” and Combined Heat and Power Systems

    Directory of Open Access Journals (Sweden)

    Michel Feidt

    2013-02-01

    Full Text Available In a recent review an optimal thermodynamics and associated new upper bounds have been proposed, but it was only relative to power delivered by engines. In fact, it appears that for systems and processes with more than one utility (mainly mechanical or electrical power, energy conservation (First Law is limited for representing their efficiency. Consequently, exergy analysis combining the First and Second Law seems essential for optimization of systems or processes situated in their environment. For thermomechanical systems recent papers report on comparisons between energy and exergy analysis and corresponding optimization, but the proposed models mainly use heat transfer conductance modelling, except for internal combustion engine. Here we propose to reconsider direct and inverse configurations of Carnot machines, with two examples. The first example is concerned with “thermofrigo-pump” where the two utilities are hot and cold thermal exergies due to the difference in the temperature level compared to the ambient one. The second one is relative to a “combined heat and power” (CHP system. In the two cases, the model is developed based on the Carnot approach, and use of the efficiency-NTU method to characterize the heat exchangers. Obtained results are original thermodynamics optima, that represent exergy upper bounds for these two cases. Extension of the proposed method to other systems and processes is examined, with added technical constraints or not.

  19. Exergy and Exergoenvironmental Analysis of a CCHP System Based on a Parallel Flow Double-Effect Absorption Chiller

    Directory of Open Access Journals (Sweden)

    Ali Mousafarash

    2016-01-01

    Full Text Available A combined cooling, heating, and power (CCHP system which produces electricity, heating, and cooling is modeled and analyzed. This system is comprised of a gas turbine, a heat recovery steam generator, and a double-effect absorption chiller. Exergy analysis is conducted to address the magnitude and the location of irreversibilities. In order to enhance understanding, a comprehensive parametric study is performed to see the effect of some major design parameters on the system performance. These design parameters are compressor pressure ratio, gas turbine inlet temperature, gas turbine isentropic efficiency, compressor isentropic efficiency, and temperature of absorption chiller generator inlet. The results show that exergy efficiency of the CCHP system is higher than the power generation system and the cogeneration system. In addition, the results indicate that when waste heat is utilized in the heat recovery steam generator, the greenhouse gasses are reduced when the fixed power output is generated. According to the parametric study results, an increase in compressor pressure ratio shows that the network output first increases and then decreases. Furthermore, an increase in gas turbine inlet temperature increases the system exergy efficiency, decreasing the total exergy destruction rate consequently.

  20. Improving the exergy efficiency of a cryogenic air separation unit as part of an integrated gasification combined cycle

    International Nuclear Information System (INIS)

    Ham, L.V. van der

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Cryogenic air separation as part of an integrated gasification combined cycle. ► Considerable improvements in the exergy efficiency of a two-column design. ► Heating the separation products using heat of compression. ► Improving heat integration of the columns using heat-integrated distillation stages. - Abstract: The efficiency of a two-column cryogenic ASU (air separation unit) that is part of an IGCC (integrated gasification combined cycle) can be increased significantly by making better use of the heat of compression and by improving the heat integration of the distillation columns. The rational exergy efficiency of the ASU, which is defined as the desired increase in exergy content of the products divided by the amount of work that is added to the process, can be increased from 35% to over 70%. The exergy destruction per amount of feed is reduced with 1.6 kJ/mol air, corresponding to a 0.74% increase in the net electric efficiency of the IGCC. The efficiencies are expected to increase even further because the full potential of using heat-integrated distillation columns is not yet achieved.

  1. CORPORATE GOVERNANCE IN MALAYSIA: THE EFFECT OF CORPORATE REFORMS AND STATE BUSINESS RELATION IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    Nor Azizah Zainal Abidin

    2007-01-01

    Full Text Available The Asian Financial Crisis in 1997 not only introduced the term of corporate governance but also drew attention of the public about the weaknesses of Malaysian corporate governance practice. After 1998, Malaysian government decided to adopt corporate reform that could enhance the quality of good corporate management practice. Thisreform is clearly stated in the code and rules of corporate governance. The purpose of this research is to study the significance of implementing the code and rules of corporategovernance since the public already realize the close relationship between business and politics. Three companies were chosen as indicators for this study. As a result, it was found that companies which are involved in corporate malpractice but have goodrelationship with states will always be excluded from the legal corporate action.

  2. changing perceptions of discipline and corporal punishment

    African Journals Online (AJOL)

    a learner [pupil] at school, research indicates that the practice of corporal punishment has not abated in schools in .... on their academic performance now becomes a mechanism to control discipline. Through the Foucauldian lens of ...... Vally S & Ramadiro B (ed.) 2006. Corporal Punishment and Bullying: The Rights of.

  3. Universities and Corporate Social Responsibility Performance: An ...

    African Journals Online (AJOL)

    Toshiba

    used as the research method while personal interview was used to .... organisations have moral, ethical and philanthropic responsibilities in addition to their ... responsibilities. Explicit corporate social responsibility is about corporate policies with the objective of being responsible for what the society is interested in. Explicit ...

  4. Corporate social responsibility and psychological contract: towards ...

    African Journals Online (AJOL)

    There is growing concern about the activities of business in society. Much attention is drawn to the changing nature of the relationship between corporations and society which has increased the demand for organisations to recognise their corporate social responsibility (CSR). This research explores an understanding of the ...

  5. A novel syngas-fired hybrid heating source for solar-thermal applications: Energy and exergy analysis

    International Nuclear Information System (INIS)

    Pramanik, Santanu; Ravikrishna, R.V.

    2016-01-01

    Highlights: • Biomass-derived syngas as a hybrid energy source for solar thermal power plants. • A novel combustor concept using rich-catalytic and MILD combustion technologies. • Hybrid energy source for a solar-driven supercritical CO 2 -based Brayton cycle. • Comprehensive energetic and exergetic analysis of the combined system. - Abstract: A hybrid heating source using biomass-derived syngas is proposed to enable continuous operation of standalone solar thermal power generation plants. A novel, two-stage, low temperature combustion system is proposed that has the potential to provide stable combustion of syngas with near-zero NO x emissions. The hybrid heating system consists of a downdraft gasifier, a two-stage combustion system, and other auxiliaries. When integrated with a solar cycle, the entire system can be referred to as the integrated gasification solar combined cycle (IGSCC). The supercritical CO 2 Brayton cycle (SCO 2 ) is selected for the solar cycle due to its high efficiency. The thermodynamic performance evaluation of the individual unit and the combined system has been conducted from both energy and exergy considerations. The effect of parameters such as gasification temperature, biomass moisture content, equivalence ratio, and pressure ratio is studied. The efficiency of the IGSCC exhibited a non-monotonic behavior. A maximum thermal efficiency of 36.5% was achieved at an overall equivalence ratio of 0.22 and pressure ratio of 2.75 when the gasifier was operating at T g = 1073 K with biomass containing 20% moisture. The efficiency increased to 40.8% when dry biomass was gasified at a temperature of 973 K. The exergy analysis revealed that the maximum exergy destruction occurred in the gasification system, followed by the combustion system, SCO 2 cycle, and regenerator. The exergy analysis also showed that 8.72% of the total exergy is lost in the exhaust; however, this can be utilized for drying of the biomass.

  6. The effect of corporate social responsibility on consumer satisfaction and perceived value: the case of the automobile industry sector in Portugal

    NARCIS (Netherlands)

    Loureiro, S.M.C.; Dias-Sardinha, I.M.; Reijnders, L.

    2012-01-01

    Previous research has suggested that a good record of corporate social responsibility (CSR) or corporate social performance (CSP) positively influences corporate financial performance (CFP) by lowering costs and increasing productivity. Corporate financial performance might also be impacted by the

  7. Corporate Consumer Contact API

    Data.gov (United States)

    General Services Administration — The data in the Corporate Consumer Contact API is based on the content you can find in the Corporate Consumer Contact listing in the Consumer Action Handbook (PDF)....

  8. Fortune 500 Corporate Headquarters

    Data.gov (United States)

    Department of Homeland Security — Large Corporate Headquarters in the United States This database is composed of 'an annual list of the 500 largest industrial corporations in the U.S., published by...

  9. Corporations and pedagogical devices: the training strategy of de capital

    Directory of Open Access Journals (Sweden)

    Claudia Figari

    2015-05-01

    Full Text Available The article focuses on the study of the processes of labor discipline in Argentine subsidiaries of large corporations. We argue that these processes are related to corporate pedagogical devices that extend inside the factory and beyond its borders. Specifically we delve into the complex linkages between the consolidation of corporate hegemony and corporate pedagogical devices. Thus, we study these various complex and linked devices that enable the corporate doctrine’s transpositions to everyday work. The paper provides conceptual and empirical advances and presents findings from research conducted in a steel and automotive company, according to a qualitative perspective and multiple case study methodology. We analyze the consolidated corporate systems and we highlight the central role of corporate training and the formation of collaborative and competes / competitive employees in its implementation. Similarly, we emphasize the extension of corporate systems in the extra-productive scenarios through Corporate Social Responsibility practices.

  10. Corporate Business Diplomacy

    DEFF Research Database (Denmark)

    Søndergaard, Mikael

    2014-01-01

    This article illustrates the interdisciplinary nature of the field of corporate business diplomacy using examples from academic disciplines, such as economics and political science, which can contribute to the understanding of corporate business diplomacy. Examples also show that corporate business...... diplomacy can complement business theories such as stakeholder theory and agency theory. Examples from practice show that in a broad sense, corporate business diplomacy is concerned with managing external stakeholders, while in a narrow sense, it is concerned with managing internal stakeholders...

  11. Corporate communications impact on corporate image and corporate competitiveness

    OpenAIRE

    Valentina Pirić

    2008-01-01

    The subject of this paper is an analysis of the impact of corporate communications and of the intensity of their application on a company’s image management, and an emphasis of the role that a company’s image plays as one of the fundamental sources of its competitiveness in contemporary market conditions. Through review and analysis of theoretical contributions, the paper shows how corporate communications integrate management, organization and the marketing communication dimension at the lev...

  12. Corporate Foresight: Antecedents and Contributions to Innovation Performance

    DEFF Research Database (Denmark)

    Jissink, Tymen; Rohrbeck, René; Huizingh, Eelko K.R.E.

    In this paper we explore the current understanding of corporate foresight as a system for creating understandings of possible futures, factors that drive the need and usage of corporate foresight as well as how corporate foresight can contribute to a firm’s innovation performance. Drawing upon...... still limited research on corporate foresight, we find that 1) there is still little consensus on the concept of corporate foresight, 2) the need for corporate foresight can originate from both internal and external factors, and 3) innovation performance can be positively influenced by a number...

  13. Energy and Exergy Balances for Modern Diesel and Gasoline Engines Bilans d’énergie et d’exergie pour des moteurs Diesel et essence récents

    Directory of Open Access Journals (Sweden)

    Bourhis G.

    2009-11-01

    Full Text Available The aim is here to evaluate the difference between the energy and exergy (or available energy balances when heat recovery is considered in an internal combustion engine. In the first case, the entropy of the system is not taken into account so that, the maximum useful work recoverable from a system can not be estimated. Then, the second case is much more adapted to estimate heat recovery potential. In this paper, two modern engines are evaluated. First, an up-to-date gasoline engine: three-cylinder, downsized, low friction, then a modern common rail downsized Diesel engine. For each one, two energy and exergy balances are given for two different part-load operating points representative of the NEDC cycle using experimental data from steady state engine test benches. For the Diesel engine, it is shown that effective work represents around 30% and that around 55% of the energy introduced into the combustion chamber is lost (in the form of heat, especially in exhaust gas, in water coolant and oil. But when considering exergy balance, only 12% of the total exergy introduced through the fuel can be recovered, in order to produce useful work. Expecting a 25% exergy recovery efficiency, the effective engine efficiency could be increased by 10%. For the gasoline engine, the increase of the output work could be around 15%. L’objectif est ici d’évaluer la différence entre bilan d’énergie et d’exergie (ou énergie utile pour des moteurs à combustion interne lorsque la problématique de récupération d’énergie est prise en compte. Dans le premier cas, l’entropie du système n’est pas considérée, si bien que le travail utile maximal qu’il est possible de récupérer d’un système ne peut pas être estimé. Tandis que le second cas est bien mieux adapté pour estimer le potentiel de la récupération d’énergie. Dans cet article, deux moteurs modernes sont étudiés. Le premier est un moteur essence récent, 3 cylindres, de cylindr

  14. Speaking of Corporate Social Responsibility

    NARCIS (Netherlands)

    Liang, H.; Marquis, C.; Renneboog, L.D.R.; Li Sun, Sunny

    2014-01-01

    We argue that the language spoken by corporate decision makers influences their firms’ social responsibility and sustainability practices. Linguists suggest that obligatory future-time-reference (FTR) in a language reduces the psychological importance of the future. Prior research has shown that

  15. Information and Corporate Cultures.

    Science.gov (United States)

    Drake, Miriam A.

    1984-01-01

    This paper defines "corporate culture" (set of values and beliefs shared by people working in an organization which represents employees' collective judgments about future) and discusses importance of corporate culture, nature of corporate cultures in business and academia, and role of information in shaping present and future corporate…

  16. Evolution of Corporate Essence

    DEFF Research Database (Denmark)

    Fomcenco, Alex

    2016-01-01

    , it offers a legal framework where public benefit is more important than profits. As a corporate entity, Public Benefit Corporation already exists in numerous jurisdictions and those jurisdictions that do not yet facilitate creation of this corporate form should most definitely consider it....

  17. Implementation of corporate governance principles in Romania

    Directory of Open Access Journals (Sweden)

    Ramona Iulia Țarțavulea (Dieaconescu

    2014-12-01

    Full Text Available The paper aims to conduct a study regarding the manner in which corporate governance principles are applied in Romania, in both public and private sector. In the first part of the paper, the corporate governance principles are presented as they are defined in Romania, in comparison with the main international sources of interest in the domain (OECD corporate governance principles, UE legal framework. The corporate governance (CG principles refer to issues regarding board composition, transparency of scope, objectives and policies; they define the relations between directors and managers, shareholders and stakeholders. The research methodology is based on both fundamental research and empirical study on the implementation of corporate governance principles in companies from Romania. The main instrument of research is a corporate governance index, calculated based on a framework proposed by the author. The corporate governance principles are transposed in criteria that compose the framework for the CG index. The results of the study consist of scores for each CG principles and calculation of CG index for seven companies selected from the public and private sector in Romania. The results are analyzed and discussed in order to formulate general and particular recommendations. The main conclusion of this study is that that a legal framework in the area of corporate governance regulation is needed in Romania. I consider that the main CG principles should be enforced by developing a mandatory legal framework.

  18. Exergy analysis in a space with ceiling shield; Analisis exegetico en un espacio con techo escudo

    Energy Technology Data Exchange (ETDEWEB)

    Laboratorio de Energia Solar, Universidad Nacional Autonoma de Mexico (Mexico)

    2009-07-15

    The Solar Laboratory of Energy (LES) of the Universidad Nacional Autonoma de Mexico (UNAM) was designed to be comfortable in spite of the extreme climate where it was built. One of the novel characteristics was the shield type ceiling used in cubicles. In order to compare the effect that had had with respect to the environmental conditions, one had to resort to an exergy analysis, since exergy is a measurement of the capacity of the energy to carry out a work. As a first system the data of the national meteorological system as initial conditions were used. The comparative system used as initial conditions the temperature and relative humidity measurements obtained in 1992 in a cubicle of the LES. Both systems were taken as open. The final conditions were settled at 25 Celsius degrees and 50% of relative humidity in a first case and variables (with respect to the perimeter a comfort zone) in a second case. The saving obtained was of 69% and 33% respectively. Although it is not possible to determine what percentage corresponds to the exclusive saving of the ceiling shield, we see that the cover all altogether, presents a significant exergy saving in respect to modifying the environmental conditions directly. [Spanish] El Laboratorio de Energia Solar (LES) de la Universidad Nacional Autonoma de Mexico (UNAM) fue disenado para ser confortable a pesar del clima extremoso donde fue construido. Una de las caracteristicas novedosas fue el uso de techo tipo escudo en cubiculo. Para comparar el efecto que se tuvo respecto a las condiciones ambientales, se recurrio a un analisis exergetico, ya que la exergia es una medida de la capacidad de la energia para realizar un trabajo. Como un primer sistema se utilizaron los datos del sistema meteorologico nacional como condiciones iniciales. El sistema comparativo utilizo como condiciones iniciales las mediciones de temperatura y humedad relativas obtenidas en 1992 en un cubiculo del LES. Ambos sistemas fueron tomados como abiertos

  19. Corporate entrepreneurship - Distilling the concept

    Directory of Open Access Journals (Sweden)

    Colene Hind

    2015-07-01

    Full Text Available Background: Corporate entrepreneurship (CE is credited for many positive organisational outcomes, including systemic growth and increased revenue. Several terms associated with CE, including strategic renewal, corporate venturing and intrapreneurship are frequently used interchangeably and often confuse scholars, researchers and practitioners. The lack of clarity about the exact meaning of these terms is detrimental to the synergy in the current body of knowledge and the development of models involving these concepts. Objective: The aim of this paper was to describe CE as a unique concept, distinguishable from related concepts. Methodology: Several definitions of CE as well as the related terms were dissected, to identify core elements associated with each of them. The validity of these comprehensive definitions was tested by requesting 68 master’s degree students to classify the definitions. Inter-rater reliabilities were calculated in order to assess the level of agreement in the classification of the constructs. Results: The results indicate that CE is difficult to distinguish from strategic renewal and corporate venturing, but that intrapreneurship seems to be better defined and separate from the other constructs. Conclusion: These results emphasise the conceptual confusion that exists around CE and the need for further clarification of terminology. KEY WORDS Corporate entrepreneurship, strategic renewal, corporate venturing, intrapreneurship.

  20. Towards modeling of combined cooling, heating and power system with artificial neural network for exergy destruction and exergy efficiency prognostication of tri-generation components

    International Nuclear Information System (INIS)

    Taghavifar, Hadi; Anvari, Simin; Saray, Rahim Khoshbakhti; Khalilarya, Shahram; Jafarmadar, Samad; Taghavifar, Hamid

    2015-01-01

    The current study is an attempt to address the investigation of the CCHP (combined cooling, heating and power) system when 10 input variables were chosen to analyze 10 most important objective output parameters. Moreover, ANN (artificial neural network) was successfully applied on the tri-generation system on account of its capability to predict responses with great confidence. The results of sensitivity analysis were considered as foundation for selecting the most suitable and potent input parameters of the supposed cycle. Furthermore, the best ANN topology was attained based on the least amount of MSE and number of iterations. Consequently, the trainlm (Levenberg–Marquardt) training approach with 10-9-10 configuration has been exploited for ANN modeling in order to give the best output correspondence. The maximum MRE = 1.75% (mean relative error) and minimum R 2  = 0.984 represents the reliability and outperformance of the developed ANN over common conventional thermodynamic analysis carried out by EES (engineering equation solver) software. - Highlights: • Exergy analysis is undertaken for CCHP components based on operative factors. • ANN tool is applied to obtained database from thermodynamic analyses session. • The best ANN topology is detected at 10-9-10 with trainlm learning algorithm. • The input and output layer parameters were selected based on sensitivity analysis.

  1. Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier

    International Nuclear Information System (INIS)

    Mrzljak, Vedran; Poljak, Igor; Mrakovčić, Tomislav

    2017-01-01

    Highlights: • Two low-power steam turbines in the LNG carrier propulsion plant were investigated. • Energy and exergy efficiencies of both steam turbines vary between 46% and 62%. • The ambient temperature has a low impact on exergy efficiency of analyzed turbines. • The maximum efficiencies area of both turbines was investigated. • A method for increasing the turbo-generator efficiencies by 1–3% is presented. - Abstract: Nowadays, marine propulsion systems are mainly based on internal combustion diesel engines. Despite this fact, a number of LNG carriers have steam propulsion plants. In such plants, steam turbines are used not only for ship propulsion, but also for electrical power generation and main feed water pump drive. Marine turbo-generators and steam turbine for the main feed water pump drive were investigated on the analyzed LNG carrier with steam propulsion plant. The measurements of various operating parameters were performed and obtained data were used for energy and exergy analysis. All the measurements and calculations were performed during the ship acceleration. The analysis shows that the energy and exergy efficiencies of both analyzed low-power turbines vary between 46% and 62% what is significantly lower in comparison with the high-power steam turbines. The ambient temperature has a low impact on exergy efficiency of analyzed turbines (change in ambient temperature for 10 °C causes less than 1% change in exergy efficiency). The highest exergy efficiencies were achieved at the lowest observed ambient temperature. Also, the highest efficiencies were achieved at 71.5% of maximum developed turbo-generator power while the highest efficiencies of steam turbine for the main feed water pump drive were achieved at maximum turbine developed power. Replacing the existing steam turbine for the main feed water pump drive with an electric motor would increase the turbo-generator energy and exergy efficiencies for at least 1–3% in all analyzed

  2. Corporate governance and the audit committee as part of Corporate Social Responsibility

    OpenAIRE

    Mancilla Rendón María Enriqueta; Saavedra García María Luisa

    2015-01-01

    The purpose of this paper is to study the principles of the international standard ISO 26000, and the relation between social responsibility and internal control rules management organizations establish their business and relationship with Corporate Social Responsibility the board of directors and the audit committee to strengthen corporate trust and manage corporate risk. The research is based on a survey of companies listed on the Mexican stock market, in 2011. The variables have been studi...

  3. Multilevel corporate environmental responsibility.

    Science.gov (United States)

    Karassin, Orr; Bar-Haim, Aviad

    2016-12-01

    The multilevel empirical study of the antecedents of corporate social responsibility (CSR) has been identified as "the first knowledge gap" in CSR research. Based on an extensive literature review, the present study outlines a conceptual multilevel model of CSR, then designs and empirically validates an operational multilevel model of the principal driving factors affecting corporate environmental responsibility (CER), as a measure of CSR. Both conceptual and operational models incorporate three levels of analysis: institutional, organizational, and individual. The multilevel nature of the design allows for the assessment of the relative importance of the levels and of their components in the achievement of CER. Unweighted least squares (ULS) regression analysis reveals that the institutional-level variables have medium relationships with CER, some variables having a negative effect. The organizational level is revealed as having strong and positive significant relationships with CER, with organizational culture and managers' attitudes and behaviors as significant driving forces. The study demonstrates the importance of multilevel analysis in improving the understanding of CSR drivers, relative to single level models, even if the significance of specific drivers and levels may vary by context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Corporate Governance and Share Price: Evidence from listed Firms ...

    African Journals Online (AJOL)

    Most companies in Nigeria adopt corporate governance practices without really knowing the resultant effects on share price. Although there have been numerous research efforts on corporate governance and company performance in Nigeria, little has been done concerning finding out the effects of the corporate ...

  5. Company engagement with nongovernmental organizations from a corporate responsibility perspective

    OpenAIRE

    Kourula, Arno

    2009-01-01

    Organizations from a Corporate Responsibility Perspective Purpose – This doctoral dissertation examines the relationship between corporations and nongovernmental organizations (NGOs). The key research question of the thesis is the following: Why and how do companies engage with nongovernmental organizations to demonstrate corporate responsibility in different institutional contexts? The most important motives for engaging with NGOs include gaining legitimacy and knowledge, managing risk, impr...

  6. Performance enhancement of solar latent heat thermal storage system with particle dispersion - an exergy approach

    Energy Technology Data Exchange (ETDEWEB)

    Jegadheeswaran, Selvaraj; Pohekar, Sanjay D. [Mechanical Engineering Area, Tolani Maritime Institute, Induri, Pune (India); Kousksou, Tarik [Laboratoire de Thermique Energetique et Procedes, Pau (France)

    2011-10-15

    Phase change material (PCM) employed latent heat thermal storage (LHTS) system has been showing good potential over the years for energy management, particularly in solar energy systems. However, enhancement in thermal conductivity of PCMs is emphasized as PCMs are known for their poor thermal conductivity. In this work, the thermal performance of a shell and tube LHTS module containing PCM-metal particles composite is investigated while charging and is compared with that of pure PCM system. The effect of particle dispersion on latent heat capacity of pure PCM is also analyzed. Enthalpy based governing equations are solved numerically adopting FLUENT code. Exergy based performance evaluation is taken as a main aspect. The numerical results are presented for various operating conditions of heat transfer fluid (HTF) and indicate considerable performance improvement of the system when particles are dispersed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Sensitivity of energy and exergy performances of heating and cooling systems to auxiliary components

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2017-01-01

    Heating and cooling systems in buildings consist of three main subsystems: heating/cooling plant, distribution system, and indoor terminal unit. The choice of indoor terminal unit determines the characteristics of the distribution system and the heating and cooling plants that can be used....... Different forms of energy (electricity and heat) are used in heating and cooling systems, and therefore, a holistic approach to system design and analysis is needed. In particular, distribution systems use electricity as a direct input to pumps and fans, and to other components. Therefore, exergy concept...... should be used in design and analysis of the whole heating and cooling systems, in addition to the energy analysis. In this study, water-based (floor heating and cooling, and radiator heating) and air-based (air heating and cooling) heating and cooling systems were compared in terms of their energy use...

  8. Effects of Floor Covering Resistance of a Radiant Floor on System Energy and Exergy Performances

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Floor covering resistance (material and thickness) can be influenced by subjective choices (architectural design, interior design, texture, etc.) with significant effects on the performance of a radiant heating and cooling system. To study the effects of floor covering resistance on system...... performance, a water-based radiant floor heating and cooling system (dry, wooden construction) was considered to be coupled to an air-to-water heat pump, and the effects of varying floor covering resistances (0.05 m2K/W, 0.09 m2K/W and 0.15 m2K/W) on system performance were analyzed in terms of energy...... and exergy. In order to achieve the same heating and cooling outputs, higher average water temperatures are required in the heating mode (and lower temperatures in the cooling mode) with increasing floor covering resistance. These temperature requirements decrease the heat pump’s performance (lower...

  9. Coal to SNG: Technical progress, modeling and system optimization through exergy analysis

    International Nuclear Information System (INIS)

    Li, Sheng; Ji, Xiaozhou; Zhang, Xiaosong; Gao, Lin; Jin, Hongguang

    2014-01-01

    Highlights: • Technical progresses of coal to SNG technologies are reported. • The entire coal to SNG system is modeled. • Coupling between SNG production and power generation is investigated. • Breakthrough points for further energy saving are determined. • System performance is optimized based on the first and second laws of thermodynamics. - Abstract: For both energy security and CO 2 emission reduction, synthetic natural gas (SNG) production from coal is an important path to implement clean coal technologies in China. In this paper, an overview of the progress of coal to SNG technologies, including the development of catalysts, reactor designs, synthesis processes, and systems integration, is provided. The coal to SNG system is modeled, the coupling between SNG production and power generation is investigated, the breakthrough points for further energy savings are determined, and the system performance is optimized based on the first and the second laws of thermodynamics. From the viewpoint of the first law of thermodynamics, the energy conversion efficiency of coal to SNG system can reach 59.8%. To reduce the plant auxiliary power, the breakthrough points are the development of low-energy-consumption oxygen production technology and gas purification technology or seeking new oxidants for coal gasification instead of oxygen. From the viewpoint of the second law of thermodynamics, the major exergy destruction in a coal to SNG system occurs in the coal gasification unit, SNG synthesis unit and the raw syngas cooling process. How to reduce the exergy destruction in these units is the key to energy savings and system performance enhancement. The conversion ratio of the first SNG synthesis reactor and the split ratio of the recycle gas are key factors that determine the performance of both the SNG synthesis process and the whole plant. A “turning point” phenomenon is observed: when the split ratio is higher than 0.90, the exergy destruction of the SNG

  10. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2018-02-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  11. Exergy analysis of components of integrated wind energy / hydrogen / fuel cell

    International Nuclear Information System (INIS)

    Hernandez Galvez, G.; Pathiyamattom, J.S.; Sanchez Gamboa, S.

    2009-01-01

    Exergy analysis is made of three components of an integrated wind energy to hydrogen fuel cell: wind turbine, fuel cell (PEMFC) and electrolyzer (PEM). The methodology used to assess how affect the second law efficiency of the electrolyzer and the FC parameters as temperature and operating pressure and membrane thickness. It develop methods to evaluate the influence of changes in the air density and height of the tower on the second law efficiency of the turbine. This work represents a starting point for developing the global availability analysis of an integrated wind / hydrogen / fuel cells, which can be used as a tool to achieve the optimum design of the same. The use of this system contribute to protect the environment

  12. Energy and Exergy Based Optimization of Licl-Water Absorption Cooling System

    Directory of Open Access Journals (Sweden)

    Bhargav Pandya

    2017-06-01

    Full Text Available This study presents thermodynamic analysis and optimization of single effect LiCl-H2O absorption cooling system. Thermodynamic models are employed in engineering equation solver to compute the optimum performance parameters. In this study, cut off temperature to operate system has been obtained at various operating temperatures. Analysis depicts that on 3.59 % rise in evaporator temperature, the required cut-off temperature decreased by 12.51%. By realistic comparison between thermodynamic first and second law analysis, optimum generator temperature relative to energy and exergy based prospective has been evaluated. It is found that optimum generator temperature is strong function of evaporator and condenser temperature. Thus, it is feasible to find out optimum generator temperature for various combinations of evaporator and condenser temperatures. Contour plots of optimum generator temperature for several combinations of condenser and absorber temperatures have been also depicted.

  13. INTEGRATED CORPORATE STRATEGY MODEL

    Directory of Open Access Journals (Sweden)

    CATALINA SORIANA SITNIKOV

    2014-02-01

    Full Text Available Corporations are at present operating in demanding and highly unsure periods, facing a mixture of increased macroeconomic need, competitive and capital market dangers, and in many cases, the prospect for significant technical and regulative gap. Throughout these demanding and highly unsure times, the corporations must pay particular attention to corporate strategy. In present times, corporate strategy must be perceived and used as a function of various fields, covers, and characters as well as a highly interactive system. For the corporation's strategy to become a competitive advantage is necessary to understand and also to integrate it in a holistic model to ensure sustainable progress of corporation activities under the optimum conditions of profitability. The model proposed in this paper is aimed at integrating the two strategic models, Hoshin Kanri and Integrated Strategy Model, as well as their consolidation with the principles of sound corporate governance set out by the OECD.

  14. Characteristic on photovoltaic/thermal hybrid collector. Evaluation of excergetic theory; Taiyoko netsu hybrid collector no tokusei. Exergy ni yoru hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Iwawaki, H.; Morita, Y.; Fujisawa, T.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    Described herein are characteristics of photovoltaic (PV)/thermal hybrid collectors (PV/Ts), in which a PV module is combined with a plate-shape solar heat collector to simultaneously produce electric power and heat. Their efficiency is assessed by exergy. The test results indicate that the PV/T system gives a 1.07 times higher exergy than the PV system, 86.3 versus 80.7kWh. In terms of energy, the optimum values (OVs) are 5, 44 and 37% lower than the measuring values (MVs) for electrical energy, thermal energy and total exergy. In terms of exergy, on the other hand, OV is 5% lower than MV for electrical energy, but 893 times higher for thermal energy and 1.26 times higher for total exergy. As a result, the exergy level is 26% higher than that of a system which generates power as the main product and heat as the auxiliary product. 3 refs., 6 figs., 5 tabs.

  15. Carbon exergy tax applied to biomass integrated gasification combined cycle in sugarcane industry

    International Nuclear Information System (INIS)

    Fonseca Filho, Valdi Freire da; Matelli, José Alexandre; Perrella Balestieri, José Antonio

    2016-01-01

    The development of technologies based on energy renewable sources is increasing worldwide in order to diversify the energy mix and satisfy the rigorous environmental legislation and international agreements to reduce pollutant emission. Considering specific characteristics of biofuels available in Brazil, studies regarding such technologies should be carried out aiming energy mix diversification. Several technologies for power generation from biomass have been presented in the technical literature, and plants with BIGCC (biomass integrated gasification combined cycle) emerge as a major technological innovation. By obtaining a fuel rich in hydrogen from solid biomass gasification, BIGCC presents higher overall process efficiency than direct burning of the solid fuel in conventional boilers. The objective of this paper is to develop a thermodynamic and chemical equilibrium model of a BIGCC configuration for sugarcane bagasse. The model embodies exergetic cost and CO 2 emission analyses through the method of CET (carbon exergy tax). An exergetic penalty comparison between the BIGCC technology (with and without CO 2 capture and sequestration), a natural gas combined cycle and the traditional steam cycle of sugarcane sector is then presented. It is verified that the BIGCC configuration with CO 2 capture and sequestration presents technical and environmental advantages when compared to traditional technology. - Highlights: • We compared thermal cycles with the exergetic carbon exergy tax. • Thermal cycles with and without carbon capture and sequestration were considered. • Burned and gasified sugarcane bagasse was assumed as renewable fuel. • Exergetic carbon penalty tax was imposed to all studied configurations. • BIGCC with carbon sequestration revealed to be advantageous.

  16. Corporate culture and its role in human resource management

    OpenAIRE

    PERTLÍKOVÁ, Andrea

    2011-01-01

    This thesis deals with the corporate culture in a chosen company Podzimek a synové s. r. o. The aim is to analyze the corporate culture and its role in human resource management. There is explained the basic terminology which comes to this field. Various types of corporate culture and interconnection between human resource management and a company culture are described there.The research is carried out in several steps. Based on the observation, studying corporate materials, the thesis for th...

  17. Biodiversity and the Corporate Social Responsibility Agenda

    NARCIS (Netherlands)

    Overbeek, M.M.M.; Harms, B.; Burg, van den S.W.K.

    2013-01-01

    In this paper, we describe the main findings of an exploratory research about corporate commitment to manage biodiversity and ecosystems. The results are based on literature of sustainability approaches and interviews with sustainability representatives of twelve national and international companies

  18. Clarity and ambiguity in strategic corporate communication

    DEFF Research Database (Denmark)

    Gulbrandsen, Ib Tunby

    2018-01-01

    Purpose – The purpose of this paper is to examine the co-existence of clarity and ambiguity in strategic corporate communication. Design/methodology/approach – An exploratory study using interpretive discourse analysis of interviews with employees at a corporate communication department to examine...... as they are decoupled from the strategy itself. Research limitations/implications – As the findings are based on a study of the understanding and practice of corporate communication strategy in one concrete organization, the study points to the need for additional explorations and examinations of ambiguity in strategic...... corporate communication. Originality/value – Despite numerous studies on the presence of ambiguity in strategy making in the neighbouring field of strategic management, the majority of strategic corporate communication literature largely treats ambiguity as something that should be absent. This has caused...

  19. The Danish Model of Corporate Citizenship

    DEFF Research Database (Denmark)

    Rendtorff, Jacob Dahl

    2017-01-01

    identity, image, and self-perception. Moreover, values of balance are also connected with external stakeholders in the sense that they contribute to the formation and identification of ethical integrity as a central component of organizational identity. Novo Nordisk is a large multinational corporation......This chapter analyzes Danish pharmaceutical and healthcare corporation Novo Nordisk which is known for a model of management that integrates business ethics, stakeholder management, and the balanced scorecard in their strategy. The main product of Novo Nordisk is insulin to treat diabetes......, but the corporation also engages in research to manufacture related medicines and to find a cure for the disease. Novo Nordisk is a company that considers good corporate citizenship and CSR as fundamental for a management strategy. The company also works with stakeholder communication as important for corporate self...

  20. Corporate Governance in PT Lippo Karawaci Tbk

    Directory of Open Access Journals (Sweden)

    Retno Kusumastuti

    2012-06-01

    Full Text Available When mismanagement and misuse run rampant in giant corporations, as in the case of Enron in 2001, good corporate governance becomes mandatory. From the perspective of the agency theory, the separation of capital owners and management must lead to strictly applied good corporate governance. The purpose is to eliminate any disadvantages to the corporation's objective, namely providing added values to all relevant parties. The agency theory also covers two aspects: agency issues and agency costs. The research uses the qualitative approach and data is gathered through extensive interview, secondary data, and bibliography study. Key persons among the sources are selected based on specific criteria. Data validity is obtained through the triangulation technique, and the samples used are PT Lippo Karawaci Tbk and subsidiaries. The results show that governance practices are unique in each corporation, in accordance with their characteristics.

  1. THE RELATIONSHIP BETWEEN CORPORATE VOLUNTEERING AND CORPORATE SOCIAL RESPONSIBILITY: RESULTS OF AN EMPIRICAL STUDY

    Directory of Open Access Journals (Sweden)

    Oscar Licandro

    2017-01-01

    Full Text Available Corporate Volunteering (CV is a phenomenon that emerged in the second half of the 20th century and began to grow and globalize at the beginning of the 21st century. There seems to be a consensus that the recent growth of Corporate Volunteering is related to the development and growing legitimacy of the concept of Corporate Social Responsibility (CSR. Nevertheless, the theoretical discussion on how the two concepts (Corporate Volunteering and Corporate Social Responsibility are related is just beginning, while empirical research on how this relationship operates in corporate practice is still incipient. This paper presents preliminary results of a research on this subject carried out in Uruguay in 2016. This is a statistical study that analyses the relationship between the application of corporate volunteering activities and the incorporation of a CSR approach to the management of companies. The incorporation of both types of practices is measured by a self-assessment questionnaire that includes 81 indicators (using a Likert scale to assess them, which were designed based on ISO 26000 Guidance of Social Responsibility. The questionnaire was administered to 96 companies, using a comparative analysis between those that practice Corporate Volunteering and those which do not. The results obtained allow us to support the hypothesis that the application of Corporate Volunteering is positively associated with the incorporation of CSR when managing the relationship between the company and its employees and also with the community. Moreover, these results contribute to a better understanding on how both concepts are related.

  2. Second-generation bio-ethanol (SGB) from Malaysian palm empty fruit bunch: energy and exergy analyses.

    Science.gov (United States)

    Tan, Hui Teng; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-07-01

    Recently, second-generation bio-ethanol (SGB), which utilizes readily available lignocellulosic biomass has received much interest as another potential source of liquid biofuel comparable to biodiesel. Thus the aim of this paper is to determine the exergy efficiency and to compare the effectiveness of SGB and palm methyl ester (PME) processes. It was found that the production of bio-ethanol is more thermodynamically sustainable than that of biodiesel as the net exergy value (NExV) of SGB is 10% higher than that of PME. Contrarily, the former has a net energy value (NEV) which is 9% lower than the latter. Despite this, SGB is still strongly recommended as a potential biofuel because SGB production can help mitigate several detrimental impacts on the environment. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Energy consumption, destruction of exergy and boil off during the process of liquefaction, transport and regasification of liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Stradioto, Diogo Angelo; Schneider, Paulo Smith [Dept. of Mechanical Engineering. Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)], e-mail: pss@mecanica.ufrgs.br

    2010-07-01

    A supply chain of Liquefied Natural Gas (LNG) is composed by several processes like extraction, purification, liquefaction, storage, transport, regasification and distribution. In all these stages, processes need of energy. The main objective of this work is to quantify the energy consumption, mass loss and exergy destruction occurred throughout the chain. Results show that the process of liquefaction is the largest consumer of energy. Storage and transport by ship are responsible for the bigger mass losses and regasification is the process of larger destruction of exergy. A case study is performed considering a stream of pure methane at the input of a liquefaction plant, and evaluates energy along the chain, ending up at the distribution of NG after its regasification. (author)

  4. Analisis Pengaruh Islamic Corporate Governance Terhadap Corporate Social Responsibility (Studi kasus pada Bank Syariah di Indonesia

    Directory of Open Access Journals (Sweden)

    Ismawati Haribowo

    2016-01-01

    Full Text Available This study aims to examine the influence of Islamic corporate governance, size of the Board of Commissioners, the composition of the Board of Commissioners, Frequency of Meetings of the Board of Commissioners, the size of the Audit Committee Independent, The composition of the Audit Committee Number of Meetings Audit Committee, Profitability and Liquidity on the disclosure of corporate social responsibility (case study on the bank Sharia in Indonesia. This research is a quantitative study using scientific research in the form of positive economics. The nature and type of this research is descriptive method used is based on a survey of the literature. Data used is secondary data obtained from www.bi.go.id and corporate websites. The analytical method used is multiple linear regression analysis with SPSS version 22. The population in this study are all Islamic banks registered in Bank Indonesia during the period 2012 to 2014. While the sample is determined by using purposive sampling method in order to obtain a sample of 10 banks with observations for 3 years.Based on the results of multiple regression analysis with significance level of 5%, then the results of this study concluded: (1 Islamic Corporate Governance consisting of Existence and expertise Sharia Supervisory Board has no significant effect on the disclosure of corporate social responsibility. (2 The size of the BOC significant effect on the disclosure of corporate social responsibility. (3 The composition of the Board of Commissioners has no significant effect on the disclosure of corporate social responsibility. (4 The frequency of the number of board meetings no significant effect on the disclosure of disclosure of corporate social responsibility. (5 The size independent audit committee has no significant effect on the disclosure of corporate social responsibility. (6 The composition of the independent audit committee has no significant effect on the disclosure of corporate social

  5. Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis

    International Nuclear Information System (INIS)

    Verma, Saket; Das, L.M.; Kaushik, S.C.

    2017-01-01

    Highlights: • Different compositions of biogas have been studied in dual fuel mode using exergy analysis. • Diesel substitution by biogas decreases with higher CO 2 fractions in biogas. • Exergy efficiency decreases with higher CO 2 fractions in biogas. • With low CO 2 fractions in biogas equitable performance can be obtained in dual fuel mode. • Engine modifications are needed to utilize high CO 2 containing biogas. - Abstract: Growing energy demands and environmental degradation with uncontrolled exploitation of fossil fuels have compelled the world to look for the alternatives. In this context, biogas is a promising candidate, which can easily be utilized in IC engines for vehicular as well as decentralized power generation applications. Primary constituents of raw biogas are methane (CH 4 ) that defines its heating value, and carbon dioxide (CO 2 ) that acts like a diluent. This dilution effect reduces the flame speed and heating value of biogas, eventually deteriorating the engine performances. Present article focuses on experimental evaluation and quantification of these variations of the engine performance. Three compositions of biogas: BG93, BG84 and BG75 (containing 93%, 84% and 75% of CH 4 by volume respectively) were studied on a small CI engine in dual fuel mode. Moreover, to evaluate individual process inefficiencies, exergy analysis based on second-law of thermodynamics is implemented. Exergy balances for different compositions of biogas are presented. Biogas dual fuel operation showed 80–90% diesel substitution at lower engine loads. At higher loads, total irreversibility of the engine was increased from 59.56% for diesel operation to 61.44%, 64.18% and 64.64% for BG93, BG84 and BG75 biogas compositions respectively. Furthermore, combustion irreversibility was found to be decreasing with higher CO 2 concentrations in biogas. BG93 showed comparable results to that of diesel operation with 26.9% and 27.4% second-law efficiencies

  6. Use of process steam in vapor absorption refrigeration system for cooling and heating applications: An exergy analysis

    Directory of Open Access Journals (Sweden)

    S. Anand

    2016-12-01

    Full Text Available The exponential increase in cost of conventional fuels shifts the interest toward the use of alternative as well waste energy sources for the operation of refrigeration and air-conditioning units. The present study therefore analyzes the performance of a process steam-operated vapor absorption system for cooling and heating applications using ammonia and water as working fluids based on first and second laws of thermodynamics. A mathematical model has been developed based on exergy analysis to investigate the performance of the system. The different performance parameters such as coefficient of performance (COP and exergetic efficiency of absorption system for cooling and heating applications are also calculated under different operating conditions. The results obtained show that cooling and heating COP along with second law efficiency (exergy efficiency increases with the heat source temperature at constant evaporator, condenser, and absorber temperature. Also, COP as well as exergy efficiency increases with an increase in the evaporator temperature at constant generator, condenser, and absorber temperature. The effect of ambient temperature on the exergetic efficiency for cooling and heating applications is also studied. The results obtained from the simulation studies can be used to optimize different components of the system so that the performance can be improved significantly.

  7. Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification

    International Nuclear Information System (INIS)

    Deniz, Emrah; Çınar, Serkan

    2016-01-01

    Highlights: • Possibility of suppling all energy consumption from solar energy was tested. • Air and water-heated humidification-dehumidification desalination system was proposed. • Energy, exergy, economic and environmental analysis were performed. • Productivity and performance of the desalination system was analyzed. • Various operational parameters were investigated. - Abstract: A novel humidification-dehumidification (HDH) solar desalination system is designed and tested with actual conditions and solar energy was used to provide both thermal and electrical energy. Energy-exergy analyses of the system are made and economic and enviro-economic properties are investigated using data obtained from experimental studies. In this way, economic and environmental impacts of the HDH solar desalination systems have also been determined. The maximum daily energy efficiency of the system was calculated as 31.54% and the maximum exergy efficiency was found as 1.87%. The maximum fresh water production rate is obtained as 1117.3 g/h. The estimated cost of fresh water produced through the designed HDH system is 0.0981 USD/L and enviro-economic parameter is 2.4041 USD/annum.

  8. Process development: From exergy analysis to computer-aided optimization. Prozessentwicklung: Von der Exergieanalyse bis zur EDV-gestuetzten Optimierung

    Energy Technology Data Exchange (ETDEWEB)

    Streich, M.; Kistenmacher, H.; Mohr, V. (Linde AG, Hoellriegelskreuth (Germany, F.R.). Werksgruppe Tieftemperatur und Verfahrenstechnik)

    1991-04-01

    In processes in which chemical compositions or states are altered, limiting case analyses based on the first and second laws of thermodynamics are often of use during preliminary process analyses. Since the introduction of computers for process calculations exergy analyses can be carried out in a simple way and weak points in initial designs in the sense of the second law conveniently located. It is also possible to use exergy analyses to make product predictions if transferable practical exergy losses are available from past experience. In low temperature and energy technology the use of suitably defined efficiencies have been of use for many years in eliminating less attractive processing routes and thus reducing the number of possible designs to be investigated. For many decades so-called 'Sum Q/T Diagrams' have been used in low temperature processing to visualize and improve temperature profiles in heat exchanger networks. Recently technology has been further developed into 'Pinch Technology'. At the end of process development comes the final detailed optimization. The expensive and time consuming sequential way of working used in the past is being gradually replaced today with equation-oriented simulation and optimization tools such as the OPTISIM program. Expert systems, in principal, offer the chance of supporting the chemical engineer during the initial design of complete and complex processes. However, the experience with such systems to date has shown that a practical solution lies a long way into the future. (orig.).

  9. Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas

    International Nuclear Information System (INIS)

    Zhai, H.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2009-01-01

    In this study, a small scale hybrid solar heating, chilling and power generation system, including parabolic trough solar collector with cavity receiver, a helical screw expander and silica gel-water adsorption chiller, etc., was proposed and extensively investigated. The system has the merits of effecting the power generation cycle at lower temperature level with solar energy more efficiently and can provide both thermal energy and power for remote off-grid regions. A case study was carried out to evaluate an annual energy and exergy efficiency of the system under the climate of northwestern region of China. It is found that both the main energy and exergy loss take place at the parabolic trough collector, amount to 36.2% and 70.4%, respectively. Also found is that the studied system can have a higher solar energy conversion efficiency than the conventional solar thermal power generation system alone. The energy efficiency can be increased to 58.0% from 10.2%, and the exergy efficiency can be increased to 15.2% from 12.5%. Moreover, the economical analysis in terms of cost and payback period (PP) has been carried out. The study reveals that the proposed system the PP of the proposed system is about 18 years under present energy price conditions. The sensitivity analysis shows that if the interest rate decreases to 3% or energy price increase by 50%, PP will be less than 10 years.

  10. Exergy-topological analysis and optimization of a binary power plant utilizing medium-grade geothermal energy

    International Nuclear Information System (INIS)

    Makhanlall, Deodat; Zhang, Fuzhen; Xu, Ruina; Jiang, Peixue

    2015-01-01

    While it is generally accepted that high efficiency conversion of low- and medium-grade heat to electrical power strongly relies on a suitable combination of thermodynamic cycle and working fluid, the selection of suitable operating parameters may be of even more importance. This study shows that medium-grade geothermal heat-to-power conversion in a well-designed secondary regenerative Rankine cycle can achieve a high degree of thermodynamic perfection and exergy efficiency, without the use of high-cost advance powerfluids. The study is carried out by combining a recently developed exergy-topological analysis scheme with CyclePad ® , an open-source cognitive thermodynamic tool. The powerful sensitivity analysis capability of CyclePad ® is used to determine optimal operating conditions. In addition, application of an extensive exergy-flow diagram, which includes flows in the geothermal production well and cooling cycle, is discussed. A key strategy for improving the thermodynamic efficiency of medium-grade geothermal power plants is also presented

  11. Performance, Emission, Energy, and Exergy Analysis of a C.I. Engine Using Mahua Biodiesel Blends with Diesel.

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2014-01-01

    This paper presents an experimental investigation on a four-stroke single cylinder diesel engine fuelled with the blends of Mahua oil methyl ester (MOME) and diesel. The performance emission, energy, and exergy analysis has been carried out in B20 (mixture of 80% diesel by volume with 20% MOME). From energy analysis, it was observed that the fuel energy input as well as energy carried away by exhaust gases was 6.25% and 11.86% more in case of diesel than that of B20. The unaccounted losses were 10.21% more in case of diesel than B20. The energy efficiency was 28%, while the total losses were 72% for diesel. In case of B20, the efficiency was 65.74 % higher than that of diesel. The exergy analysis shows that the input availability of diesel fuel is 1.46% more than that of B20. For availability in brake power as well as exhaust gases of diesel were 5.66 and 32% more than that of B20. Destructed availability of B20 was 0.97% more than diesel. Thus, as per as performance, emission, energy, and exergy part were concerned; B20 is found to be very close with that of diesel.

  12. Global Leadership as a Driver of Corporate Coherence

    DEFF Research Database (Denmark)

    Minbaeva, Dana; Straub-Bauer, Andrea

    2016-01-01

    We advance our understanding of corporate coherence by specifically focusing on how coherence can be enacted by global leaders to support strategy implementation in a global organization. Based on our theorizing and our illustrative case study, we suggest five steps that may help managers design...... and initiate corporate coherence programs. We also suggest an agenda for future research, which specifically focuses on the need to adopt a multi-level research logic in future research on global leadership and corporate coherence....

  13. Engaged anthropology and corporate volunteering

    Directory of Open Access Journals (Sweden)

    Natália Blahová

    2015-12-01

    Full Text Available The aim of this paper is to present engaged anthropology and its methodological tools with a specific perspective of the research field and the position of the researcher with regard to research subjects. The study focuses on corporate volunteering as one of the forms of collaboration between the non-profit and the private sectors seeking solutions to social problems and community development. Volunteering projects contribute to the interlinking of the knowledge, skills, experience and resources of corporate employees and the representatives of the non-profit or the public sector. It is a part of the philanthropic strategy of companies which are willing to present themselves as entities responsible towards the environment in which they run their business, and towards their employees, partners and customers. Engaged anthropology can bring, through its methodological tools, a new perspective of corporate volunteering. Community-based participatory research on the process of knowledge creation includes all partners on an equal basis and identifies their unique contribution to problem solution and community development.

  14. SERC corporate plan 1993

    International Nuclear Information System (INIS)

    1993-03-01

    In its last Corporate Plan, the Science and Engineering Research Council (SERC) planned wide-ranging policy and programme reviews. These have been carried out and the results set the context for this plan. In addition, the SERC is responding to major changes in the higher education sector and a difficult financial climate. The Plan has been prepared before the Government's proposed White Paper on science and technology is available but is consistent with the SERC's advice on the White Paper. The SERC's ''mission statement'' recognises its dual role of strengthening the United Kingdom's capabilities in fundamental research and of developing capabilities in strategic research related to industrial and social need. Six strategic aims are identified: the funding of a portfolio of excellent research which contributes both to advancement of knowledge, and economic and social advance, the support of the training of scientists and engineers, the improvement of knowledge transfer within the ''science and engineering base'' and between this base and industry, the promotion of effective international collaboration, increasing the public awareness of research in science and engineering and improving the economy, efficiency and effectiveness of all of the SERC's operations. Within its programme expenditure, the SERC will examine whether funding should be extended to a wider range of bodies; develop new, more efficient, ways of funding higher education institutes (HEI) research; increase emphasis on output measures of research; specify service standards; and market-test scientific support activities. The SERC will make gains of at least 1.5% a year in efficiency of administration, through measures including market testing, and will extend management accounting systems. (Author)

  15. Corporate competitiveness and sustainability risks

    Directory of Open Access Journals (Sweden)

    Udo Braendle

    2017-12-01

    Full Text Available This paper aims at providing a theoretical analysis of the existing research on corporate competition and sustainability risks that occur when companies aspire to reach maximum competitive advantages and gain competitive benefits compared to their rivals. Competitiveness has been described as a multidimensional, theoretical and relative concept linked with the market mechanism. The concept of competitiveness may refer to different levels of aggregation: national, regional, industrial and individual companies. This paper contributes to the theoretical research on corporate competitiveness by the analysis of old and new definitions of this category. It also notes that the sustainability risks connected to competition can be divided into several groups where the authors highlight environmental, legal, financial risks, behaviour risks and state-related risks as the most crucial ones. For companies to be fit for the competitive challenge, the paper identifies main characteristics of such risks and gives policy guidance for their avoidance

  16. Vested interests in addiction research and policy. Why do we not see the corporate interests of the alcohol industry as clearly as we see those of the tobacco industry?

    Science.gov (United States)

    Casswell, Sally

    2013-04-01

    To compare the current status of global alcohol corporations with tobacco in terms of their role in global governance and to document the process by which this difference has been achieved and the consequences for alcohol control policy. Participant observation in the global political arena, review of industry materials (submissions, publications, conference presentations, websites) and review of published literature formed the basis for the current analysis. Recent events in the global political arena have highlighted the difference in perception of the alcohol and tobacco industries which has allowed alcohol corporations to participate in the global governance arena in a way in which tobacco has not been able. The transnational producers of alcohol have waged a sophisticated and successful campaign during the past three decades, including sponsorship of intergovernmental events, funding of educational initiatives, research, publications and sponsoring sporting and cultural events. A key aspect has been the framing of arguments to undermine perceptions of the extent of alcohol-related harms to health by promoting ideas of a balance of benefits and harms. An emphasis on the heaviest drinkers has been used to promote the erroneous idea that 'moderate' drinkers experience no harm and a goal of alcohol policy should be to ensure they are unaffected by interventions. This leads to highly targeted interventions towards the heaviest drinkers rather than effective regulation of the alcohol market. A sophisticated campaign by global alcohol corporations has promoted them as good corporate citizens and framed arguments with a focus on drinkers rather than the supply of alcohol. This has contributed to acceptance in the global governance arena dealing with policy development and implementation to an extent which is very different from tobacco. This approach, which obscures the contribution supply and marketing make to alcohol-related harm, has also contributed to failure by

  17. Parametric exergy analysis of a tubular Solid Oxide Fuel Cell (SOFC) stack through finite-volume model

    International Nuclear Information System (INIS)

    Calise, F.; Ferruzzi, G.; Vanoli, L.

    2009-01-01

    This paper presents a very detailed local exergy analysis of a tubular Solid Oxide Fuel Cell (SOFC) stack. In particular, a complete parametric analysis has been carried out, in order to assess the effects of the synthesis/design parameters on the local irreversibilities in the components of the stack. A finite-volume axial-symmetric model of the tubular internal reforming Solid Oxide Fuel Cell stack under investigation has been used. The stack consists of: SOFC tubes, tube-in-tube pre-reformer and tube and shell catalytic burner. The model takes into account the effects of heat/mass transfer and chemical/electrochemical reactions. The model allows one to predict the performance of a SOFC stack once a series of design and operative parameters are fixed, but also to investigate the source and localization of inefficiency. To this scope, an exergy analysis was implemented. The SOFC tube, the pre-reformer and the catalytic burner are discretized along their longitudinal axes. Detailed models of the kinetics of the reforming, catalytic combustion and electrochemical reactions are implemented. Pressure drops, convection heat transfer and overvoltages are calculated on the basis of the work previously developed by the authors. The heat transfer model includes the contribution of thermal radiation, so improving the models previously used by the authors. Radiative heat transfer is calculated on the basis of the slice-to-slice configuration factors and corresponding radiosities. On the basis of this thermochemical model, an exergy analysis has been carried out, in order to localize the sources and the magnitude of irreversibilities along the components of the stack. In addition, the main synthesis/design variables were varied in order to assess their effect on the exergy destruction within the component to which the parameter directly refers ('endogenous' contribution) and on the exergy destruction of all remaining components ('exogenous' contribution). Then, this analysis

  18. Proactive approach to Corporate Security

    CSIR Research Space (South Africa)

    Grobler, MM

    2010-05-01

    Full Text Available Security Dr Marthie Grobler Council for Scientific and Industrial Research, Pretoria, South Africa © CSIR 2007 www.csir.co.zaSlide 2 Introduction "The success of the Internet has not only changed how the world does business... and safety © CSIR 2007 www.csir.co.zaSlide 6 What is Corporate Security? • Modern day businesses… • strong digital component • multiplicity of security risks • emergence of increasingly complex threats … necessitate an integrated...

  19. Corporation as climate ambassador

    DEFF Research Database (Denmark)

    Trapp, Leila

    2012-01-01

    At a time when corporations are addressing increasingly complex, global corporate social responsibility (CSR) issues, this study examines and evaluates the strategies used in Vattenfall’s challenging and innovative CSR campaign which aimed at establishing the energy company as a credible climate...

  20. Corporate design management

    NARCIS (Netherlands)

    drs. Patrick van Thiel; drs. Wil Michels

    2006-01-01

    'Corporate designmanagement' is een vlot geschreven en zeer overzichtelijk standaardwerk op het gebied van corporate designmanagement. Een sterke visuele identiteit is voor een organisatie een doeltreffend middel om zich te positioneren en te profileren. Voorwaarde is wel dat de visuele identiteit