WorldWideScience

Sample records for exercise intensity-dependent regulation

  1. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; Dethlefsen, Maja Munk; Bangsbo, Jens

    2017-01-01

    LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute......The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low...... and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner....

  2. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Nina Brandt

    Full Text Available The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO and littermate wildtype (WT mice performed a single treadmill running bout at either low intensity (LI for 40 min or moderate intensity (MI for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT for 40 min or at moderate intensity (MIT for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner.

  3. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle

    Science.gov (United States)

    Egan, Brendan; Carson, Brian P; Garcia-Roves, Pablo M; Chibalin, Alexander V; Sarsfield, Fiona M; Barron, Niall; McCaffrey, Noel; Moyna, Niall M; Zierath, Juleen R; O’Gorman, Donal J

    2010-01-01

    Skeletal muscle contraction increases intracellular ATP turnover, calcium flux, and mechanical stress, initiating signal transduction pathways that modulate peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent transcriptional programmes. The purpose of this study was to determine if the intensity of exercise regulates PGC-1α expression in human skeletal muscle, coincident with activation of signalling cascades known to regulate PGC-1α transcription. Eight sedentary males expended 400 kcal (1674 kj) during a single bout of cycle ergometer exercise on two separate occasions at either 40% (LO) or 80% (HI) of. Skeletal muscle biopsies from the m. vastus lateralis were taken at rest and at +0, +3 and +19 h after exercise. Energy expenditure during exercise was similar between trials, but the high intensity bout was shorter in duration (LO, 69.9 ± 4.0 min; HI, 36.0 ± 2.2 min, P < 0.05) and had a higher rate of glycogen utilization (P < 0.05). PGC-1α mRNA abundance increased in an intensity-dependent manner +3 h after exercise (LO, 3.8-fold; HI, 10.2-fold, P < 0.05). AMP-activated protein kinase (AMPK) (2.8-fold, P < 0.05) and calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation (84%, P < 0.05) increased immediately after HI but not LO. p38 mitogen-activated protein kinase (MAPK) phosphorylation increased after both trials (∼2.0-fold, P < 0.05), but phosphorylation of the downstream transcription factor, activating transcription factor-2 (ATF-2), increased only after HI (2.4-fold, P < 0.05). Cyclic-AMP response element binding protein (CREB) phosphorylation was elevated at +3 h after both trials (∼80%, P < 0.05) and class IIa histone deacetylase (HDAC) phosphorylation increased only after HI (2.0-fold, P < 0.05). In conclusion, exercise intensity regulates PGC-1α mRNA abundance in human skeletal muscle in response to a single bout of exercise. This effect is mediated by differential activation of multiple

  4. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle.

    Science.gov (United States)

    Egan, Brendan; Carson, Brian P; Garcia-Roves, Pablo M; Chibalin, Alexander V; Sarsfield, Fiona M; Barron, Niall; McCaffrey, Noel; Moyna, Niall M; Zierath, Juleen R; O'Gorman, Donal J

    2010-05-15

    Skeletal muscle contraction increases intracellular ATP turnover, calcium flux, and mechanical stress, initiating signal transduction pathways that modulate peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha)-dependent transcriptional programmes. The purpose of this study was to determine if the intensity of exercise regulates PGC-1alpha expression in human skeletal muscle, coincident with activation of signalling cascades known to regulate PGC-1alpha transcription. Eight sedentary males expended 400 kcal (1674 kj) during a single bout of cycle ergometer exercise on two separate occasions at either 40% (LO) or 80% (HI) of . Skeletal muscle biopsies from the m. vastus lateralis were taken at rest and at +0, +3 and +19 h after exercise. Energy expenditure during exercise was similar between trials, but the high intensity bout was shorter in duration (LO, 69.9 +/- 4.0 min; HI, 36.0 +/- 2.2 min, P < 0.05) and had a higher rate of glycogen utilization (P < 0.05). PGC-1alpha mRNA abundance increased in an intensity-dependent manner +3 h after exercise (LO, 3.8-fold; HI, 10.2-fold, P < 0.05). AMP-activated protein kinase (AMPK) (2.8-fold, P < 0.05) and calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation (84%, P < 0.05) increased immediately after HI but not LO. p38 mitogen-activated protein kinase (MAPK) phosphorylation increased after both trials (2.0-fold, P < 0.05), but phosphorylation of the downstream transcription factor, activating transcription factor-2 (ATF-2), increased only after HI (2.4-fold, P < 0.05). Cyclic-AMP response element binding protein (CREB) phosphorylation was elevated at +3 h after both trials (80%, P < 0.05) and class IIa histone deacetylase (HDAC) phosphorylation increased only after HI (2.0-fold, P < 0.05). In conclusion, exercise intensity regulates PGC-1alpha mRNA abundance in human skeletal muscle in response to a single bout of exercise. This effect is mediated by differential activation of

  5. Exercise increases sphingoid base-1-phosphate levels in human blood and skeletal muscle in a time- and intensity-dependent manner

    DEFF Research Database (Denmark)

    Baranowski, Marcin; Błachnio-Zabielska, Agnieszka U; Charmas, Małgorzata

    2015-01-01

    PURPOSE: Sphingosine-1-phosphate (S1P) regulates cardiovascular function and plays an important role in muscle biology. We have previously reported that cycling exercise increased plasma S1P. Here, we investigated the effect of exercise duration and intensity on plasma and skeletal muscle S1P...... sphingosine was released from both working and resting leg at the highest workload (p ... increased availability of sphingosine released by skeletal muscle. In addition, exercise markedly affects S1P dynamics across the leg. We speculate that S1P may play an important role in adaptation of skeletal muscle to exercise....

  6. Exercise intensity-dependent changes in the inflammatory response in sedentary women: role of neuroendocrine parameters in the neutrophil phagocytic process and the pro-/anti-inflammatory cytokine balance.

    Science.gov (United States)

    Giraldo, E; Garcia, J J; Hinchado, M D; Ortega, E

    2009-01-01

    . Only the intense exercise affected the epinephrine, oestradiol, and progesterone concentrations, with increases in epinephrine and oestradiol immediately after exercise, and a decrease in progesterone after 24 h. Both moderate and intense exercise stimulate the phagocytic process of neutrophils in sedentary women, but the profile of pro-/anti-inflammatory cytokine release seems to be better following the moderate exercise. The possible participation of stress (catecholamines and cortisol) and sex (oestradiol and progesterone) hormones in these intensity-dependent immune changes is discussed. Copyright 2009 S. Karger AG, Basel.

  7. Regulation of PGC-1α and exercise training-induced metabolic adaptations in skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina

    -induced improvements in skeletal muscle metabolic capacity, but may contribute to the exercise training-induced maintenance of skeletal muscle mass. In addition, the results indicate an exercise intensity dependent regulation of autophagy in skeletal muscle and suggest that PGC-1 α regulates both acute and exercise...... and intracellular signalling in human skeletal muscle depend on adrenaline levels or metabolic stress. 2) PGC-1α mediated exercise and exercise training-induced adaptive metabolic responses in mouse skeletal muscle depend on exercise intensity. 3) β-adrenergic signalling contributes to exercise training......-induced metabolic adaptations in mouse skeletal muscle through PGC-1α . Paper I demonstrated that di erences in plasma adrenaline and muscle metabolic stress during exercise do not reinforce exercise-induced PGC-1 α mRNA response in human skeletal muscle. In addition, di erences in exercise-induced AMPK and p38...

  8. On the Cellular Basis of Aerobic Fitness: Intensity-Dependence and Time-Course of Cardiomyocyte and Endothelial Adaptations to Exercise Training

    OpenAIRE

    Kemi, Ole Johan

    2005-01-01

    Beneficial effects of exercise are closely associated with fitness and maximal oxygen uptake (VO2max). Capacity for oxygen transport increases mainly by improved cardiac function, including larger chamber volumes, myocardial hypertrophy, and enhanced diastolic and systolic function. Higher arterial conductance, capillarity, and oxygen utilization in skeletal muscle also contribute. The present thesis investigates the cellular basis for cardiac and arterial effects; how they correlate with cha...

  9. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms.

    Science.gov (United States)

    Hazell, Tom J; Islam, Hashim; Townsend, Logan K; Schmale, Matt S; Copeland, Jennifer L

    2016-03-01

    The physiological control of appetite regulation involves circulating hormones with orexigenic (appetite-stimulating) and anorexigenic (appetite-inhibiting) properties that induce alterations in energy intake via perceptions of hunger and satiety. As the effectiveness of exercise to induce weight loss is a controversial topic, there is considerable interest in the effect of exercise on the appetite-regulating hormones such as acylated ghrelin, peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and pancreatic polypeptide (PP). Research to date suggests short-term appetite regulation following a single exercise session is likely affected by decreases in acylated ghrelin and increases in PYY, GLP-1, and PP. Further, this exercise-induced response may be intensity-dependent. In an effort to guide future research, it is important to consider how exercise alters the circulating concentrations of these appetite-regulating hormones. Potential mechanisms include blood redistribution, sympathetic nervous system activity, gastrointestinal motility, cytokine release, free fatty acid concentrations, lactate production, and changes in plasma glucose and insulin concentrations. This review of relevant research suggests blood redistribution during exercise may be important for suppressing ghrelin, while other mechanisms involving cytokine release, changes in plasma glucose and insulin concentrations, SNS activity, and muscle metabolism likely mediate changes in the anorexigenic signals PYY and GLP-1. Overall, changes in appetite-regulating hormones following acute exercise appear to be intensity-dependent, with increasing intensity leading to a greater suppression of orexigenic signals and greater stimulation of anorexigenic signals. However, there is less research on how exercise-induced responses in appetite-regulating hormones differ between sexes or different age groups. A better understanding of how exercise intensity and workload affect appetite across the sexes and life

  10. The mediating role of exercise identity in the relationship of exercise motivational regulations with strenuous, moderate and mild exercise.

    Science.gov (United States)

    Zafeiridou, M P; Sarafi, V D; Vlachopoulos, S P

    2014-12-01

    The present study examined the mediating role of exercise identity in the relationship of exercise motivational regulations with weekly frequency of strenuous, moderate, and mild exercise. Data were collected from a sample of 193 Greek exercise participants aged 18-54, using the Revised Behavioral Regulation in Exercise Questionnaire-2, the Exercise Identity Scale, and the Godin Leisure Time Exercise Questionnaire. Regression analyses revealed that the main predictor of strenuous exercise was integrated regulation. This association was partially mediated by exercise role identity. Moderate exercise was mainly predicted by intrinsic motivation and external regulation, but no mediation by exercise identity was evident. Mild exercise was not predicted by any type of behavioral regulation. The relationship of integrated regulation with strenuous exercise behavior is partially mediated by the role identity component of exercise identity. No mediation is evident for moderate and mild exercise.

  11. Exercise and Regulation of Carbohydrate Metabolism

    OpenAIRE

    Mul, Joram D.; Stanford, Kristin I.; Hirshman, Michael F.; Goodyear, Laurie J.

    2015-01-01

    Carbohydrates are the preferred substrate for contracting skeletal muscles during high-intensity exercise and are also readily utilized during moderate intensity exercise. This use of carbohydrates during physical activity likely played an important role during the survival of early Homo sapiens, and genes and traits regulating physical activity, carbohydrate metabolism, and energy storage have undoubtedly been selected throughout evolution. In contrast to the life of early H. sapiens, modern...

  12. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  13. The relationship between compulsive exercise and emotion regulation in adolescents.

    Science.gov (United States)

    Goodwin, Huw; Haycraft, Emma; Meyer, Caroline

    2012-11-01

    Compulsive exercise is suggested to be a strategy to regulate emotions. This suggestion has never been studied in adolescents. Therefore, this study examined the cross-sectional association between emotion regulation and compulsive exercise attitudes in adolescents. A cross-sectional design was employed for this study. A sample of 1,630 adolescent boys and girls completed self-report measures of compulsive exercise, emotion regulation, and disordered eating attitudes, as part of ongoing research into exercise and eating attitudes in adolescents. Compulsive exercise was significantly associated with emotion regulation, after controlling for disordered eating attitudes. Among boys, compulsive exercise was associated with internal functional, internal dysfunctional, and external functional emotion regulation strategies. In girls, internal functional and internal dysfunctional emotion regulation strategies predicted compulsive exercise. Adolescents' compulsivity towards exercise is positively associated with different emotion regulation strategies. More work is needed to identify whether emotion regulation strategies longitudinally predict compulsive exercise. ©2012 The British Psychological Society.

  14. Exercise Regulation of Marrow Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Gabriel M Pagnotti

    2016-07-01

    significantly suppresses MAT volume and induces bone formation. That exercise can both suppress MAT volume and increase bone quantity, notwithstanding the skeletal harm induced by rosiglitazone, underscores exercise as a powerful regulator of bone remodeling, encouraging marrow stem cells toward the osteogenic lineage to fulfill an adaptive need for bone formation. Thus, exercise represents an effective strategy to mitigate the deleterious effects of overeating and iatrogenic etiologies.

  15. Exercise and Regulation of Carbohydrate Metabolism.

    Science.gov (United States)

    Mul, Joram D; Stanford, Kristin I; Hirshman, Michael F; Goodyear, Laurie J

    2015-01-01

    Carbohydrates are the preferred substrate for contracting skeletal muscles during high-intensity exercise and are also readily utilized during moderate intensity exercise. This use of carbohydrates during physical activity likely played an important role during the survival of early Homo sapiens, and genes and traits regulating physical activity, carbohydrate metabolism, and energy storage have undoubtedly been selected throughout evolution. In contrast to the life of early H. sapiens, modern lifestyles are predominantly sedentary. As a result, intake of excessive amounts of carbohydrates due to the easy and continuous accessibility to modern high-energy food and drinks has not only become unnecessary but also led to metabolic diseases in the face of physical inactivity. A resulting metabolic disease is type 2 diabetes, a complex endocrine disorder characterized by abnormally high concentrations of circulating glucose. This disease now affects millions of people worldwide. Exercise has beneficial effects to help control impaired glucose homeostasis with metabolic disease, and is a well-established tool to prevent and combat type 2 diabetes. This chapter focuses on the effects of exercise on carbohydrate metabolism in skeletal muscle and systemic glucose homeostasis. We will also focus on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle. It is now well established that there are different proximal signaling pathways that mediate the effects of exercise and insulin on glucose uptake, and these distinct mechanisms are consistent with the ability of exercise to increase glucose uptake in the face of insulin resistance in people with type 2 diabetes. Ongoing research in this area is aimed at defining the precise mechanism by which exercise increases glucose uptake and insulin sensitivity and the types of exercise necessary for these important health benefits. © 2015 Elsevier Inc. All rights reserved.

  16. Longitudinal relationships between perceived stress, exercise self-regulation and exercise involvement among physically active adolescents.

    Science.gov (United States)

    Gerber, Markus; Lindwall, Magnus; Brand, Serge; Lang, Christin; Elliot, Catherine; Pühse, Uwe

    2015-01-01

    Stress exposure may undermine exercisers' capability to self-regulate their exercise behaviour. This longitudinal study examined the interplay between perceived stress, exercise self-regulation (assessment of action and coping planning) and participation in vigorous exercise in vocational students. Moreover, this study examined whether high exercise self-regulation moderates the assumed negative relationship between stress and exercise. A sample of 580 physically active vocational students ([Formula: see text] ± s 17.8 ± 1.3 years, 33.8% girls) was assessed. All participants completed two identical validated questionnaires assessing stress, exercise self-regulation and exercise with a span of 10 months in between survey completion periods. The cross-sectional analyses show that high exercise self-regulation attenuated the assumed negative relationship between stress and exercise. In the longitudinal analyses, however, only a non-significant trend was found. Significant longitudinal relationships existed between exercise self-regulation and exercise involvement. Latent difference score models revealed that a drop in the exercise self-regulation was associated with a concurrent decrease in exercise participation. Cross-lagged panel analyses showed that high exercise self-regulation levels positively predicted exercise behaviour, but an inverse relationship was not supported. The findings suggested that higher exercise self-regulation levels were positively associated with future exercise involvement in currently active adolescents. While partial support was found that exercise self-regulation moderated the influence of stress on exercise, the findings demonstrated that higher exercise self-regulation levels had a positive impact on future exercise involvement in already active individuals.

  17. Regulation of coronary blood flow during exercise.

    Science.gov (United States)

    Duncker, Dirk J; Bache, Robert J

    2008-07-01

    Exercise is the most important physiological stimulus for increased myocardial oxygen demand. The requirement of exercising muscle for increased blood flow necessitates an increase in cardiac output that results in increases in the three main determinants of myocardial oxygen demand: heart rate, myocardial contractility, and ventricular work. The approximately sixfold increase in oxygen demands of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (~5-fold), as hemoglobin concentration and oxygen extraction (which is already 70-80% at rest) increase only modestly in most species. In contrast, in the right ventricle, oxygen extraction is lower at rest and increases substantially during exercise, similar to skeletal muscle, suggesting fundamental differences in blood flow regulation between these two cardiac chambers. The increase in heart rate also increases the relative time spent in systole, thereby increasing the net extravascular compressive forces acting on the microvasculature within the wall of the left ventricle, in particular in its subendocardial layers. Hence, appropriate adjustment of coronary vascular resistance is critical for the cardiac response to exercise. Coronary resistance vessel tone results from the culmination of myriad vasodilator and vasoconstrictors influences, including neurohormones and endothelial and myocardial factors. Unraveling of the integrative mechanisms controlling coronary vasodilation in response to exercise has been difficult, in part due to the redundancies in coronary vasomotor control and differences between animal species. Exercise training is associated with adaptations in the coronary microvasculature including increased arteriolar densities and/or diameters, which provide a morphometric basis for the observed increase in peak coronary blood flow rates in exercise-trained animals. In larger animals trained by treadmill exercise, the formation of new capillaries maintains

  18. Fat metabolism during exercise: mechanisms of regulation

    Directory of Open Access Journals (Sweden)

    Monique da Silva Gevaerd

    2006-12-01

    Full Text Available Fats are important energetic fuel to exercise. However, the regulation of fat uptake during exercise is unclear. The main objective of this review was to focus on physiological control mechanisms of mobilization, transport and fat uptake during exercise. The articles of fat metabolism were searched in Pubmed and Lilacs indexes. Classical and current papers were preferred. Evidence suggests that transport of fatty acids (FA from extracellular to intracellular spaces could be the main factor to limit fatty acid uptake. Future studies on fat uptake during exercise can focus on this mechanism. In intense exercise, the lower blood fl ow in the adipose tissue and higher fatty acid reesterifi cation rate impairs fat uptake during exercise. Supplementation of the FA has been used, however, the ideal quantities and forms to prevent gastrointestinal discomfort were not yet determined. In the biological point of view, intramuscular reserve of FA could be more effi cient, because is not necessary to FA to cross the cell membrane. RESUMO Os lipídios são considerados importantes fontes energéticas para a realização de exercícios físicos. Entretanto, os mecanismos de regulação do consumo desse substrato durante o exercício não estão totalmente esclarecidos. O objetivo principal da presente revisão foi abordar mecanismos fisiológicos de controle da mobilização, transporte e utilização de gordura durante o exercício. Os trabalhos indexados no banco de dados Pubmed e Lilacs sobre metabolismo de gordura, foram analisados e os clássicos e recentes foram preferencialmente utilizados. A partir dos dados recentes da literatura, especula-se que o transporte de ácidos graxos do meio extracelular para o meio intracelular pode constituir um dos principais mecanismos limitantes no consumo desse substrato. Estudos sobre o consumo de lipídios durante o exercício devem ser focados sobre esse mecanismo. Em exercício intenso, o menor fl uxo de sangue

  19. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Madsen, Agnete Louise Bjerregaard; Kleinert, Maximilian

    2016-01-01

    Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one...... increase the capacity for formation of autophagosomes in muscle. Moreover, AMPK activation during exercise may not be sufficient to regulate autophagy in muscle, while mTORC1 signalling via ULK1 likely mediates the autophagy-inhibiting effect of insulin. This article is protected by copyright. All rights...

  20. Multiplexed temporal quantification of the exercise-regulated plasma peptidome

    DEFF Research Database (Denmark)

    Parker, Benjamin L; Burchfield, James G; Clayton, Daniel

    2017-01-01

    an optimised 2D-LC-MS/MS method and used multiple fragmentation methods including HCD and EThcD to analyse endogenous peptides. This resulted in quantification of 5,548 unique peptides during a time course of exercise and recovery. The plasma peptidome underwent dynamic and large changes during exercise...... molecular weight endogenous peptides derived from secretion, protease activity and PTMs, and is a rich source of hormones. In the current study we have quantified the effects of intense exercise on the plasma peptidome to identify novel exercise regulated secretory factors in humans. We developed...... and PTMs. These findings illustrate that peptidomics is an ideal method for quantifying changes in circulating factors on a global scale in response to physiological perturbations such as exercise. This will likely be a key method for pinpointing exercise regulated factors that generate health benefits....

  1. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation.

    Science.gov (United States)

    Fritzen, Andreas M; Madsen, Agnete B; Kleinert, Maximilian; Treebak, Jonas T; Lundsgaard, Anne-Marie; Jensen, Thomas E; Richter, Erik A; Wojtaszewski, Jørgen; Kiens, Bente; Frøsig, Christian

    2016-02-01

    Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle. An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content. An acute bout of exercise regulates autophagy by a local contraction-induced mechanism. Exercise training increases the capacity for formation of autophagosomes in human muscle. AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy-inhibiting effect of insulin. Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exercise training and subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (Pexercise in human muscle. The decrease in LC3-II/LC3-I ratio did not correlate with activation of 5'AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5-aminoimidazole-4-carboxamide riboside (AICAR) in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (Pexercised and non-exercised leg in humans. This coincided with increased Ser-757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3-II/LC3-I ratio. In response to 3 weeks of one-legged exercise training, the LC3-II/LC3-I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise training may increase the capacity for formation of autophagosomes

  2. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  3. Regulation of skeletal muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Hargreaves, M; Richter, Erik

    1988-01-01

    Muscle-glycogen breakdown during exercise is influenced by both local and systemic factors. Contractions per se increase glycogenolysis via a calcium-induced, transient increase in the activity of phosphorylase a, and probably also via increased concentrations of Pi. In fast-twitch muscle......, increases in the AMP and IMP levels may increase phosphorylase activity. The rate of muscle-glycogen breakdown during exercise depends on the pre-exercise glycogen concentration and is also influenced by hormones. Insulin may inhibit glycogen breakdown, whereas epinephrine enhances the rate of glycogen use...... in contracting muscle by increasing the phosphorylase a activity via increased cyclic AMP production. The availability of blood-borne substrates may also influence muscle glycogenolysis and, therefore, exercise performance....

  4. Exercise and the regulation of energy intake

    NARCIS (Netherlands)

    Scheurink, AJW; Ammar, AA; Benthem, B; van Dijk, G; Sodersten, PAT; Södersten, Per A.T.

    Energy balance is the resultant of ingested calories and energy expenditure and is generally maintained within narrow limits over prolonged periods. Exercise leads to an increase in energy expenditure which is, in the long-term, counteracted by increased energy intake. Evidence for this comes from a

  5. Effect of an aerobic exercise intervention on cardiac autonomic regulation

    DEFF Research Database (Denmark)

    Hallman, David M; Holtermann, Andreas; Søgaard, Karen

    2017-01-01

    =116) were randomized to an aerobic exercise group (n=59) or a reference group (n=57) with lectures. The intervention group received two 30-min sessions per week of supervised aerobic exercise over 4months. Diurnal measurements of heart rate variability (HRV) and physical activity (accelerometry) were...... obtained at baseline and at 4-month follow-up. Time and frequency domain indices of HRV were derived during work, leisure time and sleep to evaluate cardiac autonomic regulation. Linear mixed models were used to determine the effect of the intervention on HRV indices, with adjustment for age, gender...... tended to decrease in the exercise group compared with the reference group from baseline to follow-up, being significant for the HF spectral component (p=0.03). CONCLUSION: Among cleaners, a worksite aerobic exercise intervention improved cardiac autonomic regulation during work and leisure...

  6. Exercise regulates breast cancer cell viability: systemic training adaptations versus acute exercise responses.

    Science.gov (United States)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie; Andersen, Christina; Pedersen, Bente Klarlund; Christensen, Jesper Frank; Hojman, Pernille

    2016-10-01

    Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses, in breast cancer survivors could regulate breast cancer cell viability in vitro. Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Six months of training increased VO2peak (16.4 %, p cancer cell viability in vitro. During 2 h of acute exercise, increases in serum lactate (6-fold, p exercise reduced viability by -9.2 % in MCF-7 (p = 0.04) and -9.4 % in MDA-MB-231 (p exercise session reduced breast cancer viability, while adaptations to 6 months of training had no impact. Our data question the prevailing dogma that training-dependent baseline reductions in risk factors mediate the protective effect of exercise on breast cancer. Instead, we propose that the cancer protection is driven by accumulative effects of repeated acute exercise responses.

  7. Transient Receptor Potential Vanilloid 2 Regulates Myocardial Response to Exercise.

    Directory of Open Access Journals (Sweden)

    Mindi Naticchioni

    Full Text Available The myocardial response to exercise is an adaptive mechanism that permits the heart to maintain cardiac output via improved cardiac function and development of hypertrophy. There are many overlapping mechanisms via which this occurs with calcium handling being a crucial component of this process. Our laboratory has previously found that the stretch sensitive TRPV2 channels are active regulators of calcium handling and cardiac function under baseline conditions based on our observations that TRPV2-KO mice have impaired cardiac function at baseline. The focus of this study was to determine the cardiac function of TRPV2-KO mice under exercise conditions. We measured skeletal muscle at baseline in WT and TRPV2-KO mice and subjected them to various exercise protocols and measured the cardiac response using echocardiography and molecular markers. Our results demonstrate that the TRPV2-KO mouse did not tolerate forced exercise although they became increasingly exercise tolerant with voluntary exercise. This occurs as the cardiac function deteriorates further with exercise. Thus, our conclusion is that TRPV2-KO mice have impaired cardiac functional response to exercise.

  8. Emotion regulation styles as longitudinal predictors of compulsive exercise : a twelve month prospective study

    OpenAIRE

    Goodwin, Huw; Haycraft, Emma; Meyer, Caroline

    2014-01-01

    Exercise can be used as a mood regulator but, in the eating disorder literature, exercise has sometimes been found to be compulsive, detrimental to physical health, and regarded as one maladaptive strategy used to regulate emotions. This study examined longitudinal associations between emotion regulation styles and this compulsive exercise in 572 adolescents who completed measures of compulsive exercise and emotion regulation. Twelve months later they completed measures of compulsive exercise...

  9. Acute aerobic exercise helps overcome emotion regulation deficits.

    Science.gov (United States)

    Bernstein, Emily E; McNally, Richard J

    2017-06-01

    Although colloquial wisdom and some studies suggest an association between regular aerobic exercise and emotional well-being, the nature of this link remains poorly understood. We hypothesised that aerobic exercise may change the way people respond to their emotions. Specifically, we tested whether individuals experiencing difficulties with emotion regulation would benefit from a previous session of exercise and show swifter recovery than their counterparts who did not exercise. Participants (N = 80) completed measures of emotion response tendencies, mood, and anxiety, and were randomly assigned to either stretch or jog for 30 minutes. All participants then underwent the same negative and positive mood inductions, and reported their emotional responses. Analyses showed that more perceived difficulty generating regulatory strategies and engaging in goal-directed behaviours after the negative mood induction predicted more intense and persistent negative affect in response to the stressor, as would be expected. Interactions revealed that aerobic exercise attenuated these effects. Moderate aerobic exercise may help attenuate negative emotions for participants initially experiencing regulatory difficulties. This study contributes to the literature on aerobic exercise's therapeutic effects with experimental data, specifically in the realm of emotional processing.

  10. How is AMPK activity regulated in skeletal muscles during exercise?

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Rose, Adam John

    2008-01-01

    discuss the influence of reactive oxygen species produced within the muscle as well as muscle glycogen and TAK1 in regulating AMPK during exercise. Currently, during intensive contraction, activation of alpha2-AMPK seems mainly to rely on AMP accumulating from ATP-hydrolysis whereas calcium signaling may...

  11. Regulation of exercise blood flow: Role of free radicals.

    Science.gov (United States)

    Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S

    2016-09-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs. Published by Elsevier Inc.

  12. Increased fat oxidation and regulation of metabolic genes with ultraendurance exercise

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Rehrer, N J; Pilegaard, H

    2007-01-01

    AIM: Regular endurance exercise stimulates muscle metabolic capacity, but effects of very prolonged endurance exercise are largely unknown. This study examined muscle substrate availability and utilization during prolonged endurance exercise, and associated metabolic genes. METHODS: Data were...... exercise markedly increases plasma fatty acid availability and fat utilization during exercise. Exercise-induced regulation of genes encoding proteins involved in fatty acid recruitment and oxidation may contribute to these changes....

  13. Emotion regulation styles as longitudinal predictors of compulsive exercise: a twelve month prospective study.

    Science.gov (United States)

    Goodwin, Huw; Haycraft, Emma; Meyer, Caroline

    2014-12-01

    Exercise can be used as a mood regulator but, in the eating disorder literature, exercise has sometimes been found to be compulsive, detrimental to physical health, and regarded as one maladaptive strategy used to regulate emotions. This study examined longitudinal associations between emotion regulation styles and this compulsive exercise in 572 adolescents who completed measures of compulsive exercise and emotion regulation. Twelve months later they completed measures of compulsive exercise. Compulsive exercise was predicted by Internal Dysfunctional emotion regulation in girls and boys, even after controlling for initial levels of compulsive exercise. Adolescents displaying compulsivity to exercise may require intervention programmes to alter their emotion regulation strategies. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  14. Influence of Regular Exercise Training on Post-exercise Hemodynamic Regulation to Orthostatic Challenge

    Directory of Open Access Journals (Sweden)

    Jun eSugawara

    2014-06-01

    Full Text Available To prevent orthostatic hypotension, arterial blood pressure (BP is neurally and hormonally regulated via increases in heart rate (HR and peripheral vascular tone. After dynamic exercise, however, the latter arm is blunted because of the increased vasodilators in exercised muscles. Orthostatic tachycardia is likely a more important compensatory mechanism for post-exercise orthostatic intolerance in individuals who have higher leg vasodilator capacity, such as endurance-trained athletes. To test the hypothesis that regular endurance training was associated with the greater augmentation of tachycardia response to post-exercise orthostasis, we compared hemodynamic responses to 5-min 60-degree head-up tilt (HUT before and after 60 min of cycling at 70% of HR reserve in the endurance-trained (n=8 and sedentary men (n=9. Calf peak vascular conductance was 62% greater in the endurance-trained than the sedentary (P<0.001. After the exercise, the HUT-induced reduction of SV was significantly augmented in the endurance-trained (from -27.7±6.9 to -33.7±7.7 ml, P=0.03 but not in their sedentary peers. Nevertheless, MAP was well maintained during post-exercise HUT even in the endurance-trained (from 81±10 to 80±8 mmHg. Tachycardia responses during sustained orthostasis were significantly increased in the sedentary (1.3-fold vs. pre-exercise and more in the endurance-trained (2.0-fold. The augmented response of HUT-induced tachycardia was greater in the endurance-trained than the sedentary (P=0.04. Additionally, cardiovagal baroreflex sensitivity (BRS, evaluated by the HR response to the hypotensive perturbation, was improved after the exercise in the endurance-trained (from -0.56±0.32 to -1.03±0.26 bpm/mmHg, P=0.007 but not in the sedentary. These results suggest that in the endurance-trained men the increased orthostatic tachycardia and augmented cardiovagal BRS may favorably mitigate accumulated risks for orthostatic intolerance in the early phase of

  15. Global mRNA sequencing of human skeletal muscle: Search for novel exercise-regulated myokines

    Directory of Open Access Journals (Sweden)

    S. Pourteymour

    2017-04-01

    Conclusion: We identified 17 new, exercise-responsive transcripts encoding secretory proteins. We further identified CSF1 as a novel myokine, which is secreted from cultured muscle cells and up-regulated in muscle and plasma after acute exercise.

  16. Exercisers' perceptions of their fitness instructor's interacting style, perceived competence, and autonomy as a function of self-determined regulation to exercise, enjoyment, affect, and exercise frequency.

    Science.gov (United States)

    Puente, Rogelio; Anshel, Mark H

    2010-02-01

    The primary purpose of the present investigation was to test the hypothesis, derived from Self-Determination Theory (SDT), that an individual's perceived competence and autonomy mediate the relationship between the exercisers' perception of their instructor's interaction style and the exercisers' motivation to exercise. A secondary purpose was to identify the affective and behavioral outcomes derived from self-determined regulation. It was hypothesized that SDT would significantly explain and predict exercise behavior. Participants consisted of 238 college students, 103 males and 135 females (M age = 20.4 years, SD = 2.16), who volunteered to participate in the study. They were asked to complete a battery of questionnaires measuring instructor's interacting style, self-regulation to exercise, perceived autonomy and competence, enjoyment, positive and negative affect, and exercise frequency. Using structural equation modeling with observed variables, the results showed that perceived competence and autonomy mediated the relationship between perceived instructor's interacting style and self-determined regulation. It was also found that self-determined regulation was significantly related to exercise enjoyment, positive affect, and exercise frequency. It was concluded that understanding the motivational factors and emotional and behavioral consequences of physical activity will partially explain an individual's motives to engage regularly in exercise.

  17. Dynamic changes of cardiovascular regulating factors in rats after aerobic exhaustive exercise.

    Science.gov (United States)

    Zhu, Lei; Liu, Hong-Zhen

    2013-11-01

    To study the changes of cardiovascular regulating factors in rats during recovery of aerobic exhaustive exercise. Sixty male Wistar rats were randomly divided into control group, 1 h-exercise group, 3 h-exercise group, exhausted group, 2 h-recovery group and 12 h-recovery group. The rats were killed at corresponding times for each group after an 8-week-long treadmill training, and the levels of NO, ET, ANP and TXB2 in plasma were measured in each group. NO/ET ratio of 1 h-exercise group was significantly higher than that in control group (P exercise group and exhausted group (P exercise group, exhausted group and 2 h-recovery group than that in control group (P exercise group, exhausted group and 2 h-recovery group (P cardiovascular regulating factors after exhaustive exercise may lead to deficiency of coronary circulation blood/oxygen supply, which may cause exercise-induced fatigue.

  18. The association between exercise behavior regulation and exergaming in adolescents.

    Science.gov (United States)

    O'Loughlin, Erin K; Sabiston, Catherine M; Dugas, Erika N; O'Loughlin, Jennifer L

    2015-03-01

    It is not known if or how exercise behavior regulations (EBRs) relate to exergaming in adolescents. The study objectives were 1) to determine if EBRs differ between adolescents who do and do not exergame; and 2) among exergamers, to describe the associations between EBRs and exergame duration, intensity, and achieving physical activity (PA) guidelines. This study was a cross-sectional analysis of data collected in mailed self-report questionnaires completed by 1243 students (mean ± SDage = 16.8 ± 0.5 years; 43% boys). In girls, those who exergamed scored higher than nonexergamers on introjected (mean ± SD = 1.9 ± 1.0 vs.1.6 ± 0.9; P = .001) and identified (mean ± SD = 3.1 ± .0 vs.2.9 ± 0.9; P = .049) regulation. Exergame intensity was associated with identified regulation [OR (95% CI) = 2.2 (1.0, 4.5)], minutes exergaming per week was associated with amotivation [β (95% CI) = 0.4 (-0.0, 0.8)], and achieving guidelines was associated with external [OR (95% CI) = 3.7 (1.0, 13.4)] and identified [OR (95% CI) = 5.6 (2.0, 16.0)] regulations. In boys who exergamed, intrinsic regulation was associated with exergame duration [β (95% CI) = -0.3 (-0.6, 0.0)]. Girls who exergame may have partially internalized exergaming as a PA behavior. Boys may prefer other types of PA such as team sports or other more traditional videogames over exergaming or they may not view exergaming as PA.

  19. Effects of acute aerobic exercise or meditation on emotional regulation.

    Science.gov (United States)

    Edwards, Meghan K; Rhodes, Ryan E; Mann, Joshua R; Loprinzi, Paul D

    2018-01-05

    Effective emotional regulation is critical for overall psychological well-being; as such, it is important to investigate potential methods to optimize emotion regulation abilities. The purpose of this study was to examine the effects of an acute bout of aerobic exercise and meditation on emotional regulation among young adults. Participants (N=63, mean age=21.3yrs) were randomly assigned to stretch (control group, n=21), walk (n=21), or meditate (n=21) for 10-min, after which they were exposed to a film clip (3min) intended to elicit a negative emotional state (e.g., sadness, anger). Participants then viewed 12 International Affective Picture System images validated to elicit a negative valence. Participants' affect (valence and arousal) states were monitored before, during, and after the stretching, walking, and meditation bouts using the Feeling Scale (FS) and Felt Arousal Scale (FAS). Distinct affect was assessed utilizing an affective circumplex measure before and after the stretch/walk/meditation bout, as well as following the film clip and image viewing. A significant group×time interaction effect was present when evaluating circumplex excited: P=0.001 (η2=0.21). Additionally, an interaction effect of meditation and emotional regulation was observed (P=0.009) among those with varying degrees of meditation experience. A 10-min bout of brisk walking and meditation, prior to exposure to a negative emotion cue, did not differentially effect the ability to regulate sadness, anger, or anxiousness when compared to an active stretching control group. Future replicative work addressing this paradigm, which is in support of positive psychology theory, is warranted. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Parker, Benjamin L; Fritzen, Andreas Mæchel

    2017-01-01

    Exercise increases glucose uptake into insulin-resistant muscle. Thus, elucidating the exercise signalling network in muscle may uncover new therapeutic targets. mTORC2, a regulator of insulin-controlled glucose uptake, has been reported to interact with Rac1, which plays a role in exercise......-induced glucose uptake in muscle. Therefore, we tested the hypothesis that mTORC2 activity is necessary for muscle glucose uptake during treadmill exercise. We used mice that specifically lack mTORC2 signalling in muscle, by deletion of the obligatory mTORC2 component, Rictor (Ric mKO). Running capacity...... potential exercise-dependent mTORC2 substrates, including contractile proteins, kinases, transcriptional regulators, actin cytoskeleton regulators and ion-transport proteins. Our study suggests that mTORC2 is a component of the exercise signalling network that regulates muscle glucose uptake and we provide...

  1. Relationships between Exercise as a Mood Regulation Strategy and Trait Emotional Intelligence.

    Science.gov (United States)

    Solanki, Dharmendra; Lane, Andrew M

    2010-12-01

    The aim of this study was to investigate the relationship between perception of emotional intelligence and beliefs in the extent to which exercising leads to mood-enhancement. Volunteer participants (N=315) completed a 33-item self-report measure of trait emotional intelligence and an exercise-mood regulation scale. Emotional intelligence significantly correlated with beliefs that exercise could be used to regulate mood (r =0.45, Pexercise to regulate mood relates significantly to emotional intelligence and suggest that individuals who use exercise to enhance mood report higher scores of emotional intelligence.

  2. Exercise-induced regulation of key factors in substrate choice and gluconeogenesis in mouse liver

    DEFF Research Database (Denmark)

    Knudsen, Jakob Grunnet; Biensø, Rasmus Sjørup; Hassing, Helle Adser

    2015-01-01

    As the demand for hepatic glucose production increases during exercise, regulation of liver substrate choice and gluconeogenic activity becomes essential. The aim of the present study was to investigate the effect of a single exercise bout on gluconeogenic protein content and regulation of enzyme...

  3. Exercise-Dependent Regulation of NK Cells in Cancer Protection

    DEFF Research Database (Denmark)

    Idorn, Manja; Hojman, Pernille

    2016-01-01

    Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we...... a mechanistic explanation for the protective effect of exercise on cancer, and we propose that exercise represents a potential strategy as adjuvant therapy in cancer, by improving NK cell recruitment and infiltration in solid tumors....... review the link between exercise and NK cell function, focusing on circulating exercise factors and additional effects, including vascularization, hypoxia, and body temperature in mediating the effects on NK cell functionality. Exercise-dependent mobilization and activation of NK cells provides...

  4. Exercise-Dependent Regulation of NK Cells in Cancer Protection.

    Science.gov (United States)

    Idorn, Manja; Hojman, Pernille

    2016-07-01

    Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we review the link between exercise and NK cell function, focusing on circulating exercise factors and additional effects, including vascularization, hypoxia, and body temperature in mediating the effects on NK cell functionality. Exercise-dependent mobilization and activation of NK cells provides a mechanistic explanation for the protective effect of exercise on cancer, and we propose that exercise represents a potential strategy as adjuvant therapy in cancer, by improving NK cell recruitment and infiltration in solid tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Physical Exercise Can Induce Brain Plasticity and Regulate Mental Function

    OpenAIRE

    Ichiro, KITA; Graduate School of Human Health Science, Tokyo Metropolitan University

    2014-01-01

    Physical exercise can enhance learning and memory, and improve stress-related psychiatric disorders such as depression and anxiety. There is accumulating evidence that physical exercise can induce morphological and functional alterations in the brain via changes in molecular and cellular plasticity. Thus, it is suggested that the neuroplasticity produced by physical exercise underlies the exercise-induced changes in mental function, including learning and psychological health. Although the ne...

  6. Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release

    Science.gov (United States)

    Ignacio, Daniele Leão; da S. Silvestre, Diego H.; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  7. Intensity dependence of electron gas kinetics in a laser corona

    Directory of Open Access Journals (Sweden)

    Mašek Martin

    2013-11-01

    Full Text Available In various experimental situations relevant to the laser fusion, such as plasma near the light entrance holes of hohlraum in the indirect drive experiments or more recently in the shock ignition direct drive a relatively long underdense plasma of corona type is encountered, which is subject to an intense nanosecond laser beam. The plasma is only weakly collisional and thus in the electron phase space a complicated kinetic evolution is going on, which is taking the electron gas fairly far from the thermal equilibrium and contributes to its unstable behaviour. These phenomena impede the absorption and thermalization of the incoming laser energy, create groups of fast electrons and also may lead to a non-linear reflection of the heating laser beam. One of the key processes leading to the electron acceleration is the stimulated Raman scattering (SRS in its non-linear phase. The SRS in the presence of electron-ion collisions requires a certain threshold intensity above which the mentioned non-dissipative phenomena can occur and develop to the stage, where they may become unpleasant for the fusion experiments. To assess this intensity limit a computational model has been developed based on the Vlasov-Maxwell kinetics describing such a plasma in 1D geometry. At a relatively high intensity of 1016 W/cm2 a number of non-linear phenomena are predicted by the code such as a saturation of Landau damping, which is then translated in an unfavourable time dependence of the reflected light intensity and formation of accelerated electron groups due to the electron trapping. The purpose of the present contribution is to map the intensity dependence of this non-linear development with the aim of assessing its weight in fusion relevant situations.

  8. Role of adenosine in the regulation of coronary blood flow in swine at rest and during treadmill exercise

    NARCIS (Netherlands)

    D.J.G.M. Duncker (Dirk); R. Stubenitsky (René); P.D. Verdouw (Pieter)

    1998-01-01

    textabstractA pivotal role for adenosine in the regulation of coronary blood flow is still controversial. Consequently, we investigated its role in the regulation of coronary vasomotor tone in swine at rest and during graded treadmill exercise. During exercise,

  9. IL-6 regulates exercise and training-induced adaptations in subcutaneous adipose tissue in mice

    DEFF Research Database (Denmark)

    Brandt, Claus; Jakobsen, Anne Hviid; Hassing, Helle Adser

    2012-01-01

    Aim: The aim of this study was to test the hypothesis that IL-6 regulates exercise-induced gene responses in subcutaneous adipose tissue in mice. Methods: Four months old male IL-6 whole body knockout (KO) mice and C57B wild-type (WT) mice performed 1h of treadmill exercise, where subcutaneous...... adipose tissue (AT) was removed either immediately after, 4h or 10h after exercise as well as from mice not running acutely. Moreover, AT was sampled at resting conditions after 5 weeks of exercise training. Results: AT leptin mRNA decreased immediately after a single running exercise bout in both...

  10. Dual specificity phosphatase 5 and 6 are oppositely regulated in human skeletal muscle by acute exercise.

    Science.gov (United States)

    Pourteymour, Shirin; Hjorth, Marit; Lee, Sindre; Holen, Torgeir; Langleite, Torgrim M; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Eckardt, Kristin

    2017-10-01

    Physical activity promotes specific adaptations in most tissues including skeletal muscle. Acute exercise activates numerous signaling cascades including pathways involving mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK)1/2, which returns to pre-exercise level after exercise. The expression of MAPK phosphatases (MKPs) in human skeletal muscle and their regulation by exercise have not been investigated before. In this study, we used mRNA sequencing to monitor regulation of MKPs in human skeletal muscle after acute cycling. In addition, primary human myotubes were used to gain more insights into the regulation of MKPs. The two ERK1/2-specific MKPs, dual specificity phosphatase 5 (DUSP5) and DUSP6, were the most regulated MKPs in skeletal muscle after acute exercise. DUSP5 expression was ninefold higher immediately after exercise and returned to pre-exercise level within 2 h, whereas DUSP6 expression was reduced by 43% just after exercise and remained below pre-exercise level after 2 h recovery. Cultured myotubes express both MKPs, and incubation with dexamethasone (Dex) mimicked the in vivo expression pattern of DUSP5 and DUSP6 caused by exercise. Using a MAPK kinase inhibitor, we showed that stimulation of ERK1/2 activity by Dex was required for induction of DUSP5 However, maintaining basal ERK1/2 activity was required for basal DUSP6 expression suggesting that the effect of Dex on DUSP6 might involve an ERK1/2-independent mechanism. We conclude that the altered expression of DUSP5 and DUSP6 in skeletal muscle after acute endurance exercise might affect ERK1/2 signaling of importance for adaptations in skeletal muscle during exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Need satisfaction, motivational regulations and exercise: moderation and mediation effects

    OpenAIRE

    Weman-Josefsson, Karin; Lindwall, Magnus; Ivarsson, Andreas

    2015-01-01

    Background Based on the Self-determination theory process model, this study aimed to explore relationships between the latent constructs of psychological need satisfaction, autonomous motivation and exercise behaviour; the mediational role of autonomous motivation in the association of psychological need satisfaction with exercise behaviour; as well as gender and age differences in the aforementioned associations. Methods Adult active members of an Internet-based exercise program (n?=?1091) b...

  12. Affect-regulated exercise intensity: does training at an intensity that feels 'good' improve physical health?

    Science.gov (United States)

    Parfitt, Gaynor; Alrumh, Amnah; Rowlands, Alex V

    2012-11-01

    Affect-regulated exercise to feel 'good' can be used to control exercise intensity amongst both active and sedentary individuals and should support exercise adherence. It is not known, however, whether affect-regulated exercise training can lead to physical health gains. The aim of this study was to examine if affect-regulated exercise to feel 'good' leads to improved fitness over the course of an 8-week training programme. A repeated measures design (pretest-posttest) with independent groups (training and control). 20 sedentary females completed a submaximal graded exercise test and were then allocated to either a training group or control group. The training group completed two supervised sessions and one unsupervised session per week for 8 weeks. Exercise intensity was affect-regulated to feel 'good'. Following the 8 weeks of training, both groups completed a second submaximal graded exercise test. Repeated measures analyses of variance indicated a significant increase in the time to reach ventilatory threshold in the training group (318 ± 23.7s) compared to control (248 ± 16.9s). Overall compliance to training was high (>92%). Participants in the training group exercised at intensities that would be classified as being in the lower range of the recommended guidelines (≈ 50% V˙O(2) max) for cardiovascular health. Affect-regulated exercise to feel 'good' can be used in a training programme to regulate exercise intensity. This approach led to a 19% increase in time to reach ventilatory threshold, which is indicative of improved fitness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Exercise training-induced regulation of mitochondrial quality

    National Research Council Canada - National Science Library

    Yan, Zhen; Lira, Vitor A; Greene, Nicholas P

    2012-01-01

    .... The mitochondrial life cycle spans biogenesis, maintenance, and clearance. Exercise training may promote each of these processes, conferring positive impacts on skeletal muscle contractile and metabolic functions...

  14. Endothelin-1 Regulation of Exercise-Induced Changes in Flow: Dynamic Regulation of Vascular Tone

    Directory of Open Access Journals (Sweden)

    Robert M. Rapoport

    2017-10-01

    Full Text Available Although endothelin (ET-1 is a highly potent vasoconstrictor with considerable efficacy in numerous vascular beds, the role of endogenous ET-1 in the regulation of vascular tone remains unclear. The perspective that ET-1 plays little role in the on-going regulation of vascular tone at least under physiologic conditions is supported by findings that potential ET-1 constriction is minimized by the release of the vasodilator and ET-1 synthesis inhibitor, nitric oxide (NO. Indeed, ET-1 release and constriction is self-limited by ET-1-induced, endothelial ETB receptor-mediated release of NO. Moreover, even if the balance between ET-1 and NO were reversed as the result of lowered NO activity, as occurs in a number of pathophysiologies associated with endothelial dysfunction, the well-known resistance of ET-1 constriction to reversal (as determined with exogenous ET-1 precludes ET-1 in the dynamic, i.e., moment-to-moment, regulation of vascular tone. On the other hand, and as presently reviewed, findings of ET-1-dependent modulation of organ blood flow with exercise under physiologic conditions demonstrate the dynamic regulation of vascular tone by ET-1. We speculate that this regulation is mediated at least in part through changes in ET-1 synthesis/release caused by pulsatile flow-induced shear stress and NO.

  15. Exercise protects from cancer through regulation of immune function and inflammation

    DEFF Research Database (Denmark)

    Hojman, Pernille

    2017-01-01

    Exercise training has been extensively studied in cancer settings as part of prevention or rehabilitation strategies, yet emerging evidence suggests that exercise training can also directly affect tumor-specific outcomes. The underlying mechanisms for this exercise-dependent cancer protection...... are just starting to be elucidated. To this end, evasion of immune surveillance and tumor-associated inflammation are established as hallmarks of cancer, and exercise may target cancer incidence and progression through regulation of these mechanisms. Here, I review the role of exercise in protection from...... cancer through mobilization and activation of cytotoxic immune cells, restriction of inflammatory signaling pathways in myeloid immune cells, and regulation of acute and chronic systemic inflammatory responses. In conclusion, I propose that exercise has the potential to target tumor growth through...

  16. Exercise and Regulation of Bone and Collagen Tissue Biology

    DEFF Research Database (Denmark)

    Kjær, Michael; Jørgensen, Niklas Rye; Heinemeier, Katja Maria

    2015-01-01

    molecular and cellular signaling pathways and their adaptation to exercise is available. In contrast to tissue responses with exercise, lack of mechanical tissue loading through inactivity or immobilization of the human body will result in a dramatic loss of connective tissue content, structure...

  17. Effects of training status on PDH regulation in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Gudiksen, Anders; Bertholdt, Lærke; Stankiewicz, Tomasz

    2017-01-01

    of this study was to investigate the impact of training state on post-translational regulation of PDHa activity during submaximal and exhaustive exercise. Eight untrained and nine endurance exercise-trained healthy male subjects performed incremental exercise on a cycle ergometer: 40 min at 50% incremental peak...... power output (IPPO), 10 min at 65% (IPPO), followed by 80% (IPPO) until exhaustion. Trained subjects had higher (P muscle PDH......Pyruvate dehydrogenase (PDH) is the gateway enzyme for carbohydrate-derived pyruvate feeding into the TCA cycle. PDH may play a central role in regulating substrate shifts during exercise, but the influence of training state on PDH regulation during exercise is not fully elucidated. The purpose...

  18. Does Body Mass Index Influence Behavioral Regulations, Dispositional Flow and Social Physique Anxiety in Exercise Setting?

    Directory of Open Access Journals (Sweden)

    Gözde Ersöz, Ersin Altiparmak, F. Hülya Aşçı

    2016-06-01

    Full Text Available The purpose of this study was to examine differences in behavioral regulations, dispositional flow, social physique anxiety of exercisers in terms of body mass index (BMI. 782 university students participated in this study. Dispositional Flow State Scale-2, Behavioral Regulations in Exercise Questionnaire-2, Social Physique Anxiety Scale and Physical Activity Stages of Change Questionnaire were administered to participants. After controlling for gender, analysis indicated significant differences in behavioral regulations, dispositional flow and social physique anxiety of exercise participants with regards to BMI. In summary, the findings demonstrate that normal weighted participants exercise for internal reasons while underweighted participants are amotivated for exercise participation. Additionally, participants who are underweight had higher dispositional flow and lower social physique anxiety scores than other BMI classification.

  19. Regulation and limitations to fatty acid oxidation during exercise

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Kiens, Bente

    2012-01-01

    Fatty acids (FA) as fuel for energy utilization during exercise originate from different sources: FA transported in the circulation either bound to albumin or as triacylglycerol (TG) carried by very low density lipoproteins (VLDL) and FA from lipolysis of muscle TG stores (IMTG). Despite a high...... rate of energy expenditure during high intensity exercise the total fatty acid oxidation is suppressed to below that observed during moderate intensity exercise. Although this has been known for many years, the mechanisms behind this phenomenon are still not fully elucidated. A failure of adipose...... tissue to deliver sufficient fatty acids to exercising muscle has been proposed, but evidence is emerging that factors within the muscle might be of more importance. The high rate of glycolysis during high intensity exercise might be the "driving force" via the increased production of acetyl CoA which...

  20. Regulation of coronary resistance vessel tone in response to exercise.

    Science.gov (United States)

    Duncker, Dirk J; Bache, Robert J; Merkus, Daphne

    2012-04-01

    Exercise is a primary stimulus for increased myocardial oxygen demand. The ~6-fold increase in oxygen demand of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (~5-fold), as hemoglobin concentration and oxygen extraction (which is already ~70% at rest) increase only modestly in most species. As a result, coronary blood flow is tightly coupled to myocardial oxygen consumption over a wide range of physical activity. This tight coupling has been proposed to depend on periarteriolar oxygen tension, signals released from cardiomyocytes and the endothelium as well as neurohumoral influences, but the contribution of each of these regulatory pathways, and their interactions, to exercise hyperemia in the heart remain incompletely understood. In humans, nitric oxide, adenosine and K(ATP) channels each appear to contribute to resting coronary resistance vessel tone, but evidence for a critical contribution to exercise hyperemia is lacking. In dogs K(ATP)-channel activation together with adenosine and nitric oxide contribute to exercise hyperemia in a non-linear redundant fashion. In contrast, in swine nitric oxide, adenosine and K(ATP) channels contribute to resting coronary resistance vessel tone control in a linear additive manner, but do not appear to be mandatory for exercise hyperemia. Rather, exercise hyperemia in swine appears to involve β-adrenergic activation in conjunction with exercise-induced blunting of an endothelin-mediated vasoconstrictor influence. In view of these remarkable species differences in coronary vasomotor control during exercise, future studies are required to determine the system of vasodilator components that mediate exercise hyperemia in humans. This article is part of a Special Issue entitled "Coronary Blood Flow". Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Acute regulation of IGF-I by alterations in post-exercise macronutrients

    Science.gov (United States)

    This investigation sought to examine the contributions of exercise and nutrient replenishment on in vivo regulation of the insulin-like growth factor-I (IGF-I) axis components. Eight college-aged males completed three high-intensity interval training (HIIT) protocols followed by three post-exercise ...

  2. Regulation of Appetite in Lean and Obese Adolescents after Exercise: Role of Acylated and Desacyl Ghrelin

    National Research Council Canada - National Science Library

    Mackelvie, Kerry J; Meneilly, Graydon S; Elahi, Dariush; Wong, Alfred C. K; Barr, Susan I; Chanoine, Jean-Pierre

    2007-01-01

    .... We hypothesized that exercise could affect appetite-regulating hormones and the subjective desire to eat, which could partly explain the poor success rate of the existing interventions. Objective...

  3. Cerebral blood flow regulation, exercise and pregnancy: why should we care?

    Science.gov (United States)

    Bisson, Michèle; Marc, Isabelle; Brassard, Patrice

    2016-05-01

    Cerebral blood flow (CBF) regulation is an indicator of cerebrovascular health increasingly recognized as being influenced by physical activity. Although regular exercise is recommended during healthy pregnancy, the effects of exercise on CBF regulation during this critical period of important blood flow increase and redistribution remain incompletely understood. Moreover, only a few studies have evaluated the effects of human pregnancy on CBF regulation. The present work summarizes current knowledge on CBF regulation in humans at rest and during aerobic exercise in relation to healthy pregnancy. Important gaps in the literature are highlighted, emphasizing the need to conduct well-designed studies assessing cerebrovascular function before, during and after this crucial life period to evaluate the potential cerebrovascular risks and benefits of exercise during pregnancy. © 2016 Authors; published by Portland Press Limited.

  4. Regulation of glucose and glycogen metabolism during and after exercise

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Richter, Erik

    2012-01-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport...... is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin...... in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation)....

  5. Does Body Mass Index Influence Behavioral Regulations, Dispositional Flow and Social Physique Anxiety in Exercise Setting?

    OpenAIRE

    Gözde Ersöz, Ersin Altiparmak, F. Hülya Aşçı

    2016-01-01

    The purpose of this study was to examine differences in behavioral regulations, dispositional flow, social physique anxiety of exercisers in terms of body mass index (BMI). 782 university students participated in this study. Dispositional Flow State Scale-2, Behavioral Regulations in Exercise Questionnaire-2, Social Physique Anxiety Scale and Physical Activity Stages of Change Questionnaire were administered to participants. After controlling for gender, analysis indicated significant differe...

  6. Regulation of glucose and glycogen metabolism during and after exercise

    National Research Council Canada - National Science Library

    Jensen, Thomas E; Richter, Erik A

    2012-01-01

    Abstract  Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity...

  7. Resistance exercises in lipemic regulation: a narrative review

    Directory of Open Access Journals (Sweden)

    Roberto Rebolledo Cobos

    2017-12-01

    Full Text Available The objective of the review study was to describe the metabolic effects of resistance exercises with a potential association with lipid metabolism and thus, its possible role in the prevention of cardiovascular diseases. It was based on the literature with greater scientific relevance. The main results argue that, despite having less published studies aerobics, exercises based on the maturity of external resistors for strength training or resistance exercises, they have a positive influence on lipid metabolism, primarily hours after Have been executed. Some of the findings in healthy populations conclude that this type of exercise, in addition to an increase in muscle functional and neurophysiological properties, leads to an increase in plasma concentrations of HDL cholesterol, in addition to promoting the reduction of total cholesterol and LDL, mainly in periods postprandial. The physiological implications of resistance exercises on the activity of enzymes with a role in lipid metabolism are not conclusive. Due to the high variability in prescribing this form of exercise, more studies may elucidate the effect of different volumes, intensities and doses of lipemic variables in healthy populations or special conditions are needed.

  8. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control

    DEFF Research Database (Denmark)

    Sylow, Lykke; Kleinert, Maximilian; Richter, Erik

    2017-01-01

    Skeletal muscle extracts glucose from the blood to maintain demand for carbohydrates as an energy source during exercise. Such uptake involves complex molecular signalling processes that are distinct from those activated by insulin. Exercise-stimulated glucose uptake is preserved in insulin-resistant...... energy supply during physical activity. Here, we review the molecular mechanisms that regulate the movement of glucose from the capillary bed into the muscle cell and discuss what is known about their integrated regulation during exercise. Novel developments within the field of mass spectrometry...... muscle, emphasizing exercise as a therapeutic cornerstone among patients with metabolic diseases such as diabetes mellitus. Exercise increases uptake of glucose by up to 50-fold through the simultaneous stimulation of three key steps: delivery, transport across the muscle membrane and intracellular flux...

  9. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents.

    Science.gov (United States)

    Nobrega, Antonio C L; O'Leary, Donal; Silva, Bruno Moreira; Marongiu, Elisabetta; Piepoli, Massimo F; Crisafulli, Antonio

    2014-01-01

    During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed.

  10. Neural Regulation of Cardiovascular Response to Exercise: Role of Central Command and Peripheral Afferents

    Science.gov (United States)

    Nobrega, Antonio C. L.; O'Leary, Donal; Silva, Bruno Moreira; Piepoli, Massimo F.; Crisafulli, Antonio

    2014-01-01

    During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed. PMID:24818143

  11. A Randomized Control Intervention Investigating the Effects of Acute Exercise on Emotional Regulation.

    Science.gov (United States)

    Edwards, Meghan K; Rhodes, Ryan E; Loprinzi, Paul D

    2017-09-01

    Exercise may help to cope with hectic or demanding events after a stressful situation occurs. Limited research has evaluated whether exercise, prior to a stressor, helps to facilitate subsequent emotional regulation. This pilot study addresses this novel paradigm. We employed a randomized controlled trial evaluating the effects of acute exercise on emotional regulation. Participants were randomly assigned to stretch (control group, N = 10), walk (N = 9), or jog (N = 8) for 15-minutes, after which they were exposed to a film clip intended to elicit a negative emotional response. Participants' emotions were monitored before and during exercise, as well as after the film clip. Emotional responses were evaluated using the Exercise Induced Feeling Inventory and Affective Circumplex Scale. A group x time splitplot interaction effect was significant for anger (p = .046) and anxiousness (p = .038). Follow-up analyses showed that only the stretching group (p = .048) had a significantly increased anger score from baseline to post-film clip, suggesting a protective emotional effect from walking and jogging. Exercise was effective in regulating anger and anxiousness after a stressful event. These findings provide evidence for potential preventive effects of exercise in facilitating emotional regulation.

  12. Exercises

    Science.gov (United States)

    ... exercising. Count out loud as you do the exercises. View Chronic Obstructive Pulmonary Disease (COPD) Home Techniques to ... Intimacy Importance of Being Together Body Changes with Age Communicating with Your Partner Exercise and Sexual Activity Less Strenuous Positions for Sexual ...

  13. Light intensity-dependent retrograde signalling in higher plants.

    Science.gov (United States)

    Szechyńska-Hebda, Magdalena; Karpiński, Stanisław

    2013-11-15

    Plants are able to acclimate to highly fluctuating light environment and evolved a short- and long-term light acclimatory responses, that are dependent on chloroplasts retrograde signalling. In this review we summarise recent evidences suggesting that the chloroplasts act as key sensors of light intensity changes in a wide range (low, high and excess light conditions) as well as sensors of darkness. They also participate in transduction and synchronisation of systemic retrograde signalling in response to differential light exposure of distinct leaves. Regulation of intra- and inter-cellular chloroplast retrograde signalling is dependent on the developmental and functional stage of the plastids. Therefore, it is discussed in following subsections: firstly, chloroplast biogenic control of nuclear genes, for example, signals related to photosystems and pigment biogenesis during early plastid development; secondly, signals in the mature chloroplast induced by changes in photosynthetic electron transport, reactive oxygen species, hormones and metabolite biosynthesis; thirdly, chloroplast signalling during leaf senescence. Moreover, with a help of meta-analysis of multiple microarray experiments, we showed that the expression of the same set of genes is regulated specifically in particular types of signals and types of light conditions. Furthermore, we also highlight the alternative scenarios of the chloroplast retrograde signals transduction and coordination linked to the role of photo-electrochemical signalling. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Pacing and decision making in sport and exercise: the roles of perception and action in the regulation of exercise intensity.

    Science.gov (United States)

    Smits, Benjamin L M; Pepping, Gert-Jan; Hettinga, Florentina J

    2014-06-01

    In pursuit of optimal performance, athletes and physical exercisers alike have to make decisions about how and when to invest their energy. The process of pacing has been associated with the goal-directed regulation of exercise intensity across an exercise bout. The current review explores divergent views on understanding underlying mechanisms of decision making in pacing. Current pacing literature provides a wide range of aspects that might be involved in the determination of an athlete's pacing strategy, but lacks in explaining how perception and action are coupled in establishing behaviour. In contrast, decision-making literature rooted in the understanding that perception and action are coupled provides refreshing perspectives on explaining the mechanisms that underlie natural interactive behaviour. Contrary to the assumption of behaviour that is managed by a higher-order governor that passively constructs internal representations of the world, an ecological approach is considered. According to this approach, knowledge is rooted in the direct experience of meaningful environmental objects and events in individual environmental processes. To assist a neuropsychological explanation of decision making in exercise regulation, the relevance of the affordance competition hypothesis is explored. By considering pacing as a behavioural expression of continuous decision making, new insights on underlying mechanisms in pacing and optimal performance can be developed.

  15. Exercising with reserve: exercise regulation by perceived exertion in relation to duration of exercise and knowledge of endpoint.

    Science.gov (United States)

    Swart, J; Lamberts, R P; Lambert, M I; Lambert, E V; Woolrich, R W; Johnston, S; Noakes, T D

    2009-10-01

    The purpose of this study was to examine ratings of perceived exertion (RPE) and performance during repetitive maximal effort 40 km time trials as well as after an intervention that aimed to decrease certainty about the remaining distance of the exercise bout. In addition, we examined the RPE during exercise bouts of markedly different duration. Part 1: 12 well-trained, competitive-level cyclists completed five 40 km time trials. During the final time trial all feedback was withheld until the final kilometre. In addition, to cause confusion about the remaining distance, they were asked to report their RPE at random intervals from 18 km to 38 km. Part 2: 6 well-trained, recreation-level cyclists randomly completed a 5 km, 10 km, 40 km and 100 km time trial. Part 1: Mean RPE increased during the first four trials and decreased during the final trial. The rate of RPE progression increased in linearity during the first four trials and became more conservative in the final trial. These changes were directly related to performance. Part 2: Mean RPE for longer duration trials (40 km, 100 km) were lower during the first half of trial duration but matched those of shorter trials in the final 20%. Increased familiarity of the exercise bout and certainty about its endpoint are associated with a more aggressive RPE strategy that produces a superior exercise performance. Certainty about the endpoint and the duration of exercise affect both the RPE strategy and performance.

  16. Exercise protects from cancer through regulation of immune function and inflammation.

    Science.gov (United States)

    Hojman, Pernille

    2017-08-15

    Exercise training has been extensively studied in cancer settings as part of prevention or rehabilitation strategies, yet emerging evidence suggests that exercise training can also directly affect tumor-specific outcomes. The underlying mechanisms for this exercise-dependent cancer protection are just starting to be elucidated. To this end, evasion of immune surveillance and tumor-associated inflammation are established as hallmarks of cancer, and exercise may target cancer incidence and progression through regulation of these mechanisms. Here, I review the role of exercise in protection from cancer through mobilization and activation of cytotoxic immune cells, restriction of inflammatory signaling pathways in myeloid immune cells, and regulation of acute and chronic systemic inflammatory responses. In conclusion, I propose that exercise has the potential to target tumor growth through regulation of immune and inflammatory functions, and exercise may be pursued as anticancer treatment through incorporation into standard oncological therapy to the benefit of the cancer patients. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  17. Does Body Mass Index Influence Behavioral Regulations, Dispositional Flow and Social Physique Anxiety in Exercise Setting?

    Science.gov (United States)

    Ersöz, Gözde; Altiparmak, Ersin; Aşçı, F Hülya

    2016-06-01

    The purpose of this study was to examine differences in behavioral regulations, dispositional flow, social physique anxiety of exercisers in terms of body mass index (BMI). 782 university students participated in this study. Dispositional Flow State Scale-2, Behavioral Regulations in Exercise Questionnaire-2, Social Physique Anxiety Scale and Physical Activity Stages of Change Questionnaire were administered to participants. After controlling for gender, analysis indicated significant differences in behavioral regulations, dispositional flow and social physique anxiety of exercise participants with regards to BMI. In summary, the findings demonstrate that normal weighted participants exercise for internal reasons while underweighted participants are amotivated for exercise participation. Additionally, participants who are underweight had higher dispositional flow and lower social physique anxiety scores than other BMI classification. Key pointsNormal weighted participants exercise for internal reasons.Underweighted participants are amotivated for exercise participation.Underweighted participants had higher dispositional flow.Underweighted participants have lower social physique anxiety scores than normal weighted, overweight and obese participants.

  18. Associations Between Self-Regulation, Exercise Participation, and Adherence Intention Among Korean University Students.

    Science.gov (United States)

    Ahn, Jihoon; Jeon, Hyunsoo; Kwon, Sungho

    2016-08-01

    The social cognitive theory model of physical activity is useful in understanding and promoting exercise. Self-regulation, as an element of the social cognitive theory model, is key to success in regular exercise participation. Existing research suggests that intrinsic motivation and positive emotion are associated with exercise participation and adherence. This study examined the relationships between self-regulation and exercise participation and adherence intention in university students when these two variables were controlled. Participants included 418 students enrolled in universities in Seoul (244 men, M age = 23.5 year, SD = 0.8; 174 women, M age = 22.8 year, SD = 1.0). The measures included the Self-Control Scale, exercise participation level, the Korea Exercise Adherence Intention Scale, the Korean Sport Participation Motivation scale, and the Korean Positive and Negative Affect Scale. Results showed that self-regulation ability was significantly associated with exercise participation level and adherence intention, when intrinsic motivation and positive emotion were controlled. © The Author(s) 2016.

  19. Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Alexandra Sakelliou

    2016-01-01

    Full Text Available We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day immediately after a muscle-damaging exercise protocol (300 eccentric contractions and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation.

  20. Regulation of exercise-induced lipid metabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Kiens, Bente

    2014-01-01

    Exercise increases the utilization of lipids in muscle. The sources of lipids are long-chain fatty acids taken up from the plasma and fatty acids released from stores of intramuscular triacylglycerol by the action of intramuscular lipases. In the present review, we focus on the role of fatty acid....../muscle contractions. This occurs independently of AMP-activated protein kinase, and data suggest that Ca(2+)-related signalling is responsible. The FAT/CD36 has an important role; long-chain fatty acid uptake is markedly decreased in FAT/CD36 knockout mice during contractions/exercise compared with wild-type control...... mice. In skeletal muscle, 98% of the lipase activity is accounted for by adipose triglyceride lipase and hormone-sensitive lipase. Give that inhibition or knockout of hormone-sensitive lipase does not impair lipolysis in muscle during contraction, the data point to an important role of adipose...

  1. Regulation of Increased Blood Flow (Hyperemia) to Muscles During Exercise: A Hierarchy of Competing Physiological Needs

    Science.gov (United States)

    Joyner, Michael J.; Casey, Darren P.

    2015-01-01

    This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans. PMID:25834232

  2. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs.

    Science.gov (United States)

    Joyner, Michael J; Casey, Darren P

    2015-04-01

    This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans. Copyright © 2015 the American Physiological Society.

  3. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control.

    Science.gov (United States)

    Sylow, Lykke; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2017-03-01

    Skeletal muscle extracts glucose from the blood to maintain demand for carbohydrates as an energy source during exercise. Such uptake involves complex molecular signalling processes that are distinct from those activated by insulin. Exercise-stimulated glucose uptake is preserved in insulin-resistant muscle, emphasizing exercise as a therapeutic cornerstone among patients with metabolic diseases such as diabetes mellitus. Exercise increases uptake of glucose by up to 50-fold through the simultaneous stimulation of three key steps: delivery, transport across the muscle membrane and intracellular flux through metabolic processes (glycolysis and glucose oxidation). The available data suggest that no single signal transduction pathway can fully account for the regulation of any of these key steps, owing to redundancy in the signalling pathways that mediate glucose uptake to ensure maintenance of muscle energy supply during physical activity. Here, we review the molecular mechanisms that regulate the movement of glucose from the capillary bed into the muscle cell and discuss what is known about their integrated regulation during exercise. Novel developments within the field of mass spectrometry-based proteomics indicate that the known regulators of glucose uptake are only the tip of the iceberg. Consequently, many exciting discoveries clearly lie ahead.

  4. Appetite regulation in overweight, sedentary men after different amounts of endurance exercise: a randomized controlled trial.

    Science.gov (United States)

    Rosenkilde, Mads; Reichkendler, Michala Holm; Auerbach, Pernille; Toräng, Signe; Gram, Anne Sofie; Ploug, Thorkil; Holst, Jens Juul; Sjödin, Anders; Stallknecht, Bente

    2013-12-01

    Weight loss induced by endurance exercise is often disappointing, possibly due to an increase in energy intake mediated through greater appetite. The aim of this study was to evaluate fasting, postprandial, and postexercise appetite regulation after an intervention prescribing two amounts of endurance exercise. Sixty-four sedentary, overweight, healthy young men were randomized to control (CON), moderate-dose (MOD: ≈ 30 min/day), or high-dose (HIGH: ≈ 60 min/day) endurance exercise for 12 wk. Along with subjective appetite ratings, plasma ghrelin, glucagon, insulin, peptide YY3-36, glucose, free fatty acids, and glycerol were measured during fasting and in relation to a breakfast meal and an acute bout of exercise, both at baseline and at follow-up. Ad libitum lunch energy intake was evaluated 3 h after the breakfast meal. Despite different amounts of endurance exercise, the subjects lost similar amounts of fat mass (MOD: 4.2 ± 0.5 kg; HIGH: 3.7 ± 0.5 kg). Fasting and postprandial insulin decreased ≈ 20% in both exercise groups (P < 0.03 vs. CON). Appetite measurements were not upregulated in the fasting and postprandial states. On the contrary, fasting and postprandial ratings of fullness and postprandial PYY3-36 increased in HIGH (P < 0.001 vs. CON). Ad libitum lunch energy intake remained unchanged over the course of the intervention. In both exercise groups, plasma ghrelin increased in relation to acute exercise after training. Thus neither moderate nor high doses of daily endurance exercise increased fasting and postprandial measures of appetite, but a high dose of exercise was associated with an increase in fasting and meal-related ratings of fullness and satiety.

  5. Myogenin regulates exercise capacity and skeletal muscle metabolism in the adult mouse.

    Directory of Open Access Journals (Sweden)

    Jesse M Flynn

    2010-10-01

    Full Text Available Although skeletal muscle metabolism is a well-studied physiological process, little is known about how it is regulated at the transcriptional level. The myogenic transcription factor myogenin is required for skeletal muscle development during embryonic and fetal life, but myogenin's role in adult skeletal muscle is unclear. We sought to determine myogenin's function in adult muscle metabolism. A Myog conditional allele and Cre-ER transgene were used to delete Myog in adult mice. Mice were analyzed for exercise capacity by involuntary treadmill running. To assess oxidative and glycolytic metabolism, we performed indirect calorimetry, monitored blood glucose and lactate levels, and performed histochemical analyses on muscle fibers. Surprisingly, we found that Myog-deleted mice performed significantly better than controls in high- and low-intensity treadmill running. This enhanced exercise capacity was due to more efficient oxidative metabolism during low- and high-intensity exercise and more efficient glycolytic metabolism during high-intensity exercise. Furthermore, Myog-deleted mice had an enhanced response to long-term voluntary exercise training on running wheels. We identified several candidate genes whose expression was altered in exercise-stressed muscle of mice lacking myogenin. The results suggest that myogenin plays a critical role as a high-level transcriptional regulator to control the energy balance between aerobic and anaerobic metabolism in adult skeletal muscle.

  6. Dual regulation of muscle glycogen synthase during exercise by activation and compartmentalization

    DEFF Research Database (Denmark)

    Prats, Clara; Helge, Jørn W; Nordby, Pernille

    2009-01-01

    , C., Cadefau, J. A., Cussó, R., Qvortrup, K., Nielsen, J. N., Wojtaszewki, J. F., Wojtaszewki, J. F., Hardie, D. G., Stewart, G., Hansen, B. F., and Ploug, T. (2005) J. Biol. Chem. 280, 23165-23172). In the present study we investigate the regulation of human muscle GS activity by glycogen, exercise......, and insulin. Using immunocytochemistry we investigate the existence and relevance of GS intracellular compartmentalization during exercise and during glycogen re-synthesis. The results show that GS intrinsic activity is strongly dependent on glycogen levels and that such regulation involves associated...... dephosphorylation at sites 2+2a, 3a, and 3a + 3b. Furthermore, we report the existence of several glycogen metabolism regulatory mechanisms based on GS intracellular compartmentalization. After exhausting exercise, epinephrine-induced protein kinase A activation leads to GS site 1b phosphorylation targeting...

  7. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka

    2007-01-01

    Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF......) muscles during exercise, measured using positron emission tomography. In six healthy young women, BF was measured at rest and then during three incremental low and moderate intermittent isometric one-legged knee-extension exercise intensities without and with theophylline-induced nonselective adenosine...... and with theophylline (P Adenosine receptor blockade did not have any effect on mean bulk BF or BF heterogeneity among the QF muscles, yet blockade increased within-muscle BF heterogeneity in all four QF muscles (P = 0.03). Taken together, these results show that BF becomes less heterogeneous with increasing...

  8. LKB1 regulates lipid oxidation during exercise independently of AMPK

    DEFF Research Database (Denmark)

    Jeppesen, Jacob Fuglsbjerg; Maarbjerg, Stine Just; Jordy, Andreas Børsting

    2013-01-01

    Lipid metabolism is important for health and insulin action, yet the fundamental process of regulating lipid metabolism during muscle contraction is incompletely understood. Here, we show that LKB1 muscle-specific knockout (LKB1 MKO) mice display decreased fatty acid (FA) oxidation during treadmill...

  9. Sex differences in lipolysis-regulating mechanisms in overweight subjects: effect of exercise intensity.

    Science.gov (United States)

    Moro, Cédric; Pillard, Fabien; de Glisezinski, Isabelle; Crampes, François; Thalamas, Claire; Harant, Isabelle; Marques, Marie-Adeline; Lafontan, Max; Berlan, Michel

    2007-09-01

    To explore sex differences in the regulation of lipolysis during exercise, the lipid-mobilizing mechanisms in the subcutaneous adipose tissue (SCAT) of overweight men and women were studied using microdialysis. Subjects matched for age, BMI, and physical fitness performed two 30-minute exercise bouts in a randomized fashion: the first test at 30% and 50% of their individual maximal oxygen uptake (Vo(2max)) and the second test at 30% and 70% of their Vo(2max). In both groups, an exercise-dependent increment in extracellular glycerol concentration (EGC) was observed. Whatever the intensity, phentolamine [alpha-adrenergic receptor (AR) antagonist] added to a dialysis probe potentiated exercise-induced lipolysis only in men. In a probe containing phentolamine plus propranolol (beta-AR antagonist), no changes in EGC occurred when compared with the control probe when exercise was performed at 30% and 50% Vo(2max). A significant reduction of EGC (when compared with the control probe) was observed in women at 70% Vo(2max). At each exercise power, the plasma non-esterified fatty acid and glycerol concentrations were higher in women. Exercise-induced increase in plasma catecholamine levels was lower in women compared with men. Plasma insulin decreased and atrial natriuretic peptide increased similarly in both groups. Overweight women mobilize more lipids (assessed by glycerol) than men during exercise. alpha(2)-Anti-lipolytic effect was functional in SCAT of men only. The major finding is that during low-to-moderate exercise periods (30% and 50% Vo(2max)), lipid mobilization in SCAT relies less on catecholamine-dependent stimulation of beta-ARs than on an increase in plasma atrial natriuretic peptide concentrations and the decrease in plasma insulin.

  10. Exercise and Amino Acid Anabolic Cell Signaling and the Regulation of Skeletal Muscle Mass

    OpenAIRE

    Pasiakos, Stefan M.

    2012-01-01

    A series of complex intracellular networks influence the regulation of skeletal muscle protein turnover. In recent years, studies have examined how cellular regulators of muscle protein turnover modulate metabolic mechanisms contributing to the loss, gain, or conservation of skeletal muscle mass. Exercise and amino acids both stimulate anabolic signaling potentially through several intracellular pathways including the mammalian target of rapamycin complex 1 and the mitogen activated protein k...

  11. APEX (Air Pollution Exercise) Volume 21: Legal References: Air Pollution Control Regulations.

    Science.gov (United States)

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Legal References: Air Pollution Control Regulations Manual is the last in a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The manual…

  12. Exercise and amino acid anabolic cell signaling and the regulation of skeletal muscle mass.

    Science.gov (United States)

    Pasiakos, Stefan M

    2012-07-01

    A series of complex intracellular networks influence the regulation of skeletal muscle protein turnover. In recent years, studies have examined how cellular regulators of muscle protein turnover modulate metabolic mechanisms contributing to the loss, gain, or conservation of skeletal muscle mass. Exercise and amino acids both stimulate anabolic signaling potentially through several intracellular pathways including the mammalian target of rapamycin complex 1 and the mitogen activated protein kinase cell signaling cascades. As novel molecular regulators of muscle integrity continue to be explored, a contemporary analysis of the literature is required to understand the metabolic mechanisms by which contractile forces and amino acids affect cellular process that contribute to long-term adaptations and preservation of muscle mass. This article reviews the literature related to how exercise and amino acid availability affect cellular regulators of skeletal muscle mass, especially highlighting recent investigations that have identified mechanisms by which contractile forces and amino acids modulate muscle health. Furthermore, this review will explore integrated exercise and nutrition strategies that promote the maintenance of muscle health by optimizing exercise, and amino acid-induced cell signaling in aging adults susceptible to muscle loss.

  13. Exercise and Amino Acid Anabolic Cell Signaling and the Regulation of Skeletal Muscle Mass

    Directory of Open Access Journals (Sweden)

    Stefan M. Pasiakos

    2012-07-01

    Full Text Available A series of complex intracellular networks influence the regulation of skeletal muscle protein turnover. In recent years, studies have examined how cellular regulators of muscle protein turnover modulate metabolic mechanisms contributing to the loss, gain, or conservation of skeletal muscle mass. Exercise and amino acids both stimulate anabolic signaling potentially through several intracellular pathways including the mammalian target of rapamycin complex 1 and the mitogen activated protein kinase cell signaling cascades. As novel molecular regulators of muscle integrity continue to be explored, a contemporary analysis of the literature is required to understand the metabolic mechanisms by which contractile forces and amino acids affect cellular process that contribute to long-term adaptations and preservation of muscle mass. This article reviews the literature related to how exercise and amino acid availability affect cellular regulators of skeletal muscle mass, especially highlighting recent investigations that have identified mechanisms by which contractile forces and amino acids modulate muscle health. Furthermore, this review will explore integrated exercise and nutrition strategies that promote the maintenance of muscle health by optimizing exercise, and amino acid-induced cell signaling in aging adults susceptible to muscle loss.

  14. Self-Regulation of Physical Education Teacher Education Students' Attitudes towards Exercise and Diet

    Science.gov (United States)

    Wilkinson, Carol; Prusak, Keven

    2013-01-01

    The purpose of this study was to assess differences in self-regulation of attitudes towards engaging in exercise and eating a healthy diet between physical education teacher education (PETE) students and general education (GE) students, and between male students and female students. Participants were university students (n = 194) at a university…

  15. PGC-1α Is Required for Exercise- and Exercise Training-Induced UCP1 Up-Regulation in Mouse White Adipose Tissue

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm; Grunnet Knudsen, Jakob; Leick, Lotte

    2013-01-01

    The aim of the present study was to test the hypotheses that 1) a single exercise bout increases UCP1 mRNA in both inguinal (i)WAT and epididymal (e)WAT, 2) UCP1 expression and responsiveness to exercise are different in iWAT and eWAT, 3) PGC-1α determines the basal levels of UCP1 and PRDM16 in WAT...... and 4) exercise and exercise training regulate UCP1 and PRDM16 expression in WAT in a PGC-1α-dependent manner....

  16. Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism

    Directory of Open Access Journals (Sweden)

    Churchward-Venne Tyler A

    2012-05-01

    Full Text Available Abstract Provision of dietary amino acids increases skeletal muscle protein synthesis (MPS, an effect that is enhanced by prior resistance exercise. As a fundamentally necessary process in the enhancement of muscle mass, strategies to enhance rates of MPS would be beneficial in the development of interventions aimed at increasing skeletal muscle mass particularly when combined with chronic resistance exercise. The purpose of this review article is to provide an update on current findings regarding the nutritional regulation of MPS and highlight nutrition based strategies that may serve to maximize skeletal muscle protein anabolism with resistance exercise. Such factors include timing of protein intake, dietary protein type, the role of leucine as a key anabolic amino acid, and the impact of other macronutrients (i.e. carbohydrate on the regulation of MPS after resistance exercise. We contend that nutritional strategies that serve to maximally stimulate MPS may be useful in the development of nutrition and exercise based interventions aimed at enhancing skeletal muscle mass which may be of interest to elderly populations and to athletes.

  17. Effects of an isotonic beverage on autonomic regulation during and after exercise

    OpenAIRE

    Moreno Isadora Lessa; Pastre Carlos Marcelo; Ferreira Celso; de Abreu Luiz Carlos; Valenti Vitor Engrácia; Vanderlei Luiz Carlos Marques

    2013-01-01

    Abstract Background With prolonged physical activity, it is important to maintain adequate fluid balance. The impact of consuming isotonic drinks during and after exercise on the autonomic regulation of cardiac function is unclear. This study aimed to analyze the effects of consuming an isotonic drink on heart rate variability (HRV) during and after prolonged exercise. Methods Thirty-one young males (21.55 ± 1.89 yr) performed three different protocols (48 h interval between each stage): I) m...

  18. Differential regulation of perineuronal nets in the brain and spinal cord with exercise training.

    Science.gov (United States)

    Smith, Calvin C; Mauricio, Rui; Nobre, Luis; Marsh, Barnaby; Wüst, Rob C I; Rossiter, Harry B; Ichiyama, Ronaldo M

    2015-02-01

    Perineuronal nets (PNNs) are lattice like structures which encapsulate the cell body and proximal dendrites of many neurons and are thought to be involved in regulating synaptic plasticity. It is believed that exercise can enhance the plasticity of the Central Nervous System (CNS) in healthy and dysfunctional states by shifting the balance between plasticity promoting and plasticity inhibiting factors in favor of the former. Recent work has focused on exercise effects on trophic factors but its effect on other plasticity regulators is poorly understood. In the present study we investigated how exercise regulates PNN expression in the lumbar spinal cord and areas of the brain associated with motor control and learning and memory. Adult, female Sprague-Dawley rats with free access to a running wheel for 6 weeks had significantly increased PNN expression in the spinal cord compared to sedentary rats (PNN thickness around motoneurons, exercise=15.75±0.63μm, sedentary=7.98±1.29μm, pbrain associated with learning and memory there was a significant reduction in perineuronal net expression (number of neurons with PNN in hippocampus CA1-exercise 21±0.56 and sedentary 24±0.34, pexercised=2.37±0.13μm, sedentary=4.27±0.21μm; pexercise, PNNs are differentially regulated in select regions of the CNS, with a general decreased expression in the brain and increased expression in the lumbar spinal cord. This differential expression may indicate different regulatory mechanisms associated with plasticity in the brain compared to the spinal cord. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The Raman Contribution to the Intensity Dependent Refractive Index in Optical Fibers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Pálsson, Tómas; Jespersen, Kim G.

    2011-01-01

    We report on the Raman contribution to the intensity dependent refractive index in step-index fibers with germanium doped silica core. The fR value is found to be 0.157 ± 0.07 for a field weighted germanium concentration between 5 and 25 mol %.......We report on the Raman contribution to the intensity dependent refractive index in step-index fibers with germanium doped silica core. The fR value is found to be 0.157 ± 0.07 for a field weighted germanium concentration between 5 and 25 mol %....

  20. Physical exercise, reactive oxygen species and neuroprotection.

    Science.gov (United States)

    Radak, Zsolt; Suzuki, Katsuhiko; Higuchi, Mitsuru; Balogh, Laszlo; Boldogh, Istvan; Koltai, Erika

    2016-09-01

    Regular exercise has systemic beneficial effects, including the promotion of brain function. The adaptive response to regular exercise involves the up-regulation of the enzymatic antioxidant system and modulation of oxidative damage. Reactive oxygen species (ROS) are important regulators of cell signaling. Exercise, via intensity-dependent modulation of metabolism and/or directly activated ROS generating enzymes, regulates the cellular redox state of the brain. ROS are also involved in the self-renewal and differentiation of neuronal stem cells and the exercise-mediated neurogenesis could be partly associated with ROS production. Exercise has strong effects on the immune system and readily alters the production of cytokines. Certain cytokines, especially IL-6, IL-1, TNF-α, IL-18 and IFN gamma, are actively involved in the modulation of synaptic plasticity and neurogenesis. Cytokines can also contribute to ROS production. ROS-mediated alteration of lipids, protein, and DNA could directly affect brain function, while exercise modulates the accumulation of oxidative damage. Oxidative alteration of macromolecules can activate signaling processes, membrane remodeling, and gene transcription. The well known neuroprotective effects of exercise are partly due to redox-associated adaptation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Osada, Takuya; Andersen, Lisbeth Tingsted

    2005-01-01

    providing LC during recovery elicited a sustained/enhanced increase in activation of these genes through 8 to 24 hours of recovery. These findings provide evidence that factors associated with substrate availability and/or cellular metabolic recovery (eg, muscle glycogen restoration) influence......In skeletal muscle of humans, transcription of several metabolic genes is transiently induced during recovery from exercise when no food is consumed. To determine the potential influence of substrate availability on the transcriptional regulation of metabolic genes during recovery from exercise, 9...... male subjects (aged 22-27) completed 75 minutes of cycling exercise at 75% V¿o2max on 2 occasions, consuming either a high-carbohydrate (HC) or low-carbohydrate (LC) diet during the subsequent 24 hours of recovery. Nuclei were isolated and tissue frozen from vastus lateralis muscle biopsies obtained...

  2. Exercise training during normobaric hypoxic confinement does not alter hormonal appetite regulation.

    Science.gov (United States)

    Debevec, Tadej; Simpson, Elizabeth J; Macdonald, Ian A; Eiken, Ola; Mekjavic, Igor B

    2014-01-01

    Both exposure to hypoxia and exercise training have the potential to modulate appetite and induce beneficial metabolic adaptations. The purpose of this study was to determine whether daily moderate exercise training performed during a 10-day exposure to normobaric hypoxia alters hormonal appetite regulation and augments metabolic health. Fourteen healthy, male participants underwent a 10-day hypoxic confinement at ∼ 4000 m simulated altitude (FIO2 = 0.139 ± 0.003%) either combined with daily moderate intensity exercise (Exercise group; N = 8, Age = 25.8 ± 2.4 yrs, BMI = 22.9 ± 1.2 kg · m(-2)) or without any exercise (Sedentary group; N = 6 Age = 24.8 ± 3.1 yrs, BMI = 22.3 ± 2.5 kg · m(-2)). A meal tolerance test was performed before (Pre) and after the confinement (Post) to quantify fasting and postp randial concentrations of selected appetite-related hormones and metabolic risk markers. 13C-Glucose was dissolved in the test meal and 13CO2 determined in breath samples. Perceived appetite ratings were obtained throughout the meal tolerance tests. While body mass decreased in both groups (-1.4 kg; p = 0.01) following the confinement, whole body fat mass was only reduced in the Exercise group (-1.5 kg; p = 0.01). At Post, postprandial serum insulin was reduced in the Sedentary group (-49%; p = 0.01) and postprandial plasma glucose in the Exercise group (-19%; p = 0.03). Fasting serum total cholesterol levels were reduced (-12%; p = 0.01) at Post in the Exercise group only, secondary to low-density lipoprotein cholesterol reduction (-16%; p = 0.01). No differences between groups or testing periods were noted in fasting and/or postprandial concentrations of total ghrelin, peptide YY, and glucagon-like peptide-1, leptin, adiponectin, expired 13CO2 as well as perceived appetite ratings (p>0.05). These findings suggest that performing daily moderate intensity exercise training during continuous hypoxic exposure does not alter hormonal appetite regulation but can

  3. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise

    DEFF Research Database (Denmark)

    Kristensen, Dorte Enggaard; Albers, Peter Hjorth; Prats, Clara

    2015-01-01

    are expressed in a fibre type-dependent manner and that fibre type-specific activation of AMPK and downstream targets is dependent on exercise intensity. Pools of type I and II fibres were prepared from biopsies of m. vastus lateralis from healthy men before and after two exercise trials; A) continuous cycling......AMP-activated protein kinase (AMPK) is a regulator of energy homeostasis during exercise. Studies suggest muscle fibre type-specific AMPK expression. However, fibre type-specific regulation of AMPK and downstream targets during exercise has not been proven. We hypothesized that AMPK subunits...... (CON) 30 min at 69 ± 1% VO2peak or B) interval cycling (INT) 30 min with 6 × 1.5 min high-intense bouts peaking at 95 ± 2% VO2peak . In type I vs. II fibres a higher β1 AMPK (+215%) and lower γ3 AMPK expression (-71%) was found. α1 , α2 , β2 and γ1 AMPK expression was similar between fibre types...

  4. Intensity-dependent change in polarization state of light in normal ...

    Indian Academy of Sciences (India)

    These equations clearly show the intensity dependence of polarization state of the reflected and transmitted light beams. From eqs (13) and (14) it is clear that when incident light is plane polarized (pinc = p∗ inc) or circularly polarized (pinc = ±i), then pref = pinc and ptra = pinc, i.e., there is no change in polarization state of.

  5. How to Regulate the Acute Physiological Response to “Aerobic” High-Intensity Interval Exercise

    Science.gov (United States)

    Tschakert, Gerhard; Kroepfl, Julia; Mueller, Alexander; Moser, Othmar; Groeschl, Werner; Hofmann, Peter

    2015-01-01

    The acute physiological processes during “aerobic” high-intensity interval exercise (HIIE) and their regulation are inadequately studied. The main goal of this study was to investigate the acute metabolic and cardiorespiratory response to long and short HIIE compared to continuous exercise (CE) as well as its regulation and predictability. Six healthy well-trained sport students (5 males, 1 female; age: 25.7 ± 3.1 years; height: 1.80 ± 0.04 m; weight: 76.7 ± 6.4 kg; VO2max: 4.33 ± 0.7 l·min-1) performed a maximal incremental exercise test (IET) and subsequently three different exercise sessions matched for mean load (Pmean) and exercise duration (28 min): 1) long HIIE with submaximal peak workloads (Ppeak = power output at 95 % of maximum heart rate), peak workload durations (tpeak) of 4 min, and recovery durations (trec) of 3 min, 2) short HIIE with Ppeak according to the maximum power output (Pmax) from IET, tpeak of 20 s, and individually calculated trec (26.7 ± 13.4 s), and 3) CE with a target workload (Ptarget) equating to Pmean of HIIE. In short HIIE, mean lactate (Lamean) (5.22 ± 1.41 mmol·l-1), peak La (7.14 ± 2.48 mmol·l-1), and peak heart rate (HRpeak) (181.00 ± 6.66 b·min-1) were significantly lower compared to long HIIE (Lamean: 9.83 ± 2.78 mmol·l-1; Lapeak: 12.37 ± 4.17 mmol·l-1, HRpeak: 187.67 ± 5.72 b·min-1). No significant differences in any parameters were found between short HIIE and CE despite considerably higher peak workloads in short HIIE. The acute metabolic and peak cardiorespiratory demand during “aerobic” short HIIE was significantly lower compared to long HIIE and regulable via Pmean. Consequently, short HIIE allows a consciously aimed triggering of specific and desired or required acute physiological responses. Key points High-intensity interval exercise (HIIE) with short peak workload durations (tpeak) induce a lower acute metabolic and peak cardiorespiratory response compared to intervals with long tpeak

  6. PGC-1α in aging and lifelong exercise training-mediated regulation of UPR in mouse liver

    DEFF Research Database (Denmark)

    Maag Kristensen, Caroline; Brandt, Christina Tingbjerg; Jørgensen, Stine Ringholm

    2017-01-01

    Aging is associated with changes in several metabolic pathways affecting liver function including the adaptive unfolded protein response (UPR). On the other hand, exercise training has been shown to exert beneficial effects on metabolism in the liver and exercise training has been reported...... to affect hepatic UPR. PGC-1α is a transcriptional coactivator involved in exercise training-induced adaptations in skeletal muscle and liver. Therefore, the aim of the present study was to examine the impact of PGC-1α in aging and lifelong exercise training-induced hepatic UPR in mice. Liver was obtained...... that the capacity and activity of the three UPR pathways are differentially regulated in the liver with aging and lifelong exercise training. In addition, PGC-1α does not seem to regulate the activity of hepatic UPR in response to exercise training, but to influence the capacity of the liver to induce UPR...

  7. Exercise

    Science.gov (United States)

    ... it can lead to weakness of muscles, decreased bone density with an increased risk of fracture, and shallow, inefficient breathing. An exercise program needs to fit the capabilities and limitations ...

  8. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise

    Science.gov (United States)

    Kristensen, Dorte E; Albers, Peter H; Prats, Clara; Baba, Otto; Birk, Jesper B; Wojtaszewski, Jørgen F P

    2015-01-01

    AMP-activated protein kinase (AMPK) is a regulator of energy homeostasis during exercise. Studies suggest muscle fibre type-specific AMPK expression. However, fibre type-specific regulation of AMPK and downstream targets during exercise has not been demonstrated. We hypothesized that AMPK subunits are expressed in a fibre type-dependent manner and that fibre type-specific activation of AMPK and downstream targets is dependent on exercise intensity. Pools of type I and II fibres were prepared from biopsies of vastus lateralis muscle from healthy men before and after two exercise trials: (1) continuous cycling (CON) for 30 min at 69 ± 1% peak rate of O2 consumption () or (2) interval cycling (INT) for 30 min with 6 × 1.5 min high-intensity bouts peaking at 95 ± 2% . In type I vs. II fibres a higher β1 AMPK (+215%) and lower γ3 AMPK expression (−71%) was found. α1, α2, β2 and γ1 AMPK expression was similar between fibre types. In type I vs. II fibres phosphoregulation after CON was similar (AMPKThr172, ACCSer221, TBC1D1Ser231 and GS2+2a) or lower (TBC1D4Ser704). Following INT, phosphoregulation in type I vs. II fibres was lower (AMPKThr172, TBC1D1Ser231, TBC1D4Ser704 and ACCSer221) or higher (GS2+2a). Exercise-induced glycogen degradation in type I vs. II fibres was similar (CON) or lower (INT). In conclusion, a differentiated response to exercise of metabolic signalling/effector proteins in human type I and II fibres was evident during interval exercise. This could be important for exercise type-specific adaptations, i.e. insulin sensitivity and mitochondrial density, and highlights the potential for new discoveries when investigating fibre type-specific signalling. PMID:25640469

  9. Parent and child perceptions of a self-regulated, home-based exercise program for children with cystic fibrosis.

    Science.gov (United States)

    Happ, Mary Beth; Hoffman, Leslie A; Higgins, Linda W; Divirgilio, Dana; DiVirgilio, Dana; Orenstein, David M

    2013-01-01

    Despite recognized benefits, many children with cystic fibrosis (CF) do not consistently participate in physical activities. There is little empirical literature regarding the feelings and attitudes of children with CF toward exercise programs, parental roles in exercise, or factors influencing exercise experiences during research participation. The aim of this study is to describe the exercise experiences of children with CF and their parents during participation in a 6-month program of self-regulated, home-based exercise. This qualitative descriptive study was nested within a randomized controlled trial of a self-regulated, home-based exercise program and used serial semistructured interviews conducted individually at 2 and 6 months with 11 purposively selected children with CF and their parent(s). Six boys and five girls, ages 10-16 years, and parents(nine mothers, four fathers) participated in a total of 44 interviews. Five major thematic categories describing child and parent perceptions and experience of the bicycle exercise program were identified in the transcripts: (a) motivators, (b) barriers, (c) effort/work, (d) exercise routine, and (e) sustaining exercise. Research participation, parent-family participation, health benefits, and the child's personality traits were the primary motivators. Competing activities, priorities, and responsibilities were the major barriers in implementing the exercise program as prescribed. Motivation waned, and the novelty wore off for several (approximately half) parent-child dyads, who planned to decrease or stop the exercise program after the study ended. We identified motivators and barriers to a self-regulated, home-based exercise program for children with CF that can be addressed in planning future exercise interventions to maximize the health benefits for children with CF and the feasibility and acceptability to the children and their families.

  10. EFFECT OF EXERCISE ON APPETITE-REGULATING HORMONES IN OVERWEIGHT WOMEN

    Directory of Open Access Journals (Sweden)

    Brad Schoenfeld

    2013-04-01

    Full Text Available Over the past decade, our knowledge of how homeostatic systems regulate food intake and body weight has increased with the discovery of circulating peptides such as leptin, acyl ghrelin, des-acyl ghrelin and obestatin. These hormones regulate the appetite and food intake by sending signals to the brain regarding the body’s nutritional status. The purpose of this study was to investigate the response of appetite-regulating hormones to exercise. Nine overweight women undertook two 2 h trials in a randomized crossover design. In the exercise trial, subjects ran for 60 min at 50% of maximal oxygen uptake followed by a 60 min rest period. In the control trial, subjects rested for 2 h. Obestatin, acyl ghrelin, des-acyl ghrelin and leptin concentrations were measured at baseline and at 20, 40, 60, 90 and 120 min after baseline. A two-way ANOVA revealed a significant (P0.05. The data indicated that although acute treadmill exercise resulted in a significant change in acyl ghrelin and leptin levels, it had no effect on plasma obestatin and des-acyl ghrelin levels.

  11. Psychometric Properties of the Iranian Version of the Behavioral Regulation in Exercise Questionnaire-2 (BREQ-2

    Directory of Open Access Journals (Sweden)

    Alireza Hidarnia

    2011-12-01

    Full Text Available Background: The Behavioral Regulation in Exercise Questionnaire (BREQ and the BREQ-2 are the most commonly used measures of behavioural regulation in exercise psychology. The purpose of the study was to assess the validity and reliability of the Iranian version of the BREQ-2 on a sample of university students.Methods: The BREQ-2 was translated into Persian by qualified experts and the psychometric properties of the instrument were assessed. Content validity was established, using a panel of 12 Iranian experts in the areas of health education, psychology, and exercise. Construct validity was assessed via confirmatory factor analysis (CFA, using LISREL 8.80 (N = 418. The reliability of the BREQ-2 was assessed, using a 2-week test-retest to establish its stability and Cronbach’s Alpha to estimate its internal consistency.Results: The Iranian version of the BREQ-2 was slightly modified to improve content validity. Primary results of confirmatory factor analysis did not fully support the 5-factor uncorrelated model. The model was modified; and the fit indices indicated that the 5-factor correlated model was the best fit. The scale was found to have acceptable internal consistency (α > 0.7 and test-retest reliability (intra-class correlation coefficient [ICC] > 0.80.Conclusion: The Iranian BREQ-2 has acceptable validity and reliability in the study sample and may be used in relevant studies to assess behavioural regulation in similar samples.

  12. Effect of exercise on appetite-regulating hormones in overweight women.

    Science.gov (United States)

    Tiryaki-Sonmez, G; Ozen, S; Bugdayci, G; Karli, U; Ozen, G; Cogalgil, S; Schoenfeld, B; Sozbir, K; Aydin, K

    2013-06-01

    Over the past decade, our knowledge of how homeostatic systems regulate food intake and body weight has increased with the discovery of circulating peptides such as leptin, acyl ghrelin, des-acyl ghrelin and obestatin. These hormones regulate the appetite and food intake by sending signals to the brain regarding the body's nutritional status. The purpose of this study was to investigate the response of appetite-regulating hormones to exercise. Nine overweight women undertook two 2 h trials in a randomized crossover design. In the exercise trial, subjects ran for 60 min at 50% of maximal oxygen uptake followed by a 60 min rest period. In the control trial, subjects rested for 2 h. Obestatin, acyl ghrelin, des-acyl ghrelin and leptin concentrations were measured at baseline and at 20, 40, 60, 90 and 120 min after baseline. A two-way ANOVA revealed a significant (P 0.05). The data indicated that although acute treadmill exercise resulted in a significant change in acyl ghrelin and leptin levels, it had no effect on plasma obestatin and des-acyl ghrelin levels.

  13. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates

    DEFF Research Database (Denmark)

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima

    2015-01-01

    Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high...

  14. The Guardian of the Genome p53 Regulates Exercise-Induced Mitochondrial Plasticity Beyond Organelle Biogenesis.

    Science.gov (United States)

    Smiles, William J; Camera, Donny M

    2017-11-27

    The Guardian of the Genome p53 has been established as a potent tumor suppressor. However, culminating from seminal findings in rodents more than a decade ago, several studies have demonstrated that p53 is required to maintain basal mitochondrial function [i.e., respiration and reactive oxygen species (ROS) homeostasis]. Specifically, via its role(s) as a tumor suppressor, p53 intimately surveys cellular DNA damage, in particular mitochondrial DNA (mtDNA), to ensure that the mitochondrial network is carefully monitored and cell viability is upheld, since aberrant mtDNA damage leads to apoptosis and widespread cellular perturbations. Indeed, data from rodents and humans have demonstrated that p53 forms an integral component of the exercise-induced signal transduction network regulating skeletal muscle mitochondrial remodeling. In response to exercise-induced disruptions to cellular homeostasis that have the potential to harm mtDNA (e.g., contraction-stimulated ROS emissions), appropriate p53-regulated, mitochondrial turnover responses prevail to protect the genome and ultimately facilitate a shift from aerobic glycolysis to oxidative phosphorylation; adaptations critical for endurance-based exercise that are commensurate with p53's role as a tumor suppressor. Despite these observations, several discrepancies exist between rodent and human studies pinpointing p53 subcellular trafficking from nuclear to mitochondrial compartments following acute exercise. Such interspecies differences in p53 activity and the plausible p53-mediated adaptions to chronic exercise training will be discussed herein. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Intermittent bout exercise training down-regulates age-associated inflammation in skeletal muscles.

    Science.gov (United States)

    Kim, Jeong-Seok; Yi, Ho-Keun

    2015-12-01

    Aging is characterized by the progressive decline in mass and function of the skeletal muscle along with increased susceptibility to inflammation, oxidative stress, and atrophy. In this study, we investigate the effect of intermittent bout and single bout exercise training on inflammatory molecules in young (3 months) and old (22 months) male Sprague-Dawley rats. The rats were divided into 6 groups. Young and old rats were randomly assigned for control and two exercise training groups, single bout (S type): 30 min/day, 5 days/week for 6 weeks and intermittent bout (I type): three times for 10 min/day, 5 days/week for 6 weeks respectively. The exercise training was carried out by a treadmill at a speed of 15m/min (young) or 10 m/min (old) with a slope of 5°. After 48 h of the final exercise bout, muscle samples were collected for biochemical assay. I type exercise training reduced the serum levels of inflammatory molecules such as interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA) in old rats. By contrast, interleukin-4 (IL-4) and superoxide dismutase (SOD) were elevated. Consequently in skeletal muscles, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were decreased significantly in the old group of I type. However, the matrix metalloproteinase-2 (MMP-2) level had no positive effects. Also, phosphorylation of mammalian target of rapamycin (p-mTOR) and myogenic differentiation (MyoD) were increased markedly in S and I types of old rats. These results suggest that I type exercise training appears more effective to reduce age-associated inflammatory molecules, and may recommend in regulating against chronic complicated disease induced by aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Endothelin-1 Regulation of exercise-induced changes in flow: Dynamic regulation of vascular tone

    NARCIS (Netherlands)

    Rapoport, R.M. (Robert M.); D. Merkus (Daphne)

    2017-01-01

    textabstractAlthough endothelin (ET)-1 is a highly potent vasoconstrictor with considerable efficacy in numerous vascular beds, the role of endogenous ET-1 in the regulation of vascular tone remains unclear. The perspective that ET-1 plays little role in the on-going regulation of vascular tone at

  17. Consumption of a high‐fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice

    National Research Council Canada - National Science Library

    Borg, Melissa L; Omran, Simin Fallah; Weir, Jacquelyn; Meikle, Peter J; Watt, Matthew J

    2012-01-01

    ...‐deficient ob / ob mouse fed a chow diet had normal hypothalamic lipid content. •  These data show that dietary lipids regulate hypothalamic lipid accumulation, which is not readily reversed by exercise training. Abstract...

  18. Effects of an isotonic beverage on autonomic regulation during and after exercise

    Directory of Open Access Journals (Sweden)

    Moreno Isadora Lessa

    2013-01-01

    Full Text Available Abstract Background With prolonged physical activity, it is important to maintain adequate fluid balance. The impact of consuming isotonic drinks during and after exercise on the autonomic regulation of cardiac function is unclear. This study aimed to analyze the effects of consuming an isotonic drink on heart rate variability (HRV during and after prolonged exercise. Methods Thirty-one young males (21.55 ± 1.89 yr performed three different protocols (48 h interval between each stage: I maximal exercise test to determine the load for the protocols; II Control protocol (CP and; III. Experimental protocol (EP. The protocols consisted of 10 min at rest with the subject in the supine position, 90 min of treadmill exercise (60% of VO2 peak and 60 min of rest placed in the dorsal decubitus position. No rehydration beverage consumption was allowed during CP. During EP, however, the subjects were given an isotonic solution (Gatorade, Brazil containing carbohydrate (30 g, sodium (225 mg, chloride (210 mg and potassium (60 mg per 500 ml of the drink. For analysis of HRV data, time and frequency domain indices were investigated. HRV was recorded at rest (5–10 min, during exercise (25–30 min, 55–60 min and 85–90 min and post-exercise (5–10 min, 15–20 min, 25–30 min, 40–45 min and 55–60 min. Results Regardless of hydration, alterations in the SNS and PSNS were observed, revealing an increase in the former and a decrease in the latter. Hydrating with isotonic solution during recovery induced significant changes in cardiac autonomic modulation, promoting faster recovery of linear HRV indices. Conclusion Hydration with isotonic solution did not significantly influence HRV during exercise; however, after exercise it promoted faster recovery of linear indices.

  19. Effects of an isotonic beverage on autonomic regulation during and after exercise.

    Science.gov (United States)

    Moreno, Isadora Lessa; Pastre, Carlos Marcelo; Ferreira, Celso; de Abreu, Luiz Carlos; Valenti, Vitor Engrácia; Vanderlei, Luiz Carlos Marques

    2013-01-04

    With prolonged physical activity, it is important to maintain adequate fluid balance. The impact of consuming isotonic drinks during and after exercise on the autonomic regulation of cardiac function is unclear. This study aimed to analyze the effects of consuming an isotonic drink on heart rate variability (HRV) during and after prolonged exercise. Thirty-one young males (21.55 ± 1.89 yr) performed three different protocols (48 h interval between each stage): I) maximal exercise test to determine the load for the protocols; II) Control protocol (CP) and; III). Experimental protocol (EP). The protocols consisted of 10 min at rest with the subject in the supine position, 90 min of treadmill exercise (60% of VO2 peak) and 60 min of rest placed in the dorsal decubitus position. No rehydration beverage consumption was allowed during CP. During EP, however, the subjects were given an isotonic solution (Gatorade, Brazil) containing carbohydrate (30 g), sodium (225 mg), chloride (210 mg) and potassium (60 mg) per 500 ml of the drink. For analysis of HRV data, time and frequency domain indices were investigated. HRV was recorded at rest (5-10 min), during exercise (25-30 min, 55-60 min and 85-90 min) and post-exercise (5-10 min, 15-20 min, 25-30 min, 40-45 min and 55-60 min). Regardless of hydration, alterations in the SNS and PSNS were observed, revealing an increase in the former and a decrease in the latter. Hydrating with isotonic solution during recovery induced significant changes in cardiac autonomic modulation, promoting faster recovery of linear HRV indices. Hydration with isotonic solution did not significantly influence HRV during exercise; however, after exercise it promoted faster recovery of linear indices.

  20. Behavioral regulation assessment in exercise: exploring an autonomous and controlled motivation index.

    Science.gov (United States)

    Cid, Luis; Moutão, João; Leitão, José; Alves, José

    2012-11-01

    The main purpose of this study was to examine the psychometric properties of the Portuguese version of the Behavioral Regulation in Exercise Questionnaire (BREQ-2) and to test the hypothesis that the different types of behavioral regulation can be combined on a single factor to assess autonomous and controlled motivation. Data were collected from 550 members of private fitness centres who ranged in age from 14 to 69 years. The analysis supported an 18-item, 5-factor model after excluding one item (S-B chi2 = 221.7, df = 125, p = .000, S-B chi2/df = 1.77; SRMR = .06; NNFI = .90; CFI = .92; RMSEA = .04, 90% CI = .03-.05). However, the analysis also revealed a lack of internal consistency. The results of a hierarchical model based on 2 second-order factors that reflected controlled motivation (external and introjected regulation) and autonomous motivation (identified and intrinsic regulation) provided an acceptable fit to the data (S-B chi2 = 172.6, df = 74, p = .000, S-B chi2/df = 2.33; SRMR = .07; NNFI = .90; CFI = .92; RMSEA = .05, 90% CI = .04-.06), with reliability coefficients of .75 for controlled motivation and .76 for autonomous motivation. The study findings indicated that when item 17 was excluded, the Portuguese BREQ-2 was an appropriate measure of the controlled and autonomous motivation in exercise.

  1. Exercise

    DEFF Research Database (Denmark)

    Idorn, Manja; thor Straten, Eivind Per

    2016-01-01

    We recently demonstrated that voluntary exercise leads to an influx of immune cells in tumors and a greater than 60% reduction in tumor incidence and growth across several mouse models. Improved immunological control of tumor progression may have important clinical implications in the prevention...... and treatment of cancer in humans....

  2. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Halberg, Nils; Hillig, Thore

    2005-01-01

    Intracellular mechanisms regulating fat oxidation were investigated in human skeletal muscle during exercise. Eight young, healthy, moderately trained men performed bicycle exercise (60 min, 65% peak O2 consumption) on two occasions, where they ingested either 1) a high-carbohydrate diet (H......-CHO) or 2) a low-carbohydrate diet (L-CHO) before exercise to alter muscle glycogen content as well as to induce, respectively, low and high rates of fat oxidation. Leg fat oxidation was 122% higher during exercise in L-CHO than in H-CHO (P ...-activated protein kinase (a2-AMPK) was increased twice as much in L-CHO as in H-CHO (P exercise. However, acetyl-CoA carboxylase (ACC)ß Ser221 phosphorylation was increased to the same extent (6-fold) under the two conditions. The concentration of malonyl-CoA was reduced 13% by exercise in both...

  3. Application of the limited strength model of self-regulation to understanding exercise effort, planning and adherence.

    Science.gov (United States)

    Martin Ginis, Kathleen A; Bray, Steven R

    2010-12-01

    The limited strength model posits that self-regulatory strength is a finite, renewable resource that is drained when people attempt to regulate their emotions, thoughts or behaviours. The purpose of this study was to determine whether self-regulatory depletion can explain lapses in exercise effort, planning and adherence. In a lab-based experiment, participants exposed to a self-regulatory depletion manipulation generated lower levels of work during a 10 min bicycling task, and planned to exert less effort during an upcoming exercise bout, compared with control participants. The magnitude of reduction in planned exercise effort predicted exercise adherence over a subsequent 8-week period. Together, these results suggest that self-regulatory depletion can influence exercise effort, planning and decision-making and that the depletion of self-regulatory resources can explain episodes of exercise non-adherence both in the lab and in everyday life.

  4. Heart rate regulation during cycle-ergometer exercise via event-driven biofeedback.

    Science.gov (United States)

    Argha, Ahmadreza; Su, Steven W; Celler, Branko G

    2017-03-01

    This paper is devoted to the problem of regulating the heart rate response along a predetermined reference profile, for cycle-ergometer exercises designed for training or cardio-respiratory rehabilitation. The controller designed in this study is a non-conventional, non-model-based, proportional, integral and derivative (PID) controller. The PID controller commands can be transmitted as biofeedback auditory commands, which can be heard and interpreted by the exercising subject to increase or reduce exercise intensity. However, in such a case, for the purposes of effectively communicating to the exercising subject a change in the required exercise intensity, the timing of this feedback signal relative to the position of the pedals becomes critical. A feedback signal delivered when the pedals are not in a suitable position to efficiently exert force may be ineffective and this may, in turn, lead to the cognitive disengagement of the user from the feedback controller. This note examines a novel form of control system which has been expressly designed for this project. The system is called an "actuator-based event-driven control system". The proposed control system was experimentally verified using 24 healthy male subjects who were randomly divided into two separate groups, along with cross-validation scheme. A statistical analysis was employed to test the generalisation of the PID tunes, derived based on the average transfer functions of the two groups, and it revealed that there were no significant differences between the mean values of root mean square of the tracking error of two groups (3.9 vs. 3.7 bpm, [Formula: see text]). Furthermore, the results of a second statistical hypothesis test showed that the proposed PID controller with novel synchronised biofeedback mechanism has better performance compared to a conventional PID controller with a fixed-rate biofeedback mechanism (Group 1: 3.9 vs. 5.0 bpm, Group 2: 3.7 vs. 4.4 bpm, [Formula: see text]).

  5. Training prescription in patients on beta-blockers: percentage peak exercise methods or self-regulation?

    Science.gov (United States)

    Zanettini, Renzo; Centeleghe, Paola; Ratti, Fosco; Benna, Stefania; Di Tullio, Laura; Sorlini, Nadia

    2012-04-01

    Exercise prescription based on percentage of peak exercise variables has many limitations in patients taking beta-blockers. The aim of this study was to evaluate efficacy and safety of a training protocol based on the rating of perceived exercise (RPE) in patients taking beta-blockers after cardiac surgical revascularization. 71 patients treated with beta-blockers after recent coronary artery bypass grafting were randomly allocated to two different programmes with training intensity adjusted to keep heart rate close to first ventilatory threshold (36 subjects, AeT group) or RPE between grades 4 and 5 of 10-point category-ratio BORG scale (35 subjects, RPE group). In the RPE group, mean training workloads and heart rate values were significantly higher than in the AeT group; during the last week of the programme, six RPE patients were training very close to anaerobic threshold. Aerobic peak capacity increased similarly in the two groups. Considering the potential effects on training intensity of prescriptions based on percentages of peak exercise variables, we found that only percentage heart rate reserve and peak workload methods were reliable in defining a safe upper limit of training intensity, with values of 50% and 65% respectively. Self-regulation of exercise training intensity between grades 4 and 5 of the 10-point category-ratio BORG scale is effective but may promote overtraining in some patients without significant functional advantages. For these reasons, RPE method should be integrated with objective indices based on percentage of heart rate reserve or of peak workload.

  6. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanli [Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei (China); Zhao, Chaoxian; Sun, Xuewen [Medical College of Hebei Engineering University, Handan, 056002, Hebei (China); Liu, Zhijun, E-mail: liuzhij1207@163.com [Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei (China); Zhang, Jianzhong, E-mail: zhangjianzhong@icdc.cn [National Institute for Communicable Disease Control and Prevention (ICDC), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206 (China)

    2015-11-06

    MicroRNAs (miRNAs) have been suggested to play critical roles in skeletal muscle in response to exercise. Previous study has shown that miR-761 was involved in a novel model regulating the mitochondrial network. However, its role in mitochondrial biogenesis remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-761 on mitochondrial biogenesis in skeletal muscle. Real-time quantitative PCR analysis demonstrated that aberrantly expressed miR-761 is involved in exercise activity and miR-761 is decreased by exercise training compared with the sedentary control mice. miR-761 suppresses mitochondrial biogenesis of C{sub 2}C{sub 12} myocytes by targeting the 3′-UTR of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1α). Overexpression of miR-761 was capable of inhibiting the protein expression levels of PGC-1α. Moreover, miR-761 overexpression suppressed the p38 MAPK signaling pathway and down-regulated the expression of phosphorylated MAPK-activated protein kinase-2 (P-MK2), a downstream kinase of p38 MAPK. The phosphorylation of activating transcription factors 2 (ATF2) that plays a functional role in linking the activation of the p38 MAPK pathway to enhanced transcription of the PGC-1α was also inhibited by the overexpression of miR-761. These findings revealed a novel regulation mechanism for miR-761 in skeletal myocytes, and contributed to a better understanding of the modulation of skeletal muscle in response to exercise. - Highlights: • Endurance exercise decreases miR-761 expression in skeletal muscle. • MiR-761 suppresses mitochondrial biogenesis in C{sub 2}C{sub 12} myocytes. • MiR-761 directly targeted PGC-1α expression. • MiR-761 suppresses p38 MAPK signaling pathways in C{sub 2}C{sub 12} myocytes. • A novel mechanism for miR-761 in skeletal myocytes is demonstrated.

  7. Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Keller, Charlotte; Steensberg, Adam

    2002-01-01

    Transcription of metabolic genes is transiently induced during recovery from exercise in skeletal muscle of humans. To determine whether pre-exercise muscle glycogen content influences the magnitude and/or duration of this adaptive response, six male subjects performed one-legged cycling exercise...... and UCP3 mRNA in response to exercise was also significantly higher in the low glycogen (11.4- and 3.5-fold, respectively) than in the control (5.0- and 1.7-fold, respectively) trial. These data indicate that low muscle glycogen content enhances the transcriptional activation of some metabolic genes...... to lower muscle glycogen content in one leg and then, the following day, completed 2.5 h low intensity two-legged cycling exercise. Nuclei and mRNA were isolated from biopsies obtained from the vastus lateralis muscle of the control and reduced glycogen (pre-exercise glycogen = 609 +/- 47 and 337 +/- 33...

  8. O2 uptake and blood pressure regulation at the onset of exercise: interaction of circadian rhythm and priming exercise.

    Science.gov (United States)

    Faisal, Azmy; Beavers, Keith R; Hughson, Richard L

    2010-12-01

    Circadian rhythm has an influence on several physiological functions that contribute to athletic performance. We tested the hypothesis that circadian rhythm would affect blood pressure (BP) responses but not O(2) uptake (Vo(2)) kinetics during the transitions to moderate and heavy cycling exercises. Nine male athletes (peak Vo(2): 60.5 ± 3.2 ml·kg(-1)·min(-1)) performed multiple rides of two different cycling protocols involving sequences of 6-min bouts at moderate or heavy intensities interspersed by a 20-W baseline in the morning (7 AM) and evening (5 PM). Breath-by-breath Vo(2) and beat-by-beat BP estimated by finger cuff plethysmography were measured simultaneously throughout the protocols. Circadian rhythm did not affect Vo(2) onset kinetics determined from the phase II time constant (τ(2)) during either moderate or heavy exercise bouts with no prior priming exercise (τ(2) moderate exercise: morning 22.5 ± 4.6 s vs. evening 22.2 ± 4.6 s and τ(2) heavy exercise: morning 26.0 ± 2.7 s vs. evening 26.2 ± 2.6 s, P > 0.05). Priming exercise induced the same robust acceleration in Vo(2) kinetics during subsequent moderate and heavy exercise in the morning and evening. A novel finding was an overshoot in BP (estimated from finger cuff plethysmography) in the first minutes of each moderate and heavy exercise bout. After the initial overshoot, BP declined in association with increased skin blood flow between the third and sixth minute of the exercise bout. Priming exercise showed a greater effect in modulating the BP responses in the evening. These findings suggest that circadian rhythm interacts with priming exercise to lower BP during exercise after an initial overshoot with a greater influence in the evening associated with increased skin blood flow.

  9. Effects of High-Intensity Intermittent Exercise Training on Appetite Regulation.

    Science.gov (United States)

    Sim, Aaron Y; Wallman, Karen E; Fairchild, Timothy J; Guelfi, Kym J

    2015-11-01

    An acute bout of high-intensity intermittent exercise suppresses ad libitum energy intake at the postexercise meal. The present study examined the effects of 12 wk of high-intensity intermittent exercise training (HIIT) compared with moderate-intensity continuous exercise training (MICT) on appetite regulation. Thirty overweight inactive men (body mass index, 27.2 ± 1.3 kg·m(-2); V˙O2peak, 35.3 ± 5.3 mL·kg(-1)·min(-1) were randomized to either HIIT or MICT (involving 12 wk of training, three sessions per week) or a control group (CON) (n = 10 per group). Ad libitum energy intake from a laboratory test meal was assessed after both a low-energy (847 kJ) and a high-energy preload (2438 kJ) before and after the intervention. Perceived appetite and appetite-related blood variables were also measured. There was no significant effect of the intervention period on energy intake at the test meal after the two different preloads (P ≥ 0.05). However, the 95% confidence interval indicated a clinically meaningful decrease in energy intake after the high-energy preload compared with the low-energy preload in response to HIIT (516 ± 395 kJ decrease), but not for MICT or CON, suggesting improved appetite regulation. This was not associated with alterations in the perception of appetite or the circulating concentration of a number of appetite-related peptides or metabolites, although insulin sensitivity was enhanced with HIIT only (P = 0.003). HIIT seems to benefit appetite regulation in overweight men. The mechanisms for this remain to be elucidated.

  10. Human Investigations into the Arterial and Cardiopulmonary Baroreflexes during Exercise

    Science.gov (United States)

    Fadel, Paul J.; Raven, Peter B.

    2011-01-01

    After considerable debate and key experimental evidence, the importance of the arterial baroreflex in contributing to and maintaining the appropriate neural cardiovascular adjustments to exercise is now well accepted. Indeed, the arterial baroreflex resets during exercise in an intensity-dependent manner to continue to regulate blood pressure as effectively as at rest. Studies have indicated that the exercise resetting of the arterial baroreflex is mediated by both the feed-forward mechanism of central command and the feed-back mechanism associated with skeletal muscle afferents (the exercise pressor reflex). Another perhaps less appreciated neural mechanism involved in evoking and maintaining neural cardiovascular responses to exercise is the cardiopulmonary baroreflex. The limited information available regarding the cardiopulmonary baroreflex during exercise provides evidence for a role in mediating sympathetic nerve activity and blood pressure responses. In addition, recent investigations have demonstrated an interaction between cardiopulmonary baroreceptors and the arterial baroreflex during dynamic exercise, which contributes to the magnitude of exercise-induced increases in blood pressure as well as the resetting of the arterial baroreflex. Furthermore, neural inputs from the cardiopulmonary baroreceptors appear to play an important role in establishing the operating point of the arterial baroreflex. This symposium review will highlight recent studies in these important areas indicating that the interactions of four neural mechanisms (central command, the exercise pressor reflex, the arterial baroreflex and cardiopulmonary baroreflex) are integral in mediating the neural cardiovascular adjustments to exercise. PMID:22002871

  11. Behavioral Regulations and Dispositional Flow in Exercise among American College Students Relative to Stages of Change and Gender

    Science.gov (United States)

    Ersöz, Gözde; Eklund, Robert C.

    2017-01-01

    Objective: The purpose of this study was to examine behavioral regulations and dispositional flow in exercise among university students in terms of gender and stage of change. Participants: Data were collected from American college students (N = 257; M[subscript age] ± SD = 23.02 ± 4.05) in Spring 2013. Methods: Behavioral regulations and…

  12. Dynamics for a two-atom two-mode intensity-dependent Raman coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S., E-mail: vasudha-rnc1@rediffmail.com, E-mail: sudhhasingh@gmail.com; Gilhare, K. [Ranchi University, Department of Physics (India)

    2016-06-15

    We study the quantum dynamics of a two-atom Raman coupled model interacting with a quantized bimodal field with intensity-dependent coupling terms in a lossless cavity. The unitary transformation method used to solve the time-dependent problem also gives the eigensolutions of the interaction Hamiltonian. We study the atomic-population dynamics and dynamics of the photon statistics in the two cavity modes, and present evidence of cooperative effects in the production of antibunching and anticorrelations between the modes. We also investigate the effect of detuning on the evolution of second-order correlation functions and observe that the oscillations become more rapid for large detuning.

  13. Nonlinear totally reflecting prism coupler: thermomechanic effects and intensity-dependent refractive index of thin films.

    Science.gov (United States)

    Rigneault, H; Flory, F; Monneret, S

    1995-07-20

    Starting with an accurate linear electromagnetic theory of a totally reflecting prism coupled to a dielectric waveguide, we implement a numerical technique to take into account optogeometric perturbations in stratified media. We calculate both the reflected fields in intensity on the prism base (near field) and in infinity (far field) for an incident Gaussian beam. The study of the variations of the intensity in the reflected beam (near and far fields) versus light power shows thermoinduced dilation of the prism and an intensity-dependent refractive index of thin films composed of tantalium pentoxyde and titanium dioxide.

  14. Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP

    DEFF Research Database (Denmark)

    Ingerslev, Bodil; Hansen, Jakob S; Hoffmann, Christoph

    2017-01-01

    . METHODS: We investigated the origin of exercise-induced ANGPTL4 in humans by measuring the arterial-to-venous difference over the leg and the hepato-splanchnic bed during an acute bout of exercise. Furthermore, the impact of the glucagon-to-insulin ratio on plasma ANGPTL4 was studied in healthy...... individuals. The regulation of ANGPTL4 was investigated in both hepatic and muscle cells. RESULTS: The hepato-splanchnic bed, but not the leg, contributed to exercise-induced plasma ANGPTL4. Further studies using hormone infusions revealed that the glucagon-to-insulin ratio is an important regulator of plasma......RNA levels in hepatic cells, which was prevented by inhibition of PKA. In humans, muscle ANGPTL4 mRNA increased during fasting, with only a marginal further induction by exercise. In human muscle cells, no inhibitory effect of AMPK activation could be demonstrated on ANGPTL4 expression. CONCLUSIONS: The data...

  15. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice.

    Science.gov (United States)

    Sylow, Lykke; Nielsen, Ida L; Kleinert, Maximilian; Møller, Lisbeth L V; Ploug, Thorkil; Schjerling, Peter; Bilan, Philip J; Klip, Amira; Jensen, Thomas E; Richter, Erik A

    2016-09-01

    Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. The GTPase Rac1 can be activated by muscle contraction and has been found to be necessary for insulin-stimulated glucose uptake, although its role in exercise-stimulated glucose uptake is unknown. We show that Rac1 regulates the translocation of the glucose transporter GLUT4 to the plasma membrane in skeletal muscle during exercise. We find that Rac1 knockout mice display significantly reduced glucose uptake in skeletal muscle during exercise. Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. Despite extensive efforts, the signalling mechanisms vital for glucose uptake during exercise are not yet fully understood, although the GTPase Rac1 is a candidate molecule. The present study investigated the role of Rac1 in muscle glucose uptake and substrate utilization during treadmill exercise in mice in vivo. Exercise-induced uptake of radiolabelled 2-deoxyglucose at 65% of maximum running capacity was blocked in soleus muscle and decreased by 80% and 60% in gastrocnemius and tibialis anterior muscles, respectively, in muscle-specific inducible Rac1 knockout (mKO) mice compared to wild-type littermates. By developing an assay to quantify endogenous GLUT4 translocation, we observed that GLUT4 content at the sarcolemma in response to exercise was reduced in Rac1 mKO muscle. Our findings implicate Rac1 as a regulatory element critical for controlling glucose uptake during exercise via regulation of GLUT4 translocation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  16. Changes in self-efficacy for exercise and improved nutrition fostered by increased self-regulation among adults with obesity.

    Science.gov (United States)

    Annesi, James J; Johnson, Ping H; McEwen, Kristin L

    2015-10-01

    Behavioral theory suggests that treatments that increase participants' use of self-regulatory skills and/or their feelings of ability (self-efficacy) will improve exercise and nutrition behaviors. In addition, psychosocial factors associated with increased exercise may carry over to improved eating. Self-regulation might enhance self-efficacy through feelings of ability to manage barriers to maintaining weight-loss behaviors. Sedentary adults with severe or morbid obesity (M age = 43 years; M BMI = 40.1 kg/m(2)) participated in a 6-month study within a community-based YMCA center. We randomly assigned participants to one of the two groups that incorporated the same cognitive-behavioral support of exercise paired with methods for controlled, healthy eating emphasizing either (a) self-efficacy (n = 138), or (b) self-regulation (n = 136) methods. Mixed model repeated measures ANOVAs indicated significant improvements in exercise- and eating-related self-regulation over 3 months, and exercise- and eating-related self-efficacy over 6 months. The Self-Regulation Treatment Group demonstrated greater improvements in self-regulation for eating and fruit and vegetable intake than the Self-Efficacy Group. Regression analyses indicated that for both exercise and eating, self-regulation change significantly predicted self-efficacy change. In separate equations, changes in exercise and fruit and vegetable intake mediated those relationships, and change in self-efficacy and the corresponding behavioral changes demonstrated reciprocal, mutually reinforcing, relationships. There was evidence of carry-over, or generalization, of both self-regulation and self-efficacy changes from an exercise context to an eating context. We discussed findings in terms of leveraging self-regulation to improve self-efficacy, and provide a rationale for why exercise is the strongest predictor of success with weight loss. Results may be used to inform future behavioral weight

  17. Exercise and Type 2 Diabetes: Molecular Mechanisms Regulating Glucose Uptake in Skeletal Muscle

    Science.gov (United States)

    Stanford, Kristin I.; Goodyear, Laurie J.

    2014-01-01

    Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial…

  18. Morning and evening physical exercise differentially regulate the autonomic nervous system during nocturnal sleep in humans.

    Science.gov (United States)

    Yamanaka, Yujiro; Hashimoto, Satoko; Takasu, Nana N; Tanahashi, Yusuke; Nishide, Shin-Ya; Honma, Sato; Honma, Ken-Ichi

    2015-11-01

    Effects of daily physical exercise in the morning or in the evening were examined on circadian rhythms in plasma melatonin and core body temperature of healthy young males who stayed in an experimental facility for 7 days under dim light conditions (exercise with a bicycle ergometer at ZT3 or at ZT10 for four consecutive days, where zeitgeber time 0 (ZT0) was the time of wake-up. The rising phase of plasma melatonin rhythm was delayed by 1.1 h without exercise. Phase-delay shifts of a similar extent were detected by morning and evening exercise. But the falling phase shifted only after evening exercise by 1.0 h. The sleep PSG did not change after morning exercise, while Stage 1+2 sleep significantly decreased by 13.0% without exercise, and RE sleep decreased by 10.5% after evening exercise. The nocturnal decline of rectal temperature was attenuated by evening exercise, but not by morning exercise. HRV during sleep changed differentially. Very low frequency (VLF) waves increased without exercise. VLF, low frequency (LF), and high frequency (HF) waves increased after morning exercise, whereas HR increased after evening exercise. Morning exercise eventually enhanced the parasympathetic activity, as indicated by HRV, while evening exercise activated the sympathetic activity, as indicated by increase in heart rate in the following nocturnal sleep. These findings indicated differential effects of morning and evening exercise on the circadian melatonin rhythm, PSG, and HRV. Copyright © 2015 the American Physiological Society.

  19. PGC-1alpha-mediated regulation of gene expression and metabolism: implications for nutrition and exercise prescriptions.

    Science.gov (United States)

    Benton, Carley R; Wright, David C; Bonen, Arend

    2008-10-01

    The discovery 10 years ago of PGC-1alpha represented a major milestone towards understanding of the molecular processes regulating energy metabolism in many tissues, including skeletal muscle. PGC-1alpha orchestrates a metabolic program regulating oxidative lipid metabolism and insulin sensitivity. This is essentially the same metabolic program that is activated by exercise and down-regulated by sedentary lifestyles and high-fat diets, as well as in cases of obesity and type 2 diabetes. The present review examines the evidence in support of the key role for PGC-1alpha regulation of substrate metabolism and mitochondrial biogenesis in skeletal muscle. Surprisingly, studies with PGC-1alpha null and transgenic mice have revealed unexpected pathologies when PGC-1alpha is completely repressed (KO animals) or is massively overexpressed. In contrast, PGC-1alpha overexpression within normal physiological limits results in marked improvements in fatty acid oxidation and insulin-stimulated glucose transport. Exercise, sedentary lifestyles, and nutritional factors can regulate PGC-1alpha expression. We speculate that optimal targeting of PGC-1alpha upregulation, whether by diet, exercise, or a combination of both, could represent effective prophylactic or therapeutic means to improve insulin sensitivity. Indeed, using modern molecular tools, it may indeed be possible to prescribe optimally individualized nutrition and exercise programs.

  20. EXERCISE-INDUCED SIGNAL TRANSDUCTION AND GENE REGULATION IN SKELETAL MUSCLE

    Directory of Open Access Journals (Sweden)

    Henning Wackerhage

    2002-12-01

    Full Text Available Skeletal muscle adapts to various forms of exercise depending on the force, speed and duration characteristics of the contraction pattern. The stresses and signals associated with each contraction pattern are likely to specifically activate a network of signal transduction pathways that integrate this information. These pathways include the calcineurin, Calcium/calmodulin-dependent protein kinase (CaMK, mitogen-activated protein kinase (MAPK, protein kinase C (PKC, nuclear factor kappa B (NF-B, AMP-dependent protein kinase (AMPK, insulin signalling and developmental pathways. Activated signal transduction pathways activate or increase the expression of transcription factors via various mechanisms. Skeletal muscle genes are usually regulated by combinatorial control exerted by several transcription factors and possibly other mechanisms. In addition, adaptations such as an increase in mitochondrial biogenesis or the activation of satellite cell proliferation involve distinct regulatory mechanisms

  1. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression

    DEFF Research Database (Denmark)

    Davidsen, Peter K; Gallagher, Iain J; Hartman, Joseph W

    2011-01-01

    R-26a, and miR-451, from the weighted cumulative context ranking methodology, indicated that miRNA changes in the low responders may be compensatory, reflecting a failure to "activate" growth and remodeling genes. We report, for the first time, that RT-induced hypertrophy in human skeletal muscle......MicroRNAs (miRNA), small noncoding RNA molecules, may regulate protein synthesis, while resistance exercise training (RT) is an efficient strategy for stimulating muscle protein synthesis in vivo. However, RT increases muscle mass, with a very wide range of effectiveness in humans. We therefore...... determined the expression level of 21 abundant miRNAs to determine whether variation in these miRNAs was able to explain the variation in RT-induced gains in muscle mass. Vastus lateralis biopsies were obtained from the top and bottom ~20% of responders from 56 young men who undertook a 5 day/wk RT program...

  2. Intensity-dependent transitions between different pathways of strong-field double ionization

    Science.gov (United States)

    Rudenko, A.; Ergler, Th.; Zrost, K.; Feuerstein, B.; de Jesus, V. L. B.; Schröter, C. D.; Moshammer, R.; Ullrich, J.

    2008-07-01

    Momentum distributions of Ne2+ and Ar2+ ions created by linearly polarized 795nm , 25fs laser pulses have been traced at intensities from 1014to3×1015W/cm2 using a “reaction microscope.” Apart from the transition from nonsequential to sequential ionization, characterized by significant changes in longitudinal momentum distributions developing from a double hump, over a triple-peak structure to a narrow single Gaussian observed for both ions, for Ar2+ we find a similar behavior but reversed in its intensity dependence in the purely nonsequential regime, pointing to contributions of recollision excitation plus subsequent field ionization, or to the role of “Z trajectories” recently predicted within classical calculations.

  3. Theoretical investigation of intensity-dependent optical nonlinearity in graphene-aided D-microfiber

    Science.gov (United States)

    Shah, Manoj Kumar; Lu, Rongguo; Zhang, Yali; Ye, Shengwei; Zhang, Shangjian; Liu, Yong

    2018-01-01

    We theoretically investigate the intensity-dependent optical nonlinearity in graphene-aided D-microfiber, by tuning the chemical potential of graphene and varying radial distance and radii of the D-microfiber. Utilizing an interplay between graphene and the enhanced evanescent field of a guided mode in the waveguide of interest, the net utility of nonlinear coefficient is harnessed up to a very high value of 106 W-1m-1. Importantly, which is ∼ two orders of magnitude larger than in PMMA-graphene-PMMA waveguide. The highly dispersive nature of the waveguide, D ∼ 103 ps/nm-km, and large nonlinear figure-of-merit, FOMNL ∼ 1.29, have raised the possibilities of utilizing slow light structures to operate devices at few watts power level with microscale length. These studies have opened one window towards the next-generation all fiber-optic graphene nonlinear optical devices.

  4. NEAT--non-exercise activity thermogenesis--egocentric & geocentric environmental factors vs. biological regulation.

    Science.gov (United States)

    Levine, J A; Kotz, C M

    2005-08-01

    Non-exercise activity thermogenesis (NEAT) is the energy expenditure of all physical activities other than volitional sporting-like exercise. NEAT includes all those activities that render us vibrant, unique and independent beings such as going to work, playing guitar, toe-tapping and dancing. The factors that account for the 2000 kcal day(-1) variability of NEAT can be categorized as environmental or biological. The environmental determinants of NEAT can be view using one of two models. In the egocentric model we consider a single person as the focus, e.g. 'my job'. In the geocentric model we consider the 'environment' as the focus, e.g. well-lit and safe walk ways. These models provide us with a theoretical framework to understand NEAT and how best to intervene to promote NEAT. As well as environmental effectors of NEAT, there are also biological regulatory mechanisms that enable us to account for three-quarters of the biological variance in susceptibility and resistance to fat gain with human over-feeding. NEAT is likely to be regulated through a central mechanism that integrates NEAT with energy intake and energy stores so that NEAT is activated with over-feeding and suppressed with under-feeding. In conclusion, NEAT is likely to serve as a crucial thermoregulatory switch between energy storage and dissipation that is biologically regulated and influenced, and perhaps over-ridden, by environment. Deciphering the role of NEAT may lead to a better understanding of the pathogenesis, prevention and treatment of obesity.

  5. Chronic endurance exercise antagonizes the cardiac UCP2 and UCP3 protein up-regulation induced by nandrolone decanoate.

    Science.gov (United States)

    Bayat, Gholamreza; Javan, Mohammad; Khalili, Azadeh; Safari, Fatemeh; Shokri, Saeed; Hajizadeh, Sohrab

    2017-11-27

    Several lines of evidence revealed that chronic treatment of anabolic androgenic steroids (AASs) is accompanied with some cardiovascular side effects and in addition they also negatively mask the beneficial effects of exercise training on cardiac performance. The present study examined whether the nandrolone decanoate (ND)-induced cardiac effects were mediated by changing the cardiac uncoupling protein 2 (UCP2) and 3 (UCP3) expression. Five groups of male wistar-albino rats including sedentary control (SC), sedentary vehicle (SV), sedentary nandrolone decanoate (SND), exercise control (EC), and exercise nandrolone decanoate (END) were used. ND was injected (10 mg/kg/week, intramuscular) to the animals in the SND and END groups and endurance exercise training was performed on a treadmill five times per week. The protein expressions of cardiac UCP2 and UCP3 have significantly increased in both the SND and EC groups compared to the SC ones. In contrast to UCP3, no significant differences were found between UCP2 protein expressions of the END and SC groups. Compared with the SND group, the exercise training significantly decreased the UCP2 and UCP3 protein expressions in the END group. The study has indicated that endurance exercise in combination with ND can result in that the exercise effectively antagonizes the effects of ND treatment on UCP2 and UCP3 up-regulation.

  6. Relations of self-regulation and self-efficacy for exercise and eating and BMI change: A field investigation

    Directory of Open Access Journals (Sweden)

    Annesi James J

    2010-09-01

    Full Text Available Abstract Objectives This study aimed to assess relations of self-regulatory skill use with self-efficacy for exercise and appropriate eating, and the resulting change in weight associated with participation in a nutrition and exercise treatment supported by cognitive-behavioral methods. Methods Adults with severe obesity (N = 95; mean BMI = 40.5 ± 3.9 kg/m2 participated in a 6-month exercise and nutrition treatment emphasizing self-regulatory skills. Changes in self-regulatory skills usage, self-efficacy, overall mood, and BMI were measured. Relations of changes in self-regulatory skill use and self-efficacy, for both physical activity and appropriate eating, were assessed, as was the possibility of mood change being a mediator of these relationships. Indirect effects of the variables associated with the present treatment on BMI change were then estimated. Results For both exercise and appropriate eating, changes in self-regulation were associated with self-efficacy change. Mood change partially mediated the relationship between changes in self-regulation for appropriate eating and self-efficacy for appropriate eating. Self-efficacy changes for physical activity and controlled eating, together, explained a significant portion of the variance in BMI change (R2 = 0.26, p Conclusion Findings suggest that training in self-regulation for exercise and eating may benefit self-efficacy and weight-loss outcomes. Thus, these variables should be considered in both the theory and behavioral treatment of obesity.

  7. PGC-1α in aging and lifelong exercise training-mediated regulation of UPR in mouse liver.

    Science.gov (United States)

    Kristensen, Caroline M; Brandt, Christina T; Ringholm, Stine; Pilegaard, Henriette

    2017-11-01

    Aging is associated with changes in several metabolic pathways affecting liver function including the adaptive unfolded protein response (UPR). On the other hand, exercise training has been shown to exert beneficial effects on metabolism in the liver and exercise training has been reported to affect hepatic UPR. PGC-1α is a transcriptional coactivator involved in exercise training-induced adaptations in skeletal muscle and liver. Therefore, the aim of the present study was to examine the impact of PGC-1α in aging and lifelong exercise training-induced hepatic UPR in mice. Liver was obtained from young (3months old), aged (15months old) and lifelong exercise trained aged wild-type (WT) and whole-body PGC-1α knockout (KO) mice. Hepatic BiP, IRE1α and cleaved ATF6 protein content increased, whereas PERK protein content was reduced with aging indicating both increased and decreased capacity of specific UPR pathways and increased activity of the ATF6 pathway in the liver with aging. Lifelong exercise training prevented the age-associated change in BiP and IRE1α protein, but not cleaved ATF6 protein and resulted in further decreased PERK protein. Taken together, the present study provides evidence that the capacity and activity of the three UPR pathways are differentially regulated in the liver with aging and lifelong exercise training. In addition, PGC-1α does not seem to regulate the activity of hepatic UPR in response to exercise training, but to influence the capacity of the liver to induce UPR in a pathway specific manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Fatigue is a Brain-Derived Emotion that Regulates the Exercise Behavior to Ensure the Protection of Whole Body Homeostasis.

    Science.gov (United States)

    Noakes, Timothy David

    2012-01-01

    An influential book written by A. Mosso in the late nineteenth century proposed that fatigue that "at first sight might appear an imperfection of our body, is on the contrary one of its most marvelous perfections. The fatigue increasing more rapidly than the amount of work done saves us from the injury which lesser sensibility would involve for the organism" so that "muscular fatigue also is at bottom an exhaustion of the nervous system." It has taken more than a century to confirm Mosso's idea that both the brain and the muscles alter their function during exercise and that fatigue is predominantly an emotion, part of a complex regulation, the goal of which is to protect the body from harm. Mosso's ideas were supplanted in the English literature by those of A. V. Hill who believed that fatigue was the result of biochemical changes in the exercising limb muscles - "peripheral fatigue" - to which the central nervous system makes no contribution. The past decade has witnessed the growing realization that this brainless model cannot explain exercise performance. This article traces the evolution of our modern understanding of how the CNS regulates exercise specifically to insure that each exercise bout terminates whilst homeostasis is retained in all bodily systems. The brain uses the symptoms of fatigue as key regulators to insure that the exercise is completed before harm develops. These sensations of fatigue are unique to each individual and are illusionary since their generation is largely independent of the real biological state of the athlete at the time they develop. The model predicts that attempts to understand fatigue and to explain superior human athletic performance purely on the basis of the body's known physiological and metabolic responses to exercise must fail since subconscious and conscious mental decisions made by winners and losers, in both training and competition, are the ultimate determinants of both fatigue and athletic performance.

  9. Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis

    Directory of Open Access Journals (Sweden)

    Timothy David Noakes

    2012-04-01

    Full Text Available An influential book written by A. Mosso in the late 19th century proposed that fatigue that at first sight might appear an imperfection of our body, is on the contrary one of its most marvellous perfections. The fatigue increasing more rapidly than the amount of work done saves us from the injury which lesser sensibility would involve for the organism so that muscular fatigue also is at bottom an exhaustion of the nervous system.It has taken more than a century to confirm Mosso’s idea that both the brain and the muscles alter their function during exercise and that fatigue is predominantly an emotion, part of a complex regulation, the goal of which is to protect the body from harm. Mosso’s ideas were supplanted in the English literature by those of A.V. Hill who believed that fatigue was the result of biochemical changes in the exercising limb muscles - peripheral fatigue - to which the central nervous system makes no contribution. The past decade has witnessed the growing realization that this brainless model cannot explain exercise performance. This article traces the evolution of our modern understanding of how the CNS regulates exercise specifically to insure that each exercise bout terminates whilst homeostasis is retained in all bodily systems. The brain uses the symptoms of fatigue as key regulators to insure that the exercise is completed before harm develops. These sensations of fatigue are unique to each individual and are illusionary since their generation is largely independent of the real biological state of the athlete at the time they develop. The model predicts that attempts to understand fatigue and to explain superior human athletic performance purely on the basis of the body’s known physiological and metabolic responses to exercise must fail since subconscious and conscious mental decisions made by winners and losers, in both training and competition, are the ultimate determinants of both fatigue and athletic performance.

  10. MBSR vs aerobic exercise in social anxiety: fMRI of emotion regulation of negative self-beliefs

    OpenAIRE

    Goldin, Philippe; Ziv, Michal; Jazaieri, Hooria; Hahn, Kevin; Gross, James J.

    2012-01-01

    Mindfulness-based stress reduction (MBSR) is thought to reduce emotional reactivity and enhance emotion regulation in patients with social anxiety disorder (SAD). The goal of this study was to examine the neural correlates of deploying attention to regulate responses to negative self-beliefs using functional magnetic resonance imaging. Participants were 56 patients with generalized SAD in a randomized controlled trial who were assigned to MBSR or a comparison aerobic exercise (AE) stress redu...

  11. Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP

    DEFF Research Database (Denmark)

    Ingerslev, Bodil; Hansen, Jakob S; Hoffmann, Christoph

    2017-01-01

    OBJECTIVE: Angiopoietin-like protein-4 (ANGPTL4) is a circulating protein that is highly expressed in liver and implicated in regulation of plasma triglyceride levels. Systemic ANGPTL4 increases during prolonged fasting and is suggested to be secreted from skeletal muscle following exercise. METH...

  12. The Mediatory Role of Exercise Self-Regulation in the Relationship between Personality Traits and Anger Management of Athletes

    Science.gov (United States)

    Shahbazzadeh, Somayeh; Beliad, Mohammad Reza

    2017-01-01

    This study investigates the mediatory role of exercise self-regulation role in the relationship between personality traits and anger management among athletes. The statistical population of this study includes all athlete students of Shar-e Ghods College, among which 260 people were selected as sample using random sampling method. In addition, the…

  13. Simulating Results of Experiments on Gene Regulation of the Lactose Operon in Escherichia coli; a Problem-Solving Exercise.

    Science.gov (United States)

    Hitchen, Trevor; Metcalfe, Judith

    1987-01-01

    Describes a simulation of the results of real experiments which use different strains of Escherichia coli. Provides an inexpensive practical problem-solving exercise to aid the teaching and understanding of the Jacob and Monod model of gene regulation. (Author/CW)

  14. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle

    National Research Council Canada - National Science Library

    Stanford, Kristin I; Goodyear, Laurie J

    2014-01-01

    Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement...

  15. Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H; Kemppainen, Jukka; Kaskinoro, Kimmo

    2010-01-01

    inhibition had no effect on capillary BF during exercise in either normoxia or hypoxia. Finally, one-leg exercise increased muscle BF heterogeneity both in the resting posterior hamstring part of the exercising leg and in the resting contralateral leg, whereas mean BF was unchanged. In conclusion...

  16. The roles of KCa, KATP, and KV channels in regulating cutaneous vasodilation and sweating during exercise in the heat.

    Science.gov (United States)

    Louie, Jeffrey C; Fujii, Naoto; Meade, Robert D; McNeely, Brendan D; Kenny, Glen P

    2017-05-01

    We recently showed the varying roles of Ca(2+)-activated (KCa), ATP-sensitive (KATP), and voltage-gated (KV) K(+) channels in regulating cholinergic cutaneous vasodilation and sweating in normothermic conditions. However, it is unclear whether the respective contributions of these K(+) channels remain intact during dynamic exercise in the heat. Eleven young (23 ± 4 yr) men completed a 30-min exercise bout at a fixed rate of metabolic heat production (400 W) followed by a 40-min recovery period in the heat (35°C, 20% relative humidity). Cutaneous vascular conductance (CVC) and local sweat rate were assessed at four forearm skin sites perfused via intradermal microdialysis with: 1) lactated Ringer solution (control); 2) 50 mM tetraethylammonium (nonspecific KCa channel blocker); 3) 5 mM glybenclamide (selective KATP channel blocker); or 4) 10 mM 4-aminopyridine (nonspecific KV channel blocker). Responses were compared at baseline and at 10-min intervals during and following exercise. KCa channel inhibition resulted in greater CVC versus control at end exercise (P = 0.04) and 10 and 20 min into recovery (both P exercise (all P ≤ 0.04), and 10 min into recovery (P = 0.02). No differences in CVC were observed with KV channel inhibition during baseline (P = 0.15), exercise (all P ≥ 0.06), or recovery (all P ≥ 0.14). With the exception of KV channel inhibition augmenting sweating during baseline (P = 0.04), responses were similar to control with all K(+) channel blockers during each time period (all P ≥ 0.07). We demonstrated that KCa and KATP channels contribute to the regulation of cutaneous vasodilation during rest and/or exercise and recovery in the heat. Copyright © 2017 the American Physiological Society.

  17. Appetite regulation in overweight, sedentary men after different amounts of endurance exercise

    DEFF Research Database (Denmark)

    Larsen, Mads Rosenkilde; Reichkendler, Michala Holm; Auerbach, Pernille

    2013-01-01

    , free fatty acids, and glycerol were measured during fasting and in relation to a breakfast meal and an acute bout of exercise, both at baseline and at follow-up. Ad libitum lunch energy intake was evaluated 3 h after the breakfast meal. Despite different amounts of endurance exercise, the subjects lost...... and postprandial PYY3-36 increased in HIGH (P lunch energy intake remained unchanged over the course of the intervention. In both exercise groups, plasma ghrelin increased in relation to acute exercise after training. Thus neither moderate nor high doses of daily endurance exercise...

  18. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice

    DEFF Research Database (Denmark)

    Sylow, Lykke; Laurent, Ida; Kleinert, Maximilian

    2016-01-01

    % in gastrocnemius and tibialis anterior muscles, respectively, in muscle-specific inducible Rac1 knockout (mKO) mice compared to wildtype littermates. By developing an assay to quantify endogenous GLUT4 translocation, we observed that GLUT4 content at the sarcolemma in response to exercise was reduced in Rac1 m......KO muscle. Our findings implicate Rac1 as a regulatory element critical for controlling glucose uptake during exercise via regulation of GLUT4 translocation. This article is protected by copyright. All rights reserved....

  19. Intensity-dependent EMG response for the biceps brachii during sustained maximal and submaximal isometric contractions.

    Science.gov (United States)

    Carr, Joshua C; Beck, Travis W; Ye, Xin; Wages, Nathan P

    2016-09-01

    There have been recent attempts to characterize the mechanisms associated with fatigue-induced task failure. We compared the time to failure and the corresponding changes in the surface electromyogram (EMG) during sustained maximal and submaximal isometric force tasks. EMG activity was measured from the biceps brachii of 18 male participants as they sustained either a maximal or submaximal (60 % MVC) isometric contraction of the dominant elbow flexors until force could not be maintained above 55 % MVC. Intensity-dependent patterns of change were observed for EMG amplitude and mean power frequency (MNF) between the two force tasks. Interestingly, the only significant predictor of failure time was the rate of change in EMG MNF during the submaximal task (r (2) = 0.304). In addition, EMG amplitude at submaximal failure was significantly lower (p EMG response emphasize the basis of neuromuscular fatigue and task dependency. Additionally, our data suggest that the EMG MNF should be used when monitoring the progression of local muscle fatigue.

  20. Photolysis of Caged-GABA Rapidly Terminates Seizures In Vivo: Concentration and Light Intensity Dependence

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2017-05-01

    Full Text Available The therapy of focal epilepsy remains unsatisfactory for as many as 25% of patients. The photolysis of caged-γ-aminobutyric acid (caged-GABA represents a novel and alternative option for the treatment of intractable epilepsy. Our previous experimental results have demonstrated that the use of blue light produced by light-emitting diode to uncage ruthenium-bipyridine-triphenylphosphine-c-GABA (RuBi-GABA can rapidly terminate paroxysmal seizure activity both in vitro and in vivo. However, the optimal concentration of RuBi-GABA, and the intensity of illumination to abort seizures, remains unknown. The aim of this study was to explore the optimal anti-seizure effects of RuBi-GABA by using implantable fibers to introduce blue light into the neocortex of a 4-aminopyridine-induced acute seizure model in rats. We then investigated the effects of different combinations of RuBi-GABA concentrations and light intensity upon seizure. Our results show that the anti-seizure effect of RuBi-GABA has obvious concentration and light intensity dependence. This is the first example of using an implantable device for the photolysis of RuBi-GABA in the therapy of neocortical seizure, and an optimal combination of RuBi-GABA concentration and light intensity was explored. These results provide important experimental data for future clinical translational studies.

  1. Intensity-Dependent Effect of Treadmill Running on Knee Articular Cartilage in a Rat Model

    Directory of Open Access Journals (Sweden)

    Guo-Xin Ni

    2013-01-01

    Full Text Available Objective. To understand the changes of femoral cartilage in response to treadmill running with different intensities in the hope of differentiating “moderate” and “strenuous” running in a rat model. Method. A total of 24 male Wistar rats were randomly assigned into groups of sedentary (SED, low-intensity running (LIR, medium-intensity running (MIR, and high-intensity running (HIR. Rats in LIR, MIR, and HIR groups underwent 8 weeks’ treadmill running programs. After sacrificed, femoral condyles were collected to take histomorphometric analysis and immunohistochemistry for collagen II. Results. Gross and histological observation showed osteoarthritic changes in group HIR. In comparison to SED group, there was significant increase in cartilage thickness, number of chondrocytes, and GAG content in groups LIR and MIR. Conversely, decrease in cartilage thickness, chondrocyte number, and GAG content was found in rats of HIR group, without significant difference though. In addition, in comparison to SED group, HIR group exhibited disorganization of collagen fibril and significantly lower content of collagen type II. Conclusion. An intensity-dependent effect was suggested on the articular cartilage. Our results also demonstrated that running with low-to-medium intensity applied in the present study should be regarded as “moderate” running, whereas high-intensity running as “strenuous” running.

  2. Exercise-induced AMPK and pyruvate dehydrogenase regulation is maintained during short-term low-grade inflammation

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup; Olesen, Jesper; van Hauen, Line

    2015-01-01

    The aim of the present study was to examine the effect of lipopolysaccharide (LPS)-induced inflammation on AMP-activated protein kinase (AMPK) and pyruvate dehydrogenase (PDH) regulation in human skeletal muscle at rest and during exercise. Nine young healthy physically inactive male subjects...... approximately 2½ h after the LPS injection. The exercise bout with muscle samples obtained before and immediately after was repeated in a control trial without LPS injection. The plasma tumor necrosis factor α concentration increased 17-fold 2 h after LPS relative to before. Muscle lactate and muscle glycogen...... were unchanged from before to 2 h after LPS and exercise increased muscle lactate and decreased muscle glycogen in the control (P 

  3. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Takara, L.S.; Cunha, T.M.; Barbosa, P.; Rodrigues, M.K.; Oliveira, M.F.; Nery, L.E. [Setor de Função Pulmonar e Fisiologia Clínica do Exercício, Disciplina de Pneumologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Neder, J.A. [Setor de Função Pulmonar e Fisiologia Clínica do Exercício, Disciplina de Pneumologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen' s University, Kingston, ON (Canada)

    2012-10-15

    This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V{sub CW}) = rib cage (V{sub RC}) + abdomen (V{sub AB})] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) V{sub CW} increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V{sub CW} regulation as EEV{sub CW} increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEV{sub AB} decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) V{sub CW} (P < 0.05). In contrast, decreases in EEV{sub CW} in the “non-hyperinflators” were due to the combination of stable EEV{sub RC} with marked reductions in EEV{sub AB}. These patients showed lower EIV{sub CW} and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV{sub CW} regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.

  4. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    L.S. Takara

    2012-12-01

    Full Text Available This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V CW = rib cage (V RC + abdomen (V AB] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE V CW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V CW regulation as EEV CW increased non-linearly in 17/30 "hyperinflators" and decreased in 13/30 "non-hyperinflators" (P < 0.05. EEV AB decreased slightly in 8 of the "hyperinflators", thereby reducing and slowing the rate of increase in end-inspiratory (EI V CW (P < 0.05. In contrast, decreases in EEV CW in the "non-hyperinflators" were due to the combination of stable EEV RC with marked reductions in EEV AB. These patients showed lower EIV CW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05. Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV CW regardless of the presence or absence of dynamic hyperinflation (P < 0.001. However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.

  5. Neurotrophic factors in Parkinson's disease are regulated by exercise: Evidence-based practice.

    Science.gov (United States)

    da Silva, Paula Grazielle Chaves; Domingues, Daniel Desidério; de Carvalho, Litia Alves; Allodi, Silvana; Correa, Clynton Lourenço

    2016-04-15

    We carried out a qualitative review of the literature on the influence of forced or voluntary exercise in Parkinson's Disease (PD)-induced animals, to better understand neural mechanisms and the role of neurotrophic factors (NFs) involved in the improvement of motor behavior. A few studies indicated that forced or voluntary exercise may promote neuroprotection, through upregulation of NF expression, against toxicity of drugs that simulate PD. Forced training, such as treadmill exercise and forced-limb use, adopted in most studies, in addition to voluntary exercise on a running wheel are suitable methods for NFs upregulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effort regulation in rowing races depends on performance level and exercise mode.

    Science.gov (United States)

    Brown, Morgan R; Delau, Simon; Desgorces, François D

    2010-11-01

    This study investigated the influence of performance level and exercise mode on the rowers' pacing strategies. On-water and indoor split times and placements (every 500-m) were obtained from individual 2000-m performances set at the elite, national and sub-elite competitive levels. The data was sorted into indoor (n=580) and on-water exercises (n=507). Indoor and on-water strategies statistically differed, whatever the competition level (prowing. Training exercise may account for these paces differences, according to the athletes' competitive level and to exercise mode. Copyright © 2010 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle

    National Research Council Canada - National Science Library

    Zhen Yan; Mitsuharu Okutsu; Yasir N. Akhtar; Vitor A. Lira

    2011-01-01

    .... Chronic increases of skeletal muscle contractile activity, such as endurance exercise, lead to a variety of physiological and biochemical adaptations in skeletal muscle, including mitochondrial...

  8. MBSR vs aerobic exercise in social anxiety: fMRI of emotion regulation of negative self-beliefs.

    Science.gov (United States)

    Goldin, Philippe; Ziv, Michal; Jazaieri, Hooria; Hahn, Kevin; Gross, James J

    2013-01-01

    Mindfulness-based stress reduction (MBSR) is thought to reduce emotional reactivity and enhance emotion regulation in patients with social anxiety disorder (SAD). The goal of this study was to examine the neural correlates of deploying attention to regulate responses to negative self-beliefs using functional magnetic resonance imaging. Participants were 56 patients with generalized SAD in a randomized controlled trial who were assigned to MBSR or a comparison aerobic exercise (AE) stress reduction program. Compared to AE, MBSR yielded greater (i) reductions in negative emotion when implementing regulation and (ii) increases in attention-related parietal cortical regions. Meditation practice was associated with decreases in negative emotion and social anxiety symptom severity, and increases in attention-related parietal cortex neural responses when implementing attention regulation of negative self-beliefs. Changes in attention regulation during MBSR may be an important psychological factor that helps to explain how mindfulness meditation training benefits patients with anxiety disorders.

  9. Regulation of glycogen synthase kinase-3 in human skeletal muscle: effects of food intake and bicycle exercise.

    Science.gov (United States)

    Wojtaszewski, J F; Nielsen, P; Kiens, B; Richter, E A; Wojtazsewski, J F

    2001-02-01

    Studies of skeletal muscle from rodents performed both in vivo and in vitro suggest a regulatory role of glycogen synthase kinase (GSK) 3 in glycogen synthase (GS) activation in response to insulin. Recently, hyperinsulinemic clamp studies in humans support such a role under nearly physiological conditions. In addition, in rats the activation of GS in skeletal muscle during treadmill running is time-related to the deactivation of GSK3. We investigated whether GSK3 was deactivated in human muscle during low- (approximately 50% VO2max for 1.5 h) and high-intensity (approximately 75% VO2max for 1 h) bicycle exercise as well as food intake. We observed a small but significant increase in GSK3alpha (10-20%) activity in biopsies obtained from vastus lateralis after both low- and high-intensity exercise, whereas GSK3beta activity was unaffected. Subsequent food intake increased Aktphosphorylation (approximately 2-fold) and deactivated GSK3alpha (approximately 40%), whereas GSK3beta activity was unchanged. GS activity increased in response to both exercise and food intake. We conclude that GSK3alpha but not GSK3beta may have a role in the regulation of GS activity in response to meal-associated hyperinsulinemia in humans. However, in contrast to findings in muscle from rats, exercise does not deactivate GSK3 in humans, suggesting a GSK3-independent mechanism in the regulation of GS activity in muscle during physical activity.

  10. Exercise-induced regulation of matrix metalloproteinases in the skeletal muscle of subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Scheede-Bergdahl, Celena; Bergdahl, Andreas; Schjerling, Peter

    2014-01-01

    is maintained in the skeletal muscle of patients with uncomplicated type 2 diabetes (T2DM). Subjects [12 T2DM, 9 healthy control subjects (CON)] underwent 8 weeks of physical training. Messenger RNA (mRNA) was measured at baseline, during and after 8 weeks of training. Protein was measured pre- and post......-training. At baseline, there were no effects of diabetes on MMP or TIMP mRNA or protein. mRNA and protein response to training was similar in both groups, except active MMP-2 protein was elevated post training in T2DM only. Our results indicate that exercise-induced stimulation of MMPs is preserved in skeletal muscle......Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMP) play a critical role during vascular remodelling, in both health and disease. Impaired MMP regulation is associated with many diabetes-related complications. This study examined whether exercise-induced regulation of MMPs...

  11. Regulation of PDH in human arm and leg muscles at rest and during intense exercise

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Birk, Jesper Bratz; Damsgaard, Rasmus

    2008-01-01

    arm cycling on two occasions and leg cycling exercise on a third day. Muscle biopsies were obtained from deltoid or triceps on the arm exercise days and from vastus lateralis on the leg cycling day. Resting PDH protein content and phosphorylation on PDH-E1 alpha sites 1 and 2 were higher (P

  12. Exercise in Regulation of Inflammation-Immune Axis Function in Cancer Initiation and Progression

    Science.gov (United States)

    Koelwyn, Graeme J.; Wennerberg, Erik; Demaria, Sandra; Jones, Lee W.

    2016-01-01

    Pharmacologic manipulation of the immune system is emerging as a viable and robust treatment for some cancer patients. Exercise-induced modulation of the immune system may be another adjunctive strategy for inhibiting tumor initiation and progression. In healthy individuals, exercise has been shown to modulate a number of cell subsets involved in innate and adaptive immunity. Here, we provide an overview of the current state of knowledge pertaining to exercise modulation of the inflammation-immune axis in cancer. The current evidence suggests that exercise may be a promising adjunctive strategy that can favorably alter numerous components of the immune system, which, in turn, may modulate tumorigenesis. However, many important knowledge gaps are evident. To this end, we propose a framework to guide future research efforts investigating the immune effects of exercise in cancer. PMID:26676894

  13. Effect of heat exposure and exercise on food intake regulation: A randomized crossover study in young healthy men.

    Science.gov (United States)

    Faure, Cécile; Charlot, Keyne; Henri, Stéphane; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Antoine-Jonville, Sophie

    2016-10-01

    The effect of physical activity on food intake regulation may be moderated by environmental temperature. The aim of the study was to determine the single and combined effects of metabolic activity and temperature on energy intake and its hormonal regulation. A randomized crossover study was conducted in the laboratory. Ten healthy and physically active young Afro-Caribbean men participated in four experimental sessions (rest at 22°C and 31°C and cycling at 60% of their maximal oxygen uptake at 22°C and 31°C, all for 40 min). Each test period was followed by a 30-min recovery period and then an ad libitum meal. The main outcome measures were energy balance, subjective appetite, and plasma pancreatic polypeptide (PP), cholecystokinin (CCK) and ghrelin concentrations. Relative energy intake was significantly decreased whereas plasma PP was increased in the exercise conditions (p=0.004 and p=0.002, respectively). Postprandial levels of CCK were elevated only in the rest conditions. Exposure to heat induced a decrease in plasma ghrelin (p=0.031). Exercise induced a short-term energy deficit. However, modifications in the hormonal regulation of food intake in response to short-term heat or heat and exercise exposure seem to be minor and did not induce changes in energy intake. This trial was registered at clinicaltrials.gov as NCT02157233. Copyright © 2016. Published by Elsevier Inc.

  14. Impact of exercise and moderate hypoxia on glycemic regulation and substrate oxidation pattern.

    Directory of Open Access Journals (Sweden)

    Takuma Morishima

    Full Text Available We examined metabolic and endocrine responses during rest and exercise in moderate hypoxia over a 7.5 h time courses during daytime.Eight sedentary, overweight men (28.6 ± 0.8 kg/m2 completed four experimental trials: a rest trial in normoxia (FiO2 = 20.9%, NOR-Rest, an exercise trial in normoxia (NOR-Ex, a rest trial in hypoxia (FiO2 = 15.0%, HYP-Rest, and an exercise trial in hypoxia (HYP-Ex. Experimental trials were performed from 8:00 to 15:30 in an environmental chamber. Blood and respiratory gas samples were collected over 7.5 h. In the exercise trials, subjects performed 30 min of pedaling exercise at 60% of VO2max at 8:00, 10:30, and 13:00, and rested during the remaining period in each environment. Standard meals were provided at 8:30, 11:00, and 13:30.The areas under the curves for blood glucose and serum insulin concentrations over 7.5 h did not differ among the four trials. At baseline, %carbohydrate contribution was significantly higher in the hypoxic trials than in the normoxic trials (P<0.05. Although exercise promoted carbohydrate oxidation in the NOR-Ex and HYP-Ex trials, %carbohydrate contribution during each exercise and post-exercise period were significantly higher in the HYP-Ex trial than in the NOR-Ex trial (P<0.05.Three sessions of 30 min exercise (60% of VO2max in moderate hypoxia over 7.5 h did not attenuate postprandial glucose and insulin responses in young, overweight men. However, carbohydrate oxidation was significantly enhanced when the exercise was conducted in moderate hypoxia.

  15. Effect of aerobic exercise on hunger feelings and satiety regulating hormones in obese teenage girls.

    Science.gov (United States)

    Prado, Wagner L; Balagopal, P Babu; Lofrano-Prado, Mara C; Oyama, Lila M; Tenório, Thiago Ricardo; Botero, João Paulo; Hill, James O

    2014-11-01

    Exercise is implicated in modifying subsequent energy intake (EI) through alterations in hunger and/or satiety hormones. Our aim was to examine the effects of aerobic exercise on hunger, satiety regulatory peptides, and EI in obese adolescents. Nine obese girls (age: 13-18 years old, BMI: 33.74 ± 4.04 kg/m2) participated in this randomized controlled crossover study. Each participant randomly underwent 2 experimental protocols: control (seated for 150 min) and exercise (exercised for 30 min on a treadmill performed at ventilatory threshold [VT] intensity and then remained seated for 120 min). Leptin, peptide YY(3-36) (PYY(3-36)), and subjective hunger were measured at baseline as well as 30 min and 150 min, followed by 24-hr EI measurement. Exercise session resulted in an acute increase in PYY(3-36) (p hunger scores. The control session increased hunger scores (p < .01) and decreased circulating leptin levels (p = .03). There was a strong effect size for carbohydrate intake (d = 2.14) and a modest effect size for protein intake (d = 0.61) after the exercise compared with the control session. Exercise performed at VT intensity in this study appears to provoke a state of transient anorexia in obese girls. These changes may be linked to an increase in circulating PYY3-36 and maintenance of leptin levels.

  16. Telemetric analysis of haemodynamic regulation during voluntary exercise training in mouse models.

    Science.gov (United States)

    Adlam, D; De Bono, J P; Danson, E J; Zhang, M H; Casadei, B; Paterson, D J; Channon, K M

    2011-11-01

    Regular physical exercise reduces the risk of cardiovascular disease and improves outcome in patients with cardiovascular diseases. The dynamic changes in blood pressure and heart rate with acute exercise are independently predictive of prognosis. Quantification of the haemodynamic response to exercise training in genetically modified mouse models may provide insight into the molecular mechanisms underlying the beneficial effects of exercise. We describe, for the first time, the use of radiotelemetry to provide continuous blood pressure monitoring in C57BL/6J mice during a programme of voluntary wheel exercise with continuous simultaneous recording and analysis of wheel rotations and beat-by-beat haemodynamic parameters. We define distinct haemodynamic profiles at rest, during normal cage activity and during episodes of voluntary wheel running. We show that whilst cage activity is associated with significant rises both in blood pressure and in heart rate, voluntary wheel running leads to a further substantial rise in heart rate with only a small increment in blood pressure. With 5 weeks of chronic exercise training, resting heart rate progressively falls, but heart rate during episodes of wheel running initially increases. In contrast, there are minimal changes in blood pressure in response to chronic exercise training. Finally, we have quantified the acute changes in heart rate at the onset of and recovery from individual episodes of wheel running, revealing that changes in heart rate are extremely rapid and that the peak rate of change of heart rate increases with chronic exercise training. The results of this study have important implications for the use of genetically modified mouse models to investigate the beneficial haemodynamic effects of chronic exercise on blood pressure and cardiovascular diseases.

  17. The circulatory regulation of TPA and UPA secretion, clearance, and inhibition during exercise and during the infusion of isoproterenol and phenylephrine

    National Research Council Canada - National Science Library

    Chandler, W L; Levy, W C; Stratton, J R

    1995-01-01

    Exercise to exhaustion and infusions of isoproterenol and phenylephrine were used to study interactions between plasminogen activator regulation and the control of regional blood flow in 10 healthy males...

  18. Fasting and exercise differentially regulate BDNF mRNA expression in human skeletal muscle.

    Science.gov (United States)

    Walsh, Jeremy J; Edgett, Brittany A; Tschakovsky, Michael E; Gurd, Brendon J

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) gene expression was measured in human skeletal muscle following 3 intensities of exercise and a 48-h fast. No change in BDNF mRNA was observed following exercise, while fasting upregulated BDNF by ∼ 3.5-fold. These changes were dissociated from changes in peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) following exercise (+2- to 15-fold) and fasting (∼-25%). These results challenge our understanding of the response of BDNF to energetic stress and highlight the importance of future work in this area.

  19. Exercise as an anti-inflammatory therapy for rheumatic diseases—myokine regulation

    DEFF Research Database (Denmark)

    Benatti, Fabiana B; Pedersen, Bente K

    2015-01-01

    Persistent systemic inflammation, a typical feature of inflammatory rheumatic diseases, is associated with a high cardiovascular risk and predisposes to metabolic disorders and muscle wasting. These disorders can lead to disability and decreased physical activity, exacerbating inflammation...... muscle communicates with other organs by secreting proteins called myokines. Some myokines are thought to induce anti-inflammatory responses with each bout of exercise and mediate long-term exercise-induced improvements in cardiovascular risk factors, having an indirect anti-inflammatory effect...... of exercise, and indirectly, by improving comorbidities and cardiovascular risk factors. We also discuss the mechanisms by which some myokines have anti-inflammatory functions in inflammatory rheumatic diseases....

  20. Role of AMP-activated protein kinase for regulating post-exercise insulin sensitivity

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Wojtaszewski, Jørgen; Treebak, Jonas Thue

    2016-01-01

    to increase glucose disposal in skeletal muscle in response to physiological insulin concentrations. While this effect is identified to be restricted to the previously exercised muscle, the molecular basis for an apparent convergence between exercise- and insulin-induced signaling pathways is incompletely...... known. In recent years, we and others have identified the Rab GTPase-activating protein, TBC1 domain family member 4 (TBC1D4) as a target of key protein kinases in the insulin- and exercise-activated signaling pathways. Our working hypothesis is that the AMP-activated protein kinase (AMPK) is important...

  1. A kinetic model of the circulatory regulation of tissue plasminogen activator during exercise, epinephrine infusion, and endurance training.

    Science.gov (United States)

    Chandler, W L; Levy, W C; Veith, R C; Stratton, J R

    1993-06-15

    A computer simulation of the circulatory system was used to kinetically model secretion, inhibition, and clearance of tissue plasminogen activator (t-PA) during three different processes that increase active t-PA levels: epinephrine infusion, exercise, and endurance training. Infusion of epinephrine stimulated an increase in t-PA secretion that was proportional to the plasma epinephrine concentration. In addition, epinephrine infusion increased hepatic blood flow and t-PA clearance, thus slowing the increase of plasma t-PA levels. During exercise, t-PA levels increased due both to increased t-PA secretion and to decreased clearance secondary to reduced hepatic blood flow. The increase in t-PA secretion during exercise was directly proportional to the epinephrine concentration in blood with the same ratio of t-PA secretion to epinephrine as found during epinephrine infusion, suggesting that increased plasma epinephrine during exercise was the primary stimulus for t-PA secretion. Lastly, the simulation predicted that 6 months of endurance training produced a decrease in resting plasminogen activator inhibitor type 1 (PAI-1) secretion, resulting in less t-PA inhibition and an overall increase in active t-PA after training. Accurate analysis of the regulation of active t-PA levels in blood required simultaneous modeling of t-PA and PAI-1 secretion, hepatic clearance, and inhibition of t-PA by PAI-1.

  2. Visfatin mRNA expression in human subcutaneous adipose tissue is regulated by exercise

    DEFF Research Database (Denmark)

    Frydelund-Larsen, Lone; Åkerström, Thorbjörn; Nielsen, Søren

    2006-01-01

    Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression...... by elevated levels of plasma visfatin. Recombinant human IL-6 infusion to mimic the exercise-induced IL-6 response (n = 6) had no effect on visfatin mRNA expression in adipose tissue compared with the effect of placebo infusion (n = 6). The finding that exercise enhances subcutaneous adipose tissue visfatin mRNA...... in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4...

  3. Exercise Regulation of Cognitive Function and Neuroplasticity in the Healthy and Diseased Brain.

    Science.gov (United States)

    Hamilton, Gilian F; Rhodes, Justin S

    2015-01-01

    Regular exercise broadly enhances physical and mental health throughout the lifespan. Animal models have provided us with the tools to gain a better understanding of the underlying biochemical, physiological, and morphological mechanisms through which exercise exerts its beneficial cognitive effects. One brain region in particular, the hippocampus, is especially responsive to exercise. It is critically involved in learning and memory and is one of two regions in the mammalian brain that continues to generate new neurons throughout life. Exercise prevents the decline of the hippocampus from aging and ameliorates many neurodegenerative diseases, in part by increasing adult hippocampal neurogenesis but also by activating a multitude of molecular mechanisms that promote brain health. In this chapter, we first describe some rodent models used to study effects of exercise on the brain. Then we review the rodent work focusing on the mechanisms behind which exercise improves cognition and brain health in both the normal and the diseased brain, with emphasis on the hippocampus. © 2015 Elsevier Inc. All rights reserved.

  4. "I just feel so guilty": The role of introjected regulation in linking appearance goals for exercise with women's body image.

    Science.gov (United States)

    Hurst, Megan; Dittmar, Helga; Banerjee, Robin; Bond, Rod

    2017-03-01

    Appearance goals for exercise are consistently associated with negative body image, but research has yet to consider the processes that link these two variables. Self-determination theory offers one such process: introjected (guilt-based) regulation of exercise behavior. Study 1 investigated these relationships within a cross-sectional sample of female UK students (n=215, 17-30 years). Appearance goals were indirectly, negatively associated with body image due to links with introjected regulation. Study 2 experimentally tested this pathway, manipulating guilt relating to exercise and appearance goals independently and assessing post-test guilt and body anxiety (n=165, 18-27 years). The guilt manipulation significantly increased post-test feelings of guilt, and these increases were associated with increased post-test body anxiety, but only for participants in the guilt condition. The implications of these findings for self-determination theory and the importance of guilt for the body image literature are discussed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Effect of a 12-Week Low vs. High Intensity Aerobic Exercise Training on Appetite-Regulating Hormones in Obese Adolescents: A Randomized Exercise Intervention Study.

    Science.gov (United States)

    Prado, Wagner Luiz; Lofrano-Prado, Mara Cristina; Oyama, Lila Missae; Cardel, Michelle; Gomes, Priscyla Praxedes; Andrade, Maria Laura S S; Freitas, Camila R M; Balagopal, Prabhakaran; Hill, James O

    2015-11-01

    Little is known about how the intensity of aerobic training influences appetite-regulating hormones in obese adolescents. Our goal was to assess the effect of low and high intensity aerobic trainings on food intake and appetite-regulating hormones in obese adolescents. Forty three obese adolescents (age: 13-18y, BMI: 34.48 ± 3.94 kg/m2) were randomized into high intensity training (HIT; n = 20) or low intensity training (LIT; n = 23) groups for 12 weeks. All participants also received the same nutritional, psychological and clinical counseling. Pre- and postintervention energy intake (EI) and circulating levels of insulin, leptin, peptide YY3-36 (PYY3-36) and ghrelin were measured. Adolescents in the HIT showed a reduction in total EI and an increase in PYY3-36 (p exercise training performed at ventilatory threshold 1 intensity, reduced EI and augmented PYY3-36 in obese adolescents, compared with LIT. The data suggest that HIT and LIT have differential effects in the regulation of appetite signals and subsequent EI in obese adolescents.

  6. 5´AMP activated protein kinase α2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Lundsgaard, Annemarie; Jeppesen, Jacob

    2015-01-01

    in muscle pyruvate dehydrogenase kinase 4 (PDK4) mRNA expression in WT and AMPKα2 KO was observed following exercise, which is consistent with AMPKα2 -deficiency not affecting the exercise-induced activation of the PDK4 transcriptional regulators, HDAC4 and SIRT1. Interestingly, PDK4 protein content...... regulates muscle metabolism post-exercise through inhibition of the PDH complex and hence glucose oxidation, subsequently creating conditions for increased fatty acid oxidation. This article is protected by copyright. All rights reserved....

  7. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Nyberg, Michael; Thaning, Pia

    2009-01-01

    Adenosine can induce vasodilation in skeletal muscle, but to what extent adenosine exerts its effect via formation of other vasodilators and whether there is redundancy between adenosine and other vasodilators remain unclear. We tested the hypothesis that adenosine, prostaglandins, and NO act...... in synergy to regulate skeletal muscle hyperemia by determining the following: (1) the effect of adenosine receptor blockade on skeletal muscle exercise hyperemia with and without simultaneous inhibition of prostaglandins (indomethacin; 0.8 to 1.8 mg/min) and NO (N(G)-mono-methyl-l-arginine; 29 to 52 mg....../min); (2) whether adenosine-induced vasodilation is mediated via formation of prostaglandins and/or NO; and (3) the femoral arterial and venous plasma adenosine concentrations during leg exercise with the microdialysis technique in a total of 24 healthy, male subjects. Inhibition of adenosine receptors...

  8. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise

    Science.gov (United States)

    Pageaux, Benjamin; Marcora, Samuele M.; Rozand, Vianney; Lepers, Romuald

    2015-01-01

    It has been shown that the mental fatigue induced by prolonged self-regulation increases perception of effort and reduces performance during subsequent endurance exercise. However, the physiological mechanisms underlying these negative effects of mental fatigue are unclear. The primary aim of this study was to test the hypothesis that mental fatigue exacerbates central fatigue induced by whole-body endurance exercise. Twelve subjects performed 30 min of either an incongruent Stroop task to induce a condition of mental fatigue or a congruent Stroop task (control condition) in a random and counterbalanced order. Both cognitive tasks (CTs) were followed by a whole-body endurance task (ET) consisting of 6 min of cycling exercise at 80% of peak power output measured during a preliminary incremental test. Neuromuscular function of the knee extensors was assessed before and after CT, and after ET. Rating of perceived exertion (RPE) was measured during ET. Both CTs did not induce any decrease in maximal voluntary contraction (MVC) torque (p = 0.194). During ET, mentally fatigued subjects reported higher RPE (mental fatigue 13.9 ± 3.0, control 13.3 ± 3.2, p = 0.044). ET induced a similar decrease in MVC torque (mental fatigue –17 ± 15%, control –15 ± 11%, p = 0.001), maximal voluntary activation level (mental fatigue –6 ± 9%, control –6 ± 7%, p = 0.013) and resting twitch (mental fatigue –30 ± 14%, control –32 ± 10%, p fatigue does not reduce the capacity of the central nervous system to recruit the working muscles. The negative effect of mental fatigue on perception of effort does not reflect a greater development of either central or peripheral fatigue. Consequently, mentally fatigued subjects are still able to perform maximal exercise, but they are experiencing an altered performance during submaximal exercise due to higher-than-normal perception of effort. PMID:25762914

  9. Exercise might improve cardiovascular autonomic regulation in adolescents with type 1 diabetes.

    Science.gov (United States)

    Lucini, Daniela; Zuccotti, Gian Vincenzo; Scaramuzza, Andrea; Malacarne, Mara; Gervasi, Federico; Pagani, Massimo

    2013-06-01

    Considering that changes in exercise routines might have relevance in treatment of adolescents with type 1 diabetes mellitus, we sought to assess whether spontaneous modifications to weekly exercise habits might occur in these patients and whether such variations would be accompanied by alterations in autonomic profile. In this observational study, we examined 77 patients (age 15.0 ± 0.6 years.) who in addition to a tailored optimal insulin treatment were invited to perform at least 1 h a day of moderate, aerobic exercise, as suggested by recent guidelines. Patients were studied at baseline (T0) and after 15.8 ± 0.7 months (T1). They were divided into three subgroups according to increased, unchanged and diminished total estimated weekly METs between T0 and T1. Autonomic profile was evaluated by assessing spontaneous baroreflex gain and low-frequency oscillation in arterial pressure, using spectral analysis of RR and systolic arterial pressure time series. Insulin therapy and biochemical data were similar among the 3 groups at T0 and T1, while body mass index standard deviation score was slightly reduced (p exercise (from 1627 ± 250 to 3582 ± 448 METs min wt(-1), p exercise load suggest testing more formally this intervention in adolescents with type 1 diabetes.

  10. Intensity dependence of auditory P2 in monozygotic twins discordant for Vietnam combat: Associations with posttraumatic stress disorder

    Science.gov (United States)

    Metzger, Linda J.; Pitman, Roger K.; Miller, Gregory A.; Paige, Stephen R.; Orr, Scott P.

    2010-01-01

    Two studies have reported decreased intensity dependence of the P2 event-related potential (ERP) in male combat veterans with posttraumatic stress disorder (PTSD), a response pattern presumed to reflect central nervous system-induced protective inhibition and heightened central serotonergic activity. We used an identical twin, case-control design to investigate whether intensity dependence abnormalities reflect pretrauma vulnerability or are an acquired consequence of PTSD. ERPs were measured in male Vietnam combat veterans and their noncombat-exposed monozygotic twin brothers during a four-tone, stimulus-intensity modulation procedure. Contrary to previous findings in male veterans, the PTSD group had significantly steeper P2 amplitude intensity slopes, similar to those reported for female veterans and abused children with PTSD. Additionally, increased P2 amplitude intensity slope was associated with increased PTSD symptom severity, particularly the severity of reexperiencing symptoms. A mixed-model, random-effects analysis that included the combat-unexposed twins revealed a significant diagnosis by combat exposure interaction. Inspection of group means suggests that the observed increased P2 intensity dependence is a consequence of PTSD. Our findings further suggest that low serotonergic tone may emerge as one potential consequence of this disorder. PMID:18629752

  11. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise

    Directory of Open Access Journals (Sweden)

    Jørgen eJensen

    2011-12-01

    Full Text Available Glycogen is the storage form of carbohydrates in mammals. In humans the majority of glycogen is stored in skeletal muscles (~500 g and the liver (~100 g. Food is supplied in larger meals, but the blood glucose concentration has to be kept within narrow limits to survive and stay healthy. Therefore, the body has to cope with periods of excess carbohydrates and periods without supplementation. Healthy persons remove blood glucose rapidly when glucose is in excess, but insulin-stimulated glucose disposal is reduced in insulin resistant and type 2 diabetic subjects. During a hyperinsulinemic euglycaemic clamp, 70-90 % of glucose disposal will be stored as muscle glycogen in healthy subjects. The glycogen stores in skeletal muscles are limited because an efficient feedback-mediated inhibition of glycogen synthase prevents accumulation. De novo lipid synthesis can contribute to glucose disposal when glycogen stores are filled. Exercise physiologists normally consider glycogen’s main function as energy substrate. Glycogen is the main energy substrate during exercise intensity above 70 % of maximal oxygen uptake (VO2max and fatigue develops when the glycogen stores are depleted in the active muscles. After exercise, the rate of glycogen synthesis is increased to replete glycogen stores, and blood glucose is the substrate. Indeed insulin-stimulated glucose uptake and glycogen synthesis is elevated after exercise, which, from an evolutional point of view, will favour glycogen repletion and preparation for new fight or flight events. In the modern society, the reduced glycogen stores in skeletal muscles after exercise allows carbohydrates to be stored as muscle glycogen and prevents that glucose is channelled to de novo lipid synthesis, which over time will causes ectopic fat accumulation and insulin resistance. The reduction of skeletal muscle glycogen after exercise allows a healthy storage of carbohydrates after meals and prevents development of type

  12. Temperature regulation in horses during exercise and recovery in a cool environment

    Directory of Open Access Journals (Sweden)

    Wallsten Hanna

    2012-07-01

    Full Text Available Abstract Background Clipping the winter coat in horses is done to improve heat dissipation during exercise and make grooming easier. It is often combined with blanketing to keep the horse warm. The aims of the present study were to investigate how clipping and the use of blankets affect thermoregulation during exercise and recovery in horses. Methods One Gotland pony, one New Forest pony, and one warm-blooded horse exercised one after the other on a 6450 m long track. The horses walked, trotted and cantered according to a predetermined scheme, which took about 50 minutes including three stops. The scheme was repeated on five consecutive days when horses were: 1 unclipped 2 unclipped + blanket during recovery, 3 left or right side clipped, 4 clipped, and 5 clipped + riding blanket + blanket during recovery. Heart rate (HR was measured with telemetry, respiratory rate (RR by counting flank contractions, skin temperatures by thermistor probes, and rectal temperature with a digital thermometer. Skin wetness (SW was estimated by ocular inspection (dripping = 5, dry = 0. Results Mean outdoor temperature varied from -1.1 to - 8.7°C. HR increased progressively during exercise with no difference between treatments. Maximum RR was 77 ± 30 breaths/min (unclipped and 49 ± 27 breaths/min (clipped. The lowest skin temperature was 17.5 ± 2.7°C in a hind leg during exercise, which increased to 34.5 ± 0.1°C during recovery. Rectal temperature was elevated during recovery in unclipped, but not in clipped horses and skin temperature at base of tail was elevated during recovery except in unclipped horses without blanket. Moisture after exercise scored 3.2 ± 0.8 in unclipped and zero in clipped horses. Discussion and conclusion Leg skin temperature initially dropped at onset of exercise in clipped horses, and then increased after about 30 minutes due to internal heat from the working muscles. These changes were not significant when

  13. Effect of exercise on photoperiod-regulated hypothalamic gene expression and peripheral hormones in the seasonal Dwarf Hamster Phodopus sungorus.

    Directory of Open Access Journals (Sweden)

    Ines Petri

    Full Text Available The Siberian hamster (Phodopus sungorus is a seasonal mammal responding to the annual cycle in photoperiod with anticipatory physiological adaptations. This includes a reduction in food intake and body weight during the autumn in anticipation of seasonally reduced food availability. In the laboratory, short-day induction of body weight loss can be reversed or prevented by voluntary exercise undertaken when a running wheel is introduced into the home cage. The mechanism by which exercise prevents or reverses body weight reduction is unknown, but one hypothesis is a reversal of short-day photoperiod induced gene expression changes in the hypothalamus that underpin body weight regulation. Alternatively, we postulate an exercise-related anabolic effect involving the growth hormone axis. To test these hypotheses we established photoperiod-running wheel experiments of 8 to 16 weeks duration assessing body weight, food intake, organ mass, lean and fat mass by magnetic resonance, circulating hormones FGF21 and insulin and hypothalamic gene expression. In response to running wheel activity, short-day housed hamsters increased body weight. Compared to short-day housed sedentary hamsters the body weight increase was accompanied by higher food intake, maintenance of tissue mass of key organs such as the liver, maintenance of lean and fat mass and hormonal profiles indicative of long day housed hamsters but there was no overall reversal of hypothalamic gene expression regulated by photoperiod. Therefore the mechanism by which activity induces body weight gain is likely to act largely independently of photoperiod regulated gene expression in the hypothalamus.

  14. Effect of sex differences on human MEF2 regulation during endurance exercise

    DEFF Research Database (Denmark)

    Vissing, Kristian; McGee, Sean L; Roepstorff, Carsten

    2008-01-01

    Women exhibit an enhanced capability for lipid metabolism during endurance exercise compared with men. The underlying regulatory mechanisms behind this sex-related difference are not well understood but may comprise signaling through a myocyte enhancer factor 2 (MEF2) regulatory pathway. The prim...

  15. Changes in Cardiac Tone Regulation with Fatigue after Supra-Maximal Running Exercise

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Leprêtre

    2012-01-01

    Full Text Available To investigate the effects of fatigue and metabolite accumulation on the postexercicse parasympathetic reactivation, 11 long-sprint runners performed on an outdoor track an exhaustive 400 m long sprint event and a 300 m with the same 400 m pacing strategy. Time constant of heart rate recovery (HRR, time (RMSSD, and frequency (HF, and LF varying vagal-related heart rate variability indexes were assessed during the 7 min period immediately following exercise. Biochemical parameters (blood lactate, pH, PO2, PCO2, SaO2, and HCO3− were measured at 1, 4 and 7 min after exercise. Time to perform 300 m was not significantly different between both running trials. HHR measured after the 400 m running exercise was longer compared to 300 m running bouts (183.7±11.6 versus 132.1±9.8 s, <0.01. Absolute power density in the LF and HF bands was also lower after 400 m compared to the 300 m trial (<0.05. No correlation was found between biochemical and cardiac recovery responses except for the PO2 values which were significantly correlated with HF levels measured 4 min after both bouts. Thus, it appears that fatigue rather than metabolic stresses occurring during a supramaximal exercise could explain the delayed postexercise parasympathetic reactivation in longer sprint runs.

  16. Effects of exercise training on regulation of skeletal muscle glucose metabolism in elderly men

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup; Olesen, Jesper; Gliemann, Lasse

    2015-01-01

    glucose tolerance test (OGTT) and a muscle biopsy was obtained from the vastus lateralis before and 45 minutes into the OGTT. Blood samples were collected before and up to 120 minutes after glucose intake. RESULTS: Exercise training increased Hexokinase II, GLUT4, Akt2, glycogen synthase (GS), pyruvate...

  17. Iron regulation in athletes: exploring the menstrual cycle and effects of different exercise modalities on hepcidin production.

    Science.gov (United States)

    Sim, Marc; Dawson, Brian; Landers, Grant; Trinder, Debbie; Peeling, Peter

    2014-04-01

    The trace element iron plays a number of crucial physiological roles within the body. Despite its importance, iron deficiency remains a common problem among athletes. As an individual's iron stores become depleted, it can affect their well-being and athletic capacity. Recently, altered iron metabolism in athletes has been attributed to postexercise increases in the iron regulatory hormone hepcidin, which has been reported to be upregulated by exercise-induced increases in the inflammatory cytokine interleukin-6. As such, when hepcidin levels are elevated, iron absorption and recycling may be compromised. To date, however, most studies have explored the acute postexercise hepcidin response, with limited research seeking to minimize/attenuate these increases. This review summarizes the current knowledge regarding the postexercise hepcidin response under a variety of exercise scenarios and highlights potential areas for future research-such as: a) the use of hormones though the female oral contraceptive pill to manipulate the postexercise hepcidin response, b) comparing the use of different exercise modes (e.g., cycling vs. running) on hepcidin regulation.

  18. An Examination of Motivational Regulations, Dispositional Flow and Social Physique Anxiety among College Students for Exercise: A Self-Determination Theory Approach

    Science.gov (United States)

    Ersöz, Gözde

    2016-01-01

    Based on self-determination theory (SDT), the main goal of this study is to analyze dispositional flow and social physique anxiety (SPA) that could be predicted by gender, BMI and motivational regulations and to examine motivational regulations, dispositional flow and SPA of college students in terms of stage of change for exercise. Participants…

  19. Severe familial hypercholesterolemia impairs the regulation of coronary blood flow and oxygen supply during exercise.

    Science.gov (United States)

    Bender, Shawn B; de Beer, Vincent J; Tharp, Darla L; Bowles, Douglas K; Laughlin, M Harold; Merkus, Daphne; Duncker, Dirk J

    2016-11-01

    Accelerated development of coronary atherosclerosis is a defining characteristic of familial hypercholesterolemia (FH). However, the recent data highlight a significant cardiovascular risk prior to the development of critical coronary stenosis. We, therefore, examined the hypothesis that FH produces coronary microvascular dysfunction and impairs coronary vascular control at rest and during exercise in a swine model of FH. Coronary vascular responses to drug infusions and exercise were examined in chronically instrumented control and FH swine. FH swine exhibited ~tenfold elevation of plasma cholesterol and diffuse coronary atherosclerosis (20-60 % plaque burden). Similar to our recent findings in the systemic vasculature in FH swine, coronary smooth muscle nitric oxide sensitivity was increased in vivo and in vitro with maintained endothelium-dependent vasodilation in vivo in FH. At rest and during exercise, FH swine exhibited increased myocardial O2 extraction resulting in reduced coronary venous SO2 and PO2 versus control. During exercise in FH swine, the transmural distribution of coronary blood flow was unchanged; however, a shift toward anaerobic cardiac metabolism was revealed by increased coronary arteriovenous H(+) concentration gradient. This shift was associated with a worsening of cardiac efficiency (relationship between cardiac work and O2 consumption) in FH during exercise owing, in part, to a generalized reduction in stroke volume which was associated with increased left atrial pressure in FH. Our data highlight a critical role for coronary microvascular dysfunction as a contributor to impaired myocardial O2 balance, cardiac ischemia, and impaired cardiac function prior to the development of critical coronary stenosis in FH.

  20. Acute Exercise and Appetite-Regulating Hormones in Overweight and Obese Individuals: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Jessica Anne Douglas

    2016-01-01

    Full Text Available In lean individuals, acute aerobic exercise is reported to transiently suppress sensations of appetite, suppress blood concentrations of acylated ghrelin (AG, and increase glucagon-like peptide-1 (GLP-1 and peptide-YY (PYY. Findings in overweight/obese individuals have yet to be synthesised. In this systematic review and meta-analysis, we quantified the effects that acute exercise has on AG and total PYY and GLP-1 in overweight/obese individuals. The potential for body mass index (BMI to act as a moderator for AG was also explored. Six published studies (73 participants, 78% male, mean BMI: 30.6 kg·m−2 met the inclusion criteria. Standardised mean differences (SMDs and standard errors were extracted for AG and total PYY and GLP-1 concentrations in control and exercise trials and synthesised using a random effects meta-analysis model. BMI was the predictor in metaregression for AG. Exercise moderately suppressed AG area-under-the-curve concentrations (pooled SMD: −0.34, 95% CI: −0.53 to −0.15. The magnitude of this reduction was greater for higher mean BMIs (pooled metaregression slope: −0.04 SMD/kg·m−2 (95% CI: −0.07 to 0.00. Trivial SMDs were obtained for total PYY (0.10, 95% CI: −0.13 to 0.31 and GLP-1 (−0.03, 95% CI: −0.18 to 0.13. This indicates that exercise in overweight/obese individuals moderately alters AG in a direction that could be associated with decreased hunger and energy intake. This trial is registered with PROSPERO: CRD42014006265.

  1. Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle.

    Science.gov (United States)

    Cobley, J N; Sakellariou, G K; Owens, D J; Murray, S; Waldron, S; Gregson, W; Fraser, W D; Burniston, J G; Iwanejko, L A; McArdle, A; Morton, J P; Jackson, M J; Close, G L

    2014-05-01

    Several redox-regulated responses to an acute exercise bout fail in aged animal skeletal muscle, including the ability to upregulate the expression of antioxidant defense enzymes and heat shock proteins (HSPs). These findings are generally derived from studies on sedentary rodent models and thus may be related to reduced physical activity and/or intraspecies differences as opposed to aging per se. This study, therefore, aimed to determine the influence of age and training status on the expression of HSPs, antioxidant enzymes, and NO synthase isoenzymes in quiescent and exercised human skeletal muscle. Muscle biopsy samples were obtained from the vastus lateralis before and 3 days after an acute high-intensity-interval exercise bout in young trained, young untrained, old trained, and old untrained subjects. Levels of HSP72, PRX5, and eNOS were significantly higher in quiescent muscle of older compared with younger subjects, irrespective of training status. 3-NT levels were elevated in muscles of the old untrained but not the old trained state, suggesting that lifelong training may reduce age-related macromolecule damage. SOD1, CAT, and HSP27 levels were not significantly different between groups. HSP27 content was upregulated in all groups studied postexercise. HSP72 content was upregulated to a greater extent in muscle of trained compared with untrained subjects postexercise, irrespective of age. In contrast to every other group, old untrained subjects failed to upregulate CAT postexercise. Aging was associated with a failure to upregulate SOD2 and a downregulation of PRX5 in muscle postexercise, irrespective of training status. In conclusion, lifelong training is unable to fully prevent the progression toward a more stressed muscular state as evidenced by increased HSP72, PRX5, and eNOS protein levels in quiescent muscle. Moreover, lifelong training preserves some (e.g., CAT) but not all (e.g., SOD2, HSP72, PRX5) of the adaptive redox-regulated responses after an

  2. EXERCISE-INDUCED SIGNAL TRANSDUCTION AND GENE REGULATION IN SKELETAL MUSCLE

    OpenAIRE

    Henning Wackerhage; Niall M. Woods

    2002-01-01

    Skeletal muscle adapts to various forms of exercise depending on the force, speed and duration characteristics of the contraction pattern. The stresses and signals associated with each contraction pattern are likely to specifically activate a network of signal transduction pathways that integrate this information. These pathways include the calcineurin, Calcium/calmodulin-dependent protein kinase (CaMK), mitogen-activated protein kinase (MAPK), protein kinase C (PKC), nuclear factor kappa B (...

  3. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice.

    Directory of Open Access Journals (Sweden)

    Adeel Safdar

    Full Text Available MicroRNAs (miRNAs are evolutionarily conserved small non-coding RNA species involved in post-transcriptional gene regulation. In vitro studies have identified a small number of skeletal muscle-specific miRNAs which play a crucial role in myoblast proliferation and differentiation. In skeletal muscle, an acute bout of endurance exercise results in the up-regulation of transcriptional networks that regulate mitochondrial biogenesis, glucose and fatty acid metabolism, and skeletal muscle remodelling. The purpose of this study was to assess the expressional profile of targeted miRNA species following an acute bout of endurance exercise and to determine relationships with previously established endurance exercise responsive transcriptional networks. C57Bl/6J wild-type male mice (N = 7/group were randomly assigned to either sedentary or forced-endurance exercise (treadmill run @ 15 m/min for 90 min group. The endurance exercise group was sacrificed three hours following a single bout of exercise. The expression of miR- 181, 1, 133, 23, and 107, all of which have been predicted to regulate transcription factors and co-activators involved in the adaptive response to exercise, was measured in quadriceps femoris muscle. Endurance exercise significantly increased the expression of miR-181, miR-1, and miR-107 by 37%, 40%, and 56%, respectively, and reduced miR-23 expression by 84% (Pregulator of PGC-1alpha was consistent with increased expression of PGC-1alpha mRNA and protein along with several downstream targets of PGC-1alpha including ALAS, CS, and cytochrome c mRNA. PDK4 protein content remains unaltered despite an increase in its putative negative regulator, miR-107, and PDK4 mRNA expression. mRNA expression of miRNA processing machinery (Drosha, Dicer, and DGCR8 remained unchanged. We conclude that miRNA-mediated post

  4. Influence of Hot and Cold Environments on the Regulation of Energy Balance Following a Single Exercise Session: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Keyne Charlot

    2017-06-01

    Full Text Available Understanding the regulation of human food intake in response to an acute exercise session is of importance for interventions with athletes and soldiers, as well as overweight individuals. However, the influence of hot and cold environments on this crucial function for the regulation of body mass and motor performance has not been summarized. The purpose of this review was to exhaustively search the literature on the effect of ambient temperature during an exercise session on the subsequent subjective feeling of appetite, energy intake (EI and its regulation. In the absence of stress due to environmental temperature, exercise-induced energy expenditure is not compensated by EI during an ad libitum meal following the session, probably due to decreased acylated ghrelin and increased peptide tyrosine tyrosine (PYY, glucagon-like peptide 1 (GLP-1, and pancreatic polypeptide (PP levels. No systematic analysis has been yet made for major alterations of relative EI in cold and hot environments. However, observed eating behaviors are altered (proportion of solid/liquid food, carbohydrate/fat and physiological regulation appears also to be altered. Anorexigenic signals, particularly PYY, appear to further increase in hot environments than in those that are thermoneutral. Ghrelin and leptin may be involved in the observed increase in EI after exercise in the cold, in parallel with increased energy expenditure. The potential influence of ambient thermal environment on eating behaviors after an exercise session should not be neglected.

  5. Influence of Hot and Cold Environments on the Regulation of Energy Balance Following a Single Exercise Session: A Mini-Review

    Science.gov (United States)

    Charlot, Keyne; Faure, Cécile; Antoine-Jonville, Sophie

    2017-01-01

    Understanding the regulation of human food intake in response to an acute exercise session is of importance for interventions with athletes and soldiers, as well as overweight individuals. However, the influence of hot and cold environments on this crucial function for the regulation of body mass and motor performance has not been summarized. The purpose of this review was to exhaustively search the literature on the effect of ambient temperature during an exercise session on the subsequent subjective feeling of appetite, energy intake (EI) and its regulation. In the absence of stress due to environmental temperature, exercise-induced energy expenditure is not compensated by EI during an ad libitum meal following the session, probably due to decreased acylated ghrelin and increased peptide tyrosine tyrosine (PYY), glucagon-like peptide 1 (GLP-1), and pancreatic polypeptide (PP) levels. No systematic analysis has been yet made for major alterations of relative EI in cold and hot environments. However, observed eating behaviors are altered (proportion of solid/liquid food, carbohydrate/fat) and physiological regulation appears also to be altered. Anorexigenic signals, particularly PYY, appear to further increase in hot environments than in those that are thermoneutral. Ghrelin and leptin may be involved in the observed increase in EI after exercise in the cold, in parallel with increased energy expenditure. The potential influence of ambient thermal environment on eating behaviors after an exercise session should not be neglected. PMID:28604591

  6. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes

    Science.gov (United States)

    Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2017-10-01

    We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.

  7. Phase- and intensity-dependence of ultrafast dynamics in hydrocarbon molecules in few-cycle laser fields

    CERN Document Server

    Kübel, Matthias; Siemering, Robert; Kling, Nora G; Bergues, Boris; Alnaser, Ali S; Ben-Itzhak, Itzik; Moshammer, Robert; de Vivie-Riedle, Regina; Kling, Matthias F

    2016-01-01

    In strong laser fields, sub-femtosecond control of chemical reactions with the carrier-envelope phase (CEP) becomes feasible. We have studied the control of reaction dynamics of acetylene and allene in intense few-cycle laser pulses at 750 nm, where ionic fragments are recorded with a reaction microscope. We find that by varying the CEP and intensity of the laser pulses it is possible to steer the motion of protons in the molecular dications, enabling control over deprotonation and isomerization reactions. The experimental results are compared to predictions from a quantum dynamical model, where the control is based on the manipulation of the phases of a vibrational wave packet by the laser waveform. The measured intensity dependence in the CEP-controlled deprotonation of acetylene is well captured by the model. In the case of the isomerization of acetylene, however, we find differences in the intensity dependence between experiment and theory. For the isomerization of allene, an inversion of the CEP-dependen...

  8. Regulation of lean mass, bone mass, and exercise tolerance by the central melanocortin system.

    Directory of Open Access Journals (Sweden)

    Theodore P Braun

    Full Text Available Signaling via the type 4-melanocortin receptor (MC4R is an important determinant of body weight in mice and humans, where loss of function mutations lead to significant obesity. Humans with mutations in the MC4R experience an increase in lean mass. However, the simultaneous accrual of fat mass in such individuals may contribute to this effect via mechanical loading. We therefore examined the relationship of fat mass and lean mass in mice lacking the type-4 melanocortin receptor (MC4RKO. We demonstrate that MC4RKO mice display increased lean body mass. Further, this is not dependent on changes in adipose mass, as MC4RKO mice possess more lean body mass than diet-induced obese (DIO wild type mice with equivalent fat mass. To examine potential sources of the increased lean mass in MC4RKO mice, bone mass and strength were examined in MC4RKO mice. Both parameters increase with age in MC4RKO mice, which likely contributes to increases in lean body mass. We functionally characterized the increased lean mass in MC4RKO mice by examining their capacity for treadmill running. MC4R deficiency results in a decrease in exercise performance. No changes in the ratio of oxidative to glycolytic fibers were seen, however MC4RKO mice demonstrate a significantly reduced heart rate, which may underlie their impaired exercise performance. The reduced exercise capacity we report in the MC4RKO mouse has potential clinical ramifications, as efforts to control body weight in humans with melanocortin deficiency may be ineffective due to poor tolerance for physical activity.

  9. Hormone-sensitive lipase (HSL) expression and regulation by epinephrine and exercise in skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Stallknecht, Bente Merete; Donsmark, Morten

    2002-01-01

    and contractions were partially additive. In rats training increased epinephrine-stimulated TO activity and HSL concentration in adipose tissue but not in muscle. In humans, at the end of 60 min of exercise muscle, TO activity was increased in healthy, but not in adrenalectomized, subjects. In conclusion, HSL...... to as MOME and TO, respectively. In isolated rat skeletal muscle fibers, the presence of HSL was demonstrated by Western blotting. The expression of HSL was correlated to fiber type, being higher in oxidative than in glycolytic fibers. In incubated soleus and extensor digitorum longus (EDL) muscles...

  10. Differential regulation of the fiber type-specific gene expression of the sarcoplasmic reticulum calcium-ATPase isoforms induced by exercise training.

    Science.gov (United States)

    Morissette, Marc P; Susser, Shanel E; Stammers, Andrew N; O'Hara, Kimberley A; Gardiner, Phillip F; Sheppard, Patricia; Moffatt, Teri L; Duhamel, Todd A

    2014-09-01

    The regulatory role of adenosine monophosphate-activated protein kinase (AMPK)-α2 on sarcoplasmic reticulum calcium-ATPase (SERCA) 1a and SERCA2a in different skeletal muscle fiber types has yet to be elucidated. Sedentary (Sed) or exercise-trained (Ex) wild-type (WT) and AMPKα2-kinase dead (KD) transgenic mice, which overexpress a mutated and inactivated AMPKα2 subunit, were utilized to characterize how genotype or exercise training influenced the regulation of SERCA isoforms in gastrocnemius. As expected, both Sed and Ex KD mice had >40% lower AMPK phosphorylation and 30% lower SERCA1a protein than WT mice (P SERCA2a protein was not different among KD and WT mice. Exercise increased SERCA1a and SERCA2a protein content among WT and KD mice, compared with their Sed counterparts. Maximal SERCA activity was lower in KD mice, compared with WT. Total phospholamban protein was higher in KD mice than in WT and lower in Ex compared with Sed mice. Exercise training increased phospholamban Ser(16) phosphorylation in WT mice. Laser capture microdissection and quantitative PCR indicated that SERCA1a mRNA expression among type I fibers was not altered by genotype or exercise, but SERCA2a mRNA was increased 30-fold in WT+Ex, compared with WT+Sed. In contrast, the exercise-stimulated increase for SERCA2a mRNA was blunted in KD mice. Exercise upregulated SERCA1a and SERCA2a mRNA among type II fibers, but was not altered by genotype. Collectively, these data suggest that exercise differentially influences SERCA isoform expression in type I and type II fibers. Additionally, AMPKα2 influences the regulation of SERCA2a mRNA in type I skeletal muscle fibers following exercise training. Copyright © 2014 the American Physiological Society.

  11. The effect of breakfast on appetite regulation, energy balance and exercise performance.

    Science.gov (United States)

    Clayton, David J; James, Lewis J

    2016-08-01

    The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in energy intake or a reduction in energy expenditure over the remainder of the day, resulting in a state of positive energy balance. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of energy balance. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and energy balance, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily energy intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects energy expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conclusion, the available research suggests breakfast omission may influence energy expenditure more strongly than energy intake. Longer term intervention studies are required to confirm this relationship, and determine the impact of these variables on weight management.

  12. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  13. Heat storage in Asian elephants during submaximal exercise: behavioral regulation of thermoregulatory constraints on activity in endothermic gigantotherms.

    Science.gov (United States)

    Rowe, M F; Bakken, G S; Ratliff, J J; Langman, V A

    2013-05-15

    Gigantic size presents both opportunities and challenges in thermoregulation. Allometric scaling relationships suggest that gigantic animals have difficulty dissipating metabolic heat. Large body size permits the maintenance of fairly constant core body temperatures in ectothermic animals by means of gigantothermy. Conversely, gigantothermy combined with endothermic metabolic rate and activity likely results in heat production rates that exceed heat loss rates. In tropical environments, it has been suggested that a substantial rate of heat storage might result in a potentially lethal rise in core body temperature in both elephants and endothermic dinosaurs. However, the behavioral choice of nocturnal activity might reduce heat storage. We sought to test the hypothesis that there is a functionally significant relationship between heat storage and locomotion in Asian elephants (Elephas maximus), and model the thermoregulatory constraints on activity in elephants and a similarly sized migratory dinosaur, Edmontosaurus. Pre- and post-exercise (N=37 trials) measurements of core body temperature and skin temperature, using thermography were made in two adult female Asian elephants at the Audubon Zoo in New Orleans, LA, USA. Over ambient air temperatures ranging from 8 to 34.5°C, when elephants exercised in full sun, ~56 to 100% of active metabolic heat production was stored in core body tissues. We estimate that during nocturnal activity, in the absence of solar radiation, between 5 and 64% of metabolic heat production would be stored in core tissues. Potentially lethal rates of heat storage in active elephants and Edmontosaurus could be behaviorally regulated by nocturnal activity.

  14. Resting extracellular signal-regulated protein kinase 1/2 expression following a continuum of chronic resistance exercise training paradigms.

    Science.gov (United States)

    Galpin, Andrew J; Fry, Andrew C; Nicoll, Justin X; Moore, Christopher A; Schilling, Brian K; Thomason, Donald B

    2016-01-01

    Extracellular signal-regulated protein kinase 1/2 (ERK1/2) moderates skeletal muscle growth; however, chronic responses of this protein to unique resistance exercise (RE) paradigms are yet to be explored. The purpose of this investigation was to describe the long-term response of ERK1/2 following circuit weight training (CWT), recreationally weight training (WT), powerlifting (PL) and weightlifting (WL). Independent t-tests were used to determine differences in trained groups compared to sedentary controls. Total ERK1/2 content was lower in PL and WL compared to their controls (p ≤ 0.05). Specific trained groups displayed large (WL: pERK/total-ERK; d = 1.25) and moderate (CWT: total ERK1/2; d = 0.54) effect sizes for altered kinase expression compared to controls. The results indicate ERK1/2 expression is down-regulated after chronic RE in well-trained weightlifters and powerlifters. Lower expression of this protein may be a method in which anabolism is tightly regulated after many years of high-intensity RE.

  15. Role of exercise-induced calmodulin protein kinase (CAMK)II activation in the regulation of omega-6 fatty acids and lipid metabolism genes in rat skeletal muscle.

    Science.gov (United States)

    Joseph, J S; Ayeleso, A O; Mukwevho, E

    2017-09-22

    Activation of calmodulin dependent protein kinase (CaMK)II by exercise is beneficial in controlling membrane lipids associated with type 2 diabetes and obesity. Regulation of lipid metabolism is crucial in the improvement of type 2 diabetes and obesity associated symptoms. The role of CaMKII in membrane associated lipid metabolism was the focus of this study. Five to six weeks old male Wistar rats were used in this study. GC×GC-TOFMS technique was used to determine the levels of polyunsaturated fatty acids (linoleic acid, arachidonic acid and 11,14-eicosadienoic acid). Carnitine palmitoyltransferase (Cpt-1) and acetyl-CoA carboxylase (Acc-1) genes expression were assessed using quantitative real time PCR (qPCR). From the results, CaMKII activation by exercise increased the levels of arachidonic acid and 11, 14-eicosadienoic acid while a decrease in the level of linolenic acid was observed in the skeletal muscle. The results indicated that exercise-induced CaMKII activation increased CPT-1 expression and decreased ACC-1 expression in rat skeletal muscle. All the observed increases with activation of CaMKII by exercise were aborted when KN93, an inhibitor of CaMKII was injected in exercising rats. This study demonstrated that CaMKII activation by exercise regulated lipid metabolism. This study suggests that CaMKII can be a vital target of therapeutic approach in the management of diseases such as type 2 diabetes and obesity that have increased to epidemic proportions recently.

  16. Intact regulation of the AMPK signaling network in response to exercise and insulin in skeletal muscle of male patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Pedersen, Andreas J T; Hingst, Janne R

    2016-01-01

    Current evidence on exercise-mediated AMPK regulation in skeletal muscle of type 2 diabetic (T2D) patients is inconclusive. This may relate to inadequate segregation of trimer complexes in the investigation of AMPK activity. We examined the regulation of AMPK and downstream targets ACCβ, TBC1D1...... and TBC1D4 in muscle biopsies obtained from thirteen overweight/obese T2D and fourteen weight-matched control male subjects before, immediately after and 3 h after exercise. Exercise increased AMPK α2β2γ3 activity and phosphorylation of ACCβ Ser(221), TBC1D1 Ser(237)/Thr(596) and TBC1D4 Ser(704......). Conversely, exercise decreased AMPK α1β2γ1 activity and TBC1D4 Ser(318)/Thr(642) phosphorylation. Interestingly, compared to pre-exercise, 3 h into exercise recovery AMPK α2β2γ1 and α1β2γ1 activity were increased concomitant with increased TBC1D4 Ser(318)/Ser(341)/Ser(704) phosphorylation. No differences...

  17. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Pedersen, Maria; Krabbe, Karen S

    2009-01-01

    identifies BDNF as a player not only in central metabolism, but also in regulating energy metabolism in peripheral organs. Low levels of BDNF are found in patients with neurodegenerative diseases, including Alzheimer's disease and major depression. In addition, BDNF levels are low in obesity...... and independently so in patients with type 2 diabetes. Brain-derived neurotrophic factor is expressed in non-neurogenic tissues, including skeletal muscle, and exercise increases BDNF levels not only in the brain and in plasma, but in skeletal muscle as well. Brain-derived neurotrophic factor mRNA and protein...... expression was increased in muscle cells that were electrically stimulated, and BDNF increased phosphorylation of AMP-activated protein kinase (AMPK) and acetyl coenzyme A carboxylase-beta (ACCbeta) and enhanced fatty oxidation both in vitro and ex vivo. These data identify BDNF as a contraction...

  18. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Søren; Scheele, Camilla; Yfanti, Christina

    2010-01-01

    Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR-1, miR-133a, miR-133b and miR-206 in muscle biopsies from vastus...... lateralis of healthy young males (n = 10) in relation to a hyperinsulinaemic–euglycaemic clamp as well as acute endurance exercise before and after 12 weeks of endurance training. The subjects increased their endurance capacity, VO2max (l min-1) by 17.4% (P ...% (P training. In resting biopsies, endurance training for 12 weeks decreased basal expression...

  19. Using radiation intensity dependence on excitation level for the analysis of surface plasmon resonance effect on ZnO luminescence

    Science.gov (United States)

    Rumyantsev, S. I.; Tarasov, A. P.; Briskina, C. M.; Ryzhkov, M. V.; Markushev, V. M.; Lotin, A. A.

    2015-10-01

    For the analysis of ZnO luminescence the system of rate equations (SRE) was proposed. It contains a set of parameters that characterizes processes participating in luminescence: zone-zone excitation, excitons formation and recombination, formation and disappearance of photons and surface plasmons (SP). It is shown that experimental ZnO microstructure radiation intensity dependence on photoexcitation level can be approximated by using SRE. Thus, the values of these parameters can be estimated and used for luminescence analysis. This approach was applied for the analysis of ZnO microfilms radiation with different thickness of Ag island film covering. It was revealed that the increase of cover thickness leads to the increase of losses and decrease of probability of photons to SP conversion. In order to take into account visible emission, rate equations for levels populations in band-gap and for corresponding photons and SP were added to SRE. By using such SRE it is demonstrated that the form of visible luminescence intensity dependence on excitation level (P) like P1/3, as obtained elsewhere [1], is possible only in case of donor-acceptor pairs existence. The proposed approach was applied for consideration of experimental results obtained in [5-8] taking into account their interpretation of these results based on assumption about transfer of electrons from defect level in ZnO band-gap to metal and then to conduction band in ZnO. Results of performed calculations using modified SRE revealed that effects observed in these papers can exist under only low pumping level. This result will be experimentally checked later.

  20. Skeletal muscle interleukin-6 regulates metabolic factors in iWAT during HFD and exercise training

    DEFF Research Database (Denmark)

    Knudsen, Jakob Grunnet; Bertholdt, Lærke; Joensen, Ella

    2015-01-01

    OBJECTIVE: To investigate the role of skeletal muscle (SkM) interleukin (IL)-6 in the regulation of adipose tissue metabolism. METHODS: Muscle-specific IL-6 knockout (IL-6 MKO) and IL-6(loxP/loxP) (Floxed) mice were subjected to standard rodent diet (Chow), high-fat diet (HFD), or HFD in combinat...

  1. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Xin, E-mail: weixinliu@yahoo.com [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Wang, Ting; Zhou, Feng; Wang, Ying; Xing, Jun-Wei; Zhang, Shen [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Gu, Shou-Zhi [Department of Anatomy, Seirei Christopher College, Hamamatsu 433-8558 (Japan); Sang, Li-Xuan [Department of Cadre Ward II, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Dai, Cong [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Wang, Hai-Lan [Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong (China)

    2015-04-10

    Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentary group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPAR-γ activity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPAR-γ activity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory

  2. Regulation of Muscle Pyruvate Dehydrogenase Complex in Insulin Resistance: Effects of Exercise and Dichloroacetate

    Directory of Open Access Journals (Sweden)

    Dumitru Constantin-Teodosiu

    2013-10-01

    Full Text Available Since the mitochondrial pyruvate dehydrogenase complex (PDC controls the rate of carbohydrate oxidation, impairment of PDC activity mediated by high-fat intake has been advocated as a causative factor for the skeletal muscle insulin resistance, metabolic syndrome, and the onset of type 2 diabetes (T2D. There are also situations where muscle insulin resistance can occur independently from high-fat dietary intake such as sepsis, inflammation, or drug administration though they all may share the same underlying mechanism, i.e., via activation of forkhead box family of transcription factors, and to a lower extent via peroxisome proliferator-activated receptors. The main feature of T2D is a chronic elevation in blood glucose levels. Chronic systemic hyperglycaemia is toxic and can lead to cellular dysfunction that may become irreversible over time due to deterioration of the pericyte cell's ability to provide vascular stability and control to endothelial proliferation. Therefore, it may not be surprising that T2D's complications are mainly macrovascular and microvascular related, i.e., neuropathy, retinopathy, nephropathy, coronary artery, and peripheral vascular diseases. However, life style intervention such as exercise, which is the most potent physiological activator of muscle PDC, along with pharmacological intervention such as administration of dichloroacetate or L-carnitine can prove to be viable strategies for treating muscle insulin resistance in obesity and T2D as they can potentially restore whole body glucose disposal.

  3. The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Stöckli, Jacqueline; Meoli, Christopher C; Hoffman, Nolan J

    2015-01-01

    weight, insulin action, and exercise. TBC1D1(-/-) mice showed normal glucose and insulin tolerance, with no difference in body weight compared with wild-type littermates. GLUT4 protein levels were reduced by ∼40% in white TBC1D1(-/-) muscle, and TBC1D1(-/-) mice showed impaired exercise endurance...... in this process: AS160 for insulin stimulation and its homolog, TBC1D1, are suggested to regulate exercise-mediated glucose uptake into muscle. TBC1D1 has also been implicated in obesity in humans and mice. We investigated the role of TBC1D1 in glucose metabolism by generating TBC1D1(-/-) mice and analyzing body...... together with impaired exercise-mediated 2-deoxyglucose uptake into white but not red muscles. These findings indicate that the RabGAP TBC1D1 plays a key role in regulating GLUT4 protein levels and in exercise-mediated glucose uptake in nonoxidative muscle fibers....

  4. A standardized randomized 6-month aerobic exercise-training down-regulated pro-inflammatory genes, but up-regulated anti-inflammatory, neuron survival and axon growth-related genes.

    Science.gov (United States)

    Iyalomhe, Osigbemhe; Chen, Yuanxiu; Allard, Joanne; Ntekim, Oyonumo; Johnson, Sheree; Bond, Vernon; Goerlitz, David; Li, James; Obisesan, Thomas O

    2015-09-01

    There is considerable support for the view that aerobic exercise may confer cognitive benefits to mild cognitively impaired elderly persons. However, the biological mechanisms mediating these effects are not entirely clear. As a preliminary step towards informing this gap in knowledge, we enrolled older adults confirmed to have mild cognitive impairment (MCI) in a 6-month exercise program. Male and female subjects were randomized into a 6-month program of either aerobic or stretch (control) exercise. Data collected from the first 10 completers, aerobic exercise (n=5) or stretch (control) exercise (n=5), were used to determine intervention-induced changes in the global gene expression profiles of the aerobic and stretch groups. Using microarray, we identified genes with altered expression (relative to baseline values) in response to the 6-month exercise intervention. Genes whose expression were altered by at least two-fold, and met the p-value cutoff of 0.01 were inputted into the Ingenuity Pathway Knowledge Base Library to generate gene-interaction networks. After a 6-month aerobic exercise-training, genes promoting inflammation became down-regulated, whereas genes having anti-inflammatory properties and those modulating immune function or promoting neuron survival and axon growth, became up-regulated (all fold change≥±2.0, paerobic program as opposed to the stretch group. We conclude that three distinct cellular pathways may collectively influence the training effects of aerobic exercise in MCI subjects. We plan to confirm these effects using rt-PCR and correlate such changes with the cognitive phenotype. Copyright © 2015. Published by Elsevier Inc.

  5. Down-Regulation of Cough during Exercise Is Less Frequent in Healthy Children than Adults. Role of the Development and/or Atopy?

    Directory of Open Access Journals (Sweden)

    Silvia Demoulin-Alexikova

    2017-05-01

    Full Text Available Cough is typically associated with physical activity in children with asthma, but the characteristics of the relationship between cough and exercise has not been established under physiological conditions. The aim of the study was to describe the effect of exercise on the reflex cough response elicited by a single breath of capsaicin in non-asthmatic children. A group of non-asthmatic adults was studied as reference. Thirty children and 29 adults were recruited. The cough reflex sensitivity to capsaicin was first determined to establish the dose that provokes 5 cough efforts (C5. The number of coughs elicited by C5 (NC5 was then compared at baseline and during a standardized submaximal treadmill exercise. Data are expressed as median (interquartile range. Children and adults showed a significant decrease in NC5 (respectively from 5.0 (4.0–6.0 to 2.5 (2.0–4.0, p < 0.0005 and from 6.0 (5.0–7.0 to 2.0 (0.0–3.0, p < 0.0005. During exercise, NC5 was observed to decrease in all adult subjects, but in only 24/30 children (80%, p = 0.02. A trend for a higher incidence of personal and familial atopy was observed in children that lacked cough down-regulation during exercise compared with other children. It is concluded that the cough reflex response to capsaicin is down regulated by exercise in both children and adults. The effect however is less consistently observed in the former. The difference may reflect maturation of descending inhibitory pathways of the cough reflex, but may also be associated to atopy. The data stress the importance of assessing the time relationship of cough and exercise in questionnaire studies of asthma.

  6. Acute cold and exercise training up-regulate similar aspects of fatty acid transport and catabolism in house sparrows (Passer domesticus).

    Science.gov (United States)

    Zhang, Yufeng; Carter, Travis; Eyster, Kathleen; Swanson, David L

    2015-12-01

    Summit maximum thermoregulatory metabolic rate (Msum) and maximum exercise metabolic rate (MMR) both increase in response to acute cold or exercise training in birds. Because lipids are the main fuel supporting both thermogenesis and exercise in birds, adjustments to lipid transport and catabolic capacities may support elevated energy demands from cold and exercise training. To examine a potential mechanistic role for lipid transport and catabolism in organismal cross-training effects (exercise effects on both exercise and thermogenesis, and vice versa), we measured enzyme activities and mRNA and protein expression in pectoralis muscle for several key steps of lipid transport and catabolism pathways in house sparrows (Passer domesticus) during acute exercise and cold training. Both training protocols elevated pectoralis protein levels of fatty acid translocase (FAT/CD36), cytosolic fatty acid-binding protein, and citrate synthase (CS) activity. However, mRNA expression of FAT/CD36 and both mRNA and protein expression of plasma membrane fatty acid-binding protein did not change for either training group. CS activities in supracoracoideus, leg and heart, and carnitine palmitoyl transferase (CPT) and β-hydroxyacyl CoA-dehydrogenase activities in all muscles did not vary significantly with either training protocol. Both Msum and MMR were significantly positively correlated with CPT and CS activities. These data suggest that up-regulation of trans-sarcolemmal and intramyocyte lipid transport capacities and cellular metabolic intensities, along with previously documented increases in body and pectoralis muscle masses and pectoralis myostatin (a muscle growth inhibitor) levels, are common mechanisms underlying the training effects of both exercise and shivering in birds. © 2015. Published by The Company of Biologists Ltd.

  7. Insulin, IGF-I, and muscle MAPK pathway responses after sustained exercise and their contribution to growth and lipid metabolism regulation in gilthead sea bream.

    Science.gov (United States)

    Sánchez-Gurmaches, J; Cruz-Garcia, L; Ibarz, A; Fernández-Borrás, J; Blasco, J; Gutiérrez, J; Navarro, I

    2013-10-01

    Herein, we studied whether sustained exercise positively affects growth of gilthead sea bream by alterations in a) plasma concentrations of insulin and IGF-I, b) signaling pathways in muscle, or c) regulation of lipid metabolism. Specifically, we evaluated the effects of moderated swimming (1.5 body lengths per second; BL/s) on the circulating concentrations of insulin and IGF-I, morphometric parameters, and expression of genes related to lipid metabolism in gilthead sea bream (80-90 g BW). Exercise increased the specific growth rate (P growth and metabolic homeostasis during swimming. The observed decrease in plasma insulin concentrations (P = 0.016) could favor the mobilization of tissue reserves in exercised fish. In this sense, the increase in liver fatty acid content (P = 0.041) and the changes in expression of peroxisome proliferator-activated receptors PPARα (P = 0.017) and PPARγ (P = 0.033) indicated a hepatic lipid mobilization. Concentration of glycogen in both white and red muscles was decreased (P = 0.021 and P = 0.017, respectively) in exercised (n = 12) relative to control (n = 12) gilthead sea bream, whereas concentrations of glucose (P = 0.016) and lactate (P = 0.0007) were decreased only in red muscle, indicating the use of these substrates. No changes in the glucose transporter and in lipoprotein lipase mRNA expression were found in any of the tissues studied. Exercised sea bream had decreased content of PPARβ mRNA in white and red muscle relative to control sea bream expression (P = 0.001 and P = 0.049, respectively). Mitogen-activated protein kinase phosphorylation was significantly down-regulated in both white and red muscles of exercised sea bream (P = 0.0374 and P = 0.0371, respectively). Tumor necrosis factor-α expression of white muscle was down-regulated in exercised gilthead sea bream (P = 0.045). Collectively, these results contribute to the knowledge base about hormonal regulation of growth and lipid metabolism in exercised gilthead

  8. Numerical study of threshold intensity dependence on gas pressure in the breakdown of molecular hydrogen induced by excimer laser

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Nassef, O. Aied

    2017-10-01

    In the present work, a numerical analysis is performed to investigate the threshold intensity dependence on gas pressure in laser spark ignition of the H2 plasma. The analysis considered the experimental measurements that were carried out by Yagi and Huo [Appl. Opt. 35, 3183 (1996)]. In their experiment, H2 in a pressure range of 150-3000 Torr is irradiated by a focused excimer laser source using a 96 cm lens at a wavelength of 248 nm and a pulse duration of 20 ns. The study, based on a modified electron cascade model [K. A. Hamam et al., J. Mod. Phys. 4, 311 (2013)], solves numerically a time-dependent energy equation for the distribution of the electron energy as well as a set of rate equations that describe the change in the formed excited molecule population. This model enabled the determination of the threshold intensity as a function of gas pressure. The validity of the model was tested by comparing the calculated thresholds with the experimentally measured ones. Moreover, the calculation of the electron energy distribution function and its parameters justified the role of the electron gain and loss processes in controlling the value of threshold intensity in relation to the gas pressure. The effect of loss processes on the threshold intensity is also presented.

  9. Self-determined to exercise? Leisure-time exercise behavior, exercise motivation, and exercise dependence in youth.

    Science.gov (United States)

    Symons Downs, Danielle; Savage, Jennifer S; DiNallo, Jennifer M

    2013-02-01

    Scant research has examined the determinants of primary exercise dependence symptoms in youth. Study purposes were to examine sex differences across leisure-time exercise behavior, motivation, and primary exercise dependence symptoms in youth and the extent to which exercise behavior and motivation predicted exercise dependence within the Self-Determination Theory framework. Adolescents (N = 805; mean age = 15 years; 46% girls) completed measures of exercise behavior, motivation, and exercise dependence in health/PE classes. One-way ANOVA revealed boys scored higher than girls on leisure-time exercise behavior, exercise dependence symptoms, and most of the exercise motivation subscales. Hierarchical regression analyses indicated a) sex, exercise behavior, motivation, and their interaction terms explained 39% of the variance in primary exercise dependence; b) Integrated Regulation and Introjected Regulation were important determinants of exercise dependence; and c) sex moderated the contributions of External Regulation for predicting exercise dependence such that boys in the high and low external regulation groups had higher symptoms than girls in the high and low external regulation groups. These preliminary findings support the controlled dimensions of Integrated Regulation (boys, girls), Introjected Regulation (boys, girls), and External Regulation (boys only) are important determinants of primary exercise dependence symptoms.

  10. Endurance exercise and conjugated linoleic acid (CLA supplementation up-regulate CYP17A1 and stimulate testosterone biosynthesis.

    Directory of Open Access Journals (Sweden)

    Rosario Barone

    Full Text Available A new role for fat supplements, in particular conjugated linoleic acid (CLA, has been delineated in steroidogenesis, although the underlying molecular mechanisms have not yet been elucidated. The aims of the present study were to identify the pathway stimulated by CLA supplementation using a cell culture model and to determine whether this same pathway is also stimulated in vivo by CLA supplementation associated with exercise. In vitro, Leydig tumour rat cells (R2C supplemented with different concentrations of CLA exhibited increasing testosterone biosynthesis accompanied by increasing levels of CYP17A1 mRNA and protein. In vivo, trained mice showed an increase in free plasma testosterone and an up-regulation of CYP17A1 mRNA and protein. The effect of training on CYP17A1 expression and testosterone biosynthesis was significantly higher in the trained mice supplemented with CLA compared to the placebo. The results of the present study demonstrated that CLA stimulates testosterone biosynthesis via CYP17A1, and endurance training led to the synthesis of testosterone in vivo by inducing the overexpression of CYP17A1 mRNA and protein in the Leydig cells of the testis. This effect was enhanced by CLA supplementation. Therefore, CLA-associated physical activity may be used for its steroidogenic property in different fields, such as alimentary industry, human reproductive medicine, sport science, and anti-muscle wasting.

  11. Experimental Studies of the Molecular Pathways Regulated by Exercise and Resveratrol in Heart, Skeletal Muscle and the Vasculature

    Directory of Open Access Journals (Sweden)

    Vernon W. Dolinsky

    2014-09-01

    Full Text Available Regular exercise contributes to healthy aging and the prevention of chronic disease. Recent research has focused on the development of molecules, such as resveratrol, that activate similar metabolic and stress response pathways as exercise training. In this review, we describe the effects of exercise training and resveratrol on some of the organs and tissues that act in concert to transport oxygen throughout the body. In particular, we focus on animal studies that investigate the molecular signaling pathways induced by these interventions. We also compare and contrast the effects of exercise and resveratrol in diseased states.

  12. Determining intensity dependence of ultrashort laser processes through focus z-scanning intensity-difference spectra: application to laser-induced dissociation of H{sup +}{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sayler, A M; Wang, P Q; Carnes, K D; Ben-Itzhak, I [J R Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States)

    2007-11-28

    A focal spot scanning intensity-difference spectra method is developed to allow one to determine the intensity dependence of laser produced features while improving experimental statistics. This method is applicable to focused Gaussian beam interactions with approximately uniform planar targets. Furthermore, it can be applied to disentangle the intensity dependence of thick targets. The usefulness of this method is demonstrated by applying it to the kinetic energy release spectrum resulting from the dissociation of an H{sup +}{sub 2} beam in an intense ultrashort laser pulse.

  13. Putative null distributions corresponding to tests of differential expression in the Golden Spike dataset are intensity dependent

    Directory of Open Access Journals (Sweden)

    Gaile Daniel P

    2007-04-01

    detect these intensity related defects in the processed data. Conclusion We agree with Dabney and Storey that the null p-values considered in Choe et al. are indeed non-uniform. We also agree with the conclusion that, given current pre-processing technologies, the Golden Spike dataset should not serve as a reference dataset to evaluate false discovery rate controlling methodologies. However, we disagree with the assessment that the non-uniform p-values are merely the byproduct of testing for differential expression under the incorrect assumption that chip data are approximate to biological replicates. Whereas Dabney and Storey attribute the non-uniform p-values to violations of the Stage II model assumptions, we provide evidence that the non-uniformity can be attributed to the failure of the Stage I analyses to correct for systematic biases in the raw data matrix. Although we do not speculate as to the root cause of these systematic biases, the observations made in Irizarry et al. appear to be consistent with our findings. Whereas Irizarry et al. describe the effect of the experimental design on the feature level data, we consider the effect on the underlying multivariate distribution of putative null p-values. We demonstrate that the putative null distributions corresponding to the pre-processing algorithms considered in Choe et al. are all intensity dependent. This dependence serves to invalidate statistical inference based upon standard two sample test statistics. We identify a flaw in the characterization of the appropriate "null" probesets described in Choe et al. and we provide a corrected analysis which reduces (but does not eliminate the intensity dependent effects.

  14. Disruptive effects of light pollution on sleep in free-living birds: Season and/or light intensity-dependent?

    Science.gov (United States)

    Raap, Thomas; Sun, Jiachen; Pinxten, Rianne; Eens, Marcel

    2017-11-01

    Light pollution or artificial light at night (ALAN) is an increasing anthropogenic environmental pollutant posing an important potential threat for wildlife. Evidence of its effects on animal physiology and behaviour is accumulating. However, in order to effectively mitigate light pollution it is important to determine which factors contribute to the severity of effects of ALAN. In this experimental study we explored whether there are seasonal-dependent effects of ALAN on sleep in free-living great tits (Parus major), an important model species. Additionally, we looked at whether light intensity determined the severity of effects of ALAN on sleep. We therefore exposed animals to artificial light inside the nest box (3lx) in December (winter) and February (pre-breeding season). Results from February were compared with the results from a previous study in February, using a lower light intensity (1.6lx). We found little evidence for a season-dependent response. Effects of ALAN hardly differed between high and low light intensity. ALAN disrupted sleep with as main effect a decrease in sleep duration (≈-40min) as animals woke up earlier (≈-24min). However, compared to a natural dark situation sleep onset was delayed by high but not by low light intensity of ALAN. Our study underlines earlier found disruptive effects of ALAN on sleep of free-living animals. While we found no conclusive evidence for seasonal or light intensity-dependent effects of ALAN, additional experimental work using lower light intensities might show such differences. Examining potential management options is crucial in mitigating disruptive effects of light pollution, which will be an important focus for future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Regulation of average 24h human plasma leptin level; the influence of exercise and physiological changes in energy balance.

    NARCIS (Netherlands)

    Aggel-Leijssen, D.P.; van Baak, M.A.; Tenenbaum, R.; Campfield, L.A.; Saris, W.H.M.

    1999-01-01

    OBJECTIVE: The effects of short-term moderate physiological changes in energy flux and energy balance, by exercise and over- or underfeeding, on a 24h plasma leptin profile, were investigated. DESIGN: Subjects were studied over 24h in four randomized conditions: no exercise/energy balance (energy

  16. The effects of two self-regulation interventions to increase self-efficacy and group exercise behavior in fitness clubs

    NARCIS (Netherlands)

    Middelkamp, P.J.C.; Rooijen, M. van; Wolfhagen, P.; Steenbergen, B.

    2016-01-01

    Studies on the adoption and maintenance of group exercise behavior are scarce. The objective of this study is to test two self-efficacy based interventions to increase barrier self-efficacy and group exercise behavior. In total 122 participants (Mage 42.02 yr.; SD 12.29; 67% females) were recruited

  17. The Effects of Two Self-Regulation Interventions to Increase Self-Efficacy and Group Exercise Behavior in Fitness Clubs

    NARCIS (Netherlands)

    Middelkamp, J.; van Rooijen, M.; Wolfhagen, P.; Steenbergen, B.

    2016-01-01

    Studies on the adoption and maintenance of group exercise behavior are scarce. The objective of this study is to test two self-efficacy based interventions to increase barrier self-efficacy and group exercise behavior. In total 122 participants (Mage 42.02 yr.; SD 12.29; 67% females) were recruited

  18. Behavioral neuroscience of emotion and exercise

    National Research Council Canada - National Science Library

    Kita, Ichiro

    2012-01-01

    .... Although evidence of the neural and behavioral benefits of physical exercise is accumulating, the neural mechanisms behind these beneficial effects and emotion regulation from physical exercise...

  19. [Exercise scenario of a highly contagious, life-threatening disease in intercontinental aviation : a case report in the context of the International Health Regulations (IHR)].

    Science.gov (United States)

    Stich, Heribert; Guggemos, W; Mühlhaus, A; Wicklein, B; Dietl, J; Hoffmann, A; Leiwering, J; Frangoulidis, D; Zange, S; Königstein, B; Ippisch, S

    2015-07-01

    The International Health Regulations (IHR) 2005 were conformed to German law on July 20, 2007 and described in detail by the Implementing Act (IHR DG). According to these legal bases, "designated airports" must maintain special capacities for protection against health threats, and are also responsible for performing regular IHR exercises. Representation of the optimization of established operational concepts of various professions to manage infectious biological threats without obstruction of international travel, and mediation of experience to IHR professionals. An exercise based on the case scenario of a travel-related febrile illness was performed at Munich International Airport on November 11, 2013. Preparations took 6 months and the exercise itself lasted nearly 12 h. The follow-up lasted an additional 9 months. A qualitative and quantitative evaluation of the exercise was completed. From an Individual Medicine and Public Health perspective, modular work structures and risk communication functioned adequately. The medical examination of passengers was also well managed. Areas requiring further optimization included arrival/departure times of external actors, transport of the index patient to hospital and protective measures for individual participants. Overall, a defined biological threat scenario representing a double infection with two highly pathogenic germs was handled satisfactorily without affecting international air travel. Modular supply components are an effective and forward-looking means in protection against threats occurring at airports. Key success factors include sufficient staff mobility, immediate self-protection of actors involved, effective risk communication and a strong overall coordination and monitoring of the situation.

  20. Psychophysiological Responses to Group Exercise Training Sessions: Does Exercise Intensity Matter?

    Directory of Open Access Journals (Sweden)

    Matteo Vandoni

    Full Text Available Group exercise training programs were introduced as a strategy for improving health and fitness and potentially reducing dropout rates. This study examined the psychophysiological responses to group exercise training sessions. Twenty-seven adults completed two group exercise training sessions of moderate and vigorous exercise intensities in a random and counterbalanced order. The %HRR and the exertional and arousal responses to vigorous session were higher than those during the moderate session (p<0.05. Consequently, the affective responses to vigorous session were less pleasant than those during moderate session (p<0.05. These results suggest that the psychophysiological responses to group exercise training sessions are intensity-dependent. From an adherence perspective, interventionists are encouraged to emphasize group exercise training sessions at a moderate intensity to maximize affective responses and to minimize exertional responses, which in turn may positively affect future exercise behavior.

  1. Fatigue is a Brain-Derived Emotion that Regulates the Exercise Behavior to Ensure the Protection of Whole Body Homeostasis

    National Research Council Canada - National Science Library

    Noakes, Timothy David

    2012-01-01

    ... an exhaustion of the nervous system." It has taken more than a century to confirm Mosso's idea that both the brain and the muscles alter their function during exercise and that fatigue is predominantly an emotion, part of a complex...

  2. The circulatory regulation of TPA and UPA secretion, clearance, and inhibition during exercise and during the infusion of isoproterenol and phenylephrine.

    Science.gov (United States)

    Chandler, W L; Levy, W C; Stratton, J R

    1995-11-15

    Exercise to exhaustion and infusions of isoproterenol and phenylephrine were used to study interactions between plasminogen activator regulation and the control of regional blood flow in 10 healthy males. Experimental measurements of cardiac output, heart rate, tissue plasminogen activator (TPA), urokinase plasminogen activator (UPA), plasminogen activator inhibitor (PAI-1), C1-inhibitor, and TPA/C1-inhibitor complex during the infusions and exercise were used to develop a comprehensive fluid-phase model of the circulatory regulation of fibrinolysis. alpha- and beta-adrenergic agonists increased TPA and UPA in plasma by different mechanisms: Phenylephrine decreased hepatic blood flow and thus clearance while isoproterenol stimulated increased secretion of TPA and UPA. Exercise to exhaustion increased TPA and UPA through a combination of increased secretion and decreased clearance. The time course of UPA and TPA release were similar, but the magnitude of their secretion responses differed. In vivo, C1-inhibitor bound to TPA at a rate of 553 mol-1.s-1. C1-inhibitor contributed equally with PAI-1 to TPA inhibition when active PAI-1 levels were low (20 to 50 pmol/L) but was less important when active PAI-1 levels were high. We conclude that secretion, inhibition, clearance, and regional blood flow effects must all be taken into account when evaluating changes in plasminogen activator levels.

  3. The Borg scale as an important tool of self-monitoring and self-regulation of exercise prescription in heart failure patients during hydrotherapy. A randomized blinded controlled trial.

    Science.gov (United States)

    Carvalho, Vitor Oliveira; Bocchi, Edimar Alcides; Guimarães, Guilherme Veiga

    2009-10-01

    The Borg Scale may be a useful tool for heart failure patients to self-monitor and self-regulate exercise on land or in water (hydrotherapy) by maintaining the heart rate (HR) between the anaerobic threshold and respiratory compensation point. Patients performed a cardiopulmonary exercise test to determine their anaerobic threshold/respiratory compensation points. The percentage of the mean HR during the exercise session in relation to the anaerobic threshold HR (%EHR-AT), in relation to the respiratory compensation point (%EHR-RCP), in relation to the peak HR by the exercise test (%EHR-Peak) and in relation to the maximum predicted HR (%EHR-Predicted) was calculated. Next, patients were randomized into the land or water exercise group. One blinded investigator instructed the patients in each group to exercise at a level between "relatively easy and slightly tiring". The mean HR throughout the 30-min exercise session was recorded. The %EHR-AT and %EHR-predicted did not differ between the land and water exercise groups, but they differed in the %EHR-RCP (95 +/-7 to 86 +/-7, P<0.001) and in the %EHR-Peak (85 +/-8 to 78 +/-9, P=0.007). Exercise guided by the Borg scale maintains the patient's HR between the anaerobic threshold and respiratory compensation point (ie, in the exercise training zone).

  4. High motivation for exercise is associated with altered chromatin regulators of monoamine receptor gene expression in the striatum of selectively bred mice.

    Science.gov (United States)

    Saul, M C; Majdak, P; Perez, S; Reilly, M; Garland, T; Rhodes, J S

    2017-03-01

    Although exercise is critical for health, many lack the motivation to exercise, and it is unclear how motivation might be increased. To uncover the molecular underpinnings of increased motivation for exercise, we analyzed the transcriptome of the striatum in four mouse lines selectively bred for high voluntary wheel running and four non-selected control lines. The striatum was dissected and RNA was extracted and sequenced from four individuals of each line. We found multiple genes and gene systems with strong relationships to both selection and running history over the previous 6 days. Among these genes were Htr1b, a serotonin receptor subunit and Slc38a2, a marker for both glutamatergic and γ-aminobutyric acid (GABA)-ergic signaling. System analysis of the raw results found enrichment of transcriptional regulation and kinase genes. Further, we identified a splice variant affecting the Wnt-related Golgi signaling gene Tmed5. Using coexpression network analysis, we found a cluster of interrelated coexpression modules with relationships to running behavior. From these modules, we built a network correlated with running that predicts a mechanistic relationship between transcriptional regulation by nucleosome structure and Htr1b expression. The Library of Integrated Network-Based Cellular Signatures identified the protein kinase C δ inhibitor, rottlerin, the tyrosine kinase inhibitor, Linifanib and the delta-opioid receptor antagonist 7-benzylidenenaltrexone as potential compounds for increasing the motivation to run. Taken together, our findings support a neurobiological framework of exercise motivation where chromatin state leads to differences in dopamine signaling through modulation of both the primary neurotransmitters glutamate and GABA, and by neuromodulators such as serotonin. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Thermoregulatory Control Following Dynamic Exercise

    National Research Council Canada - National Science Library

    Journeay, W. S; Carter, R; Kenny, G. P

    2006-01-01

    .... Recent work has shown that non-thermoregulatory factors associated with hemodynamic changes and hydration status post-exercise may influence the regulation of core temperature during exercise recovery...

  6. Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP

    Directory of Open Access Journals (Sweden)

    Bodil Ingerslev

    2017-10-01

    Conclusions: The data suggest that exercise-induced ANGPTL4 is secreted from the liver and driven by a glucagon-cAMP-PKA pathway in humans. These findings link the liver, insulin/glucagon, and lipid metabolism together, which could implicate a role of ANGPTL4 in metabolic diseases.

  7. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta

    DEFF Research Database (Denmark)

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li

    2007-01-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow...

  8. Regular Exercise Enhances the Immune Response Against Microbial Antigens Through Up-Regulation of Toll-like Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Qishi Zheng

    2015-09-01

    Full Text Available Background/Aims: Regular physical exercise can enhance resistance to many microbial infections. However, little is known about the mechanism underlying the changes in the immune system induced by regular exercise. Methods: We recruited members of a university badminton club as the regular exercise (RE group and healthy sedentary students as the sedentary control (SC group. We investigated the distribution of peripheral blood mononuclear cell (PBMC subsets and functions in the two groups. Results: There were no significant differences in plasma cytokine levels between the RE and SC groups in the true resting state. However, enhanced levels of IFN-γ, TNF-α, IL-6, IFN-α and IL-12 were secreted by PBMCs in the RE group following microbial antigen stimulation, when compared to the SC group. In contrast, the levels of TNF-α and IL-6 secreted by PBMC in the RE group were suppressed compared with those in SC group following non-microbial antigen stimulation (concanavalin A or α-galactosylceramide. Furthermore, PBMC expression of TLR2, TLR7 and MyD88 was significantly increased in the RE group in response to microbial antigen stimulation. Conclusion: Regular exercise enhances immune cell activation in response to pathogenic stimulation leading to enhanced cytokine production mediated via the TLR signaling pathways.

  9. Prevention: Exercise

    Medline Plus

    Full Text Available ... Smoking Weight Patient Safety Exercise Strengthening Strengthen Your Core! Stretching/Flexibility Aerobic Exercise Cervical Exercise Strength Training for the Elderly Other Back Pack Safety ...

  10. Erythrocyte-dependent regulation of human skeletal muscle blood flow: role of varied oxyhemoglobin and exercise on nitrite, S-nitrosohemoglobin, and ATP.

    Science.gov (United States)

    Dufour, Stéphane P; Patel, Rakesh P; Brandon, Angela; Teng, Xinjun; Pearson, James; Barker, Horace; Ali, Leena; Yuen, Ada H Y; Smolenski, Ryszard T; González-Alonso, José

    2010-12-01

    The erythrocyte is proposed to play a key role in the control of local tissue perfusion via three O(2)-dependent signaling mechanisms: 1) reduction of circulating nitrite to vasoactive NO, 2) S-nitrosohemoglobin (SNO-Hb)-dependent vasodilatation, and 3) release of the vasodilator and sympatholytic ATP; however, their relative roles in vivo remain unclear. Here we evaluated each mechanism to gain insight into their roles in the regulation of human skeletal muscle blood flow during hypoxia and hyperoxia at rest and during exercise. Arterial and femoral venous hemoglobin O(2) saturation (O(2)Hb), plasma and erythrocyte NO and ATP metabolites, and leg and systemic hemodynamics were measured in 10 healthy males exposed to graded hypoxia, normoxia, and graded hyperoxia both at rest and during submaximal one-legged knee-extensor exercise. At rest, leg blood flow and NO and ATP metabolites in plasma and erythrocytes remained unchanged despite large alterations in O(2)Hb. During exercise, however, leg and systemic perfusion and vascular conductance increased in direct proportion to decreases in arterial and venous O(2)Hb (r(2) = 0.86-0.98; P = 0.01), decreases in venous plasma nitrite (r(2) = 0.93; P < 0.01), increases in venous erythrocyte nitroso species (r(2) = 0.74; P < 0.05), and to a lesser extent increases in erythrocyte SNO (r(2) = 0.59; P = 0.07). No relationship was observed with plasma ATP (r(2) = 0.01; P = 0.99) or its degradation compounds. These in vivo data indicate that, during low-intensity exercise and hypoxic stress, but not hypoxic stress alone, plasma nitrite consumption and formation of erythrocyte nitroso species are associated with limb vasodilatation and increased blood flow in the human skeletal muscle vasculature.

  11. Erythrocyte-dependent regulation of human skeletal muscle blood flow: role of varied oxyhemoglobin and exercise on nitrite, S-nitrosohemoglobin, and ATP

    Science.gov (United States)

    Patel, Rakesh P.; Brandon, Angela; Teng, Xinjun; Pearson, James; Barker, Horace; Ali, Leena; Yuen, Ada H. Y.; Smolenski, Ryszard T.; González-Alonso, José

    2010-01-01

    The erythrocyte is proposed to play a key role in the control of local tissue perfusion via three O2-dependent signaling mechanisms: 1) reduction of circulating nitrite to vasoactive NO, 2) S-nitrosohemoglobin (SNO-Hb)-dependent vasodilatation, and 3) release of the vasodilator and sympatholytic ATP; however, their relative roles in vivo remain unclear. Here we evaluated each mechanism to gain insight into their roles in the regulation of human skeletal muscle blood flow during hypoxia and hyperoxia at rest and during exercise. Arterial and femoral venous hemoglobin O2 saturation (O2Hb), plasma and erythrocyte NO and ATP metabolites, and leg and systemic hemodynamics were measured in 10 healthy males exposed to graded hypoxia, normoxia, and graded hyperoxia both at rest and during submaximal one-legged knee-extensor exercise. At rest, leg blood flow and NO and ATP metabolites in plasma and erythrocytes remained unchanged despite large alterations in O2Hb. During exercise, however, leg and systemic perfusion and vascular conductance increased in direct proportion to decreases in arterial and venous O2Hb (r2 = 0.86–0.98; P = 0.01), decreases in venous plasma nitrite (r2 = 0.93; P erythrocyte nitroso species (r2 = 0.74; P erythrocyte SNO (r2 = 0.59; P = 0.07). No relationship was observed with plasma ATP (r2 = 0.01; P = 0.99) or its degradation compounds. These in vivo data indicate that, during low-intensity exercise and hypoxic stress, but not hypoxic stress alone, plasma nitrite consumption and formation of erythrocyte nitroso species are associated with limb vasodilatation and increased blood flow in the human skeletal muscle vasculature. PMID:20852046

  12. A limited role for PI(3,4,5P3 regulation in controlling skeletal muscle mass in response to resistance exercise.

    Directory of Open Access Journals (Sweden)

    D Lee Hamilton

    2010-07-01

    Full Text Available Since activation of the PI3K/(protein kinase B; PKB/akt pathway has been shown to alter muscle mass and growth, the aim of this study was to determine whether resistance exercise increased insulin like growth factor (IGF I/phosphoinositide 3-kinase (PI3K signalling and whether altering PI(3,4,5P(3 metabolism genetically would increase load induced muscle growth.Acute and chronic resistance exercise in wild type and muscle specific PTEN knockout mice were used to address the role of PI(3,4,5P(3 regulation in the development of skeletal muscle hypertrophy. Acute resistance exercise did not increase either IGF-1 receptor phosphorylation or IRS1/2 associated p85. Since insulin/IGF signalling to PI3K was unchanged, we next sought to determine whether inactivation of PTEN played a role in load-induced muscle growth. Muscle specific knockout of PTEN resulted in small but significant increases in heart (PTEN(+/+ = 5.00+/-0.02 mg/g, PTEN(-/- = 5.50+/-0.09 mg/g, and TA (PTEN(+/+ = 1.74+/-0.04 mg/g, PTEN(-/- = 1.89 +/-0.03 muscle mass, while the GTN, SOL, EDL and PLN remain unchanged. Following ablation, hypertrophy of the PLN, SOL or EDL muscles was similar between PTEN(-/- and PTEN(+/+ animals. Even though there were some changes in overload-induced PKB and S6K1 phosphorylation, 1 hr following acute resistance exercise there was no difference in the phosphorylation state of S6K1 Thr389 between genotypes.These data suggest that physiological loading does not lead to the enhanced activation of the PI3K/PKB/mTORC1 axis and that neither PI3K activation nor PTEN, and by extension PI(3,4,5P(3 levels, play a significant role in adult skeletal muscle growth.

  13. AMPKα in Exercise-Induced Substrate Metabolism and Exercise Training-Induced Metabolic and Mitochondrial Adaptations

    DEFF Research Database (Denmark)

    Fentz, Joachim

    could also regulate muscle metabolism during exercise and long-term adaptations to exercise training. However, responses to exercise and exercise training are largely normal in AMPK KO/KD mice. At first hand this could mean that AMPK is not important to exercise/exercise training metabolic regulation......-regulated metabolism and exercise training-induced adaptations are abnormal. This could be due to a more complete ablation of AMPK function and perhaps related to the catalytic properires of the α-subunits. In study 1 we show that deletion of both AMPKα subunits in skeletal muscle of mice decreases exerciseinduced......-subunit. It is proposed to be involved in acute exercise-induced regulation of substrate metabolism as well as the adaptations in muscle protein expression that arise from repeated bouts of exercise, i.e. exercise training. Exercise regulates a plethora of signaling pathways in muscle which includes the activation...

  14. Taming the "sleeping giant": the role of endothelin-1 in the regulation of skeletal muscle blood flow and arterial blood pressure during exercise

    National Research Council Canada - National Science Library

    Barrett-O'Keefe, Zachary; Ives, Stephen J; Trinity, Joel D; Morgan, Garrett; Rossman, Matthew J; Donato, Anthony J; Runnels, Sean; Morgan, David E; Gmelch, Benjamin S; Bledsoe, Amber D; Richardson, Russell S; Wray, D Walter

    2013-01-01

    The cardiovascular response to exercise is governed by a combination of vasodilating and vasoconstricting influences that optimize exercising muscle perfusion while protecting mean arterial pressure (MAP...

  15. Exercise-induced oxidative stress: A tool for “hormesis” and “adaptive response”

    National Research Council Canada - National Science Library

    Koyama, Katsuhiro

    2014-01-01

    ... adaptation to physical exercise. It is becoming increasingly clear that exercise-related beneficial adaptations are strongly regulated by exercise-induced oxidative stress, consistent with hormesis theory...

  16. Long-Term Mild, rather than Intense, Exercise Enhances Adult Hippocampal Neurogenesis and Greatly Changes the Transcriptomic Profile of the Hippocampus.

    Science.gov (United States)

    Inoue, Koshiro; Okamoto, Masahiro; Shibato, Junko; Lee, Min Chul; Matsui, Takashi; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Our six-week treadmill running training (forced exercise) model has revealed that mild exercise (ME) with an intensity below the lactate threshold (LT) is sufficient to enhance spatial memory, while intense exercise (IE) above the LT negates such benefits. To help understand the unrevealed neuronal and signaling/molecular mechanisms of the intensity-dependent cognitive change, in this rat model, we here investigated plasma corticosterone concentration as a marker of stress, adult hippocampal neurogenesis (AHN) as a potential contributor to this ME-induced spatial memory, and comprehensively delineated the hippocampal transcriptomic profile using a whole-genome DNA microarray analysis approach through comparison with IE. Results showed that only IE had the higher corticosterone concentration than control, and that the less intense exercise (ME) is better suited to improve AHN, especially in regards to the survival and maturation of newborn neurons. DNA microarray analysis using a 4 × 44 K Agilent chip revealed that ME regulated more genes than did IE (ME: 604 genes, IE: 415 genes), and only 41 genes were modified with both exercise intensities. The identified molecular components did not comprise well-known factors related to exercise-induced AHN, such as brain-derived neurotrophic factor. Rather, network analysis of the data using Ingenuity Pathway Analysis algorithms revealed that the ME-influenced genes were principally related to lipid metabolism, protein synthesis and inflammatory response, which are recognized as associated with AHN. In contrast, IE-influenced genes linked to excessive inflammatory immune response, which is a negative regulator of hippocampal neuroadaptation, were identified. Collectively, these results in a treadmill running model demonstrate that long-term ME, but not of IE, with minimizing running stress, has beneficial effects on increasing AHN, and provides an ME-specific gene inventory containing some potential regulators of this

  17. Long-Term Mild, rather than Intense, Exercise Enhances Adult Hippocampal Neurogenesis and Greatly Changes the Transcriptomic Profile of the Hippocampus

    Science.gov (United States)

    Inoue, Koshiro; Okamoto, Masahiro; Shibato, Junko; Lee, Min Chul; Matsui, Takashi; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Our six-week treadmill running training (forced exercise) model has revealed that mild exercise (ME) with an intensity below the lactate threshold (LT) is sufficient to enhance spatial memory, while intense exercise (IE) above the LT negates such benefits. To help understand the unrevealed neuronal and signaling/molecular mechanisms of the intensity-dependent cognitive change, in this rat model, we here investigated plasma corticosterone concentration as a marker of stress, adult hippocampal neurogenesis (AHN) as a potential contributor to this ME-induced spatial memory, and comprehensively delineated the hippocampal transcriptomic profile using a whole-genome DNA microarray analysis approach through comparison with IE. Results showed that only IE had the higher corticosterone concentration than control, and that the less intense exercise (ME) is better suited to improve AHN, especially in regards to the survival and maturation of newborn neurons. DNA microarray analysis using a 4 × 44 K Agilent chip revealed that ME regulated more genes than did IE (ME: 604 genes, IE: 415 genes), and only 41 genes were modified with both exercise intensities. The identified molecular components did not comprise well-known factors related to exercise-induced AHN, such as brain-derived neurotrophic factor. Rather, network analysis of the data using Ingenuity Pathway Analysis algorithms revealed that the ME-influenced genes were principally related to lipid metabolism, protein synthesis and inflammatory response, which are recognized as associated with AHN. In contrast, IE-influenced genes linked to excessive inflammatory immune response, which is a negative regulator of hippocampal neuroadaptation, were identified. Collectively, these results in a treadmill running model demonstrate that long-term ME, but not of IE, with minimizing running stress, has beneficial effects on increasing AHN, and provides an ME-specific gene inventory containing some potential regulators of this

  18. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2014-01-01

    body mass), or a non-caloric control after heavy resistance exercise on protein turnover and mRNA expressions of forkhead homeobox type O (FOXO) isoforms, muscle RING finger 1 (MuRF1), and Atrogin1 in young healthy males. Methods Protein turnover was determined by stable isotope-labeled leucine...... and femoral arteriovenous blood samples at rest and during 6-h recovery. Muscle biopsies were collected at −60 min (rest) and at 60, 210, and 360 min in the recovery period. Results During recovery, leucine NB was significantly higher in the protein groups compared to control (P

  19. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A.C.; Peter, L.M.; Ponomarev, E.A.; Walker, A.B.; Wijayantha, K.G.U.

    2000-02-10

    The lifetime {tau}{sub n} and diffusion coefficient D{sub n} of photoinjected electrons have been measured in a dye-sensitized nanocrystalline TiO{sub 2} solar cell over 5 orders of magnitude of illumination intensity using intensity-modulated photovoltage and photocurrent spectroscopies. {tau}{sub n} was found to be inversely proportional to the square root of the steady-state light intensity, I{sub 0}, whereas D{sub n} varied with I{sub 0}{sup 0.68}. The intensity dependence of {tau}{sub n} is interpreted as evidence that the back reaction of electrons with I{sub 3}{sup {minus}} may be second order in electron density. The intensity dependence of D{sub n} is attributed to an exponential trap density distribution of the form N{sub t}(E) {proportional{underscore}to} exp[{minus}{beta}(E - E{sub c})/(K{sub B}T)] with {beta} {approximately} 0.6. since {tau}{sub n} and D{sub n} vary with intensity in opposite senses, the calculated electron diffusion length L{sub n} = (D{sub n}{tau}{sub n}){sup 1/2} falls by less than a factor of 5 when the intensity is reduced by 5 orders of magnitude. The incident photon to current efficiency (IPCE) is predicted to decrease by less than 10% over the same range of illumination intensity, and the experimental results confirm this prediction.

  20. Steady-state entanglement and normal-mode splitting in an atom-assisted optomechanical system with intensity-dependent coupling

    Energy Technology Data Exchange (ETDEWEB)

    Barzanjeh, Sh. [Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, 81746-73441, Isfahan (Iran, Islamic Republic of); School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino (Italy); Naderi, M. H.; Soltanolkotabi, M. [Quantum Optics Group, Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, 81746-73441, Isfahan (Iran, Islamic Republic of)

    2011-12-15

    In this paper, we study theoretically bipartite and tripartite continuous variable entanglement as well as normal-mode splitting in a single-atom cavity optomechanical system with intensity-dependent coupling. The system under consideration is formed by a Fabry-Perot cavity with a thin vibrating end mirror and a two-level atom in the Gaussian standing wave of the cavity mode. We first derive the general form of the Hamiltonian describing the tripartite intensity-dependent atom-field-mirror coupling due to the presence of the cavity mode structure. We then restrict our treatment to the first vibrational sideband of the mechanical resonator and derive a tripartite atom-field-mirror Hamiltonian. We show that when the optical cavity is intensely driven, one can generate bipartite entanglement between any pair in the tripartite system and that, due to entanglement sharing, atom-mirror entanglement is efficiently generated at the expense of optical-mechanical and optical-atom entanglement. We also find that in such a system, when the Lamb-Dicke parameter is large enough, one can simultaneously observe the normal mode splitting into three modes.

  1. Use of radiation intensity dependence on excitation level for the analysis of surface plasmon resonance effect on ZnO luminescence

    Science.gov (United States)

    Rumyantsev, Stepan; Tarasov, Andrey; Briskina, Charus; Ryzhkov, Mikhail; Markushev, Valery; Lotin, Andrey

    2016-01-01

    For the analysis of ZnO luminescence, a set of rate equations (SRE) is proposed. It contains a set of parameters that characterize processes participating in luminescence: zone-zone excitation, excitons formation and recombination, formation and disappearance of photons, surface plasmons (SP), and phonons. It is shown that experimental ZnO microstructure radiation intensity dependence on photoexcitation levels can be approximated by using SRE. This approach was applied for the analysis of ZnO microfilm radiation with different thicknesses of Ag island film covering. It was revealed that the increase of cover thickness leads to an increase of losses and a decrease of the probability of photon-to-SP conversion. In order to take into account visible emission, rate equations for level populations in the bandgap and for corresponding photons and SPs were added to the SRE. By using such an SRE, it is demonstrated that the form of visible luminescence intensity dependence on excitation level (P) like P, as obtained elsewhere, is possible only if donor-acceptor pairs exist. The proposed approach was also applied for consideration of experimental results obtained in several papers taking into account the interpretation of these results based on assumptions about the transfer of electrons from the defect level in the ZnO bandgap to metal and then to the conduction band.

  2. A Bloch equation approach to intensity dependent optical spectra of light harvesting complex II: excitation dependence of light harvesting complex II pump-probe spectra.

    Science.gov (United States)

    Richter, Marten; Renger, Thomas; Knorr, Andreas

    2008-01-01

    On the basis of the recent progress in the resolution of the structure of the antenna light harvesting complex II (LHC II) of the photosystem II, we propose a microscopically motivated theory to predict excitation intensity-dependent spectra. We show that optical Bloch equations provide the means to include all 2( N ) excited states of an oligomer complex of N coupled two-level systems and analyze the effects of Pauli Blocking and exciton-exciton annihilation on pump-probe spectra. We use LHC Bloch equations for 14 Coulomb coupled two-level systems, which describe the S (0) and S (1) level of every chlorophyll molecule. All parameter introduced into the Hamiltonian are based on microscopic structure and a quantum chemical model. The derived Bloch equations describe not only linear absorption but also the intensity dependence of optical spectra in a regime where the interplay of Pauli Blocking effects as well as exciton-exciton annihilation effects are important. As an example, pump-probe spectra are discussed. The observed saturation of the spectra for high intensities can be viewed as a relaxation channel blockade on short time scales due to Pauli blocking. The theoretical investigation is useful for the interpretation of the experimental data, if the experimental conditions exceed the low intensity pump limit and effects like strong Pauli Blocking and exciton-exciton annihilation need to be considered. These effects become important when multiple excitations are generated by the pump pulse in the complex.

  3. Regulation of Nuclear Receptor Interacting Protein 1 (NRIP1) Gene Expression in Response to Weight Loss and Exercise in Humans

    DEFF Research Database (Denmark)

    De Marinis, Yang Z; Sun, Jiangming; Bompada, Pradeep

    2017-01-01

    : NRIP1 expression was measured by microarray and serum NRIP1 by ELISA and Western blotting. Skeletal muscle transcriptomes were analyzed from Gene Expression Omnibus databases. Network-based proximity analysis was performed on the proximity of NRIP1 interacting genes in the human interactome. Results...... expression by 80%, and strength training increased expression by ∼25% compared to baseline. Following rest, NRIP1 expression became sensitive to insulin stimulation. After re-training, NRIP1 expression decreased. Interactome analysis showed significant proximity of NRIP1 interacting partners to the obesity...... network/module. Conclusions: NRIP1 gene expression and serum levels are strongly associated with metabolic states such as obesity, weight loss, different types of exercise, and peripheral tissue insulin resistance, potentially as a mediator of sedentary effects....

  4. Prevention: Exercise

    Medline Plus

    Full Text Available ... A SPECIALIST Prevention Strengthening Exercise Committee Exercise Committee Core Strengthening Many popular forms of exercise focus on ... acute pain, you should stop doing it. Transverse Core Strengthening This strengthens the muscles that cross from ...

  5. Prevention: Exercise

    Medline Plus

    Full Text Available ... Smoking Weight Patient Safety Exercise Strengthening Strengthen Your Core! Stretching/Flexibility Aerobic Exercise Cervical Exercise Strength Training for the Elderly Other Back Pack Safety Pregnancy ...

  6. Exercise Physiologists

    Science.gov (United States)

    ... SITE MAP | EN ESPAÑOL Occupational Outlook Handbook > Healthcare > Exercise Physiologists PRINTER-FRIENDLY EN ESPAÑOL Summary What They ... of workers and occupations. What They Do -> What Exercise Physiologists Do About this section Exercise physiologists analyze ...

  7. Does Swimming at a Moderate Altitude Favor a Lower Oxidative Stress in an Intensity-Dependent Manner? Role of Nonenzymatic Antioxidants.

    Science.gov (United States)

    Casuso, Rafael A; Aragón-Vela, Jerónimo; López-Contreras, Gracia; Gomes, Silvana N; Casals, Cristina; Barranco-Ruiz, Yaira; Mercadé, Jordi J; Huertas, Jesus R

    2017-03-01

    Casuso, Rafael A., Jerónimo Aragón-Vela, Gracia López-Contreras, Silvana N. Gomes, Cristina Casals, Yaira Barranco-Ruiz, Jordi J. Mercadé, and Jesus R. Huertas. Does swimming at a moderate altitude favor a lower oxidative stress in an intensity-dependent manner? Role of nonenzymatic antioxidants. High-Alt Med Biol. 18:46-55, 2017.-we aimed to describe oxidative damage and enzymatic and nonenzymatic antioxidant responses to swimming at different intensities in hypoxia. We recruited 12 highly experienced swimmers who have been involved in competitive swimming for at least 9 years. They performed a total of six swimming sessions carried out at low (LOW), moderate (MOD), or high (HIGH) intensity at low altitude (630 m) and at 2320 m above sea level. Blood samples were collected before the session (Pre), after the cool down (Post), and after 15 minutes of recovery (Rec). Blood lactate (BL) and heart rate were recorded throughout the main part of the session. Average velocities did not change between hypoxia and normoxia. We found a higher BL in response to MOD intensity in hypoxia. Plasmatic hydroperoxide level decreased at all intensities when swimming in hypoxia. This effect coincided with a lower glutation peroxidase activity and a marked mobilization of the circulating levels of α-tocopherol and coenzyme Q10 in an intensity-dependent manner. Our results suggest that, regardless of the intensity, no oxidative damage is found in response to hypoxic swimming in well-trained swimmers. Indeed, swimmers show a highly efficient antioxidant system by stimulating the mobilization of nonenzymatic antioxidants.

  8. Prevention: Exercise

    Medline Plus

    Full Text Available ... strengthening programs. Simple exercises can be done at home as well. Some specific core strengthening exercises are described below. ... © 2017 North American Spine Society | ...

  9. Contribution of intravascular versus interstitial purines and nitric oxide in the regulation of exercise hyperaemia in humans

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Mortensen, Stefan Peter

    2012-01-01

    Abstract The regulation of blood flow to skeletal muscle involves a complex interaction between several locally formed vasodilators that are produced both in the skeletal muscle interstitium and intravascularly. The gas nitric oxide (NO) and the purines ATP and adenosine, are potent vasodilators...... of intravascular versus interstitial vasodilators is not known but evidence suggests that both compartments are important. In cardiovascular disease, a reduced capacity to form adenosine in the muscle interstitium may be a contributing factor in increased peripheral vascular resistance....

  10. HEART RATE RECOVERY AFTER EXERCISE AND NEURAL REGULATION OF HEART RATE VARIABILITY IN 30-40 YEAR OLD FEMALE MARATHON RUNNERS

    Directory of Open Access Journals (Sweden)

    Toshio Matsuoka

    2005-03-01

    Full Text Available The aim of the present study was to examine the effects of endurance training on heart rate (HR recovery after exercise and cardiac autonomic nervous system (ANS modulation in female marathon runners by comparing with untrained controls. Six female marathon runners (M group aged 32-40 years and eight age-matched untrained females (C group performed a maximum-effort treadmill running exercise. Maximal oxygen uptake (VO2max was measured during the exercise with a gas analyzer connected to subjects through a face mask. Heart rate, blood pressure and blood lactate were measured before and after the exercise. Rating of perceived exertion (RPE to the exercise was obtained immediately after the exercise. Holter ECG was recorded and analyzed with power spectral analysis of heart rate variability (HRV to investigate the cardiac ANS modulation. The M group had significantly higher VO2max, faster HR recovery after exercise, higher Mean RR, SDRR, HF power and lower LF/HF ratio at rest compared with the C group. The M group also presented greater percent decrease of blood pressure after exercise, although their blood pressure after exercise was higher than the C group. It is suggested that endurance training induced significant alterations in cardiac ANS modulation at rest and significant acceleration of HR recovery after exercise in female marathon runners. Faster HR recovery after exercise in the female marathon runners should result from their higher levels of HRV, higher aerobic capacity and exaggerated blood pressure response to exercise compared with untrained controls.

  11. Assessment of peak oxygen uptake during handcycling: Test-retest reliability and comparison of a ramp-incremented and perceptually-regulated exercise test.

    Directory of Open Access Journals (Sweden)

    Michael J Hutchinson

    Full Text Available To examine the reliability of a perceptually-regulated maximal exercise test (PRETmax to measure peak oxygen uptake ([Formula: see text] during handcycle exercise and to compare peak responses to those derived from a ramp-incremented protocol (RAMP.Twenty recreationally active individuals (14 male, 6 female completed four trials across a 2-week period, using a randomised, counterbalanced design. Participants completed two RAMP protocols (20 W·min-1 in week 1, followed by two PRETmax in week 2, or vice versa. The PRETmax comprised five, 2-min stages clamped at Ratings of Perceived Exertion (RPE 11, 13, 15, 17 and 20. Participants changed power output (PO as often as required to maintain target RPE. Gas exchange variables (oxygen uptake, carbon dioxide production, minute ventilation, heart rate (HR and PO were collected throughout. Differentiated RPE were collected at the end of each stage throughout trials.For relative [Formula: see text], coefficient of variation (CV was equal to 4.1% and 4.8%, with ICC(3,1 of 0.92 and 0.85 for repeated measures from PRETmax and RAMP, respectively. Measurement error was 0.15 L·min-1 and 2.11 ml·kg-1·min-1 in PRETmax and 0.16 L·min-1 and 2.29 ml·kg-1·min-1 during RAMP for determining absolute and relative [Formula: see text], respectively. The difference in [Formula: see text] between PRETmax and RAMP was tending towards statistical significance (26.2 ± 5.1 versus 24.3 ± 4.0 ml·kg-1·min-1, P = 0.055. The 95% LoA were -1.9 ± 4.1 (-9.9 to 6.2 ml·kg-1·min-1.The PRETmax can be used as a reliable test to measure [Formula: see text] during handcycle exercise in recreationally active participants. Whilst PRETmax tended towards significantly greater [Formula: see text] values than RAMP, the difference is smaller than measurement error of determining [Formula: see text] from PRETmax and RAMP.

  12. Assessment of peak oxygen uptake during handcycling: Test-retest reliability and comparison of a ramp-incremented and perceptually-regulated exercise test.

    Science.gov (United States)

    Hutchinson, Michael J; Paulson, Thomas A W; Eston, Roger; Goosey-Tolfrey, Victoria L

    2017-01-01

    To examine the reliability of a perceptually-regulated maximal exercise test (PRETmax) to measure peak oxygen uptake ([Formula: see text]) during handcycle exercise and to compare peak responses to those derived from a ramp-incremented protocol (RAMP). Twenty recreationally active individuals (14 male, 6 female) completed four trials across a 2-week period, using a randomised, counterbalanced design. Participants completed two RAMP protocols (20 W·min-1) in week 1, followed by two PRETmax in week 2, or vice versa. The PRETmax comprised five, 2-min stages clamped at Ratings of Perceived Exertion (RPE) 11, 13, 15, 17 and 20. Participants changed power output (PO) as often as required to maintain target RPE. Gas exchange variables (oxygen uptake, carbon dioxide production, minute ventilation), heart rate (HR) and PO were collected throughout. Differentiated RPE were collected at the end of each stage throughout trials. For relative [Formula: see text], coefficient of variation (CV) was equal to 4.1% and 4.8%, with ICC(3,1) of 0.92 and 0.85 for repeated measures from PRETmax and RAMP, respectively. Measurement error was 0.15 L·min-1 and 2.11 ml·kg-1·min-1 in PRETmax and 0.16 L·min-1 and 2.29 ml·kg-1·min-1 during RAMP for determining absolute and relative [Formula: see text], respectively. The difference in [Formula: see text] between PRETmax and RAMP was tending towards statistical significance (26.2 ± 5.1 versus 24.3 ± 4.0 ml·kg-1·min-1, P = 0.055). The 95% LoA were -1.9 ± 4.1 (-9.9 to 6.2) ml·kg-1·min-1. The PRETmax can be used as a reliable test to measure [Formula: see text] during handcycle exercise in recreationally active participants. Whilst PRETmax tended towards significantly greater [Formula: see text] values than RAMP, the difference is smaller than measurement error of determining [Formula: see text] from PRETmax and RAMP.

  13. Heart rate recovery after exercise and neural regulation of heart rate variability in 30-40 year old female marathon runners.

    Science.gov (United States)

    Du, Na; Bai, Siqin; Oguri, Kazuo; Kato, Yoshihiro; Matsumoto, Ichie; Kawase, Harumi; Matsuoka, Toshio

    2005-03-01

    The aim of the present study was to examine the effects of endurance training on heart rate (HR) recovery after exercise and cardiac autonomic nervous system (ANS) modulation in female marathon runners by comparing with untrained controls. Six female marathon runners (M group) aged 32-40 years and eight age-matched untrained females (C group) performed a maximum-effort treadmill running exercise. Maximal oxygen uptake (VO2max) was measured during the exercise with a gas analyzer connected to subjects through a face mask. Heart rate, blood pressure and blood lactate were measured before and after the exercise. Rating of perceived exertion (RPE) to the exercise was obtained immediately after the exercise. Holter ECG was recorded and analyzed with power spectral analysis of heart rate variability (HRV) to investigate the cardiac ANS modulation. The M group had significantly higher VO2max, faster HR recovery after exercise, higher Mean RR, SDRR, HF power and lower LF/HF ratio at rest compared with the C group. The M group also presented greater percent decrease of blood pressure after exercise, although their blood pressure after exercise was higher than the C group. It is suggested that endurance training induced significant alterations in cardiac ANS modulation at rest and significant acceleration of HR recovery after exercise in female marathon runners. Faster HR recovery after exercise in the female marathon runners should result from their higher levels of HRV, higher aerobic capacity and exaggerated blood pressure response to exercise compared with untrained controls. Key PointsThe effects of endurance training on HR recovery after exercise and cardiac ANS modulation were investigated in female marathon runners by comparing with untrained controls.Time and frequency domain analysis of HRV was used to investigate cardiac ANS modulation.As compared with untrained controls, the female marathon runners showed faster HR recovery after exercise, which should result

  14. The effect of exercise intensity on calf volume and thermoregulatory responses during upper body exercise

    Directory of Open Access Journals (Sweden)

    Botoms Lindzi M.

    2011-01-01

    Full Text Available During upper body exercise the vascular adaptations of the leg have been reported to play an important thermoregulatory role. This study examined the effect of exercise intensity on thermoregulation during upper body exercise. Nine healthy male participants undertook an incremental exercise test on an arm crank ergo meter to determine peak power (Wpeak. The participants performed four experimental trials involving 5 minutes of arm exercise at either 45, 60, 75, or 90% Wpeak (70 rev.min-1 followed by 30 minutes of passive recovery. Aural and skin temperatures, upper arm and calf heat flow were recorded. Calf volume was measured during exercise using plethysmography. During exercise at 45, 60, 75 and 90% Wpeak calf volume decreased (P<0.05 by -0.7±0.8, -1.4±0.9, -1.2±0.6 and -1.6±0.7% respectively. Differences were observed between 45 and 60% Wpeak, and 45 and 90% Wpeak (P<0.05. The results of this study suggest a redistribution of blood from the relatively inactive lower body during arm exercise of intensities up to 60%Wpeak after which point calf volume does not significantly decrease further. Therefore, the redistribution of blood from the inactive lower body does not produce a similar intensity dependent response to visceral blood flow during lower body exercise.

  15. Exercise Prescription.

    Science.gov (United States)

    Ribisl, Paul M.

    If exercise programs are to become effective in producing the desired results, then the correct exercise prescription must be applied. Four variables should be controlled in the prescription of exercise: (a) type of activity, (b) intensity, (c) duration, and (d) frequency. The long-term prescription of exercise involves the use of a (a) starter…

  16. Regulation of trace elements and redox status in striatum of adult rats by long-term aerobic exercise depends on iron uptakes.

    Science.gov (United States)

    Wu, Hua-Bo; Xiao, De-Sheng

    2017-03-06

    We investigated the effects of aerobic exercise (AE) on trace element contents and redox status in the striatum of rats with different diet iron. Weaned female rats were randomly fed with iron-adequate diet (IAD), iron-deficient diet (IDD), and iron-overloaded diet (IOD). After feeding their respective diet for 1 month, the rats fed with same diet were divided into swimming and maintaining sedentary (S) group. After 3 months, the non-heme iron (NHI), Mn, Cu, and Zn in the striatum were measured. Meanwhile, malonaldehyde acid (MDA), total superoxide dismutase activity, hydroxyl radical scavenging activity, and total antioxidant capacity were also analyzed. As compared with respective S rats, Mn, Cu, and Zn contents were significantly decreased in IDDE, but no significantly changes could be seen in IADE or IODE. A negative correlation of NHI with Cu contents in IDDE and positive correlations of NHI with Cu, or Zn contents in IADE, or with Mn or Cu contents in IODE were observed. In addition, striatum MDA was significantly decreased and anti-oxidative variables were increased in IODE compared to IODS. Our results suggest that the modification of trace elements and redox status in the striatum of rats caused by AE depends on dietary iron contents and that AE may also regulate the metabolic relationship of iron storage with other trace elements. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Heart Rate Recovery After Exercise and Neural Regulation of Heart Rate Variability in 30-40 Year Old Female Marathon Runners

    OpenAIRE

    Toshio Matsuoka; Harumi Kawase; Ichie Matsumoto; Yoshihiro Kato; Kazuo Oguri; Siqin Bai; Na Du

    2005-01-01

    The aim of the present study was to examine the effects of endurance training on heart rate (HR) recovery after exercise and cardiac autonomic nervous system (ANS) modulation in female marathon runners by comparing with untrained controls. Six female marathon runners (M group) aged 32-40 years and eight age-matched untrained females (C group) performed a maximum-effort treadmill running exercise. Maximal oxygen uptake (VO2max) was measured during the exercise with a gas analyzer connected to ...

  18. Exercise motivation: a cross-sectional analysis examining its relationships with frequency, intensity, and duration of exercise

    Directory of Open Access Journals (Sweden)

    Wilson Philip M

    2010-01-01

    Full Text Available Abstract Background It is important to engage in regular physical activity in order to maintain a healthy lifestyle however a large portion of the population is insufficiently active. Understanding how different types of motivation contribute to exercise behavior is an important first step in identifying ways to increase exercise among individuals. The current study employs self-determination theory as a framework from which to examine how motivation contributes to various characteristics of exercise behavior. Methods Regular exercisers (N = 1079; n = 468 males; n = 612 females completed inventories which assessed the frequency, intensity, and duration with which they exercise, as well as the Behavioral Regulation in Exercise Questionnaire including four additional items assessing integrated regulation. Results Bivariate correlations revealed that all three behavioral indices (frequency, intensity, and duration of exercise were more highly correlated with more autonomous than controlling regulations. Regression analyses revealed that integrated and identified regulations predicted exercise frequency for males and females. Integrated regulation was found to be the only predictor of exercise duration across both genders. Finally, introjected regulation predicted exercise intensity for females only. Conclusions These findings suggest that exercise regulations that vary in their degree of internalization can differentially predict characteristics of exercise behavior. Furthermore, in the motivational profile of a regular exerciser, integrated regulation appears to be an important determinant of exercise behavior. These results highlight the importance of assessing integrated regulation in exercise settings where the goal of understanding motivated behavior has important health implications.

  19. Vascular endothelial growth factor mRNA expression and arteriovenous balance in resonse to prolonged, submaximal exercise in humans

    DEFF Research Database (Denmark)

    Hiscock, N.; Fischer, C.P.; Pilegaard, Henriette

    2003-01-01

    VEGF, regulation of gene expression, exercise, angiogensis, skeletal muscle, peripheral vascular function......VEGF, regulation of gene expression, exercise, angiogensis, skeletal muscle, peripheral vascular function...

  20. Prevention: Exercise

    Medline Plus

    Full Text Available ... provide well-rounded core strengthening programs. Simple exercises can be done at home as well. Some specific ... benefit from this exercise... Sagittal Core Strengthening You can stretch and strengthen the low back muscles that ...

  1. Simulation Exercises

    Science.gov (United States)

    Tansey, Pat

    1976-01-01

    Describes five simulation exercises: a problem for a student teacher, an industrial relations game, a series of student problems; an international relations crisis, and a sociological exercise on public and private opinions. (LS)

  2. Prevention: Exercise

    Medline Plus

    Full Text Available ... martial arts all provide well-rounded core strengthening programs. Simple exercises can be done at home as ... doctor or physical therapist to prescribe an exercise program that matches your abilities. Neck Press This is ...

  3. Prevention: Exercise

    Science.gov (United States)

    ... be done at home as well. Some specific core strengthening exercises are described below. If any of the following ... balls, you will experience more benefit from this exercise... Sagittal Core Strengthening You can stretch and strengthen the low ...

  4. Prevention: Exercise

    Medline Plus

    Full Text Available ... strengthening programs. Simple exercises can be done at home as well. Some specific core strengthening exercises are ... a Success Story to Share? | Contact Us SPINE CARE PROVIDERS GO HERE © 2017 North American Spine Society | ...

  5. Prevention: Exercise

    Medline Plus

    Full Text Available ... prescribe an exercise program that matches your abilities. Neck Press This is an isometric exercise to strengthen your neck. Press your palm against your forehead, then use ...

  6. Prevention: Exercise

    Medline Plus

    Full Text Available ... Back Pain Basics Book RESOURCES Patient Information Feature Articles Patient Q&A Success Stories ... Committee Exercise Committee Core Strengthening Many popular forms of exercise focus on ...

  7. Prevention: Exercise

    Medline Plus

    Full Text Available ... Strengthen Your Core! Stretching/Flexibility Aerobic Exercise Cervical Exercise Strength Training for the Elderly Other Back Pack Safety Pregnancy and Back Pain Preventing Osteoporosis Back Pain Basics ...

  8. Exercise Headaches

    Science.gov (United States)

    ... headaches may require emergency medical attention. Symptoms Primary exercise headaches These headaches: Are usually described as throbbing ... sides of the head in most cases Secondary exercise headaches These headaches may cause: The same symptoms ...

  9. Chronic exercise ameliorates the neuroinflammation in mice carrying NSE/htau23

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Yea-Hyun, E-mail: leemyy@empas.com [Exercise Biochemistry Laboratory, Korea National Sport University, Seoul 138-763 (Korea, Republic of); Lee, Young-Ik, E-mail: lee0ik@hanmail.net [Department of Oriental Sports Medicine, Daegu Hanny University, Daegu 712-715 (Korea, Republic of); Son, Hee-Jeong, E-mail: son1106@paran.com [Exercise Physiology Laboratory, Korea National Sport University, Seoul 138-763 (Korea, Republic of); Lee, Sang-Ho, E-mail: run2025@hanmail.net [Department of Sports for All, Kangnam University, Yongin 446-702 (Korea, Republic of)

    2011-03-18

    Research highlights: {yields} The progress of neurodegeration are directly linked to the neuroinflammatory response. {yields} We investigate whether exercise improves the neuroinflammation using T{sub g}-NSE/htau23 mice. {yields} This provides insights that exercise may beneficial effects on the neuroinflammatory disorders. -- Abstract: The objective of the present study was to investigate whether chronic endurance exercise attenuates the neuroinflammation in the brain of mice with NSE/htau23. In this study, the tau-transgenic (Tg) mouse, Tg-NSE/htau23, which over expresses human Tau23 in its brain, was subjected to chronic exercise for 3 months, from 16 months of age. The brains of Tg mice exhibited increased immunoreactivity and active morphological changes in GFAP (astrocyte marker) and MAC-1 (microglia marker) expression in an age-dependent manner. To identify the effects of chronic exercise on gliosis, the exercised Tg mice groups were treadmill run at a speed of 12 m/min (intermediate exercise group) or 19 m/min (high exercise group) for 1 h/day and 5 days/week during the 3 month period. The neuroinflammatory response characterized by activated astroglia and microglia was significantly repressed in the exercised Tg mice in an exercise intensity-dependent manner. In parallel, chronic exercise in Tg mice reduced the increased expression of TNF-{alpha}, IL-6, IL-1{beta}, COX-2, and iNOS. Consistently with these changes, the levels of phospho-p38 and phospho-ERK were markedly downregulated in the brain of Tg mice after exercise. In addition, nuclear NF-{kappa}B activity was profoundly reduced after chronic exercise in an exercise intensity-dependent manner. These findings suggest that chronic endurance exercise may alleviate neuroinflammation in the Tau pathology of Alzheimer's disease.

  10. Exercise addiction

    DEFF Research Database (Denmark)

    Lichtenstein, Mia Beck; Christiansen, Erik; Elklit, Ask

    2014-01-01

    Exercise addiction is characterized by excessive exercise patterns with potential negative consequences such as overuse injuries. The aim of this study was to compare eating disorder symptoms, quality of life, personality traits and attachments styles in exercisers with and without indications...... of exercise addiction. A case-control study with 121 exercisers was conducted. The exercisers were categorized into an addiction group (n=41) or a control group (n=80) on the basis of their responses to the Exercise Addiction Inventory. The participants completed the Eating Disorder Inventory 2, the Short......-Form 36, the NEO Personality Inventory Revised and the Adult Attachment Scale. The addiction group scored higher on eating disorder symptoms, especially on perfectionism but not as high as eating disorder populations. The characteristic personality traits in the addiction group were high levels...

  11. Blood flow patterns during incremental and steady-state aerobic exercise.

    Science.gov (United States)

    Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N

    2017-05-30

    Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, pexercise induced ESS might be increased in an intensity-dependent way and blood flow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.

  12. The interaction of psychological and physiological homeostatic drives and role of general control principles in the regulation of physiological systems, exercise and the fatigue process - The Integrative Governor theory.

    Science.gov (United States)

    St Clair Gibson, A; Swart, J; Tucker, R

    2018-02-01

    Either central (brain) or peripheral (body physiological system) control mechanisms, or a combination of these, have been championed in the last few decades in the field of Exercise Sciences as how physiological activity and fatigue processes are regulated. In this review, we suggest that the concept of 'central' or 'peripheral' mechanisms are both artificial constructs that have 'straight-jacketed' research in the field, and rather that competition between psychological and physiological homeostatic drives is central to the regulation of both, and that governing principles, rather than distinct physical processes, underpin all physical system and exercise regulation. As part of the Integrative Governor theory we develop in this review, we suggest that both psychological and physiological drives and requirements are underpinned by homeostatic principles, and that regulation of the relative activity of each is by dynamic negative feedback activity, as the fundamental general operational controller. Because of this competitive, dynamic interplay, we propose that the activity in all systems will oscillate, that these oscillations create information, and comparison of this oscillatory information with either prior information, current activity, or activity templates create efferent responses that change the activity in the different systems in a similarly dynamic manner. Changes in a particular system are always the result of perturbations occurring outside the system itself, the behavioural causative 'history' of this external activity will be evident in the pattern of the oscillations, and awareness of change occurs as a result of unexpected rather than planned change in physiological activity or psychological state.

  13. Skeletal Muscle Estrogen Receptor Activation in Response to Eccentric Exercise Up-Regulates Myogenic-Related Gene Expression Independent of Differing Serum Estradiol Levels Occurring during the Human Menstrual Cycle

    Directory of Open Access Journals (Sweden)

    Mackenzie Haines, Sarah K. McKinley-Barnard, Thomas L. Andre, Josh J. Gann, Paul S. Hwang, Darryn S. Willoughby

    2018-03-01

    Full Text Available This study sought to determine if the differences in serum estradiol we have previously observed to occur during the mid-follicular (MF and mid-luteal (ML phases of the female menstrual cycle could be attributed to estrogen-induced receptor activation and subsequent effects on myogenic-related genes which may otherwise impact muscle regeneration in response to eccentric exercise. Twenty-two physically-active females (20.9 ± 1.4 years, 63.5 ± 9.0 kg, 1.65 ± 0.08 m underwent an eccentric exercise bout of the knee extensors during the MF and ML phases of their 28-day menstrual cycle. Prior to (PRE, at 6 (6HRPOST, and 24 (24HRPOST hours post-exercise for each session, participants had muscle biopsies obtained. Skeletal muscle estradiol and estrogen receptor-α (ER-α content and ER-DNA binding were determined with ELISA. Real-time PCR was used to assess ER-α, Myo-D, and cyclin D1 mRNA expression. Data were analyzed utilizing a 2 x 3 repeated measures univariate analyses of variance (ANOVA for each criterion variable (p ≤ .05. Skeletal muscle estradiol levels were not significantly impacted by either menstrual phase (p > 0.05; however, both ER-α mRNA and protein were significantly increased during MF (p < 0.05. ER-DNA binding and Myo-D mRNA expression increased significantly in both menstrual phases in response to exercise but were not different from one another; however, cyclin D1 mRNA expression was significantly greater during MF. This study demonstrates that skeletal muscle ER-α activation in response to eccentric exercise up-regulates myogenic-related gene expression independent of serum estradiol levels occurring during the human menstrual cycle.

  14. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats.

    Science.gov (United States)

    Touati, Sabeur; Montezano, Augusto C I; Meziri, Fayçal; Riva, Catherine; Touyz, Rhian M; Laurant, Pascal

    2015-02-01

    Exercise training reverses atherosclerotic risk factors associated with metabolic syndrome and obesity. The aim of the present study was to determine the molecular anti-inflammatory, anti-oxidative and anti-atherogenic effects in aorta from rats with high-fat diet-induced obesity. Male Sprague-Dawley rats were placed on a high-fat (HFD) or control (CD) diet for 12 weeks. The HFD rats were then divided into four groups: (i) sedentary HFD-fed rats (HFD-S); (ii) exercise trained (motor treadmill 5 days/week, 60 min/day, 12 weeks) HFD-fed rats (HFD-Ex); (iii) modified diet (HFD to CD) sedentary rats (HF/CD-S); and (iv) an exercise-trained modified diet group (HF/CD-Ex). Tissue levels of NADPH oxidase (activity and expression), NADPH oxidase (Nox) 1, Nox2, Nox4, p47(phox) , superoxide dismutase (SOD)-1, angiotensin AT1 and AT2 receptors, phosphorylated mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the aorta. Plasma cytokines (tumour necrosis factor (TNF)-α and interleukin (IL)-6) levels were also measured. Obesity was accompanied by increases in NADPH oxidase activity, p47(phox) translocation, Nox4 and VCAM-1 protein expression, MAPK (ERK1/2, SAPK/JNK) phosphorylation and plasma TNF-α and IL-6 levels. Exercise training and switching from the HFD to CD reversed almost all these molecular changes. In addition, training increased aortic SOD-1 protein expression and decreased ERK1/2 phosphorylation. These findings suggest that protective effects of exercise training on atherosclerotic risk factors induced by obesity are associated with downregulation of NADPH oxidase, ERK1/2 and SAPK/JNK activity and increased SOD-1 expression. © 2014 Wiley Publishing Asia Pty Ltd.

  15. Prevention: Exercise

    Medline Plus

    Full Text Available ... Steroid Injections Lumbar Zygapophysical (Facet) Joint Injections PREVENTION Lifestyle Choices 10 Tips for a Healthy Back Smoking Weight Patient Safety Exercise Strengthening Strengthen ...

  16. Prevention: Exercise

    Medline Plus

    Full Text Available ... Exercises Electrothermal Modalities Ergonomic Changes Hydrotherapy Manual Therapy Physical Therapy Postural Training Traction Watchful Waiting and Education Injection Treatments for Spinal Pain Epidural Steroid Injections ...

  17. Prevention: Exercise

    Medline Plus

    Full Text Available ... be done at home as well. Some specific core strengthening exercises are described below. If any of the following ... balls, you will experience more benefit from this exercise... Sagittal Core Strengthening You can stretch and strengthen the low ...

  18. Prevention: Exercise

    Medline Plus

    Full Text Available ... slow full movements. Repeat 10-15 times, to fatigue... Abdominal Exercise Lay on your back with both knees bent. ... Return leg and extend other leg. Repeat to fatigue, about 10-15 repetitions at a slow ... training is exercise done against something providing resistance. It can be ...

  19. Prevention: Exercise

    Medline Plus

    Full Text Available ... core strengthening, or building the muscles that provide support for your body. Pilates, yoga and martial arts all provide well-rounded core strengthening programs. Simple exercises can be done at home as well. Some specific core strengthening exercises are ...

  20. Exercise-Trained Men and Women: Role of Exercise and Diet on Appetite and Energy Intake

    Directory of Open Access Journals (Sweden)

    Stephanie M. Howe

    2014-11-01

    Full Text Available The regulation of appetite and energy intake is influenced by numerous hormonal and neural signals, including feedback from changes in diet and exercise. Exercise can suppress subjective appetite ratings, subsequent energy intake, and alter appetite-regulating hormones, including ghrelin, peptide YY, and glucagon-like peptide 1(GLP-1 for a period of time post-exercise. Discrepancies in the degree of appetite suppression with exercise may be dependent on subject characteristics (e.g., body fatness, fitness level, age or sex and exercise duration, intensity, type and mode. Following an acute bout of exercise, exercise-trained males experience appetite suppression, while data in exercise-trained women are limited and equivocal. Diet can also impact appetite, with low-energy dense diets eliciting a greater sense of fullness at a lower energy intake. To date, little research has examined the combined interaction of exercise and diet on appetite and energy intake. This review focuses on exercise-trained men and women and examines the impact of exercise on hormonal regulation of appetite, post-exercise energy intake, and subjective and objective measurements of appetite. The impact that low-energy dense diets have on appetite and energy intake are also addressed. Finally, the combined effects of high-intensity exercise and low-energy dense diets are examined. This research is in exercise-trained women who are often concerned with weight and body image issues and consume low-energy dense foods to keep energy intakes low. Unfortunately, these low-energy intakes can have negative health consequences when combined with high-levels of exercise. More research is needed examining the combined effect of diet and exercise on appetite regulation in fit, exercise-trained individuals.

  1. Exercise-Trained Men and Women: Role of Exercise and Diet on Appetite and Energy Intake

    Science.gov (United States)

    Howe, Stephanie M.; Hand, Taryn M.; Manore, Melinda M.

    2014-01-01

    The regulation of appetite and energy intake is influenced by numerous hormonal and neural signals, including feedback from changes in diet and exercise. Exercise can suppress subjective appetite ratings, subsequent energy intake, and alter appetite-regulating hormones, including ghrelin, peptide YY, and glucagon-like peptide 1(GLP-1) for a period of time post-exercise. Discrepancies in the degree of appetite suppression with exercise may be dependent on subject characteristics (e.g., body fatness, fitness level, age or sex) and exercise duration, intensity, type and mode. Following an acute bout of exercise, exercise-trained males experience appetite suppression, while data in exercise-trained women are limited and equivocal. Diet can also impact appetite, with low-energy dense diets eliciting a greater sense of fullness at a lower energy intake. To date, little research has examined the combined interaction of exercise and diet on appetite and energy intake. This review focuses on exercise-trained men and women and examines the impact of exercise on hormonal regulation of appetite, post-exercise energy intake, and subjective and objective measurements of appetite. The impact that low-energy dense diets have on appetite and energy intake are also addressed. Finally, the combined effects of high-intensity exercise and low-energy dense diets are examined. This research is in exercise-trained women who are often concerned with weight and body image issues and consume low-energy dense foods to keep energy intakes low. Unfortunately, these low-energy intakes can have negative health consequences when combined with high-levels of exercise. More research is needed examining the combined effect of diet and exercise on appetite regulation in fit, exercise-trained individuals. PMID:25389897

  2. Long-term treadmill exercise improves spatial memory of male appswe/ps1de9 mice by regulation of BDNF expression and microglia activation

    Directory of Open Access Journals (Sweden)

    JY Xiong

    2015-11-01

    Full Text Available Increasing evidence suggests that physical activity could delay or attenuate the symptoms of Alzheimer’s disease (AD. But the underlying mechanisms are still not fully understood. To investigate the effect of long-term treadmill exercise on the spatial memory of AD mice and the possible role of β-amyloid, brain-derived neurotrophic factor (BDNF and microglia in the effect, male APPswe/PS1dE9 AD mice aged 4 months were subjected to treadmill exercise for 5 months with 6 sessions per week and gradually increased load. A Morris water maze was used to evaluate the spatial memory. Expression levels of β-amyloid, BDNF and Iba-1 (a microglia marker in brain tissue were detected by immunohistochemistry. Sedentary AD mice and wildtype C57BL/6J mice served as controls. The results showed that 5-month treadmill exercise significantly decreased the escape latencies (P 0.05. The study suggested that long-term treadmill exercise could improve the spatial memory of the male APPswe/PS1dE9 AD mice. The increase in BDNF-positive cells and decrease in activated microglia might underpin the beneficial effect.

  3. Chinese-translated Behavioral Regulation in Exercise Questionnaire-2: Evidence from university students in the Mainland and Hong Kong of China

    Directory of Open Access Journals (Sweden)

    Jing Dong Liu

    2015-09-01

    Conclusion: The current study provided further psychometric evidence for the C-BREQ-2, which makes the further application and research of self-determination theory (SDT based motivation in relation to exercise and physical activity in the Mainland of China context possible.

  4. Exercise induced regulation of muscular Na+,K+ pump, FXYD1, and NHE1 mRNA and protein expression: importance of training status, intensity, and muscle type

    DEFF Research Database (Denmark)

    Rasmussen, Martin Krøyer; Juel, Carsten; Nordsborg, Nikolai Baastrup

    2011-01-01

    It is investigated if exercise induced mRNA changes cause similar protein expression changes of Na(+), K(+) pump isoforms (a1, a2, ß1, ß2), FXYD1 and NHE1 in rat skeletal muscle. Expression was evaluated (n=8 per group) in Soleus and EDL after 1 day, 3 days and 3 weeks (5 sessions per week) of ei......) of either sprint (4 x 3 min sprint + 1 min rest) or endurance (20 min) running. Two hours after exercise on day 1, no change in protein expression was apparent in either training group or muscle, whereas sprint exercise increased the mRNA of Soleus a2 (4.9±0.8 fold; P......It is investigated if exercise induced mRNA changes cause similar protein expression changes of Na(+), K(+) pump isoforms (a1, a2, ß1, ß2), FXYD1 and NHE1 in rat skeletal muscle. Expression was evaluated (n=8 per group) in Soleus and EDL after 1 day, 3 days and 3 weeks (5 sessions per week...

  5. Acute exhaustive exercise regulates IL-2, IL-4 and MyoD in skeletal muscle but not adipose tissue in rats

    Directory of Open Access Journals (Sweden)

    Seelaender Marília

    2011-06-01

    Full Text Available Abstract Background The purpose of this study was to evaluate the effect of exhaustive exercise on proteins associated with muscle damage and regeneration, including IL-2, IL-4 and MyoD, in extensor digitorum longus (EDL and soleus muscles and mesenteric (MEAT and retroperitoneal adipose tissues (RPAT. Methods Rats were killed by decapitation immediately (E0 group, n = 6, 2 (E2 group, n = 6 or 6 (E6 group, n = 6 hours after the exhaustion protocol, which consisted of running on a treadmill at approximately 70% of VO2max for fifty minutes and then at an elevated rate that increased at one m/min every minute, until exhaustion. Results The control group (C group, n = 6 was not subjected to exercise. IL-2 protein expression increased at E0 in the soleus and EDL; at E2, this cytokine returned to control levels in both tissues. In the soleus, IL-2 protein expression was lower than that in the control at E6. IL-4 protein levels increased in EDL at E6, but the opposite result was observed in the soleus. MyoD expression increased at E6 in EDL. Conclusion Exhaustive exercise was unable to modify IL-2 and IL-4 levels in MEAT and RPAT. The results show that exhaustive exercise has different effects depending on which muscle is analysed.

  6. Humanized animal exercise model for clinical implication.

    Science.gov (United States)

    Seo, Dae Yun; Lee, Sung Ryul; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2014-09-01

    Exercise and physical activity function as a patho-physiological process that can prevent, manage, and regulate numerous chronic conditions, including metabolic syndrome and age-related sarcopenia. Because of research ethics and technical difficulties in humans, exercise models using animals are requisite for the future development of exercise mimetics to treat such abnormalities. Moreover, the beneficial or adverse outcomes of a new regime or exercise intervention in the treatment of a specific condition should be tested prior to implementation in a clinical setting. In rodents, treadmill running (or swimming) and ladder climbing are widely used as aerobic and anaerobic exercise models, respectively. However, exercise models are not limited to these types. Indeed, there are no golden standard exercise modes or protocols for managing or improving health status since the types (aerobic vs. anaerobic), time (morning vs. evening), and duration (continuous vs. acute bouts) of exercise are the critical determinants for achieving expected beneficial effects. To provide insight into the understanding of exercise and exercise physiology, we have summarized current animal exercise models largely based on aerobic and anaerobic criteria. Additionally, specialized exercise models that have been developed for testing the effect of exercise on specific physiological conditions are presented. Finally, we provide suggestions and/or considerations for developing a new regime for an exercise model.

  7. The brain-in-motion study: effect of a 6-month aerobic exercise intervention on cerebrovascular regulation and cognitive function in older adults

    Science.gov (United States)

    2013-01-01

    Background Aging and physical inactivity are associated with declines in some cognitive domains and cerebrovascular function, as well as an elevated risk of cerebrovascular disease and other morbidities. With the increase in the number of sedentary older Canadians, promoting healthy brain aging is becoming an increasingly important population health issue. Emerging research suggests that higher levels of physical fitness at any age are associated with better cognitive functioning and this may be mediated, at least in part, by improvements in cerebrovascular reserve. We are currently conducting a study to determine: if a structured 6-month aerobic exercise program is associated with improvements or maintenance of both cerebrovascular function and cognitive abilities in older individuals; and, the extent to which any changes seen persist 6 months after the completion of the structured exercise program. Methods/design Two hundred and fifty men and women aged 55–80 years are being enrolled into an 18-month combined quasi-experimental and prospective cohort study. Participants are eligible for enrollment into the study if they are inactive (i.e., not participating in regular physical activity), non-smokers, have a body mass index exercise intervention; and 3) post-intervention. These outcomes include: cardiorespiratory fitness, resting cerebral blood flow, cerebrovascular reserve, and cognitive function. Discussion This is the first study to our knowledge that will examine contemporaneously the effect of an exercise intervention on both cerebrovascular reserve and cognition in an older population. This study will further our understanding of whether cerebrovascular mechanisms might explain how exercise promotes healthy brain aging. In addition our study will address the potential of increasing physical activity to prevent age-associated cognitive decline. PMID:23448504

  8. Rotator Cuff Exercises

    Science.gov (United States)

    ... Home Prevention and Wellness Exercise and Fitness Injury Rehabilitation Rotator Cuff Exercises Rotator Cuff Exercises Share Print Rotator Cuff ... Best Rotator Cuff ExercisesNational Institutes of Health: MedlinePlus, ... and WellnessTags: Exercise Prescription, prevention, Shoulder Problems, ...

  9. Exercise and Posture

    Science.gov (United States)

    ... About Spondylitis › Treatment Information › Exercise & Posture Print Page Exercise Exercise is an integral part of any spondylitis ... For First Responders For Chiropractors Research Article Archive Exercise Guidelines Having an exercise program that accomplishes your ...

  10. Crew Exercise

    Science.gov (United States)

    Rafalik, Kerrie K.

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  11. RELATIONSHIP OF INITIAL SELF-REGULATORY ABILITY WITH CHANGES IN SELF-REGULATION AND ASSOCIATED FRUIT AND VEGETABLE CONSUMPTION IN SEVERELY OBESE WOMEN INITIATING AN EXERCISE AND NUTRITION TREATMENT: MODERATION OF MOOD AND SELF-EFFICACY

    Directory of Open Access Journals (Sweden)

    James J. Annesi

    2011-12-01

    Full Text Available An emphasis on increasing self-regulation is an alternate to nutrition education, which has had poor results in the behavioral treatment of obesity. Although appropriately designed weight-loss treatments may enhance one's self-regulatory ability to control eating, whether improvements are moderated by psychosocial factors such as initial self-regulatory skills use, self-efficacy to control eating, and mood is unknown. Severely obese women (BMI 35-50 kg·m-2 were randomized into 26-week treatments of exercise supported by cognitive-behavioral methods paired with either nutrition education (n = 114 or cognitive-behavioral methods applied to controlled eating (n = 121. Improvement in self-regulation for controlled eating was 36.9% greater (p < 0.01 for the group incorporating cognitive-behavioral methods for controlled eating. Change in self-regulation was significantly associated with self-regulation at baseline (β = -0.33. Both mood and self-efficacy for controlled eating significantly moderated this relationship. Increased self-regulation was associated with both increases in fruit and vegetable consumption and fruit and vegetable intake at treatment end. The present findings increase our understanding of psychosocial variables associated with increased self-regulatory skills usage and improvements in eating that, after replication, may be used to improve the effects of behavioral weight-loss treatments

  12. Human investigations into the exercise pressor reflex

    DEFF Research Database (Denmark)

    Secher, Niels H; Amann, Markus

    2012-01-01

    . The importance of the exercise pressor reflex for tight cardiovascular regulation during dynamic exercise is supported by studies using pharmacological blockade of lower limb muscle afferent nerves. These experiments show attenuation of the increase in BP and cardiac output when exercise is performed......During exercise, neural input from skeletal muscles reflexly maintains or elevates blood pressure (BP) despite a maybe fivefold increase in vascular conductance. This exercise pressor reflex is illustrated by similar heart rate (HR) and BP responses to electrically induced and voluntary exercise...... of an increase in BP during exercise with paralysed legs manifests, although electrical stimulation of muscles enhances lactate release and reduces muscle glycogen. Thus, the exercise pressor reflex enhances sympathetic activity and maintains perfusion pressure by restraining abdominal blood flow, while brain...

  13. Different Intensities of Treadmill Running Exercise do Not Alter Melatonin Levels in Rats

    Directory of Open Access Journals (Sweden)

    Ionara Rodrigues Siqueira

    2011-04-01

    Full Text Available Background: Regular and moderate exercise has been considered an interesting neuroprotective strategy. Our research group demonstrated that a protocol of moderate exercise on a treadmill reduced, while a protocol of high-intensity exercise increased in vitro ischemic cell damage in Wistar rats. The molecular mechanisms by which physical exercise exerts neuroprotective effects remain unclear. Accumulating evidence suggests that exercise may have short- and long-term effects on melatonin secretion in humans. Melatonin, the main product of the pineal gland, has been shown to have neuroprotective effects in models of brain and spinal cord injury and cerebral ischemia. A dual modulation of melatonin secretion by physical activity has also been demonstrated. This study aimed to investigate the effect of different exercise intensities, moderate- and high-intensity exercise, on serum melatonin levels in rats. Methods: Thirty-five adult male Wistar rats were divided into non-exercised (sedentary and exercised (20- or 60-min sessions groups. The exercise protocols consisted of two weeks of daily treadmill training. Blood samples were collected approximately 16 hours after the last training session (8:00-10:00 and melatonin levels were assayed by ELISA. Results: The exercise protocols, two weeks of 20 min/day or 60 min/day of treadmill running, did not affect serum melatonin levels. Conclusion: Our data demonstrated that melatonin levels may not be directly involved in the exercise-induced, intensity-dependent dual effect on in vitro ischemia.

  14. Effects of exercise on sleep.

    Science.gov (United States)

    Youngstedt, Shawn D

    2005-04-01

    Historically, perhaps no daytime behavior has been more closely associated with better sleep than exercise. The assumption that exercise promotes sleep has also been central to various hypotheses about the functions of sleep. Hypotheses that sleep serves an energy conservation function, a body tissue restitution function, or a temperature down-regulation function all have predicted a uniquely potent effect of exercise on sleep because no other stimulus elicits greater depletion of energy stores, tissue breakdown, or elevation of body temperature, respectively. Exercise offers a potentially attractive alternative or adjuvant treatment for insomnia. Sleeping pills have a number of adverse side effects and are not recommended for long-term use, partly on the basis of a significant epidemiologic association of chronic hypnotic use with mortality. Other behavioral/cognitive treatments are more effective for chronic insomnia treatment, but difficult and costly to deliver. By contrast, exercise could be a healthy, safe, inexpensive, and simple means of improving sleep.

  15. Prevention: Exercise

    Medline Plus

    Full Text Available ... Choices 10 Tips for a Healthy Back Smoking Weight Patient Safety Exercise Strengthening Strengthen Your Core! Stretching/ ... something providing resistance. It can be done with weights (hand-held or training machines) or using isometric ...

  16. Prevention: Exercise

    Medline Plus

    Full Text Available ... 15 repetitions at a slow and controlled pace... Resistance Training Resistance training is exercise done against something providing resistance. It can be done with weights (hand-held ...

  17. Prevention: Exercise

    Medline Plus

    Full Text Available ... Exercise Strength Training for the Elderly Other Back Pack Safety Pregnancy and Back Pain Preventing Osteoporosis Back ... in very slightly. Hold a ball directly in front of you. Keep your abdominal muscles tight and ...

  18. Prevention: Exercise

    Medline Plus

    Full Text Available ... you should stop doing it. Transverse Core Strengthening This strengthens the muscles that cross from your ribs ... heavier balls, you will experience more benefit from this exercise... Sagittal Core Strengthening You can stretch and ...

  19. Compulsive Exercise

    Science.gov (United States)

    ... Exercise Safety Are Steroids Worth the Risk? Binge Eating Disorder Sports Supplements Female Athlete Triad Body Image and Self-Esteem What's the Right Weight for My Height? Eating Disorders Strength Training Contact Us Print Resources Send to ...

  20. Prevention: Exercise

    Medline Plus

    Full Text Available ... following suggested exercises increases your back pain after five repetitions, or causes acute pain, you should stop ... 10 seconds working towards 30 seconds. Repeat 1-5 times or to fatigue... Prone Bridge/Plank Prop ...

  1. Prevention: Exercise

    Medline Plus

    Full Text Available ... or causes acute pain, you should stop doing it. Transverse Core Strengthening This strengthens the muscles that ... training is exercise done against something providing resistance. It can be done with weights (hand-held or ...

  2. Prevention: Exercise

    Medline Plus

    Full Text Available ... the Spine Definitions A-Z Spine Specialists Videos 9 for Spine Epidural Steroid Injections Exercise: The Backbone ... for 10 seconds working towards 30 seconds. Repeat 1-5 times or to fatigue... Prone Bridge/Plank ...

  3. Prevention: Exercise

    Medline Plus

    Full Text Available ... 10 Tips for a Healthy Back Smoking Weight Patient Safety Exercise Strengthening Strengthen Your Core! Stretching/Flexibility ... Pain Preventing Osteoporosis Back Pain Basics Book RESOURCES Patient Information Feature Articles Patient Q&A Success Stories ...

  4. Prevention: Exercise

    Medline Plus

    Full Text Available ... slow full movements. Repeat 10-15 times, to fatigue... Abdominal Exercise Lay on your back with both ... Return leg and extend other leg. Repeat to fatigue, about 10-15 repetitions at a slow and ...

  5. Prevention: Exercise

    Medline Plus

    Full Text Available ... Tips for a Healthy Back Smoking Weight Patient Safety Exercise Strengthening Strengthen Your Core! Stretching/Flexibility Aerobic ... Strength Training for the Elderly Other Back Pack Safety Pregnancy and Back Pain Preventing Osteoporosis Back Pain ...

  6. Prevention: Exercise

    Medline Plus

    Full Text Available ... and Education Injection Treatments for Spinal Pain Epidural Steroid Injections Lumbar Zygapophysical (Facet) Joint Injections PREVENTION Lifestyle ... Z Spine Specialists Videos 9 for Spine Epidural Steroid Injections Exercise: The Backbone of Spine Treatment Spondylolisthesis ...

  7. Prevention: Exercise

    Medline Plus

    Full Text Available ... Physical Therapy Postural Training Traction Watchful Waiting and Education Injection Treatments for Spinal Pain Epidural Steroid Injections ... martial arts all provide well-rounded core strengthening programs. Simple exercises can be done at home as ...

  8. Prevention: Exercise

    Medline Plus

    Full Text Available ... legs to touch the wall, keeping hips and knees bent. Use your hips to push your body ... Abdominal Exercise Lay on your back with both knees bent. Draw abdominal wall in. Maintaining abdominal wall ...

  9. Compulsive Exercise

    Science.gov (United States)

    ... October 2013 More on this topic for: Parents Kids Teens Developing Your Child's Self-Esteem Obsessive-Compulsive Disorder Body Dysmorphic Disorder Your Child's Weight Kids and Exercise Encouraging a Healthy Body Image Eating ...

  10. Prevention: Exercise

    Medline Plus

    Full Text Available ... Pain Other Scoliosis Back Pain and Emotional Distress Muscle Spasms Pinched Nerve Discitis Degenerative Conditions Bulge vs ... exercise focus on core strengthening, or building the muscles that provide support for your body. Pilates, yoga ...

  11. Prevention: Exercise

    Medline Plus

    Full Text Available ... provide support for your body. Pilates, yoga and martial arts all provide well-rounded core strengthening programs. Simple ... repetitions at a slow and controlled pace... Resistance Training Resistance training is exercise done against something providing ...

  12. Treadmill Training Increases SIRT-1 and PGC-1α Protein Levels and AMPK Phosphorylation in Quadriceps of Middle-Aged Rats in an Intensity-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Nara R. C. Oliveira

    2014-01-01

    Full Text Available The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF-α, IL-1β, and NF-κB and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1α, and AMPK phosphorylation in quadriceps of rats. Male Wistar rats at 3 (young and 18 months (middle-aged rats of age were divided into nonexercised (NE and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.

  13. Increasing heat storage by wearing extra clothing during upper body exercise up-regulates heat shock protein 70 but does not modify the cytokine response.

    Science.gov (United States)

    Leicht, Christof A; Papanagopoulos, Aris; Haghighat, Sam; Faulkner, Steve H

    2017-09-01

    Plasma heat shock protein 70 (HSP70) concentrations rise during heat stress, which can independently induce cytokine production. Upper body exercise normally results in modest body temperature elevations. The aim of this study was to investigate the impacts of additional clothing on the body temperature, cytokine and HSP70 responses during this exercise modality. Thirteen males performed 45-min constant-load arm cranking at 63% maximum aerobic power (62 ± 7%V̇O2peak) in either a non-permeable whole-body suit (intervention, INT) or shorts and T-shirt (control, CON). Exercise resulted in a significant increase of IL-6 and IL-1ra plasma concentrations (P  0.19). The increase in HSP70 from pre to post was only significant for INT (0.12 ± 0.11ng∙mL-1, P < 0.01 vs. 0.04 ± 0.18 ng∙mL-1, P = 0.77). Immediately following exercise, Tcore was elevated by 0.46 ± 0.29 (INT) and 0.37 ± 0.23ºC (CON), respectively (P < 0.01), with no difference between conditions (P = 0.16). The rise in mean Tskin (2.88 ± 0.50 and 0.30 ± 0.89ºC, respectively) and maximum heat storage (3.24 ± 1.08 and 1.20 ± 1.04 J∙g-1, respectively) was higher during INT (P < 0.01). Despite large differences in heat storage between conditions, the HSP70 elevations during INT, even though significant, were very modest. Possibly, the Tcore elevations were too low to induce a more pronounced HSP70 response to ultimately affect cytokine production.

  14. Auto-regulated exercise selection training regimen produces small increases in lean body mass and maximal strength adaptations in strength-trained individuals.

    Science.gov (United States)

    Rauch, Jacob T; Ugrinowitsch, Carlos; Barakat, Christopher I; Alvarez, Michael R; Brummert, David L; Aube, Daniel W; Barsuhn, Andrew S; Hayes, Daniel; Tricoli, Valmor; De Souza, Eduardo O

    2017-10-07

    The purpose of this investigation was to compare the effects of auto-regulatory exercise selection (AES) vs. fixed exercise selection (FES) on muscular adaptations in strength-trained individuals. Seventeen males (Mean ± SD; age = 24 ± 5.45 years; height = 180.3 ± 7.54cm, lean body mass [LBM] 66.44 ± 6.59kg; squat and bench press 1RM: body mass ratio 1.87, 1.38 respectively) were randomly assigned into either AES or FES. Both groups trained three times a week for 9 weeks. AES self-selected the exercises for each session, whereas FES was required to perform exercises in a fixed order. LBM was assessed via DEXA and maximum strength via 1RM testing, pre and post training intervention. Total volume load was significantly higher for AES than for FES (AES: 573,288kg ± 67,505, FES: 464,600 ± 95,595, p=0.0240). For LBM, there was a significant main time effect (p=0.009). However, confidence interval analysis (95%CIdiff) suggested that only AES significantly increased LBM (AES: 2.47%, ES: 0.35, 95% CIdiff [0.030kg: 3.197kg], FES: 1.37 %, ES: 0.21, 95% CIdiff [-0.500kg: 2.475kg]). There was a significant main time effect for maximum strength (p≤0.0001). However, 95% CIdiff suggested that only AES significantly improved Bench-press 1RM (AES: 6.48%, ES: 0.50, 95% CIdiff [0.312kg: 11.42kg; FES: 5.14%, ES: 0.43 95%CIdiff [-0.311kg: 11.42kg]. On the other hand for back squat 1RM similar responses were observed between groups, (AES: 9.55%, ES: 0.76 95% CIdiff [0.04kg: 28.37kg], FES: 11.54%, ES: 0.80, 95%CIdiff [1.8kg: 28.5kg]. Our findings, suggest AES may provide a small advantage in LBM and upper body maximal strength in strength-trained individuals.

  15. The effect of lifelong exercise dose on cardiovascular function during exercise

    Science.gov (United States)

    Carrick-Ranson, Graeme; Hastings, Jeffrey L.; Bhella, Paul S.; Fujimoto, Naoki; Shibata, Shigeki; Palmer, M. Dean; Boyd, Kara; Livingston, Sheryl; Dijk, Erika

    2014-01-01

    An increased “dose” of endurance exercise training is associated with a greater maximal oxygen uptake (V̇o2max), a larger left ventricular (LV) mass, and improved heart rate and blood pressure control. However, the effect of lifelong exercise dose on metabolic and hemodynamic response during exercise has not been previously examined. We performed a cross-sectional study on 101 (69 men) seniors (60 yr and older) focusing on lifelong exercise frequency as an index of exercise dose. These included 27 who had performed ≤2 exercise sessions/wk (sedentary), 25 who performed 2–3 sessions/wk (casual), 24 who performed 4–5 sessions/wk (committed) and 25 who performed ≥6 sessions/wk plus regular competitions (Masters athletes) over at least the last 25 yr. Oxygen uptake and hemodynamics [cardiac output, stroke volume (SV)] were collected at rest, two levels of steady-state submaximal exercise, and maximal exercise. Doppler ultrasound measures of LV diastolic filling were assessed at rest and during LV loading (saline infusion) to simulate increased LV filling. Body composition, total blood volume, and heart rate recovery after maximal exercise were also examined. V̇o2max increased in a dose-dependent manner (P exercise, cardiac output and SV were largest in committed exercisers and Masters athletes (P exercise, effective arterial elastance, an index of ventricular-arterial coupling, was lower in committed exercisers and Masters athletes (P exercise frequency. These data suggest that performing four or more weekly endurance exercise sessions over a lifetime results in significant gains in V̇o2max, SV, and heart rate regulation during exercise; however, improved SV regulation during exercise is not coupled with favorable effects on LV filling, even when the heart is fully loaded. PMID:24458750

  16. Exercise and Bone Health

    Science.gov (United States)

    ... are weightbearing exercise and strength-training exercise. Weightbearing Exercise © Thinkstock, 2012 Weightbearing describes any activity you do ... that would be best for them. Strength-Training Exercise © Thinkstock, 2012 During strength-training activities, resistance is ...

  17. Exercise-Induced Bronchoconstriction

    Science.gov (United States)

    ... Conditions & Treatments ▸ Conditions Dictionary ▸ Exercise-Induced Bronchoconstriction Share | Exercise-Induced Bronchoconstriction (EIB) « Back to A to Z Listing Exercise-Induced Bronchoconstriction, (EIB), often known as exercise-induced ...

  18. Exercise at Home

    Science.gov (United States)

    ... Home Health Insights Exercise & Weight Exercise at Home Exercise at Home Make an Appointment Ask a Question ... with the movement and contact your provider. Posture Exercises Better posture means better breathing and movement. Axial ...

  19. Exercise gaming

    DEFF Research Database (Denmark)

    Smaerup, M.; Grönvall, E.; Larsen, S. B.

    2017-01-01

    with computer-assisted home training. The interviews evolved around themes, such as the elderly participants' self-efficacy, motivation and acceptance of the technology. Results Age was not an excuse for the modest exercise compliance. The participants were basically self-efficient and accepted the technology...

  20. Eccentric exercise

    DEFF Research Database (Denmark)

    Kjaer, Michael; Heinemeier, Katja Maria

    2014-01-01

    Eccentric exercise can influence tendon mechanical properties and matrix protein synthesis. mRNA for collagen and regulatory factors thereof are upregulated in animal tendons, independent of muscular contraction type, supporting the view that tendon, compared with skeletal muscle, is less sensitive...

  1. Exercise Habit

    Science.gov (United States)

    ... are injured.Make exercise fun.Read, listen to music, or watch TV while you ride a stationary bicycle, for example. Find fun activities, like taking a walk through the zoo. Go dancing. Learn how to play a sport you enjoy.Track your activity. Keep track of ...

  2. Prevention: Exercise

    Medline Plus

    Full Text Available ... use progressively heavier balls, you will experience more benefit from this exercise... Sagittal Core Strengthening You can ... can be done with weights (hand-held or training machines) or using isometric ... program that matches your abilities. Neck Press This is ...

  3. Evacuation exercise

    CERN Multimedia

    AUTHOR|(CDS)2094367

    2017-01-01

    In the event of an emergency, it is important that staff and visitors are evacuated safely and efficiently. Hence CERN organises regularly emergency response and evacuation exercise (also known as an ‘evacuation drill’) in different buildings across the sites.

  4. Prevention: Exercise

    Medline Plus

    Full Text Available ... 10 Tips for a Healthy Back Smoking Weight Patient Safety Exercise Strengthening Strengthen Your Core! Stretching/Flexibility Aerobic ... Strength Training for the Elderly Other Back Pack Safety Pregnancy and Back ... Patient Information Feature Articles Patient Q&A Success Stories ...

  5. Prevention: Exercise

    Medline Plus

    Full Text Available ... building the muscles that provide support for your body. Pilates, yoga and martial arts all provide well-rounded core strengthening programs. Simple exercises can be done at home as well. Some specific core strengthening ... your hips to push your body back to a standing position, then extend your ...

  6. Light Intensity-Dependent Modulation of Chlorophyll b Biosynthesis and Photosynthesis by Overexpression of Chlorophyllide a Oxygenase in Tobacco1[C][OA

    Science.gov (United States)

    Biswal, Ajaya K.; Pattanayak, Gopal K.; Pandey, Shiv S.; Leelavathi, Sadhu; Reddy, Vanga S.; Govindjee; Tripathy, Baishnab C.

    2012-01-01

    Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%–80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation. PMID:22419827

  7. Blood temperature and perfusion to exercising and non-exercising human limbs

    DEFF Research Database (Denmark)

    González-Alonso, José; Calbet, José A. L.; Boushel, Robert

    2015-01-01

    - and metabolism-sensitive mechanisms are important for the control of human limb perfusion, possibly by activating ATP release from the erythrocytes.  Temperature-sensitive mechanisms may contribute to blood-flow regulation, but the influence of temperature on perfusion to exercising and non-exercising human...... limbs is not established. Blood temperature (TB), blood flow and oxygen uptake (V̇O2) in the legs and arms were measured in 16 healthy humans during 90 min of leg and arm exercise and during exhaustive incremental leg or arm exercise. During prolonged exercise, leg blood flow (LBF) was fourfold higher...

  8. Cognitive Benefits of Exercise Intervention.

    Science.gov (United States)

    Archer, T; Ricci, S; Massoni, F; Ricci, L; Rapp-Ricciardi, M

    2016-01-01

    Exercise, as a potent epigenetic regulator, implies the potential to counteract pathophysiological processes and alterations in most cardiovascular/respiratory cells and tissues not withstanding a paucity of understanding the underlying molecular mechanisms and doseresponse relationships. In the present account, the assets accruing from physical exercise and its influence upon executive functioning are examined. Under conditions of neuropsychiatric and neurologic ill-health, age-related deterioration of functional and biomarker indicators during healthy and disordered trajectories, neuroimmune and affective unbalance, and epigenetic pressures, exercise offers a large harvest of augmentations in health and well-being. Both animal models and human studies support the premise of manifest gains from regular exercise within several domains, besides cognitive function and mood, notably as the agency of a noninvasive, readily available therapeutic intervention.

  9. Differential metabolomics for quantitative assessment of oxidative stress with strenuous exercise and nutritional intervention: thiol-specific regulation of cellular metabolism with N-acetyl-L-cysteine pretreatment.

    Science.gov (United States)

    Lee, Richard; West, Daniel; Phillips, Stuart M; Britz-McKibbin, Philip

    2010-04-01

    Despite several decades of active research, the success of large-scale clinical trials involving antioxidants remains equivocal given the complex biological interactions of reactive oxygen/nitrogen species in human health. Herein, we outline a differential metabolomics strategy by capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) to assess the efficacy of nutritional intervention to attenuate oxidative stress induced by strenuous exercise. A healthy volunteer was recruited to perform a submaximal prolonged ergometer cycling trial until volitional exhaustion with frequent blood collection over a 6 h time interval, which included pre-, during, and postexercise periods while at rest. A follow-up study was subsequently performed by the same subject after high-dose oral intake of N-acetyl-L-cysteine (NAC) prior to performing the same exercise protocol under standardized conditions. Time-dependent changes in global metabolism of filtered red blood cell lysates by CE-ESI-MS were measured to reveal a significant attenuation of cellular oxidation associated with high-dose oral NAC intake relative to a control. Untargeted metabolite profiling allowed for the identification and quantification of several putative early- and late-stage biomarkers that reflected oxidative stress inhibition due to nutritional intervention, including oxidized glutathione (GSSG), reduced glutathione (GSH), 3-methylhistidine (3-MeHis), L-carnitine (C0), O-acetyl-L-carnitine (C2), and creatine (Cre). Our work demonstrates the proof-of-principle that NAC pretreatment is effective at dampening acute episodes of oxidative stress by reversible perturbations in global metabolism that can provide deeper insight into the mechanisms of thiol-specific protein inhibition relevant to its successful translation as a prophylaxis in clinical medicine.

  10. Exercise improved lipid metabolism and insulin sensitivity in rats fed a high-fat diet by regulating glucose transporter 4 (GLUT4 and musclin expression

    Directory of Open Access Journals (Sweden)

    J. Yu

    2016-01-01

    Full Text Available This study aimed to evaluate the effects of exercise training on triglyceride deposition and the expression of musclin and glucose transporter 4 (GLUT4 in a rat model of insulin resistance. Thirty male Sprague-Dawley rats (8 weeks old, weight 160±10 g were fed a high-fat diet (40% calories from fat and randomly divided into high-fat control group and swimming intervention group. Rats fed with standard food served as normal control. We found that 8-week swimming intervention significantly decreased body weight (from 516.23±46.27 to 455.43±32.55 g and visceral fat content (from 39.36±2.50 to 33.02±2.24 g but increased insulin sensitivity index of the rats fed with a high-fat diet. Moreover, swimming intervention improved serum levels of TG (from 1.40±0.83 to 0.58±0.26 mmol/L and free fatty acids (from 837.80±164.25 to 556.38±144.77 μEq/L as well as muscle triglycerides deposition (from 0.55±0.06 to 0.45±0.02 mmol/g in rats fed a high-fat diet. Compared with rats fed a standard food, musclin expression was significantly elevated, while GLUT4 expression was decreased in the muscles of rats fed a high-fat diet. In sharp contrast, swimming intervention significantly reduced the expression of musclin and increased the expression of GLUT4 in the muscles of rats fed a high-fat diet. In conclusion, increased musclin expression may be associated with insulin resistance in skeletal muscle, and exercise training improves lipid metabolism and insulin sensitivity probably by upregulating GLUT4 and downregulating musclin.

  11. Effect of acute nitrate ingestion on V̇O2response at different exercise intensity domains.

    Science.gov (United States)

    Ghiarone, Thaysa; Ataide-Silva, Thays; Bertuzzi, Romulo; McConell, Glenn Kevin; Lima-Silva, Adriano Eduardo

    2017-11-01

    While nitrate supplementation influences oxygen uptake (V̇O 2 ) response to exercise, this effect may be intensity dependent. The purpose of this study was to investigate the effect of acute nitrate supplementation on V̇O 2 response during different exercise intensity domains in humans. Eleven men ingested 10 mg·kg -1 body mass (8.76 ± 1.35 mmol) of sodium nitrate or sodium chloride (placebo) 2.5 h before cycling at moderate (90% of gas exchange threshold; GET), heavy (GET + 40% of the difference between GET and peak oxygen uptake (V̇O 2peak ), Δ 40) or severe (GET + 80% of the difference between GET and V̇O 2peak , Δ 80) exercise intensities. Volunteers performed exercise for 10 min (moderate), 15 min (heavy) or until exhaustion (severe). Acute nitrate supplementation had no effect on any V̇O 2 response parameters during moderate and severe exercise intensities. However, the V̇O 2 slow amplitude (nitrate: 0.93 ± 0.36 L·min -1 vs. placebo: 1.13 ± 0.59 L·min -1 , p = 0.04) and V̇O 2 slow gain (nitrate: 5.81 ± 2.37 mL·min -1 ·W -1 vs. placebo: 7.09 ± 3.67 mL·min -1 ·W -1 , p = 0.04) were significantly lower in nitrate than in placebo during the heavy exercise intensity. There was no effect of nitrate on plasma lactate during any exercise intensity (p > 0.05). Time to exhaustion during the severe exercise intensity was also not affected by nitrate (p > 0.05). In conclusion, acute nitrate supplementation reduced the slow component of V̇O 2 only when performing heavy-intensity exercise, which might indicate an intensity-dependent effect of nitrate on V̇O 2 response.

  12. Dietary Supplements for Exercise and Athletic Performance

    Science.gov (United States)

    ... in swimming and team sports, like hockey and football, that require high-intensity, intermittent effort over short ... and athletic performance? The U.S. Food and Drug Administration (FDA) regulates dietary supplements for exercise and athletic ...

  13. Sex difference in fluid balance responses during prolonged exercise

    NARCIS (Netherlands)

    Eijsvogels, T.M.H.; Scholten, R.R.; Duijnhoven, N.T.L. van; Thijssen, D.H.J.; Hopman, M.T.E.

    2013-01-01

    Maintaining a proper fluid balance is important during exercise as athletes are prone to develop dehydration during exercise. Although several factors may regulate the fluid balance, little is known about the role of sex during prolonged moderate-intensity exercise. Therefore, we compared body mass

  14. Time-dependent effects of cardiovascular exercise on memory

    DEFF Research Database (Denmark)

    Roig, Marc; Thomas, Richard; Mang, Cameron S

    2016-01-01

    We present new evidence supporting the hypothesis that the effects of cardiovascular exercise on memory can be regulated in a time-dependent manner. When the exercise stimulus is temporally coupled with specific phases of the memory formation process, a single bout of cardiovascular exercise may ...

  15. Time-Dependent Effects of Cardiovascular Exercise on Memory.

    Science.gov (United States)

    Roig, Marc; Thomas, Richard; Mang, Cameron S; Snow, Nicholas J; Ostadan, Fatemeh; Boyd, Lara A; Lundbye-Jensen, Jesper

    2016-04-01

    We present new evidence supporting the hypothesis that the effects of cardiovascular exercise on memory can be regulated in a time-dependent manner. When the exercise stimulus is coupled temporally with specific phases of the memory formation process, a single bout of cardiovascular exercise may be sufficient to improve memory.

  16. Muscle remodeling and the exercise physiology of fish.

    Science.gov (United States)

    McClelland, Grant B

    2012-07-01

    Fish muscle responds to aerobic exercise training and cold acclimation with a more aerobic muscle phenotype than mammalian muscle but through both conserved and distinct molecular events. Differences from mammals in exercise metabolism and diversity in protein isoforms suggest that the regulation of muscle fuel use is more complex in fish. This review considers fish as powerful models for exercise and muscle physiology.

  17. Compulsive exercise

    DEFF Research Database (Denmark)

    Lichtenstein, Mia Beck; Hinze, Cecilie Juul; Emborg Jannsen, Bolette

    2017-01-01

    in either International Classification of Diseases or Diagnostic and Statistical Manual of Mental Disorders. The aim of this literature review was to critically examine the research on links (comorbidity), risks (negative consequences), and challenges faced (problems in a treatment context). This review...... found that compulsive exercise is associated with eating disorder pathology, perfectionism, neuroticism, narcissism, and obsessive compulsive traits. The most prominent negative consequences were injuries, social impairment, and depression, but more research is needed to uncover the potential...... dysfunction resulting from compulsive exercise. As the condition is not recognized as a psychiatric disorder, studies on treatment interventions are sparse. Problems with compliance have been reported; therefore, motivational interviewing has been proposed as a treatment approach, in combination...

  18. The sooner, the better: exercise outcome proximity and intrinsic motivation.

    Science.gov (United States)

    Evans, M Blair; Cooke, Lisa M; Murray, Robyn A; Wilson, Anne E

    2014-11-01

    Despite evidence that outcomes are highly valued when they are expected sooner rather than further into the future (Ainslie, 1975), limited research effort has been devoted to understanding the role of exercise outcome proximity. The purpose of this study was to examine how temporal proximity to positive outcomes influences exercisers' intrinsic motivation. We expected that focusing people on temporally proximal exercise outcomes would increase intrinsic motivation, especially among low-frequency exercisers. This online experimental study was completed by 135 community exercisers (Mage  = 31.11, SD = 10.29; 62% female) who reported an average of 4.86 exercise bouts per week (SD = 2.12). Participants were randomly assigned to a condition that primed temporally proximal positive exercise outcomes (i.e. experienced during or directly following an exercise bout) or temporally distal outcomes (i.e. experienced after days, months, or years of regular exercise). Participants then reported perceptions of behavioral regulation in exercise. As expected, the proximal exercise outcome condition elicited increased intrinsic regulation among those participants who exercised less frequently (i.e. 1 SD below the mean). This study reveals the importance of considering proximity as an important dimension of exercise outcomes-particularly when promoting intrinsic motivation among relatively infrequent exercisers. © 2014 The International Association of Applied Psychology.

  19. Effects of exercise on tumor physiology and metabolism

    DEFF Research Database (Denmark)

    Pedersen, Line; Christensen, Jesper Frank; Hojman, Pernille

    2015-01-01

    Exercise is a potent regulator of a range of physiological processes in most tissues. Solid epidemiological data show that exercise training can reduce disease risk and mortality for several cancer diagnoses, suggesting that exercise training may directly regulate tumor physiology and metabolism....... Here, we review the body of literature describing exercise intervention studies performed in rodent tumor models and elaborate on potential mechanistic effects of exercise on tumor physiology. Exercise has been shown to reduce tumor incidence, tumor multiplicity, and tumor growth across numerous......, exercise training has the potential to be a beneficial and integrated component of cancer management, but has yet to fully elucidate its potential. Understanding the mechanistic effects of exercise on tumor physiology is warranted. Insight into these mechanistic effects is emerging, but experimental...

  20. Longitudinal associations between exercise identity and exercise motivation: A multilevel growth curve model approach.

    Science.gov (United States)

    Ntoumanis, N; Stenling, A; Thøgersen-Ntoumani, C; Vlachopoulos, S; Lindwall, M; Gucciardi, D F; Tsakonitis, C

    2017-07-25

    Past work linking exercise identity and exercise motivation has been cross-sectional. This is the first study to model the relations between different types of exercise identity and exercise motivation longitudinally. Understanding the dynamic associations between these sets of variables has implications for theory development and applied research. This was a longitudinal survey study. Participants were 180 exercisers (79 men, 101 women) from Greece, who were recruited from fitness centers and were asked to complete questionnaires assessing exercise identity (exercise beliefs and role-identity) and exercise motivation (intrinsic, identified, introjected, external motivation, and amotivation) three times within a 6 month period. Multilevel growth curve modeling examined the role of motivational regulations as within- and between-level predictors of exercise identity, and a model in which exercise identity predicted exercise motivation at the within- and between-person levels. Results showed that within-person changes in intrinsic motivation, introjected, and identified regulations were positively and reciprocally related to within-person changes in exercise beliefs; intrinsic motivation was also a positive predictor of within-person changes in role-identity but not vice versa. Between-person differences in the means of predictor variables were predictive of initial levels and average rates of change in the outcome variables. The findings show support to the proposition that a strong exercise identity (particularly exercise beliefs) can foster motivation for behaviors that reinforce this identity. We also demonstrate that such relations can be reciprocal overtime and can depend on the type of motivation in question as well as between-person differences in absolute levels of these variables. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Metabolismo do glicogênio muscular durante o exercício físico: mecanismos de regulação Muscle glycogen metabolism during exercise: mechanism of regulation

    Directory of Open Access Journals (Sweden)

    Adriano Eduardo Lima-Silva

    2007-08-01

    glycogen content and duration of exercise. Muscle glycogen declines in a semilogarithmic manner in function of time, but glycogen concentration does not reach zero, which suggests that other fatigue mechanisms participate in the interruption of prolonged exercise. In this type of activity, glycogen depletion occurs first in slow twitch fibers followed by fast twitch fibers. The decrease in the rate of muscle glycogen utilization is synchronized with an increased rate of fat uptake, but the physiological mechanism is not well understood. Recent studies suggest that the decline of insulin during exercise could be a limiting factor of glucose transport through the plasma membrane, which increases the uptake of fatty acids. Others studies have also demonstrated that the structure of muscle glycogen itself can regulate the cellular uptake of free fatty acids via protein kinase. Physically, the glycogen molecule has two forms, one with a smaller molecular structure (approximately 4.10(5 Da, proglycogen and another one with a larger molecular structure (approximately 10(7 Da, macroglycogen. Apparently, the proglycogen form is more metabolically active during exercise and the macroglycogen form is more susceptible to increase with supercompensation diets. Higher concentrations of hypoxanthines and ammonia during exercise with muscle glycogen depletion have been reported, but studies that control exercise intensity better are necessary to help shed light on this issue.

  2. Exercise After Pregnancy

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Exercise After Pregnancy Home For Patients Search FAQs Exercise After Pregnancy ... Pregnancy FAQ131, June 2015 PDF Format Exercise After Pregnancy Labor, Delivery, and Postpartum Care What are some ...

  3. Exercise improves fat metabolism in muscle but does not increase 24-h fat oxidation

    OpenAIRE

    Melanson, Edward L; Paul S MacLean; Hill, James O.

    2009-01-01

    Despite decades of research into the effects of exercise on fat metabolism, there is still no clear understanding of how exercise helps to regulate fat mass. Although exercise improves the capacity of muscle to oxidize fat, our studies suggest that moderate duration exercise (≤ 1 hr) has little impact on 24-h fat oxidation.

  4. Exercise Equipment: Neutral Buoyancy

    Science.gov (United States)

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  5. Biology of exercise

    National Research Council Canada - National Science Library

    .... JBE publishes work from sport injuries, exercise physiology, sport rehabilitation, disease and exercise, sport psychology, sport nutrition, sport biomechanics, sport pedagogy, sport philosophy, sport...

  6. Can exercise mimetics substitute for exercise?

    DEFF Research Database (Denmark)

    Richter, Erik; Kiens, Bente; Wojtaszewski, Jørgen

    2008-01-01

    Exercise leads to changes in muscle phenotype with important implications for exercise performance and health. A recent paper in Cell by Narkar et al. (2008) shows that many of the adaptations in muscle phenotype elicited by exercise can be mimicked by genetic manipulation and drug treatment...

  7. Exercise, lifestyle, and your bones

    Science.gov (United States)

    Osteoporosis - exercise; Low bone density - exercise; Osteopenia - exercise ... To build up bone density, the exercise must make your muscles pull on your bones. These are called weight-bearing exercises. Some of them are: Brisk ...

  8. Effect of exercise intensity on exercise and post exercise energy ...

    African Journals Online (AJOL)

    The aim of this study was to determine if exercise and post exercise energy expenditure are affected by the intensity of exercise during a set distance of 4km walking and/or jogging. Subjects for this study were 12 moderately obese females with mean fat percentage of 31.7±6.3% and mean age of 38.2±4.6 years. For the low ...

  9. Exercise and Fatigue

    NARCIS (Netherlands)

    Ament, Wim; Verkerke, Gijsbertus J.

    2009-01-01

    Physical exercise affects the equilibrium of the internal environment. During exercise the contracting muscles generate force or power and heat. So physical exercise is in fact a form of mechanical energy. This generated energy will deplete the energy stocks within the body. During exercise,

  10. Acute Exercise-Associated Skin Surface Temperature Changes after Resistance Training with Different Exercise Intensities

    Directory of Open Access Journals (Sweden)

    Martin Weigert

    2018-01-01

    Full Text Available Background: Studies showed, that changes in muscular metabolic-associated heat production and blood circulation during and after muscular work affect skin temperature (T but the results are inconsistent and the effect of exercise intensity is unclear. Objective: This study investigated the intensity-dependent reaction of T on resistance training. Methods: Ten male students participated. After acclimatization (15 min, the participants completed 3x10 repetitions of unilateral biceps curl with 30, 50 or 70% of their one-repetition-maximum (1RM in a randomized order. Skin temperature of the loaded and unloaded biceps was measured at rest (Trest, immediately following set 1, 2 and 3 (TS1,TS2,TS3 and 30 minutes post exercise (T1 - T30 with an infrared camera. Results: Two-way ANOVA detected a significant effect of the measuring time point on T (Trest to T30 of the loaded arm for 30% (Eta²=0.85, 50% (Eta²=0.88 and 70% 1RM (Eta²=0.85 and of the unloaded arm only for 30% 1RM (Eta²=0.41 (p0.05. The T values at the different measuring time points (Trest - T30 did not differ between the intensities at any time point. The loaded arm showed a mean maximum T rise to Trest of 1.8°C and on average, maximum T was reached approximately 5 minutes after the third set.  Conclusion: This study indicate a rise of T, which could be independent of the exercise intensity. Infrared thermography seems to be applicable to identify the primary used functional muscles in resistance training but this method seems not suitable to differentiate between exercise intensity from 30 to 70% 1RM.

  11. Is there a link between the volume of physical exercise and emotional intelligence (EQ)?

    National Research Council Canada - National Science Library

    Zoltán Gáspár; István Soós; Attila Szabo

    2017-01-01

    ...) completed the Wong and Law Emotional Intelligence Scale. In Study I, significant correlations between exercise volume and use- and regulation-of-emotions prompted us to use a posteriori grouping into high- and low exercise-volume groups...

  12. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to casein protein hydrolysates and growth or maintenance of muscle mass (ID 1498), increase in endurance performance (ID 660, 1497) and faster recovery from muscle fatigue after exercise (ID 660, 1497) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    OpenAIRE

    Tetens, Inge

    2011-01-01

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to provide a scientific opinion on a list of health claims pursuant to Article 13 of Regulation (EC) No 1924/2006. This opinion addresses the scientific substantiation of health claims in relation to casein protein hydrolysates and growth or maintenance of muscle mass, increase in endurance performance and faster recovery from muscle fatigue after exercise. The scientific substa...

  13. GlyEFSA NDA Panel (EFSA Panel on Dietetic Product s, Nutrition and Allergies), 20 13 . Scientific Opinion on the substantiation of a health claim related to glycaemic carbohydrates and recovery of normal muscle function (contraction) after stren uous exercise pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    OpenAIRE

    Tetens, Inge

    2013-01-01

    Following an application from Aptonia, submitted for authorisation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of France, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to glycaemic carbohydrates and recovery of normal muscle function (contraction) after strenuous exercise. The food constituent, glycaemic carbohydrates, whic...

  14. Nrf2 mediates redox adaptations to exercise

    Directory of Open Access Journals (Sweden)

    Aaron J. Done

    2016-12-01

    Full Text Available The primary aim of this review is to summarize the current literature on the effects of acute exercise and regular exercise on nuclear factor erythroid 2-related factor 2 (Nrf2 activity and downstream targets of Nrf2 signaling. Nrf2 (encoded in humans by the NFE2L2 gene is the master regulator of antioxidant defenses, a transcription factor that regulates expression of more than 200 cytoprotective genes. Increasing evidence indicates that Nrf2 signaling plays a key role in how oxidative stress mediates the beneficial effects of exercise. Episodic increases in oxidative stress induced through bouts of acute exercise stimulate Nrf2 activation and when applied repeatedly, as with regular exercise, leads to upregulation of endogenous antioxidant defenses and overall greater ability to counteract the damaging effects of oxidative stress. The evidence of Nrf2 activation in response to exercise across variety of tissues may be an important mechanism of how exercise exerts its well-known systemic effects that are not limited to skeletal muscle and myocardium. Additionally there are emerging data that results from animal studies translate to humans.

  15. Endothelial dysfunction induced by postprandial lipemia: Complete protection afforded by high intensity aerobic interval exercise

    Science.gov (United States)

    Tyldum, Gjertrud Aunet; Schjerve, Inga Ekeberg; Tjønna, Arnt Erik; Kirkeby-Garstad, Idar; Stølen, Tomas O.; Richardson, Russell S.; Wisløff, Ulrik

    2009-01-01

    Objectives To study the effect of exercise and a high fat meal (HFM) on endothelial function. Background Postprandial lipemia and exercise oppose each other in terms of cardiovascular risk, however the mechanism of their interaction is not well understood. Methods Endothelial function was assessed by brachial artery flow mediated dilation (FMD), in eight healthy men before and after a HFM preceded (16–18 hrs) by rest, a single bout of continuous moderate intensity exercise (CME), and high intensity interval exercise (HIIE). Results Before the HFM, initial brachial artery diameters were similar in all trials (0.43±0.04 cm), but after the HFM basal diameter decreased only in the control (0.39±0.03) and CME (0.38±0.04) trials. Prior to the HFM, FMD/shear was improved by a single bout of CME (+20%, plipemia. Although, there were no correlations between vascular function and food-induced markers of cardiovascular risk, antioxidant status was strongly correlated with FMD (r=0.9, p<0.001). Conclusion These findings reveal a clinically relevant protective effect of acute exercise upon the vasculature that is clearly exercise intensity dependent and tightly related to exercise-induced antioxidant capacity. PMID:19130989

  16. Exercising Tactically for Taming Postmeal Glucose Surges

    Directory of Open Access Journals (Sweden)

    Elsamma Chacko

    2016-01-01

    Full Text Available This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20–30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%–80%  VO2max to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time.

  17. Exercise in Pregnancy.

    Science.gov (United States)

    Gregg, Vanessa H; Ferguson, James E

    2017-10-01

    Routine exercise should be recommended to healthy pregnant women after consultation with an obstetric provider. Even pregnant women who have not been exercising regularly can gradually increase their exercise during pregnancy. Regular exercise during pregnancy promotes overall wellness and helps maintain appropriate gestational weight gain and appropriate fetal weight gain. Exercise in pregnancy may also reduce hypertensive disorders of pregnancy and gestational diabetes, and may be associated with shorter first stage of labor and decreased risk for cesarean section. Exercise in pregnancy is safe for pregnant women and their fetuses and can have multiple health benefits. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. PDH regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian

    regulation in human skeletal muscle. 2: Effect of muscle glycogen on PDH regulation in human skeletal muscle at rest and during exercise. 3: The impact of physical inactivity on PDH regulation in human skeletal muscle at rest and during exercise. 4: Elucidating the importance of PGC-1? in PDH regulation...... in mouse skeletal muscle at rest and in response to fasting and during recovery from exercise. The studies indicate that the content of PDH-E1? in human muscle follows the metabolic profile of the muscle, rather than the myosin heavy chain fiber distribution of the muscle. The larger lactate accumulation...... in human skeletal muscle. It may be noted that the increased PDK4 protein associated with elevated plasma FFA occurs already 2 hours after different dietary intake. A week of physical inactivity (bed rest), leading to whole body glucose intolerance, does not affect muscle PDH-E1? content, or the exercise...

  19. Neural Mechanisms of Exercise: Effects on Gut Miccrobiota and Depression.

    Science.gov (United States)

    Yuan, Ti-Fei; Ferreira Rocha, Nuno Barbosa; Paes, Flávia; Arias-Carrión, Oscar; Machado, Sergio; de Sá Filho, Alberto Souza

    2015-01-01

    Microbiota is a set of microorganisms resident in gut ecosystem that reacts to psychological stressful stimuli, and is involved in depressed or anxious status in both animals and human being. Interestingly, a series of studies have shown the effects of physical exercise on gut microbiota dynamics, suggesting that gut microbiota regulation might act as one mediator for the effects of exercise on the brain. Recent studies found that gut microbiota dynamics are also regulated by metabolism changes, such as through physical exercise or diet change. Interestingly, physical exercise modulates different population of gut bacteria in compared to food restriction or rich diet, and alleviates gut syndromes to toxin intake. Gut microbiota could as well contribute to the beneficial effects of exercise on cognition and emotion, either directly through serotonin signaling or indirectly by modulating metabolism and exercise performance.

  20. Effects of an exercise and hypocaloric healthy eating intervention on indices of psychological health status, hypothalamic-pituitary-adrenal axis regulation and immune function after early-stage breast cancer: a randomised controlled trial

    National Research Council Canada - National Science Library

    Saxton, John M; Scott, Emma J; Daley, Amanda J; Woodroofe, M; Mutrie, Nanette; Crank, Helen; Powers, Hilary J; Coleman, Robert E

    2014-01-01

    .... A total of 85 women treated for breast cancer 3 to 18 months previously were randomly allocated to a 6-month exercise and hypocaloric healthy eating program plus usual care or usual care alone (control group...

  1. Understanding Exercise-Associated Hyponatraemia: From Pathophysiology to Treatment

    Directory of Open Access Journals (Sweden)

    Sidonie Hubert

    2014-12-01

    Full Text Available The practice of extreme sports is becoming more and more common. Despite physiological adaptation, people who intensively exercise are exposed to exercise-associated complications, including hyponatraemia. Exercise-associated hyponatraemia seems to be a consequence of alteration of water regulation, particularly by excessive expression of vasopressin, sodium mobilisation, and interleukin-6 production by muscular cells. Preventing overhydration, both before and during effort, and prohibiting hypotonic solutes during treatment are the leading interventions to correct hyponatraemia.

  2. Higher-intensity exercise helps cancer survivors remain motivated.

    Science.gov (United States)

    Martin, Eric; Battaglini, Claudio; Hands, Beth; Naumann, Fiona L

    2016-06-01

    The aim of the present study was to determine if exercise intensity impacts upon the psychosocial responses of breast and prostate cancer survivors to a rehabilitation program. Eighty-seven prostate and 72 breast cancer survivors participated in an 8-week exercise and supportive group psychotherapy intervention (n = 84) or control (n = 75) group. Intervention participants were randomized to low-to-moderate intensity exercise (LIG; n = 44; 60-65 % VO2peak, 50-65 % one repetition maximum (1RM)) or moderate-to-high intensity exercise (HIG; n = 40; 75-80 % VO2peak, 65-80 % 1RM) while controls continued usual care. Before and after the 8 weeks, all participants completed the Functional Assessment of Cancer Therapy-Breast or -Prostate to assess quality of life (QOL) and Behavioural Regulations of Exercise Version 2 for exercise motivation. Intervention participants also completed a follow-up assessment 4 months post-intervention. All three groups improved in QOL from baseline to post-intervention, with no significant differences. From post-intervention to follow-up, the LIG and HIG similarly maintained QOL scores. Between baseline and post-intervention, both intervention arms improved their motivation to exercise compared to the controls (p = 0.004). At the 4-month follow-up, the HIG had maintained their overall exercise motivation (p motivation (identified regulation, p = 0.047; intrinsic regulation, p = 0.007); however, the LIG had regressed. The structured intervention was successful at improving autonomous exercise motivation, regardless of exercise intensity. However, only those participants who had exercised at a higher intensity sustained their improvement. Intervention participation did not improve QOL more than controls. Higher-intensity exercise is more likely to result in more sustainable increases in motivation to exercise among cancer survivors.

  3. Exercise-induced asthma

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000036.htm Exercise-induced asthma To use the sharing features on this page, ... such as running, basketball, or soccer. Use Your Asthma Medicine Before you Exercise Take your short-acting, ...

  4. Why Exercise Is Cool

    Science.gov (United States)

    ... easy to find things that help you stretch: gymnastics yoga dancing karate bending, twisting, and reaching Exercise ... in a better mood. When you exercise, your brain releases chemicals that make you feel happier. It's ...

  5. Exercise and immunity

    Science.gov (United States)

    ... lowers the chance of illness or infections. Images Yoga Benefit of regular exercise Exercise 30 minutes a ... Development. How does physical activity help build healthy bones? Updated May 6, 2014. www.nichd.nih.gov/ ...

  6. Eating and Exercise

    Science.gov (United States)

    ... Dietetics. http://www.eatright.org/resource/fitness/exercise/exercise-nutrition/timing-your-nutrition. Accessed Nov. 1, 2016. Laskowski ER (expert opinion). Mayo Clinic, Rochester, Minn. Nov. 2, 2016. Zeratasky KA (expert opinion). Mayo ... . Mayo Clinic Footer Legal Conditions and ...

  7. Take the (Exercise) Plunge

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_167533.html Take the (Exercise) Plunge Pool workouts offer a range of health ... the pool. Whether you swim or do aquatic exercises, working out in water improves strength, flexibility and ...

  8. Endocannabinoids and exercise

    NARCIS (Netherlands)

    Dietrich, A; McDaniel, WF

    2004-01-01

    Exercise induces changes in mental status, particularly analgesia, sedation, anxiolysis, and a sense of wellbeing. The mechanisms underlying these changes remain unknown. Recent findings show that exercise increases serum concentrations of endocannabinoids, suggesting a possible explanation for a

  9. Diabetes, insulin and exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H

    1986-01-01

    The metabolic and hormonal adaptations to single exercise sessions and to exercise training in normal man and in patients with insulin-dependent as well as non-insulin-dependent diabetes mellitus are reviewed. In insulin-dependent (type I) diabetes good metabolic control is best obtained...... of the patient's reaction to exercise is desirable, which necessitates frequent self-monitoring of plasma glucose. It may often be necessary to diminish the insulin dose before exercise, and/or to ingest additional carbohydrate during or after exercise. In non-insulin-dependent (type II) diabetes, exercise...... by a regular pattern of life which will lead to a fairly constant demand for insulin from day to day. Exercise is by nature a perturbation that makes treatment of diabetes difficult: Muscle contractions per se tend to decrease the plasma glucose concentration whereas the exercise-induced response of the so...

  10. Exercise in pregnancy

    National Research Council Canada - National Science Library

    Lewis, Emma

    2014-01-01

    ...: To provide simple advice on safe exercise practice in pregnancy. Discussion: Exercise in pregnancy has multiple benefits for the mother, including reduced risk of mental health problems, diabetes and hypertension, and faster recovery after delivery...

  11. Exercise for Seniors

    Science.gov (United States)

    Exercise and physical activity are good for just about everyone, including older adults. There are four main ... jogging, dancing, swimming, and biking are examples. Strength exercises make your muscles stronger. Lifting weights or using ...

  12. Clinical Applications for Exercise.

    Science.gov (United States)

    Goldstein, David

    1989-01-01

    Patients with chronic conditions such as coronary artery disease, hypertension, diabetes, and obesity might benefit from prescribed exercise. Although exercise does not reverse pathologic changes, it may play a role in disease management. (JD)

  13. Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function.

    Science.gov (United States)

    Kemi, Ole J; Haram, Per M; Loennechen, Jan P; Osnes, Jan-Bjørn; Skomedal, Tor; Wisløff, Ulrik; Ellingsen, Øyvind

    2005-07-01

    Current guidelines are controversial regarding exercise intensity in cardiovascular prevention and rehabilitation. Although high-intensity training induces larger increases in fitness and maximal oxygen uptake (VO(2max)), moderate intensity is often recommended as equally effective. Controlled preclinical studies and randomized clinical trials are required to determine whether regular exercise at moderate versus high intensity is more beneficial. We therefore assessed relative effectiveness of 10-week HIGH versus moderate (MOD) exercise intensity on integrative and cellular functions. Sprague-Dawley rats performed treadmill running intervals at either 85%-90% (HIGH) or 65%-70% (MOD) of VO2max 1 h per day, 5 days per week. Weekly VO2max-testing adjusted exercise intensity. HIGH and MOD increased VO2max by 71% and 28%, respectively. This was paralleled by intensity-dependent cardiomyocyte hypertrophy, 14% and 5% in HIGH and MOD, respectively. Cardiomyocyte function (fractional shortening) increased by 45% and 23%, contraction rate decreased by 43% and 39%, and relaxation rate decreased by 20% and 10%, in HIGH and MOD, respectively. Ca2+ transient time-courses paralleled contraction/relaxation, whereas Ca2+ sensitivity increased 40% and 30% in HIGH and MOD, respectively. Carotid artery endothelial function improved similarly with both intensities. EC50 for acetylcholine-induced relaxation decreased 4.3-fold in HIGH (p hypertrophy, contractility and vasorelaxation also correlated significantly with VO2max. The present study demonstrates that cardiovascular adaptations to training are intensity-dependent. A close correlation between VO2max, cardiomyocyte dimensions and contractile capacity suggests significantly higher benefit with high intensity, whereas endothelial function appears equivalent at moderate levels. Thus, exercise intensity emerges as an important variable in future preclinical and clinical investigations.

  14. Exercise in Pregnancy

    OpenAIRE

    Hinman, Sally K.; Smith, Kristy B.; Quillen, David M.; Smith, M. Seth

    2015-01-01

    Context: Health professionals who care for pregnant women should discuss potential health benefits and harms of exercise. Although most pregnant women do not meet minimal exercise recommendations, there are a growing number of physically active women who wish to continue training throughout pregnancy. Evidence Acquisition: A search of the Web of Science database of articles and reviews available in English through 2014. The search terms exercise pregnancy, strenuous exercise pregnancy, and vi...

  15. Exercise and cancer

    DEFF Research Database (Denmark)

    Idorn, Manja; thor Straten, Per

    2017-01-01

    Exercise improves functional capacity and patient-reported outcomes across a range of cancer diagnoses. The mechanisms behind this protection have been largely unknown, but exercise-mediated changes in body composition, sex hormone levels, systemic inflammation, and immune cell function have been...... hypothesize that this link between exercise and the immune system can be exploited in cancer therapy in particular in combination with immunotherapy. Thus, we believe that exercise may not just be “healthy” but may in fact be therapeutic....

  16. Morning and evening exercise

    OpenAIRE

    Seo, Dae Yun; Lee, SungRyul; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Park, Byung Joo; Han, Jin

    2013-01-01

    A growing body of evidence suggests that exercise may contribute to preventing pathological changes, treating multiple chronic diseases, and reducing mortality and morbidity ratios. Scientific evidence moreover shows that exercise plays a key role in improving health-related physical fitness components and hormone function. Regular exercise training is one of the few strategies that has been strictly adapted in healthy individuals and in athletes. However, time-dependent exercise has differen...

  17. Sleep, Exercise, and Nutrition.

    Science.gov (United States)

    Harrelson, Orvis A.; And Others

    The first part of this booklet concerns why sleep and exercise are necessary. It includes a discussion of what occurs during sleep and what dreams are. It also deals with the benefits of exercise, fatigue, posture, and the correlation between exercise and personality. The second part concerns nutrition and the importance of food. This part covers…

  18. Kids and Exercise

    Science.gov (United States)

    ... December 2016 More on this topic for: Parents Kids Teens Motivating Kids to Be Active How Can Families Be Healthier? ... Reasons Girls Should Play Sports Be a Fit Kid Why Exercise Is Wise Cold-Weather ... Exercises for Teens Choosing the Right Sport for You Why Exercise ...

  19. Exercise and Your Heart.

    Science.gov (United States)

    National Heart and Lung Inst. (DHHS/NIH), Bethesda, MD.

    This pamphlet presents information on the effects of physical activity on the heart and practical guidelines for starting and staying on an exercise program. The following topics are discussed: (1) the benefits of getting sufficient exercise; (2) possible risks in exercising compared to benefits; (3) when to seek doctor's advice and prevention of…

  20. Growth hormone deficiency and hyperthermia during exercise

    DEFF Research Database (Denmark)

    Juul, A; Hjortskov, N; Jepsen, Leif

    1995-01-01

    .001]. Consequently, the core temperatures of the patients increased significantly after exercise compared with those of the CTs [38.3 C (0.10 C) (MPD) and 38.1 C (0.06 C) (isolated GH deficiency) vs. 37.5 C (0.2 C) (CTs) (P exercise in the patients......-deficiency may be at risk for developing hyperthermia. To pursue this, we performed a controlled study on sweating and body temperature regulation during exercise in the heat in 16 GH-treated GH-deficient patients with normalized insulin-like growth factor-I and insulin-like growth factor/binding protein-3 serum...... levels [11 with multiple pituitary deficiency (MPD) and 5 with isolated GH deficiency] and in 10 healthy subjects as controls (CTs). Each subject exercised on a bicycle ergometer for 60 min at a workload corresponding to 45% of their individual maximal oxygen consumption (VO2max), in a room maintained...

  1. DIABETES, OXIDATIVE STRESS AND PHYSICAL EXERCISE

    Directory of Open Access Journals (Sweden)

    Mustafa Atalay

    2002-03-01

    Full Text Available Oxidative stress, an imbalance between the generation of reactive oxygen species and antioxidant defense capacity of the body, is closely associated with aging and a number of diseases including cancer, cardiovascular diseases, diabetes and diabetic complications. Several mechanisms may cause oxidative insult in diabetes, although their exact contributions are not entirely clear. Accumulating evidence points to many interrelated mechanisms that increase production of reactive oxygen and nitrogen species or decrease antioxidant protection in diabetic patients. In modern medicine, regular physical exercise is an important tool in the prevention and treatment of diseases including diabetes. Although acute exhaustive exercise increases oxidative stress, exercise training has been shown to up regulate antioxidant protection. This review aims to summarize the mechanisms of increased oxidative stress in diabetes and with respect to acute and chronic exercise

  2. Identification and molecular characterization of a Chlamydomonas reinhardtii mutant that shows a light intensity dependent progressive chlorophyll deficiency [v1; ref status: indexed, http://f1000r.es/1b6

    Directory of Open Access Journals (Sweden)

    Phillip B Grovenstein

    2013-06-01

    Full Text Available The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study all aspects of oxygenic photosynthesis. Chlorophyll (Chl and heme are major tetrapyrroles that play an essential role in energy metabolism in photosynthetic organisms. These tetrapyrroles are synthesized via a common branched pathway that involves mainly nuclear encoded enzymes. One of the enzymes in the pathway is Mg chelatase (MgChel which inserts Mg2+ into protoporphyrin IX (PPIX, proto to form Magnesium-protoporphyrin IX (MgPPIX, Mgproto, the first biosynthetic intermediate in the Chl branch. The GUN4 (genomes uncoupled 4 protein is not essential for the MgChel activity but has been shown to significantly stimulate its activity. We have isolated a light sensitive mutant, 6F14, by random DNA insertional mutagenesis. 6F14 cannot tolerate light intensities higher than 90-100 μmol photons m-2 s-1. It shows a light intensity dependent progressive photo-bleaching. 6F14 is incapable of photo-autotrophic growth under light intensity higher than 100 μmol photons m-2 s-1. PCR based analyses show that in 6F14 the insertion of the plasmid outside the GUN4 locus has resulted in a genetic rearrangement of the GUN4 gene and possible deletions in the genomic region flanking the GUN4 gene. Our gun4 mutant has a Chl content very similar to that in the wild type in the dark and is very sensitive to fluctuations in the light intensity in the environment unlike the earlier identified Chlamydomonas gun4 mutant. Complementation with a functional copy of the GUN4 gene restored light tolerance, Chl biosynthesis and photo-autotrophic growth under high light intensities in 6F14. 6F14 is the second gun4 mutant to be identified in C. reinhardtii. Additionally, we show that our two gun4 complements over-express the GUN4 protein and show a higher Chl content per cell compared to that in the wild type strain.

  3. Exercise and children's cognition: The role of exercise characteristics and a place for metacognition

    Directory of Open Access Journals (Sweden)

    Phillip D. Tomporowski

    2015-03-01

    Full Text Available Definitive conclusions concerning the impact of exercise interventions on children's mental functioning are difficult to ascertain because of procedural differences among studies. A narrative review of studies was conducted to evaluate the role of two types of exercise interventions on children's cognition. Acute and chronic exercise interventions were classified as quantitative or qualitative on the basis of manipulations of task complexity and, by inference, mental engagement. Both types of interventions enhance aspects of children's cognition; however, their effects on metacognitive processes are unknown. The role of metacognitive processes and their regulation of children's behavior and academic performance are highlighted.

  4. Early Option Exercise

    DEFF Research Database (Denmark)

    Jensen, Mads Vestergaard; Heje Pedersen, Lasse

    2016-01-01

    A classic result by Merton (1973) is that, except just before expiration or dividend payments, one should never exercise a call option and never convert a convertible bond. We show theoretically that this result is overturned when investors face frictions. Early option exercise can be optimal when...... it reduces short-sale costs, transaction costs, or funding costs. We provide consistent empirical evidence, documenting billions of dollars of early exercise for options and convertible bonds using unique data on actual exercise decisions and frictions. Our model can explain as much as 98% of early exercises...

  5. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise.

    Science.gov (United States)

    Shimomura, Yoshiharu; Murakami, Taro; Nakai, Naoya; Nagasaki, Masaru; Harris, Robert A

    2004-06-01

    Branched-chain amino acids (BCAAs) are essential amino acids that can be oxidized in skeletal muscle. It is known that BCAA oxidation is promoted by exercise. The mechanism responsible for this phenomenon is attributed to activation of the branched-chain alpha-keto acid dehydrogenase (BCKDH) complex, which catalyzes the second-step reaction of the BCAA catabolic pathway and is the rate-limiting enzyme in the pathway. This enzyme complex is regulated by a phosphorylation-dephosphorylation cycle. The BCKDH kinase is responsible for inactivation of the complex by phosphorylation, and the activity of the kinase is inversely correlated with the activity state of the BCKDH complex, which suggests that the kinase is the primary regulator of the complex. We found recently that administration of ligands for peroxisome proliferator-activated receptor-alpha (PPARalpha) in rats caused activation of the hepatic BCKDH complex in association with a decrease in the kinase activity, which suggests that promotion of fatty acid oxidation upregulates the BCAA catabolism. Long-chain fatty acids are ligands for PPARalpha, and the fatty acid oxidation is promoted by several physiological conditions including exercise. These findings suggest that fatty acids may be one of the regulators of BCAA catabolism and that the BCAA requirement is increased by exercise. Furthermore, BCAA supplementation before and after exercise has beneficial effects for decreasing exercise-induced muscle damage and promoting muscle-protein synthesis; this suggests the possibility that BCAAs are a useful supplement in relation to exercise and sports.

  6. Estimation of resistance exercise energy expenditure using triaxial accelerometry.

    Science.gov (United States)

    Stec, Michael J; Rawson, Eric S

    2012-05-01

    Recently, it was demonstrated that a uniaxial accelerometer worn at the hip could estimate resistance exercise energy expenditure. As resistance exercise takes place in more than 1 plane, the use of a triaxial accelerometer may be more effective in estimating resistance exercise energy expenditure. The aims of this study were to estimate the energy cost of resistance exercise using triaxial accelerometry and to determine the optimal location for wearing triaxial accelerometers during resistance exercise. Thirty subjects (15 men and 15 women; age = 21.7 ± 1.0 years) performed a resistance exercise protocol consisting of 2 sets of 8 exercises (10RM loads). During the resistance exercise protocol, subjects wore triaxial accelerometers on the wrist, waist, and ankle; a heart rate monitor; and a portable metabolic system. Net energy expenditure was significantly correlated with vertical (r = 0.67, p resistance exercise energy expenditure. A triaxial accelerometer worn at the waist can be used to estimate resistance exercise energy expenditure but appears to offer no benefit over uniaxial accelerometry. The use of accelerometers in estimating resistance exercise energy expenditure may prove useful for individuals and athletes who participate in resistance training and are focused on maintaining a tightly regulated energy balance.

  7. Aging and exercise performance.

    Science.gov (United States)

    Mahler, D A; Cunningham, L N; Curfman, G D

    1986-05-01

    Diverse physiologic changes occur in the oxygen transport system during the aging process. Physical performance and VO2max decline with age, but the changes may be attenuated by exercise training. Increased ventilation is required during exercise in order to compensate for reduced efficiency of gas exchange. Cardiovascular alterations include prolonged duration of myocardial contraction, a slightly reduced left ventricular ejection fraction during exercise, decreased heart rate during both submaximal and maximal exercise, and attenuation of myocardial response to beta-adrenergic stimulation. Cardiac output during exercise can be maintained in the elderly owing to a greater dependence on ventricular filling. Appropriate exercise training leads to enhanced efficiency of the lungs, heart, and skeletal muscles. These physiologic benefits contribute to an increase in functional capacity and an enhanced sense of well-being. Exercise testing is recommended for individuals who have cardiorespiratory symptoms and for those at risk for the development of coronary artery disease. Reasonable goals for an aerobic training program are continuous activity for 30 minutes at a moderate intensity of exertion at least 3 days per week. The intensity of exercise should be based on a prescribed training heart rate. The exercise prescription should be individualized and should incorporate one or more activities for optimal enjoyment and compliance. Opportunities and facilities for indoor exercise are important during inclement weather. Regular physical exercise is important at any age!

  8. Every exercise bout matters

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Pedersen, Katrine Seide; Hojman, Pernille

    2017-01-01

    Cumulative epidemiological evidence shows that regular exercise lowers the risk of developing breast cancer and decreases the risk of disease recurrence. The causality underlying this relation has not been fully established, and the exercise recommendations for breast cancer patients follow...... the general physical activity guidelines, prescribing 150 min of exercise per week. Thus, elucidations of the causal mechanisms are important to prescribe and implement the most optimal training regimen in breast cancer prevention and treatment. The prevailing hypothesis on the positive association within...... exercise oncology has focused on lowering of the basal systemic levels of cancer risk factors with exercise training. However, another rather overlooked systemic exercise response is the marked acute increases in several potential anti-cancer components during each acute exercise bout. Here, we review...

  9. Morning and evening exercise.

    Science.gov (United States)

    Seo, Dae Yun; Lee, SungRyul; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Park, Byung Joo; Han, Jin

    2013-12-01

    A growing body of evidence suggests that exercise may contribute to preventing pathological changes, treating multiple chronic diseases, and reducing mortality and morbidity ratios. Scientific evidence moreover shows that exercise plays a key role in improving health-related physical fitness components and hormone function. Regular exercise training is one of the few strategies that has been strictly adapted in healthy individuals and in athletes. However, time-dependent exercise has different outcomes, based on the exercise type, duration, and hormone adaptation. In the present review, we therefore briefly describe the type, duration, and adaptation of exercise performed in the morning and evening. In addition, we discuss the clinical considerations and indications for exercise training.

  10. Morning and evening exercise

    Directory of Open Access Journals (Sweden)

    Dae Yun Seo

    2013-12-01

    Full Text Available A growing body of evidence suggests that exercise may contribute to preventing pathological changes, treating multiple chronic diseases, and reducing mortality and morbidity ratios. Scientific evidence moreover shows that exercise plays a key role in improving health-related physical fitness components and hormone function. Regular exercise training is one of the few strategies that has been strictly adapted in healthy individuals and in athletes. However, time-dependent exercise has different outcomes, based on the exercise type, duration, and hormone adaptation. In the present review, we therefore briefly describe the type, duration, and adaptation of exercise performed in the morning and evening. In addition, we discuss the clinical considerations and indications for exercise training.

  11. Neural Mechanisms of Exercise: Effects on Gut Miccrobiota and Depression

    OpenAIRE

    Yuan, Ti-Fei; Rocha, Nuno Barbosa; Paes,Flávia; Arias-Carrión, Oscar; Machado, Sergio; Sá Filho, Alberto Souza de

    2015-01-01

    Microbiota is a set of microorganisms resident in gut ecosystem that reacts to psychological stressful stimuli, and is involved in depressed or anxious status in both animals and human being. Interestingly, a series of studies have shown the effects of physical exercise on gut microbiota dynamics, suggesting that gut microbiota regulation might act as one mediator for the effects of exercise on the brain. Recent studies found that gut microbiota dynamics are also regulated by metabolism chang...

  12. Orthorexic eating behaviors related to exercise addiction and internal motivations in a sample of university students.

    Science.gov (United States)

    Oberle, Crystal D; Watkins, Ryan S; Burkot, Andrew J

    2017-12-20

    This research explored the exercise tendencies and motivations of individuals varying in orthorexia symptomatology. Participants were 411 university students, who completed the Eating Habits Questionnaire alongside measures of exercise activity and addiction in Study 1 (a modified version of the Leisure-Time Exercise Questionnaire, the Exercise Addiction Inventory, and the Compulsive Exercise Test) and various exercise motivations in Study 2 (the Behavioural Regulations in Exercise Questionnaire and the Exercise Motivations Inventory-2). Orthorexia symptomatology was positively correlated with aerobic and strength-training exercise levels; all measures of exercise addiction; all measures of internal exercise motivation; and nearly all measures of exercise motivation for the purposes of psychological, social, health, and body improvement. Symptomatology was not significantly related to either measure that specifically assessed external motivation to exercise. Individuals high in orthorexia symptomatology are internally driven to exercise for the purposes of improving their physical and mental health, but these strong motivations also lead to exercise addiction characterized by a compulsive need to follow a rigid schedule of intensive exercise even in the face of injury, illness, or other problems. Level V, descriptive cross-sectional study.

  13. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the substantiation of a health claim related to beta-alanine and increase in physical performance during short-duration, high-intensity exercise pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    2014-01-01

    Following an application from Natural Alternative International, Inc. (NAI), submitted pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of the United Kingdom, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion...... on the scientific substantiation of a health claim related to beta-alanine and increase in physical performance during short-duration, high-intensity exercise. The food constituent that is the subject of the claim is beta-alanine, which is sufficiently characterised. The Panel considers that an increase in physical...

  14. Fetal and maternal metabolic responses to exercise during pregnancy.

    Science.gov (United States)

    Mottola, Michelle F; Artal, Raul

    2016-03-01

    Pregnancy is characterized by physiological, endocrine and metabolic adaptations creating a pseudo-diabetogenic state of progressive insulin resistance. These adaptations occur to sustain continuous fetal requirements for nutrients and oxygen. Insulin resistance develops at the level of the skeletal muscle, and maternal exercise, especially activity involving large muscle groups improve glucose tolerance and insulin sensitivity. We discuss the maternal hormonal and metabolic changes associated with a normal pregnancy, the metabolic dysregulation that may occur leading to gestational diabetes mellitus (GDM), and the consequences to mother and fetus. We will then examine the acute and chronic (training) responses to exercise in the non-pregnant state and relate these alterations to maternal exercise in a low-risk pregnancy, how exercise can be used to regulate glucose tolerance in women at risk for or diagnosed with GDM. Lastly, we present key exercise guidelines to help maintain maternal glucose regulation and suggest future research directions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Both central command and exercise pressor reflex activate cardiac sympathetic nerve activity in decerebrate cats.

    Science.gov (United States)

    Tsuchimochi, Hirotsugu; Hayes, Shawn G; McCord, Jennifer L; Kaufman, Marc P

    2009-04-01

    Both static and dynamic exercise are known to increase cardiac pump function as well as arterial blood pressure. Feedforward control by central command and feedback control by the exercise pressor reflex are thought to be the neural mechanisms causing these effects during exercise. It remains unknown as to how each mechanism activates cardiac sympathetic nerve activity (CSNA) during exercise, especially at its onset. Thus we examined the response of CSNA to stimulation of the mesencephalic locomotor region (MLR, i.e., central command) and to static muscle contraction of the triceps surae muscles or stretch of the calcaneal tendon in decerebrate cats. We found that MLR stimulation immediately increased CSNA, which was followed by a gradual increase in heart rate, mean arterial pressure, and ventral root activity in a stimulus intensity-dependent manner. The latency of the increase in CSNA from the onset of MLR stimulation ranged from 67 to 387 ms. Both static contraction and tendon stretch also rapidly increased CSNA. Their latency from the development of tension in response to ventral root stimulation ranged from 78 to 670 ms. These findings suggest that both central command and the muscle mechanoreflex play a role in controlling cardiac sympathetic outflow at the onset of exercise.

  16. Exercise and Renal Function

    OpenAIRE

    Masato, SUZUKI; Japan Society of Exercise and Sports Physiology; Department of Laboratory Medicine, The Jikeidai University School of Medicine

    1996-01-01

    Research on renal function during exercise is very rare in the sports medicine area because it has no direct bearing on the performance of exercise. However, the kidneys play an important role in maintaining a constant internal state, which, when disturbed by exercise in a hot environment, is normalized by means of enhanced conservation of water and electrolytes by the kidneys. It is the purpose of this article to review the previous literature, to relate some of our findings on renal functio...

  17. A single bout of exercise improves motor memory.

    Directory of Open Access Journals (Sweden)

    Marc Roig

    Full Text Available Regular physical activity has a positive impact on cognition and brain function. Here we investigated if a single bout of exercise can improve motor memory and motor skill learning. We also explored if the timing of the exercise bout in relation to the timing of practice has any impact on the acquisition and retention of a motor skill. Forty-eight young subjects were randomly allocated into three groups, which practiced a visuomotor accuracy-tracking task either before or after a bout of intense cycling or after rest. Motor skill acquisition was assessed during practice and retention was measured 1 hour, 24 hours and 7 days after practice. Differences among groups in the rate of motor skill acquisition were not significant. In contrast, both exercise groups showed a significantly better retention of the motor skill 24 hours and 7 days after practice. Furthermore, compared to the subjects that exercised before practice, the subjects that exercised after practice showed a better retention of the motor skill 7 days after practice. These findings indicate that one bout of intense exercise performed immediately before or after practicing a motor task is sufficient to improve the long-term retention of a motor skill. The positive effects of acute exercise on motor memory are maximized when exercise is performed immediately after practice, during the early stages of memory consolidation. Thus, the timing of exercise in relation to practice is possibly an important factor regulating the effects of acute exercise on long-term motor memory.

  18. Muscle reflex in heart failure: the role of exercise training.

    Science.gov (United States)

    Wang, Han-Jun; Zucker, Irving H; Wang, Wei

    2012-01-01

    Exercise evokes sympathetic activation and increases blood pressure and heart rate (HR). Two neural mechanisms that cause the exercise-induced increase in sympathetic discharge are central command and the exercise pressor reflex (EPR). The former suggests that a volitional signal emanating from central motor areas leads to increased sympathetic activation during exercise. The latter is a reflex originating in skeletal muscle which contributes significantly to the regulation of the cardiovascular and respiratory systems during exercise. The afferent arm of this reflex is composed of metabolically sensitive (predominantly group IV, C-fibers) and mechanically sensitive (predominately group III, A-delta fibers) afferent fibers. Activation of these receptors and their associated afferent fibers reflexively adjusts sympathetic and parasympathetic nerve activity during exercise. In heart failure, the sympathetic activation during exercise is exaggerated, which potentially increases cardiovascular risk and contributes to exercise intolerance during physical activity in chronic heart failure (CHF) patients. A therapeutic strategy for preventing or slowing the progression of the exaggerated EPR may be of benefit in CHF patients. Long-term exercise training (ExT), as a non-pharmacological treatment for CHF increases exercise capacity, reduces sympatho-excitation and improves cardiovascular function in CHF animals and patients. In this review, we will discuss the effects of ExT and the mechanisms that contribute to the exaggerated EPR in the CHF state.

  19. A Single Bout of Exercise Improves Motor Memory

    Science.gov (United States)

    Roig, Marc; Skriver, Kasper; Lundbye-Jensen, Jesper; Kiens, Bente; Nielsen, Jens Bo

    2012-01-01

    Regular physical activity has a positive impact on cognition and brain function. Here we investigated if a single bout of exercise can improve motor memory and motor skill learning. We also explored if the timing of the exercise bout in relation to the timing of practice has any impact on the acquisition and retention of a motor skill. Forty-eight young subjects were randomly allocated into three groups, which practiced a visuomotor accuracy-tracking task either before or after a bout of intense cycling or after rest. Motor skill acquisition was assessed during practice and retention was measured 1 hour, 24 hours and 7 days after practice. Differences among groups in the rate of motor skill acquisition were not significant. In contrast, both exercise groups showed a significantly better retention of the motor skill 24 hours and 7 days after practice. Furthermore, compared to the subjects that exercised before practice, the subjects that exercised after practice showed a better retention of the motor skill 7 days after practice. These findings indicate that one bout of intense exercise performed immediately before or after practicing a motor task is sufficient to improve the long-term retention of a motor skill. The positive effects of acute exercise on motor memory are maximized when exercise is performed immediately after practice, during the early stages of memory consolidation. Thus, the timing of exercise in relation to practice is possibly an important factor regulating the effects of acute exercise on long-term motor memory. PMID:22973462

  20. Cardiovascular regulation by skeletal muscle reflexes in health and disease

    National Research Council Canada - National Science Library

    Murphy, Megan N; Mizuno, Masaki; Mitchell, Jere H; Smith, Scott A

    2011-01-01

    .... These neurally mediated cardiovascular adjustments to physical activity are regulated, in part, by a peripheral reflex originating in contracting skeletal muscle termed the exercise pressor reflex...

  1. Candidate Exercise Technologies and Prescriptions

    Science.gov (United States)

    Loerch, Linda H.

    2010-01-01

    This slide presentation reviews potential exercise technologies to counter the effects of space flight. It includes a overview of the exercise countermeasures project, a review of some of the candidate exercise technologies being considered and a few of the analog exercise hardware devices, and a review of new studies that are designed to optimize the current and future exercise protocols.

  2. Exercise and Older Adults.

    Science.gov (United States)

    Mora, Jorge Camilo; Valencia, Willy M

    2018-02-01

    Regular exercise is essential for healthy aging and offers many health benefits, including reduced risk of all-cause mortality, chronic disease, and premature death. Because physical inactivity is prevalent, greater focus is needed on integrating exercise into care plans and counseling, and developing partnerships that support exercise opportunities. Older adults should be as physically active as their abilities and conditions allow. For substantial health benefits, older adults need to do aerobic, muscle-strengthening, and stretching exercises weekly, and balance activities as needed. Appropriate planning must take account of factors such as prescribed medications, nutrition, injuries, hip and knee arthroplasties, and chronic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Exercise and cardiovascular diseases.

    Science.gov (United States)

    Villella, Massimo; Villella, Alessandro

    2014-01-01

    Exercise is a physiologic stressor that has multiple beneficial effects on cardiovascular system. Currently exercise training is a class I intervention as part of a multifactorial long-term process that includes: clinical assistance, assessment of global cardiovascular risk, identification of specific objective for each cardiovascular risk factor, formulation of an individual treatment plan with multiple intervention aimed at reduction of the risk, educational programs, planning of long term follow-up. This paper reviews the evidences of benefit of exercise in the most common heart diseases and describes the role of exercise training in the cardiac rehabilitation programs. © 2014 S. Karger AG, Basel.

  4. Concurrent exercise training: do opposites distract?

    Science.gov (United States)

    Coffey, Vernon G; Hawley, John A

    2017-05-01

    Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when 'phenotype specificity' occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance-based exercise) and increased muscle mass (through resistance-based exercise), typically termed 'concurrent training'. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this 'interference' effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  5. Combined speed endurance and endurance exercise amplify the exercise-induced PGC-1α and PDK4 mRNA response in trained human muscle

    DEFF Research Database (Denmark)

    Skovgaard, Casper; Brandt, Nina; Pilegaard, Henriette

    2016-01-01

    The aim of this study was to investigate the mRNA response related to mitochondrial biogenesis, metabolism, angiogenesis, and myogenesis in trained human skeletal muscle to speed endurance exercise (S), endurance exercise (E), and speed endurance followed by endurance exercise (S + E). Seventeen...... trained male subjects (maximum oxygen uptake (VO2-max): 57.2 ± 3.7 (mean ± SD) mL·min(-1)·kg(-1)) performed S (6 × 30 sec all-out), E (60 min ~60% VO2-max), and S + E on a cycle ergometer on separate occasions. Muscle biopsies were obtained at rest and 1, 2, and 3 h after the speed endurance exercise (S...... that in trained subjects, speed endurance exercise provides a stimulus for muscle mitochondrial biogenesis, substrate regulation, and angiogenesis that is not evident with endurance exercise. These responses are reinforced when speed endurance exercise is followed by endurance exercise....

  6. Autonomic responses to exercise: deconditioning/inactivity.

    Science.gov (United States)

    Hughson, Richard L; Shoemaker, J Kevin

    2015-03-01

    Experimental models of physical inactivity associated with a sedentary lifestyle or extreme forms of inactivity with bed rest or spaceflight affect the balance between parasympathetic and sympathetic nervous system regulation of the cardiovascular system. Deconditioning effects are rapidly seen in the regulation of heart rate to compensate for physical modifications in blood volume and cardiac function. Reflex regulation of cardiovascular control during exercise by metaboreflex and baroreflex is altered by bed rest and spaceflight. These models of extreme inactivity provide a reference to guide physical activity requirements for optimal cardiovascular health. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Measurement of osteogenic exercise – How to interpret accelerometric data?

    Directory of Open Access Journals (Sweden)

    Timo eJämsä

    2011-10-01

    Full Text Available Bone tissue adapts to its mechanical loading environment. We review here the accelerometric measurements with special emphasis on osteogenic exercise. The accelerometric method offers a unique opportunity to assess the intensity of mechanical loadings. We present methods to interpret accelerometric data, reducing it to the daily distributions of magnitude, slope, area and energy of signal. These features represent the intensity level of physical activities, and were associated with the changes in bone density, bone geometry, physical performance and metabolism in healthy premenopausal women. Bone adaptations presented a dose- and intensity dependent relationship with impact loading. Changes in hip were threshold dependent, indicating the importance of high impacts exceeding acceleration of 4 g or slope of 100 g/s as an osteogenic stimulus. The number of impacts needed was 60 per day. We also present the Daily Impact Score to describe the osteogenic potential of daily mechanical loading with a single score. The methodology presented here can be used to study musculoskeletal adaptation to exercise in other target groups as well.

  8. Pelvic floor muscle training exercises

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003975.htm Pelvic floor muscle training exercises To use the sharing features on this page, please enable JavaScript. Pelvic floor muscle training exercises are a series of exercises ...

  9. Effect of regular exercise on senile dementia patients.

    Science.gov (United States)

    Kwak, Y-S; Um, S-Y; Son, T-G; Kim, D-J

    2008-06-01

    Dementia population worldwide is considerable in elderly people. Exercise regulates the brain function, but the mechanism by which it does so is unknown. The effect of regular exercise on cognitive function and exercise capacity in senile dementia patients was investigated. Thirty female patients with senile dementia who participated in the study were divided into two groups: the exercise group (EG, n = 15) and the control group (CG, n = 15). The exercise group completed a regular exercise program, and their cognitive function, activities of daily living and exercise capacity levels were evaluated at baseline, 6 months and after 12 months. Subjects exercised 30 - 60 minutes per day, 2 - 3 times per week for 12 months. Mini-mental state examination (MMSE) (pre: 14.53 +/- 5.34, post: 17.47 +/- 6.90) and ADL (pre: 14.40 +/- 5.32, post: 17.53 +/- 5.46) scores were significantly enhanced in the exercise group with senile dementia, compared to those in the control group. Exercise capacities such as cardiopulmonary function (pre: 128.47 +/- 55.43, post: 184.40 +/- 41.16), muscle strength (pre: 10.07 +/- 3.61, post: 13.7 +/- 3.90), muscular endurance (pre: 8.13 +/- 4.45, post: 12.13 +/- 5.14), flexibility (- 1.53 +/- .30, post: 2.20 +/- .70, balance (pre: 1.73 +/- .28, post: 1.20 +/- .77), and agility (pre: 21.80 +/- 3.24, post: 10.87 +/- 2.99) also increased in the exercise group. Our findings showed that regular exercise can enhance cognitive and functional activity scores in dementia patients, suggesting that senile dementia may improve by participating in a regular exercise program.

  10. An Exercise-Only Intervention in Obese Fathers Restores Glucose and Insulin Regulation in Conjunction with the Rescue of Pancreatic Islet Cell Morphology and MicroRNA Expression in Male Offspring

    Science.gov (United States)

    McPherson, Nicole O.; Lane, Michelle; Sandeman, Lauren; Owens, Julie A.; Fullston, Tod

    2017-01-01

    Paternal obesity programs metabolic syndrome in offspring. Low-impact exercise in obese males improves the metabolic health of female offspring, however whether this occurred in male offspring remained unknown. C57BL/6NHsd (Harlan) mice were fed a control diet (CD; 6% fat, n = 7) or a high-fat diet (HFD; 21% fat, n = 16) for 18 weeks. After 9 weeks, HFD-fed mice either remained sedentary (HH, n = 8) or undertook low–moderate exercise (HE, n = 8) for another 9 weeks. Male offspring were assessed for glucose/insulin tolerance, body composition, plasma lipids, pancreatic islet cell morphology and microRNA expression. Founder HH induced glucose intolerance, insulin insensitivity, and hyperlipidaemia in male offspring (p obese fathers prior to conception, without dietary change, may be a viable intervention strategy to reduce the ill-effects of obesity-induced paternal programming in male offspring. PMID:28208792

  11. Rethinking exercise identity

    DEFF Research Database (Denmark)

    Adamsen, Lis; Andersen, Christina; Lillelund, Christian

    2017-01-01

    to allocation to PA interventions or waitlist control group. Results: Prediagnosis exercise had been excluded from patients’ daily lives due to perceptions of exercise as boring, lack of discipline and stressful work conditions for both genders. Recommendations from oncologists and nurses inspired the patients...

  12. Therapeutic Exercise and Hypertension

    African Journals Online (AJOL)

    Nekky Umera

    Endorphin and serotonin secretion may play a role as well in exercise induced reduction in BP. Long time changes in blood vessel diameter induced by exercise training may also play a role(Brooks, Fahey ... rashes, loss of taste and abdominal pain (Araoye, 2006; Hanson ,. Lindolin & Niskanen,1999; Shapiro & Goldstein, ...

  13. Exercises in Computational Chemistry

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16).......A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16)....

  14. Design synthesis exercise 2012

    NARCIS (Netherlands)

    Melkert, J.A.

    2013-01-01

    The design synthesis exercise forms the closing piece of the third year of the Bachelor degree curriculum of the Faculty of Aerospace Engineering at TU Delft. In this exercise the students learn to apply their acquired knowledge from all aerospace disciplines in one complete design. The object of

  15. Exercise Against Depression.

    Science.gov (United States)

    Artal, Michal; Sherman, Carl

    1998-01-01

    Physical activity is useful for preventing and easing depression symptoms. When prescribing exercise as an adjunct to medication and psychotherapy, physicians must consider each patient's individual circumstances. Hopelessness and fatigue can make physical exercise difficult. A feasible, flexible, and pleasurable program has the best chance for…

  16. Early Option Exercise

    DEFF Research Database (Denmark)

    Heje Pedersen, Lasse; Jensen, Mads Vestergaard

    A classic result by Merton (1973) is that, except just before expiration or dividend payments, one should never exercise a call option and never convert a convertible bond. We show theoretically that this result is overturned when investors face frictions. Early option exercise can be optimal whe...

  17. Exercise-Induced Asthma

    Science.gov (United States)

    ... January 2014 More on this topic for: Parents Kids Teens Can Kids and Teens With Asthma Play Sports? Asthma Center When to Go to the ER if Your Child Has Asthma Kids and Exercise Asthma Triggers Word! Exercise-Induced Asthma ...

  18. Physical exercise and health.

    Science.gov (United States)

    Cordero, Alberto; Masiá, M Dolores; Galve, Enrique

    2014-09-01

    Regular physical exercise is an established recommendation for preventing and treating the main modifiable cardiovascular risk factors, such as diabetes mellitus, hypertension, and dyslipidemia. Performing physical activity of moderate intensity for a minimum of 30 min 5 days a week or of high intensity for a minimum of 20 min 3 days a week improves functional capacity and is associated with reductions in the incidence of cardiovascular disease and mortality. Physical exercise induces physiological cardiovascular adaptations that improve physical performance, and only in extreme cases can these adaptations lead to an increased risk of physical exercise-associated complications. The incidence of sudden death or serious complications during physical exercise is very low and is concentrated in people with heart diseases or with pathological cardiac adaptation to exercise. Most of these cases can be detected by cardiology units or well-trained professionals. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  19. Exercise and functional foods

    Directory of Open Access Journals (Sweden)

    Naito Yuji

    2006-06-01

    Full Text Available Abstract Appropriate nutrition is an essential prerequisite for effective improvement of athletic performance, conditioning, recovery from fatigue after exercise, and avoidance of injury. Nutritional supplements containing carbohydrates, proteins, vitamins, and minerals have been widely used in various sporting fields to provide a boost to the recommended daily allowance. In addition, several natural food components have been found to show physiological effects, and some of them are considered to be useful for promoting exercise performance or for prevention of injury. However, these foods should only be used when there is clear scientific evidence and with understanding of the physiological changes caused by exercise. This article describes various "functional foods" that have been reported to be effective for improving exercise performance or health promotion, along with the relevant physiological changes that occur during exercise.

  20. Using implicit attitudes of exercise importance to predict explicit exercise dependence symptoms and exercise behaviors

    Science.gov (United States)

    Forrest, Lauren N.; Smith, April R.; Fussner, Lauren M.; Dodd, Dorian R.; Clerkin, Elise M.

    2015-01-01

    Objectives ”Fast” (i.e., implicit) processing is relatively automatic; “slow” (i.e., explicit) processing is relatively controlled and can override automatic processing. These different processing types often produce different responses that uniquely predict behaviors. In the present study, we tested if explicit, self-reported symptoms of exercise dependence and an implicit association of exercise as important predicted exercise behaviors and change in problematic exercise attitudes. Design We assessed implicit attitudes of exercise importance and self-reported symptoms of exercise dependence at Time 1. Participants reported daily exercise behaviors for approximately one month, and then completed a Time 2 assessment of self-reported exercise dependence symptoms. Method Undergraduate males and females (Time 1, N = 93; Time 2, N = 74) tracked daily exercise behaviors for one month and completed an Implicit Association Test assessing implicit exercise importance and subscales of the Exercise Dependence Questionnaire (EDQ) assessing exercise dependence symptoms. Results Implicit attitudes of exercise importance and Time 1 EDQ scores predicted Time 2 EDQ scores. Further, implicit exercise importance and Time 1 EDQ scores predicted daily exercise intensity while Time 1 EDQ scores predicted the amount of days exercised. Conclusion Implicit and explicit processing appear to uniquely predict exercise behaviors and attitudes. Given that different implicit and explicit processes may drive certain exercise factors (e.g., intensity and frequency, respectively), these behaviors may contribute to different aspects of exercise dependence. PMID:26195916

  1. Exercise autonomous motivation predicts 3-yr weight loss in women.

    Science.gov (United States)

    Silva, Marlene N; Markland, David; Carraça, Eliana V; Vieira, Paulo N; Coutinho, Sílvia R; Minderico, Cláudia S; Matos, Margarida G; Sardinha, Luís B; Teixeira, Pedro J

    2011-04-01

    This study evaluated exercise-related predictors of successful long-term weight control in women by analyzing the extent to which sustained exercise participation and self-determination theory (SDT)-based exercise motivation variables mediated the impact of a behavioral weight control intervention on 3-yr weight change. Longitudinal randomized controlled trial consisting of a 1-yr SDT-based intervention and a 2-yr follow-up with 221 female participants (means ± SD: age = 37.6 ± 7 yr, body mass index = 31.6 ± 4.1 kg·m(-2)). The tested model incorporated experimentally manipulated perceived need support, motivational regulations, and 2-yr exercise adherence as mediators of the intervention's impact on 3-yr weight change. Paths were tested using partial least squares analysis. Where there were significant intervening paths, tests of mediation were conducted. Treatment had significant effects on 1- and 2-yr autonomous regulations, 2-yr physical activity, and 3-yr weight change, fully mediated by the tested paths (effect ratio = 0.10-0.61). Moderate and vigorous exercise at 2 yr had a significant effect (P autonomous regulation effects on follow-up weight change were only partially mediated by physical activity (effect ratio = 0.42). This application of SDT to physical activity and weight management showed that not all types of motivation predict long-term behavioral outcomes and that sustained moderate and vigorous exercise mediated long-term weight change. It provides strong evidence for a link between experimentally increased autonomous motivation and exercise and long-term weight loss maintenance. Results highlight the importance of interventions targeting the internalization of exercise behavioral regulation and making exercise and physical activity positive and meaningful experiences rather than simply focusing on immediate behavior change in overweight/obese women.

  2. METABOLIC AND HORMONAL RESPONSES TO ADRENOCEPTOR ANTAGONISTS IN EXERCISING RATS

    NARCIS (Netherlands)

    BENTHEM, L; VANDERLEEST, J; STEFFENS, AB; ZIJLSTRA, WG

    alpha- and beta-adrenoceptors play a key role in the regulation of nutrient supply to working muscles during exercise. To assess their influence in the regulation of substrate utilization, rats were studied during alpha- or beta-adrenoceptor blockade. Energy metabolism was studied by means of

  3. EXERCISE DURING PREGNANCY

    Directory of Open Access Journals (Sweden)

    Zrna Agačević

    2011-03-01

    Full Text Available Exercise has become a vital part of many women's lives. However, theoretic concerns have been raised about the safety of some forms of exercise during pregnancy. Because of the physiologic changes associated with pregnancy, as well as the hemodynamic response to exercise, some precautions should be observed. The physician should screen for any contraindications to exercise and encourage patients to avoid overly vigorous activity, especially in the third trimester, when most pregnant women have a decreased tolerance for weight-bearing exercise. Adequate hydration and appropriate ventilation are important in preventing the possible teratogenic effects of overheating. Pregnant women should avoid exercise that involves the risk of abdominal trauma, falls or excessive joint stress, as in contact sports and vigorous racquet sports. In the absence of any obstetric or medical complications, most women can maintain a regular exercise regimen during pregnancy. Some studies have found a greater sense of well-being, shorter labor and fewer obstetric interventions in physically wellconditioned women as compared with other women.

  4. Crew Exercise Fact Sheet

    Science.gov (United States)

    Rafalik, Kerrie

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  5. Effects of Dietary Acid Load on Exercise Metabolism and Anaerobic Exercise Performance

    Directory of Open Access Journals (Sweden)

    Susan L. Caciano, Cynthia L. Inman, Elizabeth E. Gockel-Blessing, Edward P. Weiss

    2015-06-01

    Full Text Available Dietary acid load, quantified as the potential renal acid load (PRAL of the diet, affects systemic pH and acid-base regulation. In a previous cross-sectional study, we reported that a low dietary PRAL (i.e. alkaline promoting diet is associated with higher respiratory exchange ratio (RER values during maximal exercise. The purpose of the present study was to confirm the previous findings with a short-term dietary intervention study. Additionally, we sought to determine if changes in PRAL affects submaximal exercise RER (as a reflection of substrate utilization and anaerobic exercise performance. Subjects underwent a graded treadmill exercise test (GXT to exhaustion and an anaerobic exercise performance test on two occasions, once after following a low-PRAL diet and on a separate occasion, after a high-PRAL diet. The diets were continued as long as needed to achieve an alkaline or acid fasted morning urine pH, respectively, with all being 4-9 days in duration. RER was measured during the GXT with indirect calorimetry. The anaerobic performance test was a running time-to-exhaustion test lasting 1-4 min. Maximal exercise RER was lower in the low-PRAL trial compared to the high-PRAL trial (1.10 ± 0.02 vs. 1.20 ± 0.05, p = 0.037. The low-PRAL diet also resulted in a 21% greater time to exhaustion during anaerobic exercise (2.56 ± 0.36 vs. 2.11 ± 0.31 sec, p = 0.044 and a strong tendency for lower RER values during submaximal exercise at 70% VO2max (0.88 ± 0.02 vs. 0.96 ± 0.04, p = 0.060. Contrary to our expectations, a short-term low-PRAL (alkaline promoting diet resulted in lower RER values during maximal-intensity exercise. However, the low-PRAL diet also increased anaerobic exercise time to exhaustion and appears to have shifted submaximal exercise substrate utilization to favor lipid oxidation and spare carbohydrate, both of which would be considered favorable effects in the context of exercise performance.

  6. Exercise thermoregulation in men after 6 hours of immersion

    Science.gov (United States)

    Greenleaf, J. E.; Spaul, W. A.; Kravik, S. E.; Wong, N.; Elder, C. A.

    1985-01-01

    The present investigation is concerned with thermoregulation at rest and during exercise after water-immersion deconditioning, giving particular attention to the effects of fluid shifts and negative water balance on sweat rate and rectal temperature. Six healthy males 20-35 years old were used in the experiments. Rectal and mean skin temperature, skin heat conductance, heart rate, and total body sweat rate were measured during 70 min of supine leg exercise at 50 percent of peak O2 uptake. The data were taken after a 6-h control period in air and after immersion to the neck in water (34.5 C) for 6 h after overnight food and fluid restriction. Attention is given to end exercise heart rates and data during exercise. The obtained results suggest that, compared with control responses, the equilibrium level of core temperature during submaximal exercise is regulated at a higher level after immersion.

  7. Aquatic Exercise for the Aged.

    Science.gov (United States)

    Daniel, Michael; And Others

    The development and implementation of aquatic exercise programs for the aged are discussed in this paper. Program development includes a discussion of training principles, exercise leadership and the setting up of safe water exercise programs for the participants. The advantages of developing water exercise programs and not swimming programs are…

  8. Laboratory Exercise: Study of Digestive and Regulatory Processes through the Exploration of Fasted and Postprandial Blood Glucose

    Science.gov (United States)

    Hopper, Mari K.; Maurer, Luke W.

    2013-01-01

    Digestive physiology laboratory exercises often explore the regulation of enzyme action rather than systems physiology. This laboratory exercise provides a systems approach to digestive and regulatory processes through the exploration of postprandial blood glucose levels. In the present exercise, students enrolled in an undergraduate animal…

  9. Benefits of Exercise

    Science.gov (United States)

    ... your brain. Strengthen your bones and muscles. Regular exercise can help kids and teens build strong bones. Later in life, it can also slow the loss of bone density that comes with age. Doing muscle-strengthening activities ...

  10. Hand and Finger Exercises

    Science.gov (United States)

    Hand and Finger Exercises  Place your palm flat on a table. Raise and lower your fingers one ... times for ____ seconds.  Pick up objects with your hand. Start out with larger objects. Repeat ____ times for ____ ...

  11. Exercises in analysis

    CERN Document Server

    Gasiński, Leszek

    2016-01-01

    This second of two Exercises in Analysis volumes covers problems in five core topics of mathematical analysis: Function Spaces, Nonlinear and Multivalued Maps, Smooth and Nonsmooth Calculus, Degree Theory and Fixed Point Theory, and Variational and Topological Methods. Each of five topics corresponds to a different chapter with inclusion of the basic theory and accompanying main definitions and results, followed by suitable comments and remarks for better understanding of the material. Exercises/problems are presented for each topic, with solutions available at the end of each chapter. The entire collection of exercises offers a balanced and useful picture for the application surrounding each topic. This nearly encyclopedic coverage of exercises in mathematical analysis is the first of its kind and is accessible to a wide readership. Graduate students will find the collection of problems valuable in preparation for their preliminary or qualifying exams as well as for testing their deeper understanding of the ...

  12. Getting Exercise in College

    Science.gov (United States)

    ... Excessive exercise is also a component of certain eating disorders . If you suspect your fitness is getting out ... Sports Supplements Female Athlete Triad A Guide to Eating for Sports Beating the Freshman 15 Contact Us Print Resources ...

  13. Exercise-Induced Asthma

    Science.gov (United States)

    ... Blood Institute. http://www.nhlbi.nih.gov/health-pro/resources/lung/naci/discover/action-plans.htm. Accessed Sept. 12, 2014. Mickleborough TD, et al. Exercise-induced asthma: Nutritional management. Current ...

  14. Exercise as medicine

    DEFF Research Database (Denmark)

    Pedersen, Bente Klarlund; Saltin, Bengt

    2015-01-01

    This review provides the reader with the up-to-date evidence-based basis for prescribing exercise as medicine in the treatment of 26 different diseases: psychiatric diseases (depression, anxiety, stress, schizophrenia); neurological diseases (dementia, Parkinson's disease, multiple sclerosis...

  15. Exercise During Pregnancy

    Science.gov (United States)

    Physical fitness helps keep the heart, bones, and mind healthy, whether you are pregnant or not. For most healthy moms-to-be who do not have any pregnancy-related problems, exercise is safe and has many benefits

  16. Cardiovascular control during exercise

    DEFF Research Database (Denmark)

    Dela, Flemming; Mohr, Thomas; Jensen, Christina M R

    2003-01-01

    We studied the role of the central nervous system, neural feedback from contracting skeletal muscles, and sympathetic activity to the heart in the control of heart rate and blood pressure during 2 levels of dynamic exercise....

  17. Learn to love exercise

    Science.gov (United States)

    ... there, from salsa classes, to kayaking, to rock climbing. You never know what activities you might enjoy ... hiking, or gardening. If you prefer to exercise indoors, think about swimming, active video games, or yoga. ...

  18. Troponin and exercise.

    Science.gov (United States)

    Gresslien, T; Agewall, S

    2016-10-15

    Cardiac troponins are the preferred biomarkers in diagnostic of myocardial infarction, but these markers also can rise in response to exercise. Multiple studies have assessed troponins post-exercise, but the results have varied and there have been disagreements about the mechanism of troponin release. The aim of this paper was to review the literature, and to consider factors and mechanisms regarding exercise-induced increase of troponin. 145 studies were found after a search in pubmed and inclusion of additional articles found in the reference list of the first articles. Results showed that troponin rises in 0-100% of subjects after prolonged heavy exercise like marathon, but also after short-term and intermittent exercise like 30min of running and basketball. The variation can be due to factors like intensity, age, training experience, variation in sample size, blood sample timing and troponin assay. The pattern of troponin level post-exercise corresponds to release from the cytosolic compartment of cardiomyocytes. Increased membrane permeability might be caused by production of reactive oxygen species or alterations in calcium, pH, glucose/fat metabolism or in communication between integrins. Other suggested mechanisms are increased cardiovascular stress, inflammation, vasculitis, release of troponin degradation products in "blebs", dehydration, impaired renal clearance and expression of cardiac troponin in skeletal muscle. It can be concluded that both heavy and light exercise may cause elevated troponin, which have to be considered when patient are suspected to have a myocardial infarction. Several factors probably influence post-exercise levels of troponin, but the mechanism of release is most likely physiologic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Exercise and multiple sclerosis.

    Science.gov (United States)

    White, Lesley J; Dressendorfer, Rudolph H

    2004-01-01

    The pathophysiology of multiple sclerosis (MS) is characterised by fatigue, motor weakness, spasticity, poor balance, heat sensitivity and mental depression. Also, MS symptoms may lead to physical inactivity associated with the development of secondary diseases. Persons with MS are thus challenged by their disability when attempting to pursue an active lifestyle compatible with health-related fitness. Although exercise prescription is gaining favour as a therapeutic strategy to minimise the loss of functional capacity in chronic diseases, it remains under-utilised as an intervention strategy in the MS population. However, a growing number of studies indicate that exercise in patients with mild-to-moderate MS provides similar fitness and psychological benefits as it does in healthy controls. We reviewed numerous studies describing the responses of selected MS patients to acute and chronic exercise compared with healthy controls. All training studies reported positive outcomes that outweighed potential adverse effects of the exercise intervention. Based on our review, this article highlights the role of exercise prescription in the multidisciplinary approach to MS disease management for improving and maintaining functional capacity. Despite the often unpredictable clinical course of MS, exercise programmes designed to increase cardiorespiratory fitness, muscle strength and mobility provide benefits that enhance lifestyle activity and quality of life while reducing risk of secondary disorders. Recommendations for the evaluation of cardiorespiratory fitness, muscle performance and flexibility are presented as well as basic guidelines for individualised exercise testing and training in MS. Special considerations for exercise, including medical management concerns, programme modifications and supervision, in the MS population are discussed.

  20. Maternal exercise before and during pregnancy does not impact offspring exercise or body composition in mice.

    Science.gov (United States)

    Kelly, Scott A; Hua, Kunjie; Wallace, Jennifer N; Wells, Sarah E; Nehrenberg, Derrick L; Pomp, Daniel

    2015-08-03

    The genome, the environment, and their interactions simultaneously regulate complex traits such as body composition and voluntary exercise levels. One such environmental influence is the maternal milieu (i.e., in utero environment or maternal care). Variability in the maternal environment may directly impact the mother, and simultaneously has the potential to influence the physiology and/or behavior of offspring in utero, post birth, and into adulthood. Here, we utilized a murine model to examine the effects of the maternal environment in regard to voluntary exercise (absence of wheel running, wheel running prior to gestation, and wheel running prior to and throughout gestation) on offspring weight and body composition (% fat tissue and % lean tissue) throughout development (~3 to ~9 weeks of age). Additionally, we examined the effects of ~6 weeks of maternal exercise (prior to and during gestation) on offspring exercise levels at ~9 weeks of age. We observed no substantial effects of maternal exercise on subsequent male or female offspring body composition throughout development, or on the propensity of offspring to engage in voluntary wheel running. At the level of the individual, correlational analyses revealed some statistically significant relationships between maternal and offspring exercise levels, likely reflecting previously known heritability estimates for such traits. The current results conflict with previous findings in human and mouse models demonstrating that maternal exercise has the potential to alter offspring phenotypes. We discuss our negative findings in the context of the timing of the maternal exercise and the level of biological organization of the examined phenotypes within the offspring.

  1. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Fentz, Joachim; Kjøbsted, Rasmus; Maag Kristensen, Caroline

    2015-01-01

    . Maximal running speed was lower in AMPKα mdKO than WT mice, but increased similarly in both genotypes with exercise training. Exercise training increased quadriceps protein content of ubiquinol-cytochrome-C reductase core protein 1 (UQCRC1), cytochrome C, hexokinase II, plasma membrane fatty acid binding......Exercise training increases skeletal muscle expression of metabolic proteins improving the oxidative capacity. Adaptations in skeletal muscle by pharmacologically induced activation of 5'AMP-activated protein kinase (AMPK) are dependent on the AMPKα2 subunit. We hypothesized that exercise training......-induced increases in exercise capacity and expression of metabolic proteins as well as acute exercise-induced gene regulation would be compromised in AMPKα1 and -α2 muscle-specific double knockout (mdKO) mice. An acute bout of exercise increased skeletal muscle mRNA content of cytochrome C oxidase subunit I...

  2. Menopause and exercise.

    Science.gov (United States)

    Grindler, Natalia M; Santoro, Nanette F

    2015-12-01

    Accumulating data suggest that regular physical exercise reduces mortality and extends the functional life span of men and women. This review seeks to describe the current state of the medical literature on this topic. A narrative review of the current medical literature including randomized clinical trials and clinical guidelines that address the benefits of physical fitness and regular exercise on the health of midlife and postmenopausal women. Reduction and avoidance of obesity and its related comorbidities (hypertension, glucose intolerance, dyslipidemia, and heart disease) are one major benefit of exercise. However, long-term physical exercise is also associated with reduced rates of cancer, dementia and cognitive decline, adverse mood and anxiety symptoms, and reduction of osteoporosis, osteopenia, falls, and fractures. Beneficial physical activity includes exercise that will promote cardiovascular fitness (aerobic), muscle strength (resistance), flexibility (stretching), and balance (many of the preceding, and additional activities such as yoga). Given that it is unambiguously beneficial, inexpensive, and minimal risk, maintaining a healthy exercise regimen should be a goal for every participant to enhance lifelong wellness. Clinicians should use a number of behavioral strategies to support the physical fitness goals of their participants.

  3. Parkinson disease and exercise.

    Science.gov (United States)

    Earhart, Gammon M; Falvo, Michael J

    2013-04-01

    Parkinson disease (PD) is a progressive, neurodegenerative movement disorder. PD was originally attributed to neuronal loss within the substantia nigra pars compacta, and a concomitant loss of dopamine. PD is now thought to be a multisystem disorder that involves not only the dopaminergic system, but other neurotransmitter systems whose role may become more prominent as the disease progresses (189). PD is characterized by four cardinal symptoms, resting tremor, rigidity, bradykinesia, and postural instability, all of which are motor. However, PD also may include any combination of a myriad of nonmotor symptoms (195). Both motor and nonmotor symptoms may impact the ability of those with PD to participate in exercise and/or impact the effects of that exercise on those with PD. This article provides a comprehensive overview of PD, its symptoms and progression, and current treatments for PD. Among these treatments, exercise is currently at the forefront. People with PD retain the ability to participate in many forms of exercise and generally respond to exercise interventions similarly to age-matched subjects without PD. As such, exercise is currently an area receiving substantial research attention as investigators seek interventions that may modify the progression of the disease, perhaps through neuroprotective mechanisms.

  4. Food related, exercise induced anaphylaxis.

    OpenAIRE

    Caffarelli, C.; TERZI V.; Perrone, F.; Cavagni, G.

    1996-01-01

    Four children under 12 years of age with food dependent, exercise induced anaphylaxis (EIAn) were investigated. These children and five controls performed exercise challenges when fasting and one hour after a meal without food suspected to predispose to the reaction. Patients then performed exercise tests after intake of each suspected food. Three out of 15 food-exercise combination challenges were positive, but no reactions were provoked after exercise without prior intake of suspected foods...

  5. Yoga and physical exercise - a review and comparison.

    Science.gov (United States)

    Govindaraj, Ramajayam; Karmani, Sneha; Varambally, Shivarama; Gangadhar, B N

    2016-06-01

    Yoga is a multifaceted spiritual tool with enhanced health and well-being as one of its positive effects. The components of yoga which are very commonly applied for health benefits are asanas (physical postures), pranayama (regulated breathing) and meditation. In the context of asanas, yoga resembles more of a physical exercise, which may lead to the perception that yoga is another kind of physical exercise. This article aims at exploring the commonalities and differences between yoga and physical exercise in terms of concepts, possible mechanisms and effectiveness for health benefits. A narrative review is undertaken based on traditional and contemporary literature for yoga, along with scientific articles available on yoga and exercise including head-to-head comparative trials with healthy volunteers and patients with various disease conditions. Physical exercises and the physical components of yoga practices have several similarities, but also important differences. Evidence suggests that yoga interventions appear to be equal and/or superior to exercise in most outcome measures. Emphasis on breath regulation, mindfulness during practice, and importance given to maintenance of postures are some of the elements which differentiate yoga practices from physical exercises.

  6. Activation of the insular cortex during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Williamson, James; Nobrega, A C; McColl, R

    1997-01-01

    1. The insular cortex has been implicated as a region of cortical cardiovascular control, yet its role during exercise remains undefined. The purpose of the present investigation was to determine whether the insular cortex was activated during volitional dynamic exercise and to evaluate further its...... alone. 5. These findings provide the first evidence of insular activation during dynamic exercise in humans, suggesting that the left insular cortex may serve as a site for cortical regulation of cardiac autonomic (parasympathetic) activity. Additionally, findings during passive cycling with electrical...

  7. Negative rebound in hippocampal neurogenesis following exercise cessation.

    Science.gov (United States)

    Nishijima, Takeshi; Kamidozono, Yoshika; Ishiizumi, Atsushi; Amemiya, Seiichiro; Kita, Ichiro

    2017-03-01

    Physical exercise can improve brain function, but the effects of exercise cessation are largely unknown. This study examined the time-course profile of hippocampal neurogenesis following exercise cessation. Male C57BL/6 mice were randomly assigned to either a control (Con) or an exercise cessation (ExC) group. Mice in the ExC group were reared in a cage with a running wheel for 8 wk and subsequently placed in a standard cage to cease the exercise. Exercise resulted in a significant increase in the density of doublecortin (DCX)-positive immature neurons in the dentate gyrus (at week 0). Following exercise cessation, the density of DCX-positive neurons gradually decreased and was significantly lower than that in the Con group at 5 and 8 wk after cessation, indicating that exercise cessation leads to a negative rebound in hippocampal neurogenesis. Immunohistochemistry analysis suggests that the negative rebound in neurogenesis is caused by diminished cell survival, not by suppression of cell proliferation and neural maturation. Neither elevated expression of ΔFosB, a transcription factor involved in neurogenesis regulation, nor increased plasma corticosterone, were involved in the negative neurogenesis rebound. Importantly, exercise cessation suppressed ambulatory activity, and a significant correlation between change in activity and DCX-positive neuron density suggested that the decrease in activity is involved in neurogenesis impairment. Forced treadmill running following exercise cessation failed to prevent the negative neurogenesis rebound. This study indicates that cessation of exercise or a decrease in physical activity is associated with an increased risk for impaired hippocampal function, which might increase vulnerability to stress-induced mood disorders. Copyright © 2017 the American Physiological Society.

  8. Regulating the regulators : accountability of Australian regulators

    National Research Council Canada - National Science Library

    Bird, Joanna

    2011-01-01

    Accountability of Australian regulators - Australian Securities and Investments Commission - Australian Prudential Regulation Authority - concept of 'accountability' - mechanisms for accountability...

  9. SPORT AND EXERCISE PSYCHOLOGY

    Directory of Open Access Journals (Sweden)

    Andy Lane

    2008-09-01

    Full Text Available DESCRIPTION The book introduces the undergraduate psychology student to both academic and professional aspects of Sport and Exercise Psychology. It uses up to date research evidence, established theory and a variety of activities that help the student consider and understand academic and professional aspects of this particular academic discipline. PURPOSE The book aims to provide the undergraduate psychology student with a structured introduction to the subject area and an insight into the theoretical evidence and practical suggestions that underpin what a Sport and Exercise psychologist does. The book also aims to support one term or one semester courses in Sport and Exercise Psychology. It is also appropriate for Masters level courses. FEATURES The book begins with a chapter on applied sports psychology to give the reader an insight into the domain of sport psychology, providing an overview of the techniques that could be used. The next three chapters focus on mood, anxiety and self confidence, which influence performance. This leads on to four chapters that focus on managing psychological states. There is also a chapter on leadership which interestingly includes leadership development in coaches and in athletes. Two chapters focus on the effects of exercise on psychological states, providing a balance between the benefits and potential drawbacks. The final chapter examines the issue of placebo effects. Throughout each chapter there are useful activities than can help the reader's understanding of practical and theoretical issues. These also have practical implications for the work of a Sport and Exercise Psychologist. Key ethical issues are raised on a regular basis throughout the text. The book offers an excellent blend of theory and practical suggestions which are critically discussed thus giving valuable insights regarding the research process and applied practice which is often lacking in the more well known standard textbooks for Sport

  10. Cardiovascular benefits of exercise

    Directory of Open Access Journals (Sweden)

    Agarwal SK

    2012-06-01

    Full Text Available Shashi K AgarwalMedical Director, Agarwal Health Center, NJ, USAAbstract: Regular physical activity during leisure time has been shown to be associated with better health outcomes. The American Heart Association, the Centers for Disease Control and Prevention and the American College of Sports Medicine all recommend regular physical activity of moderate intensity for the prevention and complementary treatment of several diseases. The therapeutic role of exercise in maintaining good health and treating diseases is not new. The benefits of physical activity date back to Susruta, a 600 BC physician in India, who prescribed exercise to patients. Hippocrates (460–377 BC wrote “in order to remain healthy, the entire day should be devoted exclusively to ways and means of increasing one's strength and staying healthy, and the best way to do so is through physical exercise.” Plato (427–347 BC referred to medicine as a sister art to physical exercise while the noted ancient Greek physician Galen (129–217 AD penned several essays on aerobic fitness and strengthening muscles. This article briefly reviews the beneficial effects of physical activity on cardiovascular diseases.Keywords: exercise, cardiovascular disease, lifestyle changes, physical activity, good health

  11. Epilepsy and physical exercise.

    Science.gov (United States)

    Pimentel, José; Tojal, Raquel; Morgado, Joana

    2015-02-01

    Epilepsy is one of the commonest neurologic diseases and has always been associated with stigma. In the interest of safety, the activities of persons with epilepsy (PWE) are often restricted. In keeping with this, physical exercise has often been discouraged. The precise nature of a person's seizures (or whether seizures were provoked or unprovoked) may not have been considered. Although there has been a change in attitude over the last few decades, the exact role of exercise in inducing seizures or aggravating epilepsy still remains a matter of discussion among experts in the field. Based mainly on retrospective, but also on prospective, population and animal-based research, the hypothesis that physical exercise is prejudicial has been slowly replaced by the realization that physical exercise might actually be beneficial for PWE. The benefits are related to improvement of physical and mental health parameters and social integration and reduction in markers of stress, epileptiform activity and the number of seizures. Nowadays, the general consensus is that there should be no restrictions to the practice of physical exercise in people with controlled epilepsy, except for scuba diving, skydiving and other sports at heights. Whilst broader restrictions apply for patients with uncontrolled epilepsy, individual risk assessments taking into account the seizure types, frequency, patterns or triggers may allow PWE to enjoy a wide range of physical activities. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  12. Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangho; Kim, Minjung [Department of Physical Education, Hankuk Univrsity of Foreign Studies, Seoul 130-791 (Korea, Republic of); Lim, Wonchung [Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 363-764 (Korea, Republic of); Kim, Taeyoung [Department of Physical Education, Hankuk Univrsity of Foreign Studies, Seoul 130-791 (Korea, Republic of); Kang, Chounghun, E-mail: kangx119@umn.edu [Department of Physical Education, Hankuk Univrsity of Foreign Studies, Seoul 130-791 (Korea, Republic of); Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota at Twin Cities, Minneapolis, MN 55455 (United States)

    2015-05-29

    Strenuous exercise is known to cause excessive ROS generation and inflammation. However, the mechanisms responsible for the regulation of mitochondrial integrity in the senescent muscle during high-intensity exercise (HE) are not well studied. Here, we show that HE suppresses up-regulation of mitochondrial function despite increase in mitochondrial copy number, following excessive ROS production, proinflammatory cytokines and NFκB activation. Moreover, HE in the old group resulted in the decreasing of both fusion (Mfn2) and fission (Drp1) proteins that may contribute to alteration of mitochondrial morphology. This study suggests that strenuous exercise does not reverse age-related mitochondrial damage and dysfunction by the increased ROS and inflammation. - Highlights: • Effect of exercise on mitochondrial function of aged skeletal muscles was studied. • Strenuous exercise triggered excessive ROS production and inflammatory cytokines. • Strenuous exercise suppressed mitochondrial function in senescent muscle.

  13. Diabetes and exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, N B; Schneider, S H

    1981-01-01

    This review describes (1) the metabolic and hormonal response to exercise in normal and diabetic man, and (2) the potential benefits of physical training in diabetes. Whereas in normal man plasma glucose varies little during exercise, the insulin-dependent diabetic subject may experience...... its site of injection. The response to exercise of noninsulin-dependent diabetic subjects and of diabetic subjects with autonomic neuropathy is also described. Physical training improves glucose tolerance in some noninsulin-dependent diabetic subjects and in insulin-dependent patients, it may diminish...... insulin requirements. It may also have a role in retarding the development of cardiovascular complications. Physical training is not totally innocuous, however, and in many patients with diabetes special precautions are required....

  14. Exercise and obesity.

    Science.gov (United States)

    Okay, Douglas M; Jackson, Paul V; Marcinkiewicz, Marek; Papino, M Novella

    2009-06-01

    Obesity and overweight are linked to a wide range of medical conditions, such as hypertension, diabetes mellitus, osteoarthritis, obstructive sleep apnea, and coronary artery disease. Overweight and obese patients who are unable to lose weight with diet alone can benefit from well-structured exercise. Potentially, an individual exercise prescription can become one of the most important components of an obesity treatment program, along with an appropriate diet. Short-term (exercise combined with appropriate diet and counseling can produce a significant weight loss. No consensus exists on the amount of physical activity necessary to maintain the weight loss achieved during a short-term intervention. Long-term intervention is frequently influenced by weight regain related to complex interactions between physiologic and psychosocial factors.

  15. Physical exercise and fibromyalgia

    Directory of Open Access Journals (Sweden)

    Roberta Chiden Bueno

    2012-09-01

    Full Text Available Fibromyalgic syndrome is a non-inflammatory rheumatic disease which affects primarily Caucasianwomen. Fibromyalgic syndrome can be classified as primary, when there is no other associated pathology; orsecondary, when it is diagnosed related to some other pathology. The fibromyalgic patient needs to receivemultidisciplinary treatment and different areas should work together to promote the improvement of symptoms.The most common classical symptom of this disease is the chronic and diffuse pain. The specialized literaturepresents several works that point out the effects and benefits of physical exercise as a non-pharmacologicaltreatment for patients with fibromyalgic syndrome. Aerobic activity, stretching and strength training are amongthe physical exercises. Thus, this review aimed to highlight the several ways physical exercise can be useful tothe fibromyalgic patient, especially concerning the improvement of symptoms.

  16. Exercise in Pregnancy: Guidelines.

    Science.gov (United States)

    Artal, Raul

    2016-09-01

    In recent years it has been recognized that in all phases of life, including pregnancy, physical activity promotes health benefits and precludes comorbidities, the scientific evidence is indisputable. Several organizations around the world have updated in recent years the guidelines and recommendations for exercise in pregnancy. The December 2015, updated guidelines of the American College of Obstetricians and Gynecologists emphasize that physical activity in pregnancy has minimal risk. Although recommending exercise in pregnancy, the anatomic/physiological changes, absolute and relative contraindications should be considered. Women who exercised regularly before pregnancy, in the absence of contraindications, can continue and engage in moderate to strenuous activities, although information on strenuous activities in pregnancy is still limited. This review summarizes the most recent published and recommended guidelines.

  17. Hematologic Response to Exercise

    Directory of Open Access Journals (Sweden)

    Javier Fernando Bonilla Briceño

    2005-12-01

    Full Text Available Moderate to intensive physical exercisegenerates different types of response in an individual.These responses depend upon the typeof exercise and the duration of it, and they canbe acute or chronic. Exercise affects differentcorporal system, among those is the hematologicalsystem. Literature describes changes inthe blood volume, changes in the activity andpopulation of white blood cells, as well asmodifications in the humoral and cellularimmunity, and in the count and shape of bloodplatelets. Also and as a result of those changes, ithas been determined too, that exercise modifiesin a negative way the life time of red blood cells,generating an apparent anemia, that has beenwidely discuss and that might be, among manyfactors, associated to hemolysis. This hemolysismight be associated with osmotic mechanismsor oxidative stress. The true is that all thoseevents are strongly related and may cause a lowperformance in the practice of any physicalactivity, including that of sportsmen.

  18. Personalized exercise dose prescription.

    Science.gov (United States)

    Zubin Maslov, Petra; Schulman, Alexa; Lavie, Carl J; Narula, Jagat

    2017-12-28

    Physical activity (PA) is associated with increased longevity and decreased risk of cardiovascular disease, however, the majority of the general population is still sedentary. In order to maximize the health benefits of PA, health care practitioners should be familiarized with the appropriate dose of exercise for each healthy individual, depending on their habitual PA and relative fitness. The aim of this review is to quantitatively describe the lowest and the highest level of exercise that has health benefits, and what should hypothetically be considered 'the sweet spot'. Analysis of the current literature allows us to develop personalized 'exercise prescription' for healthy individuals. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2017. For permissions, please email: journals.permissions@oup.com.

  19. Combinatorial problems and exercises

    CERN Document Server

    Lovász, László

    2007-01-01

    The main purpose of this book is to provide help in learning existing techniques in combinatorics. The most effective way of learning such techniques is to solve exercises and problems. This book presents all the material in the form of problems and series of problems (apart from some general comments at the beginning of each chapter). In the second part, a hint is given for each exercise, which contains the main idea necessary for the solution, but allows the reader to practice the techniques by completing the proof. In the third part, a full solution is provided for each problem. This book w

  20. CHURCH OPAL Exercise Summary

    Science.gov (United States)

    1975-09-01

    San Diego to Hawaii 55 A-5 R/V MOANA WAVE Track - Hawaii to San Diego 56 B-I VXN-8 Aircraft Tracks TC and TG 60 B-2 VXN-8 Aircraft Track TD 61i B-3 VXN...i Wegr .() AEP v~ai~Dpoyct~Pr U COieNTA JOB................................ SECRET KI Al and A3, and by LAMBDA at XI. Vibroseis will also execute...Exercise. (U) Responsibility for the technical organization, planning, and execution of the Exercise is vested In the Technical Director ( TD ), M). Sidney

  1. Compliance with physical exercise

    DEFF Research Database (Denmark)

    Gram, Anne Sofie; Bønnelycke, Julie; Rosenkilde Larsen, Mads

    2014-01-01

    , a moderate (MOD; 300 kcal/day) or a high-dose (HIGH; 600 kcal/day) endurance exercise group for 12 weeks. A sub-set of the subjects were interviewed using pre-determined, qualitative questions to elucidate physical activity and health behaviour. In combination with the Theory of Planned Behaviour (TPB......, and thereby may have increased physical activity levels in areas of their everyday lives that were not related to the intervention. Conclusions: A multidisciplinary approach provided explanations for similar effects of two different doses of exercise. This could not have been determined via either qualitative...

  2. Exercise and NSAIDs

    DEFF Research Database (Denmark)

    Petersen, Susanne Germann; Miller, Ben F; Hansen, Mette

    2011-01-01

    The purpose of this study was to determine muscle and tendon protein fractional synthesis rates (FSR) at rest and after a one-legged kicking exercise in patients with knee osteoarthritis (OA) receiving either placebo or nonsteroidal anti-inflammatory drugs (NSAIDs).......The purpose of this study was to determine muscle and tendon protein fractional synthesis rates (FSR) at rest and after a one-legged kicking exercise in patients with knee osteoarthritis (OA) receiving either placebo or nonsteroidal anti-inflammatory drugs (NSAIDs)....

  3. Exercise 5+6 - Introduction to Control and Lab Exercises

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede

    2015-01-01

    Exercises for the 2nd AAU and ECN EWTEC affiliated PhD course. The laboratory exercises are including both numerical and experimental work. A simulink model is provided to make realtime control on the laboratory setups. The groups are welcome to modify the program during the exercises. The groups...

  4. Baroreflex and metaboreflex control of cardiovascular system during exercise in space.

    Science.gov (United States)

    Pagani, Massimo; Pizzinelli, Paolo; Beltrami, Silvia; Massaro, Michele; Lucini, Daniela; Iellamo, Ferdinando

    2009-10-01

    This brief review summarizes current knowledge on the neural mechanisms of cardiovascular regulation during exercise in space, with specific emphasis on the role of the arterial baroreflex and the muscle metaboreflex, with the attendant modifications in autonomic nervous system activity, in determining the cardiovascular responses to exercise in microgravity conditions. Available data suggest that the muscle metaboreflex is enhanced during dynamic exercise in space and that the potentiation of the muscle metaboreflex affects the vagally mediated arterial baroreflex contribution to HR control.

  5. Effects of dietary Acid load on exercise metabolism and anaerobic exercise performance.

    Science.gov (United States)

    Caciano, Susan L; Inman, Cynthia L; Gockel-Blessing, Elizabeth E; Weiss, Edward P

    2015-06-01

    Dietary acid load, quantified as the potential renal acid load (PRAL) of the diet, affects systemic pH and acid-base regulation. In a previous cross-sectional study, we reported that a low dietary PRAL (i.e. alkaline promoting diet) is associated with higher respiratory exchange ratio (RER) values during maximal exercise. The purpose of the present study was to confirm the previous findings with a short-term dietary intervention study. Additionally, we sought to determine if changes in PRAL affects submaximal exercise RER (as a reflection of substrate utilization) and anaerobic exercise performance. Subjects underwent a graded treadmill exercise test (GXT) to exhaustion and an anaerobic exercise performance test on two occasions, once after following a low-PRAL diet and on a separate occasion, after a high-PRAL diet. The diets were continued as long as needed to achieve an alkaline or acid fasted morning urine pH, respectively, with all being 4-9 days in duration. RER was measured during the GXT with indirect calorimetry. The anaerobic performance test was a running time-to-exhaustion test lasting 1-4 min. Maximal exercise RER was lower in the low-PRAL trial compared to the high-PRAL trial (1.10 ± 0.02 vs. 1.20 ± 0.05, p = 0.037). The low-PRAL diet also resulted in a 21% greater time to exhaustion during anaerobic exercise (2.56 ± 0.36 vs. 2.11 ± 0.31 sec, p = 0.044) and a strong tendency for lower RER values during submaximal exercise at 70% VO2max (0.88 ± 0.02 vs. 0.96 ± 0.04, p = 0.060). Contrary to our expectations, a short-term low-PRAL (alkaline promoting) diet resulted in lower RER values during maximal-intensity exercise. However, the low-PRAL diet also increased anaerobic exercise time to exhaustion and appears to have shifted submaximal exercise substrate utilization to favor lipid oxidation and spare carbohydrate, both of which would be considered favorable effects in the context of exercise performance. Key pointsShort-term (4-9 days) changes in

  6. Timing of post-exercise carbohydrate ingestion: influence on IL-6 and hepcidin responses.

    Science.gov (United States)

    Badenhorst, Claire E; Dawson, Brian; Cox, Gregory R; Laarakkers, Coby M; Swinkels, Dorine W; Peeling, Peter

    2015-10-01

    Carbohydrate ingestion prior and during exercise attenuates exercise-induced interleukin-6. This investigation examined if an analogous effect was evident for interleukin-6 and hepcidin response when carbohydrates were ingested post-exercise. In a crossover design, 11 well-trained endurance athletes completed two experimental trials. Participants completed an 8 × 3 min interval running session at 85 % vVO2peak followed by 5 h of monitored recovery. During this period, participants were provided with two 1.2 g kg(-1) carbohydrate beverages at either an early feeding time (immediately post-exercise and 2 h post-exercise) or delayed feeding time (2 h post-exercise and 4 h post-exercise). Venous blood samples were collected pre-, immediately post-, 3 and 5 h post-exercise. Samples were analysed for Interleukin-6, serum iron, serum ferritin and hepcidin. Interleukin-6 was significantly elevated (p = 0.004) immediately post-exercise compared to baseline for both trials. Hepcidin levels were significantly elevated at 3 h post-exercise (p = 0.001) and 5 h post-exercise (p = 0.002) compared to baseline levels in both trials, with no significant difference between the two conditions and any time point. Serum iron was significantly increased from baseline to immediately post-exercise (p = 0.001) for both trials, with levels decreasing by 3 h (p = 0.025) and 5 h post-exercise (p = 0.001). Serum ferritin levels increased immediately post-exercise compared to baseline (p = 0.006) in both conditions. The timing and ingestion of post-exercise carbohydrate ingestion do not appear to impact post-exercise interleukin-6 and hepcidin responses; this is likely a result of the interval running task inducing an inflammatory response and subsequent up-regulation of hepcidin.

  7. SUMO: regulating the regulator

    Directory of Open Access Journals (Sweden)

    Bossis Guillaume

    2006-06-01

    Full Text Available Abstract Post-translational modifiers of the SUMO (Small Ubiquitin-related Modifier family have emerged as key regulators of protein function and fate. While the past few years have seen an enormous increase in knowledge on SUMO enzymes, substrates, and consequences of modification, regulation of SUMO conjugation is far from being understood. This brief review will provide an overview on recent advances concerning (i the interplay between sumoylation and other post-translational modifications at the level of individual targets and (ii global regulation of SUMO conjugation and deconjugation.

  8. Exercise identity as a risk factor for exercise dependence.

    Science.gov (United States)

    Murray, Aja L; McKenzie, Karen; Newman, Emily; Brown, Erin

    2013-05-01

    The aim of the study was to explore the relationship between exercise identity and exercise dependence. We hypothesized that stronger exercise identities would be associated with greater odds of experiencing exercise dependence symptoms. Logistic regression was used to assess the extent of association between exercise identity and the risk of experiencing exercise dependence symptoms. Participants (101) were recruited online via sports clubs and social networking sites and were asked to complete online measures of exercise identity and exercise dependence. The overall model fit was a significant improvement on the baseline model, but only the exercise beliefs factor was significantly associated with the odds of dependence symptoms, with higher scores on the belief scale predicting greater odds of experiencing dependence symptoms. Exercise role identity, in contrast, was not significantly associated with odds of experiencing dependence symptoms. Per cent correct classification was 55.9% for asymptomatic and 88.2% for symptomatic individuals and the overall per cent correct classification was 77.5%. The relation between identity and dependence could represent both a fruitful research avenue and a potential therapeutic target for those experiencing dependence symptoms; although our findings only showed a relationship between one of the two factors of the exercise identity measure and dependence. Longitudinal research is required to examine the relationship between identity and dependence in the context of other variables to better understand why some individuals become exercise dependent whereas others do not. What is already known on this subject? Exercise identity has been identified as an important determinant of exercise behaviour and studies within the exercise identity framework have proven elucidative with respect to the psychological processes that may underpin commitment to exercise. It has separately been established that some individuals may become

  9. Sweat composition in exercise and in heat.

    Science.gov (United States)

    Verde, T; Shephard, R J; Corey, P; Moore, R

    1982-12-01

    Sweat samples were collected from the forearms of eight male volunteers using light gauze pads applied for 20-min periods. Preliminary trials indicated that this technique yielded realistic figures for both sweat volume and sweat composition. Tests were conducted under three conditions: a) outdoor exercise, cool environment; b) indoor exercise, normal room temperatures; and c) sauna exposure. In all environments, proximal forearm samples indicated a larger sweat secretion than distal forearm or hand samples. [Mg2+] decreased as sweat flow increased, but after allowance for interindividual differences of sweat volume, [Na+], [K+], [Ca2+], and [Cl-] were independent of sweat flow rates. The differential effect of sweat flow suggests active regulation rather than contamination. Interindividual differences of sweat composition could not be explained in terms of differences in personal fitness. Sauna bathing yielded sweat with a higher [Mg2+] and [Ca2+] content than did exercise; however, [Na+], [K+], and [Cl-] were similar for the three experimental conditions. Again, the data are best explained in terms of an active regulation of sweat composition. Total ionic losses do not seem sufficient to deplete body mineral reserves unless many days of training are undertaken in a hot climate.

  10. Exercise, Lymphokines, Calories, and Cancer.

    Science.gov (United States)

    Eichner, Edward R.

    1987-01-01

    A review of epidemiological studies suggesting that exercise reduces the risk of cancer concludes that exercise may help defend against cancer by preventing obesity, stimulating lymphokines, and/or facilitating other healthful changes in behavior. (Author/CB)

  11. Exercise-Induced Bronchoconstriction Quiz

    Science.gov (United States)

    ... use it again if I begin to have exercise-induced bronchoconstriction. True False True: Many people are concerned about the standard prescription: "2 puffs of albuterol before exercise and every ...

  12. Kegel exercises - self-care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000141.htm Kegel exercises - self-care To use the sharing features ... and move up and down. How to do Kegel Exercises Once you know what the movement feels ...

  13. Exercise for Your Bone Health

    Science.gov (United States)

    ... in turn helps to prevent falls and related fractures. This is especially important for older adults and people who have been diagnosed with osteoporosis. The Best Bone Building Exercise The best exercise for your bones is the ...

  14. Physical exercise in everyday life

    OpenAIRE

    IKONOMI EDISON; SHEHU AIDA

    2017-01-01

    In studies, physical exercise is commonly assessed by a series of questions tapping the frequency, intensity, and duration of physical activities at work, leisure time physical exercise, and housework physical activity. In “modern” times, physical activity consists mostly of leisure-time physical exercise because levels of physical activity at work or at home are quite scarce. One of the main methods of assessment of leisure-time physical exercise consists of employment of the Minnesota leisu...

  15. Exercise and pregnancy.

    Science.gov (United States)

    Artal, R

    1992-04-01

    Despite the theoretic risks to both mother and fetus listed in this article, exercise in pregnancy conducted in moderation appears to be safe in most cases. The current published literature includes the following consistent findings: 1. Women who exercised before pregnancy and continued to do so during pregnancy tended to weigh less, gain less weight, and deliver smaller babies than controls. 2. All women, regardless of initial level of physical activity, decrease their activity as pregnancy progresses. 3. No information is available to assess whether active women have better pregnancy outcome than their sedentary counterparts. No information is available on sedentary women. 4. Physically active women appear to tolerate labor pain better. 5. Exercise can be used as an alternative and safe therapeutic approach for gestational diabetes. Pregnancy should not be a state of confinement, and cardiovascular and muscular fitness can be reasonably maintained. Restriction of physical activity should be dictated by obstetric and medical indications only. Health care providers should inform pregnant women of potential risks and individualized exercise prescription as indicated and necessary.

  16. Fat utilization during exercise

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Watt, Peter W.; Richter, Erik

    2001-01-01

    % carbohydrate) and six consumed a carbohydrate-rich diet (20 % fat, 65 % carbohydrate). After 7 weeks of training and diet, 60 min of bicycle exercise was performed at 68 +/- 1 % of maximum oxygen uptake. During exercise [1-(13)C]palmitate was infused, arterial and venous femoral blood samples were collected......, and blood flow was determined by the thermodilution technique. Muscle biopsy samples were taken from the vastus lateralis muscle before and after exercise. 3. During exercise, the respiratory exchange ratio was significantly lower in subjects consuming the fat-rich diet (0.86 +/- 0.01, mean +/- S.E.M.) than...... the fat-rich diet. Whole-body plasma FA oxidation (determined by comparison of (13)CO(2) production and blood palmitate labelling) was 55-65 % of total lipid oxidation, and was higher after the fat-rich diet than after the carbohydrate-rich diet (13.5 +/- 1.2 vs. 8.9 +/- 1.1 micromol min(-1) kg(-1); P

  17. Inspiring Exercises for Undergraduates.

    Science.gov (United States)

    Kuo, Tzee-Char

    1999-01-01

    Inspiring exercises are used to guide students at all levels to rediscover the essential meaning of various individual pieces of mathematics. Presents five sets of examples including Abel's identity, Hensel's lemma, finitely generated Abelian groups, Baire's category theorem, and the Weierstrass preparation theorem. (Author/ASK)

  18. Computer Exercises in Meteorology.

    Science.gov (United States)

    Trapasso, L. Michael; Conner, Glen; Stallins, Keith

    Beginning with Western Kentucky University's (Bowling Green) fall 1999 semester, exercises required for the geography and meteorology course used computers for learning. This course enrolls about 250 students per year, most of whom choose it to fulfill a general education requirement. Of the 185 geography majors, it is required for those who…

  19. Exercises in Urban Reconnaissance

    Directory of Open Access Journals (Sweden)

    Lorenzo Tripodi

    2016-03-01

    Full Text Available Exercises in Urban Reconnaissance is a toolbox to examine and disentangle urban complexities. Not the city, not the urban territory, not the urbanization process but the irreducible condition produced by the dialectical relation and the semantic stratification resulting from these factors.

  20. Exercise and Asthma

    Science.gov (United States)

    ... children this means the regular use of inhaled steroid medicines and use of medicines before exercise. Ask your child’s doctor ... 11/21/2015 Source Care of the Young Athlete Patient Education Handouts (Copyright © 2011 American Academy of Pediatrics) The information ... Editorial Policy This site complies with the HONcode ...