WorldWideScience

Sample records for excitatory repetitive transcranial

  1. Outcomes in spasticity after repetitive transcranial magnetic and transcranial direct current stimulations

    OpenAIRE

    Gunduz, Aysegul; Kumru, Hatice; Pascual-Leone, Alvaro

    2014-01-01

    Non-invasive brain stimulations mainly consist of repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Repetitive transcranial magnetic stimulation exhibits satisfactory outcomes in improving multiple sclerosis, stroke, spinal cord injury and cerebral palsy-induced spasticity. By contrast, transcranial direct current stimulation has only been studied in post-stroke spasticity. To better validate the efficacy of non-invasive brain stimulations in improving ...

  2. Repetitive transcranial magnetic stimulation in psychiatry

    Directory of Open Access Journals (Sweden)

    Biswa Ranjan Mishra

    2011-01-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is a non-invasive and relatively painless tool that has been used to study various cognitive functions as well as to understand the brain-behavior relationship in normal individuals as well as in those with various neuropsychiatric disorders. It has also been used as a therapeutic tool in various neuropsychiatric disorders because of its ability to specifically modulate distinct brain areas. Studies have shown that repeated stimulation at low frequency produces long-lasting inhibition, which is called as long-term depression, whereas repeated high-frequency stimulation can produce excitation through long-term potentiation. This paper reviews the current status of rTMS as an investigative and therapeutic modality in various neuropsychiatric disorders. It has been used to study the cortical and subcortical functions, neural plasticity and brain mapping in normal individuals and in various neuropsychiatric disorders. rTMS has been most promising in the treatment of depression, with an overall milder adverse effect profile compared with electroconvulsive therapy. In other neuropsychiatric disorders such as schizophrenia, mania, epilepsy and substance abuse, it has been found to be useful, although further studies are required to establish therapeutic efficacy. It appears to be ineffective in the treatment of obsessive compulsive disorder. There is a paucity of studies of efficacy and safety of rTMS in pediatric and geriatric population. Although it appears safe, further research is required to optimize its efficacy and reduce the side-effects. Magnetic seizure therapy, which involves producing seizures akin to electroconvulsive therapy, appears to be of comparable efficacy in the treatment of depression with less cognitive adverse effects.

  3. Illusory sensation of movement induced by repetitive transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Lundbye-Jensen, Jesper; Grey, Michael James

    2010-01-01

    Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb movement...... and its associated somatosensory feedback. Afferent and efferent neural signalling was abolished in the arm with ischemic nerve block, and in the leg with spinal nerve block. Movement sensation was assessed following trains of high-frequency repetitive transcranial magnetic stimulation applied over...... premotor cortex stimulation was less affected by sensory and motor deprivation than was primary motor cortex stimulation. We propose that repetitive transcranial magnetic stimulation over dorsal premotor cortex produces a corollary discharge that is perceived as movement....

  4. Use of Repetitive Transcranial Magnetic Stimulation for Treatment in Psychiatry

    NARCIS (Netherlands)

    Aleman, Andre

    The potential of noninvasive neurostimulation by repetitive transcranial magnetic stimulation (rTMS) for improving psychiatric disorders has been studied increasingly over the past two decades. This is especially the case for major depression and for auditory verbal hallucinations in schizophrenia.

  5. Effects of Navigated Repetitive Transcranial Magnetic Stimulation After Stroke.

    Science.gov (United States)

    Chervyakov, Alexander V; Poydasheva, Alexandra G; Lyukmanov, Roman H; Suponeva, Natalia A; Chernikova, Ludmila A; Piradov, Michael A; Ustinova, Ksenia I

    2018-03-01

    The purpose of this study was to test the effects of navigated repetitive transcranial magnetic stimulation, delivered in different modes, on motor impairments and functional limitations after stroke. The study sample included 42 patients (58.5 ± 10.7 years; 26 males) who experienced a single unilateral stroke (1-12 months previously) in the area of the middle cerebral artery. Patients completed a course of conventional rehabilitation, together with 10 sessions of navigated repetitive transcranial magnetic stimulation or sham stimulation. Stimulation was scheduled five times a week over two consecutive weeks in an inpatient clinical setting. Patients were randomly assigned to one of four groups and received sham stimulation (n = 10), low-frequency (1-Hz) stimulation of the nonaffected hemisphere (n = 11), high-frequency (10-Hz) stimulation of the affected hemisphere (n = 13), or sequential combination of low- and high-frequency stimulations (n = 8). Participants were evaluated before and after stimulation with clinical tests, including the arm and hand section of the Fugl-Meyer Assessment Scale, modified Ashworth Scale of Muscle Spasticity, and Barthel Index of Activities of Daily Living. Participants in the three groups receiving navigated repetitive transcranial magnetic stimulation showed improvements in arm and hand functions on the Fugl-Meyer Stroke Assessment Scale. Ashworth Scale of Muscle Spasticity and Barthel Index scores were significantly reduced in groups receiving low- or high-frequency stimulation alone. Including navigated repetitive transcranial magnetic stimulation in a conventional rehabilitation program positively influenced motor and functional recovery in study participants, demonstrating the clinical potential of the method. The results of this study will be used for designing a large-scale clinical trial.

  6. Comparing the Efficacy of Excitatory Transcranial Stimulation Methods Measuring Motor Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Vera Moliadze

    2014-01-01

    Full Text Available The common aim of transcranial stimulation methods is the induction or alterations of cortical excitability in a controlled way. Significant effects of each individual stimulation method have been published; however, conclusive direct comparisons of many of these methods are rare. The aim of the present study was to compare the efficacy of three widely applied stimulation methods inducing excitability enhancement in the motor cortex: 1 mA anodal transcranial direct current stimulation (atDCS, intermittent theta burst stimulation (iTBS, and 1 mA transcranial random noise stimulation (tRNS within one subject group. The effect of each stimulation condition was quantified by evaluating motor-evoked-potential amplitudes (MEPs in a fixed time sequence after stimulation. The analyses confirmed a significant enhancement of the M1 excitability caused by all three types of active stimulations compared to sham stimulation. There was no significant difference between the types of active stimulations, although the time course of the excitatory effects slightly differed. Among the stimulation methods, tRNS resulted in the strongest and atDCS significantly longest MEP increase compared to sham. Different time courses of the applied stimulation methods suggest different underlying mechanisms of action. Better understanding may be useful for better targeting of different transcranial stimulation techniques.

  7. Effects of slow repetitive transcranial magnetic stimulation in patients with corticobasal syndrome.

    Science.gov (United States)

    Civardi, Carlo; Pisano, Fabrizio; Delconte, Carmen; Collini, Alessandra; Monaco, Francesco

    2015-06-01

    Corticobasal syndrome is characterized by asymmetric cortical sensorimotor dysfunction and parkinsonism; an altered cortical excitability has been reported. We explored with transcranial magnetic stimulation the motor cortical excitability in corticobasal syndrome, and the effects of slow repetitive transcranial magnetic stimulation. With transcranial magnetic stimulation, we studied two corticobasal syndrome patients. We determined bilaterally from the first dorsal interosseous muscle: relaxed threshold, and contralateral and ipsilateral silent period. We also evaluated the contralateral silent period after active/sham slow repetitive transcranial magnetic stimulation on the most affected side. At T0 the silent period was bilaterally short. On the most affected side, active slow repetitive transcranial magnetic stimulation induced a short lasting prolongation of the contralateral silent period. In corticobasal syndrome, transcranial magnetic stimulation showed a reduction cortical inhibitory phenomenon potentially reversed transiently by slow repetitive transcranial magnetic stimulation.

  8. Electrical and magnetic repetitive transcranial stimulation of the primary motor cortex in healthy subjects.

    Science.gov (United States)

    Gilio, Francesca; Iacovelli, Elisa; Frasca, Vittorio; Gabriele, Maria; Giacomelli, Elena; De Lena, Carlo; Cipriani, Anna Maria; Inghilleri, Maurizio

    2009-05-08

    Repetitive transcranial magnetic stimulation (rTMS) delivered in short trains at 5Hz frequency and suprathreshold intensity over the primary motor cortex (M1) in healthy subjects facilitates the motor-evoked potential (MEP) amplitude by increasing cortical excitability through mechanisms resembling short-term synaptic plasticity. In this study, to investigate whether rTES acts through similar mechanisms we compared the effects of rTMS and repetitive transcranial electrical stimulation (rTES) (10 stimuli-trains, 5Hz frequency, suprathreshold intensity) delivered over the M1 on the MEP amplitude. Four healthy subjects were studied in two separate sessions in a relaxed condition. rTMS and anodal rTES were delivered in trains to the left M1 over the motor area for evoking a MEP in the right first dorsal interosseous muscle. Changes in MEP size and latency during the course of the rTMS and rTES trains were compared. The possible effects of muscle activation on MEP amplitude were evaluated, and the possible effects of cutaneous trigeminal fibre activation on corticospinal excitability were excluded in a control experiment testing the MEP amplitude before and after supraorbital nerve repetitive electrical stimulation. Repeated measures analysis of variance (ANOVA) showed that rTES and rTMS trains elicited similar amplitude first MEPs and a similar magnitude MEP amplitude facilitation during the trains. rTES elicited a first MEP with a shorter latency than rTMS, without significant changes during the course of the train of stimuli. The MEP elicited by single-pulse TES delivered during muscle contraction had a smaller amplitude than the last MEP in the rTES trains. Repetitive supraorbital nerve stimulation left the conditioned MEP unchanged. Our results suggest that 5 Hz-rTES delivered in short trains increases cortical excitability and does so by acting on the excitatory interneurones probably through mechanisms similar to those underlying the rTMS-induced MEP facilitation.

  9. Repetitive Transcranial Magnetic Stimulation in Patients with Hereditary Spastic Paraplegia

    Directory of Open Access Journals (Sweden)

    Mehmet Ağırman

    2011-06-01

    Full Text Available Hereditary spastic paraplegia (HSPP is a heterogeneous genetic disease characterized by progressive spasticity of lower extremities. Spasticity is a major cause of long-term disability in HSPP and significantly affects the functional life of patients. Repetitive transcranial magnetic stimulation (rTMS is widely used in diagnosis and treatment of many neurological and psychiatric diseases. Although the positive impacts of rTMS for spasticity have been reported, no study has been found on HSPP. We present two HSPP patients treated with low frequency rTMS (20 minutes at a frequency of 1 Hz (1200 pulses, for a period of 10 treatment sessions.

  10. Repetitive Transcranial Magnetic Stimulation in Patients with Hereditary Spastic Paraplegia

    Directory of Open Access Journals (Sweden)

    Mehmet Ağırman

    2011-06-01

    Full Text Available Hereditary spastic paraplegia (HSPP is a heterogeneous genetic disease characterized by progressive spasticity of lower extremities. Spasticity is a major cause of long-term disability in HSPP and significantly affects the functional life of patients. Repetitive transcranial magnetic stimulation (rTMS is widely used in diagnosis and treatment of many neurological and psychiatric diseases. Although the positive impacts of rTMS for spasticity have been reported, no study has been found on HSPP. We present two HSPP patients treated with low frequency rTMS (20 minutes at a frequency of 1 Hz (1200 pulses, for a period of 10 treatment sessions

  11. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders: A meta-analysis.

    Science.gov (United States)

    Zhang, Yingli; Liang, Wei; Yang, Shichang; Dai, Ping; Shen, Lijuan; Wang, Changhong

    2013-10-05

    This study assessed the efficacy and tolerability of repetitive transcranial magnetic stimulation for treatment of auditory hallucination of patients with schizophrenia spectrum disorders. Online literature retrieval was conducted using PubMed, ISI Web of Science, EMBASE, Medline and Cochrane Central Register of Controlled Trials databases from January 1985 to May 2012. Key words were "transcranial magnetic stimulation", "TMS", "repetitive transcranial magnetic stimulation", and "hallucination". Selected studies were randomized controlled trials assessing therapeutic efficacy of repetitive transcranial magnetic stimulation for hallucination in patients with schizophrenia spectrum disorders. Experimental intervention was low-frequency repetitive transcranial magnetic stimulation in left temporoparietal cortex for treatment of auditory hallucination in schizophrenia spectrum disorders. Control groups received sham stimulation. The primary outcome was total scores of Auditory Hallucinations Rating Scale, Auditory Hallucination Subscale of Psychotic Symptom Rating Scale, Positive and Negative Symptom Scale-Auditory Hallucination item, and Hallucination Change Scale. Secondary outcomes included response rate, global mental state, adverse effects and cognitive function. Seventeen studies addressing repetitive transcranial magnetic stimulation for treatment of schizophrenia spectrum disorders were screened, with controls receiving sham stimulation. All data were completely effective, involving 398 patients. Overall mean weighted effect size for repetitive transcranial magnetic stimulation versus sham stimulation was statistically significant (MD = -0.42, 95%CI: -0.64 to -0.20, P = 0.000 2). Patients receiving repetitive transcranial magnetic stimulation responded more frequently than sham stimulation (OR = 2.94, 95%CI: 1.39 to 6.24, P = 0.005). No significant differences were found between active repetitive transcranial magnetic stimulation and sham stimulation for

  12. Increased probability of repetitive spinal motoneuron activation by transcranial magnetic stimulation after muscle fatigue in healthy subjects

    DEFF Research Database (Denmark)

    Andersen, Birgit; Felding, Ulrik Ascanius; Krarup, Christian

    2012-01-01

    Triple stimulation technique (TST) has previously shown that transcranial magnetic stimulation (TMS) fails to activate a proportion of spinal motoneurons (MNs) during motor fatigue. The TST response depression without attenuation of the conventional motor evoked potential suggested increased...... probability of repetitive spinal MN activation during exercise even if some MNs failed to discharge by the brain stimulus. Here we used a modified TST (Quadruple stimulation; QuadS and Quintuple stimulation; QuintS) to examine the influence of fatiguing exercise on second and third MN discharges after......, reflecting that a greater proportion of spinal MNs were activated 2 or 3 times by the transcranial stimulus. The size of QuadS responses did not return to pre-contraction levels during 10 min observation time indicating long-lasting increase in excitatory input to spinal MNs. In addition, the post...

  13. A clinical repetitive transcranial magnetic stimulation service in Australia: 6 years on.

    Science.gov (United States)

    Galletly, Cherrie A; Clarke, Patrick; Carnell, Benjamin L; Gill, Shane

    2015-11-01

    There is considerable research evidence for the effectiveness of repetitive transcranial magnetic stimulation in the treatment of depression. However, there is little information about its acceptability and outcomes in clinical settings. This naturalistic study reports on a clinical repetitive transcranial magnetic stimulation service that has been running in Adelaide, South Australia (SA), for 6 years. During this time, 214 complete acute courses were provided to patients with treatment-resistant Major Depressive Disorder. Patients received either sequential bilateral or right unilateral repetitive transcranial magnetic stimulation treatment involving either 18 or 20 sessions given over 6 or 4 weeks respectively. Data included patient demographic details, duration of depression, and medication at the beginning of their repetitive transcranial magnetic stimulation course. The Hamilton Depression Rating Scale was used to assess response to repetitive transcranial magnetic stimulation. Of those undergoing a first-time acute treatment course of repetitive transcranial magnetic stimulation (N = 167), 28% achieved remission, while a further 12% met the criteria for a response to treatment. Most patients (N = 123, 77%) had previously been treated with five or more antidepressant medications, and 77 (47%) had previously received electroconvulsive therapy. Referral rates remained high over the 6 years, indicating acceptance of the treatment by referring psychiatrists. There were no significant adverse events, and the treatment was generally well tolerated. In all, 41 patients (25%) had a second course of repetitive transcranial magnetic stimulation and 6 (4%) patients had a third course; 21 patients subsequently received maintenance repetitive transcranial magnetic stimulation. This naturalistic study showed that repetitive transcranial magnetic stimulation was well accepted by both psychiatrists and patients, and has good efficacy and safety. Furthermore

  14. Repetitive Transcranial Magnetic Stimulation: a Novel Approach for Treating Oropharyngeal Dysphagia

    OpenAIRE

    Michou, Emilia; Raginis-Zborowska, Alicja; Watanabe, Masahiro; Lodhi, Taha; Hamdy, Shaheen

    2016-01-01

    In recent years, repetitive transcranial magnetic stimulation, a technique used to produce human central neurostimulation, has attracted increased interest and been applied experimentally in the treatment of dysphagia. This review presents a synopsis of the current research for the application of repetitive transcranial magnetic stimulation (rTMS) on dysphagia. Here, we review the mechanisms underlying the effects of rTMS and the results from studies on both healthy volunteers and dysphagic p...

  15. A feasible repetitive transcranial magnetic stimulation clinical protocol in migraine prevention.

    Science.gov (United States)

    Zardouz, Shawn; Shi, Lei; Leung, Albert

    2016-01-01

    This case series was conducted to determine the clinical feasibility of a repetitive transcranial magnetic stimulation protocol for the prevention of migraine (with and without aura). Five patients with migraines underwent five repetitive transcranial magnetic stimulation sessions separated in 1- to 2-week intervals for a period of 2 months at a single tertiary medical center. Repetitive transcranial magnetic stimulation was applied to the left motor cortex with 2000 pulses (20 trains with 1s inter-train interval) delivered per session, at a frequency of 10 Hz and 80% resting motor threshold. Pre- and post-treatment numerical rating pain scales were collected, and percent reductions in intensity, frequency, and duration were generated. An average decrease in 37.8%, 32.1%, and 31.2% were noted in the intensity, frequency, and duration of migraines post-repetitive transcranial magnetic stimulation, respectively. A mean decrease in 1.9±1.0 (numerical rating pain scale ± standard deviation; range: 0.4-2.8) in headache intensity scores was noted after the repetitive transcranial magnetic stimulation sessions. The tested repetitive transcranial magnetic stimulation protocol is a well-tolerated, safe, and effective method for migraine prevention.

  16. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders A meta-analysis***

    Institute of Scientific and Technical Information of China (English)

    Yingli Zhang; Wei Liang; Shichang Yang; Ping Dai; Lijuan Shen; Changhong Wang

    2013-01-01

    OBJECTIVE: This study assessed the efficacy and tolerability of repetitive transcranial magnetic stimulation for treatment of auditory hal ucination of patients with schizophrenia spectrum disorders. DATA SOURCES: Online literature retrieval was conducted using PubMed, ISI Web of Science, EMBASE, Medline and Cochrane Central Register of Control ed Trials databases from January 1985 to May 2012. Key words were “transcranial magnetic stimulation”, “TMS”, “repetitive transcranial magnetic stimulation”, and “hal ucination”. STUDY SELECTION: Selected studies were randomized control ed trials assessing therapeutic ef-ficacy of repetitive transcranial magnetic stimulation for hal ucination in patients with schizophrenia spectrum disorders. Experimental intervention was low-frequency repetitive transcranial magnetic stimulation in left temporoparietal cortex for treatment of auditory hal ucination in schizophrenia spectrum disorders. Control groups received sham stimulation. MAIN OUTCOME MEASURES: The primary outcome was total scores of Auditory Hal ucinations Rating Scale, Auditory Hal ucination Subscale of Psychotic Symptom Rating Scale, Positive and Negative Symptom Scale-Auditory Hal ucination item, and Hal ucination Change Scale. Secondary outcomes included response rate, global mental state, adverse effects and cognitive function. RESULTS: Seventeen studies addressing repetitive transcranial magnetic stimulation for treatment of schizophrenia spectrum disorders were screened, with controls receiving sham stimulation. Al data were completely effective, involving 398 patients. Overal mean weighted effect size for repeti-tive transcranial magnetic stimulation versus sham stimulation was statistical y significant (MD =-0.42, 95%CI: -0.64 to -0.20, P = 0.000 2). Patients receiving repetitive transcranial magnetic stimulation responded more frequently than sham stimulation (OR = 2.94, 95%CI: 1.39 to 6.24, P =0.005). No significant differences were found

  17. Use of repetitive transcranial magnetic stimulation for treatment in psychiatry.

    Science.gov (United States)

    Aleman, André

    2013-08-01

    The potential of noninvasive neurostimulation by repetitive transcranial magnetic stimulation (rTMS) for improving psychiatric disorders has been studied increasingly over the past two decades. This is especially the case for major depression and for auditory-verbal hallucinations in schizophrenia. The present review briefly describes the background of this novel treatment modality and summarizes evidence from clinical trials into the efficacy of rTMS for depression and hallucinations. Evidence for efficacy in depression is stronger than for hallucinations, although a number of studies have reported clinically relevant improvements for hallucinations too. Different stimulation parameters (frequency, duration, location of stimulation) are discussed. There is a paucity of research into other psychiatric disorders, but initial evidence suggests that rTMS may also hold promise for the treatment of negative symptoms in schizophrenia, obsessive compulsive disorder and post-traumatic stress disorder. It can be concluded that rTMS induces alterations in neural networks relevant for psychiatric disorders and that more research is needed to elucidate efficacy and underlying mechanisms of action.

  18. [Repetitive transcranial magnetic stimulation: A potential therapy for cognitive disorders?

    Science.gov (United States)

    Nouhaud, C; Sherrard, R M; Belmin, J

    2017-03-01

    Considering the limited effectiveness of drugs treatments in cognitive disorders, the emergence of noninvasive techniques to modify brain function is very interesting. Among these techniques, repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability and have potential therapeutic effects on cognition and behaviour. These effects are due to physiological modifications in the stimulated cortical tissue and their associated circuits, which depend on the parameters of stimulation. The objective of this article is to specify current knowledge and efficacy of rTMS in cognitive disorders. Previous studies found very encouraging results with significant improvement of higher brain functions. Nevertheless, these few studies have limits: a few patients were enrolled, the lack of control of the mechanisms of action by brain imaging, insufficiently formalized technique and variability of cognitive tests. It is therefore necessary to perform more studies, which identify statistical significant improvement and to specify underlying mechanisms of action and the parameters of use of the rTMS to offer rTMS as a routine therapy for cognitive dysfunction. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  19. Improved discrimination of visual stimuli following repetitive transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Michael L Waterston

    Full Text Available BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a "virtual lesion" in stimulated brain regions, with correspondingly diminished behavioral performance. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of rTMS to visual cortex on subjects' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task. CONCLUSIONS/SIGNIFICANCE: Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception.

  20. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    Science.gov (United States)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  1. Left prefrontal repetitive transcranial magnetic stimulation in schizophrenia.

    Science.gov (United States)

    Holi, Matti M; Eronen, Markku; Toivonen, Kari; Toivonen, Päivi; Marttunen, Mauri; Naukkarinen, Hannu

    2004-01-01

    In a double-blind, controlled study, we examined the therapeutic effects of high-frequency left prefrontal repetitive transcranial magnetic stimulation (rTMS) on schizophrenia symptoms. A total of 22 chronic hospitalized schizophrenia patients were randomly assigned to 2 weeks (10 sessions) of real or sham rTMS. rTMS was given with the following parameters: 20 trains of 5-second 10-Hz stimulation at 100 percent motor threshold, 30 seconds apart. Effects on positive and negative symptoms, self-reported symptoms, rough neuropsychological functioning, and hormones were assessed. Although there was a significant improvement in both groups in most of the symptom measures, no real differences were found between the groups. A decrease of more than 20 percent in the total PANSS score was found in 7 control subjects but only 1 subject from the real rTMS group. There was no change in hormone levels or neuropsychological functioning, measured by the MMSE, in either group. Left prefrontal rTMS (with the used parameters) seems to produce a significant nonspecific effect of the treatment procedure but no therapeutic effect in the most chronic and severely ill schizophrenia patients.

  2. A Review of Repetitive Transcranial Magnetic Stimulation Use in Psychiatry

    Directory of Open Access Journals (Sweden)

    Onur Durmaz

    2013-08-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is a non-invasive brain stimulation technique first introduced by Barker et al. in 1985. The principle of rTMS is based on a cortical neuronal transmembrane potential stimulated by a pulsative magnetic field. This magnetic field is induced by a direct electrical current sent through a circular coil. rTMS is an effective and widely used therapeutic stimulation method for psychiatric disorders, primarily for unipolar depression. Cost-effectiveness, minor side effects and well-tolerated profile of rTMS with no need to hospitalization for administation are the prominent features of this method. Beside the information for depression, rTMS has been reported to have some remarkable impacts in alleviating symptoms of anxiety disorders. Although data regarding efficacy of rTMS in anxiety disorders is conflicting, there are positive outcomes about generalized anxiety disorder, post-traumatic stress disorder and panic disorder whereas results of rTMS treatment in obsessive-compulsive disorder are generally not favorable. Since low frequency stimulation techniques have been found to be effective in treatment of auditory hallucinations, methodological similarity in concerned studies could be accepted as a supportive aspect of efficacy. Additionally, high frequency stimulation techniques applied to prefrontal area have a potential to impact negative symptoms of schizophrenia. With improving novel techniques of this stimulation method, rTMS is being used increasingly in psychiatric disorders. However, some issues concerning rTMS treatment such as maintenance or prophilactic therapy procedures, duration of effect are remain unclear. Hence, we conclude that multicenter sham controlled studies including similar designs, sociodemographic and clinical variables, methodological protocols with larger sample sizes and studies guieded by imaging methods are warranted to determinate efficacy and side effects of rTMS use

  3. Assessment of Vascular Stent Heating with Repetitive Transcranial Magnetic Stimulation.

    Science.gov (United States)

    Varnerin, Nicole; Mirando, David; Potter-Baker, Kelsey A; Cardenas, Jesus; Cunningham, David A; Sankarasubramanian, Vishwanath; Beall, Erik; Plow, Ela B

    2017-05-01

    A high proportion of patients with stroke do not qualify for repetitive transcranial magnetic stimulation (rTMS) clinical studies due to the presence of metallic stents. The ultimate concern is that any metal could become heated due to eddy currents. However, to date, no clinical safety data are available regarding the risk of metallic stents heating with rTMS. We tested the safety of common rTMS protocols (1 Hz and 10 Hz) with stents used commonly in stroke, nitinol and elgiloy. In our method, stents were tested in gelled saline at 2 different locations: at the center and at the lobe of the coil. In addition, at each location, stent heating was evaluated in 3 different orientations: parallel to the long axis of coil, parallel to the short axis of the coil, and perpendicular to the plane of the coil. We found that stents did not heat to more than 1°C with either 1 Hz rTMS or 10 Hz rTMS in any configuration or orientation. Heating in general was greater at the lobe when the stent was oriented perpendicularly. Our study represents a new method for ex vivo quantification of stent heating. We have found that heating of stents was well below the Food and Drug Administration standards of 2°C. Thus, our study paves the way for in vivo testing of rTMS (≤10 Hz) in the presence of implanted magnetic resonance imaging-compatible stents in animal studies. When planning human safety studies though, geometry, orientation, and location relative to the coil would be important to consider as well. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. An evaluation of factors affecting duration of treatment with repetitive transcranial magnetic stimulation for depression

    Directory of Open Access Journals (Sweden)

    Roni Broder Cohen

    2007-12-01

    Full Text Available Objective: To investigate the effects of repetitive transcranialmagnetic stimulation in patients with major depression who weresubmitted to this treatment during the period from 2000 to 2006.Methods: A retrospective study with 204 patients who underwenttreatment with repetitive transcranial magnetic stimulation, collectingdata from those who experienced remission (defined as a HDRS scoreequal to or lower than 7. The patients were followed for up to 6 monthsafter treatment. Mean duration of remission for this cohort of patientswas 70.2 (± 58.4 days. Results: The only variable associated withthe duration of remission in the linear regression model was numberof repetitive transcranial magnetic stimulation sessions. Conclusion:Our findings suggest that the greater the number of sessions, the longerthe duration of repetitive transcranial magnetic stimulation effects.Consequently, future research investigating the effects of repetitivetranscranial magnetic stimulation should explore this variable in orderto maximize the therapeutic effects of this new brain stimulationtechnique.

  5. 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke

    Directory of Open Access Journals (Sweden)

    Sonia M Brodie

    2014-03-01

    Full Text Available Sensory feedback is critical for motor learning, and thus to neurorehabilitation after stroke. Whether enhancing sensory feedback by applying excitatory repetitive transcranial magnetic stimulation (rTMS over the ipsilesional primary sensory cortex (IL-S1 might enhance motor learning in chronic stroke has yet to be investigated. The present study investigated the effects of 5 Hz rTMS over IL-S1 paired with skilled motor practice on motor learning, hemiparetic cutaneous somatosensation, and motor function. Individuals with unilateral chronic stroke were pseudo-randomly divided into either Active or Sham 5 Hz rTMS groups (n=11/group. Following stimulation, both groups practiced a Serial Tracking Task (STT with the hemiparetic arm; this was repeated for 5 days. Performance on the STT was quantified by response time, peak velocity, and cumulative distance tracked at baseline, during the 5 days of practice, and at a no-rTMS retention test. Cutaneous somatosensation was measured using two-point discrimination. Standardized sensorimotor tests were performed to assess whether the effects might generalize to impact hemiparetic arm function. The active 5Hz rTMS + training group demonstrated significantly greater improvements in STT performance [response time (F1,286.04=13.016, p< 0.0005, peak velocity (F1,285.95=4.111, p=0.044, and cumulative distance (F1,285.92=4.076, p=0.044] and cutaneous somatosensation (F1,21.15=8.793, p=0.007 across all sessions compared to the sham rTMS + training group. Measures of upper extremity motor function were not significantly different for either group. Our preliminary results suggest that, when paired with motor practice, 5Hz rTMS over IL-S1 enhances motor learning related change in individuals with chronic stroke, potentially as a consequence of improved cutaneous somatosensation, however no improvement in general upper extremity function was observed.

  6. Repetitive transcranial magnetic stimulation of the superior frontal gyrus modulates craving for cigarettes.

    Science.gov (United States)

    Rose, Jed E; McClernon, F Joseph; Froeliger, Brett; Behm, Frédérique M; Preud'homme, Xavier; Krystal, Andrew D

    2011-10-15

    Previous functional magnetic resonance imaging studies have shown strong correlations between cue-elicited craving for cigarettes and activation of the superior frontal gyrus (SFG). Repetitive transcranial magnetic stimulation (rTMS) offers a noninvasive means to reversibly affect brain cortical activity, which can be applied to testing hypotheses about the causal role of SFG in modulating craving. Fifteen volunteer smokers were recruited to investigate the effects of rTMS on subjective responses to smoking versus neutral cues and to controlled presentations of cigarette smoke. On different days, participants were exposed to three conditions: 1) high-frequency (10 Hz) rTMS directed at the SFG; 2) low-frequency (1 Hz) rTMS directed at the SFG; and 3) low-frequency (1 Hz) rTMS directed at the motor cortex (control condition). Craving ratings in response to smoking versus neutral cues were differentially affected by the 10-Hz versus 1-Hz SFG condition. Craving after smoking cue presentations was elevated in the 10-Hz SFG condition, whereas craving after neutral cue presentations was reduced. Upon smoking in the 10-Hz SFG condition, ratings of immediate craving reduction as well as the intensity of interoceptive airway sensations were also attenuated. These results support the view that the SFG plays a role in modulating craving reactivity; moreover, the results suggest that the SFG plays a role in both excitatory and inhibitory influences on craving, consistent with prior research demonstrating the role of the prefrontal cortex in the elicitation as well as inhibition of drug-seeking behaviors. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. 76 FR 44489 - Medical Devices; Neurological Devices; Classification of Repetitive Transcranial Magnetic...

    Science.gov (United States)

    2011-07-26

    ... is an external device that delivers transcranial repetitive pulsed magnetic fields of sufficient... premarket notification, prior to marketing the device, which contains information about the rTMS system they... significant effect on the human environment. Thus, neither an environmental assessment nor an environmental...

  8. Repetitive transcranial magnetic stimulation modulates the impact of a negative mood induction

    NARCIS (Netherlands)

    Möbius, M.; Lacomblé, L.M.T.; Meyer, T.; Schutter, D.J.L.G.; Gielkens, T.; Becker, E.S.; Tendolkar, I.; Eijndhoven, P.F.P. van

    2017-01-01

    High frequency repetitive Transcranial Magnetic Stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) has been found to alleviate depressive symptoms. However, the mechanisms driving these effects are still poorly understood. In the current study, we tested the idea that this

  9. Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson's disease.

    NARCIS (Netherlands)

    Helmich, R.C.G.; Siebner, H.R.; Bakker, M.; Munchau, A.; Bloem, B.R.

    2006-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that can produce lasting changes in excitability and activity in cortical regions underneath the stimulation coil (local effect), but also within functionally connected cortical or subcortical regions

  10. Tibialis anterior stretch reflex in early stance is suppressed by repetitive transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Zuur, Abraham T; Christensen, Mark Schram; Sinkjær, Thomas

    2009-01-01

    Abstract A rapid plantar flexion perturbation in the early stance phase of walking elicits a large stretch reflex in tibialis anterior (TA). In this study we use repetitive Transcranial Magnetic Stimulation (rTMS) to test if this response is mediated through a transcortical pathway. TA stretch...

  11. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    Science.gov (United States)

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  12. Accelerated high-frequency repetitive transcranial magnetic stimulation enhances motor activity in rats

    NARCIS (Netherlands)

    El Arfani, Anissa; Parthoens, Joke; Demuyser, Thomas; Servaes, Stijn; De Coninck, Mattias; De Deyn, Peter Paul; Van Dam, Debby; Wyckhuys, Tine; Baeken, Chris; Smolders, Ilse; Staelens, Steven

    2017-01-01

    High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) is currently accepted as an evidence-based treatment option for treatment-resistant depression (TRD). Additionally, HF-rTMS showed beneficial effects on psychomotor retardation in patients. The classical HF-rTMS paradigms however

  13. Treating Clinical Depression with Repetitive Deep Transcranial Magnetic Stimulation Using the Brainsway H1-coil

    OpenAIRE

    Feifel, David; Pappas, Katherine

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is an emerging non-pharmacological approach to treating many brain-based disorders. rTMS uses electromagnetic coils to stimulate areas of the brain non-invasively. Deep transcranial magnetic stimulation (dTMS) with the Brainsway H1-coil system specifically is a type of rTMS indicated for treating patients with major depressive disorder (MDD) who are resistant to medication. The unique H1-coil design of this device is able to stimulate neuron...

  14. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making.

    Science.gov (United States)

    van 't Wout, Mascha; Kahn, René S; Sanfey, Alan G; Aleman, André

    2005-11-07

    Although decision-making is typically seen as a rational process, emotions play a role in tasks that include unfairness. Recently, activation in the right dorsolateral prefrontal cortex during offers experienced as unfair in the Ultimatum Game was suggested to subserve goal maintenance in this task. This is restricted to correlational evidence, however, and it remains unclear whether the dorsolateral prefrontal cortex is crucial for strategic decision-making. The present study used repetitive transcranial magnetic stimulation in order to investigate the causal role of the dorsolateral prefrontal cortex in strategic decision-making in the Ultimatum Game. The results showed that repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex resulted in an altered decision-making strategy compared with sham stimulation. We conclude that the dorsolateral prefrontal cortex is causally implicated in strategic decision-making in healthy human study participants.

  15. Neuropeptide Y as a possible homeostatic element for changes in cortical excitability induced by repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Jazmati, Danny; Neubacher, Ute; Funke, Klaus

    2018-02-24

    Repetitive transcranial magnetic stimulation (rTMS) is able to modify cortical excitability. Rat rTMS studies revealed a modulation of inhibitory systems, in particular that of the parvalbumin-expressing (PV+) interneurons, when using intermittent theta-burst stimulation (iTBS). The potential disinhibitory action of iTBS raises the questions of how neocortical circuits stabilize excitatory-inhibitory balance within a physiological range. Neuropeptide Y (NPY) appears to be one candidate. Analysis of cortical expression of PV, NPY and vesicular glutamate transporter type 1 (vGluT1) by immunohistochemical means at the level of cell counts, mean neuropil expression and single cell pre-/postsynaptic expression, with and without intraventricular NPY-injection. Our results show that iTBS not only reduced the number of neurons with high-PV expression in a dose-dependent fashion, but also increased the cortical expression of NPY, discussed to reduce glutamatergic transmission, and this was further associated with a reduced vGluT1 expression, an indicator of glutamateric presynaptic activity. Interneurons showing a low-PV expression exhibit less presynaptic vGluT1 expression compared to those with a high-PV expression. Intraventricular application of NPY prior to iTBS prevented the iTBS-induced reduction in the number of high-PV neurons, the reduction in tissue vGluT1 level and that presynaptic to high-PV cells. We conclude that NPY, possibly via a global but also slow homeostatic control of glutamatergic transmission, modulates the strength and direction of the iTBS effects, likely preventing pathological imbalance of excitatory and inhibitory cortical activity but still allowing enough disinhibition beneficial for plastic changes as during learning. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Repetitive Transcranial Magnetic Stimulation (rTMS) Treatment in Enduring Anorexia Nervosa: A Case Series.

    Science.gov (United States)

    McClelland, Jessica; Kekic, Maria; Campbell, Iain C; Schmidt, Ulrike

    2016-03-01

    This case series examined the therapeutic potential of repetitive transcranial magnetic stimulation in five women with enduring anorexia nervosa. Participants received ~20 sessions of neuronavigated high-frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex. Body mass index, eating disorder (ED) symptoms and mood were assessed pre-treatment and post-treatment, at 6-month and 12-month follow-up (FU). Qualitative feedback regarding the intervention was obtained from participants and carers. From pre-treatment to post-treatment, ED and affective symptoms improved significantly, and body mass index remained stable. Further improvements in ED symptoms/mood were seen at 6-month FU with 3/5 and 2/5 participants deemed 'recovered' on the Eating Disorders Examination Questionnaire and Depression, Anxiety and Stress Scale, respectively. However, most participants had lost some weight, and therapeutic effects on psychopathology had waned by 12-month FU. Qualitative feedback regarding the intervention was encouraging. Repetitive transcranial magnetic stimulation was well tolerated, and preliminary evidence is provided for its therapeutic potential in anorexia nervosa. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  17. Chronic Enhancement of Serotonin Facilitates Excitatory Transcranial Direct Current Stimulation-Induced Neuroplasticity.

    Science.gov (United States)

    Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang; Nitsche, Michael A

    2016-04-01

    Serotonin affects memory formation via modulating long-term potentiation (LTP) and depression (LTD). Accordingly, acute selective serotonin reuptake inhibitor (SSRI) administration enhanced LTP-like plasticity induced by transcranial direct current stimulation (tDCS) in humans. However, it usually takes some time for SSRI to reduce clinical symptoms such as anxiety, negative mood, and related symptoms of depression and anxiety disorders. This might be related to an at least partially different effect of chronic serotonergic enhancement on plasticity, as compared with single-dose medication. Here we explored the impact of chronic application of the SSRI citalopram (CIT) on plasticity induced by tDCS in healthy humans in a partially double-blinded, placebo (PLC)-controlled, randomized crossover study. Furthermore, we explored the dependency of plasticity induction from the glutamatergic system via N-methyl-D-aspartate receptor antagonism. Twelve healthy subjects received PLC medication, combined with anodal or cathodal tDCS of the primary motor cortex. Afterwards, the same subjects took CIT (20 mg/day) consecutively for 35 days. During this period, four additional interventions were performed (CIT and PLC medication with anodal/cathodal tDCS, CIT and dextromethorphan (150 mg) with anodal/cathodal tDCS). Plasticity was monitored by motor-evoked potential amplitudes elicited by transcranial magnetic stimulation. Chronic application of CIT increased and prolonged the LTP-like plasticity induced by anodal tDCS for over 24 h, and converted cathodal tDCS-induced LTD-like plasticity into facilitation. These effects were abolished by dextromethorphan. Chronic serotonergic enhancement results in a strengthening of LTP-like glutamatergic plasticity, which might partially explain the therapeutic impact of SSRIs in depression and other neuropsychiatric diseases.

  18. An Investigation of the Late Excitatory Potentials in the Hand following Transcranial Magnetic Stimulation in Early Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Christina Balla

    2014-11-01

    Full Text Available Background: Recent neuroimaging studies in humans support the clinical observations that the motor cortex is affected early in the course of Alzheimer's disease (AD. Patients and Methods: We measured the silent period (SP induced by transcranial magnetic stimulation in AD patients in the very early stage of the disease, and we explored whether and in which way the pharmacologic manipulation of the cholinergic system could modify it. Results: An increase in the duration of the SP was observed in AD patients in the early stage in comparison to controls. After 2 months of treatment with donepezil, the duration did not differ significantly from that of normal subjects. The results of our study show a fragmentation and an enlargement of the SP in the presence of multiple late excitatory potentials (LEPs in early untreated AD patients. These LEPs were also modulated by donepezil. Conclusions: The results suggest an early functional impairment of cholinergic neurotransmission in AD. The disturbance in acetylcholine output in early AD leads to a decrease in excitability of the motor system.

  19. Pressure pain thresholds increase after preconditioning 1 Hz repetitive transcranial magnetic stimulation with transcranial direct current stimulation.

    Science.gov (United States)

    Moloney, Tonya M; Witney, Alice G

    2014-01-01

    The primary motor cortex (M1) is an effective target of non-invasive cortical stimulation (NICS) for pain threshold modulation. It has been suggested that the initial level of cortical excitability of M1 plays a key role in the plastic effects of NICS. Here we investigate whether transcranial direct current stimulation (tDCS) primed 1 Hz repetitive transcranial magnetic stimulation (rTMS) modulates experimental pressure pain thresholds and if this is related to observed alterations in cortical excitability. 15 healthy, male participants received 10 min 1 mA anodal, cathodal and sham tDCS to the left M1 before 15 min 1 Hz rTMS in separate sessions over a period of 3 weeks. Motor cortical excitability was recorded at baseline, post-tDCS priming and post-rTMS through recording motor evoked potentials (MEPs) from right FDI muscle. Pressure pain thresholds were determined by quantitative sensory testing (QST) through a computerized algometer, on the palmar thenar of the right hand pre- and post-stimulation. Cathodal tDCS-primed 1 Hz-rTMS was found to reverse the expected suppressive effect of 1 Hz rTMS on cortical excitability; leading to an overall increase in activity (ppain thresholds (ppain. This study demonstrates that priming the M1 before stimulation of 1 Hz-rTMS modulates experimental pressure pain thresholds in a safe and controlled manner, producing a form of analgesia.

  20. Corticospinal integrity and motor impairment predict outcomes after excitatory repetitive transcranial magnetic stimulation: a preliminary study.

    Science.gov (United States)

    Lai, Chih-Jou; Wang, Chih-Pin; Tsai, Po-Yi; Chan, Rai-Chi; Lin, Shan-Hui; Lin, Fu-Gong; Hsieh, Chin-Yi

    2015-01-01

    To identify the effective predictors for therapeutic outcomes based on intermittent theta-burst stimulation (iTBS). A sham-controlled, double-blind parallel study design. A tertiary hospital. People with stroke (N=72) who presented with unilateral hemiplegia. Ten consecutive sessions of real or sham iTBS were implemented with the aim of enhancing hand function. Patients were categorized into 4 groups according to the presence (MEP+) or absence (MEP-) of motor-evoked potentials (MEPs) and grip strength according to the Medical Research Council (MRC) scale. Cortical excitability, Wolf Motor Function Test (WMFT), finger-tapping task (FT), and simple reaction time were performed before and after the sessions. MEPs and the MRC scale were predictive of iTBS therapeutic outcomes. Group A (MEP+, MRC>1) exhibited the greatest WMFT change (7.6±2.3, P1; 5.2±2.2 score change) and group C (MEP-, MRC=0; 2.3±1.5 score change). These improvements were correlated significantly with baseline motor function and ipsilesional maximum MEP amplitude. The effectiveness of iTBS modulation for poststroke motor enhancement depends on baseline hand grip strength and the presence of MEPs. Our findings indicate that establishing neurostimulation strategies based on the proposed electrophysiological and clinical criteria can allow iTBS to be executed with substantial precision. Effective neuromodulatory strategies can be formulated by using electrophysiological features and clinical presentation information as guidelines. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Enhanced accuracy in novel mirror drawing after repetitive transcranial magnetic stimulation-induced proprioceptive deafferentation

    DEFF Research Database (Denmark)

    Balslev, Daniela; Christensen, Lars O.D.; Lee, Ji-hang

    2004-01-01

    a performance benefit. In this study, we tested whether deafferentation induced by repetitive transcranial magnetic stimulation (rTMS) can improve mirror tracing skills in normal subjects. Hand trajectory error during novel mirror drawing was compared across two groups of subjects that received either 1 Hz r......TMS over the somatosensory cortex contralateral to the hand or sham stimulation. Mirror tracing was more accurate after rTMS than after sham stimulation. Using a position-matching task, we confirmed that rTMS reduced proprioceptive acuity and that this reduction was largest when the coil was placed...

  2. Repetitive Transcranial Magnetic Stimulation for Wernicke-Korsakoff Syndrome: A Case Report.

    Science.gov (United States)

    Chung, So Won; Park, Shin Who; Seo, Young Jae; Kim, Jae-Hyung; Lee, Chan Ho; Lim, Jong Youb

    2017-02-01

    A 57-year-old man who was diagnosed with Wernicke-Korsakoff syndrome showed severe impairment of cognitive function and a craving for alcohol, even after sufficient supplementation with thiamine. After completing 10 sessions of 10 Hz repetitive transcranial magnetic stimulation (rTMS) at 100% of the resting motor threshold over the left dorsolateral prefrontal cortex, dramatic improvement in cognitive function and a reduction in craving for alcohol were noted. This is the first case report of the efficacy of a high-frequency rTMS in the treatment of Wernicke-Korsakoff syndrome.

  3. Pressure pain thresholds increase after preconditioning 1 Hz repetitive transcranial magnetic stimulation with transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Tonya M Moloney

    Full Text Available BACKGROUND: The primary motor cortex (M1 is an effective target of non-invasive cortical stimulation (NICS for pain threshold modulation. It has been suggested that the initial level of cortical excitability of M1 plays a key role in the plastic effects of NICS. OBJECTIVE: Here we investigate whether transcranial direct current stimulation (tDCS primed 1 Hz repetitive transcranial magnetic stimulation (rTMS modulates experimental pressure pain thresholds and if this is related to observed alterations in cortical excitability. METHOD: 15 healthy, male participants received 10 min 1 mA anodal, cathodal and sham tDCS to the left M1 before 15 min 1 Hz rTMS in separate sessions over a period of 3 weeks. Motor cortical excitability was recorded at baseline, post-tDCS priming and post-rTMS through recording motor evoked potentials (MEPs from right FDI muscle. Pressure pain thresholds were determined by quantitative sensory testing (QST through a computerized algometer, on the palmar thenar of the right hand pre- and post-stimulation. RESULTS: Cathodal tDCS-primed 1 Hz-rTMS was found to reverse the expected suppressive effect of 1 Hz rTMS on cortical excitability; leading to an overall increase in activity (p<0.001 with a parallel increase in pressure pain thresholds (p<0.01. In contrast, anodal tDCS-primed 1 Hz-rTMS resulted in a corresponding decrease in cortical excitability (p<0.05, with no significant effect on pressure pain. CONCLUSION: This study demonstrates that priming the M1 before stimulation of 1 Hz-rTMS modulates experimental pressure pain thresholds in a safe and controlled manner, producing a form of analgesia.

  4. Effects of Repetitive Transcranial Magnetic Stimulation in Performing Eye-Hand Integration Tasks: Four Preliminary Studies with Children Showing Low-Functioning Autism

    Science.gov (United States)

    Panerai, Simonetta; Tasca, Domenica; Lanuzza, Bartolo; Trubia, Grazia; Ferri, Raffaele; Musso, Sabrina; Alagona, Giovanna; Di Guardo, Giuseppe; Barone, Concetta; Gaglione, Maria P.; Elia, Maurizio

    2014-01-01

    This report, based on four studies with children with low-functioning autism, aimed at evaluating the effects of repetitive transcranial magnetic stimulation delivered on the left and right premotor cortices on eye-hand integration tasks; defining the long-lasting effects of high-frequency repetitive transcranial magnetic stimulation; and…

  5. The influence of low-frequency left prefrontal repetitive transcranial magnetic stimulation on memory for words but not for faces

    Czech Academy of Sciences Publication Activity Database

    Škrdlantová, L.; Horáček, J.; Dockery, C.; Lukavský, Jiří; Kopeček, M.; Preiss, M.; Novák, T.; Höschl, C.

    2005-01-01

    Roč. 54, č. 1 (2005), s. 123-128 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z70250504 Keywords : face memory * verbal memory * repetitive transcranial magnetic stimulation Subject RIV: AN - Psychology Impact factor: 1.806, year: 2005 http://www.biomed.cas.cz/physiolres/pdf/54/54_123.pdf

  6. Modulation of N400 in Chronic Non-Fluent Aphasia Using Low Frequency Repetitive Transcranial Magnetic Stimulation (rTMS)

    Science.gov (United States)

    Barwood, Caroline H. S.; Murdoch, Bruce E.; Whelan, Brooke-Mai; Lloyd, David; Riek, Stephan; O'Sullivan, John D.; Coulthard, Alan; Wong, Andrew

    2011-01-01

    Low frequency Repetitive Transcranial Magnetic Stimulation (rTMS) has previously been applied to language homologues in non-fluent populations of persons with aphasia yielding significant improvements in behavioral language function up to 43 months post stimulation. The present study aimed to investigate the electrophysiological correlates…

  7. Partial clinical response to 2 weeks of 2 Hz repetitive transcranial magnetic stimulation to the right parietal cortex in depression

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Laman, D.M.; Honk, E.J. van; Vergouwen, A.C.M.; Koerselman, F.

    2009-01-01

    The aim of this treatment study was to evaluate the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) over the right parietal cortex in depression. In a double-blind, sham-controlled design ten consecutive sessions of 2 Hz rTMS (inter-pulse interval 0.5 s) at 90% motor

  8. Focal hand dystonia: individualized intervention with repeated application of repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Kimberley, Teresa Jacobson; Borich, Michael R; Schmidt, Rebekah L; Carey, James R; Gillick, Bernadette

    2015-04-01

    To examine for individual factors that may predict response to inhibitory repetitive transcranial magnetic stimulation (rTMS) in focal hand dystonia (FHD); to present the method for determining optimal stimulation to increase inhibition in a given patient; and to examine individual responses to prolonged intervention. Single-subject design to determine optimal parameters to increase inhibition for a given subject and to use the selected parameters once per week for 6 weeks, with 1-week follow-up, to determine response. Clinical research laboratory. A volunteer sample of subjects with FHD (N = 2). One participant had transcranial magnetic stimulation responses indicating impaired inhibition, and the other had responses within normative limits. There were 1200 pulses of 1-Hz rTMS delivered using 4 different stimulation sites/intensity combinations: primary motor cortex at 90% or 110% of resting motor threshold (RMT) and dorsal premotor cortex (PMd) at 90% or 110% of RMT. The parameters producing the greatest within-session increase in cortical silent period (CSP) duration were then used as the intervention. Response variables included handwriting pressure and velocity, subjective symptom rating, CSP, and short latency intracortical inhibition and facilitation. The individual with baseline transcranial magnetic stimulation responses indicating impaired inhibition responded favorably to the repeated intervention, with reduced handwriting force, an increase in the CSP, and subjective report of moderate symptom improvement at 1-week follow-up. The individual with normative baseline responses failed to respond to the intervention. In both subjects, 90% of RMT to the PMd produced the greatest lengthening of the CSP and was used as the intervention. An individualized understanding of neurophysiological measures can be an indicator of responsiveness to inhibitory rTMS in focal dystonia, with further work needed to determine likely responders versus nonresponders. Copyright

  9. Treating Clinical Depression with Repetitive Deep Transcranial Magnetic Stimulation Using the Brainsway H1-coil.

    Science.gov (United States)

    Feifel, David; Pappas, Katherine

    2016-10-04

    Repetitive transcranial magnetic stimulation (rTMS) is an emerging non-pharmacological approach to treating many brain-based disorders. rTMS uses electromagnetic coils to stimulate areas of the brain non-invasively. Deep transcranial magnetic stimulation (dTMS) with the Brainsway H1-coil system specifically is a type of rTMS indicated for treating patients with major depressive disorder (MDD) who are resistant to medication. The unique H1-coil design of this device is able to stimulate neuronal pathways that lie deeper in the targeted brain areas than those reached by conventional rTMS coils. dTMS is considered to be low-risk and well tolerated, making it a viable treatment option for people who have not responded to medication or psychotherapy trials for their depression. Randomized, sham-control studies have demonstrated that dTMS produces significantly greater improvement in depressive symptoms than sham dTMS treatment in patients with major depression that has not responded to antidepressant medication. In this paper, we will review the methodology for treating major depression with dTMS using an H1-coil.

  10. Is there potential for repetitive Transcranial Magnetic Stimulation (rTMS) as a treatment of OCD?

    Science.gov (United States)

    Zaman, Rashid; Robbins, Trevor W

    2017-09-01

    Obsessive-Compulsive Disorder (OCD) is a common and highly debilitating psychiatric disorder. Amongst OCD sufferers are a significant number (40-60%) of so-called non-responders who do not fully respond to commonly available treatments, which include medications (Selective Serotonin Reuptake Inhibitors-SSRIs) and cognitive behavior therapy (CBT). Modern 'neuromodulatory' techniques such as Deep Brain Stimulation (DBS), repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS) potentially offer alternative forms of treatment for OCD patients who either do not respond to, or are unable or unwilling to take SSRIs and undergo CBT. Although shown to be effective in treatment resistant OCD, DBS requires invasive neurosurgical procedures with associated risks. On the other hand, rTMS and tDCS are non-invasive forms of treatment, which are largely risk free, but the evidence of their efficacy so far is somewhat limited, with only small number of published studies. In this brief survey we will address the potential of rTMS as a therapeutic tool for OCD and review the published literature on the cortical targets for rTMS used so far. We will also discuss some of the newer variants of rTMS techniques only a few of which have been employed so far, and speculate whether there might be a place for rTMS as a standard treatment in OCD, along side CBT, SSRIs and DBS.

  11. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Premji, Azra; Ziluk, Angela; Nelson, Aimee J

    2010-08-05

    Intermittent theta-burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI). The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs) recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS. Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS. We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.

  12. Effective treatment of narcolepsy-like symptoms with high-frequency repetitive transcranial magnetic stimulation

    Science.gov (United States)

    Lai, Jian-bo; Han, Mao-mao; Xu, Yi; Hu, Shao-hua

    2017-01-01

    Abstract Rationale: Narcolepsy is a rare sleep disorder with disrupted sleep-architecture. Clinical management of narcolepsy lies dominantly on symptom-driven pharmacotherapy. The treatment role of repetitive transcranial magnetic stimulation (rTMS) for narcolepsy remains unexplored. Patient concerns: In this paper, we present a case of a 14-year-old young girl with excessive daytime sleepiness (EDS), cataplexy and hypnagogic hallucinations. Diagnoses: After excluding other possible medical conditions, this patient was primarily diagnosed with narcolepsy. Interventions: The patient received 25 sessions of high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC). Outcomes: The symptoms of EDS and cataplexy significantly improved after rTMS treatment. Meanwhile, her score in the Epworth sleep scale (ESS) also remarkably decreased. Lessons: This case indicates that rTMS may be selected as a safe and effective alternative strategy for treating narcolepsy-like symptoms. Well-designed researches are warranted in future investigations on this topic. PMID:29145290

  13. A case of cerebral reversible vasoconstriction syndrome triggered by repetition transcranial magnetic stimulation.

    Science.gov (United States)

    Sato, Mamiko; Yamate, Koji; Hayashi, Hiromi; Miura, Toyoaki; Kobayashi, Yasutaka

    2017-08-31

    A 75-year-old man was admitted for combined low-frequency repetitive transcranial magnetic stimulation (rTMS) and intensive occupational therapy. Five days after the initiation of rTMS, he developed hypotension and temporary exacerbation of the right hemiplegia with thunderclap headache. MRA showed segmental stenosis of the left middle cerebral artery, which findings were improved at 9 days after the onset of the headache. He was diagnosed as having the reversible cerebral vasoconstriction syndrome (RCVS). The rTMS was recognized as safe rehabilitation treatment. However, it is necessary to recognize that RCVS can become one of the precipitants. This is the first report of RCVS triggered by rTMS.

  14. Repetitive transcranial magnetic stimulation in cervical dystonia: effect of site and repetition in a randomized pilot trial.

    Directory of Open Access Journals (Sweden)

    Sarah Pirio Richardson

    Full Text Available Dystonia is characterized by abnormal posturing due to sustained muscle contraction, which leads to pain and significant disability. New therapeutic targets are needed in this disorder. The objective of this randomized, sham-controlled, blinded exploratory study is to identify a specific motor system target for non-invasive neuromodulation and to evaluate this target in terms of safety and tolerability in the cervical dystonia (CD population. Eight CD subjects were given 15-minute sessions of low-frequency (0.2 Hz repetitive transcranial magnetic stimulation (rTMS over the primary motor cortex (MC, dorsal premotor cortex (dPM, supplementary motor area (SMA, anterior cingulate cortex (ACC and a sham condition with each session separated by at least two days. The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS score was rated in a blinded fashion immediately pre- and post-intervention. Secondary outcomes included physiology and tolerability ratings. The mean change in TWSTRS severity score by site was 0.25 ± 1.7 (ACC, -2.9 ± 3.4 (dPM, -3.0 ± 4.8 (MC, -0.5 ± 1.1 (SHAM, and -1.5 ± 3.2 (SMA with negative numbers indicating improvement in symptom control. TWSTRS scores decreased from Session 1 (15.1 ± 5.1 to Session 5 (11.0 ± 7.6. The treatment was tolerable and safe. Physiology data were acquired on 6 of 8 subjects and showed no change over time. These results suggest rTMS can modulate CD symptoms. Both dPM and MC are areas to be targeted in further rTMS studies. The improvement in TWSTRS scores over time with multiple rTMS sessions deserves further evaluation.

  15. Efficacy of bilateral repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia : results of a multicenter double-blind randomized controlled trial

    NARCIS (Netherlands)

    Dlabac-de Lange, J. J.; Bais, L.; van Es, F. D.; Visser, B. G. J.; Reinink, E.; Bakker, B.; van den Heuvel, E. R.; Aleman, A.; Knegtering, H.

    Background. Few studies have investigated the efficacy of repetitive transcranial magnetic stimulation (rTMS) treatment for negative symptoms of schizophrenia, reporting inconsistent results. We aimed to investigate whether 10 Hz stimulation of the bilateral dorsolateral prefrontal cortex during 3

  16. Repetitive transcranial magnetic stimulation and transcranial direct-current stimulation in neuropathic pain due to radiculopathy: a randomized sham-controlled comparative study.

    Science.gov (United States)

    Attal, Nadine; Ayache, Samar S; Ciampi De Andrade, Daniel; Mhalla, Alaa; Baudic, Sophie; Jazat, Frédérique; Ahdab, Rechdi; Neves, Danusa O; Sorel, Marc; Lefaucheur, Jean-Pascal; Bouhassira, Didier

    2016-06-01

    No study has directly compared the effectiveness of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS) in neuropathic pain (NP). In this 2-centre randomised double-blind sham-controlled study, we compared the efficacy of 10-Hz rTMS and anodal 2-mA tDCS of the motor cortex and sham stimulation contralateral to the painful area (3 daily sessions) in patients with NP due to lumbosacral radiculopathy. Average pain intensity (primary outcome) was evaluated after each session and 5 days later. Secondary outcomes included neuropathic symptoms and thermal pain thresholds for the upper limbs. We used an innovative design that minimised bias by randomly assigning patients to 1 of 2 groups: active rTMS and tDCS or sham rTMS and tDCS. For each treatment group (active or sham), the order of the sessions was again randomised according to a crossover design. In total, 51 patients were screened and 35 (51% women) were randomized. Active rTMS was superior to tDCS and sham in pain intensity (F = 2.89 and P = 0.023). Transcranial direct-current stimulation was not superior to sham, but its analgesic effects were correlated to that of rTMS (P = 0.046), suggesting common mechanisms of action. Repetitive transcranial magnetic stimulation lowered cold pain thresholds (P = 0.04) and its effect on cold pain was correlated with its analgesic efficacy (P = 0.006). However, rTMS had no impact on individual neuropathic symptoms. Thus, rTMS is more effective than tDCS and sham in patients with NP due to lumbosacral radiculopathy and may modulate the sensory and affective dimensions of pain.

  17. Effect of repetitive transcranial magnetic stimulation on reducing spasticity in patients suffering from HTLV-1-associated myelopathy.

    Science.gov (United States)

    Amiri, Mostafa; Nafissi, Shahriar; Jamal-Omidi, Shirin; Amiri, Motahareh; Fatehi, Farzad

    2014-12-01

    Human T-lymphotropic virus type 1 has been implicated in human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Regarding its endemicity in Iran and the role of repetitive transcranial magnetic stimulation in reducing spasticity, we decided to evaluate the efficacy of repetitive transcranial magnetic stimulation in reducing spasticity (as primary outcome) and pain, muscle power, and quality of life (as secondary outcomes) in patients suffering from HAM/TSP. In this pretest-posttest study, nine definite patients with HAM/TSP (according to WHO guidelines) were recruited. All patients underwent five consecutive daily sessions of active repetitive transcranial magnetic stimulation (each session consisting of 20 trains of 10 pulses at 5 Hz and an intensity of 90% of resting motor threshold for the biceps brachii muscle). Main outcome measures including spasticity (by modified Ashworth scale), pain (by visual analog scale), muscle power, and quality of life (by SF 36) were measured before the study and days 5, 7, 30 after the termination of the sessions. Seven (77.8%) females and 2 (22.2%) males were recruited with the mean age of 52 ± 12.67 years, and the mean duration of the disease was 5 ± 3.94. Comparison of the repeated measures showed a statistically significant decrease in pain and spasticity in lower limbs. The decrement in spasticity was persistent even 30 days after the intervention; however, the pain reduction was seen only 5 days after the procedure. No change in quality of life, and muscle power was detected. It seems that repetitive transcranial magnetic stimulation could decrease spasticity and pain in patients with HAM/TSP, and this effect could persistently continue by 1 month, but it did not influence patients' muscle power and quality of life, and it could be used as an adjuvant therapy in patients suffering from human T-lymphotropic virus type 1-associated HAM/TSP.

  18. Evaluating the role of prefrontal and parietal cortices in memory-guided response with repetitive transcranial magnetic stimulation

    OpenAIRE

    Hamidi, Massihullah; Tononi, Giulio; Postle, Bradley R.

    2008-01-01

    The dorsolateral prefrontal cortex (dlPFC) plays an important role in working memory, including the control of memory-guided response. In this study, with 24 subjects, we used high frequency repetitive transcranial magnetic stimulation (rTMS) to evaluate the role of the dlPFC in memory-guided response to two different types of spatial working memory tasks: one requiring a recognition decision about a probe stimulus (operationalized with a yes/no button press), another requiring direct recall ...

  19. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients.

    Science.gov (United States)

    Cha, Hyun Gyu; Ji, Sang-Goo; Kim, Myoung-Kwon

    2016-07-01

    [Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients.

  20. Long-lasting repetitive transcranial magnetic stimulation modulates electroencephalography oscillation in patients with disorders of consciousness.

    Science.gov (United States)

    Xia, Xiaoyu; Liu, Yang; Bai, Yang; Liu, Ziyuan; Yang, Yi; Guo, Yongkun; Xu, Ruxiang; Gao, Xiaorong; Li, Xiaoli; He, Jianghong

    2017-10-18

    Repetitive transcranial magnetic stimulation (rTMS) has been applied for the treatment of patients with disorders of consciousness (DOC). Timely and accurate assessments of its modulation effects are very useful. This study evaluated rTMS modulation effects on electroencephalography (EEG) oscillation in patients with chronic DOC. Eighteen patients with a diagnosis of DOC lasting more than 3 months were recruited. All patients received one session of 10-Hz rTMS at the left dorsolateral prefrontal cortex and then 12 of them received consecutive rTMS treatment everyday for 20 consecutive days. Resting-state EEGs were recorded before the experiment (T0) after one session of rTMS (T1) and after the entire treatment (T2). The JFK Coma Recovery Scale-Revised scale scores were also recorded at the time points. Our data showed that application of 10-Hz rTMS to the left dorsolateral prefrontal cortex decreased low-frequency band power and increased high-frequency band power in DOC patients, especially in minimal conscious state patients. Considering the correlation of the EEG spectrum with the consciousness level of patients with DOC, quantitative EEG might be useful for assessment of the effect of rTMS in DOC patients.

  1. Chronic treatment with repetitive transcranial magnetic stimulation inhibits seizure induction by electroconvulsive shock in rats.

    Science.gov (United States)

    Fleischmann, A; Hirschmann, S; Dolberg, O T; Dannon, P N; Grunhaus, L

    1999-03-15

    Studies in laboratory animals suggest that repetitive transcranial magnetic stimulation (rTMS) and electroconvulsive shock (ECS) increase seizure inhibition acutely. This study was designed to explore whether chronic rTMS would also have seizure inhibition properties. To this purpose we administered rTMS (Magstim Rapid) and sham rTMS twice daily (2.5 T, 4-sec train duration, 20 Hz) to two groups of 10 rats for 16 days. The rTMS coil was a 50-mm figure-8 coil held directly over the rat's head. Raters were blind to experimental groups. On days 11, 17, and 21 (5 days after the last rTMS) ECS was administered with a Siemens convulsator using three electrical charge levels. Variables examined were the presence or absence of seizures and seizure length (measured from the initiation of the tonic contraction until the end of the limb movement). At day 11 rTMS had no effect on seizures, and both rTMS and sham rTMS animals convulsed equally. At day 17, however, rTMS-treated animals convulsed significantly less (both at presence/absence of seizures, and at seizure length) than sham rTMS animals. At day 21 the effects of rTMS had disappeared. These findings suggest that rTMS administered chronically leads to changes in seizure threshold similar to those reported for ECS and ECT; however, these effects were short-lived.

  2. Repetitive transcranial magnetic stimulation as a neuropsychiatric tool: present status and future potential.

    Science.gov (United States)

    Post, R M; Kimbrell, T A; McCann, U D; Dunn, R T; Osuch, E A; Speer, A M; Weiss, S R

    1999-03-01

    Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising therapeutic intervention in the treatment of affective disorders. The differences in the type of electrical stimulation required for therapeutic efficacy by rTMS and electroconvulsive therapy (ECT) are discussed. In contrast to ECT, rTMS would not appear to require the generation of a major motor seizure to achieve therapeutic efficacy. Accordingly, it carries the potentially important clinical advantages of not requiring anesthesia and of avoiding side effects such as transient memory loss. Preclinical studies on long-term potentiation (LTP) and long-term depression (LTD) in hippocampal and amygdala slices, as well as clinical data from neuroimaging studies, have provided encouraging clues for potential frequency-dependent effects of rTMS. Preliminary evidence from position emission tomography (PET) scans suggests that higher frequency (20 Hz) stimulation may increase brain glucose metabolism in a transsynaptic fashion, whereas lower frequency (1 Hz) stimulation may decrease it. Therefore, the ability of rTMS to control the frequency as well as the location of stimulation, in addition to its other advantages, has opened up new possibilities for clinical explorations and treatments of neuropsychiatric conditions.

  3. The application of low frequency repetitive transcranial magnetic stimulation in rehabilitation of Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    WU Zhuo-hua

    2013-07-01

    Full Text Available Objective To explore the application value of low frequency repetitive transcranial magnetic stimulation (rTMS in Parkinson's disease (PD patients and electrophysiological research. Methods Fifty-six PD patients treated in the Department of Neurology of our hospital from September 2010 to September 2012 were randomly divided into 2 groups, group A (N = 28 and group B (N = 28. Patients in group A were given conventional drug treatment and rehabilitation training, while patients in group B were given low frequency rTMS on the basis of conventional drug treatment and rehabilitation training. After 3 weeks, the scores of Unified Parkinson's Disease Rating Scale (UPDRS, resting threshold (RT, cortical latent period, nerve root latent period, central motor conduction time (CMCT and the incidence of adverse reactions were compared between 2 groups. Results After intervention, the emotion, ability of daily living and motor function of patients in group B was obviously improved, and the scores of UPDRS in group B were significantly lower than that in group A (P 0.05. Conclusion The effect of low frequency rTMS in the treatment for PD is evident, safe and reliable, and with less adverse reaction. It can be used as a noninvasive physical treatment measure for PD.

  4. Poststroke dysphagia rehabilitation by repetitive transcranial magnetic stimulation: a noncontrolled pilot study.

    Science.gov (United States)

    Verin, E; Leroi, A M

    2009-06-01

    Poststroke dysphagia is frequent and significantly increases patient mortality. In two thirds of cases there is a spontaneous improvement in a few weeks, but in the other third, oropharyngeal dysphagia persists. Repetitive transcranial magnetic stimulation (rTMS) is known to excite or inhibit cortical neurons, depending on stimulation frequency. The aim of this noncontrolled pilot study was to assess the feasibility and the effects of 1-Hz rTMS, known to have an inhibitory effect, on poststroke dysphagia. Seven patients (3 females, age = 65 +/- 10 years), with poststroke dysphagia due to hemispheric or subhemispheric stroke more than 6 months earlier (56 +/- 50 months) diagnosed by videofluoroscopy, participated in the study. rTMS at 1 Hz was applied for 20 min per day every day for 5 days to the healthy hemisphere to decrease transcallosal inhibition. The evaluation was performed using the dysphagia handicap index and videofluoroscopy. The dysphagia handicap index demonstrated that the patients had mild oropharyngeal dysphagia. Initially, the score was 43 +/- 9 of a possible 120 which decreased to 30 +/- 7 (p study demonstrated that rTMS is feasible in poststroke dysphagia and improves swallowing coordination. Our results now need to be confirmed by a randomized controlled study with a larger patient population.

  5. Daily left prefrontal repetitive transcranial magnetic stimulation for medication-resistant burning mouth syndrome.

    Science.gov (United States)

    Umezaki, Y; Badran, B W; Gonzales, T S; George, M S

    2015-08-01

    Burning mouth syndrome (BMS) is a persistent and chronic burning sensation in the mouth in the absence of any abnormal organic findings. The pathophysiology of BMS is unclear and its treatment is not fully established. Although antidepressant medication is commonly used for treatment, there are some medication-resistant patients, and a new treatment for medication-resistant BMS is needed. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technology approved by the US Food and Drug Administration (FDA) for the treatment of depression. Recent studies have found beneficial effects of TMS for the treatment of pain. A case of BMS treated successfully with daily left prefrontal rTMS over a 2-week period is reported here. Based on this patient's clinical course and a recent pain study, the mechanism by which TMS may act to decrease the burning pain is discussed. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Combining near-infrared spectroscopy with electroencephalography and repetitive transcranial magnetic stimulation

    Science.gov (United States)

    Näsi, Tiina; Kotilahti, Kalle; Mäki, Hanna; Nissilä, Ilkka; Meriläinen, Pekka

    2009-07-01

    The objective of the study was to assess the usability of a near-infrared spectroscopy (NIRS) device in multimodal measurements. We combined NIRS with electroencephalography (EEG) to record hemodynamic responses and evoked potentials simultaneously, and with transcranial magnetic stimulation (TMS) to investigate hemodynamic responses to repetitive TMS (rTMS). Hemodynamic responses and visual evoked potentials (VEPs) to 3, 6, and 12 s stimuli consisting of pattern-reversing checkerboards were successfully recorded in the NIRS/EEG measurement, and ipsi- and contralateral hemodynamic responses to 0.5, 1, and 2 Hz rTMS in the NIRS/TMS measurement. In the NIRS/EEG measurements, the amplitudes of the hemodynamic responses increased from 3- to 6-s stimulus, but not from 6- to 12-s stimulus, and the VEPs showed peaks N75, P100, and N135. In the NIRS/TMS measurements, the 2-Hz stimulus produced the strongest hemodynamic responses compared to the 0.5- and 1-Hz stimuli. In two subjects oxyhemoglobin concentration decreased and in one increased as a consequence of the 2-Hz rTMS. To locate the origin of the measured NIRS responses, methods have to be developed to investigate TMS-induced scalp muscle contractions. In the future, multimodal measurements may prove useful in monitoring or treating diseases such as stroke or Alzheimer's disease.

  7. Effect of repetitive transcranial magnetic stimulation on rectal function and emotion in humans

    International Nuclear Information System (INIS)

    Aizawa, Yuuichi; Morishita, Joe; Kano, Michiko; Mori, Takayuki; Izumi, Shin-ichi; Kanazawa, Motoyori; Fukudo, Shin; Tsutsui, Kenichiro; Iijima, Toshio

    2011-01-01

    A previous brain imaging study demonstrated activation of the right dorsolateral prefrontal cortex (DLPFC) during visceral nociception, and this activation was associated with anxiety. We hypothesized that functional modulation of the right DLPFC by repetitive transcranial magnetic stimulation (rTMS) can reveal the actual role of right DLPFC in brain-gut interactions in humans. Subjects were 11 healthy males aged 23.5±1.4 (mean±spin echo (SE)) years. Viscerosensory evoked potential (VEP) with sham (0 mA) or actual (30 mA) electrical stimulation (ES) of the rectum was taken after sham, low frequency rTMS at 0.1 Hz, and high frequency rTMS at 10 Hz to the right DLPFC. Rectal tone was measured with a rectal barostat. Visceral perception and emotion were analyzed using an ordinate scale, rectal barostat, and VEP. Low frequency rTMS significantly reduced anxiety evoked by ES at 30 mA (p<0.05). High frequency rTMS-30 mA ES significantly produced more phasic volume events than sham rTMS-30 mA ES (p<0.05). We successfully modulated the gastrointestinal function of healthy individuals through rTMS to the right DLPFC. Thus, rTMS to the DLPFC appears to modulate the affective, but not direct, component of visceral perception and motility of the rectum. (author)

  8. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Ziluk Angela

    2010-08-01

    Full Text Available Abstract Background Intermittent theta-burst stimulation (iTBS is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI. The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS. Results Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS. Conclusion We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.

  9. Factor Analysis of Low-Frequency Repetitive Transcranial Magnetic Stimulation to the Temporoparietal Junction for Tinnitus

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2016-01-01

    Full Text Available Objectives. We investigated factors that contribute to suppression of tinnitus after repetitive transcranial magnetic stimulation (rTMS. Methods. A total of 289 patients with tinnitus underwent active 1 Hz rTMS in the left temporoparietal region. A visual analog scale (VAS was used to assess tinnitus loudness. All participants were interviewed regarding age, gender, tinnitus duration, laterality and pitch, audiometric parameters, sleep, and so forth. The resting motor thresholds (RMTs were measured in all patients and 30 age- and gender-matched volunteers. Results. With respect to different factors that contribute to tinnitus suppression, we found improvement in the following domains: shorter duration, normal hearing (OR: 3.25, 95%CI: 2.01–5.27, p=0.001, and without sleep disturbance (OR: 2.51, 95%CI: 1.56–4.1, p=0.005 adjusted for age and gender. The patients with tinnitus lasting less than 1 year were more likely to show suppression of tinnitus (OR: 2.77, 95%CI: 1.48–5.19, p=0.002 compared to those with tinnitus lasting more than 5 years. Tinnitus patients had significantly lower RMTs compared with healthy volunteers. Conclusion. Active low-frequency rTMS results in a significant reduction in the loudness of tinnitus. Significant tinnitus suppression was shown in subjects with shorter tinnitus duration, with normal hearing, and without sleep disturbance.

  10. Repetitive Transcranial Magnetic Stimulation Improves Handwriting in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Bubblepreet K. Randhawa

    2013-01-01

    Full Text Available Background. Parkinson disease (PD is characterized by hypometric movements resulting from loss of dopaminergic neurons in the substantia nigra. PD leads to decreased activation of the supplementary motor area (SMA; the net result of these changes is a poverty of movement. The present study determined the impact of 5 Hz repetitive transcranial magnetic stimulation (rTMS over the SMA on a fine motor movement, handwriting (writing cursive “l”s, and on cortical excitability, in individuals with PD. Methods. In a cross-over design, ten individuals with PD were randomized to receive either 5 Hz or control stimulation over the SMA. Immediately following brain stimulation right handed writing was assessed. Results. 5 Hz stimulation increased vertical size of handwriting and diminished axial pressure. In addition, 5 Hz rTMS significantly decreased the threshold for excitability in the primary motor cortex. Conclusions. These data suggest that in the short term 5 Hz rTMS benefits functional fine motor task performance, perhaps by altering cortical excitability across a network of brain regions. Further, these data may provide the foundation for a larger investigation of the effects of noninvasive brain stimulation over the SMA in individuals with PD.

  11. Factor Analysis of Low-Frequency Repetitive Transcranial Magnetic Stimulation to the Temporoparietal Junction for Tinnitus

    Science.gov (United States)

    Li, Bei; Wang, Meiye; Li, Ming; Yin, Shankai

    2016-01-01

    Objectives. We investigated factors that contribute to suppression of tinnitus after repetitive transcranial magnetic stimulation (rTMS). Methods. A total of 289 patients with tinnitus underwent active 1 Hz rTMS in the left temporoparietal region. A visual analog scale (VAS) was used to assess tinnitus loudness. All participants were interviewed regarding age, gender, tinnitus duration, laterality and pitch, audiometric parameters, sleep, and so forth. The resting motor thresholds (RMTs) were measured in all patients and 30 age- and gender-matched volunteers. Results. With respect to different factors that contribute to tinnitus suppression, we found improvement in the following domains: shorter duration, normal hearing (OR: 3.25, 95%CI: 2.01–5.27, p = 0.001), and without sleep disturbance (OR: 2.51, 95%CI: 1.56–4.1, p = 0.005) adjusted for age and gender. The patients with tinnitus lasting less than 1 year were more likely to show suppression of tinnitus (OR: 2.77, 95%CI: 1.48–5.19, p = 0.002) compared to those with tinnitus lasting more than 5 years. Tinnitus patients had significantly lower RMTs compared with healthy volunteers. Conclusion. Active low-frequency rTMS results in a significant reduction in the loudness of tinnitus. Significant tinnitus suppression was shown in subjects with shorter tinnitus duration, with normal hearing, and without sleep disturbance. PMID:27847647

  12. A Retrospective Chart Review of 10 Hz Versus 20 Hz Repetitive Transcranial Magnetic Stimulation for Depression

    Directory of Open Access Journals (Sweden)

    Kristie L. DeBlasio

    2012-12-01

    Full Text Available We performed a retrospective chart review to examine the progress of patients with depression who received different frequencies of repetitive transcranial magnetic stimulation (rTMS delivered to the left dorsolateral prefrontal cortex (DLPFC. rTMS is a safe and effective alternative treatment for patients with various psychological and medical conditions. During treatment, a coil delivering a time-varying magnetic pulse placed over the scalp penetrates the skull, resulting in clinical improvement. There were 47 patients and three distinct treatment groups found: 10 Hz, 20 Hz, and a separate group who received both frequencies (10/20 Hz. The primary outcome indicator was the difference in Beck Depression Inventory–II (BDI-II scores. Secondary outcomes included categorical indicators of remission, response, and partial response rates as assessed with the BDI-II. In all 3 groups, the majority of patients had depression that remitted, with the highest rate occurring in the 20 Hz group. There were similar response rates in the 10 Hz and 20 Hz groups. There were no patients in the 10/20 Hz group whose depression responded and the highest partial response and nonresponse rates occurred in this group. Although within-group differences were significant from baseline to end of treatment, there were no between-group differences.

  13. Anodal Transcranial Direct Current Stimulation Provokes Neuroplasticity in Repetitive Mild Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Ho Jeong Kim

    2017-01-01

    Full Text Available Repetitive mild traumatic brain injury (rmTBI provokes behavioral and cognitive changes. But the study about electrophysiologic findings and managements of rmTBI is limited. In this study, we investigate the effects of anodal transcranial direct current stimulation (tDCS on rmTBI. Thirty-one Sprague Dawley rats were divided into the following groups: sham, rmTBI, and rmTBI treated by tDCS. Animals received closed head mTBI three consecutive times a day. Anodal tDCS was applied to the left motor cortex. We evaluated the motor-evoked potential (MEP and the somatosensory-evoked potential (SEP. T2-weighted magnetic resonance imaging was performed 12 days after rmTBI. After rmTBI, the latency of MEP was prolonged and the amplitude in the right hind limb was reduced in the rmTBI group. The latency of SEP was delayed and the amplitude was decreased after rmTBI in the rmTBI group. In the tDCS group, the amplitude in both hind limbs was increased after tDCS in comparison with the values before rmTBI. Anodal tDCS after rmTBI seems to be a useful tool for promoting transient motor recovery through increasing the synchronicity of cortical firing, and it induces early recovery of consciousness. It can contribute to management of concussion in humans if further study is performed.

  14. Safety of repetitive transcranial magnetic stimulation in patients with epilepsy: A systematic review.

    Science.gov (United States)

    Pereira, Luisa Santos; Müller, Vanessa Teixeira; da Mota Gomes, Marleide; Rotenberg, Alexander; Fregni, Felipe

    2016-04-01

    Approximately one-third of patients with epilepsy remain with pharmacologically intractable seizures. An emerging therapeutic modality for seizure suppression is repetitive transcranial magnetic stimulation (rTMS). Despite being considered a safe technique, rTMS carries the risk of inducing seizures, among other milder adverse events, and thus, its safety in the population with epilepsy should be continuously assessed. We performed an updated systematic review on the safety and tolerability of rTMS in patients with epilepsy, similar to a previous report published in 2007 (Bae EH, Schrader LM, Machii K, Alonso-Alonso M, Riviello JJ, Pascual-Leone A, Rotenberg A. Safety and tolerability of repetitive transcranial magnetic stimulation in patients with epilepsy: a review of the literature. Epilepsy Behav. 2007; 10 (4): 521-8), and estimated the risk of seizures and other adverse events during or shortly after rTMS application. We searched the literature for reports of rTMS being applied on patients with epilepsy, with no time or language restrictions, and obtained studies published from January 1990 to August 2015. A total of 46 publications were identified, of which 16 were new studies published after the previous safety review of 2007. We noted the total number of subjects with epilepsy undergoing rTMS, medication usage, incidence of adverse events, and rTMS protocol parameters: frequency, intensity, total number of stimuli, train duration, intertrain intervals, coil type, and stimulation site. Our main data analysis included separate calculations for crude per subject risk of seizure and other adverse events, as well as risk per 1000 stimuli. We also performed an exploratory, secondary analysis on the risk of seizure and other adverse events according to the type of coil used (figure-of-8 or circular), stimulation frequency (≤ 1 Hz or > 1 Hz), pulse intensity in terms of motor threshold (stimulator output for speech arrest, clinically arising from the region of

  15. Effects of Bilateral Repetitive Transcranial Magnetic Stimulation on Post-Stroke Dysphagia.

    Science.gov (United States)

    Park, Eunhee; Kim, Min Su; Chang, Won Hyuk; Oh, Su Mi; Kim, Yun Kwan; Lee, Ahee; Kim, Yun-Hee

    Optimal protocol of repetitive transcranial magnetic stimulation (rTMS) on post-stroke dysphagia remains uncertain with regard to its clinical efficacy. The aim of the present study is to investigate the effects of high-frequency rTMS at the bilateral motor cortices over the cortical representation of the mylohyoid muscles in the patients with post-stroke dysphagia. This study was a single-blind, randomized controlled study with a blinded observer. Thirty-five stroke patients were randomly divided into three intervention groups: the bilateral stimulation group, the unilateral stimulation group, and the sham stimulation group. For the bilateral stimulation group, 500 pulses of 10 Hz rTMS over the ipsilesional and 500 pulses of 10 Hz rTMS over the contralesional motor cortices over the cortical areas that project to the mylohyoid muscles were administered daily for 2 consecutive weeks. For the unilateral stimulation group, 500 pulses of 10 Hz rTMS over the ipsilesional motor cortex over the cortical representation of the mylohyoid muscle and the same amount of sham rTMS over the contralesional hemisphere were applied. For the sham stimulation group, sham rTMS was applied at the bilateral motor cortices. Clinical swallowing function and videofluoroscopic swallowing studies were assessed before the intervention (T0), immediately after the intervention (T1) and 3 weeks after the intervention (T2) using Clinical Dysphagia Scale (CDS), Dysphagia Outcome and Severity Scale (DOSS), Penetration Aspiration Scale (PAS), and Videofluoroscopic Dysphagia Scale (VDS). There were significant time and intervention interaction effects in the CDS, DOSS, PAS, and VDS scores (p dysphagia therapies. Copyright © 2016. Published by Elsevier Inc.

  16. Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations

    Directory of Open Access Journals (Sweden)

    Massihullah Hamidi

    2009-06-01

    Full Text Available A governing assumption about repetitive transcranial magnetic stimulation (rTMS has been that it interferes with task-related neuronal activity – in effect, by “injecting noise” into the brain – and thereby disrupts behavior. Recent reports of rTMS-produced behavioral enhancement, however, call this assumption into question. We investigated the neurophysiological effects of rTMS delivered during the delay period of a visual working memory task by simultaneously recording brain activity with electroencephalography (EEG. Subjects performed visual working memory for locations or for shapes, and in half the trials a 10-Hz train of rTMS was delivered to the superior parietal lobule or a control brain area. The wide range of individual differences in the effects of rTMS on task accuracy, from improvement to impairment, was predicted by individual differences in the effect of rTMS on power in the alpha-band of the EEG (~ 10 Hz: a decrease in alpha-band power corresponded to improved performance, whereas an increase in alpha-band power corresponded to the opposite. The EEG effect was localized to cortical sources encompassing the frontal eye fields and the intraparietal sulcus, and was specific to task (location, but not object memory and to rTMS target (superior parietal lobule, not control area. Furthermore, for the same task condition, rTMS-induced changes in cross-frequency phase synchrony between alpha- and gamma-band (> 40 Hz oscillations predicted changes in behavior. These results suggest that alpha-band oscillations play an active role cognitive processes and do not simply reflect absence of processing. Furthermore, this study shows that the complex effects of rTMS on behavior can result from biasing endogenous patterns of network-level oscillations.

  17. Effect of repetitive transcranial magnetic stimulation in drug resistant depressed patients

    International Nuclear Information System (INIS)

    Chung, Yong An; Yoo, Ie Ryung; Kang, Bong Joo; Chae, Jeong Ho; Lee, Hye Won; Moon, Hyun Jin; Kim, Sung Hoon; Sohn, Hyung Sun; Chung, Soo Kyo

    2007-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has recently been clinically applied in the treatment of drug resistant depressed patients. There are mixed findings about the efficacy of rTMS on depression. Furthermore, the influence of rTMS on the physiology of the brain is not clear. We prospectively evaluated changes of regional cerebral blood flow (rCBF) between pre- and post-rTMS treatment in patients with drug resistant depression. Twelve patients with drug-resistant depression (7 male, 5 female; age range; 19∼ 52 years; mean age: 29.3 ± 9.3 years) were given rTMS on right prefrontal lobe with low frequency (1 Hz) and on left prefrontal lobe with high frequency (20 Hz), with 20-minute-duration each day for 3 weeks. Tc-99m ECD brain perfusion SPECT was obtained before and after rTMS treatment. The changes of cerebral perfusion were analyzed using statistical parametric mapping (SPM; t=3.14, uncorrected ρ < 0.01, voxel = 100). Following areas showed significant increase in rCBF after 3 weeks rTMS treatment: the cingulate gyrus, fusiform gyrus of right temporal lobe, precuneus, and left lateral globus pallidus. Significant decrement was noted in the precental and middle frontal gyrus of right frontal lobe, and fusiform gyrus of left occipital lobe. Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased and decreased rCBF in the specific brain regions in drug-resistant depressed patients. Further analyses correlating clinical characteristics and treatment paradigm with functional imaging data may be helpful in clarifying the pathophysiology of drug-resistant patients

  18. Repetitive transcranial magnetic stimulation as an adjuvant method in the treatment of depression: Preliminary results

    Directory of Open Access Journals (Sweden)

    Jovičić Milica

    2014-01-01

    Full Text Available Introduction. Repetitive transcranial magnetic stimulation (rTMS is a method of brain stimulation which is increasingly used in both clinical practice and research. Up-to-date studies have pointed out a potential antidepressive effect of rTMS, but definitive superiority over placebo has not yet been confirmed. Objective. The aim of the study was to examine the effect of rTMS as an adjuvant treatment with antidepressants during 18 weeks of evaluation starting from the initial application of the protocol. Methods. Four patients with the diagnosis of moderate/severe major depression were included in the study. The protocol involved 2000 stimuli per day (rTMS frequency of 10 Hz, intensity of 120% motor threshold administered over the left dorsolateral prefrontal cortex (DLPFC for 15 days. Subjective and objective depressive symptoms were measured before the initiation of rTMS and repeatedly evaluated at week 3, 6, 12 and 18 from the beginning of the stimulation. Results. After completion of rTMS protocol two patients demonstrated a reduction of depressive symptoms that was sustained throughout the 15-week follow-up period. One patient showed a tendency of remission during the first 12 weeks of the study, but relapsed in week 18. One patient showed no significant symptom reduction at any point of follow-up. Conclusion. Preliminary findings suggest that rTMS has a good tolerability and can be efficient in accelerating the effect of antidepressants, particularly in individuals with shorter duration of depressive episodes and moderate symptom severity. [Projekat Ministarstva nauke Republike Srbije, br. III41029 i br. ON175090

  19. Effects of low-frequency repetitive transcranial magnetic stimulation on event-related potential P300

    Science.gov (United States)

    Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji

    2012-04-01

    The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.

  20. Repetitive Transcranial Magnetic Stimulation for Clinical Applications in Neurological and Psychiatric Disorders: An Overview

    Science.gov (United States)

    Machado, Sergio; Arias-Carrión, Oscar; Paes, Flávia; Vieira, Renata Teles; Caixeta, Leonardo; Novaes, Felipe; Marinho, Tamires; Almada, Leonardo Ferreira; Silva, Adriana Cardoso; Nardi, Antonio Egidio

    2013-01-01

    Neurological and psychiatric disorders are characterized by several disabling symptoms for which effective, mechanism-based treatments remain elusive. Consequently, more advanced non-invasive therapeutic methods are required. A method that may modulate brain activity and be viable for use in clinical practice is repetitive transcranial magnetic stimulation (rTMS). It is a non-invasive procedure whereby a pulsed magnetic field stimulates electrical activity in the brain. Here, we focus on the basic foundation of rTMS, the main stimulation parametters, the factors that influence individual responses to rTMS and the experimental advances of rTMS that may become a viable clinical application to treat neurological and psychiatric disorders. The findings showed that rTMS can improve some symptoms associated with these conditions and might be useful for promoting cortical plasticity in patients with neurological and psychiatric disorders. However, these changes are transient and it is premature to propose these applications as realistic therapeutic options, even though the rTMS technique has been evidenced as a potential modulator of sensorimotor integration and neuroplasticity. Functional imaging of the region of interest could highlight the capacity of rTMS to bring about plastic changes of the cortical circuitry and hint at future novel clinical interventions. Thus, we recommend that further studies clearly determine the role of rTMS in the treatment of these conditions. Finally, we must remember that however exciting the neurobiological mechanisms might be, the clinical usefulness of rTMS will be determined by its ability to provide patients with neurological and psychiatric disorders with safe, long-lasting and substantial improvements in quality of life. PMID:25610279

  1. Comparative study of ipsilesional and contralesional repetitive transcranial magnetic stimulations for acute infarction.

    Science.gov (United States)

    Watanabe, Kosuke; Kudo, Yosuke; Sugawara, Eriko; Nakamizo, Tomoki; Amari, Kazumitsu; Takahashi, Koji; Tanaka, Osamu; Endo, Miho; Hayakawa, Yuko; Johkura, Ken

    2018-01-15

    Repetitive transcranial magnetic stimulation (rTMS) is reported to improve chronic post-stoke hemiparesis. However, application of rTMS during the acute phase of post-stroke has not fully been investigated. We investigated the safety and the efficacy of intermittent theta-burst stimulation (iTBS) of the affected motor cortex and 1-Hz stimulation of the unaffected hemisphere during the acute phase in patients with hemiparesis due to capsular infarction. Twenty one patients who met the study criteria were randomly assigned to receive, starting within 7days after stroke onset and for a period of 10days, iTBS of the affected motor cortex hand area (n=8), 1-Hz stimulation of the unaffected motor cortex hand area (n=7), or sham stimulation (n=6). Upper limb motor function was evaluated before rTMS and 12weeks after onset of the stroke. Evaluation was based on the Fugl-Meyer Assessment (FMA), Stroke Impairment Assessment Set (SIAS), Modified Ashworth Scale (MAS), grip strength, and motor evoked potential (MEP) amplitude in the first dorsal interosseous (FDI) muscle. Both iTBS applied to the affected motor cortex hand area and 1-Hz stimulation applied to the unaffected motor cortex hand area enhanced motor recovery. In comparison to sham stimulation, iTBS increased the SIAS finger-function test score, and 1-Hz stimulation decreased the MAS wrist and finger score. Ipsilesional iTBS and contralesional 1-Hz stimulation applied during the acute phase of stroke have different effects: ipsilesional iTBS improves movement of the affected limb, whereas contralesional 1-Hz stimulation reduces spasticity of the affected limb. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Non-invasive mapping of calculation function by repetitive navigated transcranial magnetic stimulation.

    Science.gov (United States)

    Maurer, Stefanie; Tanigawa, Noriko; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Boeckh-Behrens, Tobias; Meyer, Bernhard; Krieg, Sandro M

    2016-11-01

    Concerning calculation function, studies have already reported on localizing computational function in patients and volunteers by functional magnetic resonance imaging and transcranial magnetic stimulation. However, the development of accurate repetitive navigated TMS (rTMS) with a considerably higher spatial resolution opens a new field in cognitive neuroscience. This study was therefore designed to evaluate the feasibility of rTMS for locating cortical calculation function in healthy volunteers, and to establish this technique for future scientific applications as well as preoperative mapping in brain tumor patients. Twenty healthy subjects underwent rTMS calculation mapping using 5 Hz/10 pulses. Fifty-two previously determined cortical spots of the whole hemispheres were stimulated on both sides. The subjects were instructed to perform the calculation task composed of 80 simple arithmetic operations while rTMS pulses were applied. The highest error rate (80 %) for all errors of all subjects was observed in the right ventral precentral gyrus. Concerning division task, a 45 % error rate was achieved in the left middle frontal gyrus. The subtraction task showed its highest error rate (40 %) in the right angular gyrus (anG). In the addition task a 35 % error rate was observed in the left anterior superior temporal gyrus. Lastly, the multiplication task induced a maximum error rate of 30 % in the left anG. rTMS seems feasible as a way to locate cortical calculation function. Besides language function, the cortical localizations are well in accordance with the current literature for other modalities or lesion studies.

  3. Accelerometer-based automatic voice onset detection in speech mapping with navigated repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Vitikainen, Anne-Mari; Mäkelä, Elina; Lioumis, Pantelis; Jousmäki, Veikko; Mäkelä, Jyrki P

    2015-09-30

    The use of navigated repetitive transcranial magnetic stimulation (rTMS) in mapping of speech-related brain areas has recently shown to be useful in preoperative workflow of epilepsy and tumor patients. However, substantial inter- and intraobserver variability and non-optimal replicability of the rTMS results have been reported, and a need for additional development of the methodology is recognized. In TMS motor cortex mappings the evoked responses can be quantitatively monitored by electromyographic recordings; however, no such easily available setup exists for speech mappings. We present an accelerometer-based setup for detection of vocalization-related larynx vibrations combined with an automatic routine for voice onset detection for rTMS speech mapping applying naming. The results produced by the automatic routine were compared with the manually reviewed video-recordings. The new method was applied in the routine navigated rTMS speech mapping for 12 consecutive patients during preoperative workup for epilepsy or tumor surgery. The automatic routine correctly detected 96% of the voice onsets, resulting in 96% sensitivity and 71% specificity. Majority (63%) of the misdetections were related to visible throat movements, extra voices before the response, or delayed naming of the previous stimuli. The no-response errors were correctly detected in 88% of events. The proposed setup for automatic detection of voice onsets provides quantitative additional data for analysis of the rTMS-induced speech response modifications. The objectively defined speech response latencies increase the repeatability, reliability and stratification of the rTMS results. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of repetitive transcranial magnetic stimulation in drug resistant depressed patients

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong An; Yoo, Ie Ryung; Kang, Bong Joo; Chae, Jeong Ho; Lee, Hye Won; Moon, Hyun Jin; Kim, Sung Hoon; Sohn, Hyung Sun; Chung, Soo Kyo [The Catholic University of Korea, Seoul (Korea, Republic of)

    2007-02-15

    Repetitive transcranial magnetic stimulation (rTMS) has recently been clinically applied in the treatment of drug resistant depressed patients. There are mixed findings about the efficacy of rTMS on depression. Furthermore, the influence of rTMS on the physiology of the brain is not clear. We prospectively evaluated changes of regional cerebral blood flow (rCBF) between pre- and post-rTMS treatment in patients with drug resistant depression. Twelve patients with drug-resistant depression (7 male, 5 female; age range; 19{approx} 52 years; mean age: 29.3 {+-} 9.3 years) were given rTMS on right prefrontal lobe with low frequency (1 Hz) and on left prefrontal lobe with high frequency (20 Hz), with 20-minute-duration each day for 3 weeks. Tc-99m ECD brain perfusion SPECT was obtained before and after rTMS treatment. The changes of cerebral perfusion were analyzed using statistical parametric mapping (SPM; t=3.14, uncorrected {rho} < 0.01, voxel = 100). Following areas showed significant increase in rCBF after 3 weeks rTMS treatment: the cingulate gyrus, fusiform gyrus of right temporal lobe, precuneus, and left lateral globus pallidus. Significant decrement was noted in the precental and middle frontal gyrus of right frontal lobe, and fusiform gyrus of left occipital lobe. Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased and decreased rCBF in the specific brain regions in drug-resistant depressed patients. Further analyses correlating clinical characteristics and treatment paradigm with functional imaging data may be helpful in clarifying the pathophysiology of drug-resistant patients.

  5. Repetitive transcranial magnetic stimulation for treatment of major depressive disorder with comorbid generalized anxiety disorder.

    Science.gov (United States)

    White, Daniela; Tavakoli, Sason

    2015-08-01

    Repetitive transcranial magnetic stimulation (rTMS) has shown promising results in treating individuals with behavioral disorders such as major depressive disorder (MDD), posttraumatic stress disorder, obsessive-compulsive disorder, and social anxiety disorder. A number of applications of rTMS to different regions of the left and right prefrontal cortex have been used to treat these disorders, but no study of treatment for MDD with generalized anxiety disorder (GAD) has been conducted with application of rTMS to both the left and right prefrontal cortex. We hypothesized that applying low-frequency rTMS to the right dorsolateral prefrontal cortex (DLPFC) before applying it to the left DLPFC for the treatment of depression would be anxiolytic in patients with MDD with GAD. Thirteen adult patients with comorbid MDD and GAD received treatment with rTMS in an outpatient setting. The number of treatments ranged from 24 to 36 over 5 to 6 weeks. Response was defined as a ≥ 50% reduction in symptoms from baseline, and remission was defined as a score of anxiety symptoms on the 7-item Generalized Anxiety Disorder (GAD-7) scale and depressive symptoms on the 21-item Hamilton Rating Scale for Depression (HAM-D-21). At the end of the treatment period, for the GAD-7 scale, 11 out of 13 (84.6%) patients' anxiety symptoms were in remission, achieving a score of depressive symptoms. In this small pilot study of 13 patients with comorbid MDD and GAD, significant improvement in anxiety symptoms along with depressive symptoms was achieved in a majority of patients after bilateral rTMS application.

  6. [Hospital production cost of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression].

    Science.gov (United States)

    Etcheverrigaray, F; Bulteau, S; Machon, L O; Riche, V P; Mauduit, N; Tricot, R; Sellal, O; Sauvaget, A

    2015-08-01

    Repetitive transcranial magnetic stimulation (rTMS) is an effective and well-tolerated treatment in resistant depression with mild to moderate intensity. This indication has not yet been approved in France. The cost and medico-economic value of rTMS in psychiatry remains unknown. The aim of this preliminary study was to assess rTMS cost production analysis as an in-hospital treatment for depression. The methodology, derived from analytical accounts, was validated by a multidisciplinary task force (clinicians, public health doctors, pharmacists, administrative officials and health economist). It was pragmatic, based on official and institutional documentary sources and from field practice. It included equipment, staff, and structure costs, to get an estimate as close to reality as possible. First, we estimated the production cost of rTMS session, based on our annual activity. We then estimated the cost of a cure, which includes 15 sessions. A sensitivity analysis was also performed. The hospital production cost of a cure for treating depression was estimated at € 1932.94 (€ 503.55 for equipment, € 1082.75 for the staff, and € 346.65 for structural expenses). This cost-estimate has resulted from an innovative, pragmatic, and cooperative approach. It is slightly higher but more comprehensive than the costs estimated by the few international studies. However, it is limited due to structure-specific problems and activity. This work could be repeated in other circumstances in order to obtain a more general estimate, potentially helpful for determining an official price for the French health care system. Moreover, budgetary constraints and public health choices should be taken into consideration. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Suppression of motor cortical excitability in anesthetized rats by low frequency repetitive transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Paul A Muller

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is a widely-used method for modulating cortical excitability in humans, by mechanisms thought to involve use-dependent synaptic plasticity. For example, when low frequency rTMS (LF rTMS is applied over the motor cortex, in humans, it predictably leads to a suppression of the motor evoked potential (MEP, presumably reflecting long-term depression (LTD -like mechanisms. Yet how closely such rTMS effects actually match LTD is unknown. We therefore sought to (1 reproduce cortico-spinal depression by LF rTMS in rats, (2 establish a reliable animal model for rTMS effects that may enable mechanistic studies, and (3 test whether LTD-like properties are evident in the rat LF rTMS setup. Lateralized MEPs were obtained from anesthetized Long-Evans rats. To test frequency-dependence of LF rTMS, rats underwent rTMS at one of three frequencies, 0.25, 0.5, or 1 Hz. We next tested the dependence of rTMS effects on N-methyl-D-aspartate glutamate receptor (NMDAR, by application of two NMDAR antagonists. We find that 1 Hz rTMS preferentially depresses unilateral MEP in rats, and that this LTD-like effect is blocked by NMDAR antagonists. These are the first electrophysiological data showing depression of cortical excitability following LF rTMS in rats, and the first to demonstrate dependence of this form of cortical plasticity on the NMDAR. We also note that our report is the first to show that the capacity for LTD-type cortical suppression by rTMS is present under barbiturate anesthesia, suggesting that future neuromodulatory rTMS applications under anesthesia may be considered.

  8. Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Krieg, Sandro M; Tarapore, Phiroz E; Picht, Thomas; Tanigawa, Noriko; Houde, John; Sollmann, Nico; Meyer, Bernhard; Vajkoczy, Peter; Berger, Mitchel S; Ringel, Florian; Nagarajan, Srikantan

    2014-10-15

    Within the primary motor cortex, navigated transcranial magnetic stimulation (nTMS) has been shown to yield maps strongly correlated with those generated by direct cortical stimulation (DCS). However, the stimulation parameters for repetitive nTMS (rTMS)-based language mapping are still being refined. For this purpose, the present study compares two rTMS protocols, which differ in the timing of pulse train onset relative to picture presentation onset during object naming. Results were the correlated with DCS language mapping during awake surgery. Thirty-two patients with left-sided perisylvian tumors were examined by rTMS prior to awake surgery. Twenty patients underwent rTMS pulse trains starting at 300 ms after picture presentation onset (delayed TMS), whereas another 12 patients received rTMS pulse trains starting at the picture presentation onset (ONSET TMS). These rTMS results were then evaluated for correlation with intraoperative DCS results as gold standard in terms of differential consistencies in receiver operating characteristics (ROC) statistics. Logistic regression analysis by protocols and brain regions were conducted. Within and around Broca's area, there was no difference in sensitivity (onset TMS: 100%, delayed TMS: 100%), negative predictive value (NPV) (onset TMS: 100%, delayed TMS: 100%), and positive predictive value (PPV) (onset TMS: 55%, delayed TMS: 54%) between the two protocols compared to DCS. However, specificity differed significantly (onset TMS: 67%, delayed TMS: 28%). In contrast, for posterior language regions, such as supramarginal gyrus, angular gyrus, and posterior superior temporal gyrus, early pulse train onset stimulation showed greater specificity (onset TMS: 92%, delayed TMS: 20%), NPV (onset TMS: 92%, delayed TMS: 57%) and PPV (onset TMS: 75%, delayed TMS: 30%) with comparable sensitivity (onset TMS: 75%, delayed TMS: 70%). Logistic regression analysis also confirmed the greater fit of the predictions by rTMS that had the

  9. Repetitive transcranial magnetic stimulation is effective following repeated courses in the treatment of major depressive disorder--a case report.

    Science.gov (United States)

    Dannon, Pinhas N; Grunhaus, Leon

    2003-06-01

    Repetitive transcranial magnetic stimulation (rTMS) is a relatively new treatment modality for psychiatric patients. rTMS was demonstrated to be effective in the treatment of depression. However, longitudinal outcome studies have not yet been published. Relapse rates are higher in depressed patients and most of them do not respond to the same treatment with similar success. In this report we present a patient, who experienced relapse with the various conventional drug treatments, but responded well to rTMS at three different points in time. Copyright 2003 John Wiley & Sons, Ltd.

  10. Short-term adaptations in spinal cord circuits evoked by repetitive transcranial magnetic stimulation: possible underlying mechanisms

    DEFF Research Database (Denmark)

    Perez, Monica A.; Lungholt, Bjarke K.S.; Nielsen, Jens Bo

    2005-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been shown to induce adaptations in cortical neuronal circuitries. In the present study we investigated whether rTMS, through its effect on corticospinal pathways, also produces adaptations at the spinal level, and what the neuronal mechanisms...... that the depression of the H-reflex by rTMS can be explained, at least partly, by an increased presynaptic inhibition of soleus Ia afferents. In contrast, rTMS had no effect on disynaptic reciprocal Ia inhibition from ankle dorsiflexors to plantarflexors. We conclude that a train of rTMS may modulate transmission...

  11. Simultaneous effect of chronic repetitive transcranial magnetic stimulation on RCBF and RCMR in depressive patients

    International Nuclear Information System (INIS)

    Peschina, W.; Conca, A.; Fritzsche, H.; Koenig, P.

    2002-01-01

    Full text: The basic principle of repetitive transcranial magnetic stimulation (rTMS) is the electromagnetic induction: depending on the field strength (up to 2 Tesla) neurons are frequency-dependent stimulated or inhibited. This method allows a non-invasive and painless investigation of sensomotoric and higher cortical functions. Brain imaging studies can visualize cerebral perfusion and metabolism, as they are influenced by rTMS. The aim of our study was to analyze the patterns of regional cerebral glucose uptake rate (rCMRGIu) and regional 99m Tc HMPAO uptake rate (rCBF) simultaneously during a treatment course of rTMS at low frequency. Four drug resistant depressed patients underwent 10 rTMS as add-on measure over 14 days. One day before and one day alter TMS series 511 KeV SPECT with 18 F-FDG and 99m Tc HMPAO simultaneous measurements were carried out. We used a standard double-head camera with a 511 keV-collimator. The two isotope doses were injected simultaneously. Acquisition was done with a double-isotope, there-window technique, where the third window was used for the registration of compton scatter. After applying Chang's attenuation correction and a simultaneous reorientation of the two datasets, a semiquantitative evaluation with 16 regions per hemisphere was performed. All patients showed a good clinical outcome. Statistically significant common changes of rCBF and rCMRGlu pattern were found in the upper frontal regions bilaterally in terms of increased uptake rates and in the left orbitofrontal cortex in terms of decreased uptake rates of both isotopes compared to controls. Furthermore, the lateralization pattern of rCBF and rCMRGlu after rTMS treatment revealed marked differences. Thus, despite no relevant changes of lateralization on the glucose uptake were observed, a clear right-sided preponderance of rCBF also in areas remote from the stimulation side was described. Therapeutic rTMS seems to influence distinct, cortical regions affecting r

  12. Repetitive Transcranial Magnetic Stimulation (rTMS) Therapy in Parkinson Disease: A Meta-Analysis.

    Science.gov (United States)

    Wagle Shukla, Aparna; Shuster, Jonathan J; Chung, Jae Woo; Vaillancourt, David E; Patten, Carolynn; Ostrem, Jill; Okun, Michael S

    2016-04-01

    Several studies have reported repetitive transcranial magnetic stimulation (rTMS) therapy as an effective treatment for the control of motor symptoms in Parkinson disease. The objective of the study is to quantify the overall efficacy of this treatment. Systematic review and meta-analysis. We reviewed the literature on clinical rTMS trials in Parkinson disease since the technique was introduced in 1980. We used the following databases: MEDLINE, Web of Science, Cochrane, and CINAHL. Patients with Parkinson disease who were participating in prospective clinical trials that included an active arm and a control arm and change in motor scores on Unified Parkinson's Disease Rating Scale as the primary outcome. We pooled data from 21 studies that met these criteria. We then analyzed separately the effects of low- and high-frequency rTMS on clinical motor improvements. The overall pooled mean difference between treatment and control groups in the Unified Parkinson's Disease Rating Scale motor score was significant (4.0 points, 95% confidence interval, 1.5, 6.7; P = .005). rTMS therapy was effective when low-frequency stimulation (≤ 1 Hz) was used with a pooled mean difference of 3.3 points (95% confidence interval 1.6, 5.0; P = .005). There was a trend for significance when high-frequency stimulation (≥ 5 Hz) studies were evaluated with a pooled mean difference of 3.9 points (95% confidence interval, -0.7, 8.5; P = .08). rTMS therapy demonstrated benefits at short-term follow-up (immediately after a treatment protocol) with a pooled mean difference of 3.4 points (95% confidence interval, 0.3, 6.6; P = .03) as well as at long-term follow-up (average follow-up 6 weeks) with mean difference of 4.1 points (95% confidence interval, -0.15, 8.4; P = .05). There were insufficient data to statistically analyze the effects of rTMS when we specifically examined bradykinesia, gait, and levodopa-induced dyskinesia using quantitative methods. rTMS therapy in patients with Parkinson

  13. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    Directory of Open Access Journals (Sweden)

    Martin eSchecklmann

    2015-10-01

    Full Text Available Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About ten years ago, repetitive transcranial magnetic stimulation (rTMS of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity. Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel EEG system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil served as sham condition. Before and after each rTMS protocol five minutes of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with one week interval in between.Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS.This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be interpreted

  14. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  15. Repetitive transcranial magnetic stimulation versus botulinum toxin injection in chronic migraine prophylaxis: a pilot randomized trial

    Directory of Open Access Journals (Sweden)

    Shehata HS

    2016-10-01

    Full Text Available Hatem S Shehata, Eman H Esmail, Ahmad Abdelalim, Shaimaa El-Jaafary, Alaa Elmazny, Asmaa Sabbah, Nevin M Shalaby Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt Background: Chronic migraine is a prevalent disabling disease, with major health-related burden and poor quality of life. Long-term use of preventive medications carries risk of side effects. Objectives: The aim of this study was to compare repetitive transcranial magnetic stimulation (rTMS to botulinum toxin-A (BTX-A injection as preventive therapies for chronic migraine. Methods: A pilot, randomized study was conducted on a small-scale sample of 29 Egyptian patients with chronic migraine, recruited from Kasr Al-Aini teaching hospital outpatient clinic and diagnosed according to ICHD-III (beta version. Patients were randomly assigned into two groups; 15 patients received BTX-A injection following the Phase III Research Evaluating Migraine Prophylaxis Therapy injection paradigm and 14 patients were subjected to 12 rTMS sessions delivered at high frequency (10 Hz over the left motor cortex (MC, M1. All the patients were requested to have their 1-month headache calendar, and they were subjected to a baseline 25-item (beta version Henry Ford Hospital Headache Disability Inventory (HDI, Headache Impact Test (HIT-6, and visual analogue scale assessment of headache intensity. The primary efficacy measures were headache frequency and severity; secondary measures were 25-item HDI, HIT-6, and number of acute medications. Follow-up visits were scheduled at weeks 4, 6, 8, 10, and 12 after baseline visit. Results: A reduction in all outcome measures was achieved in both the groups. However, this improvement was more sustained in the BTX-A group, and both the therapies were well tolerated. Conclusion: BTX-A injection and rTMS have favorable efficacy and safety profiles in chronic migraineurs. rTMS is of comparable efficacy to BTX-A injection in chronic migraine

  16. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    Science.gov (United States)

    Schecklmann, Martin; Lehner, Astrid; Gollmitzer, Judith; Schmidt, Eldrid; Schlee, Winfried; Langguth, Berthold

    2015-01-01

    Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About 10 years ago, repetitive transcranial magnetic stimulation (rTMS) of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity). Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel electroencephalography (EEG) system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1 Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil) served as sham condition. Before and after each rTMS protocol 5 min of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with 1 week interval in between. Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS. This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be

  17. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25±2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% ± 1.3% and 10.6% ± 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% ± 4.5% vs. 6.6% ± 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release

  18. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    International Nuclear Information System (INIS)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging

  19. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging.

  20. Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: a randomised trial.

    Science.gov (United States)

    Kirton, Adam; Chen, Robert; Friefeld, Sharon; Gunraj, Carolyn; Pontigon, Anne-Marie; Deveber, Gabrielle

    2008-06-01

    Arterial ischaemic stroke (AIS) can cause disabling hemiparesis in children. We aimed to test whether contralesional, inhibitory repetitive transcranial magnetic stimulation (rTMS) could affect interhemispheric inhibition to improve hand function in chronic subcortical paediatric AIS. Patients were eligible for this parallel, randomised trial if they were in the SickKids Children's Stroke Program and had subcortical AIS more than 2 years previously, had transcallosal sparing, were more than 7 years of age, had hand motor impairment, had no seizures or dyskinesia, and were taking no drugs that alter cortical excitability. Patients were paired for age and weakness and were randomised within each pair to sham treatment or inhibitory, low-frequency rTMS over contralesional motor cortex (20 min, 1200 stimuli) once per day for 8 days. An occupational therapist did standardised tests of hand function at days 1 (baseline), 5, 10, and 17 (1 week post-treatment), and the primary outcomes were changes in grip strength and the Melbourne assessment of upper extremity function (MAUEF) between baseline and day 10. Patients, parents, and occupational therapists were blinded to treatment allocation. Analysis was per protocol. Ten patients with paediatric stroke were enrolled (median age 13.25 [IQR 10.08-16.78] years, mean time post-stroke 6.33 [SD 3.56] years): four with mild weakness, two with moderate weakness, and four with severe weakness. A repeated-measures ANOVA showed a significant interaction between time and the effect of treatment on grip strength (p=0.03). At day 10, grip strength was 2.28 (SD 1.01) kg greater than baseline in the rTMS group and 2.92 (1.20) kg less than baseline in the sham group (p=0.009). Benefits in mean grip strength persisted at day 17 (2.63 [0.56] kg greater than baseline with rTMS and 1.00 [0.70] kg less than baseline with sham treatment; p=0.01). Day 10 MAUEF score improved by more in the rTMS group than in the sham group (7.25 [3.8] vs 0.79 [1

  1. Low-Frequency Repetitive Transcranial Magnetic Stimulation and Intensive Occupational Therapy for Poststroke Patients with Upper Limb Hemiparesis: Preliminary Study of a 15-Day Protocol

    Science.gov (United States)

    Kakuda, Wataru; Abo, Masahiro; Kobayashi, Kazushige; Momosaki, Ryo; Yokoi, Aki; Fukuda, Akiko; Ishikawa, Atsushi; Ito, Hiroshi; Tominaga, Ayumi

    2010-01-01

    The purpose of the study was to determine the safety and feasibility of a 15-day protocol of low-frequency repetitive transcranial magnetic stimulation (rTMS) combined with intensive occupational therapy (OT) on motor function and spasticity in hemiparetic upper limbs in poststroke patients. Fifteen poststroke patients (age at study entry 55 [plus…

  2. Preliminary Evidence of the Effects of High-frequency Repetitive Transcranial Magnetic Stimulation (rTMS) on Swallowing Functions in Post-Stroke Individuals with Chronic Dysphagia

    Science.gov (United States)

    Cheng, Ivy K. Y.; Chan, Karen M. K.; Wong, C. S.; Cheung, Raymond T. F.

    2015-01-01

    Background: There is growing evidence of potential benefits of repetitive transcranial magnetic stimulation (rTMS) in the rehabilitation of dysphagia. However, the site and frequency of stimulation for optimal effects are not clear. Aims: The aim of this pilot study is to investigate the short-term effects of high-frequency 5 Hz rTMS applied to…

  3. Effect of high-frequency repetitive transcranial magnetic stimulation on chronic central pain after mild traumatic brain injury: A pilot study.

    Science.gov (United States)

    Choi, Gyu-Sik; Kwak, Sang Gyu; Lee, Han Do; Chang, Min Cheol

    2018-02-28

    Central pain can occur following traumatic brain injury, leading to poor functional recovery, limitation of activities of daily living, and decreased quality of life. The aim of this study was to determine whether high-frequency (10 Hz) repetitive transcranial magnetic stimulation, applied over the primary motor cortex of the affected hemisphere, can be used to manage chronic central pain after mild traumatic brain injury. Prospective randomized feasibility study. Twelve patients with mild traumatic brain injury and chronic central pain were randomly assigned to transcranial magnetic stimulation (high-frequency stimulation, 10 sessions) or sham groups. Diffuse tensor tractography revealed partially injured spinothalamocortical tracts in all recruited patients. A numerical rating scale (NRS) was used to evaluate pain intensity during pre-treatment and immediately after the 5th transcranial magnetic stimulation session (post1), 10th transcranial magnetic stimulation session (post2), and 1 (post3), 2 (post4), and 4 weeks (post 5) after finishing treatment. Physical and mental health status were evaluated using the Short Form 36 Health Survey (SF-36), including physical and mental component scores (PCS, MCS). The NRS score of the repetitive transcranial magnetic stimulation group was significantly lower than the sham group score at all clinical evaluation time-points during and after transcranial magnetic stimulation sessions. The transcranial magnetic stimulation group's SF-36 PCS score was significantly higher at post2, post3, post4, and post5 compared with the sham group. High-frequency transcranial magnetic stimulation may be used to manage chronic central pain and improve quality of life in patients with mild traumatic brain injury. However, this is a pilot study and further research is needed.

  4. Effect of high-frequency repetitive transcranial magnetic stimulation on chronic central pain after mild traumatic brain injury: A pilot study

    Directory of Open Access Journals (Sweden)

    Gyu-sik Choi

    2018-01-01

    Full Text Available Objective: Central pain can occur following traumatic brain injury, leading to poor functional recovery, limitation of activities of daily living, and decreased quality of life. The aim of this study was to determine whether high-frequency (10 Hz repetitive transcranial magnetic stimulation, applied over the primary motor cortex of the affected hemisphere, can be used to manage chronic central pain after mild traumatic brain injury. Design: Prospective randomized feasibility study. Methods: Twelve patients with mild traumatic brain injury and chronic central pain were randomly assigned to transcranial magnetic stimulation (high-frequency stimulation, 10 sessions or sham groups. Diffuse tensor tractography revealed partially injured spinothalamocortical tracts in all recruited patients. A numerical rating scale (NRS was used to evaluate pain intensity during pre-treatment and immediately after the 5th transcranial magnetic stimulation session (post1, 10th transcranial magnetic stimulation session (post2, and 1 (post3, 2 (post4, and 4 weeks (post 5 after finishing treatment. Physical and mental health status were evaluated using the Short Form 36 Health Survey (SF-36, including physical and mental component scores (PCS, MCS. Results: The NRS score of the repetitive transcranial magnetic stimulation group was significantly lower than the sham group score at all clinical evaluation time-points during and after transcranial magnetic stimulation sessions. The transcranial magnetic stimulation group’s SF-36 PCS score was significantly higher at post2, post3, post4, and post5 compared with the sham group. Conclusion: High-frequency transcranial magnetic stimulation may be used to manage chronic central pain and improve quality of life in patients with mild traumatic brain injury. However, this is a pilot study and further research is needed.

  5. Effective treatment of narcolepsy-like symptoms with high-frequency repetitive transcranial magnetic stimulation: A case report.

    Science.gov (United States)

    Lai, Jian-Bo; Han, Mao-Mao; Xu, Yi; Hu, Shao-Hua

    2017-11-01

    Narcolepsy is a rare sleep disorder with disrupted sleep-architecture. Clinical management of narcolepsy lies dominantly on symptom-driven pharmacotherapy. The treatment role of repetitive transcranial magnetic stimulation (rTMS) for narcolepsy remains unexplored. In this paper, we present a case of a 14-year-old young girl with excessive daytime sleepiness (EDS), cataplexy and hypnagogic hallucinations. After excluding other possible medical conditions, this patient was primarily diagnosed with narcolepsy. The patient received 25 sessions of high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC). The symptoms of EDS and cataplexy significantly improved after rTMS treatment. Meanwhile, her score in the Epworth sleep scale (ESS) also remarkably decreased. This case indicates that rTMS may be selected as a safe and effective alternative strategy for treating narcolepsy-like symptoms. Well-designed researches are warranted in future investigations on this topic.

  6. Interest of repetitive transcranial magnetic stimulation of the motor cortex in the management of refractory cancer pain in palliative care: Two case reports.

    Science.gov (United States)

    Nizard, Julien; Levesque, Amélie; Denis, Nathalie; de Chauvigny, Edwige; Lepeintre, Aurélie; Raoul, Sylvie; Labat, Jean-Jacques; Bulteau, Samuel; Maillard, Benoît; Buffenoir, Kevin; Potel, Gilles; Lefaucheur, Jean-Pascal; Nguyen, Jean Paul

    2015-06-01

    Non-drug treatments should be systematically associated to the medical analgesic treatment during the terminal phase of cancer. Patient 1, a 23-year-old woman, presented an adenocarcinoma of the rectum, with liver and lung metastases. Pain was initially treated by oral morphine and a combination of pregabalin and amitriptyline. Ketamine and intrathecal administration of morphine were both ineffective. Patient 2, a 69-year-old woman, presented a cutaneous T-cell lymphoma. She was admitted to the palliative care unit with mixed pain related to cutaneous lymphomatous infiltration. World Health Organization (WHO) step 3 analgesics had not been tolerated. Both patients received five consecutive 20-min sessions of repetitive transcranial magnetic stimulation to the right motor cortex. Patient 1 experienced a marked improvement of her pain over the days following the first repetitive transcranial magnetic stimulation session. Medical treatment was able to be rapidly decreased by about 50%, which restored an almost normal level of consciousness and lucidity. Patient 2's pain was also markedly decreased over the days following these five consecutive sessions, and repetitive transcranial magnetic stimulation also appeared to have had a beneficial effect on the patient's anxiety and mood. In the context of palliative care of cancer patients experiencing refractory pain that is difficult to control by the usual treatments, motor cortex repetitive transcranial magnetic stimulation, due to its noninvasive nature, can be used as an adjuvant therapy to improve various components of pain, including the emotional components. By reducing the doses of analgesics, repetitive transcranial magnetic stimulation decreases the severity of their adverse effects and improves the patient's quality of life. © The Author(s) 2015.

  7. Repetitive Transcranial Magnetic Stimulation (rTMS) to Treat Social Anxiety Disorder: Case Reports and a Review of the Literature

    Science.gov (United States)

    Paes, Flávia; Baczynski, Tathiana; Novaes, Felipe; Marinho, Tamires; Arias-Carrión, Oscar; Budde, Henning; Sack, Alexander T.; Huston, Joseph P.; Almada, Leonardo Ferreira; Carta, Mauro; Silva, Adriana Cardoso; Nardi, Antonio E.; Machado, Sergio

    2013-01-01

    Objectives: Social anxiety disorder (SAD) is a common and debilitating anxiety disorders. However, few studies had been dedicated to the neurobiology underlying SAD until the last decade. Rates of non-responders to standard methods of treatment remain unsatisfactorily high of approximately 25%, including SAD. Advances in our understanding of SAD could lead to new treatment strategies. A potential non invasive therapeutic option is repetitive transcranial magnetic stimulation (rTMS). Thus, we reported two cases of SAD treated with rTMS Methods: The bibliographical search used Pubmed/Medline, ISI Web of Knowledge and Scielo databases. The terms chosen for the search were: anxiety disorders, neuroimaging, repetitive transcranial magnetic stimulation. Results: In most of the studies conducted on anxiety disorders, except SAD, the right prefrontal cortex (PFC), more specifically dorsolateral PFC was stimulated, with marked results when applying high-rTMS compared with studies stimulating the opposite side. However, according to the “valence hypothesis”, anxiety disorders might be characterized by an interhemispheric imbalance associated with increased right-hemispheric activity. With regard to the two cases treated with rTMS, we found a decrease in BDI, BAI and LSAS scores from baseline to follow-up. Conclusion: We hypothesize that the application of low-rTMS over the right medial PFC (mPFC; the main structure involved in SAD circuitry) combined with high-rTMS over the left mPFC, for at least 4 weeks on consecutive weekdays, may induce a balance in brain activity, opening an attractive therapeutic option for the treatment of SAD. PMID:24278088

  8. Bilateral Repetitive Transcranial Magnetic Stimulation Combined with Intensive Swallowing Rehabilitation for Chronic Stroke Dysphagia: A Case Series Study

    Directory of Open Access Journals (Sweden)

    Ryo Momosaki

    2014-03-01

    Full Text Available The purpose of this study was to clarify the safety and feasibility of a 6-day protocol of bilateral repetitive transcranial magnetic stimulation (rTMS combined with intensive swallowing rehabilitation for chronic poststroke dysphagia. In-hospital treatment was provided to 4 poststroke patients (age at treatment: 56-80 years; interval between onset of stroke and treatment: 24-37 months with dysphagia. Over 6 consecutive days, each patient received 10 sessions of rTMS at 3 Hz applied to the pharyngeal motor cortex bilaterally, followed by 20 min of intensive swallowing rehabilitation exercise. The swallowing function was evaluated by the Penetration Aspiration Scale (PAS, Modified Mann Assessment of Swallowing Ability (MMASA, Functional Oral Intake Scale (FOIS, laryngeal elevation delay time (LEDT and Repetitive Saliva-Swallowing Test (RSST on admission and at discharge. All patients completed the 6-day treatment protocol and none showed any adverse reactions throughout the treatment. The combination treatment improved laryngeal elevation delay time in all patients. Our proposed protocol of rTMS plus swallowing rehabilitation exercise seems to be safe and feasible for chronic stroke dysphagia, although its efficacy needs to be confirmed in a large number of patients.

  9. Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism.

    Science.gov (United States)

    Sokhadze, Estate; Baruth, Joshua; Tasman, Allan; Mansoor, Mehreen; Ramaswamy, Rajesh; Sears, Lonnie; Mathai, Grace; El-Baz, Ayman; Casanova, Manuel F

    2010-06-01

    In our previous study on individuals with autism spectrum disorder (ASD) (Sokhadze et al., Appl Psychophysiol Biofeedback 34:37-51, 2009a) we reported abnormalities in the attention-orienting frontal event-related potentials (ERP) and the sustained-attention centro-parietal ERPs in a visual oddball experiment. These results suggest that individuals with autism over-process information needed for the successful differentiation of target and novel stimuli. In the present study we examine the effects of low-frequency, repetitive Transcranial Magnetic Stimulation (rTMS) on novelty processing as well as behavior and social functioning in 13 individuals with ASD. Our hypothesis was that low-frequency rTMS application to dorsolateral prefrontal cortex (DLFPC) would result in an alteration of the cortical excitatory/inhibitory balance through the activation of inhibitory GABAergic double bouquet interneurons. We expected to find post-TMS differences in amplitude and latency of early and late ERP components. The results of our current study validate the use of low-frequency rTMS as a modulatory tool that altered the disrupted ratio of cortical excitation to inhibition in autism. After rTMS the parieto-occipital P50 amplitude decreased to novel distracters but not to targets; also the amplitude and latency to targets increased for the frontal P50 while decreasing to non-target stimuli. Low-frequency rTMS minimized early cortical responses to irrelevant stimuli and increased responses to relevant stimuli. Improved selectivity in early cortical responses lead to better stimulus differentiation at later-stage responses as was made evident by our P3b and P3a component findings. These results indicate a significant change in early, middle-latency and late ERP components at the frontal, centro-parietal, and parieto-occipital regions of interest in response to target and distracter stimuli as a result of rTMS treatment. Overall, our preliminary results show that rTMS may prove to

  10. Real-Time Prediction of Observed Action Requires Integrity of the Dorsal Premotor Cortex: Evidence From Repetitive Transcranial Magnetic Stimulation.

    Science.gov (United States)

    Brich, Louisa F M; Bächle, Christine; Hermsdörfer, Joachim; Stadler, Waltraud

    2018-01-01

    Studying brain mechanisms underlying the prediction of observed action, the dorsal premotor cortex (PMd) has been suggested a key area. The present study probed this notion using repetitive transcranial magnetic stimulation (rTMS) to test whether interference in this area would affect the accuracy in predicting the time course of object directed actions performed with the right hand. Young and healthy participants observed actions in short videos. These were briefly occluded from view for 600 ms and resumed immediately afterwards. The task was to continue the action mentally and to indicate after each occlusion, whether the action was resumed at the right moment (condition in-time) or shifted. In a first run, single-pulse transcranial magnetic stimulation (sTMS) was delivered over the left primary hand-area during occlusion. In the second run, rTMS over the left PMd was applied during occlusion in half of the participants [experimental group (EG)]. The control group (CG) received sham-rTMS over the same area. Under rTMS, the EG predicted less trials correctly than in the sTMS run. Sham-rTMS in the CG had no effects on prediction. The interference in PMd interacted with the type of manipulation applied to the action's time course occasionally during occlusion. The performance decrease of the EG was most pronounced in conditions in which the continuations after occlusions were too late in the action's course. The present results extend earlier findings suggesting that real-time action prediction requires the integrity of the PMd. Different functional roles of this area are discussed. Alternative interpretations consider either simulation of specific motor programming functions or the involvement of a feature-unspecific predictor.

  11. Real-Time Prediction of Observed Action Requires Integrity of the Dorsal Premotor Cortex: Evidence From Repetitive Transcranial Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Louisa F. M. Brich

    2018-03-01

    Full Text Available Studying brain mechanisms underlying the prediction of observed action, the dorsal premotor cortex (PMd has been suggested a key area. The present study probed this notion using repetitive transcranial magnetic stimulation (rTMS to test whether interference in this area would affect the accuracy in predicting the time course of object directed actions performed with the right hand. Young and healthy participants observed actions in short videos. These were briefly occluded from view for 600 ms and resumed immediately afterwards. The task was to continue the action mentally and to indicate after each occlusion, whether the action was resumed at the right moment (condition in-time or shifted. In a first run, single-pulse transcranial magnetic stimulation (sTMS was delivered over the left primary hand-area during occlusion. In the second run, rTMS over the left PMd was applied during occlusion in half of the participants [experimental group (EG]. The control group (CG received sham-rTMS over the same area. Under rTMS, the EG predicted less trials correctly than in the sTMS run. Sham-rTMS in the CG had no effects on prediction. The interference in PMd interacted with the type of manipulation applied to the action’s time course occasionally during occlusion. The performance decrease of the EG was most pronounced in conditions in which the continuations after occlusions were too late in the action’s course. The present results extend earlier findings suggesting that real-time action prediction requires the integrity of the PMd. Different functional roles of this area are discussed. Alternative interpretations consider either simulation of specific motor programming functions or the involvement of a feature-unspecific predictor.

  12. Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    Science.gov (United States)

    Sehatzadeh, Shayan; Tu, Hong Anh; Palimaka, Stefan; Yap, Belinda; O'Reilly, Daria; Bowen, Jim; Higgins, Caroline; Holubowich, Corinne

    2016-01-01

    Background To date, several randomized controlled trials (RCTs) have shown the efficacy of repetitive transcranial magnetic stimulation (rTMS) in the treatment of major depression. Objective This analysis examined the antidepressant efficacy of rTMS in patients with treatment-resistant unipolar depression. Methods A literature search was performed for RCTs published from January 1, 1994, to November 20, 2014. The search was updated on March 1, 2015. Two independent reviewers evaluated the abstracts for inclusion, reviewed full texts of eligible studies, and abstracted data. Meta-analyses were conducted to obtain summary estimates. The primary outcome was changes in depression scores measured by the Hamilton Rating Scale for Depression (HRSD), and we considered, a priori, the mean difference of 3.5 points to be a clinically important treatment effect. Remission and response to the treatment were secondary outcomes, and we calculated number needed to treat on the basis of these outcomes. We examined the possibility of publication bias by constructing funnel plots and by Begg's and Egger's tests. A meta-regression was undertaken to examine the effect of specific rTMS technical parameters on the treatment effects. Results Twenty-three RCTs compared rTMS with sham, and six RCTs compared rTMS with electroconvulsive therapy (ECT). Trials of rTMS versus sham showed a statistically significant improvement in depression scores with rTMS (weighted mean difference [WMD] 2.31, 95% CI 1.19–3.43; P transcranial magnetic stimulation had a small short-term effect for improving depression in comparison with sham, but follow-up studies did not show that the small effect will continue for longer periods. PMID:27099642

  13. Factors influencing the effects of repetitive transcranial magnetic stimulation in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Na Ye; Tao Feng

    2016-01-01

    Barker first used transcranial magnetic stimulation in 1985 in human brain function research. Since then, it has gradually been developed into a secure and non-invasive treatment method for neurological diseases. In 1994, Pascual Leone first used it for the treatment of Parkinson's disease (PD) and observed an improvement in the motor symptoms of most of the patients. Recent studies have confirmed that both motor and non-motor symptoms of patients with PD could be improved through biochemical, electrophysiological, and functional magnetic resonance imaging analysis. Different therapeutic applications can be achieved by adjusting the stimulation parameters. Physical factors affecting the therapeutic effect include the shape and size of the coil, array orientation, materials and intensity, frequency of stimulus, etc.; the biological factors include stimulating targets, baseline, circadian rhythms, cerebral cortex thickness, and so on. This paper will review these factors and provide a reference for future research.

  14. Factors influencing the effects of repetitive transcranial magnetic stimulation in Parkinson’s disease

    Institute of Scientific and Technical Information of China (English)

    Na Ye; Tao Feng

    2016-01-01

    Barker first used transcranial magnetic stimulation in 1985 in human brain function research. Since then, it has gradually been developed into a secure and non-invasive treatment method for neurological diseases. In 1994, Pascual Leone first used it for the treatment of Parkinson’s disease(PD) and observed an improvement in the motor symptoms of most of the patients. Recent studies have confirmed that both motor and non-motor symptoms of patients with PD could be improved through biochemical, electrophysiological, and functional magnetic resonance imaging analysis. Different therapeutic applications can be achieved by adjusting the stimulation parameters.Physical factors affecting the therapeutic effect include the shape and size of the coil, array orientation, materials and intensity, frequency of stimulus, etc.; the biological factors include stimulating targets, baseline, circadian rhythms, cerebral cortex thickness, and so on. This paper will review these factors and provide a reference for future research.

  15. Repetitive transcranial magnetic stimulation for the treatment of major depressive disorder: an evidence-based analysis.

    Science.gov (United States)

    2004-01-01

    This review was conducted to assess the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in the treatment of major depressive disorder (MDD). rTMS is a noninvasive way to stimulate nerve cells in areas of the brain. During rTMS, an electrical current passes through a wire coil placed over the scalp. The current induces a magnetic field that produces an electrical field in the brain that then causes nerve cells to depolarize, resulting in the stimulation or disruption of brain activity. Researchers have investigated rTMS as an option to treat MDD, as an add-on to drug therapy, and, in particular, as an alternative to electroconvulsive therapy (ECT) for patients with treatment-resistant depression. The advantages of rTMS over ECT for patients with severe refractory depression are that general anesthesia is not needed, it is an outpatient procedure, it requires less energy, the simulation is specific and targeted, and convulsion is not required. The advantages of rTMS as an add-on treatment to drug therapy may include hastening of the clinical response when used with antidepressant drugs. The Medical Advisory Secretariat used its standard search strategy to locate international health technology assessments and English-language journal articles published from January 1996 to March 2004. Some early meta-analyses suggested rTMS might be effective for the treatment of MDD (for treatment-resistant MDD and as an add-on treatment to drug therapy for patients not specifically defined as treatment resistant). There were, however, several crucial methodological limitations in the included studies that were not critically assessed. These are discussed below. Recent meta-analyses (including 2 international health technology assessments) have done evidence-based critical analyses of studies that have assessed rTMS for MDD. The 2 most recent health technology assessments (from the Oxford Cochrane Collaboration and the Norwegian Centre for Health Technology

  16. Repetitive Transcranial Magnetic Stimulation for the Treatment of Major Depressive Disorder

    Science.gov (United States)

    2004-01-01

    Executive Summary Objective This review was conducted to assess the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in the treatment of major depressive disorder (MDD). The Technology rTMS is a noninvasive way to stimulate nerve cells in areas of the brain. During rTMS, an electrical current passes through a wire coil placed over the scalp. The current induces a magnetic field that produces an electrical field in the brain that then causes nerve cells to depolarize, resulting in the stimulation or disruption of brain activity. Researchers have investigated rTMS as an option to treat MDD, as an add-on to drug therapy, and, in particular, as an alternative to electroconvulsive therapy (ECT) for patients with treatment-resistant depression. The advantages of rTMS over ECT for patients with severe refractory depression are that general anesthesia is not needed, it is an outpatient procedure, it requires less energy, the simulation is specific and targeted, and convulsion is not required. The advantages of rTMS as an add-on treatment to drug therapy may include hastening of the clinical response when used with antidepressant drugs. Review Strategy The Medical Advisory Secretariat used its standard search strategy to locate international health technology assessments and English-language journal articles published from January 1996 to March 2004. Summary of Findings Some early meta-analyses suggested rTMS might be effective for the treatment of MDD (for treatment-resistant MDD and as an add-on treatment to drug therapy for patients not specifically defined as treatment resistant). There were, however, several crucial methodological limitations in the included studies that were not critically assessed. These are discussed below. Recent meta-analyses (including 2 international health technology assessments) have done evidence-based critical analyses of studies that have assessed rTMS for MDD. The 2 most recent health technology assessments (from the

  17. A randomized controlled comparison of electroconvulsive therapy and repetitive transcranial magnetic stimulation in severe and resistant nonpsychotic major depression.

    Science.gov (United States)

    Grunhaus, Leon; Schreiber, Shaul; Dolberg, Ornah T; Polak, Dana; Dannon, Pinhas N

    2003-02-15

    Studies published over the past few years suggest that transcranial magnetic stimulation (TMS) may have significant antidepressant actions. In a previous report, we compared electroconvulsive therapy (ECT) and repetitive TMS (rTMS) and found ECT to be superior for psychotic major depression (MD); however, ECT and rTMS had similar results in nonpsychotic MD. We now report on a controlled randomized comparison of ECT and rTMS in patients with nonpsychotic MD. Forty patients with nonpsychotic MD referred for ECT were included. Electroconvulsive therapy was performed according to established protocols. Repetitive TMS was performed over the left dorsolateral prefrontal cortex at 90% motor threshold. Patients were treated with 20 sessions (five times per week for 4 weeks) of 10-Hz treatments (1200 pulses per treatment-day) at 90% motor threshold. Response to treatment was defined as a decrease of at least 50% in the Hamilton Rating Scale for Depression (HRSD) score, with a final HRSD equal or less than 10 points and a final Global Assessment of Function Scale rating of 60 or more points. The overall response rate was 58% (23 out of 40 patients responded to treatment). In the ECT group, 12 responded and eight did not; in the rTMS group, 11 responded and nine did not (chi2 =.10, ns). Thus, patients responded as well to either ECT or rTMS. This study adds to the growing literature supporting an antidepressant effect for rTMS. This study is particularly relevant because it suggests that rTMS and ECT reach similar results in nonpsychotic major depressive disorder.

  18. Low- vs high- frequency Repetitive Transcranial Magnetic Stimulation as an add-on treatment for refractory depression

    Directory of Open Access Journals (Sweden)

    julien eeche

    2012-03-01

    Full Text Available Objectives: Repetitive transcranial magnetic stimulation (rTMS seems to be effective as an antidepressant treatment, however, some confusion remain about the best parameters to apply and the efficacy of its association with pharmacological antidepressant treatments.Method: In a single blind randomized study14 patients with unipolar resistant depression to one antidepressant treatment were enrolled to received, in combination with venlafaxine (150 mg, either 20 sessions of 10Hz rTMS (2 000 pulses per session applied over le left dorsolateral prefrontal cortex (DLPFC or 20 sessions of 1 Hz rTMS (120 stimulations per sessions applied over the right DLPFC. Results: A similar antidepressant effect was observed in both groups with a comparable antidepressant delay of action (2 weeks and a comparable number of patients in remission after 4 weeks of daily rTMS sessions (66 vs 50 %.Conclusion: Low- and high- frequency rTMS seem to be effective as an add-on treatment to venlafaxine in pharmacological refractory major depression. Due to its short duration and its safety, low frequency rTMS may be a useful alternative treatment for patients with refractory depression.

  19. Is it time to introduce repetitive transcranial magnetic stimulation into standard clinical practice for the treatment of depressive disorders?

    Science.gov (United States)

    Fitzgerald, Paul

    2003-02-01

    To examine issues relating to the potential introduction of repetitive transcranial magnetic stimulation (rTMS) into clinical practice as a treatment for depression. A review of the outcomes literature accompanied by an analysis of issues relating to the potential advantages and pitfalls of the introduction of rTMS as a treatment strategy. Evidence is progressively accumulating that rTMS has antidepressant properties that are clinically relevant. These effects are biologically plausible and supported by basic research. Patients with therapy-resistant depression have few treatment alternatives and experience significant suffering, thus justifying the early introduction of a new treatment such as rTMS for this patient group. However, this must be balanced by a need to foster considerable further research and not to raise expectations unreasonably. It is timely for rTMS to be made more available to patients with treatment-resistant mood disorders. This need not be limited to clinical research trials but should only occur in medical settings where continual evaluation and research is conducted.

  20. Empathy moderates the effect of repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex on costly punishment.

    Directory of Open Access Journals (Sweden)

    Martin Brüne

    Full Text Available Humans incur considerable costs to punish unfairness directed towards themselves or others. Recent studies using repetitive transcranial magnetic stimulation (rTMS suggest that the right dorsolateral prefrontal cortex (DLPFC is causally involved in such strategic decisions. Presently, two partly divergent hypotheses are discussed, suggesting either that the right DLPFC is necessary to control selfish motives by implementing culturally transmitted social norms, or is involved in suppressing emotion-driven prepotent responses to perceived unfairness. Accordingly, we studied the role of the DLPFC in costly (i.e. third party punishment by applying rTMS to the left and right DLPFC before playing a Dictator Game with the option to punish observed unfair behavior (DG-P. In addition, sham stimulation took place. Individual differences in empathy were assessed with the German version of the Interpersonal Reactivity Index. Costly punishment increased (non-significantly upon disruption of the right--but not the left--DLPFC as compared to sham stimulation. However, empathy emerged as a highly significant moderator variable of the effect of rTMS over the right, but not left, DLPFC, suggesting that the right DLPFC is involved in controlling prepotent emotional responses to observed unfairness, depending on individual differences in empathy.

  1. Effect of electroconvulsive therapy in repetitive transcranial magnetic stimulation non-responder MDD patients: a preliminary study.

    Science.gov (United States)

    Dannon, P N; Grunhaus, L

    2001-09-01

    The aim of this study was to measure the effectiveness of ECT in-patients who had failed to respond to a course of repetitive transcranial magnetic stimulation (rTMS) treatment. Seventeen patients with severe MDD who had not responded to a course of rTMS were switched to receive ECT treatments. All the patients were assessed with the Hamilton Rating Scale for Depression, the Global Assessment Functioning Scale, the Global Depression Scale, and the Pittsburgh Sleep Quality Index. Response to the treatment was defined as a 50% decrease in HDRS final score and a final GAS higher than 60. Seven out of 17 patients responded to ECT. Three out of 5 non-psychotics and 4 out of 12 psychotic patients responded. ECT seems to be an effective treatment for 40% of patients who failed to respond to rTMS treatment. Whether this is a result of reduced responsiveness to ECT in rTMS-resistant patients or a consequence of small sample size requires further study.

  2. Repetitive transcranial magnetic stimulation reveals a role for the left inferior parietal lobule in matching observed kinematics during imitation.

    Science.gov (United States)

    Reader, Arran T; Royce, Ben P; Marsh, Jade E; Chivers, Katy-Jayne; Holmes, Nicholas P

    2018-04-01

    Apraxia (a disorder of complex movement) suggests that the left inferior parietal lobule (IPL) plays a role in kinematic or spatial aspects of imitation, which may be particularly important for meaningless (i.e. unfamiliar intransitive) actions. Mirror neuron theories indicate that the IPL is part of a frontoparietal system that can support imitation by linking observed and stored actions through visuomotor matching, and have less to say about different subregions of the left IPL, or how different types of action (i.e. meaningful or meaningless) are processed for imitation. We used repetitive transcranial magnetic stimulation (rTMS) to bridge this gap and better understand the roles of the left supramarginal gyrus (SMG) and left angular gyrus (AG) in imitation. We also examined whether these areas are differentially involved in meaningful and meaningless action imitation. We applied rTMS over the left SMG, over the left AG or during a no-rTMS baseline condition, and then asked participants to imitate a confederate's actions whilst the arm and hand movements of both individuals were motion-tracked. rTMS over both the left SMG and the left AG reduced the velocity of participants' finger movements relative to the actor during imitation of finger gestures, regardless of action meaning. Our results support recent claims in apraxia and confirm a role for the left IPL in kinematic processing during gesture imitation, regardless of action meaning. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Effects of Repetitive Transcranial Magnetic Stimulation in the Rehabilitation of Communication and Deglutition Disorders: Systematic Review of Randomized Controlled Trials.

    Science.gov (United States)

    Gadenz, Camila Dalbosco; Moreira, Tais de Campos; Capobianco, Dirce Maria; Cassol, Mauriceia

    2015-01-01

    To systematically review randomized controlled trials that evaluate the effects of repetitive transcranial magnetic stimulation (rTMS) on rehabilitation aspects related to communication and swallowing functions. A search was conducted on PubMed, Clinical Trials, Cochrane Library, and ASHA electronic databases. Studies were judged according to the eligibility criteria and analyzed by 2 independent and blinded researchers. We analyzed 9 studies: 4 about aphasia, 3 about dysphagia, 1 about dysarthria in Parkinson's disease and 1 about linguistic deficits in Alzheimer's disease. All aphasia studies used low-frequency rTMS to stimulate Broca's homologous area. High-frequency rTMS was applied over the pharyngoesophageal cortex from the left and/or right hemisphere in the dysphagia studies and over the left dorsolateral prefrontal cortex in the Parkinson's and Alzheimer's studies. Two aphasia and all dysphagia studies showed a significant improvement of the disorder, compared to the sham group. The other 2 studies related to aphasia found a benefit restricted to subgroups with a severe case or injury on the anterior portion of the language cortical area, respectively, whereas the Alzheimer's study demonstrated positive effects specific to auditory comprehension. There were no changes for vocal function in the Parkinson's study. The benefits of the technique and its applicability in neurogenic disorders related to communication and deglutition are still uncertain. Therefore, other randomized controlled trials are needed to clarify the optimal stimulation protocol for each disorder studied and its real effects. © 2015 S. Karger AG, Basel.

  4. Effect of Intermediate-Frequency Repetitive Transcranial Magnetic Stimulation on Recovery following Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Leticia Verdugo-Diaz

    2017-01-01

    Full Text Available Traumatic brain injury (TBI represents a significant public health concern and has been associated with high rates of morbidity and mortality. Although several research groups have proposed the use of repetitive transcranial magnetic stimulation (rTMS to enhance neuroprotection and recovery in patients with TBI, few studies have obtained sufficient evidence regarding its effects in this population. Therefore, we aimed to analyze the effect of intermediate-frequency rTMS (2 Hz on behavioral and histological recovery following TBI in rats. Male Wistar rats were divided into six groups: three groups without TBI (no manipulation, movement restriction plus sham rTMS, and movement restriction plus rTMS and three groups subjected to TBI (TBI only, TBI plus movement restriction and sham rTMS, and TBI plus movement restriction and rTMS. The movement restriction groups were included so that rTMS could be applied without anesthesia. Our results indicate that the restriction of movement and sham rTMS per se promotes recovery, as measured using a neurobehavioral scale, although rTMS was associated with faster and superior recovery. We also observed that TBI caused alterations in the CA1 and CA3 subregions of the hippocampus, which are partly restored by movement restriction and rTMS. Our findings indicated that movement restriction prevents damage caused by TBI and that intermediate-frequency rTMS promotes behavioral and histologic recovery after TBI.

  5. Modulation of the Left Prefrontal Cortex with High Frequency Repetitive Transcranial Magnetic Stimulation Facilitates Gait in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-01-01

    Full Text Available Multiple Sclerosis (MS is a chronic central nervous system (CNS demyelinating disease. Gait abnormalities are common and disabling in patients with MS with limited treatment options available. Emerging evidence suggests a role of prefrontal attention networks in modulating gait. High-frequency repetitive transcranial magnetic stimulation (rTMS is known to enhance cortical excitability in stimulated cortex and its correlates. We investigated the effect of high-frequency left prefrontal rTMS on gait parameters in a 51-year-old Caucasian male with chronic relapsing/remitting MS with residual disabling attention and gait symptoms. Patient received 6 Hz, rTMS at 90% motor threshold using figure of eight coil centered on F3 location (using 10-20 electroencephalography (EEG lead localization system. GAITRite gait analysis system was used to collect objective gait measures before and after one session and in another occasion three consecutive daily sessions of rTMS. Two-tailed within subject repeated measure t-test showed significant enhancement in ambulation time, gait velocity, and cadence after three consecutive daily sessions of rTMS. Modulating left prefrontal cortex excitability using rTMS resulted in significant change in gait parameters after three sessions. To our knowledge, this is the first report that demonstrates the effect of rTMS applied to the prefrontal cortex on gait in MS patients.

  6. Clinical improvement in patients with borderline personality disorder after treatment with repetitive transcranial magnetic stimulation: preliminary results.

    Science.gov (United States)

    Reyes-López, Julian; Ricardo-Garcell, Josefina; Armas-Castañeda, Gabriela; García-Anaya, María; Arango-De Montis, Iván; González-Olvera, Jorge J; Pellicer, Francisco

    2018-01-01

    Current treatment of borderline personality disorder (BPD) consists of psychotherapy and pharmacological interventions. However, the use of repetitive transcranial magnetic stimulation (rTMS) could be beneficial to improve some BPD symptoms. The objective of this study was to evaluate clinical improvement in patients with BPD after application of rTMS over the right or left dorsolateral prefrontal cortex (DLPFC). Twenty-nine patients with BPD from the National Institute of Psychiatry, Mexico, were randomized in two groups to receive 15 sessions of rTMS applied over the right (1 Hz, n=15) or left (5 Hz, n=14) DLPFC. Improvement was measured by the Clinical Global Impression Scale for BPD (CGI-BPD), Borderline Evaluation of Severity Over Time (BEST), Beck Depression Inventory (BDI), Hamilton Anxiety Rating Scale (HAM-A), and Barratt Impulsiveness Scale (BIS). Intragroup comparison showed significant (p < 0.05) reductions in every psychopathologic domain of the CGI-BPD and in the total scores of all scales in both groups. Both protocols produced global improvement in severity and symptoms of BPD, particularly in impulsiveness, affective instability, and anger. Further studies are warranted to explore the therapeutic effect of rTMS in BPD. NCT02273674

  7. Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography

    Science.gov (United States)

    Tian, Fenghua; Kozel, F. Andrew; Yennu, Amarnath; Croarkin, Paul E.; McClintock, Shawn M.; Mapes, Kimberly S.; Husain, Mustafa M.; Liu, Hanli

    2012-11-01

    Repetitive transcranial magnetic stimulation (rTMS) is a technology that stimulates neurons with rapidly changing magnetic pulses with demonstrated therapeutic applications for various neuropsychiatric disorders. Functional near-infrared spectroscopy (fNIRS) is a suitable tool to assess rTMS-evoked brain responses without interference from the magnetic or electric fields generated by the TMS coil. We have previously reported a channel-wise study of combined rTMS/fNIRS on the motor and prefrontal cortices, showing a robust decrease of oxygenated hemoglobin concentration (Δ[HbO2]) at the sites of 1-Hz rTMS and the contralateral brain regions. However, the reliability of this putative clinical tool is unknown. In this study, we develop a rapid optical topography approach to spatially characterize the rTMS-evoked hemodynamic responses on a standard brain atlas. A hemispherical approximation of the brain is employed to convert the three-dimensional topography on the complex brain surface to a two-dimensional topography in the spherical coordinate system. The test-retest reliability of the combined rTMS/fNIRS is assessed using repeated measurements performed two to three days apart. The results demonstrate that the Δ[HbO2] amplitudes have moderate-to-high reliability at the group level; and the spatial patterns of the topographic images have high reproducibility in size and a moderate degree of overlap at the individual level.

  8. Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus.

    Science.gov (United States)

    Kleinjung, Tobias; Eichhammer, Peter; Langguth, Berthold; Jacob, Peter; Marienhagen, Joerg; Hajak, Goeran; Wolf, Stephan R; Strutz, Juergen

    2005-04-01

    The pathophysiologic mechanisms of idiopathic tinnitus remain unclear. Recent studies demonstrated focal brain activation in the auditory cortex of patients with chronic tinnitus. Low-frequency repetitive transcranial magnetic stimulation (rTMS) is able to reduce cortical hyperexcitability. Fusing of the individual PET-scan with the structural MRI-scan (T1, MPRAGE) allowed us to identify exactly the area of increased metabolic activity in the auditory cortex of patients with chronic tinnitus. With the use of a neuronavigational system, this target area was exactly stimulated by the figure 8-shaped magnetic coil. In a prospective study, rTMS (110% motor threshold; 1 Hz; 2000 stimuli/day over 5 days) was performed using a placebo controlled cross-over design. Patients were blinded regarding the stimulus condition. For the sham stimulation a specific sham-coil system was used. Fourteen patients were followed for 6 months. Treatment outcome was assessed with a specific tinnitus questionnaire (Goebel and Hiller). Tertiary referral medical center. Increased metabolic activation in the auditory cortex was verified in all patients. After 5 days of verum rTMS, a highly significant improvement of the tinnitus score was found whereas the sham treatment did not show any significant changes. The treatment outcome after 6 months still demonstrated significant reduction of tinnitus score. These preliminary results demonstrate that neuronavigated rTMS offers new possibilities in the understanding and treatment of chronic tinnitus.

  9. Diffusion Tensor Imaging Evaluation of Neural Network Development in Patients Undergoing Therapeutic Repetitive Transcranial Magnetic Stimulation following Stroke

    Directory of Open Access Journals (Sweden)

    Naoki Yamada

    2018-01-01

    Full Text Available We aimed to investigate plastic changes in cerebral white matter structures using diffusion tensor imaging following a 15-day stroke rehabilitation program. We compared the detection of cerebral plasticity between generalized fractional anisotropy (GFA, a novel tool for investigating white matter structures, and fractional anisotropy (FA. Low-frequency repetitive transcranial magnetic stimulation (LF-rTMS of 2400 pulses applied to the nonlesional hemisphere and 240 min intensive occupation therapy (OT daily over 15 days. Motor function was evaluated using the Fugl-Meyer assessment (FMA and Wolf Motor Function Test (WMFT. Patients underwent diffusion tensor magnetic resonance imaging (MRI on admission and discharge, from which bilateral FA and GFA values in Brodmann area (BA 4 and BA6 were calculated. Motor function improved following treatment (p<0.001. Treatment increased GFA values for both the lesioned and nonlesioned BA4 (p<0.05, p<0.001, resp.. Changes in GFA value for BA4 of the lesioned hemisphere were significantly inversely correlated with changes in WMFT scores (R2=0.363, p<0.05. Our findings indicate that the GFA may have a potentially more useful ability than FA to detect changes in white matter structures in areas of fiber intersection for any such future investigations.

  10. Impact of Repetitive Transcranial Magnetic Stimulation (rTMS on Brain Functional Marker of Auditory Hallucinations in Schizophrenia Patients

    Directory of Open Access Journals (Sweden)

    Sonia Dollfus

    2013-04-01

    Full Text Available Several cross-sectional functional Magnetic Resonance Imaging (fMRI studies reported a negative correlation between auditory verbal hallucination (AVH severity and amplitude of the activations during language tasks. The present study assessed the time course of this correlation and its possible structural underpinnings by combining structural, functional MRI and repetitive Transcranial Magnetic Stimulation (rTMS. Methods: Nine schizophrenia patients with AVH (evaluated with the Auditory Hallucination Rating scale; AHRS and nine healthy participants underwent two sessions of an fMRI speech listening paradigm. Meanwhile, patients received high frequency (20 Hz rTMS. Results: Before rTMS, activations were negatively correlated with AHRS in a left posterior superior temporal sulcus (pSTS cluster, considered henceforward as a functional region of interest (fROI. After rTMS, activations in this fROI no longer correlated with AHRS. This decoupling was explained by a significant decrease of AHRS scores after rTMS that contrasted with a relative stability of cerebral activations. A voxel-based-morphometry analysis evidenced a cluster of the left pSTS where grey matter volume negatively correlated with AHRS before rTMS and positively correlated with activations in the fROI at both sessions. Conclusion: rTMS decreases the severity of AVH leading to modify the functional correlate of AVH underlain by grey matter abnormalities.

  11. Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory.

    Science.gov (United States)

    Censor, Nitzan; Cohen, Leonardo G

    2011-01-01

    In the last two decades, there has been a rapid development in the research of the physiological brain mechanisms underlying human motor learning and memory. While conventional memory research performed on animal models uses intracellular recordings, microfusion of protein inhibitors to specific brain areas and direct induction of focal brain lesions, human research has so far utilized predominantly behavioural approaches and indirect measurements of neural activity. Repetitive transcranial magnetic stimulation (rTMS), a safe non-invasive brain stimulation technique, enables the study of the functional role of specific cortical areas by evaluating the behavioural consequences of selective modulation of activity (excitation or inhibition) on memory generation and consolidation, contributing to the understanding of the neural substrates of motor learning. Depending on the parameters of stimulation, rTMS can also facilitate learning processes, presumably through purposeful modulation of excitability in specific brain regions. rTMS has also been used to gain valuable knowledge regarding the timeline of motor memory formation, from initial encoding to stabilization and long-term retention. In this review, we summarize insights gained using rTMS on the physiological and neural mechanisms of human motor learning and memory. We conclude by suggesting possible future research directions, some with direct clinical implications.

  12. Acute rCBF changes in depressed patients receiving repetitive transcranial magnetic stimulation (rTMS)

    International Nuclear Information System (INIS)

    Haindl, W.; Loo, C.; Mitchell, P.; Sachdev, P.; Zheng, X.; Som, S.; Walker, B.

    1999-01-01

    Full text: Electroconvulsant therapy (ECT) is very effective in treatment resistant severe depression with response rates of 70-90%. However, ECT has major limitations including the need for anaesthesia, memory difficulties and public apprehension about its use. Transcranial magnetic stimulation (rTMS) has been used as a diagnostic technique in neurology with recent reports of potential benefit in depressed patients. In this study, 5 patients (3 females, 2 males aged 36-66 years, mean 48.6 years) with major depression underwent SPET brain scanning using a Picker 3000 triple-headed camera. Each patient had a baseline rCBF scan with 500 MBq of 99 Tc m HMPAO injected intravenously during sham rTMS. On the following day, each patient received another 500 MBq of 99 Tc m HMPAo during rTMS to the left dorsolateral prefrontal cortex using a Magstim Super Rapid magnetic stimulator with a 70-mm figure eight coil. The stimulator parameters were 15 Hz, 90% of resting motor threshold, 1 s on 3 s off for 30 trains prior to injection and 15-30 trains following injection. Each patient continued to receive their usual medication during this period. The reconstructed SPET data sets were normalized to the global mean, registered to the Talairach template and analysed using statistical parametric mapping (SPM). Compared with the baseline group, the rTMS group showed a significant perfusion increase in the pre-frontal cortices, especially on the left, and also in the anterior left temporal lobe (P < 0.05). Frontal lobe perfusion reduction is a common finding in depression. This study demonstrates the ability of rTMS to acutely increase frontal lobe perfusion, and therefore a possible mechanism for its therapeutic use as an adjunct to pharmacological therapy or as an alternative to ECT in depression

  13. [Treatment of chronic tinnitus with neuronavigated repetitive Transcranial Magnetic Stimulation (rTMS)].

    Science.gov (United States)

    Kleinjung, T; Steffens, T; Langguth, B; Eichhammer, P; Marienhagen, J; Hajak, G; Strutz, J

    2006-06-01

    Idiopathic tinnitus is a frequent and debilitating disorder of largely unknown pathophysiology. Focal brain activation in the auditory cortex has recently been demonstrated in chronic tinnitus. Low-frequency rTMS can reduce cortical hyperexcitability. In 12 patients with chronic tinnitus, fusion of [18F]deoxyglucose-PET and structural MRI (T1, MPRAGE) scans allowed the area of increased metabolic activity in the auditory cortex to be exactly identified; this area was selected as the target for rTMS. A neuronavigational system adapted for TMS positioning enabled the relative positions of the figure-8 coil and the target area to be monitored. Repetitive TMS (110% motor threshold; 1 Hz; 2000 stimuli per day over 5 days) was performed using a placebo-controlled crossover design. A sham coil system was used for the placebo stimulation. Treatment outcome was assessed with a specific tinnitus questionnaire (Goebel and Hiller). In all 12 patients an asymmetrically increased metabolic activation of the gyrus of Heschl was detected. The tinnitus score was significantly improved after 5 days of active rTMS, an effect not seen after placebo stimulation. These preliminary results show that neuronavigated rTMS may improve our understanding and treatment of chronic tinnitus.

  14. Can repetitive transcranial magnetic stimulation increase muscle strength in functional neurological paresis? A proof-of-principle study.

    Science.gov (United States)

    Broersma, M; Koops, E A; Vroomen, P C; Van der Hoeven, J H; Aleman, A; Leenders, K L; Maurits, N M; van Beilen, M

    2015-05-01

    Therapeutic options are limited in functional neurological paresis disorder. Earlier intervention studies did not control for a placebo effect, hampering assessment of effectivity. A proof-of-principle investigation was conducted into the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS), using a single-blind two-period placebo-controlled cross-over design. Eleven patients received active 15 Hz rTMS over the contralateral motor cortex (hand area), in two periods of 5 days, for 30 min once a day at 80% of resting motor threshold, with a train length of 2 s and an intertrain interval of 4 s. Eight of these eleven patients were also included in the placebo treatment condition. Primary outcome measure was change in muscle strength as measured by dynamometry after treatment. Secondary outcome measure was the subjective change in muscle strength after treatment. In patients who received both treatments, active rTMS induced a significantly larger median increase in objectively measured muscle strength (24%) compared to placebo rTMS (6%; P difference due to treatment, i.e. patients did not perceive these objectively measured motor improvements (P = 0.40). Our findings suggest that rTMS by itself can potentially improve muscle weakness in functional neurological paresis disorder. Whereas patients' muscle strength increased as measured with dynamometry, patients did not report increased functioning of the affected hand, subjectively. The results may indicate that decreased muscle strength is not the core symptom and that rTMS should be added to behavioral approaches in functional neurological paresis. © 2015 EAN.

  15. A Pilot Study of EEG Source Analysis Based Repetitive Transcranial Magnetic Stimulation for the Treatment of Tinnitus.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Repetitive Transcranial Magnetic Stimulation (rTMS is a novel therapeutic tool to induce a suppression of tinnitus. However, the optimal target sites are unknown. We aimed to determine whether low-frequency rTMS induced lasting suppression of tinnitus by decreasing neural activity in the cortex, navigated by high-density electroencephalogram (EEG source analysis, and the utility of EEG for targeting treatment.In this controlled three-armed trial, seven normal hearing patients with tonal tinnitus received a 10-day course of 1-Hz rTMS to the cortex, navigated by high-density EEG source analysis, to the left temporoparietal cortex region, and to the left temporoparietal with sham stimulation. The Tinnitus handicap inventory (THI and a visual analog scale (VAS were used to assess tinnitus severity and loudness. Measurements were taken before, and immediately, 2 weeks, and 4 weeks after the end of the interventions.Low-frequency rTMS decreased tinnitus significantly after active, but not sham, treatment. Responders in the EEG source analysis-based rTMS group, 71.4% (5/7 patients, experienced a significant reduction in tinnitus loudness, as evidenced by VAS scores. The target site of neuronal generators most consistently associated with a positive response was the frontal lobe in the right hemisphere, sourced using high-density EEG equipment, in the tinnitus patients. After left temporoparietal rTMS stimulation, 42.8% (3/7 patients experienced a decrease in tinnitus loudness.Active EEG source analysis based rTMS resulted in significant suppression in tinnitus loudness, showing the superiority of neuronavigation-guided coil positioning in dealing with tinnitus. Non-auditory areas should be considered in the pathophysiology of tinnitus. This knowledge in turn can contribute to investigate the pathophysiology of tinnitus.

  16. Correlating subcortical interhemispheric connectivity and cortical hemispheric dominance in brain tumor patients: A repetitive navigated transcranial magnetic stimulation study.

    Science.gov (United States)

    Sollmann, Nico; Ille, Sebastian; Tussis, Lorena; Maurer, Stefanie; Hauck, Theresa; Negwer, Chiara; Bauer, Jan S; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-02-01

    The present study aims to investigate the relationship between transcallosal interhemispheric connectivity (IC) and hemispheric language lateralization by using a novel approach including repetitive navigated transcranial magnetic stimulation (rTMS), hemispheric dominance ratio (HDR) calculation, and rTMS-based diffusion tensor imaging fiber tracking (DTI FT). 31 patients with left-sided perisylvian brain lesions underwent diffusion tensor imaging (DTI) and rTMS language mapping. Cortical language-positive rTMS spots were used to calculate HDRs (HDR: quotient of the left-sided divided by right-sided naming error rates for corresponding left- and right-sided cortical regions) and to create regions of interest (ROIs) for DTI FT. Then, fibers connecting the rTMS-based ROIs of both hemispheres were tracked, and the correlation of IC to HDRs was calculated via Spearman's rank correlation coefficient (rs). Fibers connecting rTMS-based ROIs of both hemispheres were detected in 12 patients (38.7%). Within the patients in which IC was detected, the mean number of subcortical IC fibers ± standard deviation (SD) was 138.0 ± 346.5 (median: 7.5; range: 1-1,217 fibers). Regarding rs for the correlation of HDRs and fiber numbers of patients that showed IC, only moderate correlation was revealed. Our approach might be beneficial and technically feasible for further investigation of the relationship between IC and language lateralization. However, only moderate correlation was revealed in the present study. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Repetitive transcranial magnetic stimulation once a week induces sustainable long-term relief of central poststroke pain.

    Science.gov (United States)

    Kobayashi, Masahito; Fujimaki, Takamitsu; Mihara, Ban; Ohira, Takayuki

    2015-06-01

    Central poststroke pain is a serious problem for some patients after stroke. Repetitive transcranial magnetic stimulation (rTMS) has been reported to relieve poststroke pain but its efficacy is still controversial. We tested the possibility that rTMS, when applied once a week, would induce sustainable relief of poststroke pain. Eighteen patients with central poststroke pain were included in this study. rTMS (10 trains of 10-sec 5 Hz-rTMS) was delivered over the primary motor cortex on the affected side. The rTMS session was repeated once a week for 12 weeks, and for six patients the intervention was continued for one year. The degree of the pain was assessed before each weekly rTMS session to evaluate sustainable effects. The effects of the rTMS reached a plateau at the eighth week. At the 12th week, the rTMS was effective in 61.1% of the patients; 5 of the 18 patients showed more than 70% reduction based on a visual analog scale, 6 patients showed 40-69% reduction, and 7 remained at a pain reduction level of less than 40%. When patients were divided into two groups with or without severe dysesthesia, it was found that eight patients with severe dysesthesia showed less pain relief than those without. In the six patients who continued rTMS for one year, the pain relief effects also were sustained. Although this was an open-label study without a control group, our findings suggest that rTMS of the primary motor cortex, when maintained once a week, could help to relieve poststroke pain. © 2015 International Neuromodulation Society.

  18. Acute and chronic effects of hypercalcaemia on cortical excitability as studied by 5 Hz repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Iacovelli, Elisa; Gilio, Francesca; Mascia, Maria Lucia; Scillitani, Alfredo; Romagnoli, Elisabetta; Pichiorri, Floriana; Fucile, Sergio; Minisola, Salvatore; Inghilleri, Maurizio

    2011-04-01

    We designed the present study to disclose changes in cortical excitability in humans with hypercalcaemia, by delivering repetitive transcranial magnetic stimulation (rTMS) over the primary motor area (M1). In 22 patients with chronic hypercalcaemia related to primary hyperparathyroidism and 22 age-matched healthy subjects 5 Hz-rTMS was delivered at rest and during a sustained voluntary contraction of the target muscle. Changes in the resting motor threshold (RMT), motor evoked potential (MEP) amplitudes and cortical silent period (CSP) duration were measured and compared in patients and healthy controls. Two of the 22 patients were re-tested after parathyroidectomy when serum calcium had normalized. In a subgroup of healthy subjects, changes in the rTMS parameters were tested before and after acute hypercalcaemia. No significant difference between healthy normocalcaemic subjects and chronic hypercalcaemic patients was found in the RMT values and MEP amplitude and CSP duration evoked by the first stimulus of the trains. During the course of 5 Hz-rTMS trains, MEP size increased significantly less in patients with chronic hypercalcaemia than in healthy subjects, whereas the CSP duration lengthened to a similar extent in both groups. In the two patients studied after parathyroidectomy, rTMS elicited a normal MEP amplitude facilitation. Our findings indicate that acute hypercalcaemia significantly decreased the MEP amplitude facilitation. Given that 5 Hz-rTMS modulates cortical excitability through mechanisms resembling short-term synaptic enhancement, the reduction of MEP amplitude facilitation by hypercalcaemia may be related to Ca2+-dependent changes in synaptic plasticity.

  19. The impact of preoperative language mapping by repetitive navigated transcranial magnetic stimulation on the clinical course of brain tumor patients.

    Science.gov (United States)

    Sollmann, Nico; Ille, Sebastian; Hauck, Theresa; Maurer, Stefanie; Negwer, Chiara; Zimmer, Claus; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2015-04-11

    Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is used for resection planning in patients suffering from brain lesions within regions known to be involved in language function. Yet we also need data that show whether patients benefit clinically from preoperative rTMS for language mapping. We enrolled 25 patients with language eloquently located brain lesions undergoing preoperative rTMS language mapping (GROUP 1, 2011-2013), with the mapping results not being available for the surgeon, and we matched these patients with 25 subjects who also underwent preoperative rTMS (GROUP 2, 2013-2014), but the mapping results were taken into account during tumor resection. Additionally, cortical language maps were generated by analyzing preoperative rTMS and intraoperative direct cortical stimulation (DCS) data. Mean anterior-posterior (ap) craniotomy extents and overall craniotomy sizes were significantly smaller for the patients in GROUP 2 (Ap: p = 0.0117; overall size: p = 0.0373), and postoperative language deficits were found significantly more frequently for the patients in GROUP 1 (p = 0.0153), although the preoperative language status did not differ between groups (p = 0.7576). Additionally, there was a trend towards fewer unexpected tumor residuals, shorter surgery duration, less peri- or postoperative complications, shorter inpatient stay, and higher postoperative Karnofsky performance status scale (KPS) for the patients in GROUP 2. The present study provides a first hint that the clinical course of patients suffering from brain tumors might be improved by preoperative rTMS language mapping. However, a significant difference between both groups was only found for craniotomy extents and postoperative deficits, but not for other clinical parameters, which only showed a trend toward better results in GROUP 2. Therefore, multicenter trials with higher sample sizes are needed to further investigate the distinct impact of r

  20. Safety and tolerability of repetitive transcranial magnetic stimulation in patients with pathologic positive sensory phenomena: a review of literature

    Science.gov (United States)

    Muller, Paul A; Pascual-Leone, Alvaro; Rotenberg, Alexander

    2013-01-01

    BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is emerging as a valuable therapeutic and diagnostic tool. rTMS appears particularly promising for disorders characterized by positive sensory phenomena attributable to alterations in sensory cortex excitability. Among these are tinnitus, auditory and visual hallucinations, and pain syndromes. OBJECTIVE Despite studies addressing rTMS efficacy in suppression of positive sensory symptoms, the safety of stimulation of potentially hyperexcitable cortex has not been fully addressed. We performed a systematic literature review and metanalysis to describe the rTMS safety profile in these disorders. METHODS Using the PubMed database, we performed an English-language literature search from January 1985 to April 2011 to review all pertinent publications. Per study, we noted and listed pertinent details. From these data we also calculated a crude per-subject risk for each adverse event. RESULTS 106 publications (n = 1815 subjects) were identified with patients undergoing rTMS for pathologic positive sensory phenomena. Adverse events associated with rTMS were generally mild and occurred in 16.7% of subjects. Seizure was the most serious adverse event, and occurred in three patients with a 0.16% crude per-subject risk. The second most severe adverse event involved aggravation of sensory phenomena, occurring in 1.54%. CONCLUSIONS The published data suggest rTMS for the treatment or diagnosis of pathologic positive sensory phenomena appears to be a relatively safe and well-tolerated procedure. However, published data are lacking in systematic reporting of adverse events, and safety risks of rTMS in these patient populations will have to be addressed in future prospective trials. PMID:22322098

  1. Hemispheric language dominance measured by repetitive navigated transcranial magnetic stimulation and postoperative course of language function in brain tumor patients.

    Science.gov (United States)

    Ille, Sebastian; Kulchytska, Nataliia; Sollmann, Nico; Wittig, Regina; Beurskens, Eva; Butenschoen, Vicki M; Ringel, Florian; Vajkoczy, Peter; Meyer, Bernhard; Picht, Thomas; Krieg, Sandro M

    2016-10-01

    The resection of left-sided perisylvian brain lesions harbors the risk of postoperative aphasia. Because it is known that language function can shift between hemispheres in brain tumor patients, the preoperative knowledge of the patient's language dominance could be helpful. We therefore investigated the hemispheric language dominance by repetitive navigated transcranial magnetic stimulation (rTMS) and surgery-related deficits of language function. We pooled the bicentric language mapping data of 80 patients undergoing the resection of left-sided perisylvian brain lesions in our two university neurosurgical departments. We calculated error rates (ERs; ER = errors per stimulations) for both hemispheres and defined the hemispheric dominance ratio (HDR) as the quotient of the left- and right-sided ER (HDR >1= left dominant; HDR right dominant). The course of the patient's language function was evaluated and correlated with the preoperative HDR. Only three of 80 patients (4%) presented with permanent surgery-related aphasia and 24 patients (30%) with transient surgery-related aphasia. The mean HDR (± standard deviation) of patients with new aphasia after five days was significantly higher (1.68±1.07) than the HDR of patients with no new language deficit (1.37±1.08) (p=0.0482). With a predefined cut-off value of 0.5 for HDR, we achieved a sensitivity for predicting new aphasia of 100%. A higher preoperative HDR significantly correlates with an increased risk for transient aphasia. Moreover, the intensive preoperative workup in this study led to a considerably low rate of permanent aphasia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Metabolic changes of cerebrum by repetitive transcranial magnetic stimulation over lateral cerebellum: a study with FDG PET.

    Science.gov (United States)

    Cho, Sang Soo; Yoon, Eun Jin; Bang, Sung Ae; Park, Hyun Soo; Kim, Yu Kyeong; Strafella, Antonio P; Kim, Sang Eun

    2012-09-01

    To better understand the functional role of cerebellum within the large-scale cerebellocerebral neural network, we investigated the changes of neuronal activity elicited by cerebellar repetitive transcranial magnetic stimulation (rTMS) using (18)F-fluorodeoxyglucose (FDG) and positron emission tomography (PET). Twelve right-handed healthy volunteers were studied with brain FDG PET under two conditions: active rTMS of 1 Hz frequency over the left lateral cerebellum and sham stimulation. Compared to the sham condition, active rTMS induced decreased glucose metabolism in the stimulated left lateral cerebellum, the areas known to be involved in voluntary motor movement (supplementary motor area and posterior parietal cortex) in the right cerebral hemisphere, and the areas known to be involved in cognition and emotion (orbitofrontal, medial frontal, and anterior cingulate gyri) in the left cerebral hemisphere. Increased metabolism was found in cognition- and language-related brain regions such as the left inferior frontal gyrus including Broca's area, bilateral superior temporal gyri including Wernicke's area, and bilateral middle temporal gyri. Left cerebellar rTMS also led to increased metabolism in the left cerebellar dentate nucleus and pons. These results demonstrate that rTMS over the left lateral cerebellum modulates not only the target region excitability but also excitability of remote, but interconnected, motor-, language-, cognition-, and emotion-related cerebral regions. They provide further evidence that the cerebellum is involved not only in motor-related functions but also in higher cognitive abilities and emotion through the large-scale cerebellocereberal neural network.

  3. A double-blind, randomized trial of deep repetitive transcranial magnetic stimulation (rTMS) for autism spectrum disorder.

    Science.gov (United States)

    Enticott, Peter G; Fitzgibbon, Bernadette M; Kennedy, Hayley A; Arnold, Sara L; Elliot, David; Peachey, Amy; Zangen, Abraham; Fitzgerald, Paul B

    2014-01-01

    Biomedical treatment options for autism spectrum disorder (ASD) are extremely limited. Repetitive transcranial magnetic stimulation (rTMS) is a safe and efficacious technique when targeting specific areas of cortical dysfunction in major depressive disorder, and a similar approach could yield therapeutic benefits in ASD, if applied to relevant cortical regions. The aim of this study was to examine whether deep rTMS to bilateral dorsomedial prefrontal cortex improves social relating in ASD. 28 adults diagnosed with either autistic disorder (high-functioning) or Asperger's disorder completed a prospective, double-blind, randomized, placebo-controlled design with 2 weeks of daily weekday treatment. This involved deep rTMS to bilateral dorsomedial prefrontal cortex (5 Hz, 10-s train duration, 20-s inter-train interval) for 15 min (1500 pulses per session) using a HAUT-Coil. The sham rTMS coil was encased in the same helmet of the active deep rTMS coil, but no effective field was delivered into the brain. Assessments were conducted before, after, and one month following treatment. Participants in the active condition showed a near significant reduction in self-reported social relating symptoms from pre-treatment to one month follow-up, and a significant reduction in social relating symptoms (relative to sham participants) for both post-treatment assessments. Those in the active condition also showed a reduction in self-oriented anxiety during difficult and emotional social situations from pre-treatment to one month follow-up. There were no changes for those in the sham condition. Deep rTMS to bilateral dorsomedial prefrontal cortex yielded a reduction in social relating impairment and socially-related anxiety. Further research in this area should employ extended rTMS protocols that approximate those used in depression in an attempt to replicate and amplify the clinical response. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Neurocognitive Effects of Repetitive Transcranial Magnetic Stimulation (rTMS in Adolescents with Major Depressive Disorder (MDD

    Directory of Open Access Journals (Sweden)

    Christopher A Wall

    2013-12-01

    Full Text Available Objectives: It is estimated that 30% to 40% of adolescents with major depressive disorder (MDD do not receive full benefit from current antidepressant therapies. Repetitive transcranial magnetic stimulation (rTMS is a novel therapy approved by the US FDA to treat adults with MDD. Research suggests rTMS is not associated with adverse neurocognitive effects in adult populations; however, there is no documentation of its neurocognitive effects in adolescents. This is a secondary post hoc analysis of neurocognitive outcome in adolescents who were treated with open label rTMS in two separate studies. Methods: Eighteen patients (mean age, 16.2 ± 1.1 years; 11 females, 7 males with MDD who failed to adequately respond to at least 1 antidepressant agent were enrolled in the studies. Fourteen patients completed all 30 rTMS treatments (5 days/week, 120% of motor threshold, 10 Hz, 3,000 stimulations per session applied to the left dorsolateral prefrontal cortex (L-DLPFC. Depression was rated using the Children’s Depression Rating Scale-Revised (CDRS-R. Neurocognitive evaluation was performed at baseline and after completion of 30 rTMS treatments with the Children’s Auditory Verbal Learning Test (CAVLT and Delis-Kaplan Executive Function System (DKEFS Trail Making Test. Results: Over the course of 30 rTMS treatments, adolescents showed a substantial decrease in depression severity and a statistically significant improvement in memory and delayed verbal recall. Other learning and memory indices and executive function remained intact. Neither participants nor their family members reported clinically meaningful changes in neurocognitive function. Conclusion: These preliminary findings suggest rTMS does not adversely impact neurocognitive functioning in adolescents and may provide subtle enhancement of verbal memory as measured by the CAVLT. Further controlled investigations are warranted to confirm and extend these findings.

  5. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study

    International Nuclear Information System (INIS)

    Gao, Feng; Wang, Shuang; Guo, Yi; Lou, Min; Wu, Jimin; Ding, Meiping; Wang, Jing; Zhang, Hong; Tian, Mei

    2010-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive method to excite neurons in the brain. However, the underlying mechanism of its therapeutic effects in stroke remains unclear. The aim of this study was to investigate the neuroprotective effect of high-frequency rTMS in a rat model of transient cerebral ischaemia using positron emission tomography (PET). Sprague-Dawley rats (n=30) were anaesthetized with chloral hydrate and subjected to 90 min of intraluminal middle cerebral artery occlusion (MCAO) with subsequent reperfusion in three groups: control (n=10), rTMS (n=10), or sham-rTMS groups (n=10). In the rTMS group, rTMS was given 1 h after ischaemia and every 24 h for 7 days after MCAO. In all three groups, small-animal PET (microPET) imaging with 18 F-FDG was used to evaluate brain glucose metabolism. Apoptotic molecules were measured in the infarct margin using immunohistochemical staining. The neurological scores of the rats in the rTMS group were higher than in those of the control group over the whole 7-day observation period. The total, cortical and striatal infarct volumes were significantly less in the rTMS group than in the control group, as measured by 2,3,5-triphenyltetrazolium chloride staining. 18 F-FDG microPET images showed significantly higher standardized uptake values in the cortex and striatum in the rTMS group than in the control group in the affected hemisphere. The number of cells positive for caspase-3 was significantly lower in the rTMS group than in the control group, while the Bcl-2/Bax ratio was significantly higher in the rTMS group than in the control group. rTMS therapy increased glucose metabolism and inhibited apoptosis in the ischaemic hemisphere. 18 F-FDG PET could be used to monitor rTMS therapy in transient cerebral ischaemia in animal studies and in future clinical trials. (orig.)

  6. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Neurology, Hangzhou, Zhejiang (China); Zhejiang University Medical PET Center, Hangzhou, Zhejiang (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang (China); Wang, Shuang; Guo, Yi; Lou, Min; Wu, Jimin; Ding, Meiping [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Neurology, Hangzhou, Zhejiang (China); Wang, Jing; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University Medical PET Center, Hangzhou, Zhejiang (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang (China); Tian, Mei [The University of Texas M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2010-05-15

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive method to excite neurons in the brain. However, the underlying mechanism of its therapeutic effects in stroke remains unclear. The aim of this study was to investigate the neuroprotective effect of high-frequency rTMS in a rat model of transient cerebral ischaemia using positron emission tomography (PET). Sprague-Dawley rats (n=30) were anaesthetized with chloral hydrate and subjected to 90 min of intraluminal middle cerebral artery occlusion (MCAO) with subsequent reperfusion in three groups: control (n=10), rTMS (n=10), or sham-rTMS groups (n=10). In the rTMS group, rTMS was given 1 h after ischaemia and every 24 h for 7 days after MCAO. In all three groups, small-animal PET (microPET) imaging with {sup 18}F-FDG was used to evaluate brain glucose metabolism. Apoptotic molecules were measured in the infarct margin using immunohistochemical staining. The neurological scores of the rats in the rTMS group were higher than in those of the control group over the whole 7-day observation period. The total, cortical and striatal infarct volumes were significantly less in the rTMS group than in the control group, as measured by 2,3,5-triphenyltetrazolium chloride staining. {sup 18}F-FDG microPET images showed significantly higher standardized uptake values in the cortex and striatum in the rTMS group than in the control group in the affected hemisphere. The number of cells positive for caspase-3 was significantly lower in the rTMS group than in the control group, while the Bcl-2/Bax ratio was significantly higher in the rTMS group than in the control group. rTMS therapy increased glucose metabolism and inhibited apoptosis in the ischaemic hemisphere. {sup 18}F-FDG PET could be used to monitor rTMS therapy in transient cerebral ischaemia in animal studies and in future clinical trials. (orig.)

  7. 5 Hz Repetitive transcranial magnetic stimulation for posttraumatic stress disorder comorbid with major depressive disorder.

    Science.gov (United States)

    Carpenter, Linda L; Conelea, Christine; Tyrka, Audrey R; Welch, Emma S; Greenberg, Benjamin D; Price, Lawrence H; Niedzwiecki, Matthew; Yip, Agustin G; Barnes, Jennifer; Philip, Noah S

    2018-08-01

    Standard clinical protocols for repetitive transcranial magnetic stimulation (rTMS) for major depressive disorder (MDD) apply 10 Hz pulses over left prefrontal cortex, yet little is known about the effects of rTMS in more diagnostically complex depressed patients. Posttraumatic stress disorder (PTSD) is commonly comorbid with MDD, and while rTMS has been shown to alleviate PTSD symptoms in preliminary studies, ideal parameters remain unclear. We conducted a prospective, open-label study of 5 Hz rTMS for patients with comorbid PTSD + MDD and hypothesized stimulation would reduce symptoms of both disorders. Outpatients (N = 40) with PTSD + MDD and at least moderate global severity were enrolled. 5 Hz rTMS included up to 40 daily sessions followed by a 5-session taper. Symptoms were measured using the PTSD Checklist (PCL-5) and Inventory of Depressive Symptomatology, Self-Report (IDS-SR). Baseline-to-endpoint changes were analyzed. The intent-to-treat population included 35 participants. Stimulation significantly reduced PTSD symptoms (PCL-5 baseline mean ± SD score 52.2 ± 13.1 versus endpoint 34.0 ± 21.6; p < .001); 23 patients (48.6%) met a pre-defined categorical PTSD response criteria. MDD symptoms also improved significantly (IDS-SR, baseline 47.8 ± 11.9 to endpoint 30.9 ± 18.9; p < .001); 15 patients (42.9%) demonstrated categorical response and 12 (34.3%) remitted. PTSD and MDD symptom change was highly correlated (r = 0.91, p < .001). Unblinded single-arm study, with modest sample size. Significant and clinically meaningful reductions in both MDD and PTSD symptoms were observed following stimulation. The preliminary efficacy of 5 Hz rTMS for both symptom domains in patients with comorbid disorders supports future controlled studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Priming With 1-Hz Repetitive Transcranial Magnetic Stimulation Over Contralesional Leg Motor Cortex Does Not Increase the Rate of Regaining Ambulation Within 3 Months of Stroke: A Randomized Controlled Trial.

    Science.gov (United States)

    Huang, Ying-Zu; Lin, Li-Fong; Chang, Kwang-Hwa; Hu, Chaur-Jong; Liou, Tsan-Hon; Lin, Yen-Nung

    2018-05-01

    The potential benefits of repetitive transcranial magnetic stimulation (rTMS), applied either alone or as a combination treatment, on recovery of lower limbs after stroke have been insufficiently studied. The aim of the study was to evaluate the effect of priming with 1-Hz repetitive transcranial magnetic stimulation over contralesional leg motor area with a double-cone coil before physical therapy on regaining ambulation. Thirty-eight subacute stroke patients with significant leg disabilities were randomly assigned into the experimental group or control group to receive a 15-min real or sham 1-Hz repetitive transcranial magnetic stimulation, respectively, over the contralesional motor cortex representing the quadriceps muscle followed by 45-min physical therapy for 15 sessions for 3 wks. Functional measures, motor evoked potentials, and quality of life were assessed. There was no significant difference between experimental group and control group regarding the recovery in ambulation, balance, motor functions, and activity of daily living. No significant difference was found in other functional measures and the quality of life. Only the control group displayed significantly increased cortical excitability of the contralesional hemisphere after the intervention. The present study found that insufficient evidence that contralesional priming with 1-Hz repetitive transcranial magnetic stimulation improves ambulatory and other motor functions among patients with a severe leg dysfunction in subacute stroke.

  9. Should We Expand the Toolbox of Psychiatric Treatment Methods to Include Repetitive Transcranial Magnetic Stimulation (rTMS)? A Meta-Analysis of the Efficacy of rTMS in Psychiatric Disorders

    NARCIS (Netherlands)

    Slotema, Christina W.; Blom, Jan Dirk; Hoek, Hans W.; Sommer, Iris E. C.

    Objective: Repetitive transcranial magnetic stimulation (rTMS) is a safe treatment method with few side effects However, efficacy for various psychiatric disorders is currently not clear Data sources: A literature search was performed from 1966 through October 2008 using PubMed, Ovid Medline, Embase

  10. Safety of repetitive transcranial magnetic stimulation in patients with implanted cortical electrodes. An ex-vivo study and report of a case.

    Science.gov (United States)

    Phielipp, Nicolás M; Saha, Utpal; Sankar, Tejas; Yugeta, Akihiro; Chen, Robert

    2017-06-01

    To evaluate the safety of repetitive transcranial magnetic stimulation (rTMS) in patients with implanted subdural cortical electrodes. We performed ex-vivo experiments to test the temperature, displacement and current induced in the electrodes with single pulse transcranial magnetic stimulation (TMS) from 10 to 100% of stimulator output and tested a typical rTMS protocol used in a clinical setting. We then used rTMS to the motor cortex to treat a patient with refractory post-herpetic neuralgia who had previously been implanted with a subdural motor cortical electrode for pain management. The rTMS protocol consisted of ten sessions of 2000 stimuli at 20Hz and 90% of resting motor threshold. The ex-vivo study showed an increase in the coil temperature of 2°C, a maximum induced charge density of 30.4μC/cm 2 /phase, and no electrode displacement with TMS. There was no serious adverse effect associated with rTMS treatment of the patient. Cortical tremor was observed in the intervals between trains of stimuli during one treatment session. TMS was safe in a patient with implanted Medtronic Resume II electrode (model 3587A) subdural cortical electrode. TMS may be used as a therapeutic, diagnostic or research tool in patients this type of with implanted cortical electrodes. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  11. Left dorso-lateral repetitive transcranial magnetic stimulation affects cortical excitability and functional connectivity, but does not impair cognition in major depression.

    Science.gov (United States)

    Shajahan, Polash M; Glabus, Mike F; Steele, J Douglas; Doris, Alan B; Anderson, Kay; Jenkins, Jenny A; Gooding, Patricia A; Ebmeier, Klaus P

    2002-06-01

    Transcranial magnetic stimulation (TMS) has been used for over a decade to investigate cortical function. More recently, it has been employed to treat conditions such as major depression. This study was designed to explore the effects of differential treatment parameters, such as stimulation frequency. In addition, the data were examined to determine whether a change in connectivity occurred following TMS. Fifteen patients with major depression were entered into a combined imaging and treatment experiment with single photon emission computed tomography (SPECT) and repetitive transcranial magnetic stimulation (rTMS) over left dorso-lateral prefrontal cortex (DLPFC). Brain perfusion during a verbal fluency task was compared between pre- and poststimulation conditions. Patients were then treated with 80% of motor threshold for a total of 10 days, using 5000 stimuli at 5, 10 or 20 Hz. Tests of cortical excitability and neuropsychological tests were done throughout the trial. Patients generally improved with treatment. There was no perceptible difference between stimulation frequencies, which may have reflected low study power. An increase in rostral anterior cingulate activation after the treatment day was associated with increased functional connectivity in the dorso-lateral frontal loop on the left and the limbic loop on both sides. No noticeable deterioration in neuropsychological function was observed. TMS at the stimulation frequencies used seems to be safe over a course of 5000 stimuli. It appears to have an activating effect in anterior limbic structures and increase functional connectivity in the neuroanatomical networks under the stimulation coil within an hour of stimulation.

  12. Acute Frontal Lobe Dysfunction Following Prefrontal Low-Frequency Repetitive Transcranial Magnetic Stimulation in a Patient with Treatment-Resistant Depression

    Directory of Open Access Journals (Sweden)

    Guilhem Carle

    2017-05-01

    Full Text Available The potential of repetitive transcranial magnetic stimulation (rTMS to treat numerous neurological and psychiatric disorders has been thoroughly studied for the last two decades. Here, we report for the first time, the case of a 65-year-old woman suffering from treatment-resistant depression who developed an acute frontal lobe syndrome following eight sessions of low-frequency rTMS (LF-rTMS to the right dorsolateral prefrontal cortex while also treated with sertraline and mianserin. The pathophysiological mechanisms underlying such an unexpected acute frontal lobe dysfunction are discussed in relation to the therapeutic use of LF-rTMS in combination with pharmacotherapy in depressed patients.

  13. Repetitive transcranial magnetic stimulation is as effective as electroconvulsive therapy in the treatment of nondelusional major depressive disorder: an open study.

    Science.gov (United States)

    Grunhaus, L; Dannon, P N; Schreiber, S; Dolberg, O H; Amiaz, R; Ziv, R; Lefkifker, E

    2000-02-15

    Repetitive transcranial magnetic stimulation (rTMS), a new method for the stimulation of the central nervous system, is being proposed as a potential new treatment in patients with major depressive disorder (MDD). We tested the hypothesis that rTMS would be as effective as electroconvulsive therapy (ECT) in patients with MDD. Forty patients with MDD referred for ECT were randomly assigned to either ECT or rTMS. Repetitive transcranial magnetic stimulation was performed at 90% power of the motor threshold. The stimulation frequency was 10 Hz for either 2 sec (first eight patients) or 6 sec (final 12 patients) for 20 trains. Patients were treated for up to 20 treatment days. Electroconvulsive therapy was performed according to standard protocols. Overall patients responded best to ECT (chi(2) = 3.8, p <.05). Patients with MDD and psychosis responded significantly better to ECT (chi(2) = 9.2, p <. 01), whereas MDD patients without psychosis responded similarly to both treatments (chi(2) = 0.0, ns). The analysis of variance with repeated measures of clinical variables for the whole sample revealed significant treatment effects for both groups; however, interaction between group and treatment was seen only for the Global Assessment of Function and the Sleep assessment. When the psychosis-nonpsychosis grouping was considered, patients with psychosis responded dramatically better to ECT in all assessments, whereas those without psychosis responded similarly to both treatments. Overall ECT was a more potent treatment for patients with MDD, this being particularly evident in patients with MDD and psychosis; however, in patients with MDD without psychosis the effects of rTMS were similar to those of ECT. The results we report are encouraging and support an important role for rTMS in the treatment of severe MDD; however, additional blinded studies are needed to precisely define this role.

  14. Cognitive component of psychomotor retardation in unipolar and bipolar depression: Is verbal fluency a relevant marker? Impact of repetitive transcranial stimulation.

    Science.gov (United States)

    Thomas-Ollivier, Véronique; Foyer, Emmanuelle; Bulteau, Samuel; Pichot, Anne; Valriviere, Pierre; Sauvaget, Anne; Deschamps, Thibault

    2017-09-01

    In the literature, psychomotor retardation (PMR) is increasingly highlighted as a relevant marker for depression. Currently, we chose to focus on the fluency capacities as an evaluation of the frontal lobes functioning to reach a better understanding of cognitive and neurobiological mechanisms involved in PMR in depression. The aims of this study were: (i) to explore the cognitive component of PMR through the analysis of verbal fluency (VF) performance in unipolar and bipolar depression; and (ii) to examine whether a repetitive transcranial magnetic stimulation treatment could improve concomitantly the PMR and VF capacities, as a relevant marker characteristic of the cognitive component of PMR. Fifteen unipolar and 15 bipolar patients were compared to 15 healthy adults. Before treatment, the results showed VF deficits, particularly marked in the bipolar group. The investigation of the interplay between PMR, VF performance, Montgomery-Åsberg Depression Rating Scale scores, and Montreal Cognitive Assessment scores showed that the deficits in these various dimensions were not homogeneous. The absence of correlation between the psychomotor retardation scale (the French Retardation Rating Scale for Depression) and VF, and the correlation with MoCA raise the hypothesis of a more global cognitive impairment associated with PMR in the BD group. The repetitive transcranial magnetic stimulation treatment had a positive impact on depression, PMR, and fluency scores. Correlations between the Retardation Rating Scale for Depression and VF performances appeared after treatment, showing the cognitive role of psychomotor functioning in depression. Further analyses, including other cognitive measures in an objective evaluation of PMR, are required for a better understanding of these complex relationships. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.

  15. Repetitive deep transcranial magnetic stimulation improves verbal fluency and written language in a patient with primary progressive aphasia-logopenic variant (LPPA).

    Science.gov (United States)

    Trebbastoni, Alessandro; Raccah, Ruggero; de Lena, Carlo; Zangen, Abraham; Inghilleri, Maurizio

    2013-07-01

    To date, no therapies are available for the logopenic variant of primary progressive aphasia (LPPA). Even though deep repetitive transcranial magnetic stimulation (rTMS) may improve cognitive functions in some neurodegenerative disorders, no previous studies investigated its effects in patients with LPPA. Our aim was to investigate the effects on cognitive function of high frequency rTMS (hf-rTMS) delivered over the left dorso-lateral prefrontal cortex (DLPFC) through a coil designed for deep rTMS, compared to a SHAM stimulation, in a right-handed patient with LPPA. The patient presented a progressive language impairment (phonological errors in speech and naming, impaired single word retrieval and sentences repetition) and predominant left perisylvian atrophy and hypoperfusion. He received four stimulation cycles (two REAL and two SHAM) each of whom lasted 20 min for 5 consecutive days. Patient's performances in frontal, visuo-spatial and linguistic tasks were evaluated before and after each stimulation session. Test scores after REAL were compared with those obtained at baseline and after SHAM. We found a temporary and highly significant improvement in the linguistic skills (both oral and written tasks) but not in the other cognitive domains tested, after REAL, but not SHAM stimulations. Hf-rTMS delivered over the DLPFC could improve language in LPPA by enhancing long-term potentiation and synaptic plasticity within the stimulated and interconnected areas involved in language network. Our findings might prompt future researches into the feasibility and efficacy of deep hf-rTMS as a therapeutic tool in progressive aphasia syndromes and other neurodegenerative disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Safety of primed repetitive transcranial magnetic stimulation and modified constraint-induced movement therapy in a randomized controlled trial in pediatric hemiparesis.

    Science.gov (United States)

    Gillick, Bernadette T; Krach, Linda E; Feyma, Tim; Rich, Tonya L; Moberg, Kelli; Menk, Jeremiah; Cassidy, Jessica; Kimberley, Teresa; Carey, James R

    2015-04-01

    To investigate the safety of combining a 6-Hz primed low-frequency repetitive transcranial magnetic stimulation (rTMS) intervention in the contralesional hemisphere with a modified constraint-induced movement therapy (mCIMT) program in children with congenital hemiparesis. Phase 1 randomized, double-blinded, placebo-controlled pretest/posttest trial. University academic facility and pediatric specialty hospital. Subjects (N = 19; age range, 8-17 y) with congenital hemiparesis caused by ischemic stroke or periventricular leukomalacia. No subject withdrew because of adverse events. All subjects included completed the study. Subjects were randomized to 1 of 2 groups: either real rTMS plus mCIMT (n = 10) or sham rTMS plus mCIMT (n = 9). Adverse events, physician assessment, ipsilateral hand function, stereognosis, cognitive function, subject report of symptoms assessment, and subject questionnaire. No major adverse events occurred. Minor adverse events were found in both groups. The most common events were headaches (real: 50%, sham: 89%; P = .14) and cast irritation (real: 30%, sham: 44%; P = .65). No differences between groups in secondary cognitive and unaffected hand motor measures were found. Primed rTMS can be used safely with mCIMT in congenital hemiparesis. We provide new information on the use of rTMS in combination with mCIMT in children. These findings could be useful in research and future clinical applications in advancing function in congenital hemiparesis. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Add-on Effects of Repetitive Transcranial Magnetic Stimulation on Subacute Aphasia Therapy: Enhanced Improvement of Functional Communication and Basic Linguistic Skills. A Randomized Controlled Study.

    Science.gov (United States)

    Rubi-Fessen, Ilona; Hartmann, Alexander; Huber, Walter; Fimm, Bruno; Rommel, Thomas; Thiel, Alexander; Heiss, Wolf-Dieter

    2015-11-01

    To determine to what extent repetitive transcranial magnetic stimulation (rTMS) combined with speech and language therapy improves functional communication and basic linguistic skills of individuals with subacute aphasia. Randomized, blinded, and sham-controlled study. Neurologic rehabilitation hospital. Participants (N=30) with subacute aphasia after stroke. During a 2-week treatment period, half of the participants received 10 sessions of 20-minute inhibitory 1-Hz rTMS over the right inferior frontal gyrus (Brodmann area 45), and the other half received sham stimulation. Directly thereafter, all the participants underwent 45 minutes of speech and language therapy. Aachen Aphasia Test, Amsterdam-Nijmegen Everyday Language Test (ANELT), a naming screening, and subscales of the FIM, all assessed the day before and the day after treatment period. The participants who received real rTMS significantly improved with respect to all 10 measures of basic linguistic skills and functional communication, whereas sham-treated participants significantly improved in only 6 of 10 measures (paired t tests, Pcommunication (ANELT) (repeated-measures analysis of variance, P≤.05). For the first time, this study has demonstrated that basic linguistic skills as well as functional communication are bolstered by combining rTMS and behavioral language therapy in patients with subacute aphasia. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS Improves Functional Recovery by Enhancing Neurogenesis and Activating BDNF/TrkB Signaling in Ischemic Rats

    Directory of Open Access Journals (Sweden)

    Jing Luo

    2017-02-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS has rapidly become an attractive therapeutic approach for stroke. However, the mechanisms underlying this remain elusive. This study aimed to investigate whether high-frequency rTMS improves functional recovery mediated by enhanced neurogenesis and activation of brain-derived neurotrophic factor (BDNF/tropomyosin-related kinase B (TrkB pathway and to compare the effect of conventional 20 Hz rTMS and intermittent theta burst stimulation (iTBS on ischemic rats. Rats after rTMS were sacrificed seven and 14 days after middle cerebral artery occlusion (MCAO, following evaluation of neurological function. Neurogenesis was measured using specific markers: Ki67, Nestin, doublecortin (DCX, NeuN and glial fibrillary acidic protein (GFAP, and the expression levels of BDNF were visualized by Western blotting and RT-PCR analysis. Both high-frequency rTMS methods significantly improved neurological function and reduced infarct volume. Moreover, 20 Hz rTMS and iTBS significantly promoted neurogenesis, shown by an increase of Ki67/DCX, Ki67/Nestin, and Ki67/NeuN-positive cells in the peri-infarct striatum. These beneficial effects were accompanied by elevated protein levels of BDNF and phosphorylated-TrkB. In conclusion, high-frequency rTMS improves functional recovery possibly by enhancing neurogenesis and activating BDNF/TrkB signaling pathway and conventional 20 Hz rTMS is better than iTBS at enhancing neurogenesis in ischemic rats.

  19. Repetitive transcranial magnetic stimulation for depression after basal ganglia ischaemic stroke: protocol for a multicentre randomised double-blind placebo-controlled trial.

    Science.gov (United States)

    Tang, Ying; Chen, Aimin; Zhu, Shuzhen; Yang, Li; Zhou, Jiyuan; Pan, Suyue; Shao, Min; Zhao, Lianxu

    2018-02-03

    Studies suggest that repetitive transcranial magnetic stimulation (rTMS) is effective for the treatment of depression and promotes the repair of white matter. This study aims to assess the effectiveness of rTMS in treating depression after basal ganglia ischaemic stroke and to examine whether such effects are related to restoration of white matter integrity. Sixty-six participants will be recruited from Zhujiang Hospital, Nanfang Hospital and Sichuan Bayi Rehabilitation Hospital and randomised in a 1:1 ratio to receive active rTMS treatment or sham rTMS treatment in addition to routine supportive treatments. The data will be collected at 0, 2 and 4 weeks after the commencement of treatment. The primary outcome is the measurement of 24-item Hamilton Depression Rating Scale scores, and the secondary outcomes include diffusion tensor imaging results and the results of neuropsychological tests including the National Institutes of Health Stroke Scale, Activities of Daily Living Scale, Montreal Cognitive Assessment, Clinical Global Impressions scales, Aphasia Battery in Chinese, Social Support Revalued Scale and Medical Coping Modes Questionnaire. This study has been approved by the Ethics Committee of Zhujiang Hospital of Southern Medical University. The findings will be disseminated by publication in a peer-reviewed journal and by presentation at international conferences. NCT03159351. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Effect of inter-train interval on the induction of repetition suppression of motor-evoked potentials using transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Minna Pitkänen

    Full Text Available Repetition suppression (RS is evident as a weakened response to repeated stimuli after the initial response. RS has been demonstrated in motor-evoked potentials (MEPs induced with transcranial magnetic stimulation (TMS. Here, we investigated the effect of inter-train interval (ITI on the induction of RS of MEPs with the attempt to optimize the investigative protocols. Trains of TMS pulses, targeted to the primary motor cortex by neuronavigation, were applied at a stimulation intensity of 120% of the resting motor threshold. The stimulus trains included either four or twenty pulses with an inter-stimulus interval (ISI of 1 s. The ITI was here defined as the interval between the last pulse in a train and the first pulse in the next train; the ITIs used here were 1, 3, 4, 6, 7, 12, and 17 s. RS was observed with all ITIs except with the ITI of 1 s, in which the ITI was equal to ISI. RS was more pronounced with longer ITIs. Shorter ITIs may not allow sufficient time for a return to baseline. RS may reflect a startle-like response to the first pulse of a train followed by habituation. Longer ITIs may allow more recovery time and in turn demonstrate greater RS. Our results indicate that RS can be studied with confidence at relatively short ITIs of 6 s and above.

  1. The Efficacy of Daily Prefrontal Repetitive Transcranial Magnetic Stimulation (rTMS) for Burning Mouth Syndrome (BMS): A Randomized Controlled Single-blind Study.

    Science.gov (United States)

    Umezaki, Yojiro; Badran, Bashar W; DeVries, William H; Moss, Jkeonye; Gonzales, Theresa; George, Mark S

    2016-01-01

    Burning mouth syndrome (BMS) is a burning oral sensation without any corresponding abnormal findings. In some cases, BMS is refractory to pharmacologic treatments. Repetitive transcranial magnetic stimulation (rTMS) over left prefrontal cortex induces analgesic effect in both acute and chronic pain. However, its effect for BMS has not been evaluated. The aim of this randomized, controlled, single-blind study was to assess the efficacy of prefrontal rTMS for BMS. Twenty patients with BMS were recruited and randomized to receive 30,000 pulses in total at 10 Hz TMS (n = 12) or sham TMS (n = 8). We assessed the change of BMS pain condition, functional status and mood until 2 months after the beginning of treatment. In the real group, the BMS pain intensity decreased 67%, and 75% of the patients reported >50% pain decrease on final assessment compared to baseline, without heavy side effects. There was significant pain reduction in subjects in the real group immediately after 1 week of treatment, whereas there was none in those in the sham group. Similar tendency was confirmed in change of functional status. Mood and the affective aspect of pain were not changed in this study. BMS pain was significantly improved with 2 weeks of treatment of high frequency rTMS over left DLPFC compared to sham stimulation. Further study is needed to refine and improve TMS as a potential treatment of BMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Chronic treatment with rivastigmine in patients with Alzheimer's disease: a study on primary motor cortex excitability tested by 5 Hz-repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Trebbastoni, A; Gilio, F; D'Antonio, F; Cambieri, C; Ceccanti, M; de Lena, C; Inghilleri, M

    2012-05-01

    To investigate changes in cortical excitability and short-term synaptic plasticity we delivered 5 Hz repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex in 11 patients with mild-to-moderate Alzheimer's disease (AD) before and after chronic therapy with rivastigmine. Resting motor threshold (RMT), motor evoked potential (MEP), cortical silent period (CSP) after single stimulus and MEP facilitation during rTMS trains were tested three times during treatment. All patients underwent neuropsychological tests before and after receiving rivastigmine. rTMS data in patients were compared with those from age-matched healthy controls. At baseline, RMT was significantly lower in patients than in controls whereas CSP duration and single MEP amplitude were similar in both groups. In patients, rTMS failed to induce the normal MEP facilitation during the trains. Chronic rivastigmine intake significantly increased MEP amplitude after a single stimulus, whereas it left the other neurophysiological variables studied unchanged. No significant correlation was found between patients' neuropsychological test scores and TMS measures. Chronic treatment with rivastigmine has no influence on altered cortical excitability and short-term synaptic plasticity as tested by 5 Hz-rTMS. The limited clinical benefits related to cholinesterase inhibitor therapy in patients with AD depend on factors other than improved plasticity within the cortical glutamatergic circuits. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Mapping of arithmetic processing by navigated repetitive transcranial magnetic stimulation in patients with parietal brain tumors and correlation with postoperative outcome.

    Science.gov (United States)

    Ille, Sebastian; Drummer, Katharina; Giglhuber, Katrin; Conway, Neal; Maurer, Stefanie; Meyer, Bernhard; Krieg, Sandro M

    2018-03-26

    Preserving functionality is of significant importance during neurosurgical resection of brain tumors. Specialized centers also map further brain functions apart from motor and language functions, such as arithmetic processing (AP). The mapping of AP by navigated repetitive transcranial magnetic stimulation (nrTMS) in healthy volunteers has been demonstrated. The present study aimed to correlate the results of mapping AP with functional patient outcomes. We included 26 patients with parietal brain tumors. Due to preoperative impairment of AP, mapping was not possible in 8 patients (31%). We stimulated 52 cortical sites by nrTMS while patients performed a calculation task. Pre- and postoperatively, patients underwent a standardized number-processing and calculation test (NPCT). Tumor resection was blinded to nrTMS results, and the change in NPCT performance was correlated to resected AP-positive spots as identified by nrTMS. The resection of AP-positive sites correlated with a worsening of the postoperative NPCT result in 12 cases. In 3 cases, no AP-positive sites were resected and the postoperative NPCT result was similar to or better than preoperatively. Also, in 3 cases, the postoperative NPCT result was better than preoperatively, although AP-positive sites were resected. Despite only presenting a low number of cases, nrTMS might be a useful tool for preoperative mapping of AP. However, the reliability of the present results has to be evaluated in a larger series and by intraoperative mapping data. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Benefits of Repetitive Transcranial Magnetic Stimulation (rTMS for Spastic Subjects: Clinical, Functional, and Biomechanical Parameters for Lower Limb and Walking in Five Hemiparetic Patients

    Directory of Open Access Journals (Sweden)

    Luc Terreaux

    2014-01-01

    Full Text Available Introduction. Spasticity is a disabling symptom resulting from reorganization of spinal reflexes no longer inhibited by supraspinal control. Several studies have demonstrated interest in repetitive transcranial magnetic stimulation in spastic patients. We conducted a prospective, randomized, double-blind crossover study on five spastic hemiparetic patients to determine whether this type of stimulation of the premotor cortex can provide a clinical benefit. Material and Methods. Two stimulation frequencies (1 Hz and 10 Hz were tested versus placebo. Patients were assessed clinically, by quantitative analysis of walking and measurement of neuromechanical parameters (H and T reflexes, musculoarticular stiffness of the ankle. Results. No change was observed after placebo and 10 Hz protocols. Clinical parameters were not significantly modified after 1 Hz stimulation, apart from a tendency towards improved recruitment of antagonist muscles on the Fügl-Meyer scale. Only cadence and recurvatum were significantly modified on quantitative analysis of walking. Neuromechanical parameters were modified with significant decreases in Hmax⁡ /Mmax⁡ and T/Mmax⁡ ratios and stiffness indices 9 days or 31 days after initiation of TMS. Conclusion. This preliminary study supports the efficacy of low-frequency TMS to reduce reflex excitability and stiffness of ankle plantar flexors, while clinical signs of spasticity were not significantly modified.

  5. Repetitive transcranial magnetic stimulation of the supplementary motor area in treatment-resistant obsessive-compulsive disorder: An open-label pilot study.

    Science.gov (United States)

    Lee, Young-Ji; Koo, Bon-Hoon; Seo, Wan-Seok; Kim, Hye-Geum; Kim, Ji-Yean; Cheon, Eun-Jin

    2017-10-01

    Obsessive-compulsive disorder (OCD) is a severely distressing disorder represented by obsessions and compulsions. A significant proportion of OCD patients fail to improve with conventional treatment methods. Repetitive transcranial magnetic stimulation (rTMS) has been proposed as an alternative for OCD treatment. Functional neuroimaging studies indicate that OCD is associated with increased activity in the supplementary motor area (SMA), a region that plays an important role in the pathophysiology of this disorder. In this study, we assessed the efficacy of augmentation with 1Hz rTMS over the SMA in treatment-resistant OCD patients. The participants received 1Hz rTMS over the SMA in 20 daily sessions for 4weeks. We observed significant reduction in Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score at the 4th week of the treatment. Reduction in compulsion contributed to the reduction of global Y-BOCS whereas there was no significant reduction in obsession. Clinical global impression-global improvement also showed significant change at the 2nd and 4th week of the treatment. No additional significant changes or significant adverse effects were seen. These findings suggest that 1Hz rTMS over the SMA can be an efficient and safe add-on therapeutic method in treatment-resistant patients with OCD. Further controlled studies in larger samples are required to confirm the effect of 1Hz rTMS over the SMA in OCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of low-frequency repetitive transcranial magnetic stimulation on upper extremity motor recovery and functional outcomes in chronic stroke patients: A randomized controlled trial.

    Science.gov (United States)

    Aşkın, Ayhan; Tosun, Aliye; Demirdal, Ümit Seçil

    2017-06-01

    Repetitive transcranial magnetic stimulation (rTMS) was suggested as a preconditioning method that would increase brain plasticity and that it would be optimal to combine rTMS with intensive rehabilitation. To assess the efficacy of inhibitory rTMS on upper extremity motor recovery and functional outcomes in chronic ischemic stroke patients. In this randomized controlled trial, experimental group received low-frequency (LF) rTMS to the primary motor cortex of the unaffected side + physical therapy (PT), and control group received PT. No statistically significant difference was found in baseline demographical and clinical characteristics of the subjects including stroke severity or severity of paralysis prior to intervention. There were statistically significant improvements in all clinical outcome measures except for the Brunnstrom Recovery Stages. Fugl-Meyer Assessment, Box and Block test, motor and total scores of Functional Independence Measurement (FIM), and Functional Ambulation Scale (FAS) scores were significantly increased in both groups, however, these changes were significantly greater in the rTMS group except for FAS score. FIM cognitive scores and standardized mini-mental test scores were significantly increased and distal and hand Modified Ashworth Scale scores were significantly decreased only in the rTMS group (p functional, and cognitive deficits in chronic stroke. Further studies with a larger number of patients with longer follow-up periods are needed to establish its effectiveness in stroke rehabilitation.

  7. Comparing the Effects of Repetitive Transcranial Magnetic Stimulation and Electroconvulsive Therapy in the Treatment of Depression: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Beppe Micallef-Trigona

    2014-01-01

    Full Text Available Electroconvulsive therapy (ECT is the longest standing psychiatric treatment available and has unequivocal benefit in severe depression. However this treatment comes with a number of side effects such as memory impairment. On the other hand, Repetitive Transcranial Magnetic Stimulation (rTMS is a relatively new form of treatment which has been shown to be efficacious in patients suffering from a number of psychopathologies, including severe depression, with few reported side effects. Due to its potential therapeutic efficacy and lack of side effects, rTMS has gained traction in the treatment of depression, with a number of authors keen to see it take over from ECT. However, it is not clear whether rTMS represents a therapeutic alternative to ECT. This meta-analysis will therefore compare the “gold standard” treatment for severe depression, with the relatively new but promising rTMS. A literature search will be performed with the intention to include all randomised clinical trials. The null hypothesis is that there is no difference in the antidepressant efficacy between the two types of treatment modalities. Statistical analysis of Hamilton Depression Rating Scale (HDRS scores will be performed.

  8. Improvements in symptoms following neuronavigated repetitive transcranial magnetic stimulation (rTMS) in severe and enduring anorexia nervosa: findings from two case studies.

    Science.gov (United States)

    McClelland, Jessica; Bozhilova, Natali; Nestler, Steffen; Campbell, Iain C; Jacob, Shirabdi; Johnson-Sabine, Eric; Schmidt, Ulrike

    2013-11-01

    Advances in the treatment of anorexia nervosa (AN) are most likely to arise from targeted, brain-directed treatments, such as repetitive transcranial magnetic stimulation (rTMS). We describe findings from two individuals with treatment-resistant AN who received 19-20 sessions of neuronavigated, high frequency rTMS, applied to the left dorsolateral prefrontal cortex. Within-session measures assessed changes pre-rTMS, post-rTMS in subjective eating disorder (ED) experiences. Weight, ED symptoms and mood were assessed pre-treatment, post-treatment and at 1 month follow-up. In both cases, there was improvement in ED symptomatology and mood after 19-20 sessions of neuronavigated rTMS, and these changes persisted or continued to improve at follow-up. Within sessions, Patient A demonstrated a consistent reduction in subjective ED experiences, and Patient B a reduction in some ED related experiences. These findings suggest that rTMS has potential as an adjunct to the treatment of AN and deserves further study. Copyright © 2013 John Wiley & Sons, Ltd and Eating Disorders Association.

  9. Benefits of repetitive transcranial magnetic stimulation (rTMS) for spastic subjects: clinical, functional, and biomechanical parameters for lower limb and walking in five hemiparetic patients.

    Science.gov (United States)

    Terreaux, Luc; Gross, Raphael; Leboeuf, Fabien; Desal, Hubert; Hamel, Olivier; Nguyen, Jean Paul; Pérot, Chantal; Buffenoir, Kévin

    2014-01-01

    Introduction. Spasticity is a disabling symptom resulting from reorganization of spinal reflexes no longer inhibited by supraspinal control. Several studies have demonstrated interest in repetitive transcranial magnetic stimulation in spastic patients. We conducted a prospective, randomized, double-blind crossover study on five spastic hemiparetic patients to determine whether this type of stimulation of the premotor cortex can provide a clinical benefit. Material and Methods. Two stimulation frequencies (1 Hz and 10 Hz) were tested versus placebo. Patients were assessed clinically, by quantitative analysis of walking and measurement of neuromechanical parameters (H and T reflexes, musculoarticular stiffness of the ankle). Results. No change was observed after placebo and 10 Hz protocols. Clinical parameters were not significantly modified after 1 Hz stimulation, apart from a tendency towards improved recruitment of antagonist muscles on the Fügl-Meyer scale. Only cadence and recurvatum were significantly modified on quantitative analysis of walking. Neuromechanical parameters were modified with significant decreases in H max⁡ /M max⁡ and T/M max⁡ ratios and stiffness indices 9 days or 31 days after initiation of TMS. Conclusion. This preliminary study supports the efficacy of low-frequency TMS to reduce reflex excitability and stiffness of ankle plantar flexors, while clinical signs of spasticity were not significantly modified.

  10. Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: a prospective, randomized controlled trial.

    Science.gov (United States)

    Dinur-Klein, Limor; Dannon, Pinhas; Hadar, Aviad; Rosenberg, Oded; Roth, Yiftach; Kotler, Moshe; Zangen, Abraham

    2014-11-01

    Tobacco smoking is the leading cause of preventable death in developed countries. Our previous studies in animal models and humans suggest that repeated activation of cue-induced craving networks followed by electromagnetic stimulation of the dorsal prefrontal cortex (PFC) can cause lasting reductions in drug craving and consumption. We hypothesized that disruption of these circuitries by deep transcranial magnetic stimulation (TMS) of the PFC and insula bilaterally can induce smoking cessation. Adults (N = 115) who smoke at least 20 cigarettes/day and failed previous treatments were recruited from the general population. Participants were randomized to receive 13 daily sessions of high-frequency, low-frequency or sham stimulation following, or without, presentation of smoking cues. Deep TMS was administered using an H-coil version targeting the lateral PFC and insula bilaterally. Cigarette consumption was evaluated during the treatment by measuring cotinine levels in urine samples and recording participants' self-reports as a primary outcome variable. Dependence and craving were assessed using standardized questionnaires. High (but not low) frequency deep TMS treatment significantly reduced cigarette consumption and nicotine dependence. The combination of this treatment with exposure to smoking cues enhanced reduction in cigarette consumption leading to an abstinence rate of 44% at the end of the treatment and an estimated 33% 6 months following the treatment. This study further implicates the lateral PFC and insula in nicotine addiction and suggests the use of deep high-frequency TMS of these regions following presentation of smoking cues as a promising treatment strategy. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects-A Pilot Study.

    Science.gov (United States)

    Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver

    2016-01-01

    Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p learning effect. For cathodal tDCS, no significant effects on learning or on excitability could be seen. Our results showed that anodal tDCS over V1 resulted in improved visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning.

  12. Differential Effects of HRAS Mutation on LTP-Like Activity Induced by Different Protocols of Repetitive Transcranial Magnetic Stimulation.

    Science.gov (United States)

    Dileone, Michele; Ranieri, Federico; Florio, Lucia; Capone, Fioravante; Musumeci, Gabriella; Leoni, Chiara; Mordillo-Mateos, Laura; Tartaglia, Marco; Zampino, Giuseppe; Di Lazzaro, Vincenzo

    2016-01-01

    Costello syndrome (CS) is a rare congenital disorder due to a G12S amino acid substitution in HRAS protoncogene. Previous studies have shown that Paired Associative Stimulation (PAS), a repetitive brain stimulation protocol inducing motor cortex plasticity by coupling peripheral nerve stimulation with brain stimulation, leads to an extremely pronounced motor cortex excitability increase in CS patients. Intermittent Theta Burst Stimulation (iTBS) represents a protocol able to induce motor cortex plasticity by trains of stimuli at 50 Hz. In healthy subjects PAS and iTBS produce similar after-effects in motor cortex excitability. Experimental models showed that HRAS-dependent signalling pathways differently affect LTP induced by different patterns of repetitive synaptic stimulation. We aimed to compare iTBS-induced after-effects on motor cortex excitability with those produced by PAS in CS patients and to observe whether HRAS mutation differentially affects two different forms of neuromodulation protocols. We evaluated in vivo after-effects induced by PAS and iTBS applied over the right motor cortex in 4 CS patients and in 21 healthy age-matched controls. Our findings confirmed HRAS-dependent extremely pronounced PAS-induced after-effects and showed for the first time that iTBS induces no change in MEP amplitude in CS patients whereas both protocols lead to an increase of about 50% in controls. CS patients are characterized by an impairment of iTBS-related LTP-like phenomena besides enhanced PAS-induced after-effects, suggesting that HRAS-dependent signalling pathways have a differential influence on PAS- and iTBS-induced plasticity in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression in Adult and Youth Populations: A Systematic Literature Review and Meta-Analysis

    Science.gov (United States)

    Leggett, Laura E.; Soril, Lesley J. J.; Coward, Stephanie; Lorenzetti, Diane L.; MacKean, Gail; Clement, Fiona M.

    2015-01-01

    Background: Between 30% and 60% of individuals with major depressive disorder will have treatment-resistant depression (TRD): depression that does not subside with pharmaceutical treatment. Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for TRD. Objective: To establish the efficacy and optimal protocol for rTMS among adults and youth with TRD. Data Sources: Two systematic reviews were conducted: one to determine the efficacy of rTMS for adults with TRD and another to determine the effectiveness of rTMS for youth with TRD. For adults, MEDLINE, Cochrane Central Register of Controlled Trials, PubMed, EMBASE, PsycINFO, Cochrane Database of Systematic Reviews, and Health Technology Assessment Database were searched from inception until January 10, 2014 with no language restrictions. Terms aimed at capturing the target diagnosis, such as depression and depressive disorder, were combined with terms describing the technology, such as transcranial magnetic stimulation and rTMS. Results were limited to studies involving human participants and designed as a randomized controlled trial. For youth, the search was altered to include youth only (aged 13–25 years) and all study designs. When possible, meta-analysis of response and remission rates was conducted. Study Selection: Seventy-three articles were included in this review: 70 on adult and 3 on youth populations. Results: Meta-analysis comparing rTMS and sham in adults found statistically significant results favoring rTMS for response (RR: 2.35 [95% CI, 1.70–3.25]) and remission (RR: 2.24 [95% CI, 1.53–3.27]). No statistically significant differences were found when comparing high- and low-frequency, unilateral and bilateral, low- and high-intensity rTMS or rTMS and electroconvulsive therapy (ECT). While meta-analysis of results from the youth literature was not possible, the limited evidence base suggests that rTMS may be effective for treating TRD in youth. Conclusions: The evidence

  14. Primed low-frequency repetitive transcranial magnetic stimulation and constraint-induced movement therapy in pediatric hemiparesis: a randomized controlled trial.

    Science.gov (United States)

    Gillick, Bernadette T; Krach, Linda E; Feyma, Tim; Rich, Tonya L; Moberg, Kelli; Thomas, William; Cassidy, Jessica M; Menk, Jeremiah; Carey, James R

    2014-01-01

    The aim of this study was to determine the feasibility and efficacy of five treatments of 6 Hz primed, low-frequency, repetitive transcranial magnetic stimulation (rTMS) combined with constraint-induced movement therapy (CIMT) to promote recovery of the paretic hand in children with congenital hemiparesis. Nineteen children with congenital hemiparesis aged between 8 and 17 years (10 males, nine females; mean age 10 years 10 months, SD 2 years 10 months; Manual Ability Classification Scale levels I-III) underwent five sessions of either real rTMS (n=10) or sham rTMS (n=9) alternated daily with CIMT. CIMT consisted of 13 days of continuous long-arm casting with five skin-check sessions. Each child received a total of 10 hours of one-to-one therapy. The primary outcome measure was the Assisting Hand Assessment (AHA) and the secondary outcome variables were the Canadian Occupational Performance Measure (COPM) and stereognosis. A Wilcoxon signed-rank sum test was used to analyze differences between pre- and post-test scores within the groups. Analysis of covariance was used to compute mean differences between groups adjusting for baseline. Fisher's exact test was used to compare individual change in AHA raw scores with the smallest detectable difference (SDD) of 4 points. All participants receiving treatment finished the study. Improvement in AHA differed significantly between groups (p=0.007). No significant differences in the secondary outcome measures were found. Eight out of 10 participants in the rTMS/CIMT group showed improvement greater than the SDD, but only two out of nine in the sham rTMS/CIMT group showed such improvement (p=0.023). No serious adverse events occurred. Primed, low-frequency rTMS combined with CIMT appears to be safe, feasible, and efficacious in pediatric hemiparesis. Larger clinical trials are now indicated. © 2013 Mac Keith Press.

  15. Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke.

    Science.gov (United States)

    Niimi, Masachika; Hashimoto, Kenji; Kakuda, Wataru; Miyano, Satoshi; Momosaki, Ryo; Ishima, Tamaki; Abo, Masahiro

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF) and such effect is influenced by BDNF gene polymorphism. To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9) in poststroke patients with upper limb hemiparesis. Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT) were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels. Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002). The outcome of rTMS therapy was not altered by BDNF gene polymorphism. The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery.

  16. Short and long term effects of left and bilateral repetitive transcranial magnetic stimulation in schizophrenia patients with auditory verbal hallucinations: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Leonie Bais

    Full Text Available BACKGROUND: Repetitive transcranial magnetic stimulation of the left temporo-parietal junction area has been studied as a treatment option for auditory verbal hallucinations. Although the right temporo-parietal junction area has also shown involvement in the genesis of auditory verbal hallucinations, no studies have used bilateral stimulation. Moreover, little is known about durability effects. We studied the short and long term effects of 1 Hz treatment of the left temporo-parietal junction area in schizophrenia patients with persistent auditory verbal hallucinations, compared to sham stimulation, and added an extra treatment arm of bilateral TPJ area stimulation. METHODS: In this randomized controlled trial, 51 patients diagnosed with schizophrenia and persistent auditory verbal hallucinations were randomly allocated to treatment of the left or bilateral temporo-parietal junction area or sham treatment. Patients were treated for six days, twice daily for 20 minutes. Short term efficacy was measured with the Positive and Negative Syndrome Scale (PANSS, the Auditory Hallucinations Rating Scale (AHRS, and the Positive and Negative Affect Scale (PANAS. We included follow-up measures with the AHRS and PANAS at four weeks and three months. RESULTS: The interaction between time and treatment for Hallucination item P3 of the PANSS showed a trend for significance, caused by a small reduction of scores in the left group. Although self-reported hallucination scores, as measured with the AHRS and PANAS, decreased significantly during the trial period, there were no differences between the three treatment groups. CONCLUSION: We did not find convincing evidence for the efficacy of left-sided rTMS, compared to sham rTMS. Moreover, bilateral rTMS was not superior over left rTMS or sham in improving AVH. Optimizing treatment parameters may result in stronger evidence for the efficacy of rTMS treatment of AVH. Moreover, future research should consider

  17. Real-time measurement of cerebral blood flow during and after repetitive transcranial magnetic stimulation: A near-infrared spectroscopy study.

    Science.gov (United States)

    Park, Eunhee; Kang, Min Jae; Lee, Ahee; Chang, Won Hyuk; Shin, Yong-Il; Kim, Yun-Hee

    2017-07-13

    To confirm the interhemispheric modulation induced by low-frequency repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex, real-time regional cerebral blood flow (rCBF) was assessed using functional near-infrared spectroscopy (fNIRS) in the contralateral primary motor cortex (M1) and premotor cortex (PM). Ten right-handed healthy subjects completed two experimental sessions that were randomly arranged for real or sham rTMS session. In the real rTMS session, fNIRS data were acquired from the right M1 and PM area, while the motor hot spot of the left M1 was stimulated with 1Hz rTMS for 1200 pulses with two boosters. In the sham stimulation session, stimulation was delivered with a disconnected coil. During the real rTMS session, the concentration of oxyhemoglobin ([oxy-Hb]) in the right M1 increased continuously until the end of the stimulation. These changes lasted for 20min, while the right PM did not show a change in [oxy-Hb] concentration. On the other hand, the concentration of deoxy-hemoglobin ([deoxy-Hb]) decreased continuously in the right M1 and PM during the real rTMS stimulation, and this change lasted for 20min after the stimulation. The sham stimulation did not exhibit any significant change in both [oxy-Hb] and [deoxy-Hb] concentration during or after the stimulation. Application of 1Hz rTMS over M1 resulted in changes of rCBF in contralateral M1 and PM, which seemed to constitute a function of interhemispheric modulation of rTMS. The fNIRS data was able to detect this physiological change of neuromodulatory action of rTMS in real-time. Copyright © 2017. Published by Elsevier B.V.

  18. Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory–motor network in patients with restless legs syndrome

    Science.gov (United States)

    Cantone, Mariagiovanna; Aricò, Debora; Lanuzza, Bartolo; Cosentino, Filomena Irene Ilaria; Paci, Domenico; Papotto, Maurizio; Pennisi, Manuela; Bella, Rita; Pennisi, Giovanni; Paulus, Walter; Ferri, Raffaele

    2018-01-01

    Background: Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. Methods: A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. Results: Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. Conclusions: rTMS on S1-M1 connectivity alleviated the sensory–motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome. PMID:29511386

  19. Repetitive transcranial magnetic stimulation of the left premotor/dorsolateral prefrontal cortex does not have analgesic effect on central poststroke pain.

    Science.gov (United States)

    de Oliveira, Rogério Adas Ayres; de Andrade, Daniel Ciampi; Mendonça, Melina; Barros, Rafael; Luvisoto, Tatiana; Myczkowski, Martin Luiz; Marcolin, Marco Antonio; Teixeira, Manoel Jacobsen

    2014-12-01

    Central poststroke pain (CPSP) is caused by an encephalic vascular lesion of the somatosensory pathways and is commonly refractory to current pharmacologic treatments. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex/dorsolateral prefrontal cortex (PMC/DLPFC) can change thermal pain threshold toward analgesia in healthy subjects and has analgesic effects in acute postoperative pain as well as in fibromyalgia patients. However, its effect on neuropathic pain and in CPSP, in particular, has not been assessed. The aim of this prospective, double-blind, placebo-controlled study was to evaluate the analgesic effect of PMC/DLPFC rTMS in CPSP patients. Patients were randomized into 2 groups, active (a-) rTMS and sham (s-) rTMS, and were treated with 10 daily sessions of rTMS over the left PMC/DLPFC (10 Hz, 1,250 pulses/d). Outcomes were assessed at baseline, during the stimulation phase, and at 1, 2, and 4 weeks after the last stimulation. The main outcome was pain intensity changes measured by the visual analog scale on the last stimulation day compared to baseline. Interim analysis was scheduled when the first half of the patients completed the study. The study was terminated because of a significant lack of efficacy of the active arm after 21 patients completed the whole treatment and follow-up phases. rTMS of the left PMC/DLPFC did not improve pain in CPSP. The aim of this double-blind, placebo-controlled study was to evaluate the analgesic effects of rTMS to the PMC/DLPFC in CPSP patients. An interim analysis showed a consistent lack of analgesic effect, and the study was terminated. rTMS of the PMC/DLPFC is not effective in relieving CPSP. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  20. Efficacy of single versus three sessions of high rate repetitive transcranial magnetic stimulation in chronic migraine and tension-type headache.

    Science.gov (United States)

    Kalita, Jayantee; Laskar, Sanghamitra; Bhoi, Sanjeev Kumar; Misra, Usha Kant

    2016-11-01

    We report the efficacy of three versus single session of 10 Hz repetitive transcranial magnetic stimulation (rTMS) in chronic migraine (CM) and chronic tension-type headache (CTTH). Ninety-eight patients with CM or CTTH were included and their headache frequency, severity, functional disability and number of abortive medications were noted. Fifty-two patients were randomly assigned to group I (three true sessions) and 46 to group II (one true and two sham rTMS sessions) treatment. 10 Hz rTMS comprising 600 pulses was delivered in 412.4 s on the left frontal cortex. Outcomes were noted at 1, 2 and 3 months. The primary outcome was 50 % reduction in headache frequency, and secondary outcomes were improvement in severity, functional disability, abortive drugs and side effects. The baseline headache characteristics were similar between the two groups. Follow up at different time points revealed significant improvement in headache frequency, severity, functional disability and number of abortive drugs compared to baseline in both group I and group II patients, although these parameters were not different between the two groups. In group I, 31 (79.4 %) had reduction of headache frequency and 29 (74.4 %) converted to episodic headache. In group II, these were 24 (64.8 %) and 22 (59.2 %), respectively. In chronic migraine, the severity of headache at 2 months reduced in group I compared to group II (62.5 vs 35.3 %; P = 0.01). Both single and three sessions of 10 Hz rTMS were found to be equally effective in CM and CTTH, and resulted in conversion of chronic to episodic headache in 67.1 % patients.

  1. Comparative efficacy and acceptability of electroconvulsive therapy versus repetitive transcranial magnetic stimulation for major depression: A systematic review and multiple-treatments meta-analysis.

    Science.gov (United States)

    Chen, Jian-Jun; Zhao, Li-Bo; Liu, Yi-Yun; Fan, Song-Hua; Xie, Peng

    2017-03-01

    The effects of electroconvulsive therapy (ECT) and bilateral, left prefrontal, and right prefrontal repetitive transcranial magnetic stimulation (rTMS) on major depressive disorder (MDD) have not been adequately addressed by previous studies. Here, a multiple-treatments meta-analysis, which incorporates evidence from direct and indirect comparisons from a network of trials, was performed to assess the efficacy and acceptability of these four treatment modalities on MDD. The literature was searched for randomized controlled trials (RCTs) on ECT, bilateral rTMS, and unilateral rTMS for treating MDD up to May 2016. The main outcome measures were response and drop-out rates. Data were obtained from 25 studies consisting of 1288 individuals with MDD. ECT was non-significantly more efficacious than B-rTMS, R-rTMS, and L-rTMS. Left prefrontal rTMS was non -significantly less efficacious than all other treatment modalities. In terms of acceptability, R-rTMS was non-significantly better tolerated than ECT, B-rTMS, and L-rTMS. ECT was the most efficacious treatment with the cumulative probabilities of being the most efficacious treatment being: ECT (65%), B-rTMS (25%), R-rTMS (8%), and L-rTMS (2%). R-rTMS was the best-tolerated treatment with the cumulative probabilities of being the best-tolerated treatment being: R-rTMS (52%), B-rTMS (17%), L-rTMS (16%), and ECT (14%). Coherence analysis detected no statistically significant incoherence in any comparisons of direct with indirect evidence for the response rate and drop-out rate. ECT was the most efficacious, but least tolerated, treatment, while R-rTMS was the best tolerated treatment for MDD. B-rTMS appears to have the most favorable balance between efficacy and acceptability. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effects of repetitive transcranial magnetic stimulation on arm function and decreasing unilateral spatial neglect in subacute stroke: a randomized controlled trial.

    Science.gov (United States)

    Cha, Hyun Gyu; Kim, Myoung Kwon

    2016-07-01

    The objective of this study is to investigate the effect of repetitive transcranial magnetic stimulation (rTMS) on the functional recovery of stroke patients with unilateral neglect. Randomized controlled experimental study. Outpatient rehabilitation hospital. Thirty patients with stroke were randomly assigned to two groups: an rTMS group (experimental) and a control group. Stroke patients in the experimental group underwent comprehensive rehabilitation therapy and rTMS. Stroke patients in the control group underwent sham therapy and comprehensive rehabilitation therapy. Participants in both groups received therapy 5 days per week for 4 weeks. Line bisection, Albert, Box and block and Grip strength tests were assessed before and after the four-week therapy period. A significant difference in the post-training gains in Line bisection (16.53 SD 9.78 vs. 3.60 SD 5.02), Albert (14.13 SD 4.92 vs. 3.26 SD 2.01), Box and block (15.06 SD 9.68 vs. 6.93 SD 7.52), and Grip strength tests (3.60 SD 2.66 vs 0.80 SD 1.26) was observed between the experimental group and the control group (P<0.05). In addition, the effect size for gains in the experimental and control groups was very strong in AT, BBT (effect size=2.15, 0.77 respectively). We conclude that rTMS might be effective in improvement in reduction of the unilateral neglect and motor function. © The Author(s) 2015.

  3. Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory-motor network in patients with restless legs syndrome.

    Science.gov (United States)

    Lanza, Giuseppe; Cantone, Mariagiovanna; Aricò, Debora; Lanuzza, Bartolo; Cosentino, Filomena Irene Ilaria; Paci, Domenico; Papotto, Maurizio; Pennisi, Manuela; Bella, Rita; Pennisi, Giovanni; Paulus, Walter; Ferri, Raffaele

    2018-01-01

    Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. rTMS on S1-M1 connectivity alleviated the sensory-motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome.

  4. Right secondary somatosensory cortex-a promising novel target for the treatment of drug-resistant neuropathic orofacial pain with repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Lindholm, Pauliina; Lamusuo, Salla; Taiminen, Tero; Pesonen, Ullamari; Lahti, Ari; Virtanen, Arja; Forssell, Heli; Hietala, Jarmo; Hagelberg, Nora; Pertovaara, Antti; Parkkola, Riitta; Jääskeläinen, Satu

    2015-07-01

    High-frequency repetitive transcranial magnetic stimulation (rTMS) of the motor cortex has analgesic effect; however, the efficacy of other cortical targets and the mode of action remain unclear. We examined the effects of rTMS in neuropathic orofacial pain, and compared 2 cortical targets against placebo. Furthermore, as dopaminergic mechanisms modulate pain responses, we assessed the influence of the functional DRD2 gene polymorphism (957C>T) and the catechol-O-methyltransferase (COMT) Val158Met polymorphism on the analgesic effect of rTMS. Sixteen patients with chronic drug-resistant neuropathic orofacial pain participated in this randomized, placebo-controlled, crossover study. Navigated high-frequency rTMS was given to the sensorimotor (S1/M1) and the right secondary somatosensory (S2) cortices. All subjects were genotyped for the DRD2 957C>T and COMT Val158Met polymorphisms. Pain, mood, and quality of life were monitored throughout the study. The numerical rating scale pain scores were significantly lower after the S2 stimulation than after the S1/M1 (P = 0.0071) or the sham (P = 0.0187) stimulations. The Brief Pain Inventory scores were also lower 3 to 5 days after the S2 stimulation than those at pretreatment baseline (P = 0.0127 for the intensity of pain and P = 0.0074 for the interference of pain) or after the S1/M1 (P = 0.001 and P = 0.0001) and sham (P = 0.0491 and P = 0.0359) stimulations. No correlations were found between the genetic polymorphisms and the analgesic effect in the present small clinical sample. The right S2 cortex is a promising new target for the treatment of neuropathic orofacial pain with high-frequency rTMS.

  5. Effect of Low-Frequency Repetitive Transcranial Magnetic Stimulation on Naming Abilities in Early-Stroke Aphasic Patients: A Prospective, Randomized, Double-Blind Sham-Controlled Study

    Directory of Open Access Journals (Sweden)

    Konrad Waldowski

    2012-01-01

    Full Text Available Background and Purpose. Functional brain imaging studies with aphasia patients have shown increased cortical activation in the right hemisphere language homologues, which hypothetically may represent a maladaptive strategy that interferes with aphasia recovery. The aim of this study was to investigate whether low-frequency repetitive transcranial magnetic stimulation (rTMS over the Broca’s homologues in combination with speech/language therapy improves naming in early-stroke aphasia patients. Methods. 26 right-handed aphasic patients in the early stage (up to 12 weeks of a first-ever left hemisphere ischemic stroke were randomized to receive speech and language therapy combined with real or sham rTMS. Prior to each 45-minute therapeutic session (15 sessions, 5 days a week, 30 minutes of 1-Hz rTMS was applied. Outcome measures were obtained at baseline, immediately after 3 weeks of experimental treatment and 15 weeks; posttreatment using the Computerized Picture Naming Test. Results. Although both groups significantly improved their naming abilities after treatment, no significant differences were noted between the rTMS and sham stimulation groups. The additional analyses have revealed that the rTMS subgroup with a lesion including the anterior part of language area showed greater improvement primarily in naming reaction time 15 weeks after completion of the therapeutic treatment. Improvement was also demonstrated in functional communication abilities. Conclusions. Inhibitory rTMS of the unaffected right inferior frontal gyrus area in combination with speech and language therapy cannot be assumed as an effective method for all poststroke aphasia patients. The treatment seems to be beneficial for patients with frontal language area damage, mostly in the distant time after finishing rTMS procedure.

  6. Low-Frequency Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Function and Synaptic Plasticity in APP23/PS45 Mouse Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Zhilin Huang

    2017-09-01

    Full Text Available Alzheimer’s disease (AD is a chronic neurodegenerative disease leading to dementia, which is characterized by progressive memory loss and other cognitive dysfunctions. Recent studies have attested that noninvasive repetitive transcranial magnetic stimulation (rTMS may help improve cognitive function in patients with AD. However, the majority of these studies have focused on the effects of high-frequency rTMS on cognitive function, and little is known about low-frequency rTMS in AD treatment. Furthermore, the potential mechanisms of rTMS on the improvement of learning and memory also remain poorly understood. In the present study, we reported that severe deficits in spatial learning and memory were observed in APP23/PS45 double transgenic mice, a well known mouse model of AD. Furthermore, these behavioral changes were accompanied by the impairment of long-term potentiation (LTP in the CA1 region of hippocampus, a brain region vital to spatial learning and memory. More importantly, 2-week low-frequency rTMS treatment markedly reversed the impairment of spatial learning and memory as well as hippocampal CA1 LTP. In addition, low-frequency rTMS dramatically reduced amyloid-β precursor protein (APP and its C-terminal fragments (CTFs including C99 and C89, as well as β-site APP-cleaving enzyme 1 (BACE1 in the hippocampus. These results indicate that low-frequency rTMS noninvasively and effectively ameliorates cognitive and synaptic functions in a mouse model of AD, and the potential mechanisms may be attributed to rTMS-induced reduction in Aβ neuropathology.

  7. Cost effectiveness analysis comparing repetitive transcranial magnetic stimulation to antidepressant medications after a first treatment failure for major depressive disorder in newly diagnosed patients - A lifetime analysis.

    Science.gov (United States)

    Voigt, Jeffrey; Carpenter, Linda; Leuchter, Andrew

    2017-01-01

    Repetitive Transcranial Magnetic Stimulation (rTMS) commonly is used for the treatment of Major Depressive Disorder (MDD) after patients have failed to benefit from trials of multiple antidepressant medications. No analysis to date has examined the cost-effectiveness of rTMS used earlier in the course of treatment and over a patients' lifetime. We used lifetime Markov simulation modeling to compare the direct costs and quality adjusted life years (QALYs) of rTMS and medication therapy in patients with newly diagnosed MDD (ages 20-59) who had failed to benefit from one pharmacotherapy trial. Patients' life expectancies, rates of response and remission, and quality of life outcomes were derived from the literature, and treatment costs were based upon published Medicare reimbursement data. Baseline costs, aggregate per year quality of life assessments (QALYs), Monte Carlo simulation, tornado analysis, assessment of dominance, and one way sensitivity analysis were also performed. The discount rate applied was 3%. Lifetime direct treatment costs, and QALYs identified rTMS as the dominant therapy compared to antidepressant medications (i.e., lower costs with better outcomes) in all age ranges, with costs/improved QALYs ranging from $2,952/0.32 (older patients) to $11,140/0.43 (younger patients). One-way sensitivity analysis demonstrated that the model was most sensitive to the input variables of cost per rTMS session, monthly prescription drug cost, and the number of rTMS sessions per year. rTMS was identified as the dominant therapy compared to antidepressant medication trials over the life of the patient across the lifespan of adults with MDD, given current costs of treatment. These models support the use of rTMS after a single failed antidepressant medication trial versus further attempts at medication treatment in adults with MDD.

  8. Cost effectiveness analysis comparing repetitive transcranial magnetic stimulation to antidepressant medications after a first treatment failure for major depressive disorder in newly diagnosed patients - A lifetime analysis.

    Directory of Open Access Journals (Sweden)

    Jeffrey Voigt

    Full Text Available Repetitive Transcranial Magnetic Stimulation (rTMS commonly is used for the treatment of Major Depressive Disorder (MDD after patients have failed to benefit from trials of multiple antidepressant medications. No analysis to date has examined the cost-effectiveness of rTMS used earlier in the course of treatment and over a patients' lifetime.We used lifetime Markov simulation modeling to compare the direct costs and quality adjusted life years (QALYs of rTMS and medication therapy in patients with newly diagnosed MDD (ages 20-59 who had failed to benefit from one pharmacotherapy trial. Patients' life expectancies, rates of response and remission, and quality of life outcomes were derived from the literature, and treatment costs were based upon published Medicare reimbursement data. Baseline costs, aggregate per year quality of life assessments (QALYs, Monte Carlo simulation, tornado analysis, assessment of dominance, and one way sensitivity analysis were also performed. The discount rate applied was 3%.Lifetime direct treatment costs, and QALYs identified rTMS as the dominant therapy compared to antidepressant medications (i.e., lower costs with better outcomes in all age ranges, with costs/improved QALYs ranging from $2,952/0.32 (older patients to $11,140/0.43 (younger patients. One-way sensitivity analysis demonstrated that the model was most sensitive to the input variables of cost per rTMS session, monthly prescription drug cost, and the number of rTMS sessions per year.rTMS was identified as the dominant therapy compared to antidepressant medication trials over the life of the patient across the lifespan of adults with MDD, given current costs of treatment. These models support the use of rTMS after a single failed antidepressant medication trial versus further attempts at medication treatment in adults with MDD.

  9. Added value of multiple versus single sessions of repetitive transcranial magnetic stimulation in predicting motor cortex stimulation efficacy for refractory neuropathic pain.

    Science.gov (United States)

    Pommier, Benjamin; Quesada, Charles; Fauchon, Camille; Nuti, Christophe; Vassal, François; Peyron, Roland

    2018-05-18

    OBJECTIVE Selection criteria for offering patients motor cortex stimulation (MCS) for refractory neuropathic pain are a critical topic of research. A single session of repetitive transcranial magnetic stimulation (rTMS) has been advocated for selecting MCS candidates, but it has a low negative predictive value. Here the authors investigated whether multiple rTMS sessions would more accurately predict MCS efficacy. METHODS Patients included in this longitudinal study could access MCS after at least four rTMS sessions performed 3-4 weeks apart. The positive (PPV) and negative (NPV) predictive values of the four rTMS sessions and the correlation between the analgesic effects of the two treatments were assessed. RESULTS Twelve MCS patients underwent an average of 15.9 rTMS sessions prior to surgery; nine of the patients were rTMS responders. Postoperative follow-up was 57.8 ± 15.6 months (mean ± standard deviation). Mean percentage of pain relief (%R) was 21% and 40% after the first and fourth rTMS sessions, respectively. The corresponding mean durations of pain relief were respectively 2.4 and 12.9 days. A cumulative effect of the rTMS sessions was observed on both %R and duration of pain relief (p < 0.01). The %R value obtained with MCS was 35% after 6 months and 43% at the last follow-up. Both the PPV and NPV of rTMS were 100% after the fourth rTMS session (p = 0.0045). A significant correlation was found between %R or duration of pain relief after the fourth rTMS session and %R at the last MCS follow-up (R 2 = 0.83, p = 0.0003). CONCLUSIONS Four rTMS sessions predicted MCS efficacy better than a single session in neuropathic pain patients. Taking into account the cumulative effects of rTMS, the authors found a high-level correlation between the analgesic effects of rTMS and MCS.

  10. Effects of electroconvulsive therapy and repetitive transcranial magnetic stimulation on serum brain-derived neurotrophic factor levels in patients with depression

    Directory of Open Access Journals (Sweden)

    Laura eGedge

    2012-02-01

    Full Text Available Objective: Brain-derived neurotrophic factor (BDNF levels are decreased in individuals with depression and increase following antidepressant treatment. The objective of this study is to compare pre- and post-treatment serum BDNF levels in patients with drug-resistant major depressive disorder (MDD who received either electroconvulsive therapy (ECT or repetitive transcranial magnetic stimulation (rTMS. It is hypothesized that non-pharmacological treatments also increase serum BDNF levels.Methods: This was a prospective, single-blind study comparing pre- and post-treatment serum BDNF levels of twenty-nine patients with drug-resistant MDD who received ECT or rTMS treatment. Serum BDNF levels were measured one week prior to and one week after treatment using the sandwich ELISA technique. Depression severity was measured one week before and one week after treatment using the Hamilton Depression Rating Scale. Two-sided normal distribution paired t-test analysis was used to compare pre- and post-treatment BDNF concentration and illness severity. Bivariate correlations using Pearson's coefficient assessed the relationship between post-treatment BDNF levels and post-treatment depression severity.Results: There was no significant difference in serum BDNF levels before and after ECT, although concentrations tended to increase from a baseline mean of 9.95 ng/ml to 12.29 ng/ml after treatment (p= 0.137. Treatment with rTMS did not significantly alter BDNF concentrations (p= 0.282. Depression severity significantly decreased following both ECT (p= 0.003 and rTMS (p< 0.001. Post-treatment BDNF concentration was not significantly correlated with post-treatment depression severity in patients who received either ECT (r= -0.133, p= 0.697 or rTMS (r= 0.374, p= 0.126.Conclusion: This study suggests that ECT and rTMS may not exert their clinical effects by altering serum BDNF levels. Serum BDNF concentration may not be a biomarker of ECT or rTMS treatment response.

  11. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Milos R Ljubisavljevic

    Full Text Available Although repetitive Transcranial Magnetic Stimulation (rTMS in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS and intermittent (iTBS theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS and pattern (cTBS vs. iTBS. The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss

  12. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS) Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury

    Science.gov (United States)

    Ljubisavljevic, Milos R.; Javid, Asma; Oommen, Joji; Parekh, Khatija; Nagelkerke, Nico; Shehab, Safa; Adrian, Thomas E.

    2015-01-01

    Although repetitive Transcranial Magnetic Stimulation (rTMS) in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO) with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS) and intermittent (iTBS) theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause) in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS) and pattern (cTBS vs. iTBS). The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss functions. PMID

  13. Design of a placebo-controlled, randomized study of the efficacy of repetitive transcranial magnetic stimulation for the treatment of chronic tinnitus.

    Science.gov (United States)

    Landgrebe, Michael; Binder, Harald; Koller, Michael; Eberl, Yvonne; Kleinjung, Tobias; Eichhammer, Peter; Graf, Erika; Hajak, Goeran; Langguth, Berthold

    2008-04-15

    Chronic tinnitus is a frequent condition, which can have enormous impact on patient's life and which is very difficult to treat. Accumulating data indicate that chronic tinnitus is related to dysfunctional neuronal activity in the central nervous system. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive method which allows to focally modulate neuronal activity. An increasing amount of studies demonstrate reduction of tinnitus after repeated sessions of low-frequency rTMS and indicate that rTMS might represent a new promising approach for the treatment of tinnitus. However available studies have been mono-centric and are characterized by small sample sizes. Therefore, this multi-center trial will test the efficacy of rTMS treatment in a large sample of chronic tinnitus patients. This is a randomized, placebo-controlled, double-blind multi-center trial of two weeks 1 Hz rTMS-treatment in chronic tinnitus patients. Eligible patients will be randomized to either 2 weeks real or sham rTMS treatment. Main eligibility criteria: male or female individuals aged 18-70 years with chronic tinnitus (duration > 6 months), tinnitus-handicap-inventory-score > or = 38, age-adjusted normal sensorineural hearing (i.e. not more than 5 dB below the 10% percentile of the appropriate age and gender group (DIN EN ISO 7029), conductive hearing loss tinnitus severity according to the tinnitus questionnaire of Goebel and Hiller (baseline vs. end of treatment period). A total of 138 patients are needed to detect a clinical relevant change of tinnitus severity (i.e. 5 points on the questionnaire of Goebel and Hiller; alpha = 0.05; 1-beta = 0.80). Assuming a drop-out rate of less than 5% until the primary endpoint, 150 patients have to be randomized to guarantee the target number of 138 evaluable patients. The study will be conducted by otorhinolaryngologists and psychiatrists of 7 university hospitals and 1 municipal hospital in Germany. This study will provide important

  14. Design of a placebo-controlled, randomized study of the efficacy of repetitive transcranial magnetic stimulation for the treatment of chronic tinntius

    Directory of Open Access Journals (Sweden)

    Eichhammer Peter

    2008-04-01

    Full Text Available Abstract Background Chronic tinnitus is a frequent condition, which can have enormous impact on patient's life and which is very difficult to treat. Accumulating data indicate that chronic tinnitus is related to dysfunctional neuronal activity in the central nervous system. Repetitive transcranial magnetic stimulation (rTMS is a non-invasive method which allows to focally modulate neuronal activity. An increasing amount of studies demonstrate reduction of tinnitus after repeated sessions of low-frequency rTMS and indicate that rTMS might represent a new promising approach for the treatment of tinnitus. However available studies have been mono-centric and are characterized by small sample sizes. Therefore, this multi-center trial will test the efficacy of rTMS treatment in a large sample of chronic tinnitus patients. Methods/Design This is a randomized, placebo-controlled, double-blind multi-center trial of two weeks 1 Hz rTMS-treatment in chronic tinnitus patients. Eligible patients will be randomized to either 2 weeks real or sham rTMS treatment. Main eligibility criteria: male or female individuals aged 18–70 years with chronic tinnitus (duration > 6 months, tinnitus-handicap-inventory-score ≥ 38, age-adjusted normal sensorineural hearing (i.e. not more than 5 dB below the 10% percentile of the appropriate age and gender group (DIN EN ISO 7029, conductive hearing loss ≤ 15dB. The primary endpoint is a change of tinnitus severity according to the tinnitus questionnaire of Goebel and Hiller (baseline vs. end of treatment period. A total of 138 patients are needed to detect a clinical relevant change of tinnitus severity (i.e. 5 points on the questionnaire of Goebel and Hiller; alpha = 0.05; 1-beta = 0.80. Assuming a drop-out rate of less than 5% until the primary endpoint, 150 patients have to be randomized to guarantee the target number of 138 evaluable patients. The study will be conducted by otorhinolaryngologists and psychiatrists of 7

  15. Effects of Multi-Session Repetitive Transcranial Magnetic Stimulation on Motor Control and Spontaneous Brain Activity in Multiple System Atrophy: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Zhu Liu

    2018-05-01

    Full Text Available Background: Impaired motor control is one of the most common symptoms of multiple system atrophy (MSA. It arises from dysfunction of the cerebellum and its connected neural networks, including the primary motor cortex (M1, and is associated with altered spontaneous (i.e., resting-state brain network activity. Non-invasive repetitive transcranial magnetic stimulation (rTMS selectively facilitates the excitability of supraspinal networks. Repeated rTMS sessions have been shown to induce long-term changes to both resting-state brain dynamics and behavior in several neurodegenerative diseases. Here, we hypothesized that a multi-session rTMS intervention would improve motor control in patients with MSA, and that such improvements would correlate with changes in resting-state brain activity.Methods: Nine participants with MSA received daily sessions of 5 Hz rTMS for 5 days. rTMS targeted both the cerebellum and the bilateral M1. Before and within 3 days after the intervention, motor control was assessed by the motor item of the Unified Multiple System Atrophy Rating Scale (UMSARS. Resting-state brain activity was recorded by blood-oxygen-level dependency (BOLD functional magnetic resonance imaging. The “complexity” of resting-state brain activity fluctuations was quantified within seven well-known functional cortical networks using multiscale entropy, a technique that estimates the degree of irregularity of the BOLD time-series across multiple scales of time.Results: The rTMS intervention was well-attended and was not associated with any adverse events. Average motor scores were lower (i.e., better performance following the rTMS intervention as compared to baseline (t8 = 2.3, p = 0.003. Seven of nine participants exhibited such pre-to-post intervention improvements. A trend toward an increase in resting-state complexity was observed within the motor network (t8 = 1.86, p = 0.07. Participants who exhibited greater increases in motor network resting

  16. Challenges in comparing the acute cognitive outcomes of high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) vs. electroconvulsive therapy (ECT) in major depression: A systematic review.

    Science.gov (United States)

    Kedzior, Karina Karolina; Schuchinsky, Maria; Gerkensmeier, Imke; Loo, Colleen

    2017-08-01

    The present study aimed to systematically compare the cognitive outcomes of high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) and electroconvulsive therapy (ECT) in head-to-head studies with major depression (MDD) patients. A systematic literature search identified six studies with 219 MDD patients that were too heterogeneous to reliably detect meaningful differences in acute cognitive outcomes after ECT vs. HF-rTMS. Cognitive effects of brain stimulation vary depending on the timeframe and methods of assessment, stimulation parameters, and maintenance treatment. Thus, acute and longer-term differences in cognitive outcomes both need to be investigated at precisely defined timeframes and with similar instruments assessing comparable functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The effects of repetitive transcranial magnetic stimulation in obese females with binge eating disorder: a protocol for a double-blinded, randomized, sham-controlled trial.

    Science.gov (United States)

    Maranhão, Mara Fernandes; Estella, Nara Mendes; Cury, Maria Elisa Gisbert; Amigo, Veruska Lastoria; Picasso, Clarissa Mollinero; Berberian, Arthur; Campbell, Iain; Schmidt, Ulrike; Claudino, Angélica Medeiros

    2015-08-12

    Binge eating disorder is a new category in DSM-5 and highly associated with higher body mass index. The neural mechanisms that underlie binge eating are of great interest in order to improve treatment interventions. Brain mechanisms underlying drug and food craving are suggested to be similar: for example, both are reported to be associated with increased neural activity in the orbitofrontal and anterior cingulate cortex, and a diminished regulatory influence from lateral prefrontal circuits. Several studies have begun to assess the potential benefits of brain stimulation in reducing craving and addictive behaviors. Data from a study of a one-off session of transcranial magnetic stimulation in healthy women identified as strong cravers and of individuals with bulimic-type eating disorders, reported a reduction in food craving and binge eating episodes. This provides support for a more extensive investigation of the potential therapeutic benefits of transcranial magnetic stimulation. Lastly, brain imaging studies and a dimensional approach, will improve understanding of the neural correlates of the disorders and of the mode of action of transcranial magnetic stimulation. Sixty eligible obese females, with binge eating disorder, will be randomly allocated to receive 20 sessions of transcranial magnetic stimulation intervention (n = 30) or the sham transcranial magnetic stimulation intervention (n = 30) scattered 3 days/week. Thirty eligible controls will complete the baseline assessment. The primary outcome (number of binge eating episodes) will be assed at each treatment sessions, and 8 weeks after intervention completion (follow-up). It is hypothesized that mean weekly binge-eating episodes will be reduced in the intervention group, compared to the sham group, and that the effect will be maintained at follow-up. Despite the severity associated with Binge Eating Disorder, there are limited treatment options. This study is an important step in the development of more

  18. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial.

    Science.gov (United States)

    Blumberger, Daniel M; Vila-Rodriguez, Fidel; Thorpe, Kevin E; Feffer, Kfir; Noda, Yoshihiro; Giacobbe, Peter; Knyahnytska, Yuliya; Kennedy, Sidney H; Lam, Raymond W; Daskalakis, Zafiris J; Downar, Jonathan

    2018-04-28

    Treatment-resistant major depressive disorder is common; repetitive transcranial magnetic stimulation (rTMS) by use of high-frequency (10 Hz) left-side dorsolateral prefrontal cortex stimulation is an evidence-based treatment for this disorder. Intermittent theta burst stimulation (iTBS) is a newer form of rTMS that can be delivered in 3 min, versus 37·5 min for a standard 10 Hz treatment session. We aimed to establish the clinical effectiveness, safety, and tolerability of iTBS compared with standard 10 Hz rTMS in adults with treatment-resistant depression. In this randomised, multicentre, non-inferiority clinical trial, we recruited patients who were referred to specialty neurostimulation centres based at three Canadian university hospitals (Centre for Addiction and Mental Health and Toronto Western Hospital, Toronto, ON, and University of British Columbia Hospital, Vancouver, BC). Participants were aged 18-65 years, were diagnosed with a current treatment-resistant major depressive episode or could not tolerate at least two antidepressants in the current episode, were receiving stable antidepressant medication doses for at least 4 weeks before baseline, and had an HRSD-17 score of at least 18. Participants were randomly allocated (1:1) to treatment groups (10 Hz rTMS or iTBS) by use of a random permuted block method, with stratification by site and number of adequate trials in which the antidepressants were unsuccessful. Treatment was delivered open-label but investigators and outcome assessors were masked to treatment groups. Participants were treated with 10 Hz rTMS or iTBS to the left dorsolateral prefrontal cortex, administered on 5 days a week for 4-6 weeks. The primary outcome measure was change in 17-item Hamilton Rating Scale for Depression (HRSD-17) score, with a non-inferiority margin of 2·25 points. For the primary outcome measure, we did a per-protocol analysis of all participants who were randomly allocated to groups and who attained the primary

  19. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients

    Directory of Open Access Journals (Sweden)

    Qiao J

    2016-09-01

    Full Text Available Jun Qiao,1,2 Guixing Jin,1,2 Licun Lei,3 Lan Wang,1,2 Yaqiang Du,3 Xueyi Wang1,2 1Institute of Mental Health, The First Hospital of Hebei Medical University, 2Brain Ageing and Cognitive Neuroscience Laboratory, Hebei Medical University, 3Department of Radiology, The First Hospital of Hebei Medical University, Hebei, People’s Republic of China Objective: To explore the effect of right dorsolateral prefrontal cortex (DLPFC repetitive transcranial magnetic stimulation (rTMS on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy (1H-MRS in recently detoxified alcohol-dependent patients. Materials and methods: In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions and the control group (sham stimulation. Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R and Brief Visuospatial Memory Test-Revised (BVMT-R before and after treatment. 1H-MRS was used to detect the levels of N-acetyl aspartic acid (NAA, choline (Cho, and creatine (Cr in bilateral hippocampi before and after treatment. Results: Thirty-eight patients (18 in the experimental group and 20 in the control group were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. Conclusion: High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1H-MRS in recently detoxified alcohol-dependent patients. Keywords: alcohol dependence, memory, repetitive transcranial magnetic stimulation, MR spectroscopy

  20. Comparison between neurostimulation techniques repetitive transcranial magnetic stimulation vs electroconvulsive therapy for the treatment of resistant depression: patient preference and cost-effectiveness.

    Science.gov (United States)

    Magnezi, Racheli; Aminov, Emanuel; Shmuel, Dikla; Dreifuss, Merav; Dannon, Pinhas

    2016-01-01

    Major depressive disorder (MDD) is a common disorder, widely distributed in the population, and is often associated with severe symptoms and functional impairment. It has been estimated that 30% of MDD patients do not benefit adequately from therapeutic interventions, including pharmacotherapy and psychotherapy. Treatment-resistant depression (TRD) is generally defined as a failure to achieve remission, despite therapeutic interventions. The most effective treatment alternatives for TRD are hospitalization, electroconvulsive therapy (ECT), and transcranial magnetic stimulation (TMS). Here we compared the clinical effectiveness of ECT and TMS, including success rates, patient responses, side-effect profiles, and financial worthiness. We found that ECT (P<0.0001) was more effective than TMS (P<0.012) (not statistically significant in group effect) in TRD patients. However, ECT patients reported a higher percentage of side effects (P<0.01) and the TMS treatment scored better in terms of patient preference. The cost benefit of ECT was higher than that of TMS (US$2075 vs US$814). Patient's preferences for treatment could be more intense in the TMS, if the TMS is included in the Health Maintenance Organization's service list. We propose that both of these treatment options should be available in psychiatric wards, thus expanding the therapeutic toolkit for TRD.

  1. Repetitive Transcranial Magnetic Stimulation Improved Symptoms of Obsessive-Compulsive Disorder, but Also Cognitive Performance: Results from a Randomized Clinical Trial with a Cross-Over Design and Sham Condition.

    Science.gov (United States)

    Jahangard, Leila; Haghighi, Mohammad; Shyayganfard, Mehran; Ahmadpanah, Mohammad; Sadeghi Bahmani, Dena; Bajoghli, Hafez; Holsboer-Trachsler, Edith; Brand, Serge

    2016-01-01

    There is some evidence that repetitive transcranial magnetic stimulation (rTMS) is an effective method of treating patients suffering from obsessive-compulsive disorder (OCD). Here, we tested the hypothesis that rTMS has a positive impact both on symptom severity and cognitive performance in such patients. Specifically, short-term verbal processing speed and flexibility were assessed. Ten patients suffering from refractory OCD and treated with standard medication were randomly assigned either to a treatment-first or to a sham-first condition. At baseline and after 2 and 4 weeks, symptom severity (experts' ratings) and cognitive performance (auditory perception, visual perception, short-term memory, and processing speed) were assessed. After 2 weeks, the treatment condition switched to the sham condition, and the sham condition switched to the treatment condition. Under treatment but not under sham conditions, symptom severity reduced. Moreover, cognitive performance improved in parallel. rTMS is a safe and efficient treatment for patients suffering from refractory OCD; symptoms and cognitive performance improved in parallel. © 2016 S. Karger AG, Basel.

  2. Contribution of the pre-SMA to the production of words and non-speech oral motor gestures, as revealed by repetitive transcranial magnetic stimulation (rTMS).

    Science.gov (United States)

    Tremblay, Pascale; Gracco, Vincent L

    2009-05-01

    An emerging theoretical perspective, largely based on neuroimaging studies, suggests that the pre-SMA is involved in planning cognitive aspects of motor behavior and language, such as linguistic and non-linguistic response selection. Neuroimaging studies, however, cannot indicate whether a brain region is equally important to all tasks in which it is activated. In the present study, we tested the hypothesis that the pre-SMA is an important component of response selection, using an interference technique. High frequency repetitive TMS (10 Hz) was used to interfere with the functioning of the pre-SMA during tasks requiring selection of words and oral gestures under different selection modes (forced, volitional) and attention levels (high attention, low attention). Results show that TMS applied to the pre-SMA interferes selectively with the volitional selection condition, resulting in longer RTs. The low- and high-attention forced selection conditions were unaffected by TMS, demonstrating that the pre-SMA is sensitive to selection mode but not attentional demands. TMS similarly affected the volitional selection of words and oral gestures, reflecting the response-independent nature of the pre-SMA contribution to response selection. The implications of these results are discussed.

  3. Effects of Electroacupuncture Combined with Repetitive Transcranial Magnetic Stimulation on the Expression of Nestin in Neural Stem Cell after Focal Cerebral Ischemia in Adult Rats

    Institute of Scientific and Technical Information of China (English)

    HUANG Guofu; HUANG Xiaolin; CHEN Hong; HAY Xiaohua

    2009-01-01

    Objective: To investigate the influence of electroacupuncture (EA) combined with repetitive transeranial magnetic stimulation(rTMS) on the temporal profile of nestin expression after induction of focal cerebral isehemia in adult rats and to explore the mechanism of EA combined with rTMS in treating ischemic brain injury. Method: The model of transient focal ischemia was produced by occlusion of middle cerebral artery. Seventy-five Wistar rats were randomly divided into normal group, model group, EA group, rTMS group and EA +rTMS group. The neurologic impairment rating and ability of learning and memory were observed at the 7th、14th and 28th d after infarction respectively. Meanwhile, Western blotting was used to observe the number of nestin expression positive cells. Result: Nestin-positive cells were found in cortex, subgranular zone (SGZ), subventricular zone (SVZ) of the ipsilateral side at different time points after cerebral isehemia. The number of nestin-positive cells peaked at the 7th d, began to decrease at the 14th d and was significantly higher in EA+rTMS group than that in model group (P<0.05), then almost reached normal at the 28th d. The improvement of neural motor function deficits as well as the indexes of learning and memory were more obvious in EA+rTMS group compared with model group (P<0.01, P<0.05). These effects were most obvious in EA+rTMS group compared with the EA and rTMS group (P<0.05). Conclusion: EA and rTMS possess the potency of building up and can increase the number of nestin-positive cells in some brain regions after focal cerebral ischemia, which might be one of the important mechanisms of EA combined with rTMS in treating ischemia brain injury.

  4. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients.

    Science.gov (United States)

    Qiao, Jun; Jin, Guixing; Lei, Licun; Wang, Lan; Du, Yaqiang; Wang, Xueyi

    2016-01-01

    To explore the effect of right dorsolateral prefrontal cortex (DLPFC) repetitive transcranial magnetic stimulation (rTMS) on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy ( 1 H-MRS) in recently detoxified alcohol-dependent patients. In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions) and the control group (sham stimulation). Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) before and after treatment. 1 H-MRS was used to detect the levels of N -acetyl aspartic acid (NAA), choline (Cho), and creatine (Cr) in bilateral hippocampi before and after treatment. Thirty-eight patients (18 in the experimental group and 20 in the control group) were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1 H-MRS in recently detoxified alcohol-dependent patients.

  5. A Meta-Analysis of the Effectiveness of Different Cortical Targets Used in Repetitive Transcranial Magnetic Stimulation (rTMS) for the Treatment of Obsessive-Compulsive Disorder (OCD).

    Science.gov (United States)

    Rehn, Simone; Eslick, Guy D; Brakoulias, Vlasios

    2018-02-09

    Randomised and sham-controlled trials (RCTs) of repetitive transcranial magnetic stimulation (rTMS) in the treatment of obsessive-compulsive disorder (OCD) have yielded conflicting results, which may be due to the variability in rTMS parameters used. We performed an updated systematic review and meta-analysis on the effectiveness of rTMS for the treatment of OCD and aimed to determine whether certain rTMS parameters, such as cortical target, may be associated with higher treatment effectiveness. After conducting a systematic literature review for RCTs on rTMS for OCD through to 1 December 2016 using MEDLINE, PubMed, Web of Science, PsycINFO, Google, and Google Scholar, we performed a random-effects meta-analysis with the outcome measure as pre-post changes in Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores. To determine whether rTMS parameters may have influenced treatment effectiveness, studies were further analysed according to cortical target, stimulation frequency, and length of follow-up. Data were obtained from 18 RCTs on rTMS in the treatment of OCD. Overall, rTMS yielded a modest effect in reducing Y-BOCS scores with Hedge's g of 0.79 (95% CI = 0.43-1.15, p OCD. The therapeutic effects of rTMS also appear to persist post-treatment and may offer beneficial long-term effectiveness. With our findings, it is suggested that future large-scale studies focus on the supplementary motor area and include follow-up periods of 12 weeks or more.

  6. The Impact of Accelerated Right Prefrontal High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS on Cue-Reactivity: An fMRI Study on Craving in Recently Detoxified Alcohol-Dependent Patients.

    Directory of Open Access Journals (Sweden)

    Sarah C Herremans

    Full Text Available In alcohol-dependent patients craving is a difficult-to-treat phenomenon. It has been suggested that high-frequency (HF repetitive transcranial magnetic stimulation (rTMS may have beneficial effects. However, exactly how this application exerts its effect on the underlying craving neurocircuit is currently unclear. In an effort to induce alcohol craving and to maximize detection of HF-rTMS effects to cue-induced alcohol craving, patients were exposed to a block and event-related alcohol cue-reactivity paradigm while being scanned with fMRI. Hence, we assessed the effect of right dorsolateral prefrontal cortex (DLPFC stimulation on cue-induced and general alcohol craving, and the related craving neurocircuit. Twenty-six recently detoxified alcohol-dependent patients were included. First, we evaluated the impact of one sham-controlled stimulation session. Second, we examined the effect of accelerated right DLPFC HF-rTMS treatment: here patients received 15 sessions in an open label accelerated design, spread over 4 consecutive days. General craving significantly decreased after 15 active HF-rTMS sessions. However, cue-induced alcohol craving was not altered. Our brain imaging results did not show that the cue-exposure affected the underlying craving neurocircuit after both one and fifteen active HF-rTMS sessions. Yet, brain activation changes after one and 15 HF-rTMS sessions, respectively, were observed in regions associated with the extended reward system and the default mode network, but only during the presentation of the event-related paradigm. Our findings indicate that accelerated HF-rTMS applied to the right DLPFC does not manifestly affect the craving neurocircuit during an alcohol-related cue-exposure, but instead it may influence the attentional network.

  7. Efficacy of intermittent Theta Burst Stimulation (iTBS) and 10-Hz high-frequency repetitive transcranial magnetic stimulation (rTMS) in treatment-resistant unipolar depression: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Bulteau, Samuel; Sébille, Veronique; Fayet, Guillemette; Thomas-Ollivier, Veronique; Deschamps, Thibault; Bonnin-Rivalland, Annabelle; Laforgue, Edouard; Pichot, Anne; Valrivière, Pierre; Auffray-Calvier, Elisabeth; Fortin, June; Péréon, Yann; Vanelle, Jean-Marie; Sauvaget, Anne

    2017-01-13

    The treatment of depression remains a challenge since at least 40% of patients do not respond to initial antidepressant therapy and 20% present chronic symptoms (more than 2 years despite standard treatment administered correctly). Repetitive transcranial magnetic stimulation (rTMS) is an effective adjuvant therapy but still not ideal. Intermittent Theta Burst Stimulation (iTBS), which has only been used recently in clinical practice, could have a faster and more intense effect compared to conventional protocols, including 10-Hz high-frequency rTMS (HF-rTMS). However, no controlled study has so far highlighted the superiority of iTBS in resistant unipolar depression. This paper focuses on the design of a randomised, controlled, double-blind, single-centre study with two parallel arms, carried out in France, in an attempt to assess the efficacy of an iTBS protocol versus a standard HF- rTMS protocol. Sixty patients aged between 18 and 75 years of age will be enrolled. They must be diagnosed with major depressive disorder persisting despite treatment with two antidepressants at an effective dose over a period of 6 weeks during the current episode. The study will consist of two phases: a treatment phase comprising 20 sessions of rTMS to the left dorsolateral prefrontal cortex, localised via a neuronavigation system and a 6-month longitudinal follow-up. The primary endpoint will be the number of responders per group, defined by a decrease of at least 50% in the initial score on the Montgomery and Asberg Rating Scale (MADRS) at the end of rTMS sessions. The secondary endpoints will be: response rate 1 month after rTMS sessions; number of remissions defined by a MADRS score of iTBS superiority in the management of unipolar depression and we will discuss its effect over time. In case of a significant increase in the number of therapeutic responses with a prolonged effect, the iTBS protocol could be considered a first-line protocol in resistant unipolar depression

  8. [Transcranial magnetic stimulation].

    Science.gov (United States)

    Tormos, J M; Catalá, M D; Pascual-Leone, A

    Transcranial magnetic stimulation (TMS) permits stimulation of the cerebral cortex in humans without requiring open access to the brain and is one of the newest tools available in neuroscience. There are two main types of application: single-pulse TMS and repetitive TMS. The magnetic stimulator is composed of a series of capacitors that store the voltage necessary to generate a stimulus of the sufficient intensity of generate an electric field in the stimulation coil. The safety of TMS is supported by the considerable experience derived from studies involving electrical stimulation of the cortex in animals and humans, and also specific studies on the safety of TMS in humans. In this article we review historical and technical aspects of TMS, describe its adverse effects and how to avoid them, summarize the applications of TMS in the investigation of different cerebral functions, and discuss the possibility of using TMS for the treatment of neuropsychiatric disorders.

  9. Cathodal Transcranial Direct Current Stimulation of the Right Wernicke's Area Improves Comprehension in Subacute Stroke Patients

    Science.gov (United States)

    You, Dae Sang; Kim, Dae-Yul; Chun, Min Ho; Jung, Seung Eun; Park, Sung Jong

    2011-01-01

    Previous studies have shown the appearance of right-sided language-related brain activity in right-handed patients after a stroke. Non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) have been shown to modulate excitability in the brain. Moreover, rTMS and…

  10. Is the human mirror neuron system plastic? Evidence from a transcranial magnetic stimulation study.

    Science.gov (United States)

    Mehta, Urvakhsh Meherwan; Waghmare, Avinash V; Thirthalli, Jagadisha; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N

    2015-10-01

    Virtual lesions in the mirror neuron network using inhibitory low-frequency (1Hz) transcranial magnetic stimulation (TMS) have been employed to understand its spatio-functional properties. However, no studies have examined the influence of neuro-enhancement by using excitatory high-frequency (20Hz) repetitive transcranial magnetic stimulation (HF-rTMS) on these networks. We used three forms of TMS stimulation (HF-rTMS, single and paired pulse) to investigate whether the mirror neuron system facilitates the motor system during goal-directed action observation relative to inanimate motion (motor resonance), a marker of putative mirror neuron activity. 31 healthy individuals were randomized to receive single-sessions of true or sham HF-rTMS delivered to the left inferior frontal gyrus - a component of the human mirror system. Motor resonance was assessed before and after HF-rTMS using three TMS cortical reactivity paradigms: (a) 120% of resting motor threshold (RMT), (b) stimulus intensity set to evoke motor evoked potential of 1-millivolt amplitude (SI1mV) and (c) a short latency paired pulse paradigm. Two-way RMANOVA showed a significant group (true versus sham) X occasion (pre- and post-HF-rTMS motor resonance) interaction effect for SI1mV [F(df)=6.26 (1, 29), p=0.018] and 120% RMT stimuli [F(df)=7.01 (1, 29), p=0.013] indicating greater enhancement of motor resonance in the true HF-rTMS group than the sham-group. This suggests that HF-rTMS could adaptively modulate properties of the mirror neuron system. This neuro-enhancement effect is a preliminary step that can open translational avenues for novel brain stimulation therapeutics targeting social-cognition deficits in schizophrenia and autism. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effects of Transcranial Direct Current Stimulation (tDCS) on Behaviour and Electrophysiology of Language Production

    Science.gov (United States)

    Wirth, Miranka; Rahman, Rasha Abdel; Kuenecke, Janina; Koenig, Thomas; Horn, Helge; Sommer, Werner; Dierks, Thomas

    2011-01-01

    Excitatory anodal transcranial direct current stimulation (A-tDCS) over the left dorsal prefrontal cortex (DPFC) has been shown to improve language production. The present study examined neurophysiological underpinnings of this effect. In a single-blinded within-subject design, we traced effects of A-tDCS compared to sham stimulation over the left…

  12. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control.

    Science.gov (United States)

    Reis, Janine; Swayne, Orlando B; Vandermeeren, Yves; Camus, Mickael; Dimyan, Michael A; Harris-Love, Michelle; Perez, Monica A; Ragert, Patrick; Rothwell, John C; Cohen, Leonardo G

    2008-01-15

    Transcranial magnetic stimulation (TMS) was initially used to evaluate the integrity of the corticospinal tract in humans non-invasively. Since these early studies, the development of paired-pulse and repetitive TMS protocols allowed investigators to explore inhibitory and excitatory interactions of various motor and non-motor cortical regions within and across cerebral hemispheres. These applications have provided insight into the intracortical physiological processes underlying the functional role of different brain regions in various cognitive processes, motor control in health and disease and neuroplastic changes during recovery of function after brain lesions. Used in combination with neuroimaging tools, TMS provides valuable information on functional connectivity between different brain regions, and on the relationship between physiological processes and the anatomical configuration of specific brain areas and connected pathways. More recently, there has been increasing interest in the extent to which these physiological processes are modulated depending on the behavioural setting. The purpose of this paper is (a) to present an up-to-date review of the available electrophysiological data and the impact on our understanding of human motor behaviour and (b) to discuss some of the gaps in our present knowledge as well as future directions of research in a format accessible to new students and/or investigators. Finally, areas of uncertainty and limitations in the interpretation of TMS studies are discussed in some detail.

  13. Excitatory amino acid receptors and disease.

    Science.gov (United States)

    Meldrum, B S

    1992-08-01

    Recent advances in the molecular biology of excitatory amino acid receptors are reviewed. Evidence that drugs blocking the excitatory action of glutamate at the N-methyl-D-aspartate (NMDA) and non-NMDA receptors may be of clinical use in epilepsy, Parkinson's disease, cerebral ischaemia and trauma, acquired immune deficiency syndrome (AIDS) encephalopathy and neuropathic pain is summarized.

  14. Plasticity of cortical excitatory-inhibitory balance.

    Science.gov (United States)

    Froemke, Robert C

    2015-07-08

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.

  15. Transcranial magnetic stimulation potentiates glutamatergic neurotransmission in depressed adolescents.

    Science.gov (United States)

    Croarkin, Paul E; Nakonezny, Paul A; Wall, Christopher A; Murphy, Lauren L; Sampson, Shirlene M; Frye, Mark A; Port, John D

    2016-01-30

    Abnormalities in glutamate neurotransmission may have a role in the pathophysiology of adolescent depression. The present pilot study examined changes in cortical glutamine/glutamate ratios in depressed adolescents receiving high-frequency repetitive transcranial magnetic stimulation. Ten adolescents with treatment-refractory major depressive disorder received up to 30 sessions of 10-Hz repetitive transcranial magnetic stimulation at 120% motor threshold with 3000 pulses per session applied to the left dorsolateral prefrontal cortex. Baseline, posttreatment, and 6-month follow-up proton magnetic resonance spectroscopy scans of the anterior cingulate cortex and left dorsolateral prefrontal cortex were collected at 3T with 8-cm(3) voxels. Glutamate metabolites were quantified with 2 distinct proton magnetic resonance spectroscopy sequences in each brain region. After repetitive transcranial magnetic stimulation and at 6 months of follow-up, glutamine/glutamate ratios increased in the anterior cingulate cortex and left dorsolateral prefrontal cortex with both measurements. The increase in the glutamine/glutamate ratio reached statistical significance with the TE-optimized PRESS sequence in the anterior cingulate cortex. Glutamine/glutamate ratios increased in conjunction with depressive symptom improvement. This reached statistical significance with the TE-optimized PRESS sequence in the left dorsolateral prefrontal cortex. High-frequency repetitive transcranial magnetic stimulation applied to the left dorsolateral prefrontal cortex may modulate glutamate neurochemistry in depressed adolescents. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Low intensity transcranial electric stimulation

    DEFF Research Database (Denmark)

    Antal, Andrea; Alekseichuk, I; Bikson, M

    2017-01-01

    Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears...

  17. Theta Burst Transcranial Magnetic Stimulation for Auditory Verbal Hallucinations : Negative Findings From a Double-Blind-Randomized Trial

    NARCIS (Netherlands)

    Koops, Sanne; van Dellen, Edwin; Schutte, Maya J L; Nieuwdorp, Wendy; Neggers, Sebastiaan F W; Sommer, Iris E C

    BACKGROUND: Auditory verbal hallucinations (AVH) in schizophrenia are resistant to antipsychotic medication in approximately 25% of patients. Treatment with repetitive transcranial magnetic stimulation (rTMS) for refractory AVH has shown varying results. A stimulation protocol using continuous theta

  18. Transient Beneficial Effects of Excitatory Theta Burst Stimulation in a Patient with Phonological Agraphia after Left Supramarginal Gyrus Infarction

    Science.gov (United States)

    Nardone, Raffaele; De Blasi, Pierpaolo; Zuccoli, Giulio; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2012-01-01

    We report a patient showing isolated phonological agraphia after an ischemic stroke involving the left supramarginal gyrus (SMG). In this patient, we investigated the effects of focal repetitive transcranial magnetic stimulation (rTMS) given as theta burst stimulation (TBS) over the left SMG, corresponding to the Brodmann area (BA) 40. The patient…

  19. Repetitive Stress Injuries

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Repetitive Stress Injuries KidsHealth / For Teens / Repetitive Stress Injuries What's ... t had any problems since. What Are Repetitive Stress Injuries? Repetitive stress injuries (RSIs) are injuries that ...

  20. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    International Nuclear Information System (INIS)

    Peer, J.; Kendl, A.

    2010-01-01

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  1. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Peer, J. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Kendl, A., E-mail: alexander.kendl@uibk.ac.a [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria)

    2010-06-28

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  2. Efficacy of Transcranial Magnetic Stimulation (TMS) in the Treatment of Schizophrenia: A Review of the Literature to Date.

    Science.gov (United States)

    Cole, Jonathan C; Green Bernacki, Carolyn; Helmer, Amanda; Pinninti, Narsimha; O'reardon, John P

    2015-01-01

    We reviewed the literature on transcranial magnetic stimulation and its uses and efficacy in schizophrenia. Multiple sources were examined on transcranial magnetic stimulation efficacy in relieving positive and negative symptoms of schizophrenia. Literature review was conducted via Ovid Medline and PubMed databases. We found multiple published studies and metaanalyses that give evidence that repetitive transcranial magnetic stimulation can have benefit in relieving positive and negative symptoms of schizophrenia, particularly auditory hallucinations. These findings should encourage the psychiatric community to expand research into other applications for which transcranial magnetic stimulation may be used to treat patients with psychiatric disability.

  3. Current evidence on the potential therapeutic applications of transcranial magnetic stimulation in multiple sclerosis: A systematic review of the literature.

    Science.gov (United States)

    León Ruiz, M; Sospedra, M; Arce Arce, S; Tejeiro-Martínez, J; Benito-León, J

    2018-06-10

    A growing number of studies have evaluated the effects of transcranial magnetic stimulation (TMS) for the symptomatic treatment of multiple sclerosis (MS). We performed a PubMed search for articles, recent books, and recommendations from the most relevant clinical practice guidelines and scientific societies regarding the use of TMS as symptomatic treatment in MS. Excitatory electromagnetic pulses applied to the affected cerebral hemisphere allow us to optimise functional brain activity, including the transmission of nerve impulses through the demyelinated corticospinal pathway. Various studies into TMS have shown statistically significant improvements in spasticity, fatigue, lower urinary tract dysfunction, manual dexterity, gait, and cognitive deficits related to working memory in patients with MS; however, the exact level of evidence has not been defined as the results have not been replicated in a sufficient number of controlled studies. Further well-designed, randomised, controlled clinical trials involving a greater number of patients are warranted to attain a higher level of evidence in order to recommend the appropriate use of TMS in MS patients across the board. TMS acts as an adjuvant with other symptomatic and immunomodulatory treatments. Additional studies should specifically investigate the effect of conventional repetitive TMS on fatigue in these patients, something that has yet to see the light of day. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Excitatory amino acid neurotoxicity and neurodegenerative disease.

    Science.gov (United States)

    Meldrum, B; Garthwaite, J

    1990-09-01

    The progress over the last 30 years in defining the role of excitatory amino acids in normal physiological function and in the abnormal neuronal activity of epilepsy has been reviewed in earlier articles in this series. In the last five years it has become clear that excitatory amino acids also play a role in a wide range of neurodegenerative processes. The evidence is clearest where the degenerative process is acute, but is more controversial for slow degenerative processes. In this article Brian Meldrum and John Garthwaite review in vivo and in vitro studies of the cytotoxicity of amino acids and summarize the contribution of such toxicity to acute and chronic neurodegenerative disorders.

  5. Excitatory components of the mammalian locomotor CPG

    DEFF Research Database (Denmark)

    Kiehn, Ole; Quinlan, Katharina A.; Restrepo, Carlos Ernesto

    2008-01-01

    Locomotion in mammals is to a large degree controlled directly by intrinsic spinal networks, called central pattern generators (CPGs). The overall function of these networks is governed by interaction between inhibitory and excitatory neurons. In the present review, we will discuss recent finding...

  6. [Transcranial magnetic stimulation and motor cortex stimulation in neuropathic pain].

    Science.gov (United States)

    Mylius, V; Ayache, S S; Teepker, M; Kappus, C; Kolodziej, M; Rosenow, F; Nimsky, C; Oertel, W H; Lefaucheur, J P

    2012-12-01

    Non-invasive and invasive cortical stimulation allows the modulation of therapy-refractory neuropathic pain. High-frequency repetitive transcranial magnetic stimulation (rTMS) of the contralateral motor cortex yields therapeutic effects at short-term and predicts the benefits of epidural motor cortex stimulation (MCS). The present article summarizes the findings on application, mechanisms and therapeutic effects of cortical stimulation in neuropathic pain.

  7. Transcranial magnetic stimulation in schizophrenia.

    Science.gov (United States)

    Zaman, Rashid; Thind, Dilraj; Kocmur, Marga

    2008-11-01

    Transcranial magnetic stimulation (TMS) is a non-invasive and painless way of stimulating the neural tissue (cerebral cortex, spinal roots, and cranial and peripheral nerves). The first attempts at stimulating the neural tissue date back to 1896 by d'Arsonval; however, it was successfully carried out by Barker and colleagues in Sheffield, UK, in 1985. It soon became a useful tool in neuroscience for neurophysiologists and neurologists and psychiatrists. The original single-pulse TMS, largely used as an investigative tool, was further refined and developed in the early 1990s into what is known as repetitive TMS (rTMS), having a frequency range of 1-60 Hz. The stimulation by both TMS and rTMS of various cortical regions displayed alteration of movement, mood, and behavior, leading researchers to investigate a number of psychiatric and neuropsychiatric disorders, as well as to explore its therapeutic potential. There is now a large amount of literature on the use of TMS/rTMS in depression; however, its use in schizophrenia, both as an investigative and certainly as a therapeutic tool is relatively recent with a limited but increasing number of publications. In this article, we will outline the principles of TMS/rTMS and critically review their use in schizophrenia both as investigative and potential therapeutic tools.

  8. Excitatory amino acid transmitters in epilepsy.

    Science.gov (United States)

    Meldrum, B S

    1991-01-01

    For the majority of human epilepsy syndromes, the molecular and cellular basis for the epileptic activity remains largely conjectural. The principal hypotheses currently concern: defects in membrane ionic conductances or transport mechanisms; defects in gamma-aminobutyric acid (GABA)-mediated inhibitory processes; and enhanced or abnormal excitatory synaptic action. Substantial evidence exists in humans and animals for acquired abnormalities in excitatory amino acid neurotransmission that may participate in the abnormal patterns of neuronal discharge, and this could provide the morphological basis for a recurrent excitatory pathway sustaining seizure discharges in temporal lobe epilepsy. In practice, two approaches appear significant in the suppression of seizures. One is to act postsynaptically on receptors to decrease the excitation induced by glutamate, and the other is to decrease synaptic release of glutamate and aspartate. Agents acting upon adenosine or GABAB receptors decrease glutamate release in vitro but do not have significant anticonvulsant activity, probably because of their predominant actions at other sites. Lamotrigine blocks stimulated release of glutamate and shows anticonvulsant activity in a wide range of animal models.

  9. Repetition and the Concept of Repetition

    Directory of Open Access Journals (Sweden)

    Arne Grøn

    2013-11-01

    Full Text Available This paper offers a description of the meaning of the category of repetition. Firstly, it is pointed out that Constantin uses repetition as a concept that means the creation of epochs; the passing from Greece to Modernity is accomplished distinguishing between recollection, a concept that looks back to the past, and repetition, a concept that looks forward to future. Secondly, it is showed that the category of repetition, as a religious category, relates with what Climacus calls “ethic despair” and with what Vigilius calls “second ethics”; it is through repetition that it can be understood that sin finds its place in ethics and these shows the tension between it and dogmatics. And thirdly, it is showed that the descovery of the new category of repetition is a rediscovery of what Kierkegaard calls category of spirit; repetition has for its object the individuality, and coming to be oneself is what Kierkegaard undertands as liberty. At the end of the paper it is questioned if the category of repetition is inconsistent with the book Repetition.

  10. Aplicação da estimulação magnética transcraniana de repetição no tratamento do transtorno obsessivo-compulsivo e outros transtornos de ansiedade Repetitive transcranial magnetic stimulation as a treatment for obsessive-compulsive disorder and other anxiety disorders

    Directory of Open Access Journals (Sweden)

    Carlos Gustavo S. Mansur

    2004-01-01

    Full Text Available A estimulação magnética transcraniana de repetição (EMTr vem sendo amplamente investigada como ferramenta terapêutica em transtornos psiquiátricos, especialmente a depressão. Neste trabalho, compilamos as informações provenientes de estudos que investigaram as aplicações da EMTr no tratamento dos transtornos de ansiedade: transtorno do pânico (TP, transtorno de estresse pós-taumático (TEPT, transtorno de ansiedade generalizada (TAG e especialmente o transtorno obsessivo compulsivo (TOC. Três estudos foram publicados abordando o tratamento do TOC, sendo que utilizaram metodologias e parâmetros de aplicação extremamente diversos, dificultando a obtenção de informações conclusivas sobre a efetividade deste tratamento. Quatro estudos publicados sobre TEPT e EMTr também apresentam dados conflitantes e pouco comparáveis, mas destaca-se publicação recente com desenho duplo-cego e resultados positivos. Quanto ao TP e o TAG, apenas pequenas investigações iniciais foram realizadas. Conclusão: Apesar dos estudos citados, não há dados conclusivos sobre a eficácia terapêutica da EMTr nos transtornos de ansiedade. Isto se dá especialmente devido aos estudos com amostras pequenas e desenho aberto. Portanto, devem ser realizados estudos mais aprofundados para que possamos obter estas respostas.Repetitive transcranial magnetic stimulation (rTMS have been widely studied as a therapeutic method in psychiatric disorders, specially in major depression. In this paper, we have compiled the information from studies concerning the use of rTMS as a therapeutic tool for anxiety disorders: panic disorder (PD, post-traumattic stress disorder (PTSD, generalized anxiety disorder (GAD and mainly obsessive-compulsive disorder (OCD.Three studies have been published concerning treatment of OCD with rTMS, but they are very different in their methods and in the application parameters and location, making it difficult to draw any conclusion about

  11. Estimulação magnética transcraniana de repetição associada a antidepressivo: início e intensidade da resposta antidepressiva Repetitive transcranial magnetic stimulation associated with antidepressant: start and intensive of the antidrepressant answer

    Directory of Open Access Journals (Sweden)

    Demetrio Ortega Rumi

    2004-01-01

    Full Text Available OBJETIVOS: Avaliar diferentes estudos que analisam o grau de eficácia da resposta antidepressiva entre a associação de estimulação magnética transcraniana de repetição (EMTr com antidepressivos em pacientes deprimidos graves. MÉTODOS: Os autores revisaram vários estudos em que a EMTr foi usada concomitantemente a antidepressivos em pacientes deprimidos graves. Adicionalmente, relatou-se um estudo feito no Instituto de Psiquiatria do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Estudo duplo-cego, randomizado, unicêntrico, placebo-controlado com 46 pacientes atendendo aos critérios diagnósticos da DSM-IV para episódio depressivo severo. Os pacientes estavam em uso de amitriptilina. RESULTADOS: De forma geral, a maioria dos estudos mostra que a EMTr apresenta boa eficácia antidepressiva quando associada a antidepressivos. Há grande diversidade de parâmetros técnicos utilizados, tipos de bobina, diferentes técnicas de placebo e uso de diferentes antidepressivos. O estudo realizado no Instituto de Psiquiatria mostrou que o emprego da EMTr de alta freqüência aumentou a resposta antidepressiva à amitriptilina e diminuiu o tempo para o início da resposta antidepressiva em relação ao grupo placebo. CONCLUSÕES: EMTr é um método novo, promissor e com grande potencial para o tratamento da depressão. Apesar disso, observa-se que não há ainda uniformidade no emprego dos parâmetros técnicos, nem tampouco das técnicas de placebo. O estudo realizado no Instituto de Psiquiatria do HC- FMUSP mostrou grandes taxas de resposta e remissão em relação ao grupo com estimulação sham e amitriptilna.OBJECTIVE: Transcranial magnetic stimulation has been developed as a noninvasive method to stimulate the cortex, and the treatment of depression is one of its potential therapeutic applications. This report makes a review about add-on trials (hf-rTMS plus antidepressants discuss whether rTMS does

  12. Consensus paper: combining transcranial stimulation with neuroimaging

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Bergmann, Til O; Bestmann, Sven

    2009-01-01

    neuroimaging (online approach), TMS can be used to test how focal cortex stimulation acutely modifies the activity and connectivity in the stimulated neuronal circuits. TMS and neuroimaging can also be separated in time (offline approach). A conditioning session of repetitive TMS (rTMS) may be used to induce...... information obtained by neuroimaging can be used to define the optimal site and time point of stimulation in a subsequent experiment in which TMS is used to probe the functional contribution of the stimulated area to a specific task. In this review, we first address some general methodologic issues that need......In the last decade, combined transcranial magnetic stimulation (TMS)-neuroimaging studies have greatly stimulated research in the field of TMS and neuroimaging. Here, we review how TMS can be combined with various neuroimaging techniques to investigate human brain function. When applied during...

  13. Transcranial Magnetic Stimulation and Aphasia Rehabilitation

    Science.gov (United States)

    Naeser, Margaret A.; Martin, Paula I; Ho, Michael; Treglia, Ethan; Kaplan, Elina; Bhashir, Shahid; Pascual-Leone, Alvaro

    2013-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been reported to improve naming in chronic stroke patients with nonfluent aphasia since 2005. In Part 1, we review the rationale for applying slow, 1 Hz, rTMS to the undamaged right hemisphere in chronic nonfluent aphasia patients following a left hemisphere stroke; and present a TMS protocol used with these patients that is associated with long-term, improved naming post- TMS. In Part, 2 we present results from a case study with chronic nonfluent aphasia where TMS treatments were followed immediately by speech therapy (constraint-induced language therapy). In Part 3, some possible mechanisms associated with improvement following a series of TMS treatments in stroke patients with aphasia are discussed. PMID:22202188

  14. Transcranial magnetic stimulation in lower motor neuron diseases.

    Science.gov (United States)

    Attarian, S; Azulay, J-Ph; Lardillier, D; Verschueren, A; Pouget, J

    2005-01-01

    To study the diagnostic value of transcranial magnetic stimulation (TMS) in a group of patients with lower motor neuron disease (LMND). Among LMND, several chronic immune mediate motor neuropathies may simulate amyotrophic lateral sclerosis (ALS). Forty patients with LMND were included TMS was performed at the first visit. The patients were seen prospectively every 3 months for a period of 1-4 years. Three different groups were distinguished at the end of follow-up: (1) ALS group with 7 patients, (2) Pure motor neuropathy with 14 patients and (3) Other LMND including 12 patients with hereditary spinal amyotrophy, 3 patients with Kennedy's disease and 4 patients with post-poliomyelitis. On the basis of the results of TMS variables, 6 out of 7 ALS patients had abnormality of silent period (SP) associated or not with abnormality of excitatory threshold or amplitude ratio. Patients with pure motor neuropathy had normal SP and amplitude ratio. Four out of 14 patients had increased central motor conduction time (CMCT), one had increased CMCT and excitatory threshold, and one patient had a slightly increased excitatory threshold. Considering the abnormality of TMS variables in the groups, SP, excitatory threshold, and amplitude ratio were chosen in a post-hoc attempt to select variables yielding high sensitivity and specificity. The overall sensitivity of TMS for diagnosis of ALS among LMND was 85.7%, its specificity was 93.9%. When only the abnormality of SP was taken into account, the sensitivity was unchanged. But the specificity was improved to 100%. TMS helped to distinguish suspected ALS from pure motor neuropathy.

  15. Transcranial magnetic stimulation (TMS) in Attention Deficit Hyperactivity Disorder (ADHD).

    Science.gov (United States)

    Zaman, Rashid

    2015-09-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder, which affects children as well as adults and leads to significant impairment in educational, social and occupational functioning and has associated personal and societal costs. Whilst there are effective medications (mostly stimulants) as well as some psychobehavioural treatments that help alleviate symptoms of ADHD, there is still need to improve our understanding of its neurobiology as well as explore other treatment options. Transcranial Magnetic Stimulation (TMS) and repetitive transcranial magnetic stimulation (rTMS) are safe and non-invasive investigative and therapeutic tools respectively. In this short article, I will explore their potential for improving our understanding of the neurobiology of ADHD as well consider its as a possible treatment option.

  16. Does a single session of theta-burst transcranial magnetic stimulation of inferior temporal cortex affect tinnitus perception?

    Directory of Open Access Journals (Sweden)

    Moser Tobias

    2009-05-01

    Full Text Available Abstract Background Cortical excitability changes as well as imbalances in excitatory and inhibitory circuits play a distinct pathophysiological role in chronic tinnitus. Repetitive transcranial magnetic stimulation (rTMS over the temporoparietal cortex was recently introduced to modulate tinnitus perception. In the current study, the effect of theta-burst stimulation (TBS, a novel rTMS paradigm was investigated in chronic tinnitus. Twenty patients with chronic tinnitus completed the study. Tinnitus severity and loudness were monitored using a tinnitus questionnaire (TQ and a visual analogue scale (VAS before each session. Patients received 600 pulses of continuous TBS (cTBS, intermittent TBS (iTBS and intermediate TBS (imTBS over left inferior temporal cortex with an intensity of 80% of the individual active or resting motor threshold. Changes in subjective tinnitus perception were measured with a numerical rating scale (NRS. Results TBS applied to inferior temporal cortex appeared to be safe. Although half of the patients reported a slight attenuation of tinnitus perception, group analysis resulted in no significant difference when comparing the three specific types of TBS. Converting the NRS into the VAS allowed us to compare the time-course of aftereffects. Only cTBS resulted in a significant short-lasting improvement of the symptoms. In addition there was no significant difference when comparing the responder and non-responder groups regarding their anamnestic and audiological data. The TQ score correlated significantly with the VAS, lower loudness indicating less tinnitus distress. Conclusion TBS does not offer a promising outcome for patients with tinnitus in the presented study.

  17. Low-intensity repetitive magnetic stimulation lowers action potential threshold and increases spike firing in layer 5 pyramidal neurons in vitro.

    Science.gov (United States)

    Tang, Alexander D; Hong, Ivan; Boddington, Laura J; Garrett, Andrew R; Etherington, Sarah; Reynolds, John N J; Rodger, Jennifer

    2016-10-29

    Repetitive transcranial magnetic stimulation (rTMS) has become a popular method of modulating neural plasticity in humans. Clinically, rTMS is delivered at high intensities to modulate neuronal excitability. While the high-intensity magnetic field can be targeted to stimulate specific cortical regions, areas adjacent to the targeted area receive stimulation at a lower intensity and may contribute to the overall plasticity induced by rTMS. We have previously shown that low-intensity rTMS induces molecular and structural plasticity in vivo, but the effects on membrane properties and neural excitability have not been investigated. Here we investigated the acute effect of low-intensity repetitive magnetic stimulation (LI-rMS) on neuronal excitability and potential changes on the passive and active electrophysiological properties of layer 5 pyramidal neurons in vitro. Whole-cell current clamp recordings were made at baseline prior to subthreshold LI-rMS (600 pulses of iTBS, n=9 cells from 7 animals) or sham (n=10 cells from 9 animals), immediately after stimulation, as well as 10 and 20min post-stimulation. Our results show that LI-rMS does not alter passive membrane properties (resting membrane potential and input resistance) but hyperpolarises action potential threshold and increases evoked spike-firing frequency. Increases in spike firing frequency were present throughout the 20min post-stimulation whereas action potential (AP) threshold hyperpolarization was present immediately after stimulation and at 20min post-stimulation. These results provide evidence that LI-rMS alters neuronal excitability of excitatory neurons. We suggest that regions outside the targeted region of high-intensity rTMS are susceptible to neuromodulation and may contribute to rTMS-induced plasticity. Copyright © 2016 IBRO. All rights reserved.

  18. Transcranial magnetic simulation in the treatment of migraine

    OpenAIRE

    Lipton, Richard B.; Pearlman, Starr H.

    2010-01-01

    Transcranial magnetic stimulation (TMS) is a diagnostic and therapeutic modality that is being developed as both an acute and preventive treatment for migraine. TMS delivers a fluctuating magnetic field from the scalp surface to induce current in the subjacent cortex. Magnetic pulses are delivered one at a time in single-pulse TMS (sTMS) or as a train of pulses in repetitive TMS (rTMS). For most of its 30-year history, TMS has been delivered in clinical and research settings using large table...

  19. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  20. Stimulating Conversation: Enhancement of Elicited Propositional Speech in a Patient with Chronic Non-Fluent Aphasia following Transcranial Magnetic Stimulation

    Science.gov (United States)

    Hamilton, Roy H.; Sanders, Linda; Benson, Jennifer; Faseyitan, Olufunsho; Norise, Catherine; Naeser, Margaret; Martin, Paula; Coslett, H. Branch

    2010-01-01

    Although evidence suggests that patients with left hemisphere strokes and non-fluent aphasia who receive 1Hz repetitive transcranial magnetic stimulation (rTMS) over the intact right inferior frontal gyrus experience persistent benefits in naming, it remains unclear whether the effects of rTMS in these patients generalize to other language…

  1. Excitatory amino acid transporters as potential drug targets

    DEFF Research Database (Denmark)

    Bunch, Lennart; Erichsen, Mette Navy; Jensen, Anders Asbjørn

    2009-01-01

    BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual...

  2. Repetition and Translation Shifts

    Directory of Open Access Journals (Sweden)

    Simon Zupan

    2006-06-01

    Full Text Available Repetition manifests itself in different ways and at different levels of the text. The first basic type of repetition involves complete recurrences; in which a particular textual feature repeats in its entirety. The second type involves partial recurrences; in which the second repetition of the same textual feature includes certain modifications to the first occurrence. In the article; repetitive patterns in Edgar Allan Poe’s short story “The Fall of the House of Usher” and its Slovene translation; “Konec Usherjeve hiše”; are compared. The author examines different kinds of repetitive patterns. Repetitions are compared at both the micro- and macrostructural levels. As detailed analyses have shown; considerable microstructural translation shifts occur in certain types of repetitive patterns. Since these are not only occasional; sporadic phenomena; but are of a relatively high frequency; they reduce the translated text’s potential for achieving some of the gothic effects. The macrostructural textual property particularly affected by these shifts is the narrator’s experience as described by the narrative; which suffers a reduction in intensity.

  3. Transcranial surgery for craniopharyngiomas

    International Nuclear Information System (INIS)

    Shirane, Reizo; Hayashi, Toshiaki; Tominaga, Teiji

    2007-01-01

    The current treatment of craniopharyngiomas is evolving into a multimodal approach in which the aim is disease control and improved preservation of quality of life (QOL). In this the paper, the transcranial removal of craniopharyngiomas is discussed. Fifty-two patients who were surgically treated for craniopharyngiomas extending outside the sellar-suprasellar region were evaluated. All the patients were operated on mainly by the fronto-basal interhemispheric approach. Multiple surgeries were performed in 15 cases. A total of 10 patients were treated with gamma knife radiosurgery (GKS) after surgical removal. In the immediate postoperative period, major complications, including impairment of the perforating arteries were observed in three cases. They exhibited hyperphagia and obesity due to infarction of the hypothalamic nuclei. In our experience, the cost of aggressive resection is hypothalamic dysfunction and a poor QOL. A good QOL may be achieved by careful total or near total resection followed by reoperation or GKS. The fronto-basal interhemispheric approach is a valid choice for the removal of craniopharyngiomas extending outside the sellar-suprasellar region. Using this approach, tumors can be removed without significant sequelae related to surgical technique due to easy preservation of the pituitary stalk, hypothalamic structures, and perforators. This approach offers a safe and minimally invasive means of treating craniopharyngiomas. (author)

  4. Repetitive Questioning Exasperates Caregivers

    Directory of Open Access Journals (Sweden)

    R. C. Hamdy MD

    2018-01-01

    Full Text Available Repetitive questioning is due to an impaired episodic memory and is a frequent, often presenting, problem in patients with Alzheimer’s disease (amnestic type. It is due to the patients’ difficulties learning new information, retaining it, and recalling it, and is often aggravated by a poor attention span and easy distractibility. A number of factors may trigger and maintain repetitive questioning. Caregivers should try to identify and address these triggers. In the case discussion presented, it is due to the patient’s concerns about her and her family’s safety triggered by watching a particularly violent movie aired on TV. What went wrong in the patient/caregiver interaction and how it could have been avoided or averted are explored. Also reviewed are the impact of repetitive questioning, the challenges it raises for caregivers, and some effective intervention strategies that may be useful to diffuse the angst that caregivers experience with repetitive questioning.

  5. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics.

    Science.gov (United States)

    Uzunova, Genoveva; Pallanti, Stefano; Hollander, Eric

    2016-04-01

    Imbalance between excitation and inhibition and increased excitatory-inhibitory (E-I) ratio is a common mechanism in autism spectrum disorders (ASD) that is responsible for the learning and memory, cognitive, sensory, motor deficits, and seizures occurring in these disorders. ASD are very heterogeneous and better understanding of E-I imbalance in brain will lead to better diagnosis and treatments. We perform a critical literature review of the causes and presentations of E-I imbalance in ASD. E-I imbalance in ASD is due primarily to abnormal glutamatergic and GABAergic neurotransmission in key brain regions such as neocortex, hippocampus, amygdala, and cerebellum. Other causes are due to dysfunction of neuropeptides (oxytocin), synaptic proteins (neuroligins), and immune system molecules (cytokines). At the neuropathological level E-I imbalance in ASD is presented as a "minicolumnopathy". E-I imbalance alters the manner by which the brain processes information and regulates behaviour. New developments for investigating E-I imbalance such as optogenetics and transcranial magnetic stimulation (TMS) are presented. Non-invasive brain stimulation methods such as TMS for treatment of the core symptoms of ASD are discussed. Understanding E-I imbalance has important implications for developing better pharmacological and behavioural treatments for ASD, including TMS, new drugs, biomarkers and patient stratification.

  6. Intracortical inhibitory and excitatory circuits in subjects with minimal hepatic encephalopathy: a TMS study.

    Science.gov (United States)

    Nardone, Raffaele; De Blasi, Pierpaolo; Höller, Yvonne; Brigo, Francesco; Golaszewski, Stefan; Frey, Vanessa N; Orioli, Andrea; Trinka, Eugen

    2016-10-01

    Minimal hepatic encephalopathy (MHE) is the earliest form of hepatic encephalopathy (HE) and affects up to 80 % of patients with liver cirrhosis. By definition, MHE is characterized by psychomotor slowing and subtle cognitive deficits,  but obvious clinical manifestations are lacking. Given its covert nature, MHE is often underdiagnosed. This study was aimed at detecting neurophysiological changes, as assessed by means of transcranial magnetic stimulation (TMS), involved in the early pathogenesis of the HE. We investigated motor cortex excitability in 15 patients with MHE and in 15 age-matched age-matched cirrhotic patients without MHE; the resting motor threshold, the short-interval intracortical inhibition (SICI) and the intracortical facilitation (ICF) were examined. Paired-pulse TMS revealed significant increased SICI and reduced ICF in the patients with MHE. These findings may reflect abnormalities in intrinsic brain activity and altered organization of functional connectivity networks. In particular, the results suggest a shift in the balance between intracortical inhibitory and excitatory mechanisms towards a net increase of inhibitory neurotransmission. Together with other neurophysiological (in particular EEG) and neuroimaging techniques, TMS may thus provide early markers of cerebral dysfunction in cirrhotic patients with MHE.

  7. Successful use of transcranial magnetic stimulation in difficult to treat hypersexual disorder

    Directory of Open Access Journals (Sweden)

    Adarsh Tripathi

    2016-01-01

    Full Text Available Hypersexual disorder has phenomenological resemblance with impulsive-compulsive spectrum disorders. Inhibitory repetitive transcranial magnetic stimulation (rTMS over the supplementary motor area (SMA has been found to be effective in the management of impulsive-compulsive behaviors. Inhibitory rTMS over SMA may be helpful in hypersexual disorder. We highlight here a case of hypersexual disorder (excessive sexual drive who failed to respond adequately to the conventional pharmacological treatment and responded with rTMS augmentation.

  8. Current evidence on transcranial magnetic stimulation and its potential usefulness in post-stroke neurorehabilitation: Opening new doors to the treatment of cerebrovascular disease.

    Science.gov (United States)

    León Ruiz, M; Rodríguez Sarasa, M L; Sanjuán Rodríguez, L; Benito-León, J; García-Albea Ristol, E; Arce Arce, S

    2016-05-06

    Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic reality in post-stroke rehabilitation. It has a neuroprotective effect on the modulation of neuroplasticity, improving the brain's capacity to retrain neural circuits and promoting restoration and acquisition of new compensatory skills. We conducted a literature search on PubMed and also gathered the latest books, clinical practice guidelines, and recommendations published by the most prominent scientific societies concerning the therapeutic use of rTMS in the rehabilitation of stroke patients. The criteria of the International Federation of Clinical Neurophysiology (2014) were followed regarding the inclusion of all evidence and recommendations. Identifying stroke patients who are eligible for rTMS is essential to accelerate their recovery. rTMS has proven to be safe and effective for treating stroke complications. Functional brain activity can be optimised by applying excitatory or inhibitory electromagnetic pulses to the hemisphere ipsilateral or contralateral to the lesion, respectively, as well as at the level of the transcallosal pathway to regulate interhemispheric communication. Different studies of rTMS in these patients have resulted in improvements in motor disorders, aphasia, dysarthria, oropharyngeal dysphagia, depression, and perceptual-cognitive deficits. However, further well-designed randomized controlled clinical trials with larger sample size are needed to recommend with a higher level of evidence, proper implementation of rTMS use in stroke subjects on a widespread basis. Copyright © 2016 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion.

    Science.gov (United States)

    Hoppenrath, Kathrin; Härtig, Wolfgang; Funke, Klaus

    2016-01-01

    Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS) appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS) applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV) fast-spiking interneurons (FSIs), evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs) of FSIs start to grow around postnatal day (PD) 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo-in vitro whole-cell patch clamp recordings from pre-labeled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29-38, evident as higher rates of induced action potential firing at low current injections (100-200 pA) and a more depolarized resting membrane potential. This effect was absent in younger (PD26-28) and older animals (PD40-62). Slices of verum iTBS-treated rats further showed higher rates of spontaneous excitatory postsynaptic currents (sEPSCs). Based on these and previous findings we conclude that FSIs are particularly sensitive to TBS during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits.

  10. Anatomical and pharmacological characterization of excitatory amino acid receptors

    International Nuclear Information System (INIS)

    Monaghan, D.T.

    1985-01-01

    The majority of the excitatory neurotransmission in the vertebrate Central Nervous System is thought to be mediated by acidic amino acid neurotransmitters. However, relatively little is known about the excitatory amino acid receptors and their distribution within the CNS. By analyzing radioligand binding to purified synaptic plasma membranes and to thin tissue sections processed for autoradiography, multiple distinct binding sites were found. These binding sites exhibited the pharmacological properties indicative of the excitatory amino acid receptors, which had been identified by electrophysiological techniques. Specifically, L-[ 3 H]-glutamate and D-[ 3 H]-amino-5-phosphonopentanoate appear to label N-methyl-D-aspartate receptors, L-[ 3 H]-glutamate and [ 3 H]-kainic acid appear to label kainic acid receptors, and L-[ 3 H]-glutamate and [ 3 H]-amino-3-hydroxy-5-methyl-4-isoxazolepropionate appear to label quisqualate receptors. Together, these results confirm the three receptor scheme proposed for excitatory amino acid neurotransmission. These results also show that these transmitter-receptor systems are differentially distributed in the brain, and that the total distribution is consistent with that found by other markers for excitatory amino acid-using neurons

  11. Population activity structure of excitatory and inhibitory neurons.

    Directory of Open Access Journals (Sweden)

    Sean R Bittner

    Full Text Available Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  12. Population activity structure of excitatory and inhibitory neurons.

    Science.gov (United States)

    Bittner, Sean R; Williamson, Ryan C; Snyder, Adam C; Litwin-Kumar, Ashok; Doiron, Brent; Chase, Steven M; Smith, Matthew A; Yu, Byron M

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  13. Population activity structure of excitatory and inhibitory neurons

    Science.gov (United States)

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  14. Repeated Neck Restraint Stress Bidirectionally Modulates Excitatory Transmission in the Dentate Gyrus and Performance in a Hippocampus-dependent Memory Task.

    Science.gov (United States)

    Spyrka, Jadwiga; Hess, Grzegorz

    2018-05-21

    The consequences of stress depend on characteristics of the stressor, including the duration of exposure, severity, and predictability. Exposure of mice to repeated neck restraint has been shown to bidirectionally modulate the potential for long-term potentiation (LTP) in the dentate gyrus (DG) in a manner dependent on the number of restraint repetitions, but the influence of repeated brief neck restraint on electrophysiology of single DG neurons has not yet been investigated. Here, we aimed at finding the effects of 1, 3, 7, 14, or 21 daily neck restraint sessions lasting 10 min on electrophysiological characteristics of DG granule cells as well as excitatory and inhibitory synaptic inputs to these neurons. While the excitability of DG granule cells and inhibitory synaptic transmission were unchanged, neck restraint decreased the frequency of spontaneous excitatory currents after three repetitions but enhanced it after 14 and 21 repetitions. The consequences of repeated neck restraint on hippocampus-dependent memory were investigated using the object location test (OLT). Neck restraint stress impaired cognitive performance in the OLT after three repetitions but improved it after 14 and 21 repetitions. Mice subjected to three neck restraint sessions displayed an increase in the measures of depressive and anxiety-like behaviors, however, prolongation of the exposure to neck restraint resulted in a gradual decline in the intensity of these measures. These data indicate that stress imposed by an increasing number of repeated neck restraint episodes bidirectionally modulates both excitatory synaptic transmission in the DG and cognitive performance in the object location memory task. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. GABAergic activities control spike timing- and frequency-dependent long-term depression at hippocampal excitatory synapses

    Directory of Open Access Journals (Sweden)

    Makoto Nishiyama

    2010-06-01

    Full Text Available GABAergic interneuronal network activities in the hippocampus control a variety of neural functions, including learning and memory, by regulating θ and γ oscillations. How these GABAergic activities at pre- and post-synaptic sites of hippocampal CA1 pyramidal cells differentially contribute to synaptic function and plasticity during their repetitive pre- and post-synaptic spiking at θ and γ oscillations is largely unknown. We show here that activities mediated by postsynaptic GABAARs and presynaptic GABABRs determine, respectively, the spike timing- and frequency-dependence of activity-induced synaptic modifications at Schaffer collateral-CA1 excitatory synapses. We demonstrate that both feedforward and feedback GABAAR-mediated inhibition in the postsynaptic cell controls the spike timing-dependent long-term depression of excitatory inputs (“e-LTD” at the θ frequency. We also show that feedback postsynaptic inhibition specifically causes e-LTD of inputs that induce small postsynaptic currents (<70 pA with LTP timing, thus enforcing the requirement of cooperativity for induction of long-term potentiation at excitatory inputs (“e-LTP”. Furthermore, under spike-timing protocols that induce e-LTP and e-LTD at excitatory synapses, we observed parallel induction of LTP and LTD at inhibitory inputs (“i-LTP” and “i-LTD” to the same postsynaptic cells. Finally, we show that presynaptic GABABR-mediated inhibition plays a major role in the induction of frequency-dependent e-LTD at α and β frequencies. These observations demonstrate the critical influence of GABAergic interneuronal network activities in regulating the spike timing and frequency dependences of long-term synaptic modifications in the hippocampus.

  16. Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Chengdong Yuan

    2016-07-01

    Full Text Available Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex by using the whole-cell patch-clamp method. Methods: Sprague-Dawley rats (11–19 postnatal days, n=36 were used to obtain brain slices (300 μM. Spontaneous excitatory postsynaptic currents (data from 40 neurons were recorded at a command potential of -70 mV in the presence of bicuculline (a competitive antagonist of GABAA receptors, 30 μM and strychnine (glycine receptor antagonist, 30 μM. Miniature excitatory postsynaptic currents (data from 40 neurons were also recorded when 1 μM of tetrodotoxin was added into the artificial cerebrospinal fluid. We used GraphPad Prism5for statistical analysis. Significant differences in the mean amplitude and frequency were tested using the Student paired 2-tailed t test. Values of P<0.05 were considered significant. Results: Different concentrations of ketamine inhibited the frequency and amplitude of the spontaneous excitatory postsynaptic currents as well as the amplitude of the miniature excitatory postsynaptic currents in a concentration-dependent manner, but they exerted no significant effect on the frequency of the miniature excitatory postsynaptic currents. Conclusion: Ketamine inhibited the excitatory synaptic transmission of the neurons in the primary somatosensory cortex. The inhibition may have been mediated by a reduction in the sensitivity of the postsynaptic glutamatergic receptors.

  17. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  18. Electrical field stimulation-induced excitatory responses of ...

    African Journals Online (AJOL)

    effect of the endothelium on electrical field stimulation (EFS)-induced excitatory responses of pulmonary artery segments from pulmonary hypertensive rats. Methods: Pulmonary hypertension was induced in rats with a single dose of monocrotaline (60 mg/kg) and 21 days later, arterial rings were set up for isometric tension ...

  19. Irregular persistent activity induced by synaptic excitatory feedback

    Directory of Open Access Journals (Sweden)

    Francesca Barbieri

    2007-11-01

    Full Text Available Neurophysiological experiments on monkeys have reported highly irregular persistent activity during the performance of an oculomotor delayed-response task. These experiments show that during the delay period the coefficient of variation (CV of interspike intervals (ISI of prefrontal neurons is above 1, on average, and larger than during the fixation period. In the present paper, we show that this feature can be reproduced in a network in which persistent activity is induced by excitatory feedback, provided that (i the post-spike reset is close enough to threshold , (ii synaptic efficacies are a non-linear function of the pre-synaptic firing rate. Non-linearity between presynaptic rate and effective synaptic strength is implemented by a standard short-term depression mechanism (STD. First, we consider the simplest possible network with excitatory feedback: a fully connected homogeneous network of excitatory leaky integrate-and-fire neurons, using both numerical simulations and analytical techniques. The results are then confirmed in a network with selective excitatory neurons and inhibition. In both the cases there is a large range of values of the synaptic efficacies for which the statistics of firing of single cells is similar to experimental data.

  20. Transcranial Magnetic Stimulation in Children

    OpenAIRE

    Garvey, Marjorie A.; Mall, Volker

    2008-01-01

    Developmental disabilities (e.g. attention deficit disorder; cerebral palsy) are frequently associated with deviations of the typical pattern of motor skill maturation. Neurophysiologic tools, such as transcranial magnetic stimulation (TMS), which probe motor cortex function, can potentially provide insights into both typical neuromotor maturation and the mechanisms underlying the motor skill deficits in children with developmental disabilities. These insights may set the stage for finding ef...

  1. Post-exercise cortical depression following repetitive passive finger movement.

    Science.gov (United States)

    Otsuka, Ryohei; Sasaki, Ryoki; Tsuiki, Shota; Kojima, Sho; Onishi, Hideaki

    2017-08-24

    This study aimed to clarify the influence of range of repetitive passive finger movement on corticospinal excitability. Thirteen healthy subjects participated in this study. Passive index finger adduction-abduction movements were performed from 15° abduction to 15° adduction, 15° abduction to 0°, 0° to 15° adduction, and 15° adduction to 30° adduction, each at 15°/s for 10min on separate days. Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation and M- and F-waves were measured before and after each repetitive passive index finger movement protocol to evaluate changes in corticospinal excitability. MEP amplitude significantly decreased after all passive movements, while F-wave amplitude, F-wave persistence, and M-wave amplitude remained stable. These results suggest that cortical excitability decreases after repetitive passive movement. However, the range of repetitive passive movement does not markedly influence the magnitude of cortical depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Repetitive Questioning II

    Directory of Open Access Journals (Sweden)

    R. C. Hamdy MD

    2018-02-01

    Full Text Available Repetitive questioning is a major problem for caregivers, particularly taxing if they are unable to recognize and understand the reasons why their loved one keeps asking the same question over and over again. Caregivers may be tempted to believe that the patient does not even try to remember the answer given or is just getting obnoxious. This is incorrect. Repetitive questioning is due to the underlying disease: The patient’s short term memory is impaired and he is unable to register, encode, retain and retrieve the answer. If he is concerned about a particular topic, he will keep asking the same question over and over again. To the patient each time she asks the question, it is as if she asked it for the first time. Just answering repetitive questioning by providing repeatedly the same answer is not sufficient. Caregivers should try to identify the underlying cause for this repetitive questioning. In an earlier case study, the patient was concerned about her and her family’s safety and kept asking whether the doors are locked. In this present case study, the patient does not know how to handle the awkward situation he finds himself in. He just does not know what to do. He is not able to adjust to the new unexpected situation. So he repeatedly wants to reassure himself that he is not intruding by asking the same question over and over again. We discuss how the patient’s son-in-law could have avoided this situation and averted the catastrophic ending.

  3. Transcranial Direct Current Stimulation and behavioral models of smoking addiction

    Directory of Open Access Journals (Sweden)

    Paige eFraser

    2012-08-01

    Full Text Available While few studies have applied transcranial direct current stimulation (tDCS to smoking addiction, existing work suggests that the intervention holds promise for altering the complex system by which environmental cues interact with cravings to drive behavior. Imaging and repetitive transcranial magnetic stimulation (rTMS studies suggest that increased dorsolateral prefrontal cortex (DLPFC activation and integrity may be associated with increased resistance to smoking cues. Anodal tDCS of the DLPFC, believed to boost activation, reduces cravings in response to these cues. The finding that noninvasive stimulation modifies cue induced cravings has profound implications for understanding the processes underlying addiction and relapse. TDCS can also be applied to probe mechanisms underlying and supporting nicotine addiction, as was done in a pharmacologic study that applied nicotine, tDCS, and TMS paired associative stimulation to find that stopping nicotine after chronic use induces a reduction in plasticity, causing difficulty in breaking free from association between cues and cravings. This mini-review will place studies that apply tDCS to smokers in the context of research involving the neural substrates of nicotine addiction.

  4. Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound.

    Science.gov (United States)

    Kim, Hyungmin; Taghados, Seyed Javid; Fischer, Krisztina; Maeng, Lee-So; Park, Shinsuk; Yoo, Seung-Schik

    2012-09-01

    Nonpharmacologic and nonsurgical transcranial modulation of the nerve function may provide new opportunities in evaluation and treatment of cranial nerve diseases. This study investigates the possibility of using low-intensity transcranial focused ultrasound (FUS) to selectively stimulate the rat abducens nerve located above the base of the skull. FUS (frequencies of 350 kHz and 650 kHz) operating in a pulsed mode was applied to the abducens nerve of Sprague-Dawley rats under stereotactic guidance. The abductive eyeball movement ipsilateral to the side of sonication was observed at 350 kHz, using the 0.36-msec tone burst duration (TBD), 1.5-kHz pulse repetition frequency (PRF), and the overall sonication duration of 200 msec. Histologic and behavioral monitoring showed no signs of disruption in the blood brain barrier (BBB), as well as no damage to the nerves and adjacent brain tissue resulting from the sonication. As a novel functional neuro-modulatory modality, the pulsed application of FUS has potential for diagnostic and therapeutic applications in diseases of the peripheral nervous system. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Fahlke, Christoph; Bjørn-Yoshimoto, Walden Emil

    2015-01-01

    The five excitatory amino acid transporters (EAAT1–5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations into the ......The five excitatory amino acid transporters (EAAT1–5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations...

  6. Sequential dynamics in the motif of excitatory coupled elements

    Science.gov (United States)

    Korotkov, Alexander G.; Kazakov, Alexey O.; Osipov, Grigory V.

    2015-11-01

    In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka-Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka-Volterra model.

  7. Repetition or Reconfiguration

    DEFF Research Database (Denmark)

    Andersen, Kristina Vaarst

    , the cognitive quality of knowledge held by individual professionals is the key microfoundation for project level performance. This paper empirically tests effects of project participants with and without knowledge diversity for project level performance for projects aiming for varying degrees of repetition...... and reconfiguration. The results indicate that project performance benefits form contributions from individuals holding diverse knowledge only when projects aim for high differentiation levels. This positive association is not just moderated, it may even be reversed in the case of professionals participating in low...

  8. MIMICRY, DIFFERENCE AND REPETITION

    Directory of Open Access Journals (Sweden)

    Marcelo Mendes de Souza

    2008-07-01

    Full Text Available This article addresses Homi K. Bhabha’s concept of mimicry in a broader context, other than that of cultural studies and post-colonial studies, bringing together other concepts, such as that of Gilles Deleuze in Difference and repetition, among other texts, and other names, such as Silviano Santiago, Jorge Luís Borges, Franz Kafka and Giorgio Agamben. As a partial conclusion, the article intends to oppose Bhabha’s freudian-marxist view to Five propositions on Psychoanalysis (1973, Gilles Deleuze’s text about Psychoanalysis published right after his book The Anti-Oedipus.

  9. Traveling wave front solutions in lateral-excitatory neuronal networks

    Directory of Open Access Journals (Sweden)

    Sittipong Ruktamatakul

    2008-05-01

    Full Text Available In this paper, we discuss the shape of traveling wave front solutions to a neuronal model with the connection function to be of lateral excitation type. This means that close connecting cells have an inhibitory influence, while cells that aremore distant have an excitatory influence. We give results on the shape of the wave fronts solutions, which exhibit different shapes depend ing on the size of a threshold parameter.

  10. Tourette syndrome and excitatory substances: is there a connection?

    Science.gov (United States)

    Zou, Li-Ping; Wang, Ying; Zhang, Li-Ping; Zhao, Jian-Bo; Lu, Jin-Fang; Liu, Qun; Wang, Hang-Yan

    2011-05-01

    The objective of this study is to investigate the relationship between excitatory substances by testing the urine in children with Tourette syndrome (TS). We performed a control study involving 44 patients with TS and 44 normal children by investigating the children's daily eating habits. We used the gas chromatograph-mass spectrometer and liquid chromatograph-mass spectrometer from Agilent. Substances for detection included 197 excitatory substances prohibited by the International Olympic Committee and other substances with similar chemical structures or biological functions for urine samples. Forty-four patients who did not take any drugs in the past 2 weeks enrolled in the study. The positive rate in the experiment group was three cases, while it was negative in the control group. The level of 1-testosterone increased in one extremely severe TS patient who ate large amounts of puffed food and drank an average of 350 ml of cola per day. Cathine and other substances with similar chemical constitution or similar biological effects increased in one severe TS patient who ate bags of instant noodles daily, according to the high score of the Yale Global Tic Severity Scale. An increase in ephedrine type, testosterone, and stimulants may be related to the pathogenesis of TS. Unhealthy food possibly causes TS. The relationship between excitatory substances and TS needs to be explored with the goal of providing more information on diagnosing and treating TS.

  11. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  12. Effect of calcium on excitatory neuromuscular transmission in the crayfish

    Science.gov (United States)

    Bracho, H.; Orkand, R. K.

    1970-01-01

    1. The effects of varying the external Ca concentration from 1·8 to 30 mM/l. (⅛-2 times normal) have been studied at the in vitro crayfish excitatory neuromuscular junction. Electrophysiological techniques were used to record transmembrane junctional potentials from muscle fibres and extracellular junctional currents from the vicinity of nerve terminals. 2. The excitatory junctional potential amplitude was proportional to [Ca]0n, where n varied between 0·68 and 0·94 (mean 0·82) when [Ca]0 was varied from 1·8 to 15 mM/l. 3. The increase in junctional potential amplitude on raising [Ca]0 resulted primarily from an increase in the average number of quanta of excitatory transmitter released from the presynaptic nerve terminal by the nerve impulse. 4. The size of the quanta, synaptic delay, presynaptic potential and electrical properties of the muscle membrane were little affected by changes in calcium concentration in the range studied. PMID:5498460

  13. Transcranial low voltage pulsed electromagnetic fields in patients with treatment-resistant depression

    DEFF Research Database (Denmark)

    Martiny, Klaus Per Juul; Lunde, Marianne; Bech, Per

    2010-01-01

    BACKGROUND: Approximately 30% of patients with depression are resistant to antidepressant drugs. Repetitive transcranial magnetic stimulation (rTMS) has been found effective in combination with antidepressants in this patient group. The aim of this study was to evaluate the antidepressant effect...... of a new principle using low-intensity transcranially applied pulsed electromagnetic fields (T-PEMF) in combination with antidepressants in patients with treatment-resistant depression. METHODS: This was a sham-controlled double-blind study comparing 5 weeks of active or sham T-PEMF in patients...... with treatment-resistant major depression. The antidepressant treatment, to which patients had been resistant, was unchanged 4 weeks before and during the study period. Weekly assessments were performed using both clinician-rated and patient-rated scales. The T-PEMF equipment was designed as a helmet containing...

  14. Investigative and therapeutic uses of Transcranial magnetic stimulation (TMS) in Attention Deficit Hyperactivity Disorder (ADHD).

    Science.gov (United States)

    Zaman, Rashid

    2016-09-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder that affects children and young adults. It results in significant impairment of their educational, social and occupational functioning and is associated economic societal burden. Whilst there are effective medications (such as methylphenidate) as well as some psychobehavioural therapies that can help with management of symptoms of ADHD, the former can have significant cardiac side effects, which limit their use. For number of patients these treatment options lack efficacy or are not acceptable. There is need to improve our understanding of neurobiology of ADHD as well as explore other treatment options. Transcranial magnetic stimulation (TMS) and repetitive transcranial magnetic stimulation (rTMS) are safe and non-invasive investigative and therapeutic tools respectively. In this short paper, I will explore the potential role of TMS and rTMS in further improving our understanding of the neurobiology of ADHD as well as possible treatment option.

  15. Miniature excitatory synaptic currents in cultured hippocampal neurons.

    Science.gov (United States)

    Finch, D M; Fisher, R S; Jackson, M B

    1990-06-04

    We performed patch clamp recordings in the whole cell mode from cultured embryonic mouse hippocampal neurons. In bathing solutions containing tetrodotoxin (TTX), the cells showed spontaneous inward currents (SICs) ranging in size from 1 to 100 pA. Several observations indicated that the SICs were miniature excitatory synaptic currents mediated primarily by non-NMDA (N-methyl-D-aspartate) excitatory amino acid receptors: the rising phase of SICs was fast (1 ms to half amplitude at room temperature) and smooth, suggesting unitary events. The SICs were blocked by the broad-spectrum glutamate receptor antagonist gamma-D-glutamylglycine (DGG), but not by the selective NMDA-receptor antagonist D-2-amino-5-phosphonovaleric acid (5-APV). SICs were also blocked by desensitizing concentrations of quisqualate. Incubating cells in tetanus toxin, which blocks exocytotic transmitter release, eliminated SICs. The presence of SICs was consistent with the morphological arrangement of glutamatergic innervation in the cell cultures demonstrated immunohistochemically. Spontaneous outward currents (SOCs) were blocked by bicuculline and presumed to be mediated by GABAA receptors. This is consistent with immunohistochemical demonstration of GABAergic synapses. SIC frequency was increased in a calcium dependent manner by bathing the cells in a solution high in K+, and application of the dihydropyridine L-type calcium channel agonist BAY K 8644 increased the frequency of SICs. Increases in SIC frequency produced by high K+ solutions were reversed by Cd2+ and omega-conotoxin GVIA, but not by the selective L-type channel antagonist nimodipine. This suggested that presynaptic L-type channels were in a gating mode that was not blocked by nimodipine, and/or that another class of calcium channel makes a dominant contribution to excitatory transmitter release.

  16. Excitatory amino acids in epilepsy and potential novel therapies.

    Science.gov (United States)

    Meldrum, B S

    1992-07-01

    Evidence that an abnormality of excitatory neurotransmission may contribute to the epileptic phenomena in various animal and human syndromes is reviewed. Altered glutamate transport or metabolism may be a contributory factor in some genetic syndromes and enhanced responsiveness to activation of NMDA receptors may be significant in various acquired forms of epilepsy. Decreasing glutamatergic neurotransmission provides a rational therapeutic approach to epilepsy. Potent anticonvulsant effects are seen with the acute administration of NMDA antagonists in a wide range of animal models. Some competitive antagonists acting at the NMDA/glutamate site show prolonged anticonvulsant activity following oral administration at doses free of motor side effects and appear suitable for clinical trial.

  17. A Role for Excitatory Amino Acids in Diabetic Eye Disease

    Directory of Open Access Journals (Sweden)

    Jose E. Pulido

    2007-01-01

    Full Text Available Diabetic retinopathy is a leading cause of vision loss. The primary clinical hallmarks are vascular changes that appear to contribute to the loss of sight. In a number of neurodegenerative disorders there is an appreciation that increased levels of excitatory amino acids are excitotoxic. The primary amino acid responsible appears to be the neurotransmitter glutamate. This review examines the nature of glutamatergic signaling at the retina and the growing evidence from clinical and animal model studies that glutamate may be playing similar excitotoxic roles at the diabetic retina.

  18. Noninvasive Transcranial Brain Stimulation and Pain

    OpenAIRE

    Rosen, Allyson C.; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the tre...

  19. Anodal transcranial direct current stimulation over right dorsolateral prefrontal cortex alters decision making during approach-avoidance conflict.

    Science.gov (United States)

    Chrysikou, Evangelia G; Gorey, Claire; Aupperle, Robin L

    2017-03-01

    Approach-avoidance conflict (AAC) refers to situations associated with both rewarding and threatening outcomes. The AAC task was developed to measure AAC decision-making. Approach behavior during this task has been linked to self-reported anxiety sensitivity and has elicited anterior cingulate, insula, caudate and right dorsolateral prefrontal cortex (dlPFC) activity, with right lateral PFC tracking the extent of approach behavior. Guided by these results, we used excitatory transcranial direct current stimulation (tDCS) to demonstrate the causal involvement of right dlPFC in AAC decision-making. Participants received anodal tDCS at 1.5mA over either left or right dlPFC or sham stimulation, while performing the AAC task and a control short-term memory task. Analyses of variance (ANOVA) revealed that for individuals with high anxiety sensitivity excitatory right (but not left or sham) dlPFC stimulation elicited measurable decreases in approach behavior during conflict. Excitatory left (but not right or sham) dlPFC simulation improved performance on the control task. These results support a possible asymmetry between the contributions of right and left dlPFC to AAC resolution during emotional decision-making. Increased activity in right dlPFC may contribute to anxiety-related symptoms and, as such, serve as a neurobehavioral target of anxiolytic treatments aiming to decrease avoidance behavior. © The Author (2016). Published by Oxford University Press.

  20. Polarity Specific Suppression Effects of Transcranial Direct Current Stimulation for Tinnitus

    Directory of Open Access Journals (Sweden)

    Kathleen Joos

    2014-01-01

    Full Text Available Tinnitus is the perception of a sound in the absence of an external auditory stimulus and affects 10–15% of the Western population. Previous studies have demonstrated the therapeutic effect of anodal transcranial direct current stimulation (tDCS over the left auditory cortex on tinnitus loudness, but the effect of this presumed excitatory stimulation contradicts with the underlying pathophysiological model of tinnitus. Therefore, we included 175 patients with chronic tinnitus to study polarity specific effects of a single tDCS session over the auditory cortex (39 anodal, 136 cathodal. To assess the effect of treatment, we used the numeric rating scale for tinnitus loudness and annoyance. Statistical analysis demonstrated a significant main effect for tinnitus loudness and annoyance, but for tinnitus annoyance anodal stimulation has a significantly more pronounced effect than cathodal stimulation. We hypothesize that the suppressive effect of tDCS on tinnitus loudness may be attributed to a disrupting effect of ongoing neural hyperactivity, independent of the inhibitory or excitatory effects and that the reduction of annoyance may be induced by influencing adjacent or functionally connected brain areas involved in the tinnitus related distress network. Further research is required to explain why only anodal stimulation has a suppressive effect on tinnitus annoyance.

  1. Understanding communicative actions: a repetitive TMS study.

    Science.gov (United States)

    Stolk, Arjen; Noordzij, Matthijs L; Volman, Inge; Verhagen, Lennart; Overeem, Sebastiaan; van Elswijk, Gijs; Bloem, Bas; Hagoort, Peter; Toni, Ivan

    2014-02-01

    Despite the ambiguity inherent in human communication, people are remarkably efficient in establishing mutual understanding. Studying how people communicate in novel settings provides a window into the mechanisms supporting the human competence to rapidly generate and understand novel shared symbols, a fundamental property of human communication. Previous work indicates that the right posterior superior temporal sulcus (pSTS) is involved when people understand the intended meaning of novel communicative actions. Here, we set out to test whether normal functioning of this cerebral structure is required for understanding novel communicative actions using inhibitory low-frequency repetitive transcranial magnetic stimulation (rTMS). A factorial experimental design contrasted two tightly matched stimulation sites (right pSTS vs left MT+, i.e., a contiguous homotopic task-relevant region) and tasks (a communicative task vs a visual tracking task that used the same sequences of stimuli). Overall task performance was not affected by rTMS, whereas changes in task performance over time were disrupted according to TMS site and task combinations. Namely, rTMS over pSTS led to a diminished ability to improve action understanding on the basis of recent communicative history, while rTMS over MT+ perturbed improvement in visual tracking over trials. These findings qualify the contributions of the right pSTS to human communicative abilities, showing that this region might be necessary for incorporating previous knowledge, accumulated during interactions with a communicative partner, to constrain the inferential process that leads to action understanding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Action-blindsight in healthy subjects after transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Kristiansen, Lasse; Rowe, James B.

    2008-01-01

    Clinical cases of blindsight have shown that visually guided movements can be accomplished without conscious visual perception. Here, we show that blindsight can be induced in healthy subjects by using transcranial magnetic stimulation over the visual cortex. Transcranial magnetic stimulation...

  3. Emotional response to musical repetition.

    Science.gov (United States)

    Livingstone, Steven R; Palmer, Caroline; Schubert, Emery

    2012-06-01

    Two experiments examined the effects of repetition on listeners' emotional response to music. Listeners heard recordings of orchestral music that contained a large section repeated twice. The music had a symmetric phrase structure (same-length phrases) in Experiment 1 and an asymmetric phrase structure (different-length phrases) in Experiment 2, hypothesized to alter the predictability of sensitivity to musical repetition. Continuous measures of arousal and valence were compared across music that contained identical repetition, variation (related), or contrasting (unrelated) structure. Listeners' emotional arousal ratings differed most for contrasting music, moderately for variations, and least for repeating musical segments. A computational model for the detection of repeated musical segments was applied to the listeners' emotional responses. The model detected the locations of phrase boundaries from the emotional responses better than from performed tempo or physical intensity in both experiments. These findings indicate the importance of repetition in listeners' emotional response to music and in the perceptual segmentation of musical structure.

  4. Transcranial Alternating Current Stimulation Attenuates Neuronal Adaptation.

    Science.gov (United States)

    Kar, Kohitij; Duijnhouwer, Jacob; Krekelberg, Bart

    2017-03-01

    We previously showed that brief application of 2 mA (peak-to-peak) transcranial currents alternating at 10 Hz significantly reduces motion adaptation in humans. This is but one of many behavioral studies showing that weak currents applied to the scalp modulate neural processing. Transcranial stimulation has been shown to improve perception, learning, and a range of clinical symptoms. Few studies, however, have measured the neural consequences of transcranial current stimulation. We capitalized on the strong link between motion perception and neural activity in the middle temporal (MT) area of the macaque monkey to study the neural mechanisms that underlie the behavioral consequences of transcranial alternating current stimulation. First, we observed that 2 mA currents generated substantial intracranial fields, which were much stronger in the stimulated hemisphere (0.12 V/m) than on the opposite side of the brain (0.03 V/m). Second, we found that brief application of transcranial alternating current stimulation at 10 Hz reduced spike-frequency adaptation of MT neurons and led to a broadband increase in the power spectrum of local field potentials. Together, these findings provide a direct demonstration that weak electric fields applied to the scalp significantly affect neural processing in the primate brain and that this includes a hitherto unknown mechanism that attenuates sensory adaptation. SIGNIFICANCE STATEMENT Transcranial stimulation has been claimed to improve perception, learning, and a range of clinical symptoms. Little is known, however, how transcranial current stimulation generates such effects, and the search for better stimulation protocols proceeds largely by trial and error. We investigated, for the first time, the neural consequences of stimulation in the monkey brain. We found that even brief application of alternating current stimulation reduced the effects of adaptation on single-neuron firing rates and local field potentials; this mechanistic

  5. Optimal properties of analog perceptrons with excitatory weights.

    Directory of Open Access Journals (Sweden)

    Claudia Clopath

    Full Text Available The cerebellum is a brain structure which has been traditionally devoted to supervised learning. According to this theory, plasticity at the Parallel Fiber (PF to Purkinje Cell (PC synapses is guided by the Climbing fibers (CF, which encode an 'error signal'. Purkinje cells have thus been modeled as perceptrons, learning input/output binary associations. At maximal capacity, a perceptron with excitatory weights expresses a large fraction of zero-weight synapses, in agreement with experimental findings. However, numerous experiments indicate that the firing rate of Purkinje cells varies in an analog, not binary, manner. In this paper, we study the perceptron with analog inputs and outputs. We show that the optimal input has a sparse binary distribution, in good agreement with the burst firing of the Granule cells. In addition, we show that the weight distribution consists of a large fraction of silent synapses, as in previously studied binary perceptron models, and as seen experimentally.

  6. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Science.gov (United States)

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  7. Transcranial magnetic stimulation: language function.

    Science.gov (United States)

    Epstein, C M

    1998-07-01

    Studies of language using transcranial magnetic stimulation (TMS) have focused both on identification of language areas and on elucidation of function. TMS may result in either inhibition or facilitation of language processes and may operate directly at a presumptive site of language cortex or indirectly through intracortical networks. TMS has been used to create reversible "temporary lesions," similar to those produced by Wada tests and direct cortical electrical stimulation, in cerebral cortical areas subserving language function. Rapid-rate TMS over the left inferior frontal region blocks speech output in most subjects. However, the results are not those predicted from classic models of language organization. Speech arrest is obtained most easily over facial motor cortex, and true aphasia is rare, whereas right hemisphere or bilateral lateralization is unexpectedly prominent. A clinical role for these techniques is not yet fully established. Interfering with language comprehension and verbal memory is currently more difficult than blocking speech output, but numerous TMS studies have demonstrated facilitation of language-related tasks, including oral word association, story recall, digit span, and picture naming. Conversely, speech output also facilitates motor responses to TMS in the dominant hemisphere. Such new and often-unexpected findings may provide important insights into the organization of language.

  8. Transcranial magnetic stimulation in children.

    Science.gov (United States)

    Garvey, Marjorie A; Mall, Volker

    2008-05-01

    Developmental disabilities (e.g. attention deficit disorder; cerebral palsy) are frequently associated with deviations of the typical pattern of motor skill maturation. Neurophysiologic tools, such as transcranial magnetic stimulation (TMS), which probe motor cortex function, can potentially provide insights into both typical neuromotor maturation and the mechanisms underlying the motor skill deficits in children with developmental disabilities. These insights may set the stage for finding effective interventions for these disorders. We review the literature pertaining to the use of TMS in pediatrics. Most TMS-evoked parameters show age-related changes in typically developing children and some of these are abnormal in a number of childhood-onset neurological disorders. Although no TMS-evoked parameters are diagnostic for any disorder, changes in certain parameters appear to reflect disease burden or may provide a measure of treatment-related improvement. Furthermore, TMS may be especially useful when combined with other neurophysiologic modalities (e.g. fMRI). However, much work remains to be done to determine if TMS-evoked parameters can be used as valid and reliable biomarkers for disease burden, the natural history of neurological injury and repair, and the efficacy of pharmacological and rehabilitation interventions.

  9. Pulse Width Affects Scalp Sensation of Transcranial Magnetic Stimulation.

    Science.gov (United States)

    Peterchev, Angel V; Luber, Bruce; Westin, Gregory G; Lisanby, Sarah H

    Scalp sensation and pain comprise the most common side effect of transcranial magnetic stimulation (TMS), which can reduce tolerability and complicate experimental blinding. We explored whether changing the width of single TMS pulses affects the quality and tolerability of the resultant somatic sensation. Using a controllable pulse parameter TMS device with a figure-8 coil, single monophasic magnetic pulses inducing electric field with initial phase width of 30, 60, and 120 µs were delivered in 23 healthy volunteers. Resting motor threshold of the right first dorsal interosseus was determined for each pulse width, as reported previously. Subsequently, pulses were delivered over the left dorsolateral prefrontal cortex at each of the three pulse widths at two amplitudes (100% and 120% of the pulse-width-specific motor threshold), with 20 repetitions per condition delivered in random order. After each pulse, subjects rated 0-to-10 visual analog scales for Discomfort, Sharpness, and Strength of the sensation. Briefer TMS pulses with amplitude normalized to the motor threshold were perceived as slightly more uncomfortable than longer pulses (with an average 0.89 point increase on the Discomfort scale for pulse width of 30 µs compared to 120 µs). The sensation of the briefer pulses was felt to be substantially sharper (2.95 points increase for 30 µs compared to 120 µs pulse width), but not stronger than longer pulses. As expected, higher amplitude pulses increased the perceived discomfort and strength, and, to a lesser degree the perceived sharpness. Our findings contradict a previously published hypothesis that briefer TMS pulses are more tolerable. We discovered that the opposite is true, which merits further study as a means of enhancing tolerability in the context of repetitive TMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Amodal Semantic Representations Depend on both Anterior Temporal Lobes: Evidence from Repetitive Transcranial Magnetic Stimulation

    Science.gov (United States)

    Pobric, Gorana; Jefferies, Elizabeth; Ralph, Matthew A. Lambon

    2010-01-01

    The key question of how the brain codes the meaning of words and pictures is the focus of vigorous debate. Is there a "semantic hub" in the temporal poles where these different inputs converge to form amodal conceptual representations? Alternatively, are there distinct neural circuits that underpin our comprehension of pictures and words?…

  11. Disruption of locomotor adaptation with repetitive transcranial magnetic stimulation over the motor cortex

    DEFF Research Database (Denmark)

    Choi, Julia Tsok Lam; Bouyer, Laurent J; Nielsen, Jens Bo

    2015-01-01

    Locomotor patterns are adapted on a trial-and-error basis to account for predictable dynamics. Once a walking pattern is adapted, the new calibration is stored and must be actively de-adapted. Here, we tested the hypothesis that storage of newly acquired ankle adaptation in walking is dependent...

  12. Multiple sessions of low-frequency repetitive transcranial magnetic stimulation in focal hand dystonia

    DEFF Research Database (Denmark)

    Kimberley, Teresa Jacobson; Borich, Michael R; Arora, Sanjeev

    2013-01-01

    , respectively. Behavioral measures included pen force and velocity during handwriting and subjective report. Results: Multiple-session rTMS strengthened intracortical inhibition causing a prolongation of CSP after 3 days of intervention and pen force was reduced at day 1 and 5, leaving other measures unchanged...

  13. Normalization of sensorimotor integration by repetitive transcranial magnetic stimulation in cervical dystonia

    NARCIS (Netherlands)

    Zittel, S.; Helmich, R.C.G.; Demiralay, C.; Munchau, A.; Baumer, T.

    2015-01-01

    Previous studies indicated that sensorimotor integration and plasticity of the sensorimotor system are impaired in dystonia patients. We investigated motor evoked potential amplitudes and short latency afferent inhibition to examine corticospinal excitability and cortical sensorimotor integration,

  14. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making

    NARCIS (Netherlands)

    van't Wout, M; Kahn, RS; Sanfey, AG; Aleman, A

    2005-01-01

    Although decision-making is typically seen as a rational process, emotions play a role in tasks that include unfairness. Recently, activation in the right dorsolateral prefrontal cortex during offers experienced as unfair in the Ultimatum Game was suggested to subserve goal maintenance in this task.

  15. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)

    DEFF Research Database (Denmark)

    Lefaucheur, Jean-Pascal; André-Obadia, Nathalie; Antal, Andrea

    2014-01-01

    , consciousness disorders, tinnitus, depression, anxiety disorders, obsessive-compulsive disorder, schizophrenia, craving/addiction, and conversion. Despite unavoidable inhomogeneities, there is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency (HF) r...... for the negative symptoms of schizophrenia, and LF-rTMS of contralesional M1 in chronic motor stroke. The effects of rTMS in a number of indications reach level C (possible efficacy), including LF-rTMS of the left temporoparietal cortex in tinnitus and auditory hallucinations. It remains to determine how...

  16. Research with Transcranial Magnetic Stimulation in the Treatment of Aphasia

    Science.gov (United States)

    Martin, Paula I; Naeser, Margaret A.; Ho, Michael; Treglia, Ethan; Kaplan, Elina; Baker, Errol H.; Pascual-Leone, Alvaro

    2010-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been used to improve language behavior, including naming, in stroke patients with chronic, nonfluent aphasia. Part 1 of this paper reviews functional imaging studies related to language recovery in aphasia. Part 2 reviews the rationale for using rTMS to treat nonfluent aphasia (based on functional imaging); and presents our current rTMS protocol. We present language results from our rTMS studies, and imaging results from overt naming fMRI scans obtained pre- and post- a series of rTMS treatments. Part 3 presents results from a pilot study where rTMS treatments were followed immediately by constraint-induced language therapy. Part 4 reviews our diffusion tensor imaging study that examined possible connectivity of arcuate fasciculus to different parts of Broca’s area (pars triangularis, PTr; pars opercularis, POp); and to ventral premotor cortex (vPMC). The potential role of mirror neurons in R POp and vPMC in aphasia recovery is discussed. PMID:19818232

  17. Transcranial magnetic stimulation in the treatment of depression.

    Science.gov (United States)

    Gershon, Ari A; Dannon, Pinhas N; Grunhaus, Leon

    2003-05-01

    Transcranial magnetic stimulation (TMS) is a noninvasive and easily tolerated method of altering cortical physiology. The authors evaluate evidence from the last decade supporting a possible role for TMS in the treatment of depression and explore clinical and technical considerations that might bear on treatment success. The authors review English-language controlled studies of nonconvulsive TMS therapy for depression that appeared in the MEDLINE database through early 2002, as well as one study that was in press in 2002 and was published in 2003. In addition, the authors discuss studies that have examined technical, methodological, and clinical treatment parameters of TMS. Most data support an antidepressant effect of high-frequency repetitive TMS administered to the left prefrontal cortex. The absence of psychosis, younger age, and certain brain physiologic markers might predict treatment success. Technical parameters possibly affecting treatment success include intensity and duration of treatment, but these suggestions require systematic testing. TMS shows promise as a novel antidepressant treatment. Systematic and large-scale studies are needed to identify patient populations most likely to benefit and treatment parameters most likely to produce success. In addition to its potential clinical role, TMS promises to provide insights into the pathophysiology of depression through research designs in which the ability of TMS to alter brain activity is coupled with functional neuroimaging.

  18. Transcranial magnetic simulation in the treatment of migraine.

    Science.gov (United States)

    Lipton, Richard B; Pearlman, Starr H

    2010-04-01

    Transcranial magnetic stimulation (TMS) is a diagnostic and therapeutic modality that is being developed as both an acute and preventive treatment for migraine. TMS delivers a fluctuating magnetic field from the scalp surface to induce current in the subjacent cortex. Magnetic pulses are delivered one at a time in single-pulse TMS (sTMS) or as a train of pulses in repetitive TMS (rTMS). For most of its 30-year history, TMS has been delivered in clinical and research settings using large tabletop devices. Based on the theory that sTMS may disrupt cortical spreading depression, sTMS has been studied and shown to be effective as an acute treatment for migraine with aura. Subsequent work in animal models confirms that sTMS disrupts cortical spreading depression. To make outpatient self-treatment possible, a portable device has been developed for acute treatment of migraine with aura. Based on the theory that rTMS alters brain excitability and neurotransmitter activity, rTMS has been studied as a preventive migraine treatment. A small body of evidence suggests that rTMS may have a role, but further studies are needed. In this review, we summarize the data on TMS as a treatment of migraine, and we suggest directions for future research. Copyright 2010 The American Society for Experimental NeuroTherapeutics, Inc. Published by Elsevier Inc. All rights reserved.

  19. Transcranial magnetic stimulation (TMS) in stroke: Ready for clinical practice?

    Science.gov (United States)

    Smith, Marie-Claire; Stinear, Cathy M

    2016-09-01

    The use of transcranial magnetic stimulation (TMS) in stroke research has increased dramatically over the last decade with two emerging and potentially useful functions identified. Firstly, the use of single pulse TMS as a tool for predicting recovery of motor function after stroke, and secondly, the use of repetitive TMS (rTMS) as a treatment adjunct aimed at modifying the excitability of the motor cortex in preparation for rehabilitation. This review discusses recent advances in the use of TMS in both prediction and treatment after stroke. Prediction of recovery after stroke is a complex process and the use of TMS alone is not sufficient to provide accurate prediction for an individual after stroke. However, when applied in conjunction with other tools such as clinical assessment and MRI, accuracy of prediction using TMS is increased. rTMS temporarily modulates cortical excitability after stroke. Very few rTMS studies are completed in the acute or sub-acute stages after stroke and the translation of altered cortical excitability into gains in motor function are modest, with little evidence of long term effects. Although gains have been made in both of these areas, further investigation is needed before these techniques can be applied in routine clinical care. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Repetition and lag effects in movement recognition.

    Science.gov (United States)

    Hall, C R; Buckolz, E

    1982-03-01

    Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.

  1. Transcranial Doppler velocimetry in aneurysmal subarachnoid haemorrhage

    DEFF Research Database (Denmark)

    Staalsø, J M; Edsen, T; Romner, B

    2013-01-01

    -coded transcranial Doppler (TCCD), with the secondary aim of describing prediction of angiographic vasospasm and mortality. METHODS: /st>Sixty patients and 70 healthy controls were each examined in duplicate by alternating operators. A total of 939 measurements divided on 201 examination sets were conducted by four...

  2. Selective synaptic targeting of the excitatory and inhibitory presynaptic organizers FGF22 and FGF7.

    Science.gov (United States)

    Terauchi, Akiko; Timmons, Kendall M; Kikuma, Koto; Pechmann, Yvonne; Kneussel, Matthias; Umemori, Hisashi

    2015-01-15

    Specific formation of excitatory and inhibitory synapses is crucial for proper functioning of the brain. Fibroblast growth factor 22 (FGF22) and FGF7 are postsynaptic-cell-derived presynaptic organizers necessary for excitatory and inhibitory presynaptic differentiation, respectively, in the hippocampus. For the establishment of specific synaptic networks, these FGFs must localize to appropriate synaptic locations - FGF22 to excitatory and FGF7 to inhibitory postsynaptic sites. Here, we show that distinct motor and adaptor proteins contribute to intracellular microtubule transport of FGF22 and FGF7. Excitatory synaptic targeting of FGF22 requires the motor proteins KIF3A and KIF17 and the adaptor protein SAP102 (also known as DLG3). By contrast, inhibitory synaptic targeting of FGF7 requires the motor KIF5 and the adaptor gephyrin. Time-lapse imaging shows that FGF22 moves with SAP102, whereas FGF7 moves with gephyrin. These results reveal the basis of selective targeting of the excitatory and inhibitory presynaptic organizers that supports their different synaptogenic functions. Finally, we found that knockdown of SAP102 or PSD95 (also known as DLG4), which impairs the differentiation of excitatory synapses, alters FGF7 localization, suggesting that signals from excitatory synapses might regulate inhibitory synapse formation by controlling the distribution of the inhibitory presynaptic organizer. © 2015. Published by The Company of Biologists Ltd.

  3. Excitatory Neuronal Hubs Configure Multisensory Integration of Slow Waves in Association Cortex

    Directory of Open Access Journals (Sweden)

    Satoshi Kuroki

    2018-03-01

    Full Text Available Summary: Multisensory integration (MSI is a fundamental emergent property of the mammalian brain. During MSI, perceptual information encoded in patterned activity is processed in multimodal association cortex. The systems-level neuronal dynamics that coordinate MSI, however, are unknown. Here, we demonstrate intrinsic hub-like network activity in the association cortex that regulates MSI. We engineered calcium reporter mouse lines based on the fluorescence resonance energy transfer sensor yellow cameleon (YC2.60 expressed in excitatory or inhibitory neurons. In medial and parietal association cortex, we observed spontaneous slow waves that self-organized into hubs defined by long-range excitatory and local inhibitory circuits. Unlike directional source/sink-like flows in sensory areas, medial/parietal excitatory and inhibitory hubs had net-zero balanced inputs. Remarkably, multisensory stimulation triggered rapid phase-locking mainly of excitatory hub activity persisting for seconds after the stimulus offset. Therefore, association cortex tends to form balanced excitatory networks that configure slow-wave phase-locking for MSI. Video Abstract: : Kuroki et al. performed cell-type-specific, wide-field FRET-based calcium imaging to visualize cortical network activity induced by multisensory inputs. They observed phase-locking of cortical slow waves in excitatory neuronal hubs in association cortical areas that may underlie multisensory integration. Keywords: wide-field calcium imaging, multisensory integration, cortical slow waves, association cortex, phase locking, fluorescence resonance energy transfer, spontaneous activity, excitatory neuron, inhibitory neuron, mouse

  4. Facilitation of speech repetition accuracy by theta burst stimulation of the left posterior inferior frontal gyrus.

    Science.gov (United States)

    Restle, Julia; Murakami, Takenobu; Ziemann, Ulf

    2012-07-01

    The posterior part of the inferior frontal gyrus (pIFG) in the left hemisphere is thought to form part of the putative human mirror neuron system and is assigned a key role in mapping sensory perception onto motor action. Accordingly, the pIFG is involved in motor imitation of the observed actions of others but it is not known to what extent speech repetition of auditory-presented sentences is also a function of the pIFG. Here we applied fMRI-guided facilitating intermittent theta burst transcranial magnetic stimulation (iTBS), or depressant continuous TBS (cTBS), or intermediate TBS (imTBS) over the left pIFG of healthy subjects and compared speech repetition accuracy of foreign Japanese sentences before and after TBS. We found that repetition accuracy improved after iTBS and, to a lesser extent, after imTBS, but remained unchanged after cTBS. In a control experiment, iTBS was applied over the left middle occipital gyrus (MOG), a region not involved in sensorimotor processing of auditory-presented speech. Repetition accuracy remained unchanged after iTBS of MOG. We argue that the stimulation type and stimulation site specific facilitating effect of iTBS over left pIFG on speech repetition accuracy indicates a causal role of the human left-hemispheric pIFG in the translation of phonological perception to motor articulatory output for repetition of speech. This effect may prove useful in rehabilitation strategies that combine repetitive speech training with iTBS of the left pIFG in speech disorders, such as aphasia after cerebral stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Yin-Peng Chen

    Full Text Available Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  6. Global Repetition Influences Contextual Cueing

    Science.gov (United States)

    Zang, Xuelian; Zinchenko, Artyom; Jia, Lina; Li, Hong

    2018-01-01

    Our visual system has a striking ability to improve visual search based on the learning of repeated ambient regularities, an effect named contextual cueing. Whereas most of the previous studies investigated contextual cueing effect with the same number of repeated and non-repeated search displays per block, the current study focused on whether a global repetition frequency formed by different presentation ratios between the repeated and non-repeated configurations influence contextual cueing effect. Specifically, the number of repeated and non-repeated displays presented in each block was manipulated: 12:12, 20:4, 4:20, and 4:4 in Experiments 1–4, respectively. The results revealed a significant contextual cueing effect when the global repetition frequency is high (≥1:1 ratio) in Experiments 1, 2, and 4, given that processing of repeated displays was expedited relative to non-repeated displays. Nevertheless, the contextual cueing effect reduced to a non-significant level when the repetition frequency reduced to 4:20 in Experiment 3. These results suggested that the presentation frequency of repeated relative to the non-repeated displays could influence the strength of contextual cueing. In other words, global repetition statistics could be a crucial factor to mediate contextual cueing effect. PMID:29636716

  7. Repetitive elements in parasitic protozoa

    Directory of Open Access Journals (Sweden)

    Clayton Christine

    2010-05-01

    Full Text Available Abstract A recent paper published in BMC Genomics suggests that retrotransposition may be active in the human gut parasite Entamoeba histolytica. This adds to our knowledge of the various types of repetitive elements in parasitic protists and the potential influence of such elements on pathogenicity. See research article http://www.biomedcentral.com/1471-2164/11/321

  8. Effects of Transcranial Direct Current Stimulation Block Remifentanil-Induced Hyperalgesia: A Randomized, Double-Blind Clinical Trial

    Directory of Open Access Journals (Sweden)

    Gilberto Braulio

    2018-02-01

    Full Text Available Background: Remifentanil-induced hyperalgesia (r-IH involves an imbalance in the inhibitory and excitatory systems. As the transcranial Direct Current Stimulation (tDCS modulates the thalamocortical synapses in a top-down manner, we hypothesized that the active (a-t-DCS would be more effective than sham(s-tDCS to prevent r-IH. We used an experimental paradigm to induce temporal summation of pain utilizing a repetitive cold test (rCOLDT assessed by the Numerical Pain Score (NPS 0-10 and we evaluated the function of the descending pain modulatory system (DPMS by the change on the NPS (0–10 during the conditioned pain modulation (CPM-task (primary outcomes. We tested whether a-tDCS would be more effective than s-tDCS to improve pain perception assessed by the heat pain threshold (HPT and the reaction time during the ice-water pain test (IPT (secondary outcomes.Methods: This double-blinded, factorial randomized trial included 48 healthy males, ages ranging 19–40 years. They were randomized into four equal groups: a-tDCS/saline, s-tDCS/saline, a-tDCS/remifentanil and s-tDCS/remifentanil. tDCS was applied over the primary motor cortex, during 20 min at 2 mA, which was introduced 10 min after starting remifentanil infusion at 0.06 μg⋅kg-1⋅min-1 or saline.Results: An ANCOVA mixed model revealed that during the rCOLDT, there was a significant main effect on the NPS scores (F = 3.81; P = 0.01. The s-tDCS/remifentanil group presented larger pain scores during rCOLDT, [mean (SD 5.49 (1.04] and a-tDCS/remifentanil group had relative lower pain scores [4.15 (1.62]; showing its blocking effect on r-IH. a-tDCS/saline and s-tDCS/saline groups showed lowest pain scores during rCOLDT, [3.11 (1.2] and [3.15 (1.62], respectively. The effect of sedation induced by remifentanil during the rCOLDT was not significant (F = 0.76; P = 0.38. Remifentanil groups showed positive scores in the NPS (0–10 during the CPM-task, that is, it produced a disengagement of

  9. Criticality predicts maximum irregularity in recurrent networks of excitatory nodes.

    Directory of Open Access Journals (Sweden)

    Yahya Karimipanah

    Full Text Available A rigorous understanding of brain dynamics and function requires a conceptual bridge between multiple levels of organization, including neural spiking and network-level population activity. Mounting evidence suggests that neural networks of cerebral cortex operate at a critical regime, which is defined as a transition point between two phases of short lasting and chaotic activity. However, despite the fact that criticality brings about certain functional advantages for information processing, its supporting evidence is still far from conclusive, as it has been mostly based on power law scaling of size and durations of cascades of activity. Moreover, to what degree such hypothesis could explain some fundamental features of neural activity is still largely unknown. One of the most prevalent features of cortical activity in vivo is known to be spike irregularity of spike trains, which is measured in terms of the coefficient of variation (CV larger than one. Here, using a minimal computational model of excitatory nodes, we show that irregular spiking (CV > 1 naturally emerges in a recurrent network operating at criticality. More importantly, we show that even at the presence of other sources of spike irregularity, being at criticality maximizes the mean coefficient of variation of neurons, thereby maximizing their spike irregularity. Furthermore, we also show that such a maximized irregularity results in maximum correlation between neuronal firing rates and their corresponding spike irregularity (measured in terms of CV. On the one hand, using a model in the universality class of directed percolation, we propose new hallmarks of criticality at single-unit level, which could be applicable to any network of excitable nodes. On the other hand, given the controversy of the neural criticality hypothesis, we discuss the limitation of this approach to neural systems and to what degree they support the criticality hypothesis in real neural networks. Finally

  10. Age-related decreased inhibitory vs. excitatory gene expression in the adult autistic brain

    NARCIS (Netherlands)

    van de Lagemaat, Louie N; Nijhof, Bonnie; Bosch, Daniëlle G M; Kohansal-Nodehi, Mahdokht; Keerthikumar, Shivakumar; Heimel, J.A.

    2014-01-01

    Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction and communication, and restricted behavior and interests. A disruption in the balance of excitatory and inhibitory neurotransmission has been hypothesized to underlie these disorders. Here

  11. Degree of synchronization modulated by inhibitory neurons in clustered excitatory-inhibitory recurrent networks

    Science.gov (United States)

    Li, Huiyan; Sun, Xiaojuan; Xiao, Jinghua

    2018-01-01

    An excitatory-inhibitory recurrent neuronal network is established to numerically study the effect of inhibitory neurons on the synchronization degree of neuronal systems. The obtained results show that, with the number of inhibitory neurons and the coupling strength from an inhibitory neuron to an excitatory neuron increasing, inhibitory neurons can not only reduce the synchronization degree when the synchronization degree of the excitatory population is initially higher, but also enhance it when it is initially lower. Meanwhile, inhibitory neurons could also help the neuronal networks to maintain moderate synchronized states. In this paper, we call this effect as modulation effect of inhibitory neurons. With the obtained results, it is further revealed that the ratio of excitatory neurons to inhibitory neurons being nearly 4 : 1 is an economic and affordable choice for inhibitory neurons to realize this modulation effect.

  12. Effects of Neuromodulation on Excitatory-Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure

    Science.gov (United States)

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2018-01-01

    Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

  13. LRRTM3 Regulates Excitatory Synapse Development through Alternative Splicing and Neurexin Binding

    Directory of Open Access Journals (Sweden)

    Ji Won Um

    2016-02-01

    Full Text Available The four members of the LRRTM family (LRRTM1-4 are postsynaptic adhesion molecules essential for excitatory synapse development. They have also been implicated in neuropsychiatric diseases. Here, we focus on LRRTM3, showing that two distinct LRRTM3 variants generated by alternative splicing regulate LRRTM3 interaction with PSD-95, but not its excitatory synapse-promoting activity. Overexpression of either LRRTM3 variant increased excitatory synapse density in dentate gyrus (DG granule neurons, whereas LRRTM3 knockdown decreased it. LRRTM3 also controlled activity-regulated AMPA receptor surface expression in an alternative splicing-dependent manner. Furthermore, Lrrtm3-knockout mice displayed specific alterations in excitatory synapse density, excitatory synaptic transmission and excitability in DG granule neurons but not in CA1 pyramidal neurons. Lastly, LRRTM3 required only specific splice variants of presynaptic neurexins for their synaptogenic activity. Collectively, our data highlight alternative splicing and differential presynaptic ligand utilization in the regulation of LRRTMs, revealing key regulatory mechanisms for excitatory synapse development.

  14. Repetition code of 15 qubits

    Science.gov (United States)

    Wootton, James R.; Loss, Daniel

    2018-05-01

    The repetition code is an important primitive for the techniques of quantum error correction. Here we implement repetition codes of at most 15 qubits on the 16 qubit ibmqx3 device. Each experiment is run for a single round of syndrome measurements, achieved using the standard quantum technique of using ancilla qubits and controlled operations. The size of the final syndrome is small enough to allow for lookup table decoding using experimentally obtained data. The results show strong evidence that the logical error rate decays exponentially with code distance, as is expected and required for the development of fault-tolerant quantum computers. The results also give insight into the nature of noise in the device.

  15. Computer-Related Repetitive Stress Injuries

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Computer-Related Repetitive Stress Injuries KidsHealth / For Parents / Computer-Related Repetitive Stress Injuries What's in this article? ...

  16. Transcranial Doppler sonography in familial hemiplegic migraine

    International Nuclear Information System (INIS)

    Pierelli, F.; Pauri, F.; Cupini, L.M.; Fiermonte, G.; Rizzo, P.A.

    1991-01-01

    A patient affected by familial hemiplegic migraine underwent transcranial Doppler sonography twice: the first during a spontaneous attack with right hemiparesis and aphasia, the second during a headachefree period. During the attack the following haemodynamic changes were seen: (a) bilateral increase in the middle cerebral artery and anterior cerebral artery blood flow velocities (this increase was more pronounced on the left side), (b) decreased systo-diastolic ratio and pulsatility index on the right side, (c) increased systo-diastolic ratio and pulsatility index on the left side. The results indicate that during the attack in this familial hemiplegic migraine patient, a diffuse vasoconstriction of the basal cerebral arteries developed. Moreover, transcranial Doppler sonography data suggest that a prolonged vasoconstriction of the peripheral arterioles could play a role in determining the neurological symptoms in this syndrome. 13 refs., 1 figs., 1 tab

  17. Noninvasive transcranial brain stimulation and pain.

    Science.gov (United States)

    Rosen, Allyson C; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-02-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the treatment of chronic pain. Furthermore, TMS and tDCS can be applied with other techniques, such as event-related potentials and pharmacologic manipulation, to illuminate the underlying physiologic mechanisms of normal and pathological pain. This review presents a description and overview of the uses of two major brain stimulation techniques and a listing of useful references for further study.

  18. Transcranial Doppler sonography in familial hemiplegic migraine

    Energy Technology Data Exchange (ETDEWEB)

    Pierelli, F.; Pauri, F.; Cupini, L.M.; Fiermonte, G.; Rizzo, P.A. (Universita la Sapienza, Roma (Italy))

    1991-02-01

    A patient affected by familial hemiplegic migraine underwent transcranial Doppler sonography twice: the first during a spontaneous attack with right hemiparesis and aphasia, the second during a headachefree period. During the attack the following haemodynamic changes were seen: (a) bilateral increase in the middle cerebral artery and anterior cerebral artery blood flow velocities (this increase was more pronounced on the left side), (b) decreased systo-diastolic ratio and pulsatility index on the right side, (c) increased systo-diastolic ratio and pulsatility index on the left side. The results indicate that during the attack in this familial hemiplegic migraine patient, a diffuse vasoconstriction of the basal cerebral arteries developed. Moreover, transcranial Doppler sonography data suggest that a prolonged vasoconstriction of the peripheral arterioles could play a role in determining the neurological symptoms in this syndrome. 13 refs., 1 figs., 1 tab.

  19. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  20. Transcranial magnetic stimulation and the human brain

    Science.gov (United States)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  1. Repetitive learning control of continuous chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Shang Yun; Zhou Donghua

    2004-01-01

    Combining a shift method and the repetitive learning strategy, a repetitive learning controller is proposed to stabilize unstable periodic orbits (UPOs) within chaotic attractors in the sense of least mean square. If nonlinear parts in chaotic systems satisfy Lipschitz condition, the proposed controller can be simplified into a simple proportional repetitive learning controller

  2. Detection and volume estimation of embolic air in the middle cerebral artery using transcranial Doppler sonography.

    Science.gov (United States)

    Bunegin, L; Wahl, D; Albin, M S

    1994-03-01

    Cerebral embolism has been implicated in the development of cognitive and neurological deficits following bypass surgery. This study proposes methodology for estimating cerebral air embolus volume using transcranial Doppler sonography. Transcranial Doppler audio signals of air bubbles in the middle cerebral artery obtained from in vivo experiments were subjected to a fast-Fourier transform analysis. Audio segments when no air was present as well as artifact resulting from electrocautery and sensor movement were also subjected to fast-Fourier transform analysis. Spectra were compared, and frequency and power differences were noted and used for development of audio band-pass filters for isolation of frequencies associated with air emboli. In a bench model of the middle cerebral artery circulation, repetitive injections of various air volumes between 0.5 and 500 microL were made. Transcranial Doppler audio output was band-pass filtered, acquired digitally, then subjected to a fast-Fourier transform power spectrum analysis and power spectrum integration. A linear least-squares correlation was performed on the data. Fast-Fourier transform analysis of audio segments indicated that frequencies between 250 and 500 Hz are consistently dominant in the spectrum when air emboli are present. Background frequencies appear to be below 240 Hz, and artifact resulting from sensor movement and electrocautery appears to be below 300 Hz. Data from the middle cerebral artery model filtered through a 307- to 450-Hz band-pass filter yielded a linear relation between emboli volume and the integrated value of the power spectrum near 40 microL. Detection of emboli less than 0.5 microL was inconsistent, and embolus volumes greater than 40 microL were indistinguishable from one another. The preliminary technique described in this study may represent a starting point from which automated detection and volume estimation of cerebral emboli might be approached.

  3. Transcranial magnetic stimulation of the brain: guidelines for pain treatment research

    Science.gov (United States)

    Klein, Max M.; Treister, Roi; Raij, Tommi; Pascual-Leone, Alvaro; Park, Lawrence; Nurmikko, Turo; Lenz, Fred; Lefaucheur, Jean-Pascal; Lang, Magdalena; Hallett, Mark; Fox, Michael; Cudkowicz, Merit; Costello, Ann; Carr, Daniel B.; Ayache, Samar S.; Oaklander, Anne Louise

    2015-01-01

    Abstract Recognizing that electrically stimulating the motor cortex could relieve chronic pain sparked development of noninvasive technologies. In transcranial magnetic stimulation (TMS), electromagnetic coils held against the scalp influence underlying cortical firing. Multiday repetitive transcranial magnetic stimulation (rTMS) can induce long-lasting, potentially therapeutic brain plasticity. Nearby ferromagnetic or electronic implants are contraindications. Adverse effects are minimal, primarily headaches. Single provoked seizures are very rare. Transcranial magnetic stimulation devices are marketed for depression and migraine in the United States and for various indications elsewhere. Although multiple studies report that high-frequency rTMS of the motor cortex reduces neuropathic pain, their quality has been insufficient to support Food and Drug Administration application. Harvard's Radcliffe Institute therefore sponsored a workshop to solicit advice from experts in TMS, pain research, and clinical trials. They recommended that researchers standardize and document all TMS parameters and improve strategies for sham and double blinding. Subjects should have common well-characterized pain conditions amenable to motor cortex rTMS and studies should be adequately powered. They recommended standardized assessment tools (eg, NIH's PROMIS) plus validated condition-specific instruments and consensus-recommended metrics (eg, IMMPACT). Outcomes should include pain intensity and qualities, patient and clinician impression of change, and proportions achieving 30% and 50% pain relief. Secondary outcomes could include function, mood, sleep, and/or quality of life. Minimum required elements include sample sources, sizes, and demographics, recruitment methods, inclusion and exclusion criteria, baseline and posttreatment means and SD, adverse effects, safety concerns, discontinuations, and medication-usage records. Outcomes should be monitored for at least 3 months after

  4. Transcranial magnetic stimulation of the brain: guidelines for pain treatment research.

    Science.gov (United States)

    Klein, Max M; Treister, Roi; Raij, Tommi; Pascual-Leone, Alvaro; Park, Lawrence; Nurmikko, Turo; Lenz, Fred; Lefaucheur, Jean-Pascal; Lang, Magdalena; Hallett, Mark; Fox, Michael; Cudkowicz, Merit; Costello, Ann; Carr, Daniel B; Ayache, Samar S; Oaklander, Anne Louise

    2015-09-01

    Recognizing that electrically stimulating the motor cortex could relieve chronic pain sparked development of noninvasive technologies. In transcranial magnetic stimulation (TMS), electromagnetic coils held against the scalp influence underlying cortical firing. Multiday repetitive transcranial magnetic stimulation (rTMS) can induce long-lasting, potentially therapeutic brain plasticity. Nearby ferromagnetic or electronic implants are contraindications. Adverse effects are minimal, primarily headaches. Single provoked seizures are very rare. Transcranial magnetic stimulation devices are marketed for depression and migraine in the United States and for various indications elsewhere. Although multiple studies report that high-frequency rTMS of the motor cortex reduces neuropathic pain, their quality has been insufficient to support Food and Drug Administration application. Harvard's Radcliffe Institute therefore sponsored a workshop to solicit advice from experts in TMS, pain research, and clinical trials. They recommended that researchers standardize and document all TMS parameters and improve strategies for sham and double blinding. Subjects should have common well-characterized pain conditions amenable to motor cortex rTMS and studies should be adequately powered. They recommended standardized assessment tools (eg, NIH's PROMIS) plus validated condition-specific instruments and consensus-recommended metrics (eg, IMMPACT). Outcomes should include pain intensity and qualities, patient and clinician impression of change, and proportions achieving 30% and 50% pain relief. Secondary outcomes could include function, mood, sleep, and/or quality of life. Minimum required elements include sample sources, sizes, and demographics, recruitment methods, inclusion and exclusion criteria, baseline and posttreatment means and SD, adverse effects, safety concerns, discontinuations, and medication-usage records. Outcomes should be monitored for at least 3 months after initiation

  5. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-12-01

    Full Text Available Abstract Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance

  6. Anodal transcranial direct current stimulation of right temporoparietal area inhibits self-recognition.

    Science.gov (United States)

    Payne, Sophie; Tsakiris, Manos

    2017-02-01

    Self-other discrimination is a crucial mechanism for social cognition. Neuroimaging and neurostimulation research has pointed to the involvement of the right temporoparietal region in a variety of self-other discrimination tasks. Although repetitive transcranial magnetic stimulation over the right temporoparietal area has been shown to disrupt self-other discrimination in face-recognition tasks, no research has investigated the effect of increasing the cortical excitability in this region on self-other face discrimination. Here we used transcranial direct current stimulation (tDCS) to investigate changes in self-other discrimination with a video-morphing task in which the participant's face morphed into, or out of, a familiar other's face. The task was performed before and after 20 min of tDCS targeting the right temporoparietal area (anodal, cathodal, or sham stimulation). Differences in task performance following stimulation were taken to indicate a change in self-other discrimination. Following anodal stimulation only, we observed a significant increase in the amount of self-face needed to distinguish between self and other. The findings are discussed in relation to the control of self and other representations and to domain-general theories of social cognition.

  7. Effects of frontal transcranial direct current stimulation on emotional processing and mood in healthy humans

    Directory of Open Access Journals (Sweden)

    Michael A. Nitsche

    2012-06-01

    Full Text Available The prefrontal cortex is involved in mood and emotional processing. In patients suffering from depression, the left dorsolateral prefrontal cortex is hypoactive, while activity of the right dorsolateral prefrontal cortex is enhanced. Counterbalancing these pathological excitability alterations by repetitive transcranial magnetic stimulation (rTMS or transcranial direct current stimulation (tDCS improves mood in these patients. In healthy subjects, however, rTMS of the same areas has no major effect, and the effects of tDCS are mixed. We aimed to evaluate the effects of prefrontal tDCS on mood and mood-related cognitive processing in healthy humans. In a first study, we administered excitability-enhancing anodal, excitability-diminishing cathodal and placebo tDCS to the left dorsolateral prefrontal cortex, combined with antagonistic stimulation of the right frontopolar cortex, and tested acute mood changes by an adjective checklist. Subjective mood was not influenced by tDCS. Emotional face identification, however, which was explored in a second experiment, was subtly improved by a tDCS-driven excitability modulation of the prefrontal cortex, markedly by anodal tDCS of the left dorsolateral prefrontal cortex for positive emotional content. We conclude that tDCS of the prefrontal cortex improves mood processing in healthy subjects, but does not influence subjective mood state.

  8. Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes

    Directory of Open Access Journals (Sweden)

    Christoph S Herrmann

    2013-06-01

    Full Text Available Brain oscillations of different frequencies have been associated with a variety of cognitive functions. Convincing evidence supporting those associations has been provided by studies using intracranial stimulation, pharmacological interventions and lesion studies. The emergence of novel non-invasive brain stimulation techniques like repetitive transcranial magnetic stimulation (rTMS and transcranial alternating current stimulation (tACS now allows to modulate brain oscillations directly. Particularly, tACS offers the unique opportunity to causally link brain oscillations of a specific frequency range to cognitive processes, because it uses sinusoidal currents that are bound to one frequency only. Using tACS allows to modulate brain oscillations and in turn to influence cognitive processes, thereby demonstrating the causal link between the two. Here, we review findings about the physiological mechanism of tACS and studies that have used tACS to modulate basic motor and sensory processes as well as higher cognitive processes like memory, ambiguous perception, and decision making.

  9. The role of pulse shape in motor cortex transcranial magnetic stimulation using full-sine stimuli

    DEFF Research Database (Denmark)

    Delvendahl, Igor; Gattinger, Norbert; Berger, Thomas

    2014-01-01

    A full-sine (biphasic) pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS), but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using......) compared monophasic, half-sine, and full-sine pulses, (ii) applied two-segment pulses consisting of two identical half-sines, and (iii) manipulated amplitude, duration, and current direction of the first or second full-sine pulse half-segments. RMT was significantly higher using half-sine or monophasic...... in considerably higher RMT, whereas varying the amplitude of the half-segment inducing anterior-posterior current had a smaller effect. These findings provide direct experimental evidence that the pulse segment inducing a posterior-anterior directed current in M1 contributes most to corticospinal pathway...

  10. Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Florian eMüller-Dahlhaus

    2013-12-01

    Full Text Available Despite numerous clinical studies, which have investigated the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS in various brain diseases, our knowledge of the cellular and molecular mechanisms underlying rTMS-based therapies remains limited. Thus, a deeper understanding of rTMS-induced neural plasticity is required to optimize current treatment protocols. Studies in small animals or appropriate in vitro preparations (including models of brain diseases provide highly useful experimental approaches in this context. State-of-the-art electrophysiological and live-cell imaging techniques that are well established in basic neuroscience can help answering some of the major questions in the field, such as (i which neural structures are activated during TMS, (ii how does rTMS induce Hebbian plasticity, and (iii are other forms of plasticity (e.g., metaplasticity, structural plasticity induced by rTMS? We argue that data gained from these studies will support the development of more effective and specific applications of rTMS in clinical practice.

  11. Transcranial magnetic stimulation for treating depression in elderly patients

    Science.gov (United States)

    Sayar, Gokben Hizli; Ozten, Eylem; Tan, Oguz; Tarhan, Nevzat

    2013-01-01

    Purpose The aim of the study reported here was to examine the safety and effectiveness of high-frequency repetitive transcranial magnetic stimulation (rTMS) in elderly patients with depression. Patients and methods Sixty-five depressed elderly patients received rTMS over their left prefrontal cortex for 6 days per week, from Monday to Saturday, for 3 weeks. The rTMS intensity was set at 100% of the motor threshold and 25 Hz stimulation with a duration of 2 seconds and was delivered 20 times at 30-second intervals. A full course comprised an average of 1000 magnetic pulses. Depression was rated using the Hamilton Depression Rating Scale (HAMD) before and after treatment. Response was defined as a 50% reduction in HAMD score. Patients with HAMD scores < 8 were considered to be in remission. Results The mean HAMD score for the study group decreased from 21.94 ± 5.12 before treatment to 11.28 ± 4.56 after rTMS (P < 0.001). Following the treatment period, 58.46% of the study group demonstrated significant mood improvement, as indexed by a reduction of more than 50% on the HAMD score. Nineteen of these 38 patients attained remission (HAMD score < 8), while 41.54% of all study patients achieved a partial response. None of the patients had a worsened HAMD score at the end of the treatment. Treatment was generally well tolerated and no serious adverse effects were reported. Conclusion In this study, rTMS was found to be a safe, well-tolerated treatment, and a useful adjunctive treatment to medications in elderly treatment-resistant depressed patients. This study contributes to the existing evidence on the antidepressant effect of rTMS in the treatment of depression in patients over 60 years of age. PMID:23723700

  12. POSSIBLE MECHANISMS UNDERLYING THE THERAPEUTIC EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION

    Directory of Open Access Journals (Sweden)

    Alexander eChervyakov

    2015-06-01

    Full Text Available Transcranial magnetic stimulation (TMS is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation (LTP and long-term depression (LTD. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor (BDNF concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals. It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  13. Coil optimisation for transcranial magnetic stimulation in realistic head geometry.

    Science.gov (United States)

    Koponen, Lari M; Nieminen, Jaakko O; Mutanen, Tuomas P; Stenroos, Matti; Ilmoniemi, Risto J

    Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation

    Science.gov (United States)

    Chervyakov, Alexander V.; Chernyavsky, Andrey Yu.; Sinitsyn, Dmitry O.; Piradov, Michael A.

    2015-01-01

    Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson’s disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols. PMID:26136672

  15. Online transcranial Doppler ultrasonographic control of an onscreen keyboard

    Directory of Open Access Journals (Sweden)

    Jie eLu

    2014-04-01

    Full Text Available Brain-computer interface (BCI systems exploit brain activity for generating a control command and may be used by individuals with severe motor disabilities as an alternative means of communication. An emerging brain monitoring modality for BCI development is transcranial Doppler ultrasonography (TCD, which facilitates the tracking of cerebral blood flow velocities associated with mental tasks. However, TCD-BCI studies to date have exclusively been offline. The feasibility of a TCD-based BCI system hinges on its online performance. In this paper, an online TCD-BCI system was implemented, bilaterally tracking blood flow velocities in the middle cerebral arteries for system-paced control of a scanning keyboard. Target letters or words were selected by repetitively rehearsing the spelling while imagining the writing of the intended word, a left-lateralized task. Undesired letters or words were bypassed by performing visual tracking, a non-lateralized task. The keyboard scanning period was 15s. With 10 able-bodied right-handed young adults, the two mental tasks were differentiated online using a Naïve Bayes classification algorithm and a set of time-domain, user-dependent features. The system achieved an average specificity and sensitivity of 81.44 ± 8.35% and 82.30 ± 7.39%, respectively. The level of agreement between the intended and machine-predicted selections was moderate (=0.60. The average information transfer rate was 0.87 bits/min with an average throughput of 0.31 ± 0.12 character/min. These findings suggest that an online TCD-BCI can achieve reasonable accuracies with an intuitive language task, but with modest throughput. Future interface and signal classification enhancements are required to improve communication rate.

  16. Transcranial magnetic stimulation for treating depression in elderly patients

    Directory of Open Access Journals (Sweden)

    Hizli Sayar G

    2013-04-01

    Full Text Available Gokben Hizli Sayar, Eylem Ozten, Oguz Tan, Nevzat Tarhan Uskudar University, Neuropsychiatry Istanbul Hospital, Department of Psychiatry, Istanbul, Turkey Purpose: The aim of the study reported here was to examine the safety and effectiveness of high-frequency repetitive transcranial magnetic stimulation (rTMS in elderly patients with depression. Patients and methods: Sixty-five depressed elderly patients received rTMS over their left prefrontal cortex for 6 days per week, from Monday to Saturday, for 3 weeks. The rTMS intensity was set at 100% of the motor threshold and 25 Hz stimulation with a duration of 2 seconds and was delivered 20 times at 30-second intervals. A full course comprised an average of 1000 magnetic pulses. Depression was rated using the Hamilton Depression Rating Scale (HAMD before and after treatment. Response was defined as a 50% reduction in HAMD score. Patients with HAMD scores < 8 were considered to be in remission. Results: The mean HAMD score for the study group decreased from 21.94 ± 5.12 before treatment to 11.28 ± 4.56 after rTMS (P < 0.001. Following the treatment period, 58.46% of the study group demonstrated significant mood improvement, as indexed by a reduction of more than 50% on the HAMD score. Nineteen of these 38 patients attained remission (HAMD score < 8, while 41.54% of all study patients achieved a partial response. None of the patients had a worsened HAMD score at the end of the treatment. Treatment was generally well tolerated and no serious adverse effects were reported. Conclusion: In this study, rTMS was found to be a safe, well-tolerated treatment, and a useful adjunctive treatment to medications in elderly treatment-resistant depressed patients. This study contributes to the existing evidence on the antidepressant effect of rTMS in the treatment of depression in patients over 60 years of age. Keywords: high-frequency repetitive TMS, rTMS, Hamilton Depression Rating Scale

  17. Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study.

    Science.gov (United States)

    Terraneo, Alberto; Leggio, Lorenzo; Saladini, Marina; Ermani, Mario; Bonci, Antonello; Gallimberti, Luigi

    2016-01-01

    Recent animal studies demonstrate that compulsive cocaine seeking strongly reduces prelimbic frontal cortex activity, while optogenetic stimulation of this brain area significantly inhibits compulsive cocaine seeking, providing a strong rationale for applying brain stimulation to reduce cocaine consumption. Thus, we employed repetitive transcranial magnetic stimulation (rTMS), to test if dorsolateral prefrontal cortex (DLPFC) stimulation might prevent cocaine use in humans. Thirty-two cocaine-addicted patients were randomly assigned to either the experimental group (rTMS) on the left DLPFC, or to a control group (pharmacological agents) during a 29-day study (Stage 1). This was followed by a 63-day follow-up (Stage 2), during which all participants were offered rTMS treatment. Amongst the patients who completed Stage 1, 16 were in the rTMS group (100%) and 13 in the control group (81%). No significant adverse events were noted. During Stage 1, there were a significantly higher number of cocaine-free urine drug tests in the rTMS group compared to control (p=0.004). Craving for cocaine was also significantly lower in the rTMS group compared to the controls (p=0.038). Out of 13 patients who completed Stage 1 in the control group, 10 patients received rTMS treatment during Stage 2 and showed significant improvement with favorable outcomes becoming comparable to those of the rTMS group. The present preliminary findings support the safety of rTMS in cocaine-addicted patients, and suggest its potential therapeutic role for rTMS-driven PFC stimulation in reducing cocaine use, providing a strong rationale for developing larger placebo-controlled studies. Trial name: Repetitive transcranial magnetic stimulation (rTMS) in cocaine abusers, URL:〈http://www.isrctn.com/ISRCTN15823943?q=&filters=&sort=&offset=8&totalResults=13530&page=1&pageSize=10&searchType=basic-search〉, ISRCTN15823943. Published by Elsevier B.V.

  18. Haben repetitive DNA-Sequenzen biologische Funktionen?

    Science.gov (United States)

    John, Maliyakal E.; Knöchel, Walter

    1983-05-01

    By DNA reassociation kinetics it is known that the eucaryotic genome consists of non-repetitive DNA, middle-repetitive DNA and highly repetitive DNA. Whereas the majority of protein-coding genes is located on non-repetitive DNA, repetitive DNA forms a constitutive part of eucaryotic DNA and its amount in most cases equals or even substantially exceeds that of non-repetitive DNA. During the past years a large body of data on repetitive DNA has accumulated and these have prompted speculations ranging from specific roles in the regulation of gene expression to that of a selfish entity with inconsequential functions. The following article summarizes recent findings on structural, transcriptional and evolutionary aspects and, although by no means being proven, some possible biological functions are discussed.

  19. Additional biological therapies for attention-deficit hyperactivity disorder: repetitive transcranical magnetic stimulation of 1 Hz helps to reduce methylphenidate

    Directory of Open Access Journals (Sweden)

    Helmut Niederhofer

    2011-12-01

    Full Text Available Excessive hyperactivity, impulsiveness and attentional difficulties characterize attentiondeficit hyperactivity disorder (ADHD. The aim of this case report is to signal the possible therapeutic effectiveness of the repetitive transcranial magnetic stimulation (rTMS. Low frequency (1Hz, 1200 stim/die for five days was applied on the impending scalp in the motor additional area of a patient suffering from combined type ADHD who received methylphenidate (MPH. We saw a significant improvement, especially according to criteria associated with hyperactivity. The improvement lasted for at least three weeks and suggested the final reduction in dosage of MPH.to 10 mg.

  20. Repetitively pulsed material testing facility

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R; Long, J.; Luce, J.; Sahlin, H.

    1975-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. Moderate scaling from existing results is sufficient to provide 2 x 10 13 n/cm 2 .s to a suitable target. The average power consumption, which has become a major issue as a result of the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed. (U.S.)

  1. Repetitively pulsed material testing facility

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R.; Long, J.; Luce, J.; Sahlin, H.

    1975-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. Moderate scaling from existing results is sufficient to provide 2 x 10 13 n/cm 2 . s to a suitable target. The average power consumption, which has become a major issue as a result of the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed

  2. Clinical Applications of Transcranial Magnetic Stimulation in Pediatric Neurology.

    Science.gov (United States)

    Narayana, Shalini; Papanicolaou, Andrew C; McGregor, Amy; Boop, Frederick A; Wheless, James W

    2015-08-01

    Noninvasive brain stimulation is now an accepted technique that is used as a diagnostic aid and in the treatment of neuropsychiatric disorders in adults, and is being increasingly used in children. In this review, we will discuss the basic principles and safety of one noninvasive brain stimulation method, transcranial magnetic stimulation. Improvements in the spatial accuracy of transcranial magnetic stimulation are described in the context of image-guided transcranial magnetic stimulation. The article describes and provides examples of the current clinical applications of transcranial magnetic stimulation in children as an aid in the diagnosis and treatment of neuropsychiatric disorders and discusses future potential applications. Transcranial magnetic stimulation is a noninvasive tool that is safe for use in children and adolescents for functional mapping and treatment, and for many children it aids in the preoperative evaluation and the risk-benefit decision making. © The Author(s) 2014.

  3. Methodological Dimensions of Transcranial Brain Stimulation with the Electrical Current in Human

    Directory of Open Access Journals (Sweden)

    Maryam Rostami

    2013-08-01

    Full Text Available Transcranial current stimulation (TCS is a neuromodulation method in which the patient is exposed to a mild electric current (direct or alternating at 1-2 mA, resulting in an increase or a decrease in the brain excitability. This modi.cation in neural activities can be used as a method for functional human brain mapping with causal inferences. This method might also facilitate the treatments of many neuropsychiatric disorders based on its inexpensive, simple, safe, noninvasive, painless, semi-focal excitatory and inhibitory effects. Given this, a comparison amongst different brain stimulation modalities has been made to determine the potential advantages of the TCS method. In addition, considerable methodological details on using TCS in basic and clinical neuroscience studies in human subjects have been introduced. Technical characteristics of TCS devices and their related accessories with regard to safety concerns have also been well articulated. Finally, some TCS application opportunities have been emphasized, including its potential use in the near future

  4. Neuroimaging Mechanisms of Therapeutic Transcranial Magnetic Stimulation for Major Depressive Disorder.

    Science.gov (United States)

    Philip, Noah S; Barredo, Jennifer; Aiken, Emily; Carpenter, Linda L

    2018-03-01

    Research into therapeutic transcranial magnetic stimulation (TMS) for major depression has dramatically increased in the last decade. Understanding the mechanism of action of TMS is crucial to improve efficacy and develop the next generation of therapeutic stimulation. Early imaging research provided initial data supportive of widely held assumptions about hypothesized inhibitory or excitatory consequences of stimulation. Early work also indicated that while TMS modulated brain activity under the stimulation site, effects at deeper regions, in particular, the subgenual anterior cingulate cortex, were associated with clinical improvement. Concordant with earlier findings, functional connectivity studies also demonstrated that clinical improvements were related to changes distal, rather than proximal, to the site of stimulation. Moreover, recent work suggests that TMS modulates and potentially normalizes functional relationships between neural networks. An important observation that emerged from this review is that similar patterns of connectivity changes are observed across studies regardless of TMS parameters. Though promising, we stress that these imaging findings must be evaluated cautiously given the widespread reliance on modest sample sizes and little implementation of statistical validation. Additional limitations included use of imaging before and after a course of TMS, which provided little insight into changes that might occur during the weeks of stimulation. Furthermore, as studies to date have focused on depression, it is unclear whether our observations were related to mechanisms of action of TMS for depression or represented broader patterns of functional brain changes associated with clinical improvement. Published by Elsevier Inc.

  5. Transcranial magnetic stimulation in developmental stuttering: Relations with previous neurophysiological research and future perspectives.

    Science.gov (United States)

    Busan, P; Battaglini, P P; Sommer, M

    2017-06-01

    Developmental stuttering (DS) is a disruption of the rhythm of speech, and affected people may be unable to execute fluent voluntary speech. There are still questions about the exact causes of DS. Evidence suggests there are differences in the structure and functioning of motor systems used for preparing, executing, and controlling motor acts, especially when they are speech related. Much research has been obtained using neuroimaging methods, ranging from functional magnetic resonance to diffusion tensor imaging and electroencephalography/magnetoencephalography. Studies using transcranial magnetic stimulation (TMS) in DS have been uncommon until recently. This is surprising considering the relationship between the functionality of the motor system and DS, and the wide use of TMS in motor-related disturbances such as Parkinson's Disease, Tourette's Syndrome, and dystonia. Consequently, TMS could shed further light on motor aspects of DS. The present work aims to investigate the use of TMS for understanding DS neural mechanisms by reviewing TMS papers in the DS field. Until now, TMS has contributed to the understanding of the excitatory/inhibitory ratio of DS motor functioning, also helping to better understand and critically review evidence about stuttering mechanisms obtained from different techniques, which allowed the investigation of cortico-basal-thalamo-cortical and white matter/connection dysfunctions. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse.

    Science.gov (United States)

    Caldeira, Vanessa; Dougherty, Kimberly J; Borgius, Lotta; Kiehn, Ole

    2017-01-27

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2 Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion.

  7. Repetitive trauma and nerve compression.

    Science.gov (United States)

    Carragee, E J; Hentz, V R

    1988-01-01

    Repetitive movement of the upper extremity, whether recreational or occupational, may result in various neuropathies, the prototype of which is the median nerve neuropathic in the carpal canal. The pathophysiology of this process is incompletely understood but likely involves both mechanical and ischemic features. Experimentally increased pressures within the carpal canal produced reproducible progressive neuropathy. Changes in vibratory (threshold-type) sensibility appears to be more sensitive than two-point (innervation density-type) sensibility. The specific occupational etiologies of carpal neuropathy are obscured by methodologic and sociological difficulties, but clearly some occupations have high incidences of CTS. History and physical examination are usually sufficient for the diagnosis, but diagnostic assistance when required is available through electrophysiological testing, CT scanning, and possibly MRI. Each of these tests has limitations in both sensitivity and specificity. Treatment by usual conservative means should be combined with rest from possible provocative activities. Surgical release of the carpal canal is helpful in patients failing conservative therapy. Occupational modifications are important in both treatment and prevention of median neuropathy due to repetitive trauma.

  8. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.

    Science.gov (United States)

    Sonsalla, P K; Nicklas, W J; Heikkila, R E

    1989-01-20

    The systemic administration of either methamphetamine or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to experimental animals produces degenerative changes in nigrostriatal dopaminergic neurons or their axon terminals. This study was conducted to determine if excitatory amino acids, which appear to be involved in various neurodegenerative disorders, might also contribute to the dopaminergic neurotoxicity produced in mice by either methamphetamine or MPTP. MK-801, phencyclidine, and ketamine, noncompetitive antagonists of one subtype of excitatory amino acid receptor, the N-methyl-D-aspartate receptor, provided substantial protection against neurotoxicity produced by methamphetamine but not that produced by MPTP. These findings indicate that excitatory amino acids play an important role in the nigrostriatal dopaminergic damage induced by methamphetamine.

  9. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse

    DEFF Research Database (Denmark)

    Caldeira, Vanessa; Dougherty, Kimberly J.; Borgius, Lotta

    2017-01-01

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we...... than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion....... use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype...

  10. Bistability Analysis of Excitatory-Inhibitory Neural Networks in Limited-Sustained-Activity Regime

    International Nuclear Information System (INIS)

    Ni Yun; Wu Liang; Wu Dan; Zhu Shiqun

    2011-01-01

    Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons. The standard stability analysis is performed on the two metastable states separately. Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically, leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors. These results may suggest one possible neuronal information processing by only tuning time scales. (interdisciplinary physics and related areas of science and technology)

  11. The importance of the excitatory amino acid transporter 3 (EAAT3)

    DEFF Research Database (Denmark)

    E. Bjørn-Yoshimoto, Walden; Underhill, Suzanne M.

    2016-01-01

    Abstract The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localiza......Abstract The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post...

  12. A Nonword Repetition Task for Speakers with Misarticulations: The Syllable Repetition Task (SRT)

    Science.gov (United States)

    Shriberg, Lawrence D.; Lohmeier, Heather L.; Campbell, Thomas F.; Dollaghan, Christine A.; Green, Jordan R.; Moore, Christopher A.

    2009-01-01

    Purpose: Conceptual and methodological confounds occur when non(sense) word repetition tasks are administered to speakers who do not have the target speech sounds in their phonetic inventories or who habitually misarticulate targeted speech sounds. In this article, the authors (a) describe a nonword repetition task, the Syllable Repetition Task…

  13. The distribution of excitatory amino acid receptors on acutely dissociated dorsal horn neurons from postnatal rats.

    Science.gov (United States)

    Arancio, O; Yoshimura, M; Murase, K; MacDermott, A B

    1993-01-01

    Excitatory amino acid receptor distribution was mapped on acutely dissociated neurons from postnatal rat spinal cord dorsal horn. N-methyl D-aspartate, quisqualate and kainate were applied to multiple locations along the somal and dendritic surfaces of voltage-clamped neurons by means of a pressure application system. To partially compensate for the decrement of response amplitude due to current loss between the site of activation on the dendrite and the recording electrode at the soma, a solution containing 0.15 M KCl was applied on the cell bodies and dendrites of some cells to estimate an empirical length constant. In the majority of the cells tested, the dendritic membrane had regions of higher sensitivity to excitatory amino acid agonists than the somatic membrane, with dendritic response amplitudes reaching more than seven times those at the cell body. A comparison of the relative changes in sensitivity between each combination of two of the three excitatory amino acid agonists along the same dendrite showed different patterns of agonist sensitivity along the dendrite in the majority of the cells. These data were obtained from dorsal horn neurons that had developed and formed synaptic connections in vivo. They demonstrate that in contrast to observations made on ventral horn neurons, receptor density for all the excitatory amino acid receptors on dorsal horn neurons, including the N-methyl-D-aspartate receptor, are generally higher on the dendrites than on the soma. Further, these results are similar to those obtained from dorsal horn neurons grown in culture.

  14. Voluntary nicotine consumption triggers in vivo potentiation of cortical excitatory drives to midbrain dopaminergic neurons

    NARCIS (Netherlands)

    Caillé, S.; Guillem, K.; Cador, M.; Manzoni, O.; Georges, F.

    2009-01-01

    Active response to either natural or pharmacological reward causes synaptic modifications to excitatory synapses on dopamine (DA) neurons of the ventral tegmental area (VTA). Here, we examine these modifications using nicotine, the main addictive component of tobacco, which is a potent regulator of

  15. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures

    Science.gov (United States)

    Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.

    2014-01-01

    Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563

  16. The Developmental Trajectory of Nonword Repetition

    Science.gov (United States)

    Chiat, Shula

    2006-01-01

    In line with the original presentation of nonword repetition as a measure of phonological short-term memory (Gathercole & Baddeley, 1989), the theoretical account Gathercole (2006) puts forward in her Keynote Article focuses on phonological storage as the key capacity common to nonword repetition and vocabulary acquisition. However, evidence that…

  17. Grade Repetition in Queensland State Prep Classes

    Science.gov (United States)

    Anderson, Robyn

    2012-01-01

    The current study considers grade repetition rates in the early years of schooling in Queensland state schools with specific focus on the pre-schooling year, Prep. In particular, it provides empirical evidence of grade repetition in Queensland state schools along with groups of students who are more often repeated. At the same time, much of the…

  18. REPETITIVE STRENGTH AMONG STUDENTS OF AGE 14

    Directory of Open Access Journals (Sweden)

    Besim Halilaj

    2014-06-01

    Full Text Available The study involved 82 male students of the primary school “Qamil Ilazi” in Kaçanik-Kosovo.Four movement tests, which test the repetitive strength, were conducted: 1. Pull-up, 2. Sit-Up, 3. Back extension, 4. Push-up.The main goal of this study was to verify the actual motor status, respectively the component of the repetitive strength among students of age 14 of masculine gender. In addition to verifying the actual motor status, another objective was to verify the relationship between the variables employed.Basic statistical parameters show a distribution which is not significantly different from the normal distribution, yielded highly correlative values among the repetitive strength tests. Space factorization resulted in extracting two latent squares defined as repetitive strength of arms factor, and repetitive strength of body factor.

  19. Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks.

    Science.gov (United States)

    D'Arcangelo, G; Panuccio, G; Tancredi, V; Avoli, M

    2005-01-01

    Deep-brain electrical or transcranial magnetic stimulation may represent a therapeutic tool for controlling seizures in patients presenting with epileptic disorders resistant to antiepileptic drugs. In keeping with this clinical evidence, we have reported that repetitive electrical stimuli delivered at approximately 1 Hz in mouse hippocampus-entorhinal cortex (EC) slices depress the EC ability to generate ictal activity induced by the application of 4-aminopyridine (4AP) or Mg(2+)-free medium (Barbarosie, M., Avoli, M., 1997. CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. J. Neurosci. 17, 9308-9314.). Here, we confirmed a similar control mechanism in rat brain slices analyzed with field potential recordings during 4AP (50 microM) treatment. In addition, we used intrinsic optical signal (IOS) recordings to quantify the intensity and spatial characteristics of this inhibitory influence. IOSs reflect the changes in light transmittance throughout the entire extent of the slice, and are thus reliable markers of limbic network epileptiform synchronization. First, we found that in the presence of 4AP, the IOS increases, induced by a train of electrical stimuli (10 Hz for 1 s) or by recurrent, single-shock stimulation delivered at 0.05 Hz in the deep EC layers, are reduced in intensity and area size by low-frequency (1 Hz), repetitive stimulation of the subiculum; these effects were observed in all limbic areas contained in the slice. Second, by testing the effects induced by repetitive subicular stimulation at 0.2-10 Hz, we identified maximal efficacy when repetitive stimuli are delivered at 1 Hz. Finally, we discovered that similar, but slightly less pronounced, inhibitory effects occur when repetitive stimuli at 1 Hz are delivered in the EC, suggesting that the reduction of IOSs seen during repetitive stimulation is pathway dependent as well as activity dependent. Thus, the activation of limbic networks at low frequency

  20. Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making.

    Directory of Open Access Journals (Sweden)

    Ritwik K Niyogi

    Full Text Available Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the

  1. Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn.

    Science.gov (United States)

    Gutierrez-Mecinas, Maria; Watanabe, Masahiko; Todd, Andrew J

    2014-12-11

    Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.

  2. Do personality traits predict individual differences in excitatory and inhibitory learning?

    Directory of Open Access Journals (Sweden)

    Zhimin eHe

    2013-05-01

    Full Text Available Conditioned inhibition (CI is demonstrated in classical conditioning when a stimulus is used to signal the omission of an otherwise expected outcome. This basic learning ability is involved in a wide range of normal behaviour - and thus its disruption could produce a correspondingly wide range of behavioural deficits. The present study employed a computer-based task to measure conditioned excitation and inhibition in the same discrimination procedure. Conditioned inhibition by summation test was clearly demonstrated. Additionally summary measures of excitatory and inhibitory learning (difference scores were calculated in order to explore how performance related to individual differences in a large sample of normal participants (n=176 following exclusion of those not meeting the basic learning criterion. The individual difference measures selected derive from two biologically-based personality theories, Gray’s reinforcement sensitivity theory (1982 and Eysenck’s psychoticism, extraversion and neuroticism theory (1991. Following the behavioural tasks, participants completed the behavioural inhibition system/behavioural activation system scales (BIS/BAS and the Eysenck personality questionnaire revised short scale (EPQ-RS. Analyses of the relationship between scores on each of the scales and summary measures of excitatory and inhibitory learning suggested that those with higher BAS (specifically the drive sub-scale and higher EPQ-RS neuroticism showed reduced levels of excitatory conditioning. Inhibitory conditioning was similarly attenuated in those with higher EPQ-RS neuroticism, as well as in those with higher BIS scores. Thus the findings are consistent with higher levels of neuroticism being accompanied by generally impaired associative learning, both inhibitory and excitatory. There was also evidence for some dissociation in the effects of behavioural activation and behavioural inhibition on excitatory and inhibitory learning respectively.

  3. Trials of Transcranial Stimulation for the Treatment of Parkinson's Disease

    National Research Council Canada - National Science Library

    Hallett, Mark; Lomarev, Mikhail P; Richardson, Sarah P; Wassermann, Eric; Bara, William; Lopez, Grisel

    2007-01-01

    During the first year of the study, we have been mainly working on the protocol "Transcranial Electrical Polarization for the Treatment of Bradykinesia and Rigidity in Patients with Parkinson's Disease...

  4. Transcranial Direct Current Stimulation Improves Audioverbal Memory in Stroke Patients.

    Science.gov (United States)

    Kazuta, Toshinari; Takeda, Kotaro; Osu, Rieko; Tanaka, Satoshi; Oishi, Ayako; Kondo, Kunitsugu; Liu, Meigen

    2017-08-01

    The aim of this study was to investigate whether anodal transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance in stroke patients. Twelve stroke patients with audioverbal memory impairment participated in a single-masked, crossover, and sham-controlled experiment. The anodal or sham transcranial direct current stimulation was applied during the Rey Auditory Verbal Learning Test, which evaluates the ability to recall a list of 15 heard words over five trials. The number of correctly recalled words was compared between the anodal and sham conditions and the influence of transcranial direct current stimulation on serial position effect of the 15 words was also examined. The increase in the number of correctly recalled words from the first to the fifth trial was significantly greater in the anodal condition than in the sham condition (P transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance and induced the primacy effect in stroke patients.

  5. Transcranial Doppler ultrasound and cerebral angiography - alternative or complementary

    International Nuclear Information System (INIS)

    Bockenheimer, S.; Lorey, N.

    1985-01-01

    Transcranial Doppler ultrasound is a noninvasive method of recording the flow velocity of larger intracranial vessels. The impact on diagnosis of cerebravascular occlusive disease is not yet evaluated. We present 15 patients, age range 39-73 years, who suffered from completed stroke. The findings of transcranial Doppler ultrasound and of cerebral angiography are presented. The value of both methods in treatment strategy is discussed. (orig.) [de

  6. Brain signal complexity rises with repetition suppression in visual learning.

    Science.gov (United States)

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual

  7. Transcranial electrostimulation in patients with alcoholic encephalopathy

    Directory of Open Access Journals (Sweden)

    Barylnik Yu.B.

    2010-09-01

    Full Text Available The method of transcranial electrostimulation (TES was used for treating patients with alcoholic encephalopathy against the background of the basic treatment, which includes nootropics, normotimics, soporifics, over-all strengthening therapy and other devices. The course of treatment consisted of 10 daily procedures lasting for 30 minutes. The TES influence was evaluated according to the clinical state, the neurologic status, including EEG (electroencephalogram, the psychometric scales were also used for evaluating the manifestation of depression, anxiety and working memory in comparison with appropriate indices in the control group of patients, who were being treated by the traditional method. TES led to normalization of health state, neurologic status and vegetative innervation, the reduction in pathologic inclination, which corresponded to general improvement of the state of patients, EEG indices and psychometric scales

  8. Dosimetry of typical transcranial magnetic stimulation devices

    Science.gov (United States)

    Lu, Mai; Ueno, Shoogo

    2010-05-01

    The therapeutic staff using transcranial magnetic stimulation (TMS) devices could be exposed to magnetic pulses. In this paper, dependence of induced currents in real human man model on different coil shapes, distance between the coil and man model as well as the rotation of the coil in space have been investigated by employing impedance method. It was found that the figure-of-eight coil has less leakage magnetic field and low current density induced in the body compared with the round coil. The TMS power supply cables play an important role in the induced current density in human body. The induced current density in TMS operator decreased as the coil rotates from parallel position to perpendicular position. Our present study shows that TMS operator should stand at least 110 cm apart from the coil.

  9. Transcranial alternating current stimulation (tACS

    Directory of Open Access Journals (Sweden)

    Andrea eAntal

    2013-06-01

    Full Text Available Transcranial alternating current stimulation (tACS seems likely to open a new era of the field of noninvasive electrical stimulation of the human brain by directly interfering with cortical rhythms. It is expected to synchronize (by one single resonance frequency or desynchronize (e.g. by the application of several frequencies cortical oscillations. If applied long enough it may cause neuroplastic effects. In the theta range it may improve cognition when applied in phase. Alpha rhythms could improve motor performance, whereas beta intrusion may deteriorate them. TACS with both alpha and beta frequencies has a high likelihood to induce retinal phosphenes. Gamma intrusion can possibly interfere with attention. Stimulation in the ripple range induces intensity dependent inhibition or excitation in the motor cortex most likely by entrainment of neuronal networks, whereas stimulation in the low kHz range induces excitation by neuronal membrane interference. TACS in the 200 kHz range may have a potential in oncology.

  10. Transcranial Direct Current Stimulation in Epilepsy.

    Science.gov (United States)

    San-Juan, Daniel; Morales-Quezada, León; Orozco Garduño, Adolfo Josué; Alonso-Vanegas, Mario; González-Aragón, Maricarmen Fernández; Espinoza López, Dulce Anabel; Vázquez Gregorio, Rafael; Anschel, David J; Fregni, Felipe

    2015-01-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation therapy in epilepsy with conflicting results in terms of efficacy and safety. Review the literature about the efficacy and safety of tDCS in epilepsy in humans and animals. We searched studies in PubMed, MedLine, Scopus, Web of Science and Google Scholar (January 1969 to October 2013) using the keywords 'transcranial direct current stimulation' or 'tDCS' or 'brain polarization' or 'galvanic stimulation' and 'epilepsy' in animals and humans. Original articles that reported tDCS safety and efficacy in epileptic animals or humans were included. Four review authors independently selected the studies, extracted data and assessed the methodological quality of the studies using the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions, PRISMA guidelines and Jadad Scale. A meta-analysis was not possible due to methodological, clinical and statistical heterogeneity of included studies. We analyzed 9 articles with different methodologies (3 animals/6 humans) with a total of 174 stimulated individuals; 109 animals and 65 humans. In vivo and in vitro animal studies showed that direct current stimulation can successfully induce suppression of epileptiform activity without neurological injury and 4/6 (67%) clinical studies showed an effective decrease in epileptic seizures and 5/6 (83%) reduction of inter-ictal epileptiform activity. All patients tolerated tDCS well. tDCS trials have demonstrated preliminary safety and efficacy in animals and patients with epilepsy. Further larger studies are needed to define the best stimulation protocols and long-term follow-up. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Subjective duration distortions mirror neural repetition suppression.

    Science.gov (United States)

    Pariyadath, Vani; Eagleman, David M

    2012-01-01

    Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression. Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli) followed by a line presented at a different orientation (oddball stimulus). We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials. Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.

  12. Can we use neurocognition to predict repetition of self-harm, and why might this be clinically useful? A perspective.

    Directory of Open Access Journals (Sweden)

    Angharad Natalie De Cates

    2016-01-01

    Full Text Available Over 800,000 people die by suicide each year globally, with non-fatal self-harm 20 times more common. With each episode of self-harm, the risks of future self-harm and suicide increase, as well as personal and healthcare costs. Therefore, early delineation of those at high-risk of future self-harm is important. Historically, research has focused on clinical and demographic factors, but risk assessments based on these have low sensitivity to predict repetition. Various neurocognitive factors have been associated with self-harming behavior, but it is less certain if we can use these factors clinically (i as risk markers to predict future self-harm and (ii to become therapeutic targets for interventions.Recent systematic reviews and meta-analyses of behavioral tasks and fMRI studies point to an emerging hypothesis for neurocognition in self-harm: an underactive pre-frontal cortex is unable to respond appropriately to non-emotional stimuli, or inhibit a hyperactive emotionally- / threat-driven limbic system. However, there is almost no imaging data examining repetition of self-harm. Extrapolating from the non-repetition data, there may be several potential neurocognitive targets for interventions to prevent repeat self-harm: cognitive training; pharmacological regimes to promote non-emotional neurocognition; or other techniques, such as repetitive transcranial magnetic stimulation (rTMS. Hence, there is an urgent need for imaging studies examining repetition and to test specific hypotheses. Until we investigate the functional neurocognitive basis underlying repetition of self-harm in a systematic manner using second-generational imaging techniques, we will be unable to inform third-generational imaging and potential future clinical applications.

  13. Intermittent theta-burst transcranial magnetic stimulation for autism spectrum disorder: an open-label pilot study

    Directory of Open Access Journals (Sweden)

    Caio Abujadi

    2017-12-01

    Full Text Available Objective: Theta-burst stimulation (TBS modulates synaptic plasticity more efficiently than standard repetitive transcranial magnetic stimulation delivery and may be a promising modality for neuropsychiatric disorders such as autism spectrum disorder (ASD. At present there are few effective interventions for prefrontal cortex dysfunction in ASD. We report on an open-label, pilot study of intermittent TBS (iTBS to target executive function deficits and restricted, repetitive behaviors in male children and adolescents with ASD. Methods: Ten right-handed, male participants, aged 9-17 years with ASD were enrolled in an open-label trial of iTBS treatment. Fifteen sessions of neuronavigated iTBS at 100% motor threshold targeting the right dorsolateral prefrontal cortex were delivered over 3 weeks. Results: Parent report scores on the Repetitive Behavior Scale Revised and the Yale-Brown Obsessive Compulsive Scale demonstrated improvements with iTBS treatment. Participants demonstrated improvements in perseverative errors on the Wisconsin Card Sorting Test and total time for the Stroop test. The iTBS treatments were well tolerated with no serious adverse effects. Conclusion: These preliminary results suggest that further controlled interventional studies of iTBS for ASD are warranted.

  14. Intermittent theta-burst transcranial magnetic stimulation for autism spectrum disorder: an open-label pilot study.

    Science.gov (United States)

    Abujadi, Caio; Croarkin, Paul E; Bellini, Bianca B; Brentani, Helena; Marcolin, Marco A

    2017-12-11

    Theta-burst stimulation (TBS) modulates synaptic plasticity more efficiently than standard repetitive transcranial magnetic stimulation delivery and may be a promising modality for neuropsychiatric disorders such as autism spectrum disorder (ASD). At present there are few effective interventions for prefrontal cortex dysfunction in ASD. We report on an open-label, pilot study of intermittent TBS (iTBS) to target executive function deficits and restricted, repetitive behaviors in male children and adolescents with ASD. Ten right-handed, male participants, aged 9-17 years with ASD were enrolled in an open-label trial of iTBS treatment. Fifteen sessions of neuronavigated iTBS at 100% motor threshold targeting the right dorsolateral prefrontal cortex were delivered over 3 weeks. Parent report scores on the Repetitive Behavior Scale Revised and the Yale-Brown Obsessive Compulsive Scale demonstrated improvements with iTBS treatment. Participants demonstrated improvements in perseverative errors on the Wisconsin Card Sorting Test and total time for the Stroop test. The iTBS treatments were well tolerated with no serious adverse effects. These preliminary results suggest that further controlled interventional studies of iTBS for ASD are warranted.

  15. Schaffer collateral inputs to CA1 excitatory and inhibitory neurons follow different connectivity rules.

    Science.gov (United States)

    Kwon, Osung; Feng, Linqing; Druckmann, Shaul; Kim, Jinhyun

    2018-05-04

    Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information processing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3-CA1 pyramidal cells (PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably, application of Peters' Rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organizations of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the development and functions of neural networks. SIGNIFICANCE STATEMENT Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here, using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presynaptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons follow

  16. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation. PMID:25624815

  17. Repetitive Bibliographical Information in Relational Databases.

    Science.gov (United States)

    Brooks, Terrence A.

    1988-01-01

    Proposes a solution to the problem of loading repetitive bibliographic information in a microcomputer-based relational database management system. The alternative design described is based on a representational redundancy design and normalization theory. (12 references) (Author/CLB)

  18. Dexmedetomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Sharp, Douglas B; Wang, Xin; Mendelowitz, David

    2014-07-29

    Dexmedetomidine, an α2 adrenergic agonist, is a useful sedative but can also cause significant bradycardia. This decrease in heart rate may be due to decreased central sympathetic output as well as increased parasympathetic output from brainstem cardiac vagal neurons. In this study, using whole cell voltage clamp methodology, the actions of dexmedetomidine on excitatory glutamatergic and inhibitory GABAergic and glycinergic neurotransmission to parasympathetic cardiac vagal neurons in the rat nucleus ambiguus was determined. The results indicate that dexmedetomidine decreases both GABAergic and glycinergic inhibitory input to cardiac vagal neurons, with no significant effect on excitatory input. These results provide a mechanism for dexmedetomidine induced bradycardia and has implications for the management of this potentially harmful side effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex

    Directory of Open Access Journals (Sweden)

    Yan-he Ju

    2016-01-01

    Full Text Available Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15-25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function.

  20. Dynamics of excitatory and inhibitory networks are differentially altered by selective attention

    Science.gov (United States)

    Snyder, Adam C.; Morais, Michael J.

    2016-01-01

    Inhibition and excitation form two fundamental modes of neuronal interaction, yet we understand relatively little about their distinct roles in service of perceptual and cognitive processes. We developed a multidimensional waveform analysis to identify fast-spiking (putative inhibitory) and regular-spiking (putative excitatory) neurons in vivo and used this method to analyze how attention affects these two cell classes in visual area V4 of the extrastriate cortex of rhesus macaques. We found that putative inhibitory neurons had both greater increases in firing rate and decreases in correlated variability with attention compared with putative excitatory neurons. Moreover, the time course of attention effects for putative inhibitory neurons more closely tracked the temporal statistics of target probability in our task. Finally, the session-to-session variability in a behavioral measure of attention covaried with the magnitude of this effect. Together, these results suggest that selective targeting of inhibitory neurons and networks is a critical mechanism for attentional modulation. PMID:27466133

  1. Transcranial Duplex Sonography Predicts Outcome following an Intracerebral Hemorrhage.

    Science.gov (United States)

    Camps-Renom, P; Méndez, J; Granell, E; Casoni, F; Prats-Sánchez, L; Martínez-Domeño, A; Guisado-Alonso, D; Martí-Fàbregas, J; Delgado-Mederos, R

    2017-08-01

    Several radiologic features such as hematoma volume are related to poor outcome following an intracerebral hemorrhage and can be measured with transcranial duplex sonography. We sought to determine the prognostic value of transcranial duplex sonography in patients with intracerebral hemorrhage. We conducted a prospective study of patients diagnosed with spontaneous intracerebral hemorrhage. Transcranial duplex sonography examinations were performed within 2 hours of baseline CT, and we recorded the following variables: hematoma volume, midline shift, third ventricle and lateral ventricle diameters, and the pulsatility index in both MCAs. We correlated these data with the CT scans and assessed the prognostic value of the transcranial duplex sonography measurements. We assessed early neurologic deterioration during hospitalization and mortality at 1-month follow-up. We included 35 patients with a mean age of 72.2 ± 12.8 years. Median baseline hematoma volume was 9.85 mL (interquartile range, 2.74-68.29 mL). We found good agreement and excellent correlation between transcranial duplex sonography and CT when measuring hematoma volume ( r = 0.791; P duplex sonography measurements showed that hematoma volume was an independent predictor of early neurologic deterioration (OR, 1.078; 95% CI, 1.023-1.135) and mortality (OR, 1.089; 95% CI, 1.020-1.160). A second regression analysis with CT variables also demonstrated that hematoma volume was associated with early neurologic deterioration and mortality. When we compared the rating operation curves of both models, their predictive power was similar. Transcranial duplex sonography showed an excellent correlation with CT in assessing hematoma volume and midline shift in patients with intracerebral hemorrhage. Hematoma volume measured with transcranial duplex sonography was an independent predictor of poor outcome. © 2017 by American Journal of Neuroradiology.

  2. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models

    Directory of Open Access Journals (Sweden)

    Cheryl L Gatto

    2010-06-01

    Full Text Available Proper brain function requires stringent balance of excitatory and inhibitory synapse formation during neural circuit assembly. Mutation of genes that normally sculpt and maintain this balance results in severe dysfunction, causing neurodevelopmental disorders including autism, epilepsy and Rett syndrome. Such mutations may result in defective architectural structuring of synaptic connections, molecular assembly of synapses and/or functional synaptogenesis. The affected genes often encode synaptic components directly, but also include regulators that secondarily mediate the synthesis or assembly of synaptic proteins. The prime example is Fragile X syndrome (FXS, the leading heritable cause of both intellectual disability and autism spectrum disorders. FXS results from loss of mRNA-binding FMRP, which regulates synaptic transcript trafficking, stability and translation in activity-dependent synaptogenesis and plasticity mechanisms. Genetic models of FXS exhibit striking excitatory and inhibitory synapse imbalance, associated with impaired cognitive and social interaction behaviors. Downstream of translation control, a number of specific synaptic proteins regulate excitatory versus inhibitory synaptogenesis, independently or combinatorially, and loss of these proteins is also linked to disrupted neurodevelopment. The current effort is to define the cascade of events linking transcription, translation and the role of specific synaptic proteins in the maintenance of excitatory versus inhibitory synapses during neural circuit formation. This focus includes mechanisms that fine-tune excitation and inhibition during the refinement of functional synaptic circuits, and later modulate this balance throughout life. The use of powerful new genetic models has begun to shed light on the mechanistic bases of excitation/inhibition imbalance for a range of neurodevelopmental disease states.

  3. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices.

    Science.gov (United States)

    Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen

    2013-12-15

    To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. Copyright © 2013 Wiley Periodicals, Inc.

  4. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Directory of Open Access Journals (Sweden)

    Gregory R Rompala

    Full Text Available Pharmacological and genetic studies support a role for NMDA receptor (NMDAR hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1 deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice, in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior. Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  5. Astrocytic energetics during excitatory neurotransmission: What are contributions of glutamate oxidation and glycolysis?

    OpenAIRE

    Dienel, Gerald A.

    2013-01-01

    Astrocytic energetics of excitatory neurotransmission is controversial due to discrepant findings in different experimental systems in vitro and in vivo. The energy requirements of glutamate uptake are believed by some researchers to be satisfied by glycolysis coupled with shuttling of lactate to neurons for oxidation. However, astrocytes increase glycogenolysis and oxidative metabolism during sensory stimulation in vivo, indicating that other sources of energy are used by astrocytes during b...

  6. Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model.

    Science.gov (United States)

    Patrich, Eti; Piontkewitz, Yael; Peretz, Asher; Weiner, Ina; Attali, Bernard

    2016-01-01

    Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    Science.gov (United States)

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  8. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Science.gov (United States)

    Rompala, Gregory R; Zsiros, Veronika; Zhang, Shuqin; Kolata, Stefan M; Nakazawa, Kazu

    2013-01-01

    Pharmacological and genetic studies support a role for NMDA receptor (NMDAR) hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1) deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice), in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior). Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  9. Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms

    OpenAIRE

    Ting, Jonathan T.; Kelley, Brooke G.; Lambert, Talley J.; Cook, David G.; Sullivan, Jane M.

    2006-01-01

    Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated β-amyloid peptide (Aβ) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease. Here we verify that APP up-regulation leads to depression of transm...

  10. Document retrieval on repetitive string collections.

    Science.gov (United States)

    Gagie, Travis; Hartikainen, Aleksi; Karhu, Kalle; Kärkkäinen, Juha; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2017-01-01

    Most of the fastest-growing string collections today are repetitive, that is, most of the constituent documents are similar to many others. As these collections keep growing, a key approach to handling them is to exploit their repetitiveness, which can reduce their space usage by orders of magnitude. We study the problem of indexing repetitive string collections in order to perform efficient document retrieval operations on them. Document retrieval problems are routinely solved by search engines on large natural language collections, but the techniques are less developed on generic string collections. The case of repetitive string collections is even less understood, and there are very few existing solutions. We develop two novel ideas, interleaved LCPs and precomputed document lists , that yield highly compressed indexes solving the problem of document listing (find all the documents where a string appears), top- k document retrieval (find the k documents where a string appears most often), and document counting (count the number of documents where a string appears). We also show that a classical data structure supporting the latter query becomes highly compressible on repetitive data. Finally, we show how the tools we developed can be combined to solve ranked conjunctive and disjunctive multi-term queries under the simple [Formula: see text] model of relevance. We thoroughly evaluate the resulting techniques in various real-life repetitiveness scenarios, and recommend the best choices for each case.

  11. Modulating Memory Performance in Healthy Subjects with Transcranial Direct Current Stimulation Over the Right Dorsolateral Prefrontal Cortex.

    Science.gov (United States)

    Smirni, Daniela; Turriziani, Patrizia; Mangano, Giuseppa Renata; Cipolotti, Lisa; Oliveri, Massimiliano

    2015-01-01

    The role of the Dorsolateral Prefrontal Cortex (DLPFC) in recognition memory has been well documented in lesion, neuroimaging and repetitive Transcranial Magnetic Stimulation (rTMS) studies. The aim of the present study was to investigate the effects of transcranial Direct Current Stimulation (tDCS) over the left and the right DLPFC during the delay interval of a non-verbal recognition memory task. 36 right-handed young healthy subjects participated in the study. The experimental task was an Italian version of Recognition Memory Test for unknown faces. Study included two experiments: in a first experiment, each subject underwent one session of sham tDCS and one session of left or right cathodal tDCS; in a second experiment each subject underwent one session of sham tDCS and one session of left or right anodal tDCS. Cathodal tDCS over the right DLPFC significantly improved non verbal recognition memory performance, while cathodal tDCS over the left DLPFC had no effect. Anodal tDCS of both the left and right DLPFC did not modify non verbal recognition memory performance. Complementing the majority of previous studies, reporting long term memory facilitations following left prefrontal anodal tDCS, the present findings show that cathodal tDCS of the right DLPFC can also improve recognition memory in healthy subjects.

  12. Transcranial Direct Current Stimulation for Treating Depression in a Patient With Right Hemispheric Dominance: A Case Study.

    Science.gov (United States)

    Shiozawa, Pedro; da Silva, Mailu Enokibara; Cordeiro, Quirino

    2015-09-01

    We report the case of a 66-year-old male patient with major depressive disorder for the last 6 months. The patient had been diagnosed with dyslexia during childhood and was left-handed. The intervention protocol consisted in 10 consecutive daily transcranial direct current stimulation sessions. However, after 5 days of stimulation, the patient presented with intensification of depressive symptoms and panic attacks. It was hypothetized that the intensification of symptoms may have been due to stimulation protocol itself. Considering the patient was left-handed and presented comorbidity with dyslexia, there was a plausible hypothesis of right hemispheric dominance. This was corroborated by the Edinburgh Handedness Scale. In fact, dyslexic patients present right hemisphere dominance more frequently. The patient also presented a single photon emission computed tomography with a hypoperfusion area over the left posterior parietal lobe. After the patients agreement, a 10-day experimental repetitive transcranial magnetic stimulation low-frequency protocol over the left dorsolateral prefrontal cortex was started to inhibit the area, which was hypothetically hyperactivated following the rationale of right dominance. The patient presented amelioration of depressive and anxious symptoms. Given the hemispheric reversal we show in the present case study, however, it seems that therapies that are beneficial to right-handers could be detrimental to left-handers.

  13. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.

    Directory of Open Access Journals (Sweden)

    Marcus eMeinzer

    2014-09-01

    Full Text Available Language facilitation by transcranial direct current stimulation (tDCS in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia. However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI, which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1 can enhance language functions.This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal and bihemispheric (dual tDCS in eighteen healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects.Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions.Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. fMRI revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in improved

  14. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.

    Science.gov (United States)

    Meinzer, Marcus; Lindenberg, Robert; Sieg, Mira M; Nachtigall, Laura; Ulm, Lena; Flöel, Agnes

    2014-01-01

    Language facilitation by transcranial direct current stimulation (tDCS) in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia). However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI), which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1) can enhance language functions. This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal) and bihemispheric (dual) tDCS in 18 healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects. Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions. Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. Functional magnetic resonance imaging revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in

  15. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Andersen, Birgit; Westlund, Barbro; Krarup, Christian

    2003-01-01

    . This points to increased probability of repetitive spinal MN activation during fatigue even if some MNs in the pool failed to discharge. Silent period duration following cortical stimulation lengthened by an average of 55 ms after the contraction and recovered within a time course similar to that of the TST......During a sustained maximal effort a progressive decline in the ability to drive motoneurones (MNs) develops. We used the recently developed triple stimulation technique (TST) to study corticospinal conduction after fatiguing exercise in healthy subjects. This method employs a collision technique...... conventional transcranial magnetic stimulation (TMS) and responses to peripheral nerve stimulation were recorded following the same fatigue protocol. The size of both the MEPs and the peripheral responses increased after the contraction and were in direct contrast to the decrease in size of the TST response...

  16. Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions

    DEFF Research Database (Denmark)

    Ward, Nick S; Bestmann, Sven; Hartwigsen, Gesa

    2010-01-01

    Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals, we applied 30 min of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate...... the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with the right or left index finger in response to a left- or right-sided target. Subjects were...... that left rPMd and SMG-AIP contribute toward dynamic control of actions and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance....

  17. Water diffusion reveals networks that modulate multiregional morphological plasticity after repetitive brain stimulation.

    Science.gov (United States)

    Abe, Mitsunari; Fukuyama, Hidenao; Mima, Tatsuya

    2014-03-25

    Repetitive brain stimulation protocols induce plasticity in the stimulated site in brain slice models. Recent evidence from network models has indicated that additional plasticity-related changes occur in nonstimulated remote regions. Despite increasing use of brain stimulation protocols in experimental and clinical settings, the neural substrates underlying the additional effects in remote regions are unknown. Diffusion-weighted MRI (DWI) probes water diffusion and can be used to estimate morphological changes in cortical tissue that occur with the induction of plasticity. Using DWI techniques, we estimated morphological changes induced by application of repetitive transcranial magnetic stimulation (rTMS) over the left primary motor cortex (M1). We found that rTMS altered water diffusion in multiple regions including the left M1. Notably, the change in water diffusion was retained longest in the left M1 and remote regions that had a correlation of baseline fluctuations in water diffusion before rTMS. We conclude that synchronization of water diffusion at rest between stimulated and remote regions ensures retention of rTMS-induced changes in water diffusion in remote regions. Synchronized fluctuations in the morphology of cortical microstructures between stimulated and remote regions might identify networks that allow retention of plasticity-related morphological changes in multiple regions after brain stimulation protocols. These results increase our understanding of the effects of brain stimulation-induced plasticity on multiregional brain networks. DWI techniques could provide a tool to evaluate treatment effects of brain stimulation protocols in patients with brain disorders.

  18. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  19. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.

    Science.gov (United States)

    Krashes, Michael J; Shah, Bhavik P; Madara, Joseph C; Olson, David P; Strochlic, David E; Garfield, Alastair S; Vong, Linh; Pei, Hongjuan; Watabe-Uchida, Mitsuko; Uchida, Naoshige; Liberles, Stephen D; Lowell, Bradford B

    2014-03-13

    Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated.

  20. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    Science.gov (United States)

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-09-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astrocytes, also mediates intercellular signaling between astrocytes and neurons in hippocampal cultures. Mechanical stimulation of astrocytes evoked Ca2+ waves mediated by the release of ATP and the activation of P2 receptors. Mechanically evoked Ca2+ waves led to decreased excitatory glutamatergic synaptic transmission in an ATP-dependent manner. Exogenous application of ATP does not affect postsynaptic glutamatergic responses but decreased presynaptic exocytotic events. Finally, we show that astrocytes exhibit spontaneous Ca2+ waves mediated by extracellular ATP and that inhibition of these Ca2+ responses enhanced excitatory glutamatergic transmission. We therefore conclude that ATP released from astrocytes exerts tonic and activity-dependent down-regulation of synaptic transmission via presynaptic mechanisms.

  1. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    Directory of Open Access Journals (Sweden)

    Jun Hu

    Full Text Available Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+, EPSC(-, and EPSC(+/- based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs, using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+ neurons, but increased it in EPSC(- neurons. Unlike EPSC(+ and EPSC(- neurons, EPSC(+/- neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/- neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  2. Glucose Rapidly Induces Different Forms of Excitatory Synaptic Plasticity in Hypothalamic POMC Neurons

    Science.gov (United States)

    Hu, Jun; Jiang, Lin; Low, Malcolm J.; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(−), and EPSC(+/−)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(−) neurons. Unlike EPSC(+) and EPSC(−) neurons, EPSC(+/−) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/−) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals. PMID:25127258

  3. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    Science.gov (United States)

    Hu, Jun; Jiang, Lin; Low, Malcolm J; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(-), and EPSC(+/-)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(-) neurons. Unlike EPSC(+) and EPSC(-) neurons, EPSC(+/-) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/-) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  4. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets.

    Science.gov (United States)

    Hong, Weizhe; Kim, Dong-Wook; Anderson, David J

    2014-09-11

    Animals display a range of innate social behaviors that play essential roles in survival and reproduction. While the medial amygdala (MeA) has been implicated in prototypic social behaviors such as aggression, the circuit-level mechanisms controlling such behaviors are not well understood. Using cell-type-specific functional manipulations, we find that distinct neuronal populations in the MeA control different social and asocial behaviors. A GABAergic subpopulation promotes aggression and two other social behaviors, while neighboring glutamatergic neurons promote repetitive self-grooming, an asocial behavior. Moreover, this glutamatergic subpopulation inhibits social interactions independently of its effect to promote self-grooming, while the GABAergic subpopulation inhibits self-grooming, even in a nonsocial context. These data suggest that social versus repetitive asocial behaviors are controlled in an antagonistic manner by inhibitory versus excitatory amygdala subpopulations, respectively. These findings provide a framework for understanding circuit-level mechanisms underlying opponency between innate behaviors, with implications for their perturbation in psychiatric disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Effects of Transcranial Direct Current Stimulation on Expression of Immediate Early Genes (IEG’s)

    Science.gov (United States)

    2015-12-01

    TRANSCRANIAL DIRECT CURRENT STIMULATION OF EXPRESSION OF IMMEDIATE EARLY GENES (IEG’S) Jessica...AND SUBTITLE Effects of Transcranial Direct Current Stimulation on Expression of Immediate Early Genes (IEG’s) 5a. CONTRACT NUMBER In-House 5b...community in better understanding what is occurring biologically during tDCS. 15. SUBJECT TERMS Transcranial direct current stimulation

  6. Modulating the brain at work using noninvasive transcranial stimulation.

    Science.gov (United States)

    McKinley, R Andy; Bridges, Nathaniel; Walters, Craig M; Nelson, Jeremy

    2012-01-02

    This paper proposes a shift in the way researchers currently view and use transcranial brain stimulation technologies. From a neuroscience perspective, the standard application of both transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) has been mainly to explore the function of various brain regions. These tools allow for noninvasive and painless modulation of cortical tissue. In the course of studying the function of an area, many studies often report enhanced performance of a task during or following the stimulation. However, little follow-up research is typically done to further explore these effects. Approaching this growing pool of cognitive neuroscience literature with a neuroergonomics mindset (i.e., studying the brain at work), the possibilities of using these stimulation techniques for more than simply investigating the function of cortical areas become evident. In this paper, we discuss how cognitive neuroscience brain stimulation studies may complement neuroergonomics research on human performance optimization. And, through this discussion, we hope to shift the mindset of viewing transcranial stimulation techniques as solely investigatory basic science tools or possible clinical therapeutic devices to viewing transcranial stimulation techniques as interventional tools to be incorporated in applied science research and systems for the augmentation and enhancement of human operator performance. Published by Elsevier Inc.

  7. Excitatory and inhibitory synaptic mechanisms at the first stage of integration in the electroreception system of the shark

    DEFF Research Database (Denmark)

    Rotem, Naama; Sestieri, Emanuel; Hounsgaard, Jørn Dybkjær

    2014-01-01

    High impulse rate in afferent nerves is a common feature in many sensory systems that serve to accommodate a wide dynamic range. However, the first stage of integration should be endowed with specific properties that enable efficient handling of the incoming information. In elasmobranches...... of this afferent pathway. We found that stimulating the afferent nerve activates a mixture of excitatory and inhibitory synapses mediated by AMPA-like and GABAA receptors, respectively. The excitatory synapses that are extremely efficient in activating the postsynaptic neurons display unusual voltage dependence......, enabling them to operate as a current source. The inhibitory input is powerful enough to completely eliminate the excitatory action of the afferent nerve but is ineffective regarding other excitatory inputs. These observations can be explained by the location and efficiency of the synapses. We conclude...

  8. Subjective duration distortions mirror neural repetition suppression.

    Directory of Open Access Journals (Sweden)

    Vani Pariyadath

    Full Text Available Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression.Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli followed by a line presented at a different orientation (oddball stimulus. We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials.Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.

  9. Transcranial direct current stimulation in psychiatric disorders

    Science.gov (United States)

    Tortella, Gabriel; Casati, Roberta; Aparicio, Luana V M; Mantovani, Antonio; Senço, Natasha; D’Urso, Giordano; Brunelin, Jerome; Guarienti, Fabiana; Selingardi, Priscila Mara Lorencini; Muszkat, Débora; Junior, Bernardo de Sampaio Pereira; Valiengo, Leandro; Moffa, Adriano H; Simis, Marcel; Borrione, Lucas; Brunoni, André R

    2015-01-01

    The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation (tDCS) has been the subject of great interest among researchers because of its easiness to use, low cost, benign profile of side effects and encouraging results of research in the field. This interest has generated several studies and randomized clinical trials, particularly in psychiatry. In this review, we provide a summary of the development of the technique and its mechanism of action as well as a review of the methodological aspects of randomized clinical trials in psychiatry, including studies in affective disorders, schizophrenia, obsessive compulsive disorder, child psychiatry and substance use disorder. Finally, we provide an overview of tDCS use in cognitive enhancement as well as a discussion regarding its clinical use and regulatory and ethical issues. Although many promising results regarding tDCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding tDCS efficacy in psychiatry. PMID:25815258

  10. Novel transcranial magnetic stimulation coil for mice

    Science.gov (United States)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  11. Numerical dosimetry of transcranial magnetic stimulation coils

    Science.gov (United States)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  12. Transcranial magnetic stimulation techniques in clinical investigation.

    Science.gov (United States)

    Currà, A; Modugno, N; Inghilleri, M; Manfredi, M; Hallett, M; Berardelli, A

    2002-12-24

    Transcranial magnetic stimulation (TMS) is a technique that can activate cortical motor areas and the corticospinal tract without causing the subject discomfort. Since TMS was introduced, numerous applications of the technique have been developed for the evaluation of neurologic diseases. Standard TMS applications (central motor conduction time, threshold and amplitude of motor evoked potentials) allow the evaluation of motor conduction in the CNS. Conduction studies provide specific information in neurologic conditions characterized by clinical and subclinical upper motor neuron involvement. In addition, they have proved useful in monitoring motor abnormalities and the recovery of motor function. TMS also gives information on the pathophysiology of the processes underlying the various clinical conditions. More complex TMS applications (paired-pulse stimulation, silent period, ipsilateral silent period, input-output curve, and evaluation of central fatigue) allow investigation into the mechanisms of diseases causing changes in the excitability of cortical motor areas. These techniques are also useful in monitoring the effects of neurotrophic drugs on cortical activity. TMS applications have an important place among the investigative tools to study patients with motor disorders.

  13. Prefronto-Cerebellar Transcranial Direct Current Stimulation Improves Sleep Quality in Euthymic Bipolar Patients: A Brief Report

    Directory of Open Access Journals (Sweden)

    Amedeo Minichino

    2014-01-01

    Full Text Available Introduction. Sleep problems are common in bipolar disorder (BD and may persist during the euthymic phase of the disease. The aim of the study was to improve sleep quality of euthymic BD patients through the administration of prefronto-cerebellar transcranial direct current stimulation (tDCS. Methods. 25 euthymic outpatients with a diagnosis of BD Type I or II have been enrolled in the study. tDCS montage was as follows: cathode on the right cerebellar cortex and anode over the left dorsolateral prefrontal cortex (DLPFC; the intensity of stimulation was set at 2 mA and delivered for 20 min/die for 3 consecutive weeks. The Pittsburgh Sleep Quality Index (PSQI was used to assess sleep quality at baseline and after the tDCS treatment. Results. PSQI total score and all PSQI subdomains, with the exception of “sleep medication,” significantly improved after treatment. Discussion. This is the first study where a positive effect of tDCS on the quality of sleep in euthymic BD patients has been reported. As both prefrontal cortex and cerebellum may play a role in regulating sleep processes, concomitant cathodal (inhibitory stimulation of cerebellum and anodal (excitatory stimulation of DLPFC may have the potential to modulate prefrontal-thalamic-cerebellar circuits leading to improvements of sleep quality.

  14. The effect of the anodal transcranial direct current stimulation over the cerebellum on the motor cortex excitability.

    Science.gov (United States)

    Ates, Mehlika Panpalli; Alaydin, Halil Can; Cengiz, Bulent

    2018-04-25

    This study was designed to investigate whether the cerebellum has an inhibitory effect on motor cortical excitability. Sixteen healthy adults (age range, 25-50 years, five female) participated in the study. Anodal cerebellar transcranial direct current stimulation (a-cTDCS) was used to modulate cerebellar excitability. A-cTDCS was given for 20 min at 1 mA intensity. The automatic threshold tracking method was used to investigate cortical excitability. Resting motor threshold (RMT), short interval intracortical inhibition (SICI), short interval intracortical facilitation (SICF), intracortical facilitation (ICF), and the input output curve (I-O curve) were motor cortical excitability parameters. a-cTDCS caused a reduction in overall SICI and the reduced SICF for interstimulus intervals (ISIs) to 2.4-4.4 ms. a-cTDCS has no effect on ICF, RMT, and the I-O curve. There were no significant changes in any of these cortical excitability parameters after sham cTDCS. Results of the study indicate that a-cTDCS has a dual (both inhibitory and excitatory) effect on motor cortical excitability, rather than a simple inhibitory effect. The cerebellum modulates both the inhibitory and facilitatory activities of motor cortex (M1) and suggest that cerebello-cerebral motor connectivity is more complex than solely inhibitory or facilitatory connections. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Transcranial brain stimulation: closing the loop between brain and stimulation

    DEFF Research Database (Denmark)

    Karabanov, Anke; Thielscher, Axel; Siebner, Hartwig Roman

    2016-01-01

    -related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified......PURPOSE OF REVIEW: To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. RECENT FINDINGS: Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain...... stimulation. Trait-related and state-related determinants contribute to this variability, challenging the standard approach to apply stimulation in a rigid, one-size-fits-all fashion. Several strategies have been identified to reduce variability and maximize the plasticity-inducing effects of noninvasive...

  16. Repetitive Transcranial Magnetic Stimulation Attenuates the Perception of Force Output Production in Non-Exercised Hand Muscles after Unilateral Exercise

    NARCIS (Netherlands)

    Goodall, Stuart; Gibson, Alan St Clair; Voller, Bernhard; Lomarev, Mike; Howatson, Glyn; Nguyet Dang, [No Value; Hortobagyi, Tibor; Hallett, Mark

    2013-01-01

    We examined whether unilateral exercise creates perception bias in the non-exercised limb and ascertained whether rTMS applied to the primary motor cortex (M1) interferes with this perception. All participants completed 4 interventions: 1) 15-min learning period of intermittent isometric

  17. Increases in frontostriatal connectivity are associated with response to dorsomedial repetitive transcranial magnetic stimulation in refractory binge/purge behaviors

    Directory of Open Access Journals (Sweden)

    Katharine Dunlop

    2015-01-01

    Conclusions: Enhanced frontostriatal connectivity was associated with responders to dmPFC-rTMS for binge/purge behavior. rTMS caused paradoxical suppression of frontostriatal connectivity in nonresponders. rs-fMRI could prove critical for optimizing stimulation parameters in a future sham-controlled trial of rTMS in disordered eating.

  18. Transcranial route of brain targeted delivery of methadone in oil.

    Science.gov (United States)

    Pathirana, W; Abhayawardhana, P; Kariyawasam, H; Ratnasooriya, W D

    2009-05-01

    The unique anatomical arrangement of blood vessels and sinuses in the human skull and the brain, the prevalence of a high density of skin appendages in the scalp, extracranial vessels of the scalp communicating with the brain via emissary veins and most importantly, the way that the scalp is used in Ayurvedic medical system in treating diseases associated with the brain show that a drug could be transcranially delivered and targeted to the brain through the scalp. The present study was to investigate by measuring the antinociceptive effect on rats whether the opioid analgesic methadone could be delivered and targeted to the brain by transcranial delivery route. A non aqueous solution of methadone base in sesame oil was used for the application on the scalp. Animal studies were carried out using six groups of male rats consisting of group 1, the oral control treated with distilled water 1 ml; group 2, the oral positive control treated with methadone hydrochloride solution 316.5 mug/ml; group 3, the negative control treated transcranially with the blank sesame oil 0.2 ml and three test groups 4, 5 and 6 treated with three different dose levels of the transcranial oil formulation of methadone base, 41.6 mug/0.2 ml, 104 mug/0.2 ml and 208 mug/0.2 ml, respectively. The antinociceptive effects were examined by subjecting the rats to the hot plate and tail flick tests. The two higher concentrations of the three transcranial methadone formulations yielded response vs time curves showing nearly equal maximum antinociceptive effects similar to that of the oral positive control. Maximum analgesic effect after transcranial administration was observed between 1st and 2nd h and declined up to 6th hour. The results indicate that the transcranial brain targeted delivery of methadone base in the form of an oil based non aqueous solution results in statistically significant antinociceptive effects under experimental conditions. Therefore, it is possible to deliver central nervous

  19. Diagnostic Use of Transcranial Magnetic Stimulation in Psychiatry

    Directory of Open Access Journals (Sweden)

    Abdullah Bolu

    2013-08-01

    Full Text Available Motor evoked potentials from peripheral nerves, spinal cord or muscle can be recorded by stimulation of the motor cortex and motor pathways in the central nervous system with transcranial magnetic stimulation which is a neurophysiological analysis method. This method allows investigation the mechanism of diseases which cause changes in the excitability of cortical motor areas. Similarly, it was used in determining the effects of psychotropic drugs on cortical activity and electrophysiological measurement of aggressive behavior Transcranial magnetic stimulation studies in the field of psychiatry are focused on etiopathogenesis of pathologies such as schizophrenia, obsessive-compulsive disorder, attention deficit hyperactivity disorder and substance abuse.

  20. Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation.

    Science.gov (United States)

    Kumru, Hatice; Albu, Sergiu; Rothwell, John; Leon, Daniel; Flores, Cecilia; Opisso, Eloy; Tormos, Josep Maria; Valls-Sole, Josep

    2017-10-01

    Repetitive application of peripheral electrical stimuli paired with transcranial magnetic stimulation (rTMS) of M1 cortex at low frequency, known as paired associative stimulation (PAS), is an effective method to induce motor cortex plasticity in humans. Here we investigated the effects of repetitive peripheral magnetic stimulation (rPMS) combined with low frequency rTMS ('magnetic-PAS') on intracortical and corticospinal excitability and whether those changes were widespread or circumscribed to the cortical area controlling the stimulated muscle. Eleven healthy subjects underwent three 10min stimulation sessions: 10HzrPMS alone, applied in trains of 5 stimuli every 10s (60 trains) on the extensor carpi radialis (ECR) muscle; rTMS alone at an intensity 120% of ECR threshold, applied over motor cortex of ECR and at a frequency of 0.1Hz (60 stimuli) and magnetic PAS, i.e., paired rPMS and rTMS. We recorded motor evoked potentials (MEPs) from ECR and first dorsal interosseous (FDI) muscles. We measured resting motor threshold, motor evoked potentials (MEP) amplitude at 120% of RMT, short intracortical inhibition (SICI) at interstimulus interval (ISI) of 2ms and intracortical facilitation (ICF) at an ISI of 15ms before and immediately after each intervention. Magnetic-PAS , but not rTMS or rPMS applied separately, increased MEP amplitude and reduced short intracortical inhibition in ECR but not in FDI muscle. Magnetic-PAS can increase corticospinal excitability and reduce intracortical inhibition. The effects may be specific for the area of cortical representation of the stimulated muscle. Application of magnetic-PAS might be relevant for motor rehabilitation. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  1. Transcranial Doppler sonography as diagnostic method

    Directory of Open Access Journals (Sweden)

    Jasminka Đelilović-Vranić

    2002-02-01

    Full Text Available Having in mind the fact that cerebrovascular disease (CVB takes today in medicine, in spite of diagnostic and therapeutic modernisation, the third place of mortality causes in the world (behind cordial and malignant diseases, but in front of depressions, and the second place of invalidity cause (right after trauma as well as the second place of dementia cause (after Alzheimer disease, it urges primary prophylaxis. Developing countries, but before all countries of East and Middle Europe, where is our country, are highly risked areas where CV disease has trend of incidence and total frequency increase. In the neighbouring Croatia today CV disease is at the first place of mortality causes. In the world today 5 million people annually suffer CV disease, in Europe about 700.000, but frequency of suffering on Balkan is about 5 prom. Age of CV disease effecting unfortunately moved towards young age, and today 49% of effected by CV disease are of 46 to 59 years of age. Early detection and treatment of risk factors (before hypertension, smoking, diabetes mellitus, hyperlipidaemia, stress and physical non-activities are the first aspect of CV disease prophylaxis. Together with this aspect of primary prophylaxis is early detection of complications of mentioned risk factors on the walls of blood vessels, before all changing in sense of arteriosclerosis, with consequence of disorder of cerebral haemodynamics. With that objective - verification of circulator and total haemodynamic disorders, there is obvious disclose of non-invasive diagnostic methods, and one of them is Transcranial Doppler Sonography(TCD. TCD is method comfortable for patient, reliable and rather precise, dynamic, and can be repeated several times, without side effects and in comparison with others rather cheap.

  2. Transcranial sonography for diagnosis of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Maaser Peter

    2010-01-01

    Full Text Available Abstract Background In idiopathic Parkinson's disease (IPD transcranial sonography (TCS represents an alternative diagnostic method to verify clinical diagnosis. Although the phenomenon of an increased echogenicity of the Substantia nigra (SN is well known this method is still not widly used in the diagnostic workup. Until now reliability of this method is still a matter of debate, partly because data only existed from a few laboratories using the same ultrasound machine. Therefore our study was conducted to test the reliability of this method by using a different ultrasound device and examining a large population of control and IPD subjects by two examiners to calculate interobserver reliability. Method In this study echogenicity of SN was examined in 199 IPD patients and 201 control subjects. All individuals underwent a neurological assessment including Perdue pegboard test and Webster gait test. Using a Sonos 5500 ultrasound device area of SN was measured, echogenicity of raphe, red nuclei, thalamus, caudate and lenticular nuclei, width of third and lateral ventricle were documented. Results We found a highly characteristic enlargement of the SN echogenic signal in IPD. The cut-off value for the SN area was established using a ROC curve with a sensitivity of 95% corresponding to an area of SN of 0.2 cm2 and was found to be equivalent to the cut-off values of other studies using different ultrasound devices. Conclusions Our study shows that TCS is a reliable and highly sensitive tool for differentiation of IPD patients from individuals without CNS disorders.

  3. Transcranial magnetic stimulation: a new tool in the fight against depression.

    Science.gov (United States)

    Grunhaus, Leon; Dannon, Pinhas N; Gershon, Ari A

    2002-03-01

    Since its introduction to the clinical realm in 1985, transcranial magnetic stimulation (TMS) has rapidly developed into a tool for exploring central nervous system function in both health and disease. The antidepressant effects of TMS were initially observed in 1993. Since then, a solid body of evidence has accumulated suggesting antidepressant effects for both slow TMS (sTMS) and repetitive TMS (rTMS). This review is divided into four parts. First, it addresses the basic concepts governing TMS, and then, second, it discusses the technical parameters involved in administering TMS. Knowledge of these parameters is necessary for understanding how TMS is administered, and how manipulation of the technique impacts on the results obtained. Third, we review the most relevant studies on the antidepressant effects of sTMS and rTMS published to date. Finally, we discuss cortical excitability and how the understanding of this basic neurophysiological function of cortical neurons can be used for monitoring the effects of TMS. In our discussion, we conclude that the time has arrived for TMS to be offered to depressed patients as a treatment.

  4. Theoretical analysis of transcranial magneto-acoustical stimulation with Hodgkin–Huxley neuron model

    Directory of Open Access Journals (Sweden)

    Yi eYuan

    2016-04-01

    Full Text Available Transcranial magneto-acoustical stimulation (TMAS is a novel stimulation technology in which an ultrasonic wave within a magnetostatic field generates an electric current in an area of interest in the brain to modulate neuronal activities. As a key part of the neural network, neurons transmit information in the nervous system. However, the effect of TMAS on the neuronal firing rhythm remains unknown. To address this problem, we investigated the stimulatory mechanism of TMAS on neurons with a Hodgkin-Huxley neuron model. The simulation results indicate that the magnetostatic field intensity and ultrasonic power can affect the amplitude and interspike interval of neuronal action potential under continuous wave ultrasound. The simulation results also show that the ultrasonic power, duty cycle and repetition frequency can alter the firing rhythm of neural action potential under pulsed ultrasound. This study can help to reveal and explain the biological mechanism of TMAS and to provide a theoretical basis for TMAS in the treatment or rehabilitation of neuropsychiatric disorders.

  5. The safety of transcranial magnetic stimulation with deep brain stimulation instruments.

    Science.gov (United States)

    Shimojima, Yoshio; Morita, Hiroshi; Nishikawa, Noriko; Kodaira, Minori; Hashimoto, Takao; Ikeda, Shu-Ichi

    2010-02-01

    Transcranial magnetic stimulation (TMS) has been employed in patients with an implanted deep brain stimulation (DBS) device. We investigated the safety of TMS using simulation models with an implanted DBS device. The DBS lead was inserted into plastic phantoms filled with dilute gelatin showing impedance similar to that of human brain. TMS was performed with three different types of magnetic coil. During TMS (1) electrode movement, (2) temperature change around the lead, and (3) TMS-induced current in various situations were observed. The amplitude and area of each evoked current were measured to calculate charge density of the evoked current. There was no movement or temperature increase during 0.2 Hz repetitive TMS with 100% stimulus intensity for 1 h. The size of evoked current linearly increased with TMS intensity. The maximum charge density exceeded the safety limit of 30 muC/cm(2)/phase during stimulation above the loops of the lead with intensity over 50% using a figure-eight coil. Strong TMS on the looped DBS leads should not be administered to avoid electrical tissue injury. Subcutaneous lead position should be paid enough attention for forthcoming situations during surgery. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Transcranial Magnetic Stimulation to Address Mild Cognitive Impairment in the Elderly: A Randomized Controlled Study

    Science.gov (United States)

    Drumond Marra, Hellen Livia; Myczkowski, Martin Luiz; Maia Memória, Cláudia; Arnaut, Débora; Leite Ribeiro, Philip; Sardinha Mansur, Carlos Gustavo; Lancelote Alberto, Rodrigo; Boura Bellini, Bianca; Alves Fernandes da Silva, Adriano; Ciampi de Andrade, Daniel; Teixeira, Manoel Jacobsen; Forlenza, Orestes Vicente; Marcolin, Marco Antonio

    2015-01-01

    Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique with potential to improve memory. Mild cognitive impairment (MCI), which still lacks a specific therapy, is a clinical syndrome associated with increased risk of dementia. This study aims to assess the effects of high-frequency repetitive TMS (HF rTMS) on everyday memory of the elderly with MCI. We conducted a double-blinded randomized sham-controlled trial using rTMS over the left dorsolateral prefrontal cortex (DLPFC). Thirty-four elderly outpatients meeting Petersen's MCI criteria were randomly assigned to receive 10 sessions of either active TMS or sham, 10 Hz rTMS at 110% of motor threshold, 2,000 pulses per session. Neuropsychological assessment at baseline, after the last session (10th) and at one-month follow-up, was applied. ANOVA on the primary efficacy measure, the Rivermead Behavioural Memory Test, revealed a significant group-by-time interaction (p = 0.05), favoring the active group. The improvement was kept after one month. Other neuropsychological tests were heterogeneous. rTMS at 10 Hz enhanced everyday memory in elderly with MCI after 10 sessions. These findings suggest that rTMS might be effective as a therapy for MCI and probably a tool to delay deterioration. PMID:26160997

  7. A measure of acoustic noise generated from transcranial magnetic stimulation coils.

    Science.gov (United States)

    Dhamne, Sameer C; Kothare, Raveena S; Yu, Camilla; Hsieh, Tsung-Hsun; Anastasio, Elana M; Oberman, Lindsay; Pascual-Leone, Alvaro; Rotenberg, Alexander

    2014-01-01

    The intensity of sound emanating from the discharge of magnetic coils used in repetitive transcranial magnetic stimulation (rTMS) can potentially cause acoustic trauma. Per Occupational Safety and Health Administration (OSHA) standards for safety of noise exposure, hearing protection is recommended beyond restricted levels of noise and time limits. We measured the sound pressure levels (SPLs) from four rTMS coils with the goal of assessing if the acoustic artifact levels are of sufficient amplitude to warrant protection from acoustic trauma per OSHA standards. We studied the SPLs at two frequencies (5 and 10 Hz), three machine outputs (MO) (60, 80 and 100%), and two distances from the coil (5 and 10 cm). We found that the SPLs were louder at closer proximity from the coil and directly dependent on the MO. We also found that in all studied conditions, SPLs were lower than the OSHA permissible thresholds for short (8 h) exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Safety study of high-frequency transcranial magnetic stimulation in patients with chronic stroke.

    Science.gov (United States)

    Lomarev, M P; Kim, D Y; Richardson, S Pirio; Voller, B; Hallett, M

    2007-09-01

    Repetitive transcranial magnetic stimulation (rTMS) is a potential therapeutic tool to rehabilitate chronic stroke patients. In this study, the safety of high-frequency rTMS in stroke was investigated (Phase I). The safety of 20 and 25 Hz rTMS over the motor cortex (MC) of the affected hemisphere, with intensities of 110-130% of the motor threshold (MT), was evaluated using surface electromyography (EMG) of hand and arm muscles. Brief EMG bursts, possibly representing peripheral manifestations of after discharges, and spread of excitation to proximal muscles are considered to be associated with a high risk of seizure occurrence. These events were recorded after the rTMS trains. Neither increased MC excitability nor improved pinch force dynamometry was found after rTMS. Stimulation parameters for rTMS, which are safe for healthy volunteers, may lead to a higher risk for seizure occurrence in chronic stroke patients. rTMS at rates of 20 and 25 Hz using above threshold stimulation potentially increases the risk of seizures in patients with chronic stroke.

  9. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders.

    Science.gov (United States)

    Hampson, M; Hoffman, R E

    2010-01-01

    There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS) provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.

  10. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders.

    Directory of Open Access Journals (Sweden)

    Michelle Hampson

    2010-08-01

    Full Text Available There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.

  11. Transcranial magnetic stimulation changes response selectivity of neurons in the visual cortex

    Science.gov (United States)

    Kim, Taekjun; Allen, Elena A.; Pasley, Brian N.; Freeman, Ralph D.

    2015-01-01

    Background Transcranial magnetic stimulation (TMS) is used to selectively alter neuronal activity of specific regions in the cerebral cortex. TMS is reported to induce either transient disruption or enhancement of different neural functions. However, its effects on tuning properties of sensory neurons have not been studied quantitatively. Objective/Hypothesis Here, we use specific TMS application parameters to determine how they may alter tuning characteristics (orientation, spatial frequency, and contrast sensitivity) of single neurons in the cat’s visual cortex. Methods Single unit spikes were recorded with tungsten microelectrodes from the visual cortex of anesthetized and paralyzed cats (12 males). Repetitive TMS (4Hz, 4sec) was delivered with a 70mm figure-8 coil. We quantified basic tuning parameters of individual neurons for each pre- and post-TMS condition. The statistical significance of changes for each tuning parameter between the two conditions was evaluated with a Wilcoxon signed-rank test. Results We generally find long-lasting suppression which persists well beyond the stimulation period. Pre- and post-TMS orientation tuning curves show constant peak values. However, strong suppression at non-preferred orientations tends to narrow the widths of tuning curves. Spatial frequency tuning exhibits an asymmetric change in overall shape, which results in an emphasis on higher frequencies. Contrast tuning curves show nonlinear changes consistent with a gain control mechanism. Conclusions These findings suggest that TMS causes extended interruption of the balance between sub-cortical and intra-cortical inputs. PMID:25862599

  12. Electric field-navigated transcranial magnetic stimulation for chronic tinnitus: a randomized, placebo-controlled study.

    Science.gov (United States)

    Sahlsten, Hanna; Virtanen, Juuso; Joutsa, Juho; Niinivirta-Joutsa, Katri; Löyttyniemi, Eliisa; Johansson, Reijo; Paavola, Janika; Taiminen, Tero; Sjösten, Noora; Salonen, Jaakko; Holm, Anu; Rauhala, Esa; Jääskeläinen, Satu K

    2017-09-01

    Repetitive transcranial magnetic stimulation (rTMS) may alleviate tinnitus. We evaluated effects of electric field (E-field) navigated rTMS targeted according to tinnitus pitch. No controlled studies have investigated anatomically accurate E-field-rTMS for tinnitus. Effects of E-field-rTMS were evaluated in a prospective randomised placebo-controlled 6-month follow-up study on parallel groups. Patients received 10 sessions of 1 Hz rTMS or placebo targeted to the left auditory cortex corresponding to tonotopic representation of tinnitus pitch. Effects were evaluated immediately after treatment and at 1, 3 and 6 months. Primary outcome measures were visual analogue scores (VAS 0-100) for tinnitus intensity, annoyance and distress, and the Tinnitus Handicap Inventory (THI). Thirty-nine patients (mean age 50.3 years). The mean tinnitus intensity (F 3  = 15.7, p tinnitus, differences between active and placebo groups remained non-significant, due to large placebo-effect and wide inter-individual variation.

  13. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.

    Science.gov (United States)

    Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric

    2016-05-01

    Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.

  14. Diurnal rhythms in neurexins transcripts and inhibitory/excitatory synapse scaffold proteins in the biological clock.

    Directory of Open Access Journals (Sweden)

    Mika Shapiro-Reznik

    Full Text Available The neurexin genes (NRXN1/2/3 encode two families (α and β of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4. Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3α expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3α expression and SS#3/SS#4 splicing, levels of neurexin-2α and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1α and mNRXN2α transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2α levels were found in the SCN in vivo. No such rhythms were found with mNRXN3α. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2α levels. rNRXN3α and rNRXN1/2β were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2α SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2α and postsynaptic

  15. Opiate-like excitatory effects of steroid sulfates and calcium-complexing agents given cerebroventricularly.

    Science.gov (United States)

    LaBella, F S; Havlicek, V; Pinsky, C

    1979-01-12

    Intracerebroventricular administration of 10--20 microgram of steroid-O-sulfates induced hypermotility, agitation, salivation, EEG abnormalities, stereotypies, wet dog shakes and seizures. Equivalent effects resulted from 30--200 microgram morphine sulfate (H2SO4 salt), 50 microgram EGTA or 300--400 microgram of sodium sulfate or phosphate, but not chloride, nitrate or acetate. Non-steroid sulfates, steroid glucuronides and steroid phosphates were inactive. Naloxone, previously found to antagonize the excitatory effects of androsterone sulfate, failed to antagonize those of cortisol sulfate, sodium sulfate or EGTA. These findings suggest a role for extracellular calcium ions and for sulfate derived from circulating steroids in central responses to opiates.

  16. Excitatory and inhibitory pathways modulate kainate excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Rai, R

    1993-01-01

    In organotypic hippocampal slice cultures, kainate (KA) specifically induces cell loss in the CA3 region while N-methyl-D-aspartate induces cell loss in the CA1 region. The sensitivity of slice cultures to KA toxicity appears only after 2 weeks in vitro which parallels the appearance of mossy...... fibers. KA toxicity is potentiated by co-application with the GABA-A antagonist, picrotoxin. These data suggest that the excitotoxicity of KA in slice cultures is modulated by both excitatory and inhibitory synapses....

  17. Discovery of the first selective inhibitor of excitatory amino acid transporter subtype 1

    DEFF Research Database (Denmark)

    Jensen, Anders Asbjørn; Erichsen, Mette Navy; Nielsen, Christina Wøhlk

    2009-01-01

    The discovery of the first class of subtype-selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rat orthologue GLAST is reported. An opening structure-activity relationship of 25 analogues is presented that addresses the influence of substitutions at the 4......- and 7-positions of the parental skeleton 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile. The most potent analogue 1o displays high nanomolar inhibitory activity at EAAT1 and a >400-fold selectivity over EAAT2 and EAAT3, making it a highly valuable pharmacological tool....

  18. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

    Science.gov (United States)

    Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula

    2017-08-02

    Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social

  19. Storytelling and Repetitive Narratives for Design Empathy

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Judice, Andrea; Soini, Katja

    2007-01-01

    study. In this paper, we show how we attained an empathic understanding through storytelling and aroused empathy to others using repetitive narratives in an experimental presentation bringing forth factual, reflective and experiential aspects of the user information. Taking as a starting point our...

  20. Universal data compression and repetition times

    NARCIS (Netherlands)

    Willems, Frans M J

    1989-01-01

    A new universal data compression algorithm is described. This algorithm encodes L source symbols at a time. For the class of binary stationary sources, its rate does not exceed [formula omitted] [formula omitted] bits per source symbol. In our analysis, a property of repetition times turns out to be

  1. Matriculation Research Report: Course Repetition Data & Analysis.

    Science.gov (United States)

    Gerda, Joe

    Due to concerns that its policy on class repetition was not promoting student success, California's College of the Canyons (CoC) undertook a project to analyze student course-taking patterns and make recommendations to modify the policy. Existing college policy did not follow Section 58161 of the State Educational Code that allows colleges to…

  2. Reducing Repetitive Speech: Effects of Strategy Instruction.

    Science.gov (United States)

    Dipipi, Caroline M.; Jitendra, Asha K.; Miller, Judith A.

    2001-01-01

    This article describes an intervention with an 18-year-old young woman with mild mental retardation and a seizure disorder, which focused on her repetitive echolalic verbalizations. The intervention included time delay, differential reinforcement of other behaviors, and self-monitoring. Overall, the intervention was successful in facilitating…

  3. Neurobehavioural Correlates of Abnormal Repetitive Behaviour

    Directory of Open Access Journals (Sweden)

    R. A. Ford

    1991-01-01

    Full Text Available Conditions in which echolalia and echopraxia occur are reviewed, followed by an attempt to elicit possible mechanisms of these phenomena. A brief description of stereotypical and perseverative behaviour and obsessional phenomena is given. It is suggested that abnormal repetitive behaviour may occur partly as a result of central dopaminergic dysfunction.

  4. Verbal Repetitions and Echolalia in Alzheimer's Discourse

    Science.gov (United States)

    Da Cruz, Fernanda Miranda

    2010-01-01

    This article reports on an investigation of echolalic repetition in Alzheimer's disease (AD). A qualitative analysis of data from spontaneous conversations with MHI, a woman with AD, is presented. The data come from the DALI Corpus, a corpus of spontaneous conversations involving subjects with AD. This study argues that echolalic effects can be…

  5. Bystanders' Reactions to Witnessing Repetitive Abuse Experiences

    Science.gov (United States)

    Janson, Gregory R.; Carney, JoLynn V.; Hazler, Richard J.; Oh, Insoo

    2009-01-01

    The Impact of Event Scale-Revised (D. S. Weiss & C. R. Marmar, 1997) was used to obtain self-reported trauma levels from 587 young adults recalling childhood or adolescence experiences as witnesses to common forms of repetitive abuse defined as bullying. Mean participant scores were in a range suggesting potential need for clinical assessment…

  6. Repetitive activation of the corticospinal tract by means of rTMS may reduce the efficiency of corticomotoneuronal synapses

    DEFF Research Database (Denmark)

    Taube, Wolfgang; Leukel, Christian; Schubert, Martin

    Repetitive transcranial magnetic stimulation (rTMS) is extensively used to study cognitive and motor function in humans and might be of value in the treatment of various disorders. For a better understanding of the effects of rTMS and its more efficient application it is crucial to identify......-conditioning by testing interstimulus intervals (ISIs) from -9 to 0 ms (for instance “ISI -3 ms” indicated that the H-reflex was elicited 3 ms before the supraspinal stimulus). The amplitude of the short-latency facilitation was expressed as percentage of the unconditioned control H-reflex and compared before and after...... is the synapses of the corticomotoneuronal neurones on the spinal motoneurones. Perez et al. (2005). Exp Brain Res 162, 202-212. Speer et al. (2003). Biol Psychiatry 54, 818-825....

  7. Transcranial Doppler for detection of cerebral ischaemia during carotid endarterectomy

    DEFF Research Database (Denmark)

    Jørgensen, L G; Schroeder, T V

    1992-01-01

    We evaluated transcranial Doppler sonography (TCD) for the detection of cerebral ischaemia during carotid endarterectomy in 30 male and 14 female patients with ipsilateral focal cerebro-vascular symptoms. Surgery was performed during halothane-nitrous oxide anaesthesia with moderate hypocapnia...

  8. Transcranial direct current stimulation enhances propulsion during walking

    NARCIS (Netherlands)

    van Asseldonk, Edwin H.F.; Jensen, W.; Andersen, O.K.; Akay, M

    2014-01-01

    Transcranial direct current stimulation (tDCS) has been shown to improve force generation and control in single leg joints in healthy subjects and stroke survivors. However, it is unknown whether these effects also result in improved force production and coordination during walking. Here we

  9. Deep transcranial magnetic stimulation for the treatment of pathological gambling.

    Science.gov (United States)

    Rosenberg, Oded; Klein, Limor Dinur; Dannon, Pinhas N

    2013-03-30

    Five pathological gamblers received deep transcranial magnetic stimulation (DTMS). Evaluations included rating scales and collateral anamnesis. Despite initial improvement in ratings, collateral anamnesis demonstrated failure to respond. DTMS to the pre-frontal cortex using an H1 coil was an ineffective treatment. Our study is preliminary, and additional studies are required. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Language Lateralization in Children Using Functional Transcranial Doppler Sonography

    Science.gov (United States)

    Haag, Anja; Moeller, Nicola; Knake, Susanne; Hermsen, Anke; Oertel, Wolfgang H.; Rosenow, Felix; Hamer, Hajo M.

    2010-01-01

    Aim: Language lateralization with functional transcranial Doppler sonography (fTCD) and lexical word generation has been shown to have high concordance with the Wada test and functional magnetic resonance imaging in adults. We evaluated a nonlexical paradigm to determine language dominance in children. Method: In 23 right-handed children (12…

  11. Use of Transcranial Magnetic Stimulation in Autism Spectrum Disorders

    Science.gov (United States)

    Oberman, Lindsay M.; Rotenberg, Alexander; Pascual-Leone, Alvaro

    2015-01-01

    The clinical, social and financial burden of autism spectrum disorder (ASD) is staggering. We urgently need valid and reliable biomarkers for diagnosis and effective treatments targeting the often debilitating symptoms. Transcranial magnetic stimulation (TMS) is beginning to be used by a number of centers worldwide and may represent a novel…

  12. Improving executive function using transcranial infrared laser stimulation.

    Science.gov (United States)

    Blanco, Nathaniel J; Maddox, W Todd; Gonzalez-Lima, Francisco

    2017-03-01

    Transcranial infrared laser stimulation is a new non-invasive form of low-level light therapy that may have a wide range of neuropsychological applications. It entails using low-power and high-energy-density infrared light from lasers to increase metabolic energy. Preclinical work showed that this intervention can increase cortical metabolic energy, thereby improving frontal cortex-based memory function in rats. Barrett and Gonzalez-Lima (2013, Neuroscience, 230, 13) discovered that transcranial laser stimulation can enhance sustained attention and short-term memory in humans. We extend this line of work to executive function. Specifically, we ask whether transcranial laser stimulation enhances performance in the Wisconsin Card Sorting Task that is considered the gold standard of executive function and is compromised in normal ageing and a number of neuropsychological disorders. We used a laser of a specific wavelength (1,064 nm) that photostimulates cytochrome oxidase - the enzyme catalysing oxygen consumption for metabolic energy production. Increased cytochrome oxidase activity is considered the primary mechanism of action of this intervention. Participants who received laser treatment made fewer errors and showed improved set-shifting ability relative to placebo controls. These results suggest that transcranial laser stimulation improves executive function and may have exciting potential for treating or preventing deficits resulting from neuropsychological disorders or normal ageing. © 2015 The British Psychological Society.

  13. Measurement of insulin and C-peptide excitatory test levels in gestational diabetes mellitus

    International Nuclear Information System (INIS)

    Du Tongxin; Wang Zizheng

    2001-01-01

    To investigate the function of islet β cells in patients with gestational diabetes mellitus (GDM), serum insulin and C-peptide (C-P) excitatory test levels were measured dynamically by radioimmunoassay in 41 patients with GDM and 30 normal pregnant controls. The results showed that there were significant difference in insulin and C-peptide excitatory test levels between normal pregnancy for 32-40 weeks and patients with GDM (P < 0.001). The secretory peak of insulin occurred at 60 min in normal pregnancy, while at 120 min in patients with GDM, and the recovery postponed in patients with GDM. The peak time for C-P was just as same as that of insulin, but the peak error for C-P between normal pregnant controls and patients with GDM was more larger than that for insulin and it recovered more slowly. It suggested that majority of islet β cells in patients with GDM were good enough for response to islet resistance factors and big stress from pregnancy, and also suggested a relation between pregnancy and islet β cells function

  14. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  15. A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields

    Directory of Open Access Journals (Sweden)

    Keith P. Johnson

    2018-02-01

    Full Text Available The spike trains of retinal ganglion cells (RGCs are the only source of visual information to the brain. Here, we genetically identify an RGC type in mice that functions as a pixel encoder and increases firing to light increments (PixON-RGC. PixON-RGCs have medium-sized dendritic arbors and non-canonical center-surround receptive fields. From their receptive field center, PixON-RGCs receive only excitatory input, which encodes contrast and spatial information linearly. From their receptive field surround, PixON-RGCs receive only inhibitory input, which is temporally matched to the excitatory center input. As a result, the firing rate of PixON-RGCs linearly encodes local image contrast. Spatially offset (i.e., truly lateral inhibition of PixON-RGCs arises from spiking GABAergic amacrine cells. The receptive field organization of PixON-RGCs is independent of stimulus wavelength (i.e., achromatic. PixON-RGCs project predominantly to the dorsal lateral geniculate nucleus (dLGN of the thalamus and likely contribute to visual perception.

  16. Contextual Learning Requires Functional Diversity at Excitatory and Inhibitory Synapses onto CA1 Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Dai Mitsushima

    2015-01-01

    Full Text Available Although the hippocampus is processing temporal and spatial information in particular context, the encoding rule creating memory is completely unknown. To examine the mechanism, we trained rats on an inhibitory avoidance (IA task, a hippocampus-dependent rapid one-trial contextual learning paradigm. By combining Herpes virus-mediated in vivo gene delivery with in vitro patch-clamp recordings, I reported contextual learning drives GluR1-containing AMPA receptors into CA3-CA1 synapses. The molecular event is required for contextual memory, since bilateral expression of delivery blocker in CA1 successfully blocked IA learning. Moreover, I found a logarithmic correlation between the number of delivery blocking cells and learning performance. Considering that one all-or-none device can process 1-bit of data per clock (Nobert Wiener 1961, the logarithmic correlation may provides evidence that CA1 neurons transmit essential data of contextual information. Further, I recently reported critical role of acetylcholine as an intrinsic trigger of learning-dependent synaptic plasticity. IA training induced ACh release in CA1 that strengthened not only AMPA receptor-mediated excitatory synapses, but also GABAA receptor-mediated inhibitory synapses on each CA1 neuron. More importantly, IA-trained rats showed individually different excitatory and inhibitory synaptic inputs with wide variation on each CA1 neuron. Here I propose a new hypothesis that the diversity of synaptic inputs on CA1 neurons may depict cell-specific outputs processing experienced episodes after training.

  17. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex

    Science.gov (United States)

    Kunz, Portia A; Burette, Alain C; Weinberg, Richard J; Philpot, Benjamin D

    2012-01-01

    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl− gradient maintained by the Na+–K+–2Cl− cotransporter and requires Ca2+ entry through voltage-gated Ca2+ channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex. PMID:22988142

  18. Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex

    Directory of Open Access Journals (Sweden)

    Gabriele Radnikow

    2018-01-01

    Full Text Available From an anatomical point of view the neocortex is subdivided into up to six layers depending on the cortical area. This subdivision has been described already by Meynert and Brodmann in the late 19/early 20. century and is mainly based on cytoarchitectonic features such as the size and location of the pyramidal cell bodies. Hence, cortical lamination is originally an anatomical concept based on the distribution of excitatory neuron. However, it has become apparent in recent years that apart from the layer-specific differences in morphological features, many functional properties of neurons are also dependent on cortical layer or cell type. Such functional differences include changes in neuronal excitability and synaptic activity by neuromodulatory transmitters. Many of these neuromodulators are released from axonal afferents from subcortical brain regions while others are released intrinsically. In this review we aim to describe layer- and cell-type specific differences in the effects of neuromodulator receptors in excitatory neurons in layers 2–6 of different cortical areas. We will focus on the neuromodulator systems using adenosine, acetylcholine, dopamine, and orexin/hypocretin as examples because these neuromodulator systems show important differences in receptor type and distribution, mode of release and functional mechanisms and effects. We try to summarize how layer- and cell type-specific neuromodulation may affect synaptic signaling in cortical microcircuits.

  19. The influence of single bursts vs. single spikes at excitatory dendrodendritic synapses

    Science.gov (United States)

    Masurkar, Arjun V.; Chen, Wei R.

    2015-01-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in-vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC–interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, vs. single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. PMID:22277089

  20. The influence of single bursts versus single spikes at excitatory dendrodendritic synapses.

    Science.gov (United States)

    Masurkar, Arjun V; Chen, Wei R

    2012-02-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC -interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, versus single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia

    Directory of Open Access Journals (Sweden)

    Colin Kehrer

    2008-04-01

    Full Text Available Schizophrenia is a common psychiatric disorder of high incidence, affecting approximately 1% of the world population. The essential neurotransmitter pathology of schizophrenia remains poorly defined, despite huge advances over the past half-century in identifying neurochemical and pathological abnormalities in the disease. The dopamine/serotonin hypothesis has originally provided much of the momentum for neurochemical research in schizophrenia. In recent years, the attention has, however, shifted to the glutamate system, the major excitatory neurotransmitter in the CNS and towards a concept of functional imbalance between excitatory and inhibitory transmission at the network level in various brain regions in schizophrenia. The evidence indicating a central role for the NMDAreceptor subtype in the etiology of schizophrenia has led to the NMDA-hypofunction model of this disease and the use of phencyclidines as a means to induce the NMDA-hypofunction state in animal models. The purpose of this review is to discuss recent findings highlighting the importance of the NMDA-hypofunction model of schizophrenia, both from a clinical perspective, as well as in opening a line of research, which enables electrophysiological studies at the cellular and network level in vitro. In particular, changes in excitation-inhibition (E/I balance in the NMDA-hypofunction model of the disease and the resulting changes in network behaviours, particularly in gamma frequency oscillatory activity, will be discussed.

  2. Dynamics of excitatory and inhibitory networks are differentially altered by selective attention.

    Science.gov (United States)

    Snyder, Adam C; Morais, Michael J; Smith, Matthew A

    2016-10-01

    Inhibition and excitation form two fundamental modes of neuronal interaction, yet we understand relatively little about their distinct roles in service of perceptual and cognitive processes. We developed a multidimensional waveform analysis to identify fast-spiking (putative inhibitory) and regular-spiking (putative excitatory) neurons in vivo and used this method to analyze how attention affects these two cell classes in visual area V4 of the extrastriate cortex of rhesus macaques. We found that putative inhibitory neurons had both greater increases in firing rate and decreases in correlated variability with attention compared with putative excitatory neurons. Moreover, the time course of attention effects for putative inhibitory neurons more closely tracked the temporal statistics of target probability in our task. Finally, the session-to-session variability in a behavioral measure of attention covaried with the magnitude of this effect. Together, these results suggest that selective targeting of inhibitory neurons and networks is a critical mechanism for attentional modulation. Copyright © 2016 the American Physiological Society.

  3. Circuit variability interacts with excitatory-inhibitory diversity of interneurons to regulate network encoding capacity.

    Science.gov (United States)

    Tsai, Kuo-Ting; Hu, Chin-Kun; Li, Kuan-Wei; Hwang, Wen-Liang; Chou, Ya-Hui

    2018-05-23

    Local interneurons (LNs) in the Drosophila olfactory system exhibit neuronal diversity and variability, yet it is still unknown how these features impact information encoding capacity and reliability in a complex LN network. We employed two strategies to construct a diverse excitatory-inhibitory neural network beginning with a ring network structure and then introduced distinct types of inhibitory interneurons and circuit variability to the simulated network. The continuity of activity within the node ensemble (oscillation pattern) was used as a readout to describe the temporal dynamics of network activity. We found that inhibitory interneurons enhance the encoding capacity by protecting the network from extremely short activation periods when the network wiring complexity is very high. In addition, distinct types of interneurons have differential effects on encoding capacity and reliability. Circuit variability may enhance the encoding reliability, with or without compromising encoding capacity. Therefore, we have described how circuit variability of interneurons may interact with excitatory-inhibitory diversity to enhance the encoding capacity and distinguishability of neural networks. In this work, we evaluate the effects of different types and degrees of connection diversity on a ring model, which may simulate interneuron networks in the Drosophila olfactory system or other biological systems.

  4. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  5. Biochemistry of an olfactory purinergic system: dephosphorylation of excitatory nucleotides and uptake of adenosine

    Energy Technology Data Exchange (ETDEWEB)

    Trapido-Rosenthal, H G; Carr, W E; Gleeson, R A

    1987-10-01

    The olfactory organ of the spiny lobster, Panulirus argus, is composed of chemosensory sensilla containing the dendrites of primary chemosensory neurons. Receptors on these dendrites are activated by the nucleotides AMP, ADP, and ATP but not by the nucleoside adenosine. It is shown here that the lobster chemosensory sensilla contain enzymes that dephosphorylate excitatory nucleotides and an uptake system that internalizes the nonexcitatory dephosphorylated product adenosine. The uptake of (/sup 3/H)-adenosine is saturable with increasing concentration, linear with time for up to 3 h, sodium dependent, insensitive to moderate pH changes and has a Km of 7.1 microM and a Vmax of 5.2 fmol/sensillum/min (573 fmol/micrograms of protein/min). Double-label experiments show that sensilla dephosphorylate nucleotides extracellularly; /sup 3/H from adenine-labeled AMP or ATP is internalized, whereas 32P from phosphate-labeled nucleotides is not. The dephosphorylation of AMP is very rapid; /sup 3/H from AMP is internalized at the same rate as /sup 3/H from adenosine. Sensillar 5'-ectonucleotidase activity is inhibited by ADP and the ADP analog alpha, beta-methylene ADP. Collectively, these results indicate that the enzymes and the uptake system whereby chemosensory sensilla of the lobster inactivate excitatory nucleotides and clear adenosine from extracellular spaces are very similar to those present in the internal tissues of vertebrates, where nucleotides have many neuroactive effects.

  6. New players tip the scales in the balance between excitatory and inhibitory synapses

    Directory of Open Access Journals (Sweden)

    El-Husseini Alaa

    2005-03-01

    Full Text Available Abstract Synaptogenesis is a highly controlled process, involving a vast array of players which include cell adhesion molecules, scaffolding and signaling proteins, neurotransmitter receptors and proteins associated with the synaptic vesicle machinery. These molecules cooperate in an intricate manner on both the pre- and postsynaptic sides to orchestrate the precise assembly of neuronal contacts. This is an amazing feat considering that a single neuron receives tens of thousands of synaptic inputs but virtually no mismatch between pre- and postsynaptic components occur in vivo. One crucial aspect of synapse formation is whether a nascent synapse will develop into an excitatory or inhibitory contact. The tight control of a balance between the types of synapses formed regulates the overall neuronal excitability, and is thus critical for normal brain function and plasticity. However, little is known about how this balance is achieved. This review discusses recent findings which provide clues to how neurons may control excitatory and inhibitory synapse formation, with focus on the involvement of the neuroligin family and PSD-95 in this process.

  7. Computational electromagnetic methods for transcranial magnetic stimulation

    Science.gov (United States)

    Gomez, Luis J.

    Transcranial magnetic stimulation (TMS) is a noninvasive technique used both as a research tool for cognitive neuroscience and as a FDA approved treatment for depression. During TMS, coils positioned near the scalp generate electric fields and activate targeted brain regions. In this thesis, several computational electromagnetics methods that improve the analysis, design, and uncertainty quantification of TMS systems were developed. Analysis: A new fast direct technique for solving the large and sparse linear system of equations (LSEs) arising from the finite difference (FD) discretization of Maxwell's quasi-static equations was developed. Following a factorization step, the solver permits computation of TMS fields inside realistic brain models in seconds, allowing for patient-specific real-time usage during TMS. The solver is an alternative to iterative methods for solving FD LSEs, often requiring run-times of minutes. A new integral equation (IE) method for analyzing TMS fields was developed. The human head is highly-heterogeneous and characterized by high-relative permittivities (107). IE techniques for analyzing electromagnetic interactions with such media suffer from high-contrast and low-frequency breakdowns. The novel high-permittivity and low-frequency stable internally combined volume-surface IE method developed. The method not only applies to the analysis of high-permittivity objects, but it is also the first IE tool that is stable when analyzing highly-inhomogeneous negative permittivity plasmas. Design: TMS applications call for electric fields to be sharply focused on regions that lie deep inside the brain. Unfortunately, fields generated by present-day Figure-8 coils stimulate relatively large regions near the brain surface. An optimization method for designing single feed TMS coil-arrays capable of producing more localized and deeper stimulation was developed. Results show that the coil-arrays stimulate 2.4 cm into the head while stimulating 3

  8. Is transcranial direct current stimulation a potential method for improving response inhibition?

    Science.gov (United States)

    Kwon, Yong Hyun; Kwon, Jung Won

    2013-04-15

    Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.

  9. Prediction of the Maximum Number of Repetitions and Repetitions in Reserve From Barbell Velocity.

    Science.gov (United States)

    García-Ramos, Amador; Torrejón, Alejandro; Feriche, Belén; Morales-Artacho, Antonio J; Pérez-Castilla, Alejandro; Padial, Paulino; Haff, Guy Gregory

    2018-03-01

    To provide 2 general equations to estimate the maximum possible number of repetitions (XRM) from the mean velocity (MV) of the barbell and the MV associated with a given number of repetitions in reserve, as well as to determine the between-sessions reliability of the MV associated with each XRM. After determination of the bench-press 1-repetition maximum (1RM; 1.15 ± 0.21 kg/kg body mass), 21 men (age 23.0 ± 2.7 y, body mass 72.7 ± 8.3 kg, body height 1.77 ± 0.07 m) completed 4 sets of as many repetitions as possible against relative loads of 60%1RM, 70%1RM, 80%1RM, and 90%1RM over 2 separate sessions. The different loads were tested in a randomized order with 10 min of rest between them. All repetitions were performed at the maximum intended velocity. Both the general equation to predict the XRM from the fastest MV of the set (CV = 15.8-18.5%) and the general equation to predict MV associated with a given number of repetitions in reserve (CV = 14.6-28.8%) failed to provide data with acceptable between-subjects variability. However, a strong relationship (median r 2  = .984) and acceptable reliability (CV  .85) were observed between the fastest MV of the set and the XRM when considering individual data. These results indicate that generalized group equations are not acceptable methods for estimating the XRM-MV relationship or the number of repetitions in reserve. When attempting to estimate the XRM-MV relationship, one must use individualized relationships to objectively estimate the exact number of repetitions that can be performed in a training set.

  10. If you negate, you may forget: negated repetitions impair memory compared with affirmative repetitions.

    Science.gov (United States)

    Mayo, Ruth; Schul, Yaacov; Rosenthal, Meytal

    2014-08-01

    One of the most robust laws of memory is that repeated activation improves memory. Our study shows that the nature of repetition matters. Specifically, although both negated repetition and affirmative repetition improve memory compared with no repetition, negated repetition hinders memory compared with affirmative repetition. After showing participants different entities, we asked them about features of these entities, leading to either "yes" or "no" responses. Our findings show that correctly negating an incorrect feature of an entity elicits an active forgetting effect compared with correctly affirming its true features. For example, after seeing someone drink a glass of white wine, answering "no" to "was it red wine?" may lead one to greater memory loss of the individual drinking wine at all compared with answering "yes" to "was it white wine?" We find this negation-induced forgetting effect in 4 experiments that differ in (a) the meaning given for the negation, (b) the type of stimuli (visual or verbal), and (c) the memory measure (recognition or free recall). We discuss possible underlying mechanisms and offer theoretical and applied implications of the negation-induced forgetting effect in relation to other known inhibition effects. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  11. Transcranial and spinal cord magnetic stimulation in treatment of spasticity: a literature review and meta-analysis.

    Science.gov (United States)

    Korzhova, Julia; Sinitsyn, Dmitry; Chervyakov, Alexander; Poydasheva, Alexandra; Zakharova, Maria; Suponeva, Natalia; Chernikova, Lyudmila; Piradov, Michael

    2018-02-01

    Spasticity is associated with various diseases of the nervous system. Current treatments such as drug therapy, botulinum toxin injections, kinesitherapy, and physiotherapy are not sufficiently effective in a large number of patients. Transcranial magnetic stimulation (TMS) can be considered as an alternative method of treatment. The purpose of this article was to conduct a systematic review and meta-analysis of all available publications assessing the efficacy of repetitive TMS in treatment of spasticity. Search for articles was conducted in databases PubMed, Willey, and Google. Keywords included "TMS", "spasticity", "TMS and spasticity", "non-invasive brain stimulation", and "non-invasive spinal cord stimulation". The difference in scores according to the Modified Ashworth Scale (MAS) for one joint before and after treatment was taken as the effect size. We found 26 articles that examined the TMS efficacy in treatment of spasticity. Meta-analysis included 6 trials comprising 149 patients who underwent real stimulation or simulation. No statistically significant difference in the effect of real and simulated stimulation was found in stroke patients. In patients with spinal cord injury and spasticity, the mean effect size value and the 95% confidence interval were -0.80 and (-1.12, -0.49), respectively, in a group of real stimulation; in the case of simulated stimulation, these parameters were 0.15 and (-0.30, -0.00), respectively. Statistically significant differences between groups of real stimulation and simulation were demonstrated for using high-frequency repetitive TMS or iTBS mode for the M1 area of the spastic leg (P=0.0002). According to the meta-analysis, the statistically significant effect of TMS in the form of reduced spasticity was demonstrated only for the developed due to lesions at the brain stem and spinal cord level. To clarify the amount of the antispasmodic effect of repetitive TMS at other lesion levels, in particular in patients with

  12. The effect of STDP temporal kernel structure on the learning dynamics of single excitatory and inhibitory synapses.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    Full Text Available Spike-Timing Dependent Plasticity (STDP is characterized by a wide range of temporal kernels. However, much of the theoretical work has focused on a specific kernel - the "temporally asymmetric Hebbian" learning rules. Previous studies linked excitatory STDP to positive feedback that can account for the emergence of response selectivity. Inhibitory plasticity was associated with negative feedback that can balance the excitatory and inhibitory inputs. Here we study the possible computational role of the temporal structure of the STDP. We represent the STDP as a superposition of two processes: potentiation and depression. This allows us to model a wide range of experimentally observed STDP kernels, from Hebbian to anti-Hebbian, by varying a single parameter. We investigate STDP dynamics of a single excitatory or inhibitory synapse in purely feed-forward architecture. We derive a mean-field-Fokker-Planck dynamics for the synaptic weight and analyze the effect of STDP structure on the fixed points of the mean field dynamics. We find a phase transition along the Hebbian to anti-Hebbian parameter from a phase that is characterized by a unimodal distribution of the synaptic weight, in which the STDP dynamics is governed by negative feedback, to a phase with positive feedback characterized by a bimodal distribution. The critical point of this transition depends on general properties of the STDP dynamics and not on the fine details. Namely, the dynamics is affected by the pre-post correlations only via a single number that quantifies its overlap with the STDP kernel. We find that by manipulating the STDP temporal kernel, negative feedback can be induced in excitatory synapses and positive feedback in inhibitory. Moreover, there is an exact symmetry between inhibitory and excitatory plasticity, i.e., for every STDP rule of inhibitory synapse there exists an STDP rule for excitatory synapse, such that their dynamics is identical.

  13. High power, repetitive stacked Blumlein pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    Davanloo, F; Borovina, D L; Korioth, J L; Krause, R K; Collins, C B [Univ. of Texas at Dallas, Richardson, TX (United States). Center for Quantum Electronics; Agee, F J [US Air Force Phillips Lab., Kirtland AFB, NM (United States); Kingsley, L E [US Army CECOM, Ft. Monmouth, NJ (United States)

    1997-12-31

    The repetitive stacked Blumlein pulse power generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switch at the other end. In this way, relatively low charging voltages are multiplied to give a high discharge voltage across an arbitrary load. Extensive characterization of these novel pulsers have been performed over the past few years. Results indicate that they are capable of producing high power waveforms with rise times and repetition rates in the range of 0.5-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap, or photoconductive switch. The progress in the development and use of stacked Blumlein pulse generators is reviewed. The technology and the characteristics of these novel pulsers driving flash x-ray diodes are discussed. (author). 4 figs., 5 refs.

  14. Middle cerebral artery vasospasm: transcranial color-coded duplex sonography versus conventional nonimaging transcranial Doppler sonography.

    Science.gov (United States)

    Swiat, Maciej; Weigele, John; Hurst, Robert W; Kasner, Scott E; Pawlak, Mikolaj; Arkuszewski, Michal; Al-Okaili, Riyadh N; Swiercz, Miroslaw; Ustymowicz, Andrzej; Opala, Grzegorz; Melhem, Elias R; Krejza, Jaroslaw

    2009-03-01

    To prospectively compare accuracies of transcranial color-coded duplex sonography (TCCS) and transcranial Doppler sonography (TCD) in the diagnosis of middle cerebral artery (MCA) vasospasm. Prospective blinded head-to-head comparison TCD and TCCS methods using digital subtraction angiography (DSA) as the reference standard. Department of Radiology in a tertiary university health center in a metropolitan area. Eighty-one consecutive patients (mean age, 53.9 +/- 13.9 years; 48 women). The indication for DSA was subarachnoid hemorrhage in 71 patients (87.6%), stroke or transient ischemic attack in five patients (6.2%), and other reasons in five patients (6.2%). The MCA was graded as normal, narrowed 50% using DSA. The accuracy of ultrasound methods was estimated by total area (Az) under receiver operator characteristic curve. To compare sensitivities of ultrasound methods, McNemar's test was used with mean velocity thresholds of 120 cm/sec for the detection of less advanced, and 200 cm/sec for the more advanced MCA narrowing. Angiographic MCA narrowing 50% in 10 of 135 arteries. Accuracy of TCCS was insignificantly higher than that of TCD in the detection of 50% narrowing, total Az for mean velocity being 0.83 +/- 0.05, 0.77 +/- 0.05, and 0.95 +/- 0.02, 0.86 +/- 0.08, respectively. Sensitivity of TCCS at commonly used threshold of 120 cm/sec for less advanced MCA spasm was significantly better than that of TCD at similar specificity, 55% vs. 39%, p = 0.038, whereas at a threshold of 200 cm/sec used for more advanced spasm, sensitivities and specificities of both methods were not different. The accuracy of TCCS and TCD is similar, but TCCS is more sensitive than TCD in the detection of MCA spasm. Sensitivity of both techniques in the detection of mild and more advanced spasm using 120 cm/sec and 200 cm/sec thresholds, respectively, is poor; however, a larger sample is required to increase precision of our sensitivity estimates.

  15. A repetitive elements perspective in Polycomb epigenetics.

    Directory of Open Access Journals (Sweden)

    Valentina eCasa

    2012-10-01

    Full Text Available Repetitive elements comprise over two-thirds of the human genome. For a long time, these elements have received little attention since they were considered non functional. On the contrary, recent evidence indicates that they play central roles in genome integrity, gene expression and disease. Indeed, repeats display meiotic instability associated with disease and are located within common fragile sites, which are hotspots of chromosome rearrangements in tumors. Moreover, a variety of diseases have been associated with aberrant transcription of repetitive elements. Overall this indicates that appropriate regulation of repetitive elements’ activity is fundamental.Polycomb group (PcG proteins are epigenetic regulators that are essential for the normal development of multicellular organisms. Mammalian PcG proteins are involved in fundamental processes, such as cellular memory, cell proliferation, genomic imprinting, X-inactivation, and cancer development. PcG proteins can convey their activity through long-distance interactions also on different chromosomes. This indicates that the 3D organization of PcG proteins contributes significantly to their function. However, it is still unclear how these complex mechanisms are orchestrated and which role PcG proteins play in the multi-level organization of gene regulation. Intriguingly, the greatest proportion of Polycomb-mediated chromatin modifications is located in genomic repeats and it has been suggested that they could provide a binding platform for Polycomb proteins.Here, these lines of evidence are woven together to discuss how repetitive elements could contribute to chromatin organization in the 3D nuclear space.

  16. Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors

    Directory of Open Access Journals (Sweden)

    Orth Angela

    2009-04-01

    Full Text Available Abstract Background N-methyl-D-aspartate receptors (NMDARs are the most complex of ionotropic glutamate receptors (iGluRs. Subunits of this subfamily assemble into heteromers, which – depending on the subunit combination – may display very different pharmacological and electrophysiological properties. The least studied members of the NMDAR family, the NR3 subunits, have been reported to assemble with NR1 to form excitatory glycine receptors in heterologous expression systems. The heterogeneity of NMDARs in vivo is in part conferred to the receptors by splicing of the NR1 subunit, especially with regard to proton sensitivity. Results Here, we have investigated whether the NR3B subunit is capable of assembly with each of the eight functional NR1 splice variants, and whether the resulting receptors share the unique functional properties described for NR1-1a/NR3. We provide evidence that functional excitatory glycine receptors formed regardless of the NR1 isoform, and their pharmacological profile matched the one reported for NR1-1a/NR3: glycine alone fully activated the receptors, which were insensitive to glutamate and block by Mg2+. Surprisingly, amplitudes of agonist-induced currents showed little dependency on the C-terminally spliced NR1 variants in NR1/NR3B diheteromers. Even more strikingly, NR3B conferred proton sensitivity also to receptors containing NR1b variants – possibly via disturbing the "proton shield" of NR1b splice variants. Conclusion While functional assembly could be demonstrated for all combinations, not all of the specific interactions seen for NR1 isoforms with coexpressed NR2 subunits could be corroborated for NR1 assembly with NR3. Rather, NR3 abates trafficking effects mediated by the NR1 C terminus as well as the N-terminally mediated proton insensitivity. Thus, this study establishes that NR3B overrides important NR1 splice variant-specific receptor properties in NR1/NR3B excitatory glycine receptors.

  17. High repetition rate intense ion beam source

    International Nuclear Information System (INIS)

    Hammer, D.A.; Glidden, S.C.; Noonan, B.

    1992-01-01

    This final report describes a ≤ 150kV, 40kA, 100ns high repetition rate pulsed power system and intense ion beam source which is now in operation at Cornell University. Operation of the Magnetically-controlled Anode Plasma (MAP) ion diode at > 100Hz (burst mode for up to 10 pulse bursts) provides an initial look at repetition rate limitations of both the ion diode and beam diagnostics. The pulsed power systems are capable of ≥ 1kHz operation (up to 10 pulse bursts), but ion diode operation was limited to ∼100Hz because of diagnostic limitations. By varying MAP diode operating parameters, ion beams can be extracted at a few 10s of keV or at up to 150keV, the corresponding accelerating gap impedance ranging from about 1Ω to about 10Ω. The ability to make hundreds of test pulses per day at an average repetition rate of about 2 pulses per minute permits statistical analysis of diode operation as a function of various parameters. Most diode components have now survived more than 10 4 pulses, and the design and construction of the various pulsed power components of the MAP diode which have enabled us to reach this point are discussed. A high speed data acquisition system and companion analysis software capable of acquiring pulse data at 1ms intervals (in bursts of up to 10 pulses) and processing it in ≤ min is described

  18. Modeling repetitive motions using structured light.

    Science.gov (United States)

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  19. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Directory of Open Access Journals (Sweden)

    Amanda Malvessi Cattani

    Full Text Available Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. I