WorldWideScience

Sample records for excitation transfer dynamics

  1. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    Van Tassle, Aaron Justin

    2006-01-01

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  2. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  3. Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells

    KAUST Repository

    Joseph, Saju

    2017-10-02

    We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.

  4. Molecular-alignment dependence in the transfer excitation of H2

    International Nuclear Information System (INIS)

    Wang, Y.D.; McGuire, J.H.; Weaver, O.L.; Corchs, S.E.; Rivarola, R.D.

    1993-01-01

    Molecular-alignment effects in the transfer excitation of H 2 by high-velocity heavy ions are studied using a two-step mechanism with amplitudes evaluated from first-order perturbation theory. Two-electron transfer excitation is treated as a result of two independent collision processes (excitation and electron transfer). Cross sections for each one-electron subprocess as well as the combined two-electron process are calculated as functions of the molecular-alignment angle. Within the independent-electron approximation, the dynamic roles of electron excitation and transfer in conjunction with molecular alignment are explored. While both excitation and transfer cross sections may strongly depend on molecular alignment, it is electron transfer that is largely responsible for the molecular-alignment dependence in the transfer excitation process. Interpretation of some experimental observations based on this model will also be discussed

  5. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    International Nuclear Information System (INIS)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-01-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism

  6. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  7. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  8. Excitation transfer pathways in excitonic aggregates revealed by the stochastic Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Abramavicius, Vytautas, E-mail: vytautas.ab@gmail.com; Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Faculty of Physics, Department of Theoretical Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius (Lithuania)

    2014-02-14

    We derive the stochastic Schrödinger equation for the system wave vector and use it to describe the excitation energy transfer dynamics in molecular aggregates. We suggest a quantum-measurement based method of estimating the excitation transfer time. Adequacy of the proposed approach is demonstrated by performing calculations on a model system. The theory is then applied to study the excitation transfer dynamics in a photosynthetic pigment-protein Fenna-Matthews-Olson (FMO) aggregate using both the Debye spectral density and the spectral density obtained from earlier molecular dynamics simulations containing strong vibrational high-frequency modes. The obtained results show that the excitation transfer times in the FMO system are affected by the presence of the vibrational modes; however, the transfer pathways remain the same.

  9. Photoinduced Ultrafast Intramolecular Excited-State Energy Transfer in the Silylene-Bridged Biphenyl and Stilbene (SBS) System: A Nonadiabatic Dynamics Point of View.

    Science.gov (United States)

    Wang, Jun; Huang, Jing; Du, Likai; Lan, Zhenggang

    2015-07-09

    The photoinduced intramolecular excited-state energy-transfer (EET) process in conjugated polymers has received a great deal of research interest because of its important role in the light harvesting and energy transport of organic photovoltaic materials in photoelectric devices. In this work, the silylene-bridged biphenyl and stilbene (SBS) system was chosen as a simplified model system to obtain physical insight into the photoinduced intramolecular energy transfer between the different building units of the SBS copolymer. In the SBS system, the vinylbiphenyl and vinylstilbene moieties serve as the donor (D) unit and the acceptor (A) unit, respectively. The ultrafast excited-state dynamics of the SBS system was investigated from the point of view of nonadiabatic dynamics with the surface-hopping method at the TDDFT level. The first two excited states (S1 and S2) are characterized by local excitations at the acceptor (vinylstilbene) and donor (vinylbiphenyl) units, respectively. Ultrafast S2-S1 decay is responsible for the intramolecular D-A excitonic energy transfer. The geometric distortion of the D moiety play an essential role in this EET process, whereas the A moiety remains unchanged during the nonadiabatic dynamics simulation. The present work provides a direct dynamical approach to understand the ultrafast intramolecular energy-transfer dynamics in SBS copolymers and other similar organic photovoltaic copolymers.

  10. An intramolecular charge transfer state of carbonyl carotenoids: implications for excited state dynamics of apo-carotenals and retinal

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Kaligotla, S.; Chábera, P.; Frank, H.A.

    2011-01-01

    Roč. 13, č. 22 (2011), s. 1463-9076 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoid * retinal * excited-state dynamics * charge-transfer state Subject RIV: BO - Biophysics Impact factor: 3.573, year: 2011

  11. The momentum transfer dependence of double excitations of helium

    International Nuclear Information System (INIS)

    Zhu Lin-Fan; Liu Xiao-Jing; Yuan Zhen-Sheng; Xu Ke-Zun

    2005-01-01

    The momentum transfer dependence of fundamental double excitation processes of helium is studied with high resolution and fast electron impact. It elucidates the dynamical correlations, in terms of internal correlation quantum numbers, K, T and A. The Fano profile parameters q, f a , ρ 2 , f and S of doubly excited states 2 (1,0) 2 +1se , 2 (0,1) 2 +1p0 and 2 (1,0) 2 +1De are determined as functions of momentum transfer K 2 . (author)

  12. Dynamic coherence in excitonic molecular complexes under various excitation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chenu, Aurélia; Malý, Pavel; Mančal, Tomáš, E-mail: mancal@karlov.mff.cuni.cz

    2014-08-17

    Highlights: • Dynamic coherence does not improve energy transfer efficiency in natural conditions. • Photo-induced quantum jumps are discussed in classical context. • Natural time scale of a light excitation event is identified. • Coherence in FMO complex averages out under excitation by neighboring antenna. • This result is valid even in absence of dissipation. - Abstract: We investigate the relevance of dynamic quantum coherence in the energy transfer efficiency of molecular aggregates. We derive the time evolution of the density matrix for an open quantum system excited by light or by a neighboring antenna. Unlike in the classical case, the quantum description does not allow for a formal decomposition of the dynamics into sudden jumps in an observable quantity – an expectation value. Rather, there is a natural finite time-scale associated with the excitation process. We propose a simple experiment to test the influence of this time scale on the yield of photosynthesis. We demonstrate, using typical parameters of the Fenna–Matthews–Olson (FMO) complex and a typical energy transfer rate from the chlorosome baseplate, that dynamic coherences are averaged out in the complex even when the FMO model is completely free of all dissipation and dephasing.

  13. Absence of quantum oscillations in electronic excitation transfer in the Fenna-Matthews-Olson complex

    Science.gov (United States)

    Eisfeld, Alexander; Ritschel, Gerhard; Roden, Jan; Strunz, Walter; Aspuru-Guzik, Alan

    2012-02-01

    Energy transfer in the photosynthetic Fenna-Matthews-Olson (FMO) complex of the Green Sulfur Bacteria is studied theoretically taking all three subunits (monomers) of the FMO trimer and the recently found eighth bacteriochlorophyll (BChl) molecule into account. For the calculations we use the efficient Non-Markovian Quantum State diffusion approach. Since it is believed that the eighth BChl is located near the main light harvesting antenna we look at the differences in transfer between the situation when BChl 8 is initially excited and the usually considered case when BChl 1 or 6 is initially excited. We find strong differences in the transfer dynamics, both qualitatively and quantitatively. When the excited state dynamics is initialized at site eight of the FMO complex, we see a slow exponential-like decay of the excitation. This is in contrast to the oscillations and a relatively fast transfer that occurs when only seven sites or initialization at sites 1 and 6 is considered. Additionally we show that differences in the values of the electronic transition energies found in the literature lead to a large difference in the transfer dynamics.

  14. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    Science.gov (United States)

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Ultrafast excitation energy transfer from encapsulated quaterrylene to single-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Takeshi, E-mail: koyama@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Tsunekawa, Takuya [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Saito, Takeshi [Research Center for Advanced Carbon Materials, AIST, Tsukuba, Ibaraki 305-8565 (Japan); Asaka, Koji; Saito, Yahachi [Department of Quantum Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Kishida, Hideo [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nakamura, Arao [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192 (Japan)

    2016-01-15

    We investigate excitation energy transfer from an encapsulated quaterrylene molecule to a single-walled carbon nanotube by means of femtosecond pump-probe spectroscopy. The time constant of energy transfer becomes shorter with increasing average diameter of nanotube: 1.4±0.2 ps for 1.0 nm, 1.1±0.2 ps for 1.4 nm, and 0.4±0.1 ps for 1.8 nm. The observed behavior is discussed considering the distance of less than 1 nm between the molecule and the nanotube wall. - Highlights: • Dynamical properties of excited states in quaterrylene/SWNT composites were studied. • Excitation energy transfer occurs in the time range of 0.4-1.4 ps. • The transfer rate depends on the nanotube diameter, i.e. molecule-nanotube wall distance. • This dependence indicates the feature of excitation energy transfer on the nanoscale.

  16. Dynamics of transfer of electron excitation in a donor-acceptor system with a carbon chain and ways of its relaxation

    Directory of Open Access Journals (Sweden)

    M.M. Sevryukova

    2017-12-01

    Full Text Available The optical properties and dynamics of transport of electron excitation and the ways of its relaxation in the supramolecular D–π–A complex on the basis of merocyanines have been investigated. There have been found two components in the transfer of charge: fast and slow, which correspond to different conformational states of the carbon chain in merocyanines. It was found that the main photoluminescence of the studied molecular solutions of merocyanines by its nature is similar to the exciplex luminescence, as a manifestation of resonant and charge transfer interaction in an excited state. The lifetime in this state is about 2000 ps.

  17. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  18. CALCULATION OF THE PROTON-TRANSFER RATE USING DENSITY-MATRIX EVOLUTION AND MOLECULAR-DYNAMICS SIMULATIONS - INCLUSION OF THE PROTON EXCITED-STATES

    NARCIS (Netherlands)

    MAVRI, J; BERENDSEN, HJC

    1995-01-01

    The methodology for treatment of proton transfer processes by density matrix evolution (DME) with inclusion of many excited states is presented. The DME method (Berendsen, H. J. C.; Mavri, J. J. Phys. Chem. 1993, 97, 13464) that simulates the dynamics of quantum systems embedded in a classical

  19. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana

    2015-06-25

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  20. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana; Aly, Shawkat Mohammede; Goswami, Subhadip; Alarousu, Erkki; Usman, Anwar; Schanze, Kirk S.; Mohammed, Omar F.

    2015-01-01

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  1. Mechanism for the Excited-State Multiple Proton Transfer Process of Dihydroxyanthraquinone Chromophores.

    Science.gov (United States)

    Zhou, Qiao; Du, Can; Yang, Li; Zhao, Meiyu; Dai, Yumei; Song, Peng

    2017-06-22

    The single and dual cooperated proton transfer dynamic process in the excited state of 1,5-dihydroxyanthraquinone (1,5-DHAQ) was theoretically investigated, taking solvent effects (ethanol) into account. The absorption and fluorescence spectra were simulated, and dual fluorescence exhibited, which is consistent with previous experiments. Analysis of the calculated IR and Raman vibration spectra reveals that the intramolecular hydrogen bonding interactions (O 20 -H 21 ···O 24 and O 22 -H 23 ···O 25 ) are strengthened following the excited proton transfer process. Finally, by constructing the potential energy surfaces of the ground state, first excited singlet state, and triplet state, the mechanism of the intramolecular proton transfer of 1,5-DHAQ can be revealed.

  2. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....

  3. Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2 '-bipyridine)(CN)4]2-

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Kunnus, Kristjan; Harlang, Tobias C. B.

    2018-01-01

    The excited state dynamics of solvated [Fe(bpy)(CN)4]2-, where bpy = 2,2'-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer...... the MLCT excited state relaxation dynamics of [Fe(bpy)(CN)4]2- in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state...... developed for solar applications....

  4. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    International Nuclear Information System (INIS)

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-01-01

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations

  5. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP

    Science.gov (United States)

    Masters, T. A.; Robinson, N. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment ⟨α40 ⟩ present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of ⟨α40 ⟩ to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both ⟨α20 ⟩ (quadrupolar) and ⟨α40 ⟩ transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.

  6. Dynamics of the excited state intramolecular charge transfer

    International Nuclear Information System (INIS)

    Joo, T.; Kim, C.H.

    2006-01-01

    The 6-dodecanoyl-2-dimethylaminonaphtalene (laurdan), a derivative of 6-propanoyl- 2-dimethylaminonaphthalene (prodan), has been used as a fluorescent probe in cell imaging, especially in visualizing the lipid rafts by the generalized polarization (GP) images, where GP=(I 440 -I 490 )/(I 440 +I 490 ) with I being the fluorescence intensity. The fluorescence spectrum of laurdan is sensitive to its dipolar environment due to the intramolecular charge transfer (ICT) process in S 1 state, which results in a dual emission from the locally excited (LE) and the ICT states. The ICT process and the solvation of the ICT state are very sensitive to the dipolar nature of the environment. In this work, the ICT of laurdan in ethanol has been studied by femtosecond time resolved fluorescence (TRF), especially TRF spectra measurement without the conventional spectral reconstruction method. TRF probes the excited states exclusively, a unique advantage over the pump/probe transient absorption technique, although time resolution of the TRF is generally lower than transient absorption and the TRF spectra measurement was possible only though the spectral reconstruction. Over the years, critical advances in TRF technique have been made in our group to achieve <50 fs time resolution with direct full spectra measurement capability. Detailed ICT and the subsequent solvation processes can be visualized unambiguously from the TRF spectra. Fig. 1 shows the TRF spectra of laurdan in ethanol at several time delays. Surprisingly, two bands at 433 and 476 nm are clearly visible in the TRF spectra of laurdan even at T = 0 fs. As time increases, the band at 476 nm shifts to the red while its intensity increases. The band at 433 nm also shifts slightly to the red, but loses intensity as time increases. The intensity of the 476 nm band reaches maximum at around 5 ps, where it is roughly twice as intense as that at 0 fs, and stays constant until lifetime decay is noticeable. The spectra were fit by

  7. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...

  8. Decision making based on optical excitation transfer via near-field interactions between quantum dots

    International Nuclear Information System (INIS)

    Naruse, Makoto; Nomura, Wataru; Ohtsu, Motoichi; Aono, Masashi; Sonnefraud, Yannick; Drezet, Aurélien; Huant, Serge; Kim, Song-Ju

    2014-01-01

    Optical near-field interactions between nanostructured matters, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here, we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.

  9. Decision making based on optical excitation transfer via near-field interactions between quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Makoto, E-mail: naruse@nict.go.jp [Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Nomura, Wataru; Ohtsu, Motoichi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Aono, Masashi [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguru-ku, Tokyo 152-8550 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Sonnefraud, Yannick; Drezet, Aurélien; Huant, Serge [Université Grenoble Alpes, Inst. NEEL, F-38000 Grenoble (France); CNRS, Inst. NEEL, F-38042 Grenoble (France); Kim, Song-Ju [WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-21

    Optical near-field interactions between nanostructured matters, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here, we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.

  10. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  11. Dynamics of Excited State Proton Transfer in Nitro Substituted 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Marciak, H; Hristova, S.; Deneva, V

    2017-01-01

    The ground state tautomerism and excited state intramolecular proton transfer (ESIPT) of 10-hydroxybenzo[h]quinoline (HBQ) and its nitro derivatives, 7-nitrobenzo[h]quinolin-10-ol (2) and 7,9-dinitrobenzo[h]quinolin-10-ol (3), have been studied in acetonitrile using steady state as well as time d...

  12. Energy transfer dynamics in Light-Harvesting Dendrimers

    Science.gov (United States)

    Melinger, Joseph S.; McMorrow, Dale; Kleiman, Valeria D.

    2002-03-01

    We explore energy transfer dynamics in light-harvesting phenylacetylene symmetric and asymmetric dendrimers. Femtosecond pump-probe spectroscopy is used to probe the ultrafast dynamics of electronic excitations in these dendrimers. The backbone of the macromolecule consists of branches of increasing conjugation length, creating an energy gradient, which funnels energy to an accepting perylene trap. In the case of the symmetric dendrimer (nanostar), the energy transfer efficiency is known to approach nearly unity, although the nature and timescale of the energy transfer process is still unknown. For the asymmetric dendrimers, energy transfer efficiencies are very high, with the possibility of more complex transfer processes. We experimentally monitor the transport of excitons through the light-harvesting dendrimer. The transients show a number of components, with timescales ranging from <300fs to several tens of picoseconds, revealing the complex photophysics taking place in these macromolecules. We interpret our results in terms of the Förster mechanism in which energy transfer occurs through dipole-dipole interactions.

  13. Ultrafast Nonradiative Decay and Excitation Energy Transfer by Carotenoids in Photosynthetic Light-Harvesting Proteins

    Science.gov (United States)

    Ghosh, Soumen

    This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2

  14. Dynamics of excited-state intramolecular proton transfer reactions in piroxicam. Role of triplet states

    Science.gov (United States)

    Cho, Dae Won; Kim, Yong Hee; Yoon, Minjoong; Jeoung, Sae Chae; Kim, Dongho

    1994-08-01

    The picosecond time-resolved fluorescence and transient absorption behavior of piroxicam at room temperature are reported. The keto tautomer in the excited singlet state ( 1K*) formed via the fast intramolecular proton transfer (≈ 20 ps) is observed. The short-lived (7.5 ns) triplet state of keto tauomer ( 3K*) is generated from 1K * in toluene whereas it is hardly observed in ethanol. Consequently, rapid reverse proton transfer takes place from 3K * to the enol triplet state ( 3E *.

  15. Behavior of Poisson Bracket Mapping Equation in Studying Excitation Energy Transfer Dynamics of Cryptophyte Phycocyanin 645 Complex

    International Nuclear Information System (INIS)

    Lee, Weon Gyu; Kelly, Aaron; Rhee, Young Min

    2012-01-01

    Recently, it has been shown that quantum coherence appears in energy transfers of various photosynthetic light harvesting complexes at from cryogenic to even room temperatures. Because the photosynthetic systems are inherently complex, these findings have subsequently interested many researchers in the field of both experiment and theory. From the theoretical part, simplified dynamics or semiclassical approaches have been widely used. In these approaches, the quantum-classical Liouville equation (QCLE) is the fundamental starting point. Toward the semiclassical scheme, approximations are needed to simplify the equations of motion of various degrees of freedom. Here, we have adopted the Poisson bracket mapping equation (PBME) as an approximate form of QCLE and applied it to find the time evolution of the excitation in a photosynthetic complex from marine algae. The benefit of using PBME is its similarity to conventional Hamiltonian dynamics. Through this, we confirmed the coherent population transfer behaviors in short time domain as previously reported with a more accurate but more time-consuming iterative linearized density matrix approach. However, we find that the site populations do not behave according to the Boltzmann law in the long time limit. We also test the effect of adding spurious high frequency vibrations to the spectral density of the bath, and find that their existence does not alter the dynamics to any significant extent as long as the associated reorganization energy is changed not too drastically. This suggests that adopting classical trajectory based ensembles in semiclassical simulations should not influence the coherence dynamics in any practical manner, even though the classical trajectories often yield spurious high frequency vibrational features in the spectral density

  16. Electronic-excitation energy transfer in heterogeneous dye solutions under laser excitation

    International Nuclear Information System (INIS)

    Levshin, L.V.; Mukushev, B.T.; Saletskii, A.M.

    1995-01-01

    An experimental study has been made of electronic-excitation energy transfer (EEET) among dye molecules of different types for different exciting-fight wavelengths and temperatures. Upon selective laser excitation of the donor, the inhomogeneous broadening of molecular levels increases the probability of EEET from the donor to acceptor molecules. The efficiency of this process is directly proportional to the acceptor molecule concentration and is temperature dependent. The EEET is accompanied by the spectral migration of energy among donor molecules, which reduces the fluorescence quantum efficiency of the donor. Increasing the frequency of the exciting light decreases in the donor fluorescence quantum efficiency. An increase in the acceptor molecule concentration results in a decrease of the spectral migration of excitation in the donor molecule system. 5 refs., 5 figs

  17. Excited-state molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Pratt, S.T.

    1995-01-01

    This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)

  18. Multi-step intramolecular excitation energy transfer in dendritic pyrene-phosphorus(V)porphyrin heptads

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Kazutaka, E-mail: hirakawa.kazutaka@shizuoka.ac.jp [Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Segawa, Hiroshi [Department of Multi-Disciplinary Science - General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8904 (Japan); Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904 (Japan)

    2016-11-15

    Dendritic heptad molecules in which four pyrenyl groups are connected at the central phosphorus atom of the edge-porphyrins of the center-to-edge type porphyrin trimers were synthesized to investigate a multi-step excitation energy transfer. As the central energy acceptor, two types porphyrins which one was phosphorus(V)tetraphenylporphyrin (H2) and another was its derivative substituted by butoxy groups at four para-position of meso-phenyl groups (H1) were used. In the photoexcited state of the pyrene units, the excitation energy transfer to the central-porphyrin unit was observed in toluene. The excitation energy transfer is considered to be through two pathways; one is a stepwise pathway through the edge-porphyrin unit and another is a direct excitation energy transfer to the central porphyrin. The direct excitation energy transfer from pyrenes to the edge-porphyrin and central-porphyrin were observed in the case for H1. From the excited state of the edge-porphyrins, the excitation energy transfer to the central-porphyrin occurs in the H1 case. In the H2 case, the excitation energy of central-porphyrin is higher than that of H1, and the electron transfer from edge-porphyrin to the central-porphyrin become predominant process. - Highlights: • Dendritic pyrene-porphyrin heptads were synthesized. • Excitation energy transfer occurs from the pyrenyl moiety to the phosphorus(V)porphyrin. • The stepwise and direct energy transfer pathways were observed. • The quantum yields of these energy transfer pathways could be determined.

  19. Multi-step intramolecular excitation energy transfer in dendritic pyrene-phosphorus(V)porphyrin heptads

    International Nuclear Information System (INIS)

    Hirakawa, Kazutaka; Segawa, Hiroshi

    2016-01-01

    Dendritic heptad molecules in which four pyrenyl groups are connected at the central phosphorus atom of the edge-porphyrins of the center-to-edge type porphyrin trimers were synthesized to investigate a multi-step excitation energy transfer. As the central energy acceptor, two types porphyrins which one was phosphorus(V)tetraphenylporphyrin (H2) and another was its derivative substituted by butoxy groups at four para-position of meso-phenyl groups (H1) were used. In the photoexcited state of the pyrene units, the excitation energy transfer to the central-porphyrin unit was observed in toluene. The excitation energy transfer is considered to be through two pathways; one is a stepwise pathway through the edge-porphyrin unit and another is a direct excitation energy transfer to the central porphyrin. The direct excitation energy transfer from pyrenes to the edge-porphyrin and central-porphyrin were observed in the case for H1. From the excited state of the edge-porphyrins, the excitation energy transfer to the central-porphyrin occurs in the H1 case. In the H2 case, the excitation energy of central-porphyrin is higher than that of H1, and the electron transfer from edge-porphyrin to the central-porphyrin become predominant process. - Highlights: • Dendritic pyrene-porphyrin heptads were synthesized. • Excitation energy transfer occurs from the pyrenyl moiety to the phosphorus(V)porphyrin. • The stepwise and direct energy transfer pathways were observed. • The quantum yields of these energy transfer pathways could be determined.

  20. Charge transfer and excitation in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.

    1986-11-01

    Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture

  1. Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Verma

    2016-03-01

    Full Text Available We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps followed by decay (≈390 ps to the corresponding ground state.

  2. Dynamic correlation of photo-excited electrons: Anomalous levels induced by light–matter coupling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiankai [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); Song, Bo, E-mail: bosong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China)

    2014-04-01

    Nonlinear light–matter coupling plays an important role in many aspects of modern physics, such as spectroscopy, photo-induced phase transition, light-based devices, light-harvesting systems, light-directed reactions and bio-detection. However, excited states of electrons are still unclear for nano-structures and molecules in a light field. Our studies unexpectedly present that light can induce anomalous levels in the electronic structure of a donor–acceptor nanostructure with the help of the photo-excited electrons transferring dynamically between the donor and the acceptor. Furthermore, the physics underlying is revealed to be the photo-induced dynamical spin–flip correlation among electrons. These anomalous levels can significantly enhance the electron current through the nanostructure. These findings are expected to contribute greatly to the understanding of the photo-excited electrons with dynamic correlations, which provides a push to the development and application of techniques based on photosensitive molecules and nanostructures, such as light-triggered molecular devices, spectroscopic analysis, bio-molecule detection, and systems for solar energy conversion.

  3. Unveiling the excited state energy transfer pathways in peridinin-chlorophyll a-protein by ultrafast multi-pulse transient absorption spectroscopy.

    Science.gov (United States)

    Redeckas, Kipras; Voiciuk, Vladislava; Zigmantas, Donatas; Hiller, Roger G; Vengris, Mikas

    2017-04-01

    Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S 0 →S 2 transition of the carotenoid peridinin. A portion of the peridinin-based emissive intramolecular charge transfer (ICT) state was then depopulated by applying an ultrashort NIR pulse that perturbed the interaction between S 1 and ICT states and the energy flow from the carotenoids to the chlorophylls. The presented data indicate that the peridinin S 1 and ICT states are spectrally distinct and coexist in an excited state equilibrium in the PCP complex. Moreover, numeric analysis of the experimental data asserts ICT→Chl-a as the main energy transfer pathway in the photoexcited PCP systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ultrafast dynamics of ligand and substrate interaction in endothelial nitric oxide synthase under Soret excitation.

    Science.gov (United States)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S

    2016-01-01

    Ultrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in 4ps. The eNOS-oxy without additive is partially bound with water molecule, thus its photoexcited dynamics also shows ligand dissociation in <800fs. Then it followed by vibrational cooling coupled with charge transfer in 4.8ps, and recombination of ligand to distal side of heme in 12ps. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  6. A Ratio-Analysis Method to the Dynamics of Excited State Proton Transfer: Pyranine in Water and Micelles.

    Science.gov (United States)

    Sahu, Kalyanasis; Nandi, Nilanjana; Dolai, Suman; Bera, Avisek

    2018-06-05

    Emission spectrum of a fluorophore undergoing excited state proton transfer (ESPT) often exhibits two distinct bands each representing emissions from protonated and deprotonated forms. The relative contribution of the two bands, best represented by an emission intensity ratio (R) (intensity maximum of the protonated band / intensity maximum of the deprotonated band), is an important parameter which usually denotes feasibility or promptness of the ESPT process. However, the use of ratio is only limited to the interpretation of steady-state fluorescence spectra. Here, for the first time, we exploit the time-dependence of the ratio (R(t)), calculated from time-resolved emission spectra (TRES) at different times, to analyze ESPT dynamics. TRES at different times were fitted with a sum of two lognormal-functions representing each peaks and then, the peak intensity ratio, R(t) was calculated and further fitted with an analytical function. Recently, a time-resolved area-normalized emission spectra (TRANES)-based analysis was presented where the decay of protonated emission or the rise of deprotonated emission intensity conveniently accounts for the ESPT dynamics. We show that these two methods are equivalent but the new method provides more insights on the nature of the ESPT process.

  7. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-02-12

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  8. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede; Usman, Anwar; Alzayer, Maytham; Hamdi, Ghada A.; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  9. Interplay between excitation kinetics and reaction-center dynamics in purple bacteria

    International Nuclear Information System (INIS)

    Caycedo-Soler, Felipe; RodrIguez, Ferney J; Quiroga, Luis; Johnson, Neil F

    2010-01-01

    Photosynthesis is arguably the fundamental process of life, since it enables energy from the Sun to enter the food chain on the Earth. It is a remarkable non-equilibrium process in which photons are converted to many-body excitations, which traverse a complex biomolecular membrane, where they are captured and fuel chemical reactions within a reaction center (RC) in order to produce nutrients. The precise nature of these dynamical processes-which lie at the interface between quantum and classical behavior and involve both noise and coordination-is still being explored. Here, we focus on a striking recent empirical finding concerning an illumination-driven transition in the biomolecular membrane architecture of the purple bacteria Rsp. photometricum. Using stochastic realizations to describe a hopping rate model for excitation transfer, we show numerically and analytically that this surprising shift in preferred architectures can be traced to the interplay between the excitation kinetics and the RC dynamics. The net effect is that the bacteria profit from efficient metabolism at low illumination intensities while using dissipation to avoid an oversupply of energy at high illumination intensities.

  10. Extended Lagrangian Excited State Molecular Dynamics.

    Science.gov (United States)

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  11. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine)2(CN)2

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Zhang, Wenkai; Alonso-Mori, Roberto

    2017-01-01

    We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible...

  12. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.; Laptenok, Sergey P.; DeSa, Richard J.; Naumov, Pance; Solntsev, Kyril M.

    2016-01-01

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  13. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.

    2016-11-23

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  14. Effect of vibrational excitation on the dynamics of ion-molecule reactions

    International Nuclear Information System (INIS)

    Anderson, S.L.

    1981-11-01

    A new experimental technique for the study of vibrational effects on ion-molecule reaction cross sections is described. Vibrational and collision energy dependent cross sections are presented for proton and H atom transfer, charge transfer and collision induced dissociation reactions in various isotopic H 2 + + H 2 systems. Charge and proton transfer cross sections are presented for the reactions of H 2 + and D 2 + with Ar, N 2 , CO, and O 2 . All the reactions are shown to be highly influenced by avoided crossings between the ground and first excited potential energy surfaces. Because of the nature of the crossings, vibrational motion of the systems can cause both adiabatic and non-adiabatic behavior of the system. This makes the vibrational dependences of the various cross sections a very sensitive probe of the dynamics of the collisions particularly, their behavior in the region of the crossings. Evidence is seen for charge transfer between reagents as they approach each other, transition to and in some cases reactions on excited potential energy surfaces, competition between different channels, and strong coupling of proton and charge transfer channels which occurs only for two of the systems studied (H 2 + + Ar, N 2 ). Oscillatory structure is observed in the collision energy dependence of the endoergic H 2 + (v = 0) + Ar charge transfer reaction for the first time, and a simple model which is commonly used for atom-atom charge transfer is used to fit the peaks. Finally a simple model is used to assess the importance of energy resonance and Franck-Condon effects on molecular charge transfer

  15. Femtosecond dynamics of electron transfer in a neutral organic mixed-valence compound

    International Nuclear Information System (INIS)

    Maksimenka, Raman; Margraf, Markus; Koehler, Juliane; Heckmann, Alexander; Lambert, Christoph; Fischer, Ingo

    2008-01-01

    In this article we report a femtosecond time-resolved transient absorption study of a neutral organic mixed-valence (MV) compound with the aim to gain insight into its charge-transfer dynamics upon optical excitation. The back-electron transfer was investigated in five different solvents, toluene, dibutyl ether, methyl-tert-butyl ether (MTBE), benzonitrile and n-hexane. In the pump step, the molecule was excited at 760 nm and 850 nm into the intervalence charge-transfer band. The resulting transients can be described by two time constant. We assign one time constant to the rearrangement of solvent molecules in the charge-transfer state and the second time constant to back-electron transfer to the electronic ground state. Back-electron transfer rates range from 1.5 x 10 12 s -1 in benzonitrile through 8.3 x 10 11 s -1 in MTBE, around 1.6 x 10 11 s -1 in dibutylether and toluene and to 3.8 x 10 9 s -1 in n-hexane

  16. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  17. Ultrafast dynamics of hydrophilic carbonyl carotenoids - Relation between structure and excited-state properties in polar solvents

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Fuciman, M.; Naqvi, K.R.; Polívka, Tomáš

    2010-01-01

    Roč. 373, 1-2 (2010), s. 56-64 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : hydrophilic carotenoids * excited-state dynamics * charge-transfer state Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  18. Ultrafast Dynamics of Dansylated POPAM Dendrimers and Energy Transfer in their Dye Complexes

    Science.gov (United States)

    Aumanen, J.; Kesti, T.; Sundström, V.; Vögtle, F.; Korppi-Tommola, J.

    We have studied internal dynamics of dansylated poly(propyleneamine) dendrimers of different generations in solution and excitation energy transfer from dansyl chromophores to xanthene dyes that form van der Waals complexes with the dendrimers

  19. A coherent modified Redfield theory for excitation energy transfer in molecular aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Hwang-Fu, Yu-Hsien; Chen, Wei; Cheng, Yuan-Chung, E-mail: yuanchung@ntu.edu.tw

    2015-02-02

    Highlights: • A CMRT method for coherent energy transfer in molecular aggregates was developed. • Applicability of the method was verified in two-site systems with various parameters. • CMRT accurately describes population dynamics in the FMO-complex. • The method is accurate in a large parameter space and computationally efficient. - Abstract: Excitation energy transfer (EET) is crucial in photosynthetic light harvesting, and quantum coherence has been recently proven to be a ubiquitous phenomenon in photosynthetic EET. In this work, we derive a coherent modified Redfield theory (CMRT) that generalizes the modified Redfield theory to treat coherence dynamics. We apply the CMRT method to simulate the EET in a dimer system and compare the results with those obtained from numerically exact path integral calculations. The comparison shows that CMRT provides excellent computational efficiency and accuracy within a large EET parameter space. Furthermore, we simulate the EET dynamics in the FMO complex at 77 K using CMRT. The results show pronounced non-Markovian effects and long-lasting coherences in the ultrafast EET, in excellent agreement with calculations using the hierarchy equation of motion approach. In summary, we have successfully developed a simple yet powerful framework for coherent EET dynamics in photosynthetic systems and organic materials.

  20. Excitation dynamics and relaxation in a molecular heterodimer

    International Nuclear Information System (INIS)

    Balevičius, V.; Gelzinis, A.; Abramavicius, D.; Mančal, T.; Valkunas, L.

    2012-01-01

    Highlights: ► Dynamics of excitation within a heterogenous molecular dimer. ► Excited states can be swapped due to different reorganization energies of monomers. ► Conventional excitonic basis becomes renormalized due to interaction with the bath. ► Relaxation is independent of mutual positioning of monomeric excited states. -- Abstract: The exciton dynamics in a molecular heterodimer is studied as a function of differences in excitation and reorganization energies, asymmetry in transition dipole moments and excited state lifetimes. The heterodimer is composed of two molecules modeled as two-level systems coupled by the resonance interaction. The system-bath coupling is taken into account as a modulating factor of the molecular excitation energy gap, while the relaxation to the ground state is treated phenomenologically. Comparison of the description of the excitation dynamics modeled using either the Redfield equations (secular and full forms) or the Hierarchical quantum master equation (HQME) is demonstrated and discussed. Possible role of the dimer as an excitation quenching center in photosynthesis self-regulation is discussed. It is concluded that the system-bath interaction rather than the excitonic effect determines the excitation quenching ability of such a dimer.

  1. Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren

    1994-01-01

    indicate that phenyl torsional motion is not important to the excited-state dynamics and reveal alternative excited-state reaction pathways. The results demonstrate how molecular systems that are structually similar can exhibit different electronic properties and excited-state dynamics....

  2. Elucidation of the relationships between H-bonding patterns and excited state dynamics in cyclovalone.

    Science.gov (United States)

    Lamperti, Marco; Maspero, Angelo; Tønnesen, Hanne H; Bondani, Maria; Nardo, Luca

    2014-08-28

    Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  3. Elucidation of the Relationships between H-Bonding Patterns and Excited State Dynamics in Cyclovalone

    Directory of Open Access Journals (Sweden)

    Marco Lamperti

    2014-08-01

    Full Text Available Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  4. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin Thomas [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  5. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Zanni, Martin T.

    1999-01-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents

  6. The photodissociation and reaction dynamics of vibrationally excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Crim, F.F. [Univ. of Wisconsin, Madison (United States)

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  7. Nonlinear Dynamical Analysis for the Cable Excited with Parametric and Forced Excitation

    Directory of Open Access Journals (Sweden)

    C. Z. Qian

    2014-01-01

    Full Text Available Considering the deck vibration effect on the cable in cable-stayed bridge, using nonlinear structure dynamics theory, the nonlinear dynamical equation for the stayed cable excited with deck vibration is proposed. Research shows that the vertical vibration of the deck has a combined parametric and forced excitation effect on the cable when the angle of the cable is taken into consideration. Using multiscale method, the 1/2 principle parametric resonance is studied and the bifurcation equation is obtained. Despite the parameters analysis, the bifurcation characters of the dynamical system are studied. At last, by means of numerical method and software MATHMATIC, the effect rules of system parameters to the dynamical behavior of the system are studied, and some useful conclusions are obtained.

  8. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter...

  9. Thermal Dynamics of Xanthene Dye in Polymer Matrix Excited by Double Pulse Laser Radiation

    Science.gov (United States)

    Samusev, Ilia; Borkunov, Rodion; Tsarkov, Maksim; Konstantinova, Elizaveta; Antipov, Yury; Demin, Maksim; Bryukhanov, Valery

    2018-01-01

    Double-pulse laser excitation of the eosin and silver nanoparticles embedded into polymer media is known to be a method of electronic-vibrational energy deactivation kinetic process information obtaining and polymer thermal dynamics investigation. We have studied the vibrational relaxation processes in dye molecules (eosin) and nanoparticles in polyvinyl alcohol after two time-shifted laser pulses with fast and delayed fluorescence kinetics study. In order to simulate thermal and photophysical processes caused by double photon excitation, we solved heat transfer and energy deactivation differential equations numerically. The simulation allowed us to obtain the value of heat conductivity coefficient of polymer matrix.

  10. Memory-induced nonlinear dynamics of excitation in cardiac diseases.

    Science.gov (United States)

    Landaw, Julian; Qu, Zhilin

    2018-04-01

    Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.

  11. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  12. The Role of Electronic Excitations on Chemical Reaction Dynamics at Metal, Semiconductor and Nanoparticle Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tully, John C. [Yale Univ., New Haven, CT (United States)

    2017-06-10

    Chemical reactions are often facilitated and steered when carried out on solid surfaces, essential for applications such as heterogeneous catalysis, solar energy conversion, corrosion, materials processing, and many others. A critical factor that can determine the rates and pathways of chemical reactions at surfaces is the efficiency and specificity of energy transfer; how fast does energy move around and where does it go? For reactions on insulator surfaces energy transfer generally moves in and out of vibrations of the adsorbed molecule and the underlying substrate. By contrast, on metal surfaces, metallic nanoparticles and semiconductors, another pathway for energy flow opens up, excitation and de-excitation of electrons. This so-called “nonadiabatic” mechanism often dominates the transfer of energy and can directly impact the course of a chemical reaction. Conventional computational methods such as molecular dynamics simulation do not account for this nonadiabatic behavior. The current DOE-BES funded project has focused on developing the underlying theoretical foundation and the computational methodology for the prediction of nonadiabatic chemical reaction dynamics at surfaces. The research has successfully opened up new methodology and new applications for molecular simulation. In particular, over the last three years, the “Electronic Friction” theory, pioneered by the PI, has now been developed into a stable and accurate computational method that is sufficiently practical to allow first principles “on-the-fly” simulation of chemical reaction dynamics at metal surfaces.

  13. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    Science.gov (United States)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  14. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    Science.gov (United States)

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  15. Excited-state absorption and fluorescence dynamics of Er3+:KY3F10

    Science.gov (United States)

    Labbé, C.; Doualan, J. L.; Moncorgé, R.; Braud, A.; Camy, P.

    2018-05-01

    We report here on a complete investigation of the excited-state absorption and fluorescence dynamics of Er3+ doped KY3F10 single crystals versus dopant concentrations and optical excitation conditions. Radiative and effective (including non-radiative relaxations) emission lifetimes and branching ratios are determined from a Judd-Ofelt analysis of the absorption spectra and via specific fluorescence experiments using wavelength selective laser excitations. Excited-state absorption and emission spectra are registered within seven spectral domains, i.e. 560 nm, 650 nm, 710 nm, 810 nm, 970 nm, 1550 nm and 2750 nm. A maximum gain cross-section of 0.93 × 10-21 cm2 is determined at the potential laser wavelength of 2.801 μm for a population ratio of 0.48. Saturation of fluorescence intensities and variations of population ratios versus pumping rates are registered and confronted with a rate equation model to derive the rates of the most important up-conversion and cross-relaxation energy transfers occurring at high dopant concentrations.

  16. Coherent excitation-energy transfer and quantum entanglement in a dimer

    International Nuclear Information System (INIS)

    Liao Jieqiao; Sun, C. P.; Huang Jinfeng; Kuang Leman

    2010-01-01

    We study coherent energy transfer of a single excitation and quantum entanglement in a dimer, which consists of a donor and an acceptor modeled by two two-level systems. Between the donor and the acceptor, there exists a dipole-dipole interaction, which provides the physical mechanism for coherent energy transfer and entanglement generation. The donor and the acceptor couple to two independent heat baths with diagonal couplings that do not dissipate the energy of the noncoupling dimer. Special attention is paid to the effect on single-excitation energy transfer and entanglement generation of the energy detuning between the donor and the acceptor and the temperatures of the two heat baths. It is found that, the probability for single-excitation energy transfer largely depends on the energy detuning in the low temperature limit. Concretely, the positive and negative energy detunings can increase and decrease the probability at steady state, respectively. In the high temperature limit, however, the effect of the energy detuning on the probability is negligibly small. We also find that the probability is negligibly dependent on the bath temperature difference of the two heat baths. In addition, it is found that quantum entanglement can be generated in the process of coherent energy transfer. As the bath temperature increases, the generated steady-state entanglement decreases. For a given bath temperature, the steady-state entanglement decreases with the increase of the absolute value of the energy detuning.

  17. Optically Controlled Electron-Transfer Reaction Kinetics and Solvation Dynamics : Effect of Franck-Condon States

    NARCIS (Netherlands)

    Gupta, Kriti; Patra, Aniket; Dhole, Kajal; Samanta, Alok Kumar; Ghosh, Swapan K.

    2017-01-01

    Experimental results for optically controlled electron-transfer reaction kinetics (ETRK) and nonequilibrium solvation dynamics (NESD) of Coumarin 480 in DMPC vesicle show their dependence on excitation wavelength λex. However, the celebrated Marcus theory and linear-response-theory-based approaches

  18. Energy transfer dynamics in an RC-LH1-PufX tubular photosynthetic membrane

    International Nuclear Information System (INIS)

    Hsin, J; Sener, M; Schulten, K; Struempfer, J; Qian, P; Hunter, C N

    2010-01-01

    Light absorption and the subsequent transfer of excitation energy are the first two steps in the photosynthetic process, carried out by protein-bound pigments, mainly bacteriochlorophylls (BChls), in photosynthetic bacteria. BChls are anchored in light-harvesting (LH) complexes, such as light-harvesting complex I (LH1), which directly associates with the reaction center (RC), forming the RC-LH1 core complex. In Rhodobacter sphaeroides, RC-LH1 core complexes contain an additional protein, PufX, and assemble into dimeric RC-LH1-PufX core complexes. In the absence of LH complex II (LH2), the former complexes can aggregate into a helically ordered tubular photosynthetic membrane. We have examined the excitation transfer dynamics in a single RC-LH1-PufX core complex dimer using the hierarchical equations of motion for dissipative quantum dynamics that accurately, yet in a computationally costly manner, treat the coupling between BChls and their protein environment. A widely employed description, the generalized Foerster (GF) theory, was also used to calculate the transfer rates of the same excitonic system in order to verify the accuracy of this computationally cheap method. Additionally, in light of the structural uncertainties in the Rba. sphaeroides RC-LH1-PufX core complex, geometrical alterations were introduced into the BChl organization. It is shown that the energy transfer dynamics are not affected by the considered changes in the BChl organization and that the GF theory provides accurate transfer rates. An all-atom model for a tubular photosynthetic membrane is then constructed on the basis of electron microscopy data, and the overall energy transfer properties of this membrane are computed.

  19. Energy transfer dynamics in an RC-LH1-PufX tubular photosynthetic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, J; Sener, M; Schulten, K [Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (United States); Struempfer, J [Center for Biophysics and Computational Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (United States); Qian, P; Hunter, C N, E-mail: kschulte@ks.uiuc.ed [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom)

    2010-08-15

    Light absorption and the subsequent transfer of excitation energy are the first two steps in the photosynthetic process, carried out by protein-bound pigments, mainly bacteriochlorophylls (BChls), in photosynthetic bacteria. BChls are anchored in light-harvesting (LH) complexes, such as light-harvesting complex I (LH1), which directly associates with the reaction center (RC), forming the RC-LH1 core complex. In Rhodobacter sphaeroides, RC-LH1 core complexes contain an additional protein, PufX, and assemble into dimeric RC-LH1-PufX core complexes. In the absence of LH complex II (LH2), the former complexes can aggregate into a helically ordered tubular photosynthetic membrane. We have examined the excitation transfer dynamics in a single RC-LH1-PufX core complex dimer using the hierarchical equations of motion for dissipative quantum dynamics that accurately, yet in a computationally costly manner, treat the coupling between BChls and their protein environment. A widely employed description, the generalized Foerster (GF) theory, was also used to calculate the transfer rates of the same excitonic system in order to verify the accuracy of this computationally cheap method. Additionally, in light of the structural uncertainties in the Rba. sphaeroides RC-LH1-PufX core complex, geometrical alterations were introduced into the BChl organization. It is shown that the energy transfer dynamics are not affected by the considered changes in the BChl organization and that the GF theory provides accurate transfer rates. An all-atom model for a tubular photosynthetic membrane is then constructed on the basis of electron microscopy data, and the overall energy transfer properties of this membrane are computed.

  20. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber

    Science.gov (United States)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-09-01

    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester

  1. Resonant and nonresonant transfer and excitation in Si11+ + He collisions

    International Nuclear Information System (INIS)

    Clark, M.W.

    1988-01-01

    For many years now, dielectronic recombination (DR) has been discussed as a possible energy loss mechanism in high temperature plasmas (e.g. stars). The process is basically the inverse Auger process and involves the capture of a free electron by an ion and the simultaneous excitation of an inner shell electron of the ion producing a doubly excited state. The DR process also includes the radiative deexcitation of the ion and hence represents an energy loss from the plasma since the plasma is essentially transparent to the photons. If, instead of a free electron, an electron that is weakly bound to an atom is captured and an inner shell electron of the ion is excited, the same excited states are produced as in DR. Because the bound electrons have a momentum distribution (Compton profile), individual doubly excited states cannot, in general, be observed in this case. This new process has been called Resonant Transfer and Excitation (RTE). There is also a competing mechanism for RTE in which excitation occurs via the interaction between a projectile ion electron and a target nucleus and the capture occurs because of the interaction of the projectile nucleus and a target electron. This competing mechanism has been termed Nonresonant Transfer and Excitation (NTE) Measurements have been performed to measure RTE and NTE cross sections. A discussion of the theory, methods, and results is included

  2. Optogalvanic monitoring of collisional transfer of laser excitation energy in a neon RF plasma

    International Nuclear Information System (INIS)

    Armstrong, T.D.

    1994-01-01

    The optogalvanic signals produced by pulsed laser excitation of 1s5--2p8 and 1s5-2p9 (Paschen notation) transition by a ∼29 MHz radiofrequency (rf) discharge at ∼5 torr have been investigated. The optogalvanic signal produced by 1s5-2p9 excitations indicates that there is transfer of energy from the 2p9 state to some other state. The state to which this energy is transferred is believed to be mainly the 2p8 state because of the very small energy gap between the 2p9 and 2p8 states. To verify this transfer, the 1s5-2p8 transition was investigated. The similarity of the temporal profiles of the optogalvanic signals in both excitations confirms the collisional transfer of laser excitation energy from 2p9 to 2p8

  3. Phonons and charge-transfer excitations in HTS superconductors

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1989-01-01

    Some of the experimental and theoretical evidence implicating phonons and charge-transfer excitations in HTS superconductors is reviewed. It is suggested that superconductivity may be driven by a synergistic interplay of (anharmonic) phonons and electronic degrees of freedom (e.g., charge fluctuations, excitons). 47 refs., 5 figs

  4. Observation of excited state charge transfer with fs/ps-CARS

    International Nuclear Information System (INIS)

    Blom, Alex Jason

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4(prime)-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4(prime)-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles

  5. Observation of excited state charge transfer with fs/ps-CARS

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

  6. Investigation on method of estimating the excitation spectrum of vibration source

    International Nuclear Information System (INIS)

    Zhang Kun; Sun Lei; Lin Song

    2010-01-01

    In practical engineer area, it is hard to obtain the excitation spectrum of the auxiliary machines of nuclear reactor through direct measurement. To solve this problem, the general method of estimating the excitation spectrum of vibration source through indirect measurement is proposed. First, the dynamic transfer matrix between the virtual excitation points and the measure points is obtained through experiment. The matrix combined with the response spectrum at the measure points under practical work condition can be used to calculate the excitation spectrum acts on the virtual excitation points. Then a simplified method is proposed which is based on the assumption that the vibration machine can be regarded as rigid body. The method treats the centroid as the excitation point and the dynamic transfer matrix is derived by using the sub structure mobility synthesis method. Thus, the excitation spectrum can be obtained by the inverse of the transfer matrix combined with the response spectrum at the measure points. Based on the above method, a computing example is carried out to estimate the excitation spectrum acts on the centroid of a electrical pump. By comparing the input excitation and the estimated excitation, the reliability of this method is verified. (authors)

  7. On the use of analytical approximate expressions for the transfer rate in excitation transfer kinetics

    International Nuclear Information System (INIS)

    Kusba, J.; Sipp, B.

    1985-01-01

    We present a discussion about the range of validity of the usual approximate transfer rate expressions used in the description of the kinetics of diffusion-modulated excitation transfer, for a reactive interaction of exponential functional form. We simulate the features of energy transfer by a numerical inversion of the exact Laplace transform of the transfer rate. It is shown that for high diffusion coefficients of the order of 10 -5 cm 2 s -1 , the kinetics may be well reproduced, even at short times, by the asymptotic form of the transfer rate. For slow molecular displacements, the short time static regime is brought to direct observation, but the transfer rate approaches is asymptotic value at a much later time

  8. Ni-Ni ion pair excitation transfer in D sub(3h) symmetry

    International Nuclear Information System (INIS)

    Terrile, M.C.

    1990-01-01

    The mechanisms contributing to excitation transfer are examined for Ni-Ni ion pairs in order to explain the delocalized character of electronic excitations observed in CsNiF sub(3). Using both first-and second-order perturbation theory and from symmetry arguments, the kind of interactions giving matrix elements between states connecting different sites for the position of the excitation are discussed. (author)

  9. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Yukihira, Nao [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Sugai, Yuko [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Fujiwara, Masazumi [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Kosumi, Daisuke [Institute of Pulsed Power Science; Kumamoto University; Kumamoto; Japan; Iha, Masahiko [South Product Co. Ltd.; Uruma-shi; Japan; Sakaguchi, Kazuhiko [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Katsumura, Shigeo [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Gardiner, Alastair T. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Cogdell, Richard J. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Hashimoto, Hideki [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan

    2017-01-01

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.

  10. Non-adiabatic Excited State Molecule Dynamics Modeling of Photochemistry and Photophysics of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tretiak, Sergei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-06

    Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atoms in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.

  11. Cold transfer between deformed, Coulomb excited nuclei

    International Nuclear Information System (INIS)

    Bauer, H.

    1998-01-01

    The scattering system 162 Dy → 116 Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high γ-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in 162 Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  12. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroanilin

    DEFF Research Database (Denmark)

    Eriksen, J.J.; Sauer, S.P.A.; Mikkelsen, K.V.

    2013-01-01

    We investigate the failure of Time{Dependent Density Functional Theory (TDDFT) with the CAM{B3LYP exchange{correlation (xc) functional coupled to the Polarizable Embedding (PE) scheme (PE-CAM-B3LYP) in reproducing the solvatochromic shift of the lowest intense charge{transfer excitation in para...... the electric dipole moments in the gas phase and for 100 solvent congurations. We find that CAM-B3LYP overestimates the amount of charge separation inherent in the ground state and TDDFT/CAM-B3LYP drastically underestimates this amount in the excited charge-transfer state. As the errors in the solvatochromatic...... to benchmark results of TDDFT calculations with CAM-B3LYP for intramolecular charge{transfer excitations in molecular systems similar to pNA against higher{level ab initio wave function methods, like, e.g., CCSD, prior to their use. Using the calculated change in dipole moment upon excitation as a measure...

  13. Charge transfer excitations from exact and approximate ensemble Kohn-Sham theory

    Science.gov (United States)

    Gould, Tim; Kronik, Leeor; Pittalis, Stefano

    2018-05-01

    By studying the lowest excitations of an exactly solvable one-dimensional soft-Coulomb molecular model, we show that components of Kohn-Sham ensembles can be used to describe charge transfer processes. Furthermore, we compute the approximate excitation energies obtained by using the exact ensemble densities in the recently formulated ensemble Hartree-exchange theory [T. Gould and S. Pittalis, Phys. Rev. Lett. 119, 243001 (2017)]. Remarkably, our results show that triplet excitations are accurately reproduced across a dissociation curve in all cases tested, even in systems where ground state energies are poor due to strong static correlations. Singlet excitations exhibit larger deviations from exact results but are still reproduced semi-quantitatively.

  14. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Ingu; Pang, Yoonsoo; Lee, Sebok

    2014-01-01

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S 2 and S 1 excited states

  15. An efficient method to calculate excitation energy transfer in light-harvesting systems: application to the Fenna-Matthews-Olson complex

    International Nuclear Information System (INIS)

    Ritschel, Gerhard; Roden, Jan; Eisfeld, Alexander; Strunz, Walter T

    2011-01-01

    A master equation derived from non-Markovian quantum state diffusion is used to calculate the excitation energy transfer in the photosynthetic Fenna-Matthews-Olson pigment-protein complex at various temperatures. This approach allows us to treat spectral densities that explicitly contain the coupling to internal vibrational modes of the chromophores. Moreover, the method is very efficient and as a result the transfer dynamics can be calculated within about 1 min on a standard PC, making systematic investigations w.r.t. parameter variations tractable. After demonstrating that our approach is able to reproduce the results of the numerically exact hierarchical equations of motion approach, we show how the inclusion of vibrational modes influences the transfer. (paper)

  16. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron

    Science.gov (United States)

    Barklem, P. S.

    2018-05-01

    Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90

  17. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, Z. E., E-mail: zjguevaram@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá D.C. (Colombia)

    2016-07-07

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.

  18. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2014-03-15

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.

  19. Resonant transfer excitation of fluorine-like Mo{sup 33+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Hassan [Ain Shams Univ., Cairo (Egypt). Dept. of Basic Sciences; Elkilany, Sabbah [Kafr El-sheikh Univ. (Egypt). Dept. of Mathematics

    2010-06-15

    Dielectronic recombination (DR) cross sections (anti {sigma}{sup DR}) and rate coefficients ({alpha}{sup DR}) for Mo{sup 33+} are calculated using the angular momentum average scheme (AMA). Moreover, the resonant transfer excitation followed by X-ray emission (RTEX) cross sections ({sigma}{sup RTEX}) for the collision of Mo{sup 33+} with H{sub 2} and He targets are calculated and studied. The calculations of the cross sections are performed for both K- and L-shell excitations. A smooth change with the temperatures for {alpha}{sup DR} is found for all kinds of excitations. The rates for K-shell excitation are very small in comparison with the rates for L-shell excitation. The RTEX cross sections for Mo{sup 33+} ions are obtained from their corresponding DR cross sections by the method of folding in the impulse approximation (IMA). {sigma}{sup RTEX} for the K-shell excitation shows two overlapped peaks which may be attributed to the two groups in this excitation process. The present calculations are considered as a database for future comparison with theoretical and experimental data using other coupling schemes. Multiple Auger channels are complicating the dependence of the cross sections on principal quantum numbers. (orig.)

  20. External Electric Field Effects on Excited-State Intramolecular Proton Transfer in 4'-N,N-Dimethylamino-3-hydroxyflavone in Poly(methyl methacrylate) Films.

    Science.gov (United States)

    Furukawa, Kazuki; Hino, Kazuyuki; Yamamoto, Norifumi; Awasthi, Kamlesh; Nakabayashi, Takakazu; Ohta, Nobuhiro; Sekiya, Hiroshi

    2015-09-17

    The external electric field effects on the steady-state electronic spectra and excited-state dynamics were investigated for 4'-N,N-(dimethylamino)-3-hydroxyflavone (DMHF) in a poly(methyl methacrylate) (PMMA) film. In the steady-state spectrum, dual emission was observed from the excited states of the normal (N*) and tautomer (T*) forms. Application of an external electric field of 1.0 MV·cm(-1) enhanced the N* emission and reduced the T* emission, indicating that the external electric field suppressed the excited-state intramolecular proton transfer (ESIPT). The fluorescence decay profiles were measured for the N* and T* forms. The change in the emission intensity ratio N*/T* induced by the external electric field is dominated by ESIPT from the Franck-Condon excited state of the N* form and vibrational cooling in potential wells of the N* and T* forms occurring within tens of picoseconds. Three manifolds of fluorescent states were identified for both the N* and T* forms. The excited-state dynamics of DMHF in PMMA films has been found to be very different from that in solution due to intermolecular interactions in a rigid environment.

  1. Optimization of excitation transfer in a spin chain

    International Nuclear Information System (INIS)

    Gurman, Vladimir I.; Guseva, Irina S.; Fesko, Oles V.

    2016-01-01

    A revised formulation of the problem of fastest transfer of the excitation in a spin chain is considered on the base of Shrödinger equation which Hamiltonian depends linearly on control. It is taken into account that the excitation of the first or last spin means that it has greatest amplitude equal to the chain invariant whereas its phase is undefined and can be considered as an additional control variable. The role of this additional control is analyzed via transformation of the original problem with unbounded linear control to the regular derived problem known from the theory of degenerate problems [1, 2], in the same way as in [2]. The overall procedure is demonstrated in computational experiments with the use of visual examples.

  2. Anomalous temperature dependence of excitation transfer between quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2015-01-01

    Roč. 7, č. 4 (2015), 325-330 ISSN 2164-6627 R&D Projects: GA MŠk(CZ) LD14011; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : excitation transfer * quantum dots * temperature dependence * electron-phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Femtosecond double proton transfer dynamics in [2,2'-bipyridyl]-3,3'-diol in sol-gel glasses

    NARCIS (Netherlands)

    Prosposito, P.; Marks, D.R.A.; Zhang, H.; Glasbeek, M.

    1998-01-01

    Abstract: Intramolecular excited state double proton-transfer dynamics has been studied for [2,2'-bipyridyl]-3,3'-diol (BP(OH)2) in sol-gel glass. By means of the femtosecond fluorescence up-conversion technique, the spectral dependence of the fluorescence transients obtained for BP(OH)2 in a few

  4. Bubble dynamics under acoustic excitation with multiple frequencies

    International Nuclear Information System (INIS)

    Zhang, Y N; Zhang, Y N; Li, S C

    2015-01-01

    Because of its magnificent mechanical and chemical effects, acoustic cavitation plays an important role in a broad range of biomedical, chemical and mechanical engineering problems. Particularly, irradiation of the multiple frequency acoustic wave could enhance the effects of cavitation. The advantages of employment of multi-frequency ultrasonic field include decreasing the cavitation thresholds, promoting cavitation nuclei generation, increasing the mass transfer and improving energy efficiency. Therefore, multi-frequency ultrasonic systems are employed in a variety of applications, e.g., to enhance the intensity of sonoluminenscence, to increase efficiency of sonochemical reaction, to improve the accuracy of ultrasound imaging and the efficiency of tissue ablation. Compared to single-frequency systems, a lot of new features of bubble dynamics exist in multi-frequency systems, such as special properties of oscillating bubbles, unique resonances in the bubble response curves, and unusual chaotic behaviours. In present paper, the underlying mechanisms of the cavitation effects under multi-frequency acoustical excitation are also briefly introduced

  5. Vibrational energy transfer in selectively excited diatomic molecules

    International Nuclear Information System (INIS)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295 0 K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295 0 K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ΔJ transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references

  6. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO) 2I 2 complex

    Science.gov (United States)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkiö, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [ trans-I-Ru(dcbpy)(CO) 2I 2] (dcbpy= 4,4 '-dicarboxy-2,2 '-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [ cis-I-Ru(dcbpy)(CO)(Sol)I 2] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  7. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO)2I2 complex

    International Nuclear Information System (INIS)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-01-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO) 2 I 2 ] (dcbpy4,4 ' -dicarboxy-2,2 ' -bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I 2 ] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1 ) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes

  8. Detection of Intramolecular Charge Transfer and Dynamic Solvation in Eosin B by Femtosecond Two-Dimensional Electronic Spectroscopy

    Science.gov (United States)

    Ghosh, Soumen; Roscioli, Jerome D.; Beck, Warren F.

    2014-06-01

    We have employed 2D electronic photon echo spectroscopy to study intramolecular charge-transfer dynamics in eosin B. After preparation of the first excited singlet state (S_1) with 40-fs excitation pulses at 520 nm, the nitro group (--NO_2) in eosin B undergoes excited state torsional motion towards a twisted intramolecular charge transfer (TICT) state. As the viscosity of the surrounding solvent increases, the charge-transfer rate decreases because the twisting of the --NO_2 group is hindered. These conclusions are supported by the time evolution of the 2D spectrum, which provides a direct measure of the the ground-to-excited-state energy gap time-correlation function, M(t). In comparison to the inertial and diffusive solvation time scales exhibited by eosin Y, which lacks the nitro group, the M(t) function for eosin B exhibits under the same conditions an additional component on the 150-fs timescale that arises from quenching of the S_1 state by crossing to the TICT state. These results indicate that 2D electronic spectroscopy can be used as a sensitive probe of the rate of charge transfer in a molecular system and of the coupling to the motions of the surrounding solvent. (Supported by grant DE-SC0010847 from the Department of Energy, Office of Basic Energy Sciences, Photosynthetic Systems program.)

  9. Dynamics of Microbeams under Multi-Frequency Excitations

    KAUST Repository

    Ibrahim, Alwathiqbellah

    2017-01-24

    This paper presents an investigation of the dynamics of microbeams under multiple harmonic electrostatic excitation frequencies. First, the response of a cantilever microbeam to two alternating current (AC) source excitation is examined. We show by simulations the response of the microbeam at primary resonance (near the fundamental natural frequency) and at secondary resonances (near half, superharmonic, and twice, subharmonic, the fundamental natural frequency). A multimode Galerkin method combined with the Euler-Bernoulli beam equation, accounting for the nonlinear electrostatic force, has been used to develop a reduced order model. The response of the cantilever microbeam to three AC source excitation is also investigated and shown as a promising technique to enhance the bandwidth of resonators. Finally, an experimental study of a clamped-clamped microbeam is conducted, demonstrating the multi-frequency excitation resonances using two, three, and four AC sources.

  10. Dynamics of Microbeams under Multi-Frequency Excitations

    KAUST Repository

    Ibrahim, Alwathiqbellah; Jaber, Nizar; Chandran, Akhil; Thirupathi, Maloth; Younis, Mohammad I.

    2017-01-01

    This paper presents an investigation of the dynamics of microbeams under multiple harmonic electrostatic excitation frequencies. First, the response of a cantilever microbeam to two alternating current (AC) source excitation is examined. We show by simulations the response of the microbeam at primary resonance (near the fundamental natural frequency) and at secondary resonances (near half, superharmonic, and twice, subharmonic, the fundamental natural frequency). A multimode Galerkin method combined with the Euler-Bernoulli beam equation, accounting for the nonlinear electrostatic force, has been used to develop a reduced order model. The response of the cantilever microbeam to three AC source excitation is also investigated and shown as a promising technique to enhance the bandwidth of resonators. Finally, an experimental study of a clamped-clamped microbeam is conducted, demonstrating the multi-frequency excitation resonances using two, three, and four AC sources.

  11. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Akhtar, Parveen; Garab, Győző; Lambrev, Petar H., E-mail: lambrev@brc.hu [Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged (Hungary)

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  12. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.

    Science.gov (United States)

    Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath

    2015-02-14

    Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.

  13. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  14. Environmental coupling and population dynamics in the PE545 light-harvesting complex

    Energy Technology Data Exchange (ETDEWEB)

    Aghtar, Mortaza; Kleinekathöfer, Ulrich, E-mail: u.kleinekathoefer@jacobs-university.de

    2016-01-15

    Long-lived quantum coherences have been shown experimentally in the Fenna–Matthews–Olson (FMO) complex of green sulfur bacteria as well as in the phycoerythrin 545 (PE545) photosynthetic antenna system of marine algae. A combination of classical molecular dynamics simulations, quantum chemistry and quantum dynamical calculations is employed to determine the excitation transfer dynamics in PE545. One key property of the light-harvesting system concerning the excitation transfer and dephasing phenomena is the spectral density. This quantity is determined from time series of the vertical excitation energies of the aggregate. In the present study we focus on the quantum dynamical simulations using the earlier QM/MM calculations as input. Employing an ensemble-averaged classical path-based wave packet dynamics, the excitation transfer dynamics between the different bilins in the PE545 complex is determined and analyzed. Furthermore, the nature of the environmental fluctuations determining the transfer dynamics is discussed. - Highlights: • Modeling of excitation energy transfer in the light-harvesting system PE545. • Combination of molecular dynamics simulations, quantum chemistry and quantum dynamics. • Spectral densities for bilins in the PE545 complex.

  15. Optimal control of peridinin excited-state dynamics

    Czech Academy of Sciences Publication Activity Database

    Dietzek, B.; Chábera, P.; Hanf, R.; Tschierlei, S.; Popp, J.; Pascher, T.; Yartsev, A.; Polívka, Tomáš

    2010-01-01

    Roč. 373, 1-2 (2010), s. 129-136 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : peridin * excited-state dynamics * coherent control Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  16. [Electron transfer, ionization and excitation in atomic collisions

    International Nuclear Information System (INIS)

    1991-01-01

    The research being carried out at Penn State by Winter and Alston addresses the fundamental atomic-collision processes of electron transfer, ionization, and excitation. Winter has focussed attention on intermediate and, more recently, higher collision energies -- proton energies of at least about 50 keV -- for which coupled-state approaches are appropriate. Alston has concentrated on perturbative approaches to symmetric ion-ion/atom collisions at high energies and to asymmetric collisions at intermediate to high energies

  17. Excitation transfer in two two-level systems coupled to an oscillator

    International Nuclear Information System (INIS)

    Hagelstein, P L; Chaudhary, I U

    2008-01-01

    We consider a generalization of the spin-boson model in which two different two-level systems are coupled to an oscillator, under conditions where the oscillator energy is much less than the two-level system energies, and where the oscillator is highly excited. We find that the two-level system transition energy is shifted, producing a Bloch-Siegert shift in each two-level system similar to what would be obtained if the other were absent. At resonances associated with energy exchange between a two-level system and the oscillator, the level splitting is about the same as would be obtained in the spin-boson model at a Bloch-Siegert resonance. However, there occur resonances associated with the transfer of excitation between one two-level system and the other, an effect not present in the spin-boson model. We use a unitary transformation leading to a rotated system in which terms responsible for the shift and splittings can be identified. The level splittings at the anticrossings associated with both energy exchange and excitation transfer resonances are accounted for with simple two-state models and degenerate perturbation theory using operators that appear in the rotated Hamiltonian

  18. Macroscopic dynamics of thermal nuclear excitations

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Deak, F.; Kiss, A.; Seres, Z.

    1989-11-01

    The concept of kinetic temperature as a local dynamical variable of thermal nuclear collective motion is formulated using long-mean-free-path approach based on the Landau-Vlasov kinetic equation. In the Fermi drop model the thermal fluid dynamics of the spherical nucleus is analyzed. It is shown that in a compressible Fermi liquid the temperature pulses propagate in the form of spherical wave in phase with the acoustic wave. The thermal and compressional excitations are caused by the isotropic harmonic oscillations of the Fermi sphere in momentum space. (author) 25 refs.; 2 figs

  19. Comparison of modified driver circuit and capacitor-transfer circuit in longitudinally excited N2 laser.

    Science.gov (United States)

    Uno, Kazuyuki; Akitsu, Tetsuya; Nakamura, Kenshi; Jitsuno, Takahisa

    2013-04-01

    We developed a modified driver circuit composed of a capacitance and a spark gap, called a direct-drive circuit, for a longitudinally excited gas laser. The direct-drive circuit uses a large discharge impedance caused by a long discharge length of the longitudinal excitation scheme and eliminates the buffer capacitance used in the traditional capacitor-transfer circuit. We compared the direct-drive circuit and the capacitor-transfer circuit in a longitudinally excited N2 laser (wavelength: 337 nm). Producing high output energy with the capacitor-transfer circuit requires a large storage capacitance and a discharge tube with optimum dimensions (an inner diameter of 4 mm and a length of 10 cm in this work); in contrast, the direct-drive circuit requires a high breakdown voltage, achieved with a small storage capacitance and a large discharge tube. Additionally, for the same input energy of 792 mJ, the maximum output energy of the capacitor-transfer circuit was 174.2 μJ, and that of the direct-drive circuit was 344.7 μJ.

  20. Superconductivity and charge transfer excitations in high Tc superconductors

    International Nuclear Information System (INIS)

    Balseiro, C.A.; Alascio, B.; Gagliano, E.; Rojo, A.

    1988-01-01

    We present some numerical results to show that in a simple model which includes Cu 3d and O 2p orbitals together with inter and intra atomic correlations pairing between holes can occur due to charge transfer excitations. We present also a simple approximation to derive an effective Hamiltonian containing an interaction between particles which is attractive for some values of the different microscopic parameters

  1. Characterizing Plasmonic Excitations of Quasi-2D Chains

    Science.gov (United States)

    Townsend, Emily; Bryant, Garnett

    A quantum description of the optical response of nanostructures and other atomic-scale systems is desirable for modeling systems that use plasmons for quantum information transfer, or coherent transport and interference of quantum states, as well as systems small enough for electron tunneling or quantum confinement to affect the electronic states of the system. Such a quantum description is complicated by the fact that collective and single-particle excitations can have similar energies and thus will mix. We seek to better understand the excitations of nanosystems to identify which characteristics of the excitations are most relevant to modeling their behavior. In this work we use a quasi 2-dimensional linear atomic chain as a model system, and exact diagonalization of the many-body Hamiltonian to obtain its excitations. We compare this to previous work in 1-d chains which used a combination of criteria involving a many-body state's transfer dipole moment, balance, transfer charge, dynamical response, and induced-charge distribution to identify which excitations are plasmonic in character.

  2. Photoionization dynamics of excited molecular states

    International Nuclear Information System (INIS)

    Dehmer, J.L.; O'Halloran, M.A.; Tomkins, F.S.; Dehmer, P.M.; Pratt, S.T.

    1987-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of opportunities for exploring excited state physics and chemistry at the quantum-state-specific level. Here we will first give a brief overview of the large variety of experimental approaches to excited state phenomena made possible by REMPI. Then we will examine in more detail, recent studies of the three photon resonant, four photon (3 + 1) ionization of H 2 via the C 'PI/sup u/ state. Strong non-Franck-Condon behavior in the photoelectron spectra of this nominally simple Rydberg state has led to the examination of a variety of dynamical mechanisms. Of these, the role of doubly excited autoionizing states now seems decisive. Progress on photoelectron studies of autoionizing states in H 2 , excited in a (2 + 1) REMPI process via the E, F 1 Σ/sub g/ + will also be briefly discussed. 26 refs., 7 figs

  3. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine2(CN2

    Directory of Open Access Journals (Sweden)

    Kasper S. Kjær

    2017-07-01

    Full Text Available We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy2(CN2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy2(CN2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy2(CN2] complement prior measurement performed on [Fe(bpy3]2+ and [Fe(bpy(CN4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpyN(CN6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.

  4. Effect resonance radiation transfer of excitation porous silicon to I sub 2 molecules sorbed in pores

    CERN Document Server

    Zakharchenko, K V; Kuznetsov, M B; Chistyakov, A A; Karavanskij, V A

    2001-01-01

    One studies the effect of resonance radiation-free transfer of electronic excitation between silicon nanocrystals and iodine molecules sorbed in pores. The experiment procedure includes laser-induced luminescence and laser desorption mass spectrometry. One analyzes photoluminescence spectra prior to and upon iodine sorption. Excitation of iodine through the mechanism of resonance transfer is determined to result in desorption of the iodine sorbed molecules with relatively high kinetic energies (3-1 eV). One evaluated the peculiar distance of resonance transfer the approximate value of which was equal to 2 nm

  5. Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He

    International Nuclear Information System (INIS)

    Sell, J F; Gearba, M A; Patterson, B M; Byrne, D; Jemo, G; Meeter, R; Knize, R J; Lilly, T C

    2012-01-01

    Measurements of the mixing rates and cross sections for collisional excitation transfer between the 5P 1/2 and 5P 3/2 states of rubidium (Rb) in the presence of 4 He buffer gas are presented. Selected pulses from a high repetition rate, mode-locked femtosecond laser are used to excite either Rb state with the fluorescence due to collisional excitation transfer observed by time-correlated single-photon counting. The time dependence of this fluorescence is fitted to the solution of rate equations which include the mixing rate, atomic lifetimes and any quenching processes. The variation in the mixing rate over a large range of buffer gas densities allows the determination of both the binary collisional transfer cross section and a three-body collisional transfer rate. We do not observe any collisional quenching effects at 4 He pressures up to 6 atm and discuss in detail other systematic effects considered in the experiment. (paper)

  6. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-07

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.

  7. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    International Nuclear Information System (INIS)

    Wu, Guorong; Neville, Simon P.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Worth, Graham A.; Stolow, Albert

    2016-01-01

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A 2 (πσ ∗ ) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B 1 (π3p y ) Rydberg state, followed by prompt internal conversion to the A 2 (πσ ∗ ) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A 2 (πσ ∗ ) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A 2 (πσ ∗ ) state, facilitating wavepacket motion around the potential barrier in the N–CH 3 dissociation coordinate

  8. Excitation functions for quasielastic transfer reactions induced with heavy ions in bismuth

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Maison, J.; de Reilhac, L.; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.

    1978-01-01

    The excitation functions for the production of 210 Bi, 210 Po, /sup 207-211/At, and 211 Rn through quasielastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two charges, and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ar, 40 Ca, 56 Fe, and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measuremnts of incident energies and cross sections were performed close to the reaction thresholds. All excitation functions exhibit the typical features of quasielastic transfer reactions: a sharp increase at low energy, and a constant value at high incident energy. The position of the thresholds are strongly influenced by the energetics of the reaction: High cross sections are observed under the strong interaction barrier if the energy balance at the minimum distance of approach is positive. This balance is equal to the difference between the interaction potentials in the entrance and exit channels, corrected for the mass balance. The constant cross sections observed for the high energy part of a given excitation function are consistent with the assumption that the curve P (R) which represents the transfer probability versus the distance between the nucleus centers does not vary with incident energy. This assumption implies the constancy of the optimum distance of approach R/sub opt/, of the R window ΔR for which P (R) is significant, and of the magnitude of P (R). Moreover the data show that the high energy cross sections for one-proton transfer are independent of the projectile, while odd-even effects of the projectile atomic number Z on the two-charge transfer cross sections are observed for the lightest incident ions 14 N to 20 Ne

  9. Outer-shell excitation and capture processes: Alignment and orientation effects

    International Nuclear Information System (INIS)

    Andersen, N.; Dowek, D.; Dubois, A.; Hansen, J.P.; Nielsen, S.E.

    1990-01-01

    This contribution outlines some ongoing activities within a joint programme of experimental and theoretical studies of outer-shell excitation and charge transfer processes in atomic collisions. The main emphasis is presently on alignment and orientation phenomena. The aim is to reveal the shape and dynamics of the electronic charge cloud as it develops in time along the trajectory, and to understand these phenomena in terms of the underlying, basic mechanisms responsible for collisional excitation and transfer. (orig.)

  10. Conditional Lyapunov exponents and transfer entropy in coupled bursting neurons under excitation and coupling mismatch

    Science.gov (United States)

    Soriano, Diogo C.; Santos, Odair V. dos; Suyama, Ricardo; Fazanaro, Filipe I.; Attux, Romis

    2018-03-01

    This work has a twofold aim: (a) to analyze an alternative approach for computing the conditional Lyapunov exponent (λcmax) aiming to evaluate the synchronization stability between nonlinear oscillators without solving the classical variational equations for the synchronization error dynamical system. In this first framework, an analytic reference value for λcmax is also provided in the context of Duffing master-slave scenario and precisely evaluated by the proposed numerical approach; (b) to apply this technique to the study of synchronization stability in chaotic Hindmarsh-Rose (HR) neuronal models under uni- and bi-directional resistive coupling and different excitation bias, which also considered the root mean square synchronization error, information theoretic measures and asymmetric transfer entropy in order to offer a better insight of the synchronization phenomenon. In particular, statistical and information theoretical measures were able to capture similarity increase between the neuronal oscillators just after a critical coupling value in accordance to the largest conditional Lyapunov exponent behavior. On the other hand, transfer entropy was able to detect neuronal emitter influence even in a weak coupling condition, i.e. under the increase of conditional Lyapunov exponent and apparently desynchronization tendency. In the performed set of numerical simulations, the synchronization measures were also evaluated for a two-dimensional parameter space defined by the neuronal coupling (emitter to a receiver neuron) and the (receiver) excitation current. Such analysis is repeated for different feedback couplings as well for different (emitter) excitation currents, revealing interesting characteristics of the attained synchronization region and conditions that facilitate the emergence of the synchronous behavior. These results provide a more detailed numerical insight of the underlying behavior of a HR in the excitation and coupling space, being in accordance

  11. Dynamics of two-electron excitations in helium

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, C.D.; Menzel, A.; Frigo, S.P. [Univ. of Central Florida, Orlando, FL (United States)] [and others

    1997-04-01

    Excitation of both electrons in helium offers a unique window for studying electron correlation at the most basic level in an atom in which these two electrons and the nucleus form a three-body system. The authors utilized the first light available at the U-8 undulator-SGM monochromator beamline to investigate the dynamic parameters, partial cross sections, differential cross sections, and photoelectron angular distribution parameters ({beta}), with a high resolving power for the photon beam and at the highly differential level afforded by the use of their electron spectrometer. In parallel, they carried out detailed calculations of the relevant properties by a theoretical approach that is based on the hyperspherical close-coupling method. Partial photoionization cross sections {sigma}{sub n}, and photoelectron angular distributions {beta}{sub n} were measured for all possible final ionic states He{sup +}(n) in the region of the double excitations N(K,T){sup A} up to the N=5 threshold. At a photon energy bandpass of 12 meV below the thresholds N=3, 4, and 5, this level of differentiation offers the most critical assessment of the dynamics of the two-electron excitations to date. The experimental data were seen to be very well described by the most advanced theoretical calculations.

  12. Lattice dynamics of femtosecond laser-excited antimony

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Mahmoud Hanafy [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Bugayev, Aleksey [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Elsayed-Ali, Hani E., E-mail: helsayed@odu.edu [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States)

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron–phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  13. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO){sub 2}I{sub 2} complex

    Energy Technology Data Exchange (ETDEWEB)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-15

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO){sub 2}I{sub 2}] (dcbpy4,4{sup '}-dicarboxy-2,2{sup '}-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I{sub 2}] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm{sup -1}) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  14. Ultrafast excited-state dynamics of 2,5-dimethylpyrrole.

    Science.gov (United States)

    Yang, Dongyuan; Min, Yanjun; Chen, Zhichao; He, Zhigang; Yuan, Kaijun; Dai, Dongxu; Yang, Xueming; Wu, Guorong

    2018-04-17

    The ultrafast excited-state dynamics of 2,5-dimethylpyrrole following excitation at wavelengths in the range of 265.7-216.7 nm is studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (265.7-250.2 nm) results in the population of the S1(1πσ*) state, which decays out of the photoionization window in about 90 fs. At shorter pump wavelengths (242.1-216.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited state(s) to the 1π3p Rydberg state(s) which has lifetimes of 159 ± 20, 125 ± 15, 102 ± 10 and 88 ± 10 fs for the pump wavelengths of 242.1, 238.1, 232.6 and 216.7 nm, respectively. Internal conversion to the S1(1πσ*) state represents at most a minor decay channel. The methyl substitution effects on the decay dynamics of the excited states of pyrrole are also discussed. Methyl substitution on the pyrrole ring seems to enhance the direct internal conversion from the 1π3p Rydberg state to the ground state, while methyl substitution on the N atom has less influence and the internal conversion to the S1(πσ*) state represents a main channel.

  15. Dynamics of Solid Body in Magnetic Suspension under Periodic Excitation

    Directory of Open Access Journals (Sweden)

    A. M. Gouskov

    2017-01-01

    Full Text Available The article studies dynamics of ferromagnetic body in hybrid magnetic suspension (HMS. The body is supposed to have one degree of freedom and a nonlinear magnetic force dependence on the current and displacement. The magnetic force induced in the HMS is divided into a passive component and an active one. Specifying the law of current variation in the coil allows us to generate nonlinear oscillations under electromagnet action. To provide periodic excitation the appropriate law of the current variation in the electromagnet coil is proposed. The mathematical model includes external periodic step-excitation. The equation of motion is formed. The scales of similarity are highlighted in the system, and the equation of motion is reduced to dimensionless form.The motion dynamics is studied numerically. The relaxation method was used to determine the periodic motions at different values of dimensionless frequency of the electromagnet excitation as well as to estimate the influence of other dimensionless parameters on the system dynamics. The amplitude-frequency curve analysis allows us to come to conclusion that the nature of system nonlinearity is rigid. Adding the external periodic step-excitation leads to the qualitative change in the nature of movement. This points to the occurrence of bifurcation.

  16. Excitation dynamics of dye doped tris(8-hydroxy quinoline) aluminum films studied using time-resolved photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Read, K.; Karlsson, H. S.; Murnane, M. M.; Kapteyn, H. C.; Haight, R.

    2001-01-01

    In this work, we use excite-probe photoelectron spectroscopy to study the decay of electronic excitation in tris(8-hydroxy quinoline) aluminum (Alq) doped with the organic dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM). Ultrashort laser pulses are used to photoexcite electrons into unoccupied molecular orbitals, and the ensuing decay rate is directly observed using photoelectron spectroscopy. Decay of the electronic excitation is studied as a function of DCM doping percentage and excitation intensity. The decay rate is seen to increase with both doping percentage and excitation intensity. These data are explained using a model including Foerster transfer, stimulated emission, concentration quenching, and bimolecular singlet - singlet exciton annihilation. In this model, we find that it is necessary to include a very fast (faster than predicted in standard Foerster transfer theory) excitation transfer of a fraction of the excitation from the Alq to the DCM, where that fraction corresponds to the approximate nearest-neighbor population. [copyright] 2001 American Institute of Physics

  17. Radiative charge-transfer lifetime of the excited state of (NaCa)+

    International Nuclear Information System (INIS)

    Makarov, Oleg P.; Cote, R.; Michels, H.; Smith, W.W.

    2003-01-01

    New experiments were proposed recently to investigate the regime of cold atomic and molecular ion-atom collision processes in a special hybrid neutral-atom-ion trap under high-vacuum conditions. We study the collisional cooling of laser precooled Ca + ions by ultracold Na atoms. Modeling this process requires knowledge of the radiative lifetime of the excited singlet A 1 Σ + state of the (NaCa) + molecular system. We calculate the rate coefficient for radiative charge transfer using a semiclassical approach. The dipole radial matrix elements between the ground and the excited states, and the potential curves were calculated using complete active space self-consistent field and Moeller-Plesset second-order perturbation theory with an extended Gaussian basis, 6-311+G (3df). The semiclassical charge-transfer rate coefficient was averaged over a thermal Maxwellian distribution. In addition, we also present elastic collision cross sections and the spin-exchange cross section. The rate coefficient for charge transfer was found to be 2.3x10 -16 cm 3 /sec, while those for the elastic and spin-exchange cross sections were found to be several orders of magnitude higher (1.1x10 -8 cm 3 /sec and 2.3x10 -9 cm 3 /sec, respectively). This confirms our assumption that the milli-Kelvin regime of collisional cooling of calcium ions by sodium atoms is favorable with the respect to low loss of calcium ions due to the charge transfer

  18. Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation

    Science.gov (United States)

    Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.

    2017-11-01

    Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.

  19. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  20. Study of the IPR-R1 dynamics by means of reactivity pseudo-aleatory excitations

    International Nuclear Information System (INIS)

    Roedel, G.

    1983-01-01

    Aiming to demonstrate the feasibility of using the reactor noise neutronic analysis tecniques a dynamic model was developed for the IPR-R1 reactor at CDTN. This model allows reactivity feedback, due to the variations of fuel and coolant temperature. The system was excited by the variations of reactivity modulated by a pseudo aleatory binary sequence and its answer was measured by means of the fluctuactions dround the stationary power. The model developed and the technique used was tested, and the values of the system parameters obtained from the adjustment of the theoretical and experimental transfer function were compared to another, obtained from independent process. (E.G.) [pt

  1. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen

    Science.gov (United States)

    Barklem, P. S.

    2018-02-01

    Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data

  2. Excited-state dynamics of pentacene derivatives with stable radical substituents.

    Science.gov (United States)

    Ito, Akitaka; Shimizu, Akihiro; Kishida, Noriaki; Kawanaka, Yusuke; Kosumi, Daisuke; Hashimoto, Hideki; Teki, Yoshio

    2014-06-23

    The excited-state dynamics of pentacene derivatives with stable radical substituents were evaluated in detail through transient absorption measurements. The derivatives showed ultrafast formation of triplet excited state(s) in the pentacene moiety from a photoexcited singlet state through the contributions of enhanced intersystem crossing and singlet fission. Detailed kinetic analyses for the transient absorption data were conducted to quantify the excited-state characteristics of the derivatives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  4. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.; Etzold, Fabian; Gehrig, Dominik; Laquai, Fré dé ric; Busko, Dmitri; Landfester, Katharina; Baluschev, Stanislav

    2015-01-01

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  5. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  6. Non-equilibrium lattice dynamics of one-dimensional In chains on Si(111 upon ultrafast optical excitation

    Directory of Open Access Journals (Sweden)

    T. Frigge

    2018-03-01

    Full Text Available The photoinduced structural dynamics of the atomic wire system on the Si(111-In surface has been studied by ultrafast electron diffraction in reflection geometry. Upon intense fs-laser excitation, this system can be driven in around 1 ps from the insulating (8×2 reconstructed low temperature phase to a metastable metallic (4×1 reconstructed high temperature phase. Subsequent to the structural transition, the surface heats up on a 6 times slower timescale as determined from a transient Debye-Waller analysis of the diffraction spots. From a comparison with the structural response of the high temperature (4×1 phase, we conclude that electron-phonon coupling is responsible for the slow energy transfer from the excited electron system to the lattice. The significant difference in timescales is evidence that the photoinduced structural transition is non-thermally driven.

  7. Characterising excited states in and around the semi-magic nucleus $^{68}$ Ni using Coulomb excitation and one-neutron transfer

    CERN Multimedia

    It is proposed to investigate the structure of excited states in $^{68, 70}$Ni(Z =28, N=40, 42) via the measurement of electromagnetic matrix elements in a Coulomb excitation experiment in order to study the N = 40 harmonic-oscillator shell and the Z = 28 proton shell closures. The measured B(E2) values connecting low-lying 0$^{+}$ and 2$^{+}$ can be compared to shell-model predictions. It is also proposed to perform the one-neutron transfer reaction ${d}$($^{68}$Ni,$^{69}$Ni)${p}$, with the aim of populating excited states in $^{69}$Ni. Comparisons with the states populated in the recently performed ${d}$($^{66}$Ni,$^{67}$Ni)${p}$ reaction will be useful in determining the role of the neutron $d_{5/2}$ orbital in the semi-magic properties of $^{68}$Ni.

  8. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain

    Science.gov (United States)

    Wang, Luxia; May, Volkhard

    2017-08-01

    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  9. Effect of Viscosity and Polar Properties of Solvent on Dynamics of Photoinduced Charge Transfer in BTA-1 Cation — Derivative of Thioflavin T

    Science.gov (United States)

    Gogoleva, S. D.; Stsiapura, V. I.

    2018-05-01

    It was found that the spectral and fluorescent properties of BTA-1C cation in protic and aprotic solvents differ. It was shown that for solutions in long-chain alcohols viscosity is the main factor that determines the dynamics of intramolecular charge transfer in the excited state of the BTA-1C molecule. In the case of aprotic solvents a correlation was found between the rate constant of twisted intramolecular charge transfer (TICT) during rotation of fragments of the molecule in relation to each other in the excited state and the solvent relaxation rate: k TICT 1/τ S .

  10. Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics

    International Nuclear Information System (INIS)

    Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen; De Meyer, Thierry; De Clerck, Karen

    2014-01-01

    A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed

  11. The form of electron-atom excitation amplitudes at high momentum transfers in the Faddeev-Watson approximation

    International Nuclear Information System (INIS)

    Catalan, G.; Roberts, M.J.

    1979-01-01

    A form of the off-shell Coulomb T matrix, which has a well defined on-shell limit, is used in the Faddeev-Watson multiple-scattering expansion for a direct three-body collision process. Using the excitation of atomic hydrogen by electron impact as an example, approximations to the second-order terms, which are valid for high momentum transfers of the incident electron, are derived. It is shown how the resulting asymptotic behaviour of the second-order Faddeev-Watson approximation is related to the high momentum transfer limit of the second Born approximation. The results are generalised to the excitation of more complex atoms. The asymptotic forms of the Faddeev-Watson and Born approximations are compared with other theories and with measurements of differential cross sections and angular correlation parameters for the excitation of H(2p) and He(2 1 P). The results indicate that the Faddeev-Watson approximation converges more rapidly at high momentum transfers than does the Born approximation. (author)

  12. Spin-transfer torque induced dynamics of magnetic vortices in nanopillars

    International Nuclear Information System (INIS)

    Sluka, Volker

    2011-01-01

    The subject of this work are lithographically defined cylindrical nanopillars containing a stack of two Iron disks separated by a nonmagnetic spacer. The dimensions of the ferromagnetic disks are chosen such that at low magnetic fields, the so-called magnetic vortex is stabilized. In zero field, the magnetization of these objects is basically parallel to the disk plane and circulates the disk center. In doing so, the build-up of large in-plane stray fields is avoided. At the center of this distribution however, exchange forces turn the magnetization out of the disk plane, resulting in the formation of what is referred to as the vortex core. Magnetic vortices have attracted much attention in recent years. This interest is in large parts due to the highly interesting dynamic properties of these structures. In this work the static and dynamic properties of magnetic vortices and their behavior under the influence of spin-transfer torque are investigated. This is achieved by measuring the static and time dependent magnetoresistance under the influence of external magnetic fields. The samples allow the formation of a large variety of states. First, the focus is set on configurations, where one disk is in a vortex state while the other one is homogeneously magnetized. It is shown that spin-transfer torque excites the vortex gyrotropic mode in this configuration. The dependence of the mode frequency on the magnetic field is analyzed. The measurements show that as the vortex center of gyration shifts through the disk under the action of the magnetic field, the effective potential in which it is moving undergoes a change in shape. This shape change is reflected in a V-shaped field dependence of the gyration frequency. Analytical calculations are performed to investigate the effect of the asymmetry of the spin-transfer torque efficiency function on the vortex dynamics. It is shown that by means of asymmetry, spin-transfer torque can transfer energy to a gyrating vortex even

  13. On the rate of triplet excitation transfer in the diffuse limit

    International Nuclear Information System (INIS)

    Davidovich, M.A.; Knox, R.S.

    1979-11-01

    The usefulness of spectral data in estimating intermolecular triplet excitation transfer rates in found to be rather limited and to depend explicitly on the mechaisms which allow the optical transitions. Necessary conditions for the validity of such use of spectra are given, and the otherwise required correction factors are discussed and estimated. (Author) [pt

  14. Steering wave packet dynamics and population transfer between electronic states of the Na2 molecule by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Yuan Kaijun; Sun Zhigang; Cong Shulin; Wang Senming; Yu Jie; Lou Nanquan

    2005-01-01

    An approach used for steering the wave packet dynamics and the population transfer between electronic states of the Na 2 molecule by a pair of femtosecond laser pulses is demonstrated. Four controlling schemes, i.e., four different combinations of time delays (intuitive and counterintuitive sequences) and frequency detunings (positive and negative detunings), are discussed in detail. The light-induced potentials are used to describe the wave packet dynamics and population transfer. The numerical results show that the wave packet excited by femtosecond laser pulses oscillates drastically on 2 1 Π g state with time. The efficiency of controlling population transfer from the X 1 Σ g + to2 1 Π g states of Na 2 is nearly 100% for the schemes of the counterintuitive sequence pulses with positive and negative detunings

  15. On some aspects of Coulomb excitation of nuclear rotational states

    International Nuclear Information System (INIS)

    Massmann, H.; Robotham, H.

    1979-01-01

    The Coulomb excitation of nuclear rotational states is studied with a semiclassical method using classical trajectories and the classical action in order to construct the excitation probabilities. This method allows one to consider the effect on the excitation probabilities of a weak nuclear potential. An explicit expression for the 'safe bombarding energy' that is the largest bombarding energy for which the nuclear force can be neglected, is found. Also the transfer of angular momentum to the projectile's orbit is considered. One finds that the dynamical distortion of the orbit has a measurable effect on the excitation probabilities for the case of very heavy ions. Furthermore, new dimensionless parameters measuring the dynamical distortion and the effect of the adiabaticity of the collision are introduced and discussed. (author)

  16. Dual fluorescence of excited state intra-molecular proton transfer of HBFO: mechanistic understanding, substituent and solvent effects.

    Science.gov (United States)

    Yang, Wenjing; Chen, Xuebo

    2014-03-07

    A combined approach of the multiconfigurational perturbation theory with the Rice-Ramsperger-Kassel-Marcus methodology has been employed to calculate the minimum potential energy profiles and the rates of excited state intra-molecular proton transfer (ESIPT) for the WOLED material molecule of HBFO and its four meta- or para-substituted compounds in gas phase, acetonitrile and cyclohexane solvents. The kinetic control for these reactions is quantitatively determined and extensively studied on the basis of the accurate potential energy surfaces when the thermodynamic factor associated with the free energy change becomes negligible in the case of the existence of a significant barrier in the ESIPT process. These computational efforts contribute to a deep understanding of the ESIPT mechanism, dual emission characteristics, kinetic controlling factor, substituent and solvent effects for these material molecules. The white light emission is generated by the establishment of dynamic equilibrium between enol and keto forms in the charge transfer excited SCT((1)ππ*) state. The performance of white light emission is quantitatively demonstrated to be mainly sensitive to the molecular tailoring approach of the electronic properties of meta- or para- substituents by the modulation of the forward/backward ESIPT rate ratio. The quality of white light emission is slightly tunable through its surrounding solvent environment. These computational results will provide a useful strategy for the molecular design of OLED and WOLED materials.

  17. "Inverted" Solvent Effect on Charge Transfer in the Excited State.

    Science.gov (United States)

    Nau; Pischel

    1999-10-04

    Faster in cyclohexane than in acetonitrile is the fluorescence quenching of the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by amines and sulfides. Although this photoreaction is induced by charge transfer (CT; see picture) and exciplexes are formed, the increase in the dipole moment of the exciplex is not large enough to offset the solvent stabilization of the excited reactants, and an "inverted" solvent effect results.

  18. A simplified approach for the coupling of excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Shi Bo [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Gao Fang, E-mail: gaofang@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Liang Wanzhen [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China)

    2012-02-06

    Highlights: Black-Right-Pointing-Pointer We propose a simple method to calculate the coupling of singlet-to-singlet and triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer. Black-Right-Pointing-Pointer Effect from the intermolecular charge-transfer states dorminates in triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer This method can be expanded by including correlated wavefunctions. - Abstract: A simplified approach for computing the electronic coupling of nonradiative excitation-energy transfer is proposed by following Scholes et al.'s construction on the initial and final states [G.D. Scholes, R.D. Harcourt, K.P. Ghiggino, J. Chem. Phys. 102 (1995) 9574]. The simplification is realized through defining a set of orthogonalized localized MOs, which include the polarization effect of the charge densities. The method allows calculating the coupling of both the singlet-to-singlet and triplet-to-triplet energy transfer. Numerical tests are performed for a few of dimers with different intermolecular orientations, and the results demonstrate that Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer whereas in the case of triplet-to-triplet energy transfer, the dominant effect is arisen from the intermolecular charge-transfer states. The present application is on the Hartree-Fock level. However, the correlated wavefunctions which are normally expanded in terms of the determinant wavefunctions can be employed in the similar way.

  19. Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites

    Science.gov (United States)

    Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.

    2018-05-01

    Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.

  20. Investigation of collisional excitation-transfer processes in a plasma by laser perturbation method

    International Nuclear Information System (INIS)

    Sakurai, Takeki

    1983-01-01

    The theoretical background and the experimental method of the laser perturbation method applied to the study of collisional excitation transfer process in plasma are explained. The atomic density at some specified level can be evaluated theoretically. By using the theoretical results and the experimentally obtained data, the total attenuation probability, the collisional transfer probability and natural emission probability were estimated. For the experiments, continuous wave laser (cw) and pulse laser are employed. It is possible by using pulse dye laser to observe the attenuation curve directly, and to bring in resonance to any atomic spectra. At the beginning, the experimental studies were made on He-Ne discharge. The pulse dye laser has been used for the excitation of alkali atoms. The first application of pulse laser to the study of plasma physics was the study on He. The cross section of disalignment has also been studied by the laser perturbation. The alignment of atoms, step and cascade transfer, the confinement of radiation and optogalvanic effect are discussed in this paper. (Kato, T.)

  1. Cross sections for energy transfer in collisions between two excited sodium atoms

    International Nuclear Information System (INIS)

    Huennekens, J.; Gallagher, A.

    1983-01-01

    We have measured cross sections, sigma/sub n/L, for the excitation transfer process Na(3P)+Na(3P)→Na(3S)+Na(nL), where nL is the 4D or 5S level. Our results are sigma/sub 4D/ = 23 A 2 +- 35% and sigma/sub 5S/ = 16 A 2 +- 35% at Tapprox.600 K. To obtain these cross sections we have used pulsed excitation and measured the intensities of 4D, 5S, and 3P fluorescence emissions, and the spatial distribution of excited atoms resulting from radiation diffusion, as well as the excited atom density as a function of time. Additionally, we have accounted for (time-dependent) radiation trapping of 3P and nL level radiation and for the resulting anisotropies of these fluorescence emissions. Comparisons of our results with theory have been made, and their relevance to other experiments is discussed

  2. Effects of aggregation on the excitation dynamics of LH2 from Thermochromatium tepidum in aqueous phase and in chromatophores.

    Science.gov (United States)

    Yang, Fan; Yu, Long-Jiang; Wang, Peng; Ai, Xi-Cheng; Wang, Zheng-Yu; Zhang, Jian-Ping

    2011-06-23

    We carried out femtosecond magic-angle and polarized pump-probe spectroscopies for the light-harvesting complex 2 (LH2) from Thermochromatium (Tch.) tepidum in aqueous phase and in chromatophores. To examine the effects of LH2 aggregation on the dynamics of excitation energy transfer, dominant monodispersed and aggregated LH2s were prepared by controlling the surfactant concentrations. The aqueous preparations solubilized with different concentrations of n-dodecyl-β-D-maltoside (DDM) show similar visible-to-near-infrared absorption spectra, but distinctively different aggregation states, as revealed by using dynamic light scattering. The B800 → B850 intra-LH2 energy transfer time was determined to be 1.3 ps for isolated LH2, which, upon aggregation in aqueous phase or clustering in chromatophores, shortened to 1.1 or 0.9 ps, respectively. The light-harvesting complex 1 (LH1) of this thermophilic purple sulfur bacterium contains bacteriochlorophyll a absorbing at 915 nm (B915), and the LH2(B850) → LH1(B915) intercomplex transfer time in chromatophores was found to be 6.6 ps. For chromatophores, a depolarization time of 21 ps was derived from the anisotropy kinetics of B850*, which is attributed to the migration of B850* excitation before being trapped by LH1. In addition, the B850* annihilation is accelerated upon LH2 aggregation in aqueous phase, but it is much less severe upon LH2 clustering in the intracytoplasmic membrane. These results are helpful in understanding the light-harvesting function of a bacterial photosynthetic membrane incorporating different types of antenna complexes.

  3. A new energy transfer channel from carotenoids to chlorophylls in purple bacteria.

    Science.gov (United States)

    Feng, Jin; Tseng, Chi-Wei; Chen, Tingwei; Leng, Xia; Yin, Huabing; Cheng, Yuan-Chung; Rohlfing, Michael; Ma, Yuchen

    2017-07-10

    It is unclear whether there is an intermediate dark state between the S 2 and S 1 states of carotenoids. Previous two-dimensional electronic spectroscopy measurements support its existence and its involvement in the energy transfer from carotenoids to chlorophylls, but there is still considerable debate on the origin of this dark state and how it regulates the energy transfer process. Here we use ab initio calculations on excited-state dynamics and simulated two-dimensional electronic spectrum of carotenoids from purple bacteria to provide evidence supporting that the dark state may be assigned to a new A g + state. Our calculations also indicate that groups on the conjugation backbone of carotenoids may substantially affect the excited-state levels and the energy transfer process. These results contribute to a better understanding of carotenoid excited states.Carotenoids harvest energy from light and transfer it to chlorophylls during photosynthesis. Here, Feng et al. perform ab initio calculations on excited-state dynamics and simulated 2D electronic spectrum of carotenoids, supporting the existence of a new excited state in carotenoids.

  4. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.

    2011-01-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  5. Response analysis of the dynamic excitation of hen eggs

    OpenAIRE

    Libor Severa

    2007-01-01

    Commercially produced hen eggs have been tested by means of dynamic excitation of the egg-shells with following analysis of their response. The falling steel ball have been chosen as a exciting instrument and the laser vibrometer have been used as a measuring device for the egg response. The reproductibility of the experiments has been relatively high and the surface velocity has been found to be significantly dependent on the position around the meridian. Analysed frequency spectrum has show...

  6. Radiative transport and collisional transfer of excitation energy in Cs vapors mixed with Ar or He

    International Nuclear Information System (INIS)

    Vadla, Cedomil; Horvatic, Vlasta; Niemax, Kay

    2003-01-01

    This paper is a review (with a few original additions) on the radiative transport and collisional transfer of energy in laser-excited cesium vapors in the presence of argon or helium. Narrow-band excitation of lines with Lorentz, Doppler and Voigt profiles is studied in order to calculate effective rates for pumping of spectral lines with profiles comprising inhomogeneous broadening components. The radiative transport of excitation energy is considered, and a new, simple and robust, but accurate theoretical method for quantitative treatment of radiation trapping in relatively optically thin media is presented. Furthermore, comprehensive lists of experimental values for the excitation energy transfer cross-sections related to thermal collisions in Cs-Ar and Cs-He mixtures are given. Within the collected cross-section data sets, specific regularities with respect to the energy defect, as well as the temperature, are discerned. A particular emphasis is put on the radiative and collisional processes important for the optimization of resonance-fluorescence imaging atomic filters based on Cs-noble gas systems

  7. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H

    2018-03-01

    Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.

  8. Reaction dynamics of electronically excited alkali atoms with simpler molecules

    International Nuclear Information System (INIS)

    Weiss, P.S.; Mestdagh, J.M.; Schmidt, H.; Vernon, M.F.; Covinsky, M.H.; Balko, B.A.; Lee, Y.T.

    1985-05-01

    The reactions of electronically excited sodium atoms with simple molecules have been studied in crossed molecular beams experiments. Electronically excited Na(3 2 P/sub 3/2/, 4 2 D/sub 5/2/, and 5 2 S/sub 1/2/) were produced by optical pumping using single frequency dye lasers. The effects of the symmetry, and the orientation and alignment of the excited orbital on the chemical reactivity, and detailed information on the reaction dynamics were derived from measurements of the product angular and velocity distributions. 12 refs., 9 figs

  9. Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules.

    Science.gov (United States)

    Peperstraete, Yoann; Staniforth, Michael; Baker, Lewis A; Rodrigues, Natércia D N; Cole-Filipiak, Neil C; Quan, Wen-Dong; Stavros, Vasilios G

    2016-10-12

    Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2-ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC's and E-EHMC's excited state dynamics upon UV-B photoexcitation to the S 1 (1 1 ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 1 1 ππ* to the S 3 (1 1 nπ*) state, followed by de-excitation from the 1 1 nπ* to the ground electronic state (S 0 ). Using both a non-polar-aprotic solvent, cyclohexane, and a polar-protic solvent, methanol, we investigated E-MMC and E-EHMC's photochemistry in a more realistic, 'closer-to-shelf' environment. A stark change to the excited state dynamics in the gas-phase is observed in the solution-phase suggesting that the dynamics are now driven by efficient E/Z isomerisation from the initially photoexcited 1 1 ππ* state to S 0 .

  10. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    International Nuclear Information System (INIS)

    Ye, ChuanXiang; Zhao, Yi; Liang, WanZhen

    2015-01-01

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT

  11. Excited state dynamics of DNA bases

    Czech Academy of Sciences Publication Activity Database

    Kleinermanns, K.; Nachtigallová, Dana; de Vries, M. S.

    2013-01-01

    Roč. 32, č. 2 (2013), s. 308-342 ISSN 0144-235X R&D Projects: GA ČR GAP208/12/1318 Grant - others:National Science Foundation(US) CHE-0911564; NASA (US) NNX12AG77G; Deutsche Forschungsgemeinschaft(DE) SFB 663; Deutsche Forschungsgemeinschaft(DE) KI 531-29 Institutional support: RVO:61388963 Keywords : DNA bases * nucleobases * excited state * dynamics * computations * gas phase * conical intersections Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.920, year: 2013

  12. Excited state dynamics of beta-carotene explored with dispersed multi-pulse transient absorption

    NARCIS (Netherlands)

    Larsen, D.S.; Papagiannakis, E.; van Stokkum, I.H.M.; Vengris, M.; Kennis, J.T.M.; van Grondelle, R.

    2003-01-01

    The excited-state dynamics of β-carotene in hexane was studied with dispersed ultrafast transient absorption techniques. A new excited state is produced after blue-edge excitation. Pump-repump-probe and pump-dump-probe measurements identified and characterized this state, termed S‡, which exhibits a

  13. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    Science.gov (United States)

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  14. Impact of nuclear lattice relaxation on the excitation energy transfer along a chain of pi-conjugated molecules

    NARCIS (Netherlands)

    Schmid, S.A.; Abbel, R.J.; Schenning, A.P.H.J.; Meijer, E.W.; Herz, L.M.

    2010-01-01

    We have investigated the extent to which delocalization of the ground-state and excited-state wave functions of a p-conjugated molecule affects the excitation energy transfer (EET) between such molecules. Using femtosecond photoluminescence spectroscopy, we experimentally monitored the EET along

  15. Energy transfer dynamics from individual semiconductor nanoantennae to dye molecules with implication to light-harvesting nanosystems

    Science.gov (United States)

    Shan, Guangcun; Hu, Mingjun; Yan, Ze; Li, Xin; Huang, Wei

    2018-03-01

    Semiconductor nanocrystals can be used as nanoscale optical antennae to photoexcite individual dye molecules in an ensemble via energy transfer mechanism. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. Herein we investigate the effect of the average donor-acceptor spacing on the time-resolved fluorescence intensity and dynamics of single donor-acceptor pairs with the dye acceptor concentration decreasing by using quantum Monte-Carlo simulation of FRET dynamics. Our results validated that the spatial disorder controlling the microscopic energy transfer rates accounts for the scatter in donor fluorescence lifetimes and intensities, which provides a new design guideline for artificial light-harvesting nanosystems.

  16. Dynamical coupled-channel analysis at EBAC. (Excited Baryon Analysis Center)

    International Nuclear Information System (INIS)

    Lee, T.-S.H.; Thomas Jefferson National Accelerator Facility, Newport News, VA

    2008-01-01

    In this contribution, the author reports on the dynamical coupled-channels analysis being pursued at the Excited Baryon Analysis Center (EBAC) of Jefferson Laboratory. EBAC was established in January 2006. Its objective is to extract the parameters associated with the excited states (N*) of the nucleon from the world data of meson production reactions, and to also develop theoretical interpretations of the extracted N* parameters

  17. Spiral-wave dynamics in excitable medium with excitability modulated by rectangle wave

    International Nuclear Information System (INIS)

    Yuan Guo-Yong

    2011-01-01

    We numerically study the dynamics of spiral waves in the excitable system with the excitability modulated by a rectangle wave. The tip trajectories and their variations with the modulation period T are explained by the corresponding spectrum analysis. For a large T, the external modulation leads to the occurrence of more frequency peaks and these frequencies change with the modulation period according to their specific rules, respectively. Some of the frequencies and a primary frequency f 1 determine the corresponding curvature periods, which are locked into rational multiplies of the modulation period. These frequency-locking behaviours and the limited life-span of the frequencies in their variations with the modulation period constitute many resonant entrainment bands in the T axis. In the main bands, which follow the relation T/T 12 = m/n, the size variable R x of the tip trajectory is a monotonic increasing function of T. The rest of the frequencies are linear combinations of the two ones. Due to the complex dynamics, many unique tip trajectories appear at some certain T. We find also that spiral waves are eliminated when T is chosen from the end of the main resonant bands. This offers a useful method of controling the spiral wave. (general)

  18. Picosecond dynamics of the glutamate receptor in response to agonist-induced vibrational excitation.

    Science.gov (United States)

    Kubo, Minoru; Shiomitsu, Eiji; Odai, Kei; Sugimoto, Tohru; Suzuki, Hideo; Ito, Etsuro

    2004-02-01

    Conformational changes of proteins are dominated by the excitation and relaxation processes of their vibrational states. To elucidate the mechanism of receptor activation, the conformation dynamics of receptors must be analyzed in response to agonist-induced vibrational excitation. In this study, we chose the bending vibrational mode of the guanidinium group of Arg485 of the glutamate receptor subunit GluR2 based on our previous studies, and we investigated picosecond dynamics of the glutamate receptor caused by the vibrational excitation of Arg485 via molecular dynamics simulations. The vibrational excitation energy in Arg485 in the ligand-binding site initially flowed into Lys730, and then into the J-helix at the subunit interface of the ligand-binding domain. Consequently, the atomic displacement in the subunit interface around an intersubunit hydrogen bond was evoked in about 3 ps. This atomic displacement may perturb the subunit packing of the receptor, triggering receptor activation. Copyright 2003 Wiley-Liss, Inc.

  19. Response moments of dynamic systems under non-Gaussian random excitation by the equivalent non-Gaussian excitation method

    International Nuclear Information System (INIS)

    Tsuchida, Takahiro; Kimura, Koji

    2016-01-01

    Equivalent non-Gaussian excitation method is proposed to obtain the response moments up to the 4th order of dynamic systems under non-Gaussian random excitation. The non-Gaussian excitation is prescribed by the probability density and the power spectrum, and is described by an Ito stochastic differential equation. Generally, moment equations for the response, which are derived from the governing equations for the excitation and the system, are not closed due to the nonlinearity of the diffusion coefficient in the equation for the excitation even though the system is linear. In the equivalent non-Gaussian excitation method, the diffusion coefficient is replaced with the equivalent diffusion coefficient approximately to obtain a closed set of the moment equations. The square of the equivalent diffusion coefficient is expressed by a quadratic polynomial. In numerical examples, a linear system subjected to nonGaussian excitations with bimodal and Rayleigh distributions is analyzed by using the present method. The results show that the method yields the variance, skewness and kurtosis of the response with high accuracy for non-Gaussian excitation with the widely different probability densities and bandwidth. The statistical moments of the equivalent non-Gaussian excitation are also investigated to describe the feature of the method. (paper)

  20. Excited-state intramolecular proton transfer and photoswitching in hydroxyphenyl-imidazopyridine derivatives: A theoretical study

    Science.gov (United States)

    Omidyan, Reza; Iravani, Maryam

    2016-11-01

    The MP2/CC2 and CASSCF theoretical approaches have been employed to determine the excited state proton transfer and photophysical nature of the four organic compounds, having the main frame of hydroxyphenyl-imidzaopyridine (HPIP). The nitrogen insertion effect, in addition to amine (-NH2) substitution has been investigated extensively by following the transition energies and deactivation pathways of resulted HPIP derivatives. It has been predicted that the excited state intramolecular proton transfer with or without small barrier is the most important feature of these compounds. Also, for all of the considered HPIP derivatives, a conical intersection (CI) between ground and the S1 excited state has been predicted. The strong non-adiabatic coupling in the CI (S1/S0), drives the system back to the ground state in which the proton may either return to the phenoxy unit and thus close the photocycle, or the system can continue the twisting motion that results in formation of a γ-photochromic species. This latter species can be responsible for photochromism of HPIP derivative systems.

  1. Optimal initiation of electronic excited state mediated intramolecular H-transfer in malonaldehyde by UV-laser pulses

    Science.gov (United States)

    Nandipati, K. R.; Singh, H.; Nagaprasad Reddy, S.; Kumar, K. A.; Mahapatra, S.

    2014-12-01

    Optimally controlled initiation of intramolecular H-transfer in malonaldehyde is accomplished by designing a sequence of ultrashort (~80 fs) down-chirped pump-dump ultra violet (UV)-laser pulses through an optically bright electronic excited [ S 2 ( π π ∗)] state as a mediator. The sequence of such laser pulses is theoretically synthesized within the framework of optimal control theory (OCT) and employing the well-known pump-dump scheme of Tannor and Rice [D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985)]. In the OCT, the control task is framed as the maximization of cost functional defined in terms of an objective function along with the constraints on the field intensity and system dynamics. The latter is monitored by solving the time-dependent Schrödinger equation. The initial guess, laser driven dynamics and the optimized pulse structure (i.e., the spectral content and temporal profile) followed by associated mechanism involved in fulfilling the control task are examined in detail and discussed. A comparative account of the dynamical outcomes within the Condon approximation for the transition dipole moment versus its more realistic value calculated ab initio is also presented.

  2. Excited-state dynamics of the medicinal pigment curcumin in a hydrogel.

    Science.gov (United States)

    Harada, Takaaki; Lincoln, Stephen F; Kee, Tak W

    2016-10-12

    Curcumin is a yellow polyphenol with multiple medicinal effects. These effects, however, are limited due to its poor aqueous stability and solubility. A hydrogel of 3% octadecyl randomly substituted polyacrylate (PAAC18) has been shown to provide high aqueous stability for curcumin under physiological conditions, offering a route for photodynamic therapy. In this study, the excited-state photophysics of curcumin in the PAAC18 hydrogel is investigated using a combination of femtosecond transient absorption and fluorescence upconversion spectroscopy. The transient absorption results reveal a multiexponential decay in the excited-state kinetics with fast (1 ps & 15 ps) and slow (110 ps & ≈5 ns) components. The fast decay component exhibits a deuterium isotope effect with D 2 O in the hydrogel, indicating that the 15 ps decay component is attributable to excited-state intramolecular hydrogen atom transfer of curcumin in the PAAC18 hydrogel. In addition, solvent reorganisation of excited-state curcumin is investigated using multiwavelength femtosecond fluorescence upconversion spectroscopy. The results show that the dominant solvation response (τ = 0.08 ps) is a fast inertial motion owing to the presence of bulk-like water in the vicinity of the hydrophobic octadecyl substituents of the PAAC18 hydrogel. The results also show an additional response with longer time constants of 1 and 6 ps, which is attributable to translational diffusion of confined water molecules in the three-dimensional, cross-linking network of the octadecyl substituents of PAAC18. Overall, we show that excited-state intramolecular hydrogen atom transfer and solvent reorganisation are major photophysical events for curcumin in the PAAC18 hydrogel.

  3. Watson-Crick base pairing controls excited-state decay in natural DNA.

    Science.gov (United States)

    Bucher, Dominik B; Schlueter, Alexander; Carell, Thomas; Zinth, Wolfgang

    2014-10-13

    Excited-state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double-stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson-Crick hydrogen bonds. A comparison of single- and double-stranded DNA showed that the reactive charge-transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson-Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge-transfer states. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection

    Science.gov (United States)

    Chang, Xue-Ping; Fang, Qiu; Cui, Ganglong

    2014-10-01

    Photodissociation dynamics of pyruvic acid experimentally differs from that of commonly known ketones. We have employed the complete active space self-consistent field and its multi-state second-order perturbation methods to study its photodissociation mechanism in the S0, T1, and S1 states. We have uncovered four nonadiabatic photodecarboxylation paths. (i) The S1 system relaxes via an excited-state intramolecular proton transfer (ESIPT) to a hydrogen-transferred tautomer, near which an S1/S0 conical intersection funnels the S1 to S0 state. Then, some trajectories continue completing the decarboxylation reaction in the S0 state; the remaining trajectories via a reverse hydrogen transfer return to the S0 minimum, from which a thermal decarboxylation reaction occurs. (ii) Due to a small S1 -T1 energy gap and a large S1/T1 spin-orbit coupling, an efficient S1 → T1 intersystem crossing process happens again near this S1/S0 conical intersection. When decaying to T1 state, a direct photodecarboxylation proceeds. (iii) Prior to ESIPT, the S1 system first decays to the T1 state via an S1 → T1 intersystem crossing; then, the T1 system evolves to a hydrogen-transferred tautomer. Therefrom, an adiabatic T1 decarboxylation takes place due to a small barrier of 7.7 kcal/mol. (iv) Besides the aforementioned T1 ESIPT process, there also exists a comparable Norrish type I reaction in the T1 state, which forms the ground-state products of CH3CO and COOH. Finally, we have found that ESIPT plays an important role. It closes the S1-T1 and S1-S0 energy gaps, effecting an S1/T1/S0 three-state intersection region, and mediating nonadiabatic photodecarboxylation reactions of pyruvic acid.

  5. Synchronisation and general dynamic symmetry of a vibrating system with two exciters rotating in opposite directions

    International Nuclear Information System (INIS)

    Chun-Yu, Zhao; Yi-Min, Zhang; Bang-Chun, Wen

    2010-01-01

    We derive the non-dimensional coupling equation of two exciters, including inertia coupling, stiffness coupling and load coupling. The concept of general dynamic symmetry is proposed to physically explain the synchronisation of the two exciters, which stems from the load coupling that produces the torque of general dynamic symmetry to force the phase difference between the two exciters close to the angle of general dynamic symmetry. The condition of implementing synchronisation is that the torque of general dynamic symmetry is greater than the asymmetric torque of the two motors. A general Lyapunov function is constructed to derive the stability condition of synchronisation that the non-dimensional inertia coupling matrix is positive definite and all its elements are positive. Numeric results show that the structure of the vibrating system can guarantee the stability of synchronisation of the two exciters, and that the greater the distances between the installation positions of the two exciters and the mass centre of the vibrating system are, the stronger the ability of general dynamic symmetry is

  6. Simulations of the dissociation of small helium clusters with ab initio molecular dynamics in electronically excited states

    International Nuclear Information System (INIS)

    Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver

    2014-01-01

    The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He 7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He 2 * , and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed

  7. Markers of pathological excitability derived from principal dynamic modes of hippocampal neurons

    Science.gov (United States)

    Kang, Eunji E.; Zalay, Osbert C.; Serletis, Demitre; Carlen, Peter L.; Bardakjian, Berj L.

    2012-10-01

    Transformation of principal dynamic modes (PDMs) under epileptogenic conditions was investigated by computing the Volterra kernels in a rodent epilepsy model derived from a mouse whole hippocampal preparation, where epileptogenesis was induced by altering the concentrations of Mg2 + and K+ of the perfusate for different levels of excitability. Both integrating and differentiating PDMs were present in the neuronal dynamics, and both of them increased in absolute magnitude for increased excitability levels. However, the integrating PDMs dominated at all levels of excitability in terms of their relative contributions to the overall response, whereas the dominant frequency responses of the differentiating PDMs were shifted to higher ranges under epileptogenic conditions, from ripple activities (75-200 Hz) to fast ripple activities (200-500 Hz).

  8. A method of measurement of lifetimes of excited ion levels, using orientation transfer by Penning collisions

    International Nuclear Information System (INIS)

    Hamel, J.; Barrat, J.-P.

    1978-01-01

    A method for measuring the lifetimes of ionic excited levels is described. This method uses the transfer of coherence in a Penning collision using metastable optically oriented He 2 3 S 1 atoms. If R.F. transitions are induced in the (2 3 S 1 )He level, a transverse component of the magnetic moment of this level is created, which precesses coherently at the angular frequency ω of the R.F. field. The helium transverse orientation is partially transferred to the ions produced by Penning collisions. After the collision, the orientation transferred precesses around the external magnetic field at the Larmor frequency ω 0 ' of the ion excited level. The degree of orientation of the excited ion level depends, in the stationary state, on the average phase shift, during the lifetime tau prime of this level, between the Larmor precession at angular frequency ω 0 ' and the forced precession of helium (at angular frequency ω). The orientation of the ions is monitored by the modulation of the light emitted during their radiative decay. It is possible to determine the lifetime tau prime by measuring the degree of modulation of the reemitted light as a function of ω [fr

  9. State-selective charge transfer and excitation in ion-ion interactions at intermediate and high energies

    International Nuclear Information System (INIS)

    Samanta, R; Purkait, M

    2012-01-01

    Boundary Corrected Continuum Intermediate State (BCCIS) approximation and Classical Trajectory Monte Carlo (CTMC) methods are applied to calculate the charge transfer and excitation cross sections for ion-ion collisions.

  10. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals.

    Science.gov (United States)

    Ranjbar Choubeh, Reza; Sonani, Ravi R; Madamwar, Datta; Struik, Paul C; Bader, Arjen N; Robert, Bruno; van Amerongen, Herbert

    2018-03-01

    Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores. APC trimers were amongst the first light-harvesting complexes to be crystallized. APC trimers have two spectrally different PCBs per monomer, a high- and a low-energy pigment. The crystal structure of the APC trimer reveals the close distance (~21 Å) between those two chromophores (the distance within one monomer is ~51 Å) and this explains the ultrafast (~1 ps) excitation energy transfer (EET) between them. Both chromophores adopt a somewhat different structure, which is held responsible for their spectral difference. Here we used spectrally resolved picosecond fluorescence to study EET in these APC trimers both in crystallized and in solubilized form. We found that not all closely spaced pigment couples consist of a low- and a high-energy pigment. In ~10% of the cases, a couple consists of two high-energy pigments. EET to a low-energy pigment, which can spectrally be resolved, occurs on a time scale of tens of picoseconds. This transfer turns out to be three times faster in the crystal than in the solution. The spectral characteristics and the time scale of this transfer component are similar to what have been observed in the whole cells of Synechocystis sp. PCC 6803, for which it was ascribed to EET from C-phycocyanin to APC. The present results thus demonstrate that part of this transfer should probably also be ascribed to EET within APC trimers.

  11. Ultrafast dynamics of electronically excited molecules and clusters

    International Nuclear Information System (INIS)

    Lietard, Aude

    2014-01-01

    This PhD thesis investigated the ultrafast dynamics of photo-chromic molecules and argon clusters in the gas phase at the femtosecond timescale. Pump-probe experiments are performed in a set-up which associates a versatile pulsed molecular beam coupled to a photoelectron/photoion velocity map imager (VMI) and a time-of-flight mass spectrometer (TOF-MS). Theses pump-probe experiments provides the temporal evolution of the electronic distribution for each system of interest. Besides, a modelization has been performed in order to characterize the density and the velocity distribution in the pulsed beam. Regarding the photo-chromic di-thienyl-ethene molecules, parallel electronic relaxation pathways were observed. This contrasts with the observation of sequential relaxation processes in most molecules studied so far. In the present case, the initial wave packet splits in two parts. One part is driven to the ground state at the femtosecond time scale through a conical intersection, and the second part remains for ps in the excited state and experiences oscillations in a suspended well. This study has shed light into the intrinsic dynamics of the molecules under study and a general relaxation mechanism has been proposed, which applies to the whole family of di-thienyl-ethene molecules whatever the state of matter (gas phase or solution) in which they have been investigated. Concerning argon clusters excited at about 14 eV, two behaviors of different time scale have been observed at different time scales. The first one occurs in the first picoseconds of the dynamics. It corresponds to the electronic relaxation of an excitonic state at a rate of 1 eV.ps -1 . The second phenomenon corresponds to the localization of the exciton on the excimer Ar 2 *. This phenomenon is observed 4-5 ps after the excitation. In this study, we also observed the ejection of excited argon atoms, addressing the lifetime of the delocalized excitonic state. This work provide additional informations

  12. Charge-transfer excited state in pyrene-1-carboxylic acids adsorbed on titanium dioxide nanoparticles

    Science.gov (United States)

    Krawczyk, S.; Nawrocka, A.; Zdyb, A.

    2018-06-01

    The electronic structure of excited photosensitizer adsorbed at the surface of a solid is the key factor in the electron transfer processes that underlie the efficiency of dye-sensitized solar cells and photocatalysts. In this work, Stark effect (electroabsorption) spectroscopy has been used to measure the polarizability and dipole moment changes in electronic transitions of pyrene-1-carboxylic (PCA), -acetic (PAA) and -butyric (PBA) acids in ethanol, both free and adsorbed on colloidal TiO2, in glassy ethanol at low temperature. The lack of appreciable increase of dipole moment in the excited state of free and adsorbed PAA and PBA points that two or more single bonds completely prevent the expansion of π-electrons from the aromatic ring towards the carboxylic group, thus excluding the possibility of direct electron injection into TiO2. In free PCA, the pyrene's forbidden S0 → S1 transition has increased intensity, exhibits a long progression in 1400 cm-1 Ag mode and is associated with |Δμ| of 2 D. Adsorption of PCA on TiO2 causes a broadening and red shift of the S0 → S1 absorption band and an increase in dipole moment change on electronic excitation to |Δμ| = 6.5 D. This value increased further to about 15 D when the content of acetic acid in the colloid was changed from 0.2% to 2%, and this effect is ascribed to the surface electric field. The large increase of |Δμ| points that the electric field effect can not only change the energetics of electron transfer from the excited sensitizer into the solid, but can also shift the molecular electronic density, thus directly influencing the electronic coupling factor relevant for electron transfer at the molecule-solid interface.

  13. Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yijing, E-mail: yzhng123@illinois.edu; Moore, Keegan J.; Vakakis, Alexander F. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); McFarland, D. Michael [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-12-21

    We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.

  14. Excitable particles in an optical torque wrench

    Science.gov (United States)

    Pedaci, Francesco; Huang, Zhuangxiong; van Oene, Maarten; Barland, Stephane; Dekker, Nynke H.

    2011-03-01

    The optical torque wrench is a laser trapping technique capable of applying and directly measuring torque on microscopic birefringent particles using spin momentum transfer, and has found application in the measurement of static torsional properties of biological molecules such as single DNAs. Motivated by the potential of the optical torque wrench to access the fast rotational dynamics of biological systems, a result of its all-optical manipulation and detection, we focus on the angular dynamics of the trapped birefringent particle, demonstrating its excitability in the vicinity of a critical point. This links the optical torque wrench to nonlinear dynamical systems such as neuronal and cardiovascular tissues, nonlinear optics and chemical reactions, all of which display an excitable binary (`all-or-none') response to input perturbations. On the basis of this dynamical feature, we devise and implement a conceptually new sensing technique capable of detecting single perturbation events with high signal-to-noise ratio and continuously adjustable sensitivity.

  15. Reaction Path Averaging: Characterizing the Structural Response of the DNA Double Helix to Electron Transfer

    Czech Academy of Sciences Publication Activity Database

    Kolář, Michal H.; Kubař, T.

    2017-01-01

    Roč. 121, č. 7 (2017), s. 1520-1532 ISSN 1520-6106 Institutional support: RVO:61388963 Keywords : excited-state dynamics * excitation energy transfer * solvation dynamics Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  16. Probing nuclear shell structure beyond the N=40 subshell using multiple Coulomb excitation and transfer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hellgartner, Stefanie Christine

    2015-11-13

    In this work, the N=40 subshell closure is investigated with two complementary methods using a radioactive {sup 72}Zn ISOLDE beam: One- and two-neutron transfer reactions and multiple Coulomb excitation. In the one-neutron transfer reaction, two new levels of {sup 73}Zn were discovered. The two-neutron transfer channel allowed to study the differential cross section of the ground state and the 2{sup +}{sub 1} state of {sup 74}Zn. In the Coulomb excitation experiment, the measured B(E2) values and quadrupole moments of {sup 72}Zn showed that the yrast states 0{sup +}{sub 1}, 2{sup +}{sub 1} and 4{sup +}{sub 1} are moderately collective. Contrary, the 0{sup +}{sub 2} state has a different structure, since it features a stronger closed N=40 configuration compared to the ground state.

  17. Effects of dynamic aspects on fusion excitation functions

    International Nuclear Information System (INIS)

    Hassan, G.S.

    2008-01-01

    As an extension of the macroscopic theory, the nucleus- nucleus fusion has been described in terms of the chaotic regime dynamics (liquid drop potential energy plus one body dissipation).Three milestone configurations are attended : the touching , the conditional saddle point and the unconditional saddle one. We would like to deduce the associated extra push and extra-extra push energy values required to carry the system between these configurations, respectively. The next step is to light on the effect of these limiting values on the fusion excitation functions and their significance for accurate fitting of the measured functions for larger values of the angular momentum. It is found that there is a limiting values of excitation energy and angular momentum for each interacting pair, over which these aspects must be considered to fit the excitation functions of different nucleus nucleus fusion .These values were found to be in relation with the limiting angular momentum for fusion in major cases

  18. Supersonic Localized Excitations Mediate Microscopic Dynamic Failure

    Science.gov (United States)

    Ghaffari, H. O.; Griffith, W. A.; Pec, M.

    2017-12-01

    A moving rupture front activates a fault patch by increasing stress above a threshold strength level. Subsequent failure yields fast slip which releases stored energy in the rock. A fraction of the released energy is radiated as seismic waves carrying information about the earthquake source. While this simplified model is widely accepted, the detailed evolution from the onset of dynamic failure to eventual re-equilibration is still poorly understood. To study dynamic failure of brittle solids we indented thin sheets of single mineral crystals and recorded the emitted ultrasound signals (high frequency analogues to seismic waves) using an array of 8 to 16 ultrasound probes. The simple geometry of the experiments allows us to unravel details of dynamic stress history of the laboratory earthquake sources. A universal pattern of failure is observed. First, stress increases over a short time period (1 - 2 µs), followed by rapid weakening (≈ 15 µs). Rapid weakening is followed by two distinct relaxation phases: a temporary quasi-steady state phase (10 µs) followed by a long-term relaxation phase (> 50 µs). We demonstrate that the dynamic stress history during failure is governed by formation and interaction of local non-dispersive excitations, or solitons. The formation and annihilation of solitons mediates the microscopic fast weakening phase, during which extreme acceleration and collision of solitons lead to non-Newtonian behavior and Lorentz contraction, i.e. shortening of solitons' characteristic length. Interestingly, a soliton can propagate as fast as 37 km/s, much faster than the p-wave velocity, implying that a fraction of the energy transmits through soliton excitations. The quasi-steady state phase delays the long-term ageing of the damaged crystal, implying a potentially weaker material. Our results open new horizons for understanding the complexity of earthquake sources, and, more generally, non-equilibrium relaxation of many body systems.

  19. Dynamics of magnetization in ferromagnet with spin-transfer torque

    Science.gov (United States)

    Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming

    2014-11-01

    We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out

  20. Breaking the excitation-inhibition balance makes the cortical network’s space-time dynamics distinguish simple visual scenes

    DEFF Research Database (Denmark)

    Roland, Per E.; Bonde, Lars H.; Forsberg, Lars E.

    2017-01-01

    Brain dynamics are often taken to be temporal dynamics of spiking and membrane potentials in a balanced network. Almost all evidence for a balanced network comes from recordings of cell bodies of few single neurons, neglecting more than 99% of the cortical network. We examined the space......-time dynamics of excitation and inhibition simultaneously in dendrites and axons over four visual areas of ferrets exposed to visual scenes with stationary and moving objects. The visual stimuli broke the tight balance between excitation and inhibition such that the network exhibited longer episodes of net...... excitation subsequently balanced by net inhibition, in contrast to a balanced network. Locally in all four areas the amount of net inhibition matched the amount of net excitation with a delay of 125 ms. The space-time dynamics of excitation-inhibition evolved to reduce the complexity of neuron interactions...

  1. Emission spectroscopic studies on dynamics of molecular excitation and dissociation by controlled electron impact

    International Nuclear Information System (INIS)

    Ogawa, Teiichiro

    1986-01-01

    Emission spectrum by controlled electron impact has been a successful technique for the investigation of molecular dynamics. (1) Molecular excitation. Aromatic molecules give an optical emission similar to fluorescence. However, as is shown by the vibrational structure and the electron energy dependence of benzene emission, its excitation process is not necessarily optical. Some aliphatic molecules also exhibit an emission band at the ultraviolet region. (2) Molecular dissociation. Analysis of the Doppler profile, the threshold energy, the excitation function and the isotope effect of the atomic emission produced in electron-molecule collisions has clarified the dynamics of the molecular dissociation. Especially the Doppler profile has given the translational energy distribution of the fragment atom, which is very useful to disclose the potential energy curve. Its angular dependence has recently found to allow determination of the symmetry of the intermediate excited state and the magnetic sublevel distribution of the fragment atom. These finding has revealed detailed state-to-state dynamics of the molecular dissociation. (author)

  2. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    International Nuclear Information System (INIS)

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom ''sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly

  3. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  4. The mechanism of three-body process of energy transfer from excited xenon atoms to molecules

    International Nuclear Information System (INIS)

    Wojciechowski, K.; Forys, M.

    1999-01-01

    The mechanism of energy transfer from Xe(6 s[3/2] 1 ) resonance state (E=8.44 eV) and higher excited Xe(6p, 6p', 6 d) atoms produced in pulse radiolysis to molecules have been discussed. The analysis of the kinetic data for these processes shows that in the sensitized photolysis and radiolysis of Xe-M mixtures the excited atoms decay in 'ordinary' two-body reaction: Xe(6s[3/2] 1 0 )+M→products (r.1) and in fast 'accelerated' third order process: Xe(6s[3/2] 1 0 )+M+Xe→products (r.2) The discussion shows that three-body process occurs via reactions: Xe(6s[3/2] 1 0 )+Xe k w ↔ k d Xe 2 ** (r.2a) Xe 2 **+M k q →[Xe 2 M]*→products (r.2b) It was shown that this mechanism concerns also higher excited Xe atoms and can explain a similar process in He-M mixtures and suggests that it is a general mechanism of energy transfer in all irradiated rare gas-molecule systems

  5. Ultrafast Charge Photogeneration in MEH-PPV Charge-Transfer Complexes

    NARCIS (Netherlands)

    Bakulin, Artem A.; Paraschuk, Dmitry Yu; Pshenichnikov, Maxim S.; van Loosdrecht, Paul H. M.; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E; Schoenlein, RW

    2009-01-01

    Visible-pump - IR-probe spectroscopy is used to study the ultrafast charge dynamics in MEH-PPV based charge-transfer complexes and donor-acceptor blends. Transient anisotropy of the polymer polaron band provides invaluable insights into excitation localisation and charge-transfer pathways.

  6. Generating Excitement: Build Your Own Generator to Study the Transfer of Energy

    Science.gov (United States)

    Fletcher, Kurt; Rommel-Esham, Katie; Farthing, Dori; Sheldon, Amy

    2011-01-01

    The transfer of energy from one form to another can be difficult to understand. The electrical energy that turns on a lamp may come from the burning of coal, water falling at a hydroelectric plant, nuclear reactions, or gusts of wind caused by the uneven heating of the Earth. The authors have developed and tested an exciting hands-on activity to…

  7. Electron transfer, ionization, and excitation in atomic collisions

    International Nuclear Information System (INIS)

    Winter, T.G.; Alston, S.G.

    1992-01-01

    The research being carried out at Penn State by Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom (and ion-ion) collisions. The focus is on intermediate- and higher-energy collisions, corresponding to proton energies of about 25 kilo-electron-volts (keV) or larger. At intermediate energies, where the transition probabilities are not small, many states must be coupled in a large calculation, while at higher energies, perturbative approaches may be used. Several studies have been carried out in the current three-year period; most of these treat systems with only one or two electrons, so that fewer approximations need be made and the basic collisional mechanisms can be more clearly described

  8. Nonlinear dynamics of trions under strong optical excitation in monolayer MoSe2.

    Science.gov (United States)

    Ye, Jialiang; Yan, Tengfei; Niu, Binghui; Li, Ying; Zhang, Xinhui

    2018-02-05

    By employing ultrafast transient reflection measurements based on two-color pump-probe spectroscopy, the population and valley polarization dynamics of trions in monolayer MoSe 2 were investigated at relatively high excitation densities under near-resonant excitation. Both the nonlinear dynamic photobleaching of the trion resonance and the redshift of the exciton resonance were found to be responsible for the excitation-energy- and density-dependent transient reflection change as a result of many-body interactions. Furthermore, from the polarization-resolved measurements, it was revealed that the initial fast population and polarization decay process upon strong photoexcitation observed for trions was determined by trion formation, transient phase-space filling and the short valley lifetime of excitons. The results provide a basic understanding of the nonlinear dynamics of population and valley depolarization of trions, as well as exciton-trion correlation in atomically thin MoSe 2 and other transition metal dichalcogenide materials.

  9. The population transfer of high excited states of Rydberg lithium atoms in a microwave field

    International Nuclear Information System (INIS)

    Jiang Lijuan; Zhang Xianzhou; Ma Huanqiang; Jia Guangrui; Zhang Yonghui; Xia Lihua

    2012-01-01

    Using the time-dependent multilevel approach (TDMA), the properties of high excited Rydberg lithium atom have been obtained in the microwave field. The population transfer of lithium atom are studied on numerical calculation, quantum states are controlled and manipulated by microwave field. It shows that the population can be completely transferred to the target state by changing the chirped rate and field amplitude. (authors)

  10. Dynamic study of excited state hydrogen-bonded complexes of harmane in cyclohexane-toluene mixtures.

    Science.gov (United States)

    Carmona, Carmen; Balón, Manuel; Galán, Manuel; Guardado, Pilar; Muñoz, María A

    2002-09-01

    Photoinduced proton transfer reactions of harmane or 1-methyl-9H-pyrido[3,4-b]indole (HN) in the presence of the proton donor hexafluoroisopropanol (HFIP) in cyclohexane-toluene mixtures (CY-TL; 10% vol/vol of TL) have been studied. Three excited state species have been identified: a 1:2 hydrogen-bonded proton transfer complex (PTC), between the pyridinic nitrogen of the substrate and the proton donor, a hydrogen-bonded cation-like exciplex (CL*) with a stoichiometry of at least 1:3 and a zwitterionic exciplex (Z*). Time-resolved fluorescence measurements evidence that upon excitation of ground state PTC, an excited state equilibrium is established between PTC* and the cationlike exciplex, CL*, lambdaem approximately/= 390 nm. This excited state reaction is assisted by another proton donor molecule. Further reaction of CL* with an additional HFIP molecule produces the zwitterionic species, Z*, lambda(em) approximately/= 500 nm. From the analysis of the multiexponential decays, measured at different emission wavelengths and as a function of HFIP concentration, the mechanism of these excited state reactions has been established. Thus, three rate constants and three reciprocal lifetimes have been determined. The simultaneous study of 1,9-dimethyl-9H-pyrido[3,4-b]indole (MHN) under the same experimental conditions has helped to understand the excited state kinetics of these processes.

  11. Energy transfer and reaction dynamics of matrix-isolated 1,2-difluoroethane-d4

    Science.gov (United States)

    Raff, Lionel M.

    1990-09-01

    The molecular dynamics of vibrationally excited 1,2-difluoroethane-d4 isolated in Ar, Kr, and Xe matrices at 12 K are investigated using trajectory methods. The matrix model is an fcc crystal containing 125 unit cells with 666 atoms in a cubic (5×5×5) arrangement. It is assumed that 1,2-difluoroethane-d4 is held interstitially within the volume bounded by the innermost unit cell of the crystal. The transport effects of the bulk are simulated using the velocity reset method introduced by Riley, Coltrin, and Diestler [J. Chem. Phys. 88, 5934 (1988)]. The system potential is written as the separable sum of a lattice potential, a lattice-molecule interaction and a gas-phase potential for 1,2-difluoroethane. The first two of these are assumed to have pairwise form while the molecular potential is a modified form of the global potential previously developed for 1,2-difluoroethane [J. Phys. Chem. 91, 3266 (1987)]. Calculated sublimation energies for the pure crystals are in good accord with the experimental data. The distribution of metastable-state energies for matrix-isolated 1,2-difluoroethane-d4 is Gaussian in form. In krypton, the full width at half maximum for the distribution is 0.37 eV. For a total excitation energy of 6.314 eV, the observed dynamic processes are vibrational relaxation, orientational exchange, and four-center DF elimination reactions. The first of these processes is characterized by a near linear, first-order decay curve with rate coefficients in the range 1.30-1.48×1011 s-1. The average rates in krypton and xenon are nearly equal. The process is slightly slower in argon. The decay curves exhibit characteristic high-frequency oscillations that are generally seen in energy transfer studies. It is demonstrated that these oscillations are associated with the frequencies for intramolecular energy transfer so that the entire frequency spectrum for such transfer processes can be obtained from the Fourier transform of the decay curve. Orientational

  12. Nonlinear Dynamic Behavior of a Flexible Structure to Combined External Acoustic and Parametric Excitation

    Directory of Open Access Journals (Sweden)

    Paulo S. Varoto

    2006-01-01

    Full Text Available Flexible structures are frequently subjected to multiple inputs when in the field environment. The accurate determination of the system dynamic response to multiple inputs depends on how much information is available from the excitation sources that act on the system under study. Detailed information include, but are not restricted to appropriate characterization of the excitation sources in terms of their variation in time and in space for the case of distributed loads. Another important aspect related to the excitation sources is how inputs of different nature contribute to the measured dynamic response. A particular and important driving mechanism that can occur in practical situations is the parametric resonance. Another important input that occurs frequently in practice is related to acoustic pressure distributions that is a distributed type of loading. In this paper, detailed theoretical and experimental investigations on the dynamic response of a flexible cantilever beam carrying a tip mass to simultaneously applied external acoustic and parametric excitation signals have been performed. A mathematical model for transverse nonlinear vibration is obtained by employing Lagrange’s equations where important nonlinear effects such as the beam’s curvature and quadratic viscous damping are accounted for in the equation of motion. The beam is driven by two excitation sources, a sinusoidal motion applied to the beam’s fixed end and parallel to its longitudinal axis and a distributed sinusoidal acoustic load applied orthogonally to the beam’s longitudinal axis. The major goal here is to investigate theoretically as well as experimentally the dynamic behavior of the beam-lumped mass system under the action of these two excitation sources. Results from an extensive experimental work show how these two excitation sources interacts for various testing conditions. These experimental results are validated through numerically simulated results

  13. Identification of the nonlinear excitation force acting on a bowed string using the dynamical responses at remote locations

    International Nuclear Information System (INIS)

    Debut, V.; Antunes, J.; Delaune, X.

    2010-01-01

    For achieving realistic numerical simulations of bowed string instruments, based on physical modeling, a good understanding of the actual friction interaction phenomena is of great importance. Most work published in the field including our own has assumed that bow/string frictional forces behave according to the classical Coulomb stick-slip model, with an empirical velocity-dependent sliding friction coefficient. Indeed, the basic self-excited string motions (such as the Helmholtz regime) are well captured using such friction model. However, recent work has shown that the tribological behavior of the bow/string rosin interface is rather complex, therefore the basic velocity-dependent Coulomb model may be an over-simplistic representation of the friction force. More specifically, it was suggested that a more accurate model of the interaction force can be achieved by coupling the system dynamical equations with a thermal model which encapsulates the complex interface phenomena. In spite of the interesting work performed by Askenfelt, a direct measurement of the actual dynamical friction forces without disturbing the string motion is quite difficult. Therefore, in this work we develop a modal-based identification technique making use of inverse methods and optimization techniques, which enables the identification of the interface force, as well as the string self-excited motion, from the dynamical reactions measured at the string end supports. The method gives convincing results using simulated data originated from nonlinear computations of a bowed string. Furthermore, in cases where the force identifications are very sensitive to errors in the transfer function modal parameters, we suggest a method to improve the modal frequencies used for the identifications. Preliminary experimental results obtained using a basic bowing device, by which the string is excited with the stick of the bow, are then presented. Our identifications, from the two dynamical string reactions

  14. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    Science.gov (United States)

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron

  15. Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Fujisawa, Tomotsumi; Creelman, Mark; Mathies, Richard A

    2012-09-06

    Femtosecond stimulated Raman spectroscopy is used to examine the structural dynamics of photoinduced charge transfer within a noncovalent electron acceptor/donor complex of pyromellitic dianhydride (PMDA, electron acceptor) and hexamethylbenzene (HMB, electron donor) in ethylacetate and acetonitrile. The evolution of the vibrational spectrum reveals the ultrafast structural changes that occur during the charge separation (Franck-Condon excited state complex → contact ion pair) and the subsequent charge recombination (contact ion pair → ground state complex). The Franck-Condon excited state is shown to have significant charge-separated character because its vibrational spectrum is similar to that of the ion pair. The charge separation rate (2.5 ps in ethylacetate and ∼0.5 ps in acetonitrile) is comparable to solvation dynamics and is unaffected by the perdeuteration of HMB, supporting the dominant role of solvent rearrangement in charge separation. On the other hand, the charge recombination slows by a factor of ∼1.4 when using perdeuterated HMB, indicating that methyl hydrogen motions of HMB mediate the charge recombination process. Resonance Raman enhancement of the HMB vibrations in the complex reveals that the ring stretches of HMB, and especially the C-CH(3) deformations are the primary acceptor modes promoting charge recombination.

  16. Probing charge transfer dynamics in self-assembled monolayers by core hole clock approach

    International Nuclear Information System (INIS)

    Zharnikov, Michael

    2015-01-01

    This article reviews recent progress in the application of core hole clock approach in the framework of resonant Auger electron spectroscopy to the monomolecular assembles of alkyl, oligophenyl, and oligo(phenylene–ethynylene) based molecules on Au(1 1 1) substrates, referring mostly to the work by the author et al. The major goal was to study electron transfer (ET) dynamics in these systems serving as prototypes of molecular electronics (ME) devices. The ET pathway to the conductive substrate was unambiguously defined by resonant excitation of the nitrile tailgroup attached to the molecular backbone. Characteristic ET times within the femtosecond domain were determined, along with the attenuation factors for the ET dynamics, analogous to the case of the static transport. The above parameters were found to exhibit strong dependence on the character of the molecular orbital which mediates the ET process. In addition, certain spectral features, which can be associated with an inverse ET from the molecular backbone to the excitation site, were observed upon exchange of the nitrile group by strongly electronegative nitro moiety. The reported results represent a valuable input for theory and a certain potential for applications such as ME devices where optimization of ET can have significant technological impact.

  17. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what

  18. Tunneling dynamics of double proton transfer in formic acid and benzoic acid dimers

    Science.gov (United States)

    Smedarchina, Zorka; Fernández-Ramos, Antonio; Siebrand, Willem

    2005-04-01

    Direct dynamics calculations based on instanton techniques are reported of tunneling splittings due to double proton transfer in formic and benzoic acid dimers. The results are used to assign the observed splittings to levels for which the authors of the high-resolution spectra could not provide a definitive assignment. In both cases the splitting is shown to be due mainly to the zero-point level rather than to the vibrationally or electronically excited level whose spectrum was investigated. This leads to zero-point splittings of 375MHz for (DCOOH)2 and 1107MHz for the benzoic acid dimer. Thus, contrary to earlier calculations, it is found that the splitting is considerably larger in the benzoic than in the formic acid dimer. The calculations are extended to solid benzoic acid where the asymmetry of the proton-transfer potential induced by the crystal can be overcome by suitable doping. This has allowed direct measurement of the interactions responsible for double proton transfer, which were found to be much larger than those in the isolated dimer. To account for this observation both static and dynamic effects of the crystal forces on the intradimer hydrogen bonds are included in the calculations. The same methodology, extended to higher temperatures, is used to calculate rate constants for HH, HD, and DD transfers in neat benzoic acid crystals. The results are in good agreement with reported experimental rate constants measured by NMR relaxometry and, if allowance is made for small structural changes induced by doping, with the transfer matrix elements observed in doped crystals. Hence the method used allows a unified description of tunneling splittings in the gas phase and in doped crystals as well as of transfer rates in neat crystals.

  19. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory.

    Science.gov (United States)

    Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael

    2012-08-14

    Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

  20. On the intramolecular proton transfer of 3-hydroxyflavone in the first singlet excited state: A theoretical study

    International Nuclear Information System (INIS)

    Casadesus, Ricard; Vendrell, Oriol; Moreno, Miquel; Lluch, Jose M.; Morokuma, Keiji

    2006-01-01

    The intramolecular proton-transfer reaction in 3-hydroxyflavone (3HF) is theoretically studied both in the ground (S 0 ) and first singlet excited (S 1 ) electronic states. In S 0 the proton-transfer reaction is shown to be quite unfavorable at the DFT (B3LYP) level. However, the back proton transfer is found to be a feasible process with a small energy barrier, both results being in qualitative agreement with known experimental facts. Different theoretical levels are considered and compared for S 1 . The ab initio configuration interaction singles (CIS) method overestimates the energy of S 1 and give too high energy barriers for the proton-transfer reaction. The complete active space SCF (CASSCF) method gives a more reasonable value but the inclusion of the dynamical correlation through second-order perturbation theory (CASPT2) upon CASSCF geometries or the use of the time-dependent DFT (TDDFT) method upon CIS geometries gives a barrierless process. Optimization of geometries (minima and transition-state structures) at the TDDFT level leads to a small but non-negligible energy barrier for the proton-transfer reaction in S 1 and global energies that fit quite well with the known experimental (spectroscopic and femtochemistry) data. Finally the effect of a polar environment is analyzed through a continuum model, which gives only a small difference from the previous gas-phase results. This points out that the remarkable changes in the photochemistry of 3HF observed experimentally are not to be solely attributed to the polarity of the surrounding media

  1. On the intramolecular proton transfer of 3-hydroxyflavone in the first singlet excited state: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Casadesus, Ricard [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, GA 30322 (United States); Vendrell, Oriol [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Moreno, Miquel [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)], E-mail: mmf@klingon.uab.es; Lluch, Jose M. [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Morokuma, Keiji [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, GA 30322 (United States)

    2006-06-20

    The intramolecular proton-transfer reaction in 3-hydroxyflavone (3HF) is theoretically studied both in the ground (S{sub 0}) and first singlet excited (S{sub 1}) electronic states. In S{sub 0} the proton-transfer reaction is shown to be quite unfavorable at the DFT (B3LYP) level. However, the back proton transfer is found to be a feasible process with a small energy barrier, both results being in qualitative agreement with known experimental facts. Different theoretical levels are considered and compared for S{sub 1}. The ab initio configuration interaction singles (CIS) method overestimates the energy of S{sub 1} and give too high energy barriers for the proton-transfer reaction. The complete active space SCF (CASSCF) method gives a more reasonable value but the inclusion of the dynamical correlation through second-order perturbation theory (CASPT2) upon CASSCF geometries or the use of the time-dependent DFT (TDDFT) method upon CIS geometries gives a barrierless process. Optimization of geometries (minima and transition-state structures) at the TDDFT level leads to a small but non-negligible energy barrier for the proton-transfer reaction in S{sub 1} and global energies that fit quite well with the known experimental (spectroscopic and femtochemistry) data. Finally the effect of a polar environment is analyzed through a continuum model, which gives only a small difference from the previous gas-phase results. This points out that the remarkable changes in the photochemistry of 3HF observed experimentally are not to be solely attributed to the polarity of the surrounding media.

  2. Dynamic behavior of three-dimensional composite beam under flapwise excitation

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, Mojtaba [Dept. of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2016-08-15

    In this paper, dynamic response of a symmetrically laminated composite beam is studied under harmonic base excitation. The base is subjected to flapwise excitation tuned to the primary resonance in the presence of 2:1 internal resonance between the out-of-plane bending motion and the in-plane bending and torsional motions. In literature, modified modulation equations of composite beam have been derived and the stability of fixed points has been investigated in frequency and forced responses. However, post-critical behavior of the modulation equations is studied in this study. In bifurcation diagrams sketched near primary and internal resonances, it appears that detuning the flapwise excitation amplitude causes phenomena like jumps, period doubling, multi and quasi-periodic solutions to occur.

  3. Study on the Dynamics of Laser Gyro Strapdown Inertial Measurement Unit System Based on Transfer Matrix Method for Multibody System

    Directory of Open Access Journals (Sweden)

    Gangli Chen

    2013-01-01

    Full Text Available The dynamic test precision of the strapdown inertial measurement unit (SIMU is the basis of estimating accurate motion of various vehicles such as warships, airplanes, spacecrafts, and missiles. So, it is paid great attention in the above fields to increase the dynamic precision of SIMU by decreasing the vibration of the vehicles acting on the SIMU. In this paper, based on the transfer matrix method for multibody system (MSTMM, the multibody system dynamics model of laser gyro strapdown inertial measurement unit (LGSIMU is developed; the overall transfer equation of the system is deduced automatically. The computational results show that the frequency response function of the LGSIMU got by the proposed method and Newton-Euler method have good agreements. Further, the vibration reduction performance and the attitude error responses under harmonic and random excitations are analyzed. The proposed method provides a powerful technique for studying dynamics of LGSIMU because of using MSTMM and its following features: without the global dynamics equations of the system, high programming, low order of system matrix, and high computational speed.

  4. Spin–transfer torque oscillator in magnetic tunneling junction with short–wavelength magnon excitation

    Directory of Open Access Journals (Sweden)

    Shizhu Qiao

    2018-05-01

    Full Text Available Bloch–Bloembergen–Slonczewski (BBS equation is established by extending Bloch–Bloembergen equation, and it is used to study magnetization oscillation in the free magnetic layer of a magnetic tunneling junction. Since both short–wavelength magnon excitation and spin–transfer torque are taken into account in the BBS equation, it is distinguished from Landau–Lifshitz–Gilbert–Slonczewski equation. The macro–spin BBS model predicts that the transverse relaxation time in free magnetic layer should be long enough, as compared with the longitudinal relaxation time, to achieve stable magnetization oscillation for spin–transfer torque oscillator application. Moreover, field–like torque favors the tolerance of fast transverse relaxation, which makes magnetic tunneling junction a better choice than spin valve for the spin–transfer torque oscillator application.

  5. Theory of Excitation Transfer between Two-Dimensional Semiconductor and Molecular Layers

    Science.gov (United States)

    Specht, Judith F.; Verdenhalven, Eike; Bieniek, Björn; Rinke, Patrick; Knorr, Andreas; Richter, Marten

    2018-04-01

    The geometry-dependent energy transfer rate from an electrically pumped inorganic semiconductor quantum well into an organic molecular layer is studied theoretically. We focus on Förster-type nonradiative excitation transfer between the organic and inorganic layers and include quasimomentum conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial charges calculated from density-functional theory are used to calculate the coupling elements. The partial charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic-organic system. For instance, the transfer efficiency is improved by up to 2 orders of magnitude by tuning the spatial arrangement of the molecules on the surface: Parameters of importance are the molecular packing density along the effective molecular dipole axis and the distance between the molecules and the surface. We also observe that the device performance strongly depends on the orientation of the molecular dipole moments relative to the substrate dipole moments determined by the inorganic crystal structure. Moreover, the operating regime is identified where inscattering dominates over unwanted backscattering from the molecular layer into the substrate.

  6. Bulk Data Movement for Climate Dataset: Efficient Data Transfer Management with Dynamic Transfer Adjustment

    International Nuclear Information System (INIS)

    Sim, Alexander; Balman, Mehmet; Williams, Dean; Shoshani, Arie; Natarajan, Vijaya

    2010-01-01

    Many scientific applications and experiments, such as high energy and nuclear physics, astrophysics, climate observation and modeling, combustion, nano-scale material sciences, and computational biology, generate extreme volumes of data with a large number of files. These data sources are distributed among national and international data repositories, and are shared by large numbers of geographically distributed scientists. A large portion of data is frequently accessed, and a large volume of data is moved from one place to another for analysis and storage. One challenging issue in such efforts is the limited network capacity for moving large datasets to explore and manage. The Bulk Data Mover (BDM), a data transfer management tool in the Earth System Grid (ESG) community, has been managing the massive dataset transfers efficiently with the pre-configured transfer properties in the environment where the network bandwidth is limited. Dynamic transfer adjustment was studied to enhance the BDM to handle significant end-to-end performance changes in the dynamic network environment as well as to control the data transfers for the desired transfer performance. We describe the results from the BDM transfer management for the climate datasets. We also describe the transfer estimation model and results from the dynamic transfer adjustment.

  7. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.

  8. Trapping Dynamics in Photosystem I-Light Harvesting Complex I of Higher Plants Is Governed by the Competition Between Excited State Diffusion from Low Energy States and Photochemical Charge Separation.

    Science.gov (United States)

    Molotokaite, Egle; Remelli, William; Casazza, Anna Paola; Zucchelli, Giuseppe; Polli, Dario; Cerullo, Giulio; Santabarbara, Stefano

    2017-10-26

    The dynamics of excited state equilibration and primary photochemical trapping have been investigated in the photosystem I-light harvesting complex I isolated from spinach, by the complementary time-resolved fluorescence and transient absorption approaches. The combined analysis of the experimental data indicates that the excited state decay is described by lifetimes in the ranges of 12-16 ps, 32-36 ps, and 64-77 ps, for both detection methods, whereas faster components, having lifetimes of 550-780 fs and 4.2-5.2 ps, are resolved only by transient absorption. A unified model capable of describing both the fluorescence and the absorption dynamics has been developed. From this model it appears that the majority of excited state equilibration between the bulk of the antenna pigments and the reaction center occurs in less than 2 ps, that the primary charge separated state is populated in ∼4 ps, and that the charge stabilization by electron transfer is completed in ∼70 ps. Energy equilibration dynamics associated with the long wavelength absorbing/emitting forms harbored by the PSI external antenna are also characterized by a time mean lifetime of ∼75 ps, thus overlapping with radical pair charge stabilization reactions. Even in the presence of a kinetic bottleneck for energy equilibration, the excited state dynamics are shown to be principally trap-limited. However, direct excitation of the low energy chlorophyll forms is predicted to lengthen significantly (∼2-folds) the average trapping time.

  9. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes.

    Science.gov (United States)

    Akhtar, Parveen; Lingvay, Mónika; Kiss, Teréz; Deák, Róbert; Bóta, Attila; Ughy, Bettina; Garab, Győző; Lambrev, Petar H

    2016-04-01

    Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Transfer matrices and excitations with matrix product states

    International Nuclear Information System (INIS)

    Zauner, V; Rams, M M; Verstraete, F; Draxler, D; Vanderstraeten, L; Degroote, M; Haegeman, J; Stojevic, V; Schuch, N

    2015-01-01

    We use the formalism of tensor network states to investigate the relation between static correlation functions in the ground state of local quantum many-body Hamiltonians and the dispersion relations of the corresponding low-energy excitations. In particular, we show that the matrix product state transfer matrix (MPS-TM)—a central object in the computation of static correlation functions—provides important information about the location and magnitude of the minima of the low-energy dispersion relation(s), and we present supporting numerical data for one-dimensional lattice and continuum models as well as two-dimensional lattice models on a cylinder. We elaborate on the peculiar structure of the MPS-TM’s eigenspectrum and give several arguments for the close relation between the structure of the low-energy spectrum of the system and the form of the static correlation functions. Finally, we discuss how the MPS-TM connects to the exact quantum transfer matrix of the model at zero temperature. We present a renormalization group argument for obtaining finite bond dimension approximations of the MPS, which allows one to reinterpret variational MPS techniques (such as the density matrix renormalization group) as an application of Wilson’s numerical renormalization group along the virtual (imaginary time) dimension of the system. (paper)

  11. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Xue-Ping; Fang, Qiu, E-mail: fangqiu917@bnu.edu.cn; Cui, Ganglong, E-mail: ganglong.cui@bnu.edu.cn [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2014-10-21

    Photodissociation dynamics of pyruvic acid experimentally differs from that of commonly known ketones. We have employed the complete active space self-consistent field and its multi-state second-order perturbation methods to study its photodissociation mechanism in the S{sub 0}, T{sub 1}, and S{sub 1} states. We have uncovered four nonadiabatic photodecarboxylation paths. (i) The S{sub 1} system relaxes via an excited-state intramolecular proton transfer (ESIPT) to a hydrogen-transferred tautomer, near which an S{sub 1}/S{sub 0} conical intersection funnels the S{sub 1} to S{sub 0} state. Then, some trajectories continue completing the decarboxylation reaction in the S{sub 0} state; the remaining trajectories via a reverse hydrogen transfer return to the S{sub 0} minimum, from which a thermal decarboxylation reaction occurs. (ii) Due to a small S{sub 1} −T{sub 1} energy gap and a large S{sub 1}/T{sub 1} spin-orbit coupling, an efficient S{sub 1} → T{sub 1} intersystem crossing process happens again near this S{sub 1}/S{sub 0} conical intersection. When decaying to T{sub 1} state, a direct photodecarboxylation proceeds. (iii) Prior to ESIPT, the S{sub 1} system first decays to the T{sub 1} state via an S{sub 1} → T{sub 1} intersystem crossing; then, the T{sub 1} system evolves to a hydrogen-transferred tautomer. Therefrom, an adiabatic T{sub 1} decarboxylation takes place due to a small barrier of 7.7 kcal/mol. (iv) Besides the aforementioned T{sub 1} ESIPT process, there also exists a comparable Norrish type I reaction in the T{sub 1} state, which forms the ground-state products of CH{sub 3}CO and COOH. Finally, we have found that ESIPT plays an important role. It closes the S{sub 1}-T{sub 1} and S{sub 1}-S{sub 0} energy gaps, effecting an S{sub 1}/T{sub 1}/S{sub 0} three-state intersection region, and mediating nonadiabatic photodecarboxylation reactions of pyruvic acid.

  12. Electron transfer dynamics: Zusman equation versus exact theory

    International Nuclear Information System (INIS)

    Shi Qiang; Chen Liping; Nan Guangjun; Xu Ruixue; Yan Yijing

    2009-01-01

    The Zusman equation has been widely used to study the effect of solvent dynamics on electron transfer reactions. However, application of this equation is limited by the classical treatment of the nuclear degrees of freedom. In this paper, we revisit the Zusman equation in the framework of the exact hierarchical equations of motion formalism, and show that a high temperature approximation of the hierarchical theory is equivalent to the Zusman equation in describing electron transfer dynamics. Thus the exact hierarchical formalism naturally extends the Zusman equation to include quantum nuclear dynamics at low temperatures. This new finding has also inspired us to rescale the original hierarchical equations and incorporate a filtering algorithm to efficiently propagate the hierarchical equations. Numerical exact results are also presented for the electron transfer reaction dynamics and rate constant calculations.

  13. Oxygen auroral transition laser system excited by collisional and photolytic energy transfer

    International Nuclear Information System (INIS)

    Murray, J.R.; Powell, H.T.; Rhodes, C.K.

    1975-06-01

    The properties of laser media involving the auroral transition of atomic oxygen and analogous systems are examined. A discussion of the atomic properties, collisional mechanisms, excitation processes, and collisionally induced radiative phenomena is given. Crossing phenomena play a particularly important role in governing the dynamics of the medium

  14. Ab initio study of the excited-state coupled electron-proton-transfer process in the 2-aminopyridine dimer

    International Nuclear Information System (INIS)

    Sobolewski, Andrzej L.; Domcke, Wolfgang

    2003-01-01

    The low-lying 1 ππ* excited states of the 2-aminopyridine dimer have been investigated with multi-reference ab initio methods (CASSCF and MRMP2). The 2-aminopyridine dimer can be considered as a mimetic model of Watson-Crick DNA base pairs. The reaction path and the energy profile for single proton transfer in the lowest 1 ππ* inter-monomer charge-transfer state have been obtained. A weakly avoided crossing of the 1 ππ* surface with the electronic ground-state surface has been found near the single-proton-transfer minimum of the 1 ππ* surface. From the splitting of the adiabatic surfaces at the avoided crossing, an internal-conversion lifetime of the excited state of <100 ps has been estimated. The potential relevance of these results for the rationalization of radiation-induced mutations and the photostability of the genetic code is briefly discussed

  15. Dynamics of the edge excitations in the FQH effects

    International Nuclear Information System (INIS)

    Wen, X.G.

    1994-01-01

    Fractional quantum Hall effects (FQHE) discovered by Tsui, Stormer and Gossard open a new era in theory of strongly correlated system. In the first time the authors have to completely abandon the theories based on the single-body picture and use an intrinsic many-body theory proposed by Laughlin and others to describe the FQHE. Due to the repulsive interaction, the strongly correlated FQH liquid is an incompressible state despite the first Landau level is only partially filled. All the bulk excitations in the FQH states have finite energy gaps. The FQH states and insulators are similar in the sense that both states have finite energy gap and short ranged electron propagators. Because of this similarity, it is puzzling that the FQH systems apparently have very different transport properties than ordinary insulators. Halperin first point out that the integral quantum Hall (IQH) states contain gapless edge excitations. Although the electronic states in the bulk are localized, the electronic states at the edge of the sample are extended. Therefore the nontrivial transport properties of the IQH states come from the gapless edge excitations. Such an edge transport picture has been supported by many experiments. One also found that the edge excitations in the IQH states are described by a chiral 1D Fermi liquid theory. Here, the authors review the dynamical theory of the edge excitations in the FQH effects

  16. Evidence for excited state intramolecular charge transfer in benzazole-based pseudo-stilbenes.

    Science.gov (United States)

    Santos, Fabiano da Silveira; Descalzo, Rodrigo Roceti; Gonçalves, Paulo Fernando Bruno; Benvenutti, Edilson Valmir; Rodembusch, Fabiano Severo

    2012-08-21

    Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.

  17. Charge-transfer and Mott-Hubbard Excitations in FeBo3: Fe K-edge resonant Inelastic x-ray scattering study

    International Nuclear Information System (INIS)

    Kim, J.; Shvydko, Y.

    2011-01-01

    Momentum-resolved resonant inelastic x-ray scattering (RIXS) spectroscopy has been carried out successfully at the Fe K-edge for the first time. The RIXS spectra of a FeBO 3 single crystal reveal a wealth of information on ∼ 1-10 eV electronic excitations. The IXS signal resonates when the incident photon energy approaches the pre-edge (1s - -3d) and the main-edge (1s - -4p) of the Fe K-edge absorption spectrum. The RIXS spectra measured at the pre-edge and the main-edge show quantitatively different dependences on the incident photon energy, momentum transfer, photon polarization, and temperature. We present a multielectron analysis of the Mott-Hubbard (MH) and charge transfer (CT) excitations, and calculate their energies. Electronic excitations observed in the pre-edge and main-edge RIXS spectra are interpreted as MH and CT excitations, respectively. We propose the electronic structure around the chemical potential in FeBO 3 based on the experimental data.

  18. The effect of the silver nanoparticles on the dynamics of singlet-singlet energy transfer of luminophores in thin films of polyvinyl alcohol

    International Nuclear Information System (INIS)

    Bryukhanov, V.V.; Samusev, I.G.; Slezhkin, V.A.; Tsibul'nikova, A.V.

    2014-01-01

    The effect of ablated silver nanoparticles (ANP) on the dynamics of non-radiative inductance-resonance energy transfer and phosphorescence in the donor-acceptor pair of molecules of eosin and methylene blue (MB) luminophores embedded in thin films of polyvinyl alcohol have been investigated. Increased fluorescence intensity of donor (eosin) and acceptor (MB) molecules, as well as a growth of the dipole-dipole transfer efficiency have been obtained under the resonant excitation of the silver ANP surface plasmons in the absorption band of the donor energy. The luminescence quantum yields and the fluorescence lifetimes have been measured. The energy transfer constants, degree of polarization and fluorescence anisotropy have been determined. (authors)

  19. Response analysis of the dynamic excitation of hen eggs

    Directory of Open Access Journals (Sweden)

    Libor Severa

    2007-01-01

    Full Text Available Commercially produced hen eggs have been tested by means of dynamic excitation of the egg-shells with following analysis of their response. The falling steel ball have been chosen as a exciting instrument and the laser vibrometer have been used as a measuring device for the egg response. The reproductibility of the experiments has been relatively high and the surface velocity has been found to be significantly dependent on the position around the meridian. Analysed frequency spectrum has shown the peak frequency and frequency history. Proposed numerical model has demonstrated reasonable agreement with experimental results and can be used as an effective tool in modelling of analogous or similar experiments.

  20. Electron transfer from electronic excited states to sub-vacuum electron traps in amorphous ice

    International Nuclear Information System (INIS)

    Vichnevetski, E.; Bass, A.D.; Sanche, L.

    2000-01-01

    We investigate the electron stimulated yield of electronically excited argon atoms (Ar * ) from monolayer quantities of Ar deposited onto thin films of amorphous ice. Two peaks of narrow width ( - electron-exciton complex into exciton states, by the transfer of an electron into a sub-vacuum electron state within the ice film. However, the 10.7 eV feature is shifted to lower energy since electron attachment to Ar occurs within small pores of amorphous ice. In this case, the excess electron is transferred into an electron trap below the conduction band of the ice layer

  1. [Electron transfer, ionization, and excitation in atomic collisions

    International Nuclear Information System (INIS)

    1992-01-01

    Fundamental processes of electron transfer, ionization, and excitation in ion-atom and ion-ion collisions are studied. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-ion core can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. At intermediate collision energies (e.g., proton energies for p-He + collisions on the order of 100 kilo-electron volts), many electronic states are strongly coupled during the collision, a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. At higher collision energies (million electron-volt energies) the coupling is weaker with, however, many more states being coupled together, so that high-order perturbation theory is essential

  2. Numerical optimization of piezolaminated beams under static and dynamic excitations

    Directory of Open Access Journals (Sweden)

    Rajan L. Wankhade

    2017-06-01

    Full Text Available Shape and vibration controls of smart structures in structural applications have gained much attraction due to their ability of actuation and sensing. The response of structure to bending, vibration, and buckling can be controlled by the use of this ability of a piezoelectric material. In the present work, the static and dynamic control of smart piezolaminated beams is presented. The optimal locations of piezoelectric patches are found out and then a detailed analysis is performed using finite element modeling considering the higher order shear deformation theory. In the first part, for an extension mode, the piezolaminated beam with stacking sequence PZT5/Al/PZT5 is considered. The length of the beam is 100 mm, whereas the thickness of an aluminum core is 16 mm and that of the piezo layer is of 1 mm. The PZT actuators are positioned with an identical poling direction along the thickness and are excited by a direct current voltage of 10 V. For the shear mode, the stacking sequence Al/PZT5/Al is adopted. The length of the beam is kept the same as the extension mechanism i.e. 100 mm, whereas the thickness of the aluminum core is 8 mm and that of the piezo layer is of 2 mm. The actuator is excited by a direct current voltage of 20 V. In the second part, the control of the piezolaminated beam with an optimal location of the actuator is investigated under a dynamic excitation. Electromechanical loading is considered in the finite element formulation for the analysis purpose. Results are provided for beams with different boundary conditions and loading for future references. Both the extension and shear actuation mechanisms are employed for the piezolaminated beam. These results may be used to identify the response of a beam under static and dynamic excitations. From the present work, the optimal location of a piezoelectric patch can be easily identified for the corresponding boundary condition of the beam.

  3. Nuclear spin and isospin excitations

    International Nuclear Information System (INIS)

    Osterfeld, F.

    1992-01-01

    A review is given of our present knowledge of collective spin-isospin excitations in nuclei. Most of this knowledge comes from intermediate-energy charge-exchange reactions and from inelastic electron- and proton-scattering experiments. The nuclear-spin dynamics is governed by the spin-isospin-dependent two-nucleon interaction in the medium. This interaction gives rise to collective spin modes such as the giant Gamow-Teller resonances. An interesting phenomenon is that the measured total Gamow-Teller transition strength in the resonance region is much less than a model-independent sum rule predicts. Two physically different mechanisms have been discussed to explain this so-called quenching of the total Gamow-Teller strength: coupling to subnuclear degrees of freedom in the form of Δ-isobar excitation and ordinary nuclear configuration mixing. Both detailed nuclear structure calculations and extensive analyses of the scattering data suggest that the nuclear configuration mixing effect is the more important quenching mechanism, although subnuclear degrees of freedom cannot be ruled out. The quenching phenomenon occurs for nuclear-spin excitations at low excitation energies (ω∼10--20 MeV) and small-momentum transfers (q≤0.5 fm -1 ). A completely opposite effect is anticipated in the high (ω,q)-transfer region (0≤ω≤500 MeV, 0.5≤q≤3 fm -1 ). The nuclear spin-isospin response might be enhanced due to the attractive pion field inside the nucleus. Charge-exchange reactions at GeV incident energies have been used to study the quasifree peak region and the Δ-resonance region. An interesting result of these experiments is that the Δ excitation in the nucleus is shifted downwards in energy relative to the Δ excitation of the free proton

  4. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.

    Science.gov (United States)

    Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern

    2018-04-17

    The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.

  5. Excitation functions for quasi-elastic transfer reactions induced with heavy ions in bismuth

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Maison, J.; Reilhac, L. de; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.

    1977-01-01

    The excitation functions for the production of 210 Bi, 210 Po, sup(207-211)At and 211 Rn through quasi-elastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ca, 56 Fe and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measurements of incident energies and cross sections were performed close to the reaction thresholds

  6. Dynamic Model of a Structure Carrying Stationary Humans and Assessment of its Response to Walking Excitation

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2007-01-01

    A flooring-system, e.g. a floor in a building, is excited dynamically when a person walks across the floor, and resonant excitation might bring structural vibrations to unacceptable levels. Stationary (non-moving) crowds of people might be present on the same floor and they will sense the floor...... vibrations, but they will also interact dynamically with the floor in a passive sense, thus altering the dynamic system excited to vibration by the walking person. Consequently, the vibration level of the floor is likely to depend on the presence and size of the stationary crowd. It is also known...... that different techniques (different parameters calculated from structural response time series) are proposed for assessing floor serviceability. The paper looks into the influence of the stationary crowd of people on the floor response to walking excitation and into the influence of the crowd on different...

  7. Ab initio study on electron excitation and electron transfer in tryptophan-tyrosine system

    International Nuclear Information System (INIS)

    Tong Jing; Li Xiangyuan

    2002-01-01

    In this article, ab initio calculation has been performed to evaluate the transition energy of electronic excitation in tryptophan and tyrosine by using semiempirical molecular orbital method AM1 and complete active space self-consistent field method. The solvent effect has been considered by means of the conductor-like screening model. After geometric optimizations of isolated tryptophan and tyrosine, and their corresponding radicals and cations, reaction heat of these electron transfer reactions have been obtained by the means of complete active space self-consistent field method. The transition energies from the ground state, respectively, to the lowest excited state and to the lowest triplet state of these two amino acids are also calculated and compared with the experimentally observed values. The ionization potential and electron affinity are also calculated for tryptophan and tyrosine employing Koopmans' theorem and ab initio calculation. Compared with the experimental measurements, the theoretical results are found satisfactory. Theoretical results give good explanations on the experimental phenomena that N 3 · can preferably oxide the side chain of tryptophan residue and then the electron transfer from tyrosine residue to tryptophan residue follows in peptides involving tryptophan and tyrosine

  8. On the dynamics of excited atoms in time dependent electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Foerre, Morten

    2004-06-01

    This thesis is composed of seven scientific publications written in the period 2001-2004. The focus has been set on Rydberg atoms of hydrogen and lithium in relatively weak electromagnetic fields. Such atoms have been studied extensively during many years, both experimentally and theoretically, They are relatively easy to handle in the laboratory. Their willingness to react to conventional field sources and their long lifetimes, are two reasons for this. Much new insight into fundamental quantum mechanics has been extracted from such studies. By exciting a non-hydrogenic ground state atom or molecule into a highly excited state, many properties of atomic hydrogen are adopted. In many cases the dynamics of such systems can be accurately described by the hydrogenic theory, or alternatively by some slightly modified version like quantum defect theory. In such theories the Rydberg electron(s) of the non-hydrogenic Rydberg system is treated like it is confined in a modified Coulomb potential, which arises from the non-hydrogenic core. defined by the non-excited electrons and the nucleus. The more heavily bound core electrons are less influenced from external perturbations than the excited electrons, giving rise to the so-called frozen-core approximation. where the total effect of the core electrons is put into a modified Coulomb potential. A major part of this thesis has been allocated to the study of core effects in highly excited states of lithium. In collaboration with time experimental group of Erik Horsdal-Pedersen at Aarhus University, we have considered several hydrogenic and non-hydrogenic aspects of such states, when exposed to weak slowly varying electromagnetic fields. The dynamics was restricted to one principal shell (intrashell). Two general features were observed, either the hydrogenic theory applied or alternatively, in case of massive deviation, the dynamics was accurately described by quantum defect theory, clearly demonstrating the usefulness of such

  9. On the dynamics of excited atoms in time dependent electromagnetic fields

    International Nuclear Information System (INIS)

    Foerre, Morten

    2004-06-01

    This thesis is composed of seven scientific publications written in the period 2001-2004. The focus has been set on Rydberg atoms of hydrogen and lithium in relatively weak electromagnetic fields. Such atoms have been studied extensively during many years, both experimentally and theoretically, They are relatively easy to handle in the laboratory. Their willingness to react to conventional field sources and their long lifetimes, are two reasons for this. Much new insight into fundamental quantum mechanics has been extracted from such studies. By exciting a non-hydrogenic ground state atom or molecule into a highly excited state, many properties of atomic hydrogen are adopted. In many cases the dynamics of such systems can be accurately described by the hydrogenic theory, or alternatively by some slightly modified version like quantum defect theory. In such theories the Rydberg electron(s) of the non-hydrogenic Rydberg system is treated like it is confined in a modified Coulomb potential, which arises from the non-hydrogenic core. defined by the non-excited electrons and the nucleus. The more heavily bound core electrons are less influenced from external perturbations than the excited electrons, giving rise to the so-called frozen-core approximation. where the total effect of the core electrons is put into a modified Coulomb potential. A major part of this thesis has been allocated to the study of core effects in highly excited states of lithium. In collaboration with time experimental group of Erik Horsdal-Pedersen at Aarhus University, we have considered several hydrogenic and non-hydrogenic aspects of such states, when exposed to weak slowly varying electromagnetic fields. The dynamics was restricted to one principal shell (intrashell). Two general features were observed, either the hydrogenic theory applied or alternatively, in case of massive deviation, the dynamics was accurately described by quantum defect theory, clearly demonstrating the usefulness of such

  10. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    Science.gov (United States)

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  11. Excited-state kinetics of the carotenoid S//1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution Efficient Car S//1 yields Chl electronic energy transfer via hot S//1 states?

    CERN Document Server

    Walla, P J; Linden, Patricia A; Ohta, Kaoru

    2002-01-01

    The excited-state dynamics of the carotenoids (Car) in light- harvesting complex II (LHC II) of Chlamydomonas reinhardtii were studied by transient absorption measurements. The decay of the Car S //1 population ranges from similar to 200 fs to over 7 ps, depending on the excitation and detection wavelengths. In contrast, a 200 fs Car S//1 yields Chlorophyll (Chl) energy transfer component was the dominant time constant for our earlier two-photon fluorescence up- conversion measurements (Walla, P.J. ; et al. J. Phys. Chem. B 2000, 104, 4799-4806). We also present the two-photon excitation (TPE) spectra of lutein and beta-carotene in solution and compare them with the TPE spectrum of LHC II. The TPE-spectrum of LHC II has an onset much further to the blue and a width that is narrower than expected from comparison to the S//1 fluorescence of lutein and beta-carotene in solution. Different environments may affect the shape of the S//1 spectrum significantly. To explain the blue shift of the TPE spectrum and the d...

  12. Photo- and radiation chemical studies of intermediates involved in excited-state electron-transfer reactions

    International Nuclear Information System (INIS)

    Hoffman, M.Z.

    1985-01-01

    Excited-state inter- and intramolecular electron-transfer reactions lie at the heart of the most photochemical solar energy conversion schemes. The authors research, which has utilized the techniques of continuous and pulsed photolysis and radiolysis, has focused on three general aspects of these reactions involving transition metal coordination complexes and electron donor-acceptor complexes: i) the effect of solution medium on the properties and quenching of the excited states; ii) the control of the quantum yields of formation of redox products; iii) the mechanism by which reduced species interact with water to yield H 2 homogeneously and heterogeneously. EDTA is among the most popular sacrificial electron donors used in model systems. Its role is to scavenge the oxidized form of the photosensitizer in order to prevent its rapid reaction with the reduced form of the electron relay species that results from the electron-transfer quenching of the excited photosensitizer. In systems involving MV 2+ , the radicals resulting from the oxidation of EDTA can eventually lead to the generation of a second equivalent of MV + ; the reducing agent is believed to be a radical localized on the carbon atom alpha to the carboxylate group. The reaction of radiolytically-generated OH/H with EDTA produces this radical directly via H-abstraction or indirectly via deprotonation of the carbon atom adjacent to the nitrogen radical site in the oxidized amine moiety; it reduces MV 2+ with rate constants of 2.8 x 10 9 , 7.6 x 10 9 , and 8.5 x 10 6 M -1 s -1 at pH 12.5, 8.3, and 4.7, respectively. Degradative decarboxylation of EDTA-radicals and their back electron-transfer reactions are enhanced in acidic solution causing the yield of MV + to be severely diminished

  13. Unusual spiral wave dynamics in the Kessler-Levine model of an excitable medium.

    Science.gov (United States)

    Oikawa, N; Bodenschatz, E; Zykov, V S

    2015-05-01

    The Kessler-Levine model is a two-component reaction-diffusion system that describes spatiotemporal dynamics of the messenger molecules in a cell-to-cell signaling process during the aggregation of social amoeba cells. An excitation wave arising in the model has a phase wave at the wave back, which simply follows the wave front after a fixed time interval with the same propagation velocity. Generally speaking, the medium excitability and the refractoriness are two important factors which determine the spiral wave dynamics in any excitable media. The model allows us to separate these two factors relatively easily since the medium refractoriness can be changed independently of the medium excitability. For rigidly rotating waves, the universal relationship has been established by using a modified free-boundary approach, which assumes that the front and the back of a propagating wave are thin in comparison to the wave plateau. By taking a finite thickness of the domain boundary into consideration, the validity of the proposed excitability measure has been essentially improved. A novel method of numerical simulation to suppress the spiral wave instabilities is introduced. The trajectories of the spiral tip observed for a long refractory period have been investigated under a systematic variation of the medium refractoriness.

  14. Organization of excitable dynamics in hierarchical biological networks.

    Directory of Open Access Journals (Sweden)

    Mark Müller-Linow

    Full Text Available This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.

  15. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    International Nuclear Information System (INIS)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH 3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam

  16. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.; Patel, Niral M.; Roberts, Sean T.; Allen, Kathryn; Djurovich, Peter I.; Bradforth, Stephen E.; Thompson, Mark E.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  17. Modeling the cooperative energy transfer dynamics of quantum cutting for solar cells

    NARCIS (Netherlands)

    Rabouw, Freddy T.; Meijerink, Andries

    2015-01-01

    Cooperative energy transfer (ET) is a quantum cutting (or downconversion) process where a luminescent center splits its excited state energy in two by simultaneous transfer to two nearby acceptor centers, thus yielding two low-energy photons for each high-energy photon absorbed. It has the potential

  18. What's new in the proton transfer reaction from pyranine to water? A femtosecond study of the proton transfer dynamics

    International Nuclear Information System (INIS)

    Prayer, C.; Gustavsson, T.; Tran-Thi, T.-H.

    1996-01-01

    The proton transfer from excited pyranine to water is studied by the femtosecond fluorescence upconversion technique. It is shown for the first time that the proton transfer reaction in water proceeds by three successive steps: the solvent cage relaxation, the specific solute-solvent hydrogen-bond formation and finally the ion pair dissociation/diffusion

  19. The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. II. Homo-arrays of LH2 complexes reconstituted into phospholipid model membranes.

    Science.gov (United States)

    Pflock, Tobias J; Oellerich, Silke; Krapf, Lisa; Southall, June; Cogdell, Richard J; Ullmann, G Matthias; Köhler, Jürgen

    2011-07-21

    We performed time-resolved spectroscopy on homoarrays of LH2 complexes from the photosynthetic purple bacterium Rhodopseudomonas acidophila. Variations of the fluorescence transients were monitored as a function of the excitation fluence and the repetition rate of the excitation. These parameters are directly related to the excitation density within the array and to the number of LH2 complexes that still carry a triplet state prior to the next excitation. Comparison of the experimental observations with results from dynamic Monte Carlo simulations for a model cluster of LH2 complexes yields qualitative agreement without the need for any free parameter and reveals the mutual relationship between energy transfer and annihilation processes.

  20. Quenching reactions of electronically excited atoms

    International Nuclear Information System (INIS)

    Setser, D.W.

    2001-01-01

    The two-body, thermal quenching reactions of electronically excited atoms are reviewed using excited states of Ar, Kr, and Xe atoms as examples. State-specific interstate relaxation and excitation-transfer reactions with atomic colliders are discussed first. These results then are used to discuss quenching reactions of excited-state atoms with diatomic and polyatomic molecules, the latter have large cross sections, and the reactions can proceed by excitation transfer and by reactive quenching. Excited states of molecules are not considered; however, a table of quenching rate constants is given for six excited-state molecules in an appendix

  1. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2017-10-01

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  2. Detection of Damage in a Lattice Mast Excited by Wind by Dynamic Measurements

    DEFF Research Database (Denmark)

    Pedersen, Lars; Brincker, Rune

    2007-01-01

    The paper illustrates the effectiveness of monitoring the dynamic response of a system for detection of damage herein using an output-only assessment scheme. The system is a 20 m height steel lattice mass excited by wind and the mast is instrumented with accelerometers picking up dynamic response...

  3. Environment-sensitive quinolone demonstrating long-lived fluorescence and unusually slow excited-state intramolecular proton transfer kinetics

    Czech Academy of Sciences Publication Activity Database

    Zamotaiev, O. M.; Shvadchak, Volodymyr; Sych, T. P.; Melnychuk, N. A.; Yushchenko, Dmytro A.; Mely, Y.; Pivovarenko, V. G.

    2016-01-01

    Roč. 4, č. 3 (2016), č. článku 034004. ISSN 2050-6120 Institutional support: RVO:61388963 Keywords : quinolone * fluorescent probes * local polarity * hydration * excited-state intramolecular proton transfer * kinetics Subject RIV: CC - Organic Chemistry Impact factor: 2.656, year: 2016

  4. Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.

    Science.gov (United States)

    Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian

    2015-07-01

    For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.

  5. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  6. Low-energy charge transfer excitations in NiO

    International Nuclear Information System (INIS)

    Sokolov, V I; Yermakov, A Ye; Uimin, M A; Gruzdev, N B; Pustovarov, V A; Churmanov, V N; Ivanov, V Yu; Sokolov, P S; Baranov, A N; Moskvin, A S

    2012-01-01

    Comparative analysis of photoluminescence (PL) and photoluminescence excitation (PLE) spectra of NiO poly- and nanocrystals in the spectral range 2-5.5 eV reveals two PLE bands peaked near 3.7 and 4.6 eV with a dramatic rise in the low-temperature PLE spectral weight of the 3.7 eV PLE band in the nanocrystalline NiO as compared with its polycrystalline counterpart. In frames of a cluster model approach we assign the 3.7 eV PLE band to the low-energy bulk-forbidden p-d (t 1g (π)-e g ) charge transfer (CT) transition which becomes the allowed one in the nanocrystalline state while the 4.6 eV PLE band is related to a bulk allowed d-d (e g -e g ) CT transition scarcely susceptible to the nanocrystallization. The PLE spectroscopy of the nanocrystalline materials appears to be a novel informative technique for inspection of different CT transitions.

  7. Charge transfer in low-energy collisions of H with He+ and H+ with He in excited states

    Science.gov (United States)

    Loreau, J.; Ryabchenko, S.; Muñoz Burgos, J. M.; Vaeck, N.

    2018-04-01

    The charge transfer process in collisions of excited (n = 2, 3) hydrogen atoms with He+ and in collisions of excited helium atoms with H+ is studied theoretically. A combination of a fully quantum-mechanical method and a semi-classical approach is employed to calculate the charge-exchange cross sections at collision energies from 0.1 eV u‑1 up to 1 keV u‑1. These methods are based on accurate ab initio potential energy curves and non-adiabatic couplings for the molecular ion HeH+. Charge transfer can occur either in singlet or in triplet states, and the differences between the singlet and triplet spin manifolds are discussed. The dependence of the cross section on the quantum numbers n and l of the initial state is demonstrated. The isotope effect on the charge transfer cross sections, arising at low collision energy when H is substituted by D or T, is investigated. Rate coefficients are calculated for all isotopes up to 106 K. Finally, the impact of the present calculations on models of laboratory plasmas is discussed.

  8. Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Fuciman, M.; Hříbek, P.; Polívka, Tomáš

    2009-01-01

    Roč. 11, - (2009), s. 8795-8703 ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : excited-state dynamics * carbonyl carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.116, year: 2009

  9. Three-dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations

    International Nuclear Information System (INIS)

    Maheshwari, B.K.; Truman, K.Z.; El Naggar, M.H.; Gould, P.L.

    2004-01-01

    The effects of material nonlinearity of soil and separation at the soil-pile interface on the dynamic behaviour of a single pile and pile groups are investigated. An advanced plasticity-based soil model, hierarchical single surface (HiSS), is incorporated in the finite element formulation. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are performed for seismic excitation and for the load applied on the pile cap. For seismic analysis, both harmonic and transient excitations are considered. For loading on the pile cap, dynamic stiffness of the soil-pile system is derived and the effect of nonlinearity is investigated. The effects of spacing between piles are investigated, and it was found that the effect of soil nonlinearity on the seismic response is very much dependent on the frequency of excitation. For the loading on a pile cap, the nonlinearity increases the response for most of the frequencies of excitation while decreasing the dynamic stiffness of the soil-pile system. (author)

  10. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    International Nuclear Information System (INIS)

    Ouyang, Bing; Xue, Jia-Dan; Zheng, Xuming; Fang, Wei-Hai

    2014-01-01

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S 2 (A′), S 6 (A′), and S 7 (A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S 2 (A′), S 6 (A′), and S 7 (A′) excited states were very different. The conical intersection point CI(S 2 /S 1 ) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S 2 (A′) state: the radiative S 2,min → S 0 transition and the nonradiative S 2 → S 1 internal conversion via CI(S 2 /S 1 ). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S 1 /T 1 ) in the excited state decay dynamics of PITC is evaluated

  11. Strategy of ring-shaped aggregates in excitation energy transfer for removing disorder-induced shielding

    International Nuclear Information System (INIS)

    Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime

    2013-01-01

    Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy. (paper)

  12. Strategy of ring-shaped aggregates in excitation energy transfer for removing disorder-induced shielding

    Science.gov (United States)

    Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime

    2013-06-01

    Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy.

  13. Elementary excitations in single-chain magnets

    Science.gov (United States)

    Lutz, Philipp; Aguilà, David; Mondal, Abhishake; Pinkowicz, Dawid; Marx, Raphael; Neugebauer, Petr; Fâk, Björn; Ollivier, Jacques; Clérac, Rodolphe; van Slageren, Joris

    2017-09-01

    Single-chain magnets (SCMs) are one-dimensional coordination polymers or spin chains that display slow relaxation of the magnetization. Typically their static magnetic properties are described by the Heisenberg model, while the description of their dynamic magnetic properties is based on an Ising-like model. The types of excitations predicted by these models (collective vs localized) are quite different. Therefore we probed the nature of the elementary excitations for two SCMs abbreviated Mn2Ni and Mn2Fe , as well as a mononuclear derivative of the Mn2Fe chain, by means of high-frequency electron paramagnetic resonance spectroscopy (HFEPR) and inelastic neutron scattering (INS). We find that the HFEPR spectra of the chains are clearly distinct from those of the monomer. The momentum transfer dependence of the INS intensity did not reveal significant dispersion, indicating an essentially localized nature of the excitations. At the lowest temperatures these are modified by the occurrence of short-range correlations.

  14. Dissociation dynamics of anionic and excited neutral fragments of gaseous SiCl4 following Cl 2p and Si 2p core-level excitations

    International Nuclear Information System (INIS)

    Chen, J M; Lu, K T; Lee, J M; Chou, T L; Chen, H C; Chen, S A; Haw, S C; Chen, T H

    2008-01-01

    The state-selective dissociation dynamics for anionic and excited neutral fragments of gaseous SiCl 4 following Cl 2p and Si 2p core-level excitations were characterized by combining measurements of the photon-induced anionic dissociation, x-ray absorption and UV/visible dispersed fluorescence. The transitions of core electrons to high Rydberg states/doubly excited states in the vicinity of both Si 2p and Cl 2p ionization thresholds of gaseous SiCl 4 lead to a remarkably enhanced production of anionic, Si - and Cl - , fragments and excited neutral atomic, Si*, fragments. This enhancement via core-level excitation near the ionization threshold of gaseous SiCl 4 is explained in terms of the contributions from the Auger decay of doubly excited states, shake-modified resonant Auger decay, or/and post-collision interaction. These complementary results provide insight into the state-selective anionic and excited neutral fragmentation of gaseous molecules via core-level excitation.

  15. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents

    International Nuclear Information System (INIS)

    Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2009-01-01

    Roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1 -state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).

  16. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents

    Science.gov (United States)

    Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2009-03-01

    Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).

  17. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Zirak, P. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetstrasse 31, D-93053 Regensburg (Germany); Mathes, T.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany)

    2009-03-30

    Roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S{sub 1}-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).

  18. Mass transfer dynamics in double degenerate binary systems

    International Nuclear Information System (INIS)

    Dan, M; Rosswog, S; Brueggen, M

    2009-01-01

    We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.

  19. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    Science.gov (United States)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  20. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings

    Energy Technology Data Exchange (ETDEWEB)

    Pavanello, Michele [Department of Chemistry, Rutgers University, Newark, New Jersey 07102-1811 (United States); Van Voorhis, Troy [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Visscher, Lucas [Amsterdam Center for Multiscale Modeling, VU University, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Neugebauer, Johannes [Theoretische Organische Chemie, Organisch-Chemisches Institut der Westfaelischen Wilhelms-Universitaet Muenster, Corrensstrasse 40, 48149 Muenster (Germany)

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.

  1. A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair.

    NARCIS (Netherlands)

    van Brederode, M.E.; Jones, M.R.; van Mourik, F.; van Stokkum, I.H.M.; van Grondelle, R.

    1997-01-01

    It is generally accepted that electron transfer in bacterial photosynthesis is driven by the first singlet excited state of a special pair of bacteriochlorophylls (P*). We have examined the first steps of electron transfer in a mutant of the Rhodobacter sphaeroides reaction center in which charge

  2. A new pathway for transmembrane electron transfer in photosyntetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair.

    NARCIS (Netherlands)

    van Brederode, M.E.; Jones, M.R.; van Mourik, F.; van Stokkum, I.H.M.; van Grondelle, R.

    1997-01-01

    It is generally accepted that electron transfer in bacterial photosynthesis is driven by the first singlet excited state of a special pair of bacteriochlorophylls (P*). We have examined the first steps of electron transfer in a mutant of the Rhodobacter sphaeroides reaction center in which charge

  3. Classical/quantum correspondence in state selective charge transfer and excitation reactions involving highly charged ions and hydrogen

    International Nuclear Information System (INIS)

    Purkait, M

    2009-01-01

    State selective charge transfer and excitation cross sections for collisions of Ne q+ (q = 1-10) with atomic hydrogen are calculated within the framework of Classical Trajectory Monte Carlo (CTMC) method and Boundary Corrected Continuum Intermediate State (BCCIS) approximation.

  4. Charge transfer dynamics from adsorbates to surfaces with single active electron and configuration interaction based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Raghunathan, E-mail: r.ramakrishnan@unibas.ch [Institute of Physical Chemistry, National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Nest, Mathias [Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching (Germany)

    2015-01-13

    Highlights: • We model electron dynamics across cyano alkanethiolates attached to gold cluster. • We present electron transfer time scales from TD-DFT and TD-CI based simulations. • Both DFT and CI methods qualitatively predict the trend in time scales. • TD-CI predicts the experimental relative time scale very accurately. - Abstract: We employ wavepacket simulations based on many-body time-dependent configuration interaction (TD-CI), and single active electron theories, to predict the ultrafast molecule/metal electron transfer time scales, in cyano alkanethiolates bonded to model gold clusters. The initial states represent two excited states where a valence electron is promoted to one of the two virtual π{sup ∗} molecular orbitals localized on the cyanide fragment. The ratio of the two time scales indicate the efficiency of one charge transfer channel over the other. In both our one-and many-electron simulations, this ratio agree qualitatively with each other as well as with the previously reported experimental time scales (Blobner et al., 2012), measured for a macroscopic metal surface. We study the effect of cluster size and the description of electron correlation on the charge transfer process.

  5. Ultrafast single-molecule photonics: Excited state dynamics in coherently coupled complexes

    International Nuclear Information System (INIS)

    Hernando, Jordi; Hoogenboom, Jacob; Dijk, Erik van; Garcia-Parajo, Maria; Hulst, Niek F. van

    2008-01-01

    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. The ultrafast fs approach gives direct information on the initial exciton dynamics after excitation. The lifetime data show superradiance, a direct measure for the extent of the coherent coupling and static disorder. The spectra finally reveal the role of exciton-phonon coupling. At the single-molecule level a wide range of exciton delocalization lengths and energy redistribution times is revealed

  6. Ultrafast single-molecule photonics: Excited state dynamics in coherently coupled complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, Jordi [Dept. de Quimica, Universitat Autonoma Barcelona, 08193 Cerdanyola del Valles (Spain); Hoogenboom, Jacob [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain); Dijk, Erik van [Applied Optics Group, MESA Institute for Nanotechnology, University of Twente, 7500AE Enschede (Netherlands); Garcia-Parajo, Maria [IBEC-Institute of BioEngineering of Catalunya, 08028 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08015 Barcelona (Spain); Hulst, Niek F. van [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain) and ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08015 Barcelona (Spain)], E-mail: Niek.vanHulst@ICFO.es

    2008-05-15

    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. The ultrafast fs approach gives direct information on the initial exciton dynamics after excitation. The lifetime data show superradiance, a direct measure for the extent of the coherent coupling and static disorder. The spectra finally reveal the role of exciton-phonon coupling. At the single-molecule level a wide range of exciton delocalization lengths and energy redistribution times is revealed.

  7. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu; Aly, Shawkat Mohammede; Usman, Anwar; Parida, Manas R.; Del Gobbo, Silvano; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  8. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  9. Environment-assisted Quantum Critical Effect for Excitation Energy Transfer in a LH2-type Trimer

    Science.gov (United States)

    Xu, Lan; Xu, Bo

    2015-10-01

    In this article, we are investigating excitation energy transfer (EET) in a basic unit cell of light-harvesting complex II (LH2), named a LH2-type trimer. Calculation of energy transfer efficiency (ETE) in the framework of non-Markovian environment is also implemented. With these achievements, we theoretically predict the environment-assisted quantum critical effect, where ETE exhibits a sudden change at the critical point of quantum phase transition (QPT) for the LH2-type trimer. It is found that highly efficient EET with nearly unit efficiency may occur in the vicinity of the critical point of QPT.

  10. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał; Kijak, Michał; Piwonski, Hubert Marek; Herbich, Jerzy; Waluk, Jacek

    2017-01-01

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  11. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał

    2017-02-03

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  12. Dynamic Stiffness Transfer Function of an Electromechanical Actuator Using System Identification

    Science.gov (United States)

    Kim, Sang Hwa; Tahk, Min-Jea

    2018-04-01

    In the aeroelastic analysis of flight vehicles with electromechanical actuators (EMAs), an accurate prediction of flutter requires dynamic stiffness characteristics of the EMA. The dynamic stiffness transfer function of the EMA with brushless direct current (BLDC) motor can be obtained by conducting complicated mathematical calculations of control algorithms and mechanical/electrical nonlinearities using linearization techniques. Thus, system identification approaches using experimental data, as an alternative, have considerable advantages. However, the test setup for system identification is expensive and complex, and experimental procedures for data collection are time-consuming tasks. To obtain the dynamic stiffness transfer function, this paper proposes a linear system identification method that uses information obtained from a reliable dynamic stiffness model with a control algorithm and nonlinearities. The results of this study show that the system identification procedure is compact, and the transfer function is able to describe the dynamic stiffness characteristics of the EMA. In addition, to verify the validity of the system identification method, the simulation results of the dynamic stiffness transfer function and the dynamic stiffness model were compared with the experimental data for various external loads.

  13. Mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon-tetrachloride mixtures II: excited state hydrogen bonding structure and dynamics, infrared emission spectrum, and excited state lifetime.

    Science.gov (United States)

    Kwac, Kijeong; Geva, Eitan

    2012-03-08

    We present a mixed quantum-classical molecular dynamics study of the hydrogen-bonding structure and dynamics of a vibrationally excited hydroxyl stretch in methanol/carbon-tetrachloride mixtures. The adiabatic Hamiltonian of the quantum-mechanical hydroxyl is diagonalized on-the-fly to obtain the ground and first-excited adiabatic energy levels and wave functions which depend parametrically on the instantaneous configuration of the classical degrees of freedom. The dynamics of the classical degrees of freedom are determined by Hellmann-Feynman forces obtained by taking the expectation value of the force with respect to the ground or excited vibrational wave functions. Polarizable force fields are used which were previously shown to reproduce the experimental infrared absorption spectrum rather well, for different isotopomers and over a wide composition range [Kwac, K.; Geva, E. J. Phys. Chem. B 2011, 115, 9184]. We show that the agreement of the absorption spectra with experiment can be further improved by accounting for the dependence of the dipole moment derivatives on the configuration of the classical degrees of freedom. We find that the propensity of a methanol molecule to form hydrogen bonds increases upon photoexcitation of its hydroxyl stretch, thereby leading to a sizable red-shift of the corresponding emission spectrum relative to the absorption spectrum. Treating the relaxation from the first excited to the ground state as a nonadiabatic process, and calculating its rate within the framework of Fermi's golden rule and the harmonic-Schofield quantum correction factor, we were able to predict a lifetime which is of the same order of magnitude as the experimental value. The experimental dependence of the lifetime on the transition frequency is also reproduced. Nonlinear mapping relations between the hydroxyl transition frequency and bond length in the excited state and the electric field along the hydroxyl bond axis are established. These mapping relations

  14. Role of methylene spacer in the excitation energy transfer in europium 1- and 2- naphthylcarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, K. [V.A. Kotelnikov Institute of Radioengineering and Electronics of RAS, 1 Vvedenskii sq., Fryazino Moscow reg. 141190 (Russian Federation); Tsaryuk, V., E-mail: vit225@ire216.msk.s [V.A. Kotelnikov Institute of Radioengineering and Electronics of RAS, 1 Vvedenskii sq., Fryazino Moscow reg. 141190 (Russian Federation); Kudryashova, V.; Pekareva, I. [V.A. Kotelnikov Institute of Radioengineering and Electronics of RAS, 1 Vvedenskii sq., Fryazino Moscow reg. 141190 (Russian Federation); Sokolnicki, J. [Faculty of Chemistry, University of WrocLaw, 14 F. Joliot-Curie str., WrocLaw 50-383 (Poland); Yakovlev, Yu. [V.A. Kotelnikov Institute of Radioengineering and Electronics of RAS, 1 Vvedenskii sq., Fryazino Moscow reg. 141190 (Russian Federation)

    2010-08-15

    A series of compounds Ln(RCOO){sub 3}.Phen (Ln=Eu, Gd, Tb; RCOO{sup -}-1- and 2-naphthoate, 1- and 2-naphthylacetate, 1- and 2-naphthoxyacetate anions, Phen-1,10-phenanthroline) was investigated by methods of optical spectroscopy. Compounds of composition Ln(RCOO){sub 3}.nH{sub 2}O with the same carboxylate ligands are also considered. Results of studies of the effects of methylene spacer decoupling the {pi}-{pi}- or p-{pi}-conjugation in the naphthylcarboxylate ligand on the structure of Eu{sup 3+} coordination centre, on the lifetime of {sup 5}D{sub 0} (Eu{sup 3+}) state, and on processes of the excitation energy transfer to Eu{sup 3+} or Tb{sup 3+} ions are presented. Introduction of the methylene bridge in the ligand weakens the influence of the steric hindrances in forming of a crystal lattice and results in lowering the distortion of the Eu{sup 3+} luminescence centre, and in elongation of the observed {sup 5}D{sub 0} lifetime {tau}{sub obs}. The latter is caused by decrease in contribution of the radiative processes rate 1/{tau}{sub r}. This is confirmed by the correlation between the lifetimes {tau}{sub obs} and the quantities '{tau}{sub r}.const' inversely proportional to the total integral intensities of Eu(RCOO){sub 3}.Phen luminescence spectra. The methylene spacer performs a role of regulator of sensitization of the Ln{sup 3+} luminescence efficiency by means of an influence on mutual location of lowest triplet states of the ligands, the ligand-metal charge transfer (LMCT) states, and the emitting states of Ln{sup 3+} ions. The lowest triplet state in lanthanide naphthylcarboxylate adducts with Phen is related to carboxylate anion. A presence of the methylene spacer in naphthylcarboxylate ligand increases the triplet state energy. At the same time, the energy of 'carboxylic group-Eu{sup 3+} ion' charge transfer states falls, which can promote the degradation of excitation energy. In naphthylcarboxylates investigated a range of the

  15. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, T.R. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  16. Multifrequency Excitation Method for Rapid and Accurate Dynamic Test of Micromachined Gyroscope Chips

    Directory of Open Access Journals (Sweden)

    Yan Deng

    2014-10-01

    Full Text Available A novel multifrequency excitation (MFE method is proposed to realize rapid and accurate dynamic testing of micromachined gyroscope chips. Compared with the traditional sweep-frequency excitation (SFE method, the computational time for testing one chip under four modes at a 1-Hz frequency resolution and 600-Hz bandwidth was dramatically reduced from 10 min to 6 s. A multifrequency signal with an equal amplitude and initial linear-phase-difference distribution was generated to ensure test repeatability and accuracy. The current test system based on LabVIEW using the SFE method was modified to use the MFE method without any hardware changes. The experimental results verified that the MFE method can be an ideal solution for large-scale dynamic testing of gyroscope chips and gyroscopes.

  17. Advances in electron transfer chemistry

    CERN Document Server

    Mariano, Patrick S

    1995-01-01

    Advances in Electron Transfer Chemistry, Volume 4 presents the reaction mechanisms involving the movement of single electrons. This book discusses the electron transfer reactions in organic, biochemical, organometallic, and excited state systems. Organized into four chapters, this volume begins with an overview of the photochemical behavior of two classes of sulfonium salt derivatives. This text then examines the parameters that control the efficiencies for radical ion pair formation. Other chapters consider the progress in the development of parameters that control the dynamics and reaction p

  18. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  19. Energy transfer in isolated LHC II studied by femtosecond pump-probe technique

    CERN Document Server

    Yang Yi; Liu Yuan; Liu Wei Min; Zhu Rong Yi; Qian Shi Xiong; Xu Chun He

    2003-01-01

    Excitation energy transfer in the isolated light-harvesting chlorophyll (Chl)-a/b protein complex of photosystem II (LHC II) was studied by the one-colour pump-probe technique with femtosecond time resolution. After exciting Chl-b by 638nm beam, the dynamic behaviour shows that the ultrafast energy transfer from Chl-b at positions of B2, B3, and B5 to the corresponding Chl-a molecules in monomeric subunit of LHC II is in the time scale of 230fs. While with the excitation of Chl-a at 678nm, the energy transfer between excitons of Chl-a molecules has the lifetime of about 370 fs, and two other slow decay components are due to the energy transfer between different Chl-a molecules in a monomeric subunit of LHC II or in different subunits, or due to change of molecular conformation. (20 refs).

  20. Traceable calibration and demonstration of a portable dynamic force transfer standard

    Science.gov (United States)

    Vlajic, Nicholas; Chijioke, Ako

    2017-08-01

    In general, the dynamic sensitivity of a force transducer depends upon the mechanical system in which it is used. This dependence serves as motivation to develop a dynamic force transfer standard, which can be used to calibrate an application transducer in situ. In this work, we SI-traceably calibrate a hand-held force transducer, namely an impact hammer, by using a mass suspended from a thin line which is cut to produce a known dynamic force in the form of a step function. We show that this instrument is a promising candidate as a transfer standard, since its dynamic response has small variance between different users. This calibrated transfer standard is then used to calibrate a secondary force transducer in an example application setting. The combined standard uncertainty (k  =  2) in the calibration of the transfer standard was determined to be 2.1% or less, up to a bandwidth of 5 kHz. The combined standard uncertainty (k  =  2) in the performed transfer calibration was less than 4%, up to 3 kHz. An advantage of the transfer calibration framework presented here, is that the transfer standard can be used to transfer SI-traceable calibrations without the use of any SI-traceable voltage metrology instrumentation.

  1. Theory of spin and lattice wave dynamics excited by focused laser pulses

    Science.gov (United States)

    Shen, Ka; Bauer, Gerrit E. W.

    2018-06-01

    We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.

  2. Imaging Magnetic Vortices Dynamics Using Lorentz Electron Microscopy with GHz Excitations

    Science.gov (United States)

    Zhu, Yimei

    2015-03-01

    Magnetic vortices in thin films are naturally formed spiral spin configurations with a core polarization pointing out of the film plane. They typically represent ground states with high structural and thermal stability as well as four different chirality-polarity combinations, offering great promise in the development of spin-based devices. For applications to spin oscillators, non-volatile memory and logic devices, the fundamental understanding and precise control of vortex excitations and dynamic switching behavior are essential. The compact dimensionality and fast spin dynamics set grand challenges for direct imaging technologies. Recently, we have developed a unique method to directly visualize the dynamic magnetic vortex motion using advanced Lorentz electron microscopy combined with GHz electronic excitations. It enables us to map the orbit of a magnetic vortex core in a permalloy square with modality. Our approach is complementary to X-ray magnetic circular dichroism and is of general interest to the magnetism community as it paves a way to study fundamental spin phenomena with unprecedented resolution and accuracy. Collaborations with S.D. Pollard, J.F. Pulecio, D.A. Arena and K.S. Buchanan are acknowledged. Work supported by DOE-BES, Material Sciences and Engineering Division, under Contract No. DE-AC02-98CH10886.

  3. Is There Excitation Energy Transfer between Different Layers of Stacked Photosystem-II-Containing Thylakoid Membranes?

    Science.gov (United States)

    Farooq, Shazia; Chmeliov, Jevgenij; Trinkunas, Gediminas; Valkunas, Leonas; van Amerongen, Herbert

    2016-04-07

    We have compared picosecond fluorescence decay kinetics for stacked and unstacked photosystem II membranes in order to evaluate the efficiency of excitation energy transfer between the neighboring layers. The measured kinetics were analyzed in terms of a recently developed fluctuating antenna model that provides information about the dimensionality of the studied system. Independently of the stacking state, all preparations exhibited virtually the same value of the apparent dimensionality, d = 1.6. Thus, we conclude that membrane stacking does not affect the efficiency of the delivery of excitation energy toward the reaction centers but ensures a more compact organization of the thylakoid membranes within the chloroplast and separation of photosystems I and II.

  4. Excited-state dynamics of acetylene excited to individual rotational level of the V04K01 subband

    Science.gov (United States)

    Makarov, Vladimir I.; Kochubei, Sergei A.; Khmelinskii, Igor V.

    2006-01-01

    Dynamics of the IR emission induced by excitation of the acetylene molecule using the (32Ka0,1,2,ÃAu1←41la1,X˜Σg+1) transition was investigated. The observed IR emission was assigned to transitions between the ground-state vibrational levels. Acetylene fluorescence quenching induced by external electric and magnetic fields acting upon the system prepared using the (34Ka1,ÃAu1←00la0,X˜Σg+1) excitation was also studied. External electric field creates an additional radiationless pathway to the ground-state levels, coupling levels of the ÃAu1 excited state to the quasiresonant levels of the X˜Σg+1 ground state. The level density of the ground state in the vicinity of the excited state is very high, thus the electric-field-induced transition is irreversible, with the rate constant described by the Fermi rule. Magnetic field alters the decay profile without changing the fluorescence quantum yield in collisionless conditions. IR emission from the CCH transient was detected, and was also affected by the external electric and magnetic fields. Acetylene predissociation was demonstrated to proceed by the direct S1→S0 mechanism. The results were explained using the previously developed theoretical approach, yielding values of the relevant model parameters.

  5. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu

    2014-01-01

    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  6. Vibrational energy transfer in selectively excited diatomic molecules. [Relaxation rates, self-relaxation, upper limits

    Energy Technology Data Exchange (ETDEWEB)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295/sup 0/K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295/sup 0/K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ..delta..J transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references.

  7. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    KAUST Repository

    Song, Yin

    2015-06-07

    © 2015 AIP Publishing LLC. Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S (λ 1, T∼ 2, λ 3)) along the population time (T∼ 2) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S (λ 1, ν∼ 2, λ 3)). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ ν∼ 2) in the rephasing beating map and at negative frequency (- ν∼ 2) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.

  8. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    International Nuclear Information System (INIS)

    Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.

    2015-01-01

    Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S(λ 1 ,T ~ 2 ,λ 3 )) along the population time (T ~ 2 ) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S(λ 1 ,ν ~ 2 ,λ 3 )). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ν ~ 2 ) in the rephasing beating map and at negative frequency (−ν ~ 2 ) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems

  9. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  10. Dynamics at the nanoscale

    International Nuclear Information System (INIS)

    Stoneham, A.M.; Gavartin, J.L.

    2007-01-01

    However fascinating structures may be at the nanoscale, time-dependent behaviour at the nanoscale has far greater importance. Some of the dynamics is random, with fluctuations controlling rate processes and making thermal ratchets possible. Some of the dynamics causes the transfer of energy, of signals, or of charge. Such transfers are especially efficiently controlled in biological systems. Other dynamical processes occur when we wish to control the nanoscale, e.g., to avoid local failures of gate dielectrics, or to manipulate structures by electronic excitation, to use spin manipulation in quantum information processing. Our prime purpose is to make clear the enormous range and variety of time-dependent nanoscale phenomena

  11. LIME - a flexible, non-LTE line excitation and radiation transfer method for millimeter and far-infrared wavelengths

    DEFF Research Database (Denmark)

    Brinch, Christian; Hogerheijde, Michiel

    2010-01-01

    We present a new code for solving the molecular and atomic excitation and radiation transfer problem in a molecular gas and predicting emergent spectra. This code works in arbitrary three dimensional geometry using unstructured Delaunay latices for the transport of photons. Various physical model...

  12. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria.

    Science.gov (United States)

    Cui, Boyu; Wang, Yao; Song, Yunhong; Wang, Tietao; Li, Changfu; Wei, Yahong; Luo, Zhao-Qing; Shen, Xihui

    2014-05-20

    Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells

  13. Vibrational excitation of methane by positron impact: Computed quantum dynamics and sensitivity tests

    International Nuclear Information System (INIS)

    Nishimura, Tamio; Gianturco, Franco A.

    2002-01-01

    We report the quantum dynamical close-coupling equations relevant for vibrationally inelastic processes in low-energy collisions between a beam of positrons and the CH 4 molecule in the gas phase. The interaction potential is described in detail and we report also our numerical technique for solving the scattering equations. The cross sections are obtained for the excitations of all the modes of the title molecule and are compared both with simpler computational approximations and with the recent experiments for the two distinct energy regions that correspond to the combined symmetric and antisymmetric stretching modes and to twisting and scissoring modes, respectively. Our calculations reproduce well the shape and the values of the experimental findings and give useful insights into the microscopic dynamics for molecular excitation processes activated by low-energy positron scattering

  14. Dipole-Dipole Electron Excitation Energy Transfer in the System CdSe/ZnS Quantum Dot - Eosin in Butyral Resin Matrix

    Science.gov (United States)

    Myslitskaya, N. A.; Samusev, I. G.; Bryukhanov, V. V.

    2014-11-01

    The electron excitation energy transfer from CdSe/ZnS quantum dots to eosin molecules in the polymer matrix of butyral resin is investigated. The main characteristics of energy transfer are determined. By means of luminescence microscopy and correlation spectroscopy methods we found that quantum dots in the polymer are in an aggregate state.

  15. Resonantly enhanced production of excited fragments of gaseous molecules following core-level excitation

    International Nuclear Information System (INIS)

    Chen, J.M.; Lu, K.T.; Lee, J.M.; Ho, S.C.; Chang, H.W.; Lee, Y.Y.

    2005-01-01

    State-selective dissociation dynamics for the excited fragments of gaseous Si(CH 3 ) 2 Cl 2 following Cl 2p and Si 2p core-level excitations have been investigated by resonant photoemission spectroscopy and dispersed UV/optical fluorescence spectroscopy. The main features in the gaseous Si(CH 3 ) 2 Cl 2 fluorescence spectrum are identified as the emission from excited Si*, Si + *, CH* and H*. The core-to-Rydberg excitations at both Si 2p and Cl 2p edges lead to a noteworthy production of not only the excited atomic fragments, neutral and ionic (Si*, Si + *) but also the excited diatomic fragments (CH*). In particular, the excited neutral atomic fragments Si* are significantly reinforced. The experimental results provide deeper insight into the state-selective dissociation dynamics for the excited fragments of molecules via core-level excitation

  16. Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium.

    Science.gov (United States)

    Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan

    2017-09-01

    Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.

  17. An excitable cortex and memory model successfully predicts new pseudopod dynamics.

    Directory of Open Access Journals (Sweden)

    Robert M Cooper

    Full Text Available Motile eukaryotic cells migrate with directional persistence by alternating left and right turns, even in the absence of external cues. For example, Dictyostelium discoideum cells crawl by extending distinct pseudopods in an alternating right-left pattern. The mechanisms underlying this zig-zag behavior, however, remain unknown. Here we propose a new Excitable Cortex and Memory (EC&M model for understanding the alternating, zig-zag extension of pseudopods. Incorporating elements of previous models, we consider the cell cortex as an excitable system and include global inhibition of new pseudopods while a pseudopod is active. With the novel hypothesis that pseudopod activity makes the local cortex temporarily more excitable--thus creating a memory of previous pseudopod locations--the model reproduces experimentally observed zig-zag behavior. Furthermore, the EC&M model makes four new predictions concerning pseudopod dynamics. To test these predictions we develop an algorithm that detects pseudopods via hierarchical clustering of individual membrane extensions. Data from cell-tracking experiments agrees with all four predictions of the model, revealing that pseudopod placement is a non-Markovian process affected by the dynamics of previous pseudopods. The model is also compatible with known limits of chemotactic sensitivity. In addition to providing a predictive approach to studying eukaryotic cell motion, the EC&M model provides a general framework for future models, and suggests directions for new research regarding the molecular mechanisms underlying directional persistence.

  18. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy.

    Science.gov (United States)

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-10-21

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.

  19. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Andrew F.; Singh, Ved P.; Engel, Gregory S. [Department of Chemistry, The Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Long, Phillip D.; Dahlberg, Peter D. [Graduate Program in the Biophysical Sciences, The University of Chicago, Chicago, Illinois 60637 (United States)

    2013-10-21

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.

  20. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy

    International Nuclear Information System (INIS)

    Fidler, Andrew F.; Singh, Ved P.; Engel, Gregory S.; Long, Phillip D.; Dahlberg, Peter D.

    2013-01-01

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex

  1. Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt

    International Nuclear Information System (INIS)

    Zhang Wei; Yao Minghui

    2006-01-01

    In this paper, the Shilnikov type multi-pulse orbits and chaotic dynamics of parametrically excited viscoelastic moving belt are studied in detail. Using Kelvin-type viscoelastic constitutive law, the equations of motion for viscoelastic moving belt with the external damping and parametric excitation are given. The four-dimensional averaged equation under the case of primary parametric resonance is obtained by directly using the method of multiple scales and Galerkin's approach to the partial differential governing equation of viscoelastic moving belt. From the averaged equations obtained here, the theory of normal form is used to give the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on normal form, the energy-phrase method is employed to analyze the global bifurcations and chaotic dynamics in parametrically excited viscoelastic moving belt. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type multi-pulse homoclinic orbits in the averaged equation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense in parametrically excited viscoelastic moving belt. The chaotic motions of viscoelastic moving belts are also found by using numerical simulation. A new phenomenon on the multi-pulse jumping orbits is observed from three-dimensional phase space

  2. Influence of Road Excitation and Steering Wheel Input on Vehicle System Dynamic Responses

    Directory of Open Access Journals (Sweden)

    Zhen-Feng Wang

    2017-06-01

    Full Text Available Considering the importance of increasing driving safety, the study of safety is a popular and critical topic of research in the vehicle industry. Vehicle roll behavior with sudden steering input is a main source of untripped rollover. However, previous research has seldom considered road excitation and its coupled effect on vehicle lateral response when focusing on lateral and vertical dynamics. To address this issue, a novel method was used to evaluate effects of varying road level and steering wheel input on vehicle roll behavior. Then, a 9 degree of freedom (9-DOF full-car roll nonlinear model including vertical and lateral dynamics was developed to study vehicle roll dynamics with or without of road excitation. Based on a 6-DOF half-car roll model and 9-DOF full-car nonlinear model, relationship between three-dimensional (3-D road excitation and various steering wheel inputs on vehicle roll performance was studied. Finally, an E-Class (SUV level car model in CARSIM® was used, as a benchmark, with and without road input conditions. Both half-car and full-car models were analyzed under steering wheel inputs of 5°, 10° and 15°. Simulation results showed that the half-car model considering road input was found to have a maximum accuracy of 65%. Whereas, the full-car model had a minimum accuracy of 85%, which was significantly higher compared to the half-car model under the same scenario.

  3. Unstable dynamics, nonequilibrium phases, and criticality in networked excitable media

    International Nuclear Information System (INIS)

    Franciscis, S. de; Torres, J. J.; Marro, J.

    2010-01-01

    Excitable systems are of great theoretical and practical interest in mathematics, physics, chemistry, and biology. Here, we numerically study models of excitable media, namely, networks whose nodes may occasionally be dormant and the connection weights are allowed to vary with the system activity on a short-time scale, which is a convenient and realistic representation. The resulting global activity is quite sensitive to stimuli and eventually becomes unstable also in the absence of any stimuli. Outstanding consequences of such unstable dynamics are the spontaneous occurrence of various nonequilibrium phases--including associative-memory phases and one in which the global activity wanders irregularly, e.g., chaotically among all or part of the dynamic attractors--and 1/f noise as the system is driven into the phase region corresponding to the most irregular behavior. A net result is resilience which results in an efficient search in the model attractor space that can explain the origin of some observed behavior in neural, genetic, and ill-condensed matter systems. By extensive computer simulation we also address a previously conjectured relation between observed power-law distributions and the possible occurrence of a ''critical state'' during functionality of, e.g., cortical networks, and describe the precise nature of such criticality in the model which may serve to guide future experiments.

  4. Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature

    International Nuclear Information System (INIS)

    Zou Hong-Mei; Fang Mao-Fa

    2015-01-01

    The population dynamics of a two-atom system, which is in two independent Lorentzian reservoirs or in two independent Ohmic reservoirs respectively, where the reservoirs are at zero temperature or finite temperature, is studied by using the time-convolutionless master-equation method. The influences of the characteristics and temperature of a non-Markovian environment on the population of the excited atoms are analyzed. We find that the population trapping of the excited atoms is related to the characteristics and the temperature of the non-Markovian environment. The results show that, at zero temperature, the two atoms can be effectively trapped in the excited state both in the Lorentzian reservoirs and in the Ohmic reservoirs. At finite temperature, the population of the excited atoms will quickly decay to a nonzero value. (paper)

  5. Processes of the excitation energy migration and transfer in Ce3+-doped alkali gadolinium phosphates studied with time-resolved photoluminescence spectroscopy technique

    International Nuclear Information System (INIS)

    Stryganyuk, G.; Shalapska, T.; Voloshinovskii, A.; Gektin, A.; Krasnikov, A.; Zazubovich, S.

    2011-01-01

    Spectral-kinetic characteristics of Gd 3+ and Ce 3+ luminescence from a series of Ce 3+ -doped alkali gadolinium phosphates of MGdP 4 O 12 type (M=Li, Na, Cs) have been studied within 4.2-300 K temperature range using time-resolved luminescence spectroscopy techniques. The processes of energy migration along the Gd 3+ sub-lattice and energy transfer between the Gd 3+ and Ce 3+ ions have been investigated. Peculiarities of these processes have been compared for MGdP 4 O 12 phosphate hosts with different alkali metal ions. A contribution of different levels from the 6 P j multiplet of the lowest Gd 3+ excited state into the energy migration and transfer processes has been clarified. The phonon-assisted occupation of high-energy 6 P 5/2,3/2 levels by Gd 3+ in the excited 6 P j state has been revealed as a shift of Gd 3+6 P j → 8 S 7/2 emission into the short-wavelength spectral range upon the temperature increase. The relaxation of excited Gd 3+ via phonon-assisted population of Gd 3+6 P 5/2 level (next higher one to the lowest excited 6 P 7/2 ) is supposed to be responsible for the rise in probability of energy migration within the Gd 3+ sub-lattice initiating the Gd 3+ →Ce 3+ energy transfer at T 3+ →Ce 3+ energy transfer at T>150 K is explained by the increase in probability of Gd 3+ relaxation into the highest 6 P 3/2 level of the 6 P j multiplet. An efficient reversed Ce 3+ →Gd 3+ energy transfer has been revealed for the studied phosphates at 4.2 K. - Highlights: →We investigate the Gd 3+ -Ce 3+ energy transfer in alkali gadolinium phosphates. → Thermal population of Gd 3+6 P 5/2 level improves migration along the Gd sub-lattice. → Increasing overlap of Gd 3+ and Ce 3+ states enhances the Gd 3+ -Ce 3+ energy transfer. → In LiGdP 4 O 12 :Ce and NaGdP 4 O 12 :Ce an efficient Ce 3+ -Gd 3+ transfer occurs at 4-300 K. → An effective reverse Gd 3+ -Ce 3+ energy transfer becomes possible at T>150 K.

  6. Energy transfer in LH2 of Rhodospirillum Molischianum, studied by subpicosecond spectroscopy and configuration interaction excition calculations.

    NARCIS (Netherlands)

    Ihalainen, J.A.; Linnanto, J.; Myllyperkiö, P.; van Stokkum, I.H.M.; Ücker, B.; Scheer, H.; Korppi-Tommola, J.E.I.

    2001-01-01

    Two color transient absorption measurements were performed on a LH2 complex from Rhodospirillum molischianum by using several excitation wavelengths (790, 800, 810, and 830 nm) and probing in the spectral region from 790 to 870 nm at room temperature. The observed energy transfer time of ∼1.0 ps

  7. Qualitative assessment of ultra-fast non-Grotthuss proton dynamics in S1 excited state of liquid H2O from ab initio time-dependent density functional theory★

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-11-01

    We study qualitatively ultra-fast proton transfer (PT) in the first singlet (S1) state of liquid water (absorption onset) through excited-state dynamics by means of time-dependent density functional theory and ab initio Born-Oppenheimer molecular dynamics. We find that after the initial excitation, a PT occurs in S1 in form of a rapid jump to a neighboring water molecule, on which the proton either may rest for a relatively long period of time (as a consequence of possible defect in the hydrogen bond network) followed by back and forth hops to its neighboring water molecule or from which it further moves to the next water molecule accompanied by back and forth movements. In this way, the proton may become delocalized over a long water wire branch, followed again by back and forth jumps or short localization on a water molecule for some femtoseconds. As a result, the mechanism of PT in S1 is in most cases highly non-Grotthuss-like, delayed and discrete. Furthermore, upon PT an excess charge is ejected to the solvent trap, the so-called solvated electron. The spatial extent of the ejected solvated electron is mainly localized within one solvent shell with overlappings on the nearest neighbor water molecules and delocalizing (diffuse) tails extending beyond the first solvent sphere. During the entire ultra-short excited-state dynamics the remaining OH radical from the initially excited water molecule exhibits an extremely low mobility and is non-reactive. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80329-7.

  8. Mechanism and models for collisional energy transfer in highly excited large polyatomic molecules

    International Nuclear Information System (INIS)

    Gilbert, R. G.

    1995-01-01

    Collisional energy transfer in highly excited molecules (say, 200-500 kJ mol -1 above the zero-point energy of reactant, or of product, for a recombination reaction) is reviewed. An understanding of this energy transfer is important in predicting and interpreting the pressure dependence of gas-phase rate coefficients for unimolecular and recombination reactions. For many years it was thought that this pressure dependence could be calculated from a single energy-transfer quantity, such as the average energy transferred per collision. However, the discovery of 'super collisions' (a small but significant fraction of collisions which transfer abnormally large amounts of energy) means that this simplistic approach needs some revision. The 'ordinary' (non-super) component of the distribution function for collisional energy transfer can be quantified either by empirical models (e.g., an exponential-down functional form) or by models with a physical basis, such as biased random walk (applicable to monatomic or diatomic collision partners) or ergodic (for polyatomic collision partners) treatments. The latter two models enable approximate expressions for the average energy transfer to be estimated from readily available molecular parameters. Rotational energy transfer, important for finding the pressure dependence for recombination reactions, can for these purposes usually be taken as transferring sufficient energy so that the explicit functional form is not required to predict the pressure dependence. The mechanism of 'ordinary' energy transfer seems to be dominated by low-frequency modes of the substrate, whereby there is sufficient time during a vibrational period for significant energy flow between the collision partners. Super collisions may involve sudden energy flow as an outer atom of the substrate is squashed between the substrate and the bath gas, and then is moved away from the interaction by large-amplitude motion such as a ring vibration or a rotation; improved

  9. Influence of different environments on the excited-state proton transfer and dual fluorescence of fisetin

    Science.gov (United States)

    Guharay, Jayanti; Dennison, S. Moses; Sengupta, Pradeep K.

    1999-05-01

    The influence of different protic and aprotic solvent environments on the excited-state intramolecular proton transfer (ESIPT) leading to a dual fluorescence behaviour of a biologically important, naturally occurring, polyhydroxyflavone, fisetin (3,3',4',7-tetrahydroxyflavone), has been investigated. The normal fluorescence band, in particular, is extremely sensitive to solvent polarity with νmax shifting from 24 510 cm -1 in dioxane ( ET(30)=36.0) to 20 790 cm -1 in methanol ( ET(30)=55.5). This is rationalized in terms of solvent dipolar relaxation process, which also accounts for the red edge excitation shifts (REES) observed in viscous environments such as glycerol at low temperatures. Significant solvent dependence of the tautomer fluorescence properties ( νmax, yield and decay kinetics) reveals the influence of external hydrogen bonding perturbation on the internal hydrogen bond of the molecule. These excited-state relaxation phenomena and their relevant parameters have been used to probe the microenvironment of fisetin in a membrane mimetic system, namely AOT reverse micelles in n-heptane at different water/surfactant molar ratio ( w0).

  10. Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation

    Science.gov (United States)

    Peter, Simon; Leine, Remco I.

    2017-11-01

    Phase resonance testing is one method for the experimental extraction of nonlinear normal modes. This paper proposes a novel method for nonlinear phase resonance testing. Firstly, the issue of appropriate excitation is approached on the basis of excitation power considerations. Therefore, power quantities known from nonlinear systems theory in electrical engineering are transferred to nonlinear structural dynamics applications. A new power-based nonlinear mode indicator function is derived, which is generally applicable, reliable and easy to implement in experiments. Secondly, the tuning of the excitation phase is automated by the use of a Phase-Locked-Loop controller. This method provides a very user-friendly and fast way for obtaining the backbone curve. Furthermore, the method allows to exploit specific advantages of phase control such as the robustness for lightly damped systems and the stabilization of unstable branches of the frequency response. The reduced tuning time for the excitation makes the commonly used free-decay measurements for the extraction of backbone curves unnecessary. Instead, steady-state measurements for every point of the curve are obtained. In conjunction with the new mode indicator function, the correlation of every measured point with the associated nonlinear normal mode of the underlying conservative system can be evaluated. Moreover, it is shown that the analysis of the excitation power helps to locate sources of inaccuracies in the force appropriation process. The method is illustrated by a numerical example and its functionality in experiments is demonstrated on a benchmark beam structure.

  11. Photophysical properties of 1-acetoxy-8-hydroxy-1,4,4a,9a-tetrahydroanthraquinone: Evidence for excited state proton transfer reaction

    International Nuclear Information System (INIS)

    Singh, Rupashree Balia; Mahanta, Subrata; Guchhait, Nikhil

    2007-01-01

    The photophysical properties of 1-acetoxy-8-hydroxy-1,4,4a,9a-tetrahydroanthraquinone (HTHQ) have been investigated by steady state and time resolved spectroscopy in combination with quantum chemical calculations. The effects of various parameters such as the nature of solvent and pH of the medium on the spectral properties confirm the existence of different neutral and ionic species in the ground and excited states. In the ground state, HTHQ exists as intramolecularly hydrogen bonded closed conformer in non-polar and polar aprotic solvents. Apart from the closed conformer, the intermolecular hydrogen bonded solvated species and the anion of HTHQ are present in hydroxylic solvents. The closed conformer shows excited state intramolecular proton transfer in all solvents and the solvent polarity independent red shifted emission indicates only keto-enol tautomerism. Evaluation of the potential energy surfaces by quantum chemical calculation using density functional theory point towards the possibility of proton transfer reaction in the first excited state but not in the ground state

  12. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kozue; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2015-06-01

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d{sup 6}4p (3d{sup 5}4s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of

  13. The transfer function model for dynamic response of wet cooling coils

    International Nuclear Information System (INIS)

    Yao Ye; Liu Shiqing

    2008-01-01

    This paper mainly concerned about the dynamic response model of wet cooling coils that is developed by the Laplace transform method. The theoretic equations are firstly established based on the theory of energy conservation. Then, the transfer functions on the transient responses of wet cooling coils have been deduced using the method of Laplace transform. The transfer functions reveal the dynamic relationships between the inlet variables and the outlet ones of the cooling coils. Partial-fraction method and Newton-Raphson method are both used in the inversion of the transfer functions from the s-domain to τ-domain. To make the dynamic model of wet cooling coils more adaptive, RBFNN method is employed to determine the coefficients of heat and mass transfer. Experiments have been done and manifested that the coefficients of heat and mass transfer by RBFNN will be of great value to the validity of the transient response model of wet cooling coils in this study

  14. The dynamic modeling and design improvement of a piezoelectric exciter of a touch screen device for efficient tactile feedback

    International Nuclear Information System (INIS)

    Park, Young-Min; Kim, Kwang-Joon

    2011-01-01

    Piezoelectric exciters have been receiving greater attention recently as a vibration source for tactile feedback in devices with touch screens, such as a mobile phones, in place of DC motors due to lower energy consumption and smaller volume. Their insufficient excitation level, however, still remains a problem. In this paper, dynamic modeling and design improvement of a piezoelectric exciter are presented. The excitation performance is defined as the acceleration response at the center of a touch screen per electric power and to be maximized around 250 Hz where the index finger is most sensitive. The piezoelectric exciter consists of a z-shaped metal beam, a piezoelectric layer on the long horizontal segment and an adhesive layer between the short horizontal segment and the touch screen. Assuming that the piezoelectric exciter is attached onto a rigid ground due to its low mechanical impedance compared with that of the touch screen, the piezoelectric exciter is dynamically modeled by applying Hamilton's principle, where the adhesive layer is treated as a distributed stiffness. The touch screen is modeled approximately as a simply supported beam such that it may have the same fundamental natural frequency and bending stiffness as the screen based on measurements. The performance improvement is focused on the change of five geometric parameters of the piezoelectric exciter: length of the long horizontal segment, thickness of the piezoelectric layer, thickness of the elastic metal layer, width of the beams and tip mass. The procedure to improve the performance of the piezoelectric exciter via dynamic modeling is presented together with experimental results on a prototype. Effectiveness of the design modification and limitations in practice are further discussed as well

  15. Charge and energy dynamics in photo-excited poly(para-phenylenevinylene) systems

    International Nuclear Information System (INIS)

    Gisslen, L.; Johansson, A.; Stafstroem, S.

    2004-01-01

    We report results from simulations of charge and energy dynamics in poly(para-phenylenevinylene) (PPV) and PPV interacting with C 60 . The simulations were performed by solving the time-dependent Schroedinger equation and the lattice equation of motion simultaneously and nonadiabatically. The electronic system and the coupling of the electrons to the lattice were described by an extended three-dimensional version of the Su-Schrieffer-Heeger model, which also included an external electric field. Electron and lattice dynamics following electronic excitations at different energies have been simulated. The effect of additional lattice energy was also included in the simulations. Our results show that both exciton diffusion and transitions from high to lower lying excitations are stimulated by increasing the lattice energy. Also field induced charge separation occurs faster if the lattice energy is increased. This separation process is highly nonadiabatic and involves a significant rearrangement of the electron distribution. In the case of PPV coupled to C 60 , we observe a spontaneous charge separation. The separation time is in this case limited by the local concentration of C 60 molecules close to the PPV chain

  16. Theoretical Insights Into the Excited State Double Proton Transfer Mechanism of Deep Red Pigment Alkannin.

    Science.gov (United States)

    Zhao, Jinfeng; Dong, Hao; Zheng, Yujun

    2018-02-08

    As the most important component of deep red pigments, alkannin is investigated theoretically in detail based on time-dependent density functional theory (TDDFT) method. Exploring the dual intramolecular hydrogen bonds (O1-H2···O3 and O4-H5···O6) of alkannin, we confirm the O1-H2···O3 may play a more important role in the first excited state than the O4-H5···O6 one. Infrared (IR) vibrational analyses and subsequent charge redistribution also support this viewpoint. Via constructing the S 1 -state potential energy surface (PES) and searching transition state (TS) structures, we illuminate the excited state double proton transfer (ESDPT) mechanism of alkannin is the stepwise process that can be first launched by the O1-H2···O3 hydrogen bond wire in gas state, acetonitrile (CH 3 CN) and cyclohexane (CYH) solvents. We present a novel mechanism that polar aprotic solvents can contribute to the first-step proton transfer (PT) process in the S 1 state, and nonpolar solvents play important roles in lowering the potential energy barrier of the second-step PT reaction.

  17. Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI.

    Science.gov (United States)

    Yu, T; Sejnowski, T J; Cauwenberghs, G

    2011-10-01

    We study a range of neural dynamics under variations in biophysical parameters underlying extended Morris-Lecar and Hodgkin-Huxley models in three gating variables. The extended models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog VLSI programmable neural emulation platform with generalized channel kinetics and biophysical membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms neglected in typical silicon models of tonic spiking neurons. Circuit simulations and measurements show transition from tonic spiking to tonic bursting dynamics through variation of a single conductance parameter governing calcium recovery. We similarly demonstrate transition from graded to all-or-none neural excitability in the onset of spiking dynamics through the variation of channel kinetic parameters governing the speed of potassium activation. Other combinations of variations in conductance and channel kinetic parameters give rise to phasic spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and occupies 3 mm × 3 mm in 0.5 μm CMOS, supporting emerging developments in neuromorphic silicon-neuron interfaces.

  18. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.

    2010-02-11

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies. © 2010 Optical Society of America.

  19. Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in α-RuCl_{3}.

    Science.gov (United States)

    Wang, Zhe; Reschke, S; Hüvonen, D; Do, S-H; Choi, K-Y; Gensch, M; Nagel, U; Rõõm, T; Loidl, A

    2017-12-01

    We report on terahertz spectroscopy of quantum spin dynamics in α-RuCl_{3}, a system proximate to the Kitaev honeycomb model, as a function of temperature and magnetic field. We follow the evolution of an extended magnetic continuum below the structural phase transition at T_{s2}=62  K. With the onset of a long-range magnetic order at T_{N}=6.5  K, spectral weight is transferred to a well-defined magnetic excitation at ℏω_{1}=2.48  meV, which is accompanied by a higher-energy band at ℏω_{2}=6.48  meV. Both excitations soften in a magnetic field, signaling a quantum phase transition close to B_{c}=7  T, where a broad continuum dominates the dynamical response. Above B_{c}, the long-range order is suppressed, and on top of the continuum, emergent magnetic excitations evolve. These excitations follow clear selection rules and exhibit distinct field dependencies, characterizing the dynamical properties of a possibly field-induced quantum spin liquid.

  20. Non-Markovian reduced dynamics of ultrafast charge transfer at an oligothiophene–fullerene heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Keith H., E-mail: keith.hughes@bangor.ac.uk [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Cahier, Benjamin [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martinazzo, Rocco [Dipartimento di Chimica Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Tamura, Hiroyuki [WPI-Advanced Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany)

    2014-10-17

    Highlights: • Quantum dynamical study of exciton dissociation at a heterojunction interface. • The non-Markovian quantum dynamics involves a highly structured spectral density. • Spectral density is reconstructed from an effective mode transformation of the Hamiltonian. • The dynamics is studied using the hierarchical equations of motion approach. • It was found that the temperature has little effect on the charge transfer. - Abstract: We extend our recent quantum dynamical study of the exciton dissociation and charge transfer at an oligothiophene–fullerene heterojunction interface (Tamura et al., 2012) [6] by investigating the process using the non-perturbative hierarchical equations of motion (HEOM) approach. Based upon an effective mode reconstruction of the spectral density the effect of temperature on the charge transfer is studied using reduced density matrices. It was found that the temperature had little effect on the charge transfer and a coherent dynamics persists over the first few tens of femtoseconds, indicating that the primary charge transfer step proceeds by an activationless pathway.

  1. Pulsed magnetization transfer contrast MRI by a sequence with water selective excitation

    Energy Technology Data Exchange (ETDEWEB)

    Schick, F. [Univ. of Tuebingen (Germany)

    1996-01-01

    A water selective SE imaging sequence was developed providing suitable properties for the assessment of magnetization transfer (MT) effects in tissues with considerable amounts of fat. The sequence with water selective excitation and slice selective refocusing combines the following features: The RIF exposure on the macromolecular protons is relatively low for single slice imaging without MT prepulses, since no additional pulses for fat saturation are necessary. Water selection by frequency selective excitation diminishes faults in the subtraction of images recorded with and without MT prepulses (which might arise from movements). High differences in the signal amplitudes from hyaline cartilage and muscle tissue were obtained comparing images recorded with irradiation of the series of prepulses for MT and those lacking MT prepulses. Utilizations of the described water selective approach for the assessment of MT effects in lesions of cartilage and bone are demonstrated. MT saturation was also examined in muscles with fatty degeneration of patients suffering from progressive muscular dystrophy. The described technique allows determination of MT effects with good precision in a single slice, especially in regions with dominating fat signals. 22 refs., 5 figs.

  2. Effect of Isomerization on Excited-State Dynamics of Carotenoid Fucoxanthin

    Czech Academy of Sciences Publication Activity Database

    Kuznetsova, V.; Chábera, P.; Litvín, Radek; Polívka, Tomáš; Fuciman, M.

    2017-01-01

    Roč. 121, č. 17 (2017), s. 4438-4447 ISSN 1520-6106 Institutional support: RVO:60077344 Keywords : charge-transfer state * light-harvesting complex * pump-probe spectroscopy * ultrafast dynamics Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.177, year: 2016

  3. Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques

    Czech Academy of Sciences Publication Activity Database

    Vlček, Antonín; Záliš, Stanislav

    2007-01-01

    Roč. 251, 3-4 (2007), s. 258-287 ISSN 0010-8545 R&D Projects: GA MŠk 1P05OC068; GA MŠk OC 139 Institutional research plan: CEZ:AV0Z40400503 Keywords : charge-transfer transition * DFT technique * excited states * spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 8.568, year: 2007

  4. Total dynamic response of a PSS vehicle negotiating asymmetric road excitations

    Science.gov (United States)

    Zhu, Jian Jun; Khajepour, Amir; Esmailzadeh, Ebrahim

    2012-12-01

    A planar suspension system (PSS) is a novel automobile suspension system in which an individual spring-damper strut is implemented in both the vertical and longitudinal directions, respectively. The wheels in a vehicle with such a suspension system can move back and forth relative to the chassis. When a PSS vehicle experiences asymmetric road excitations, the relative longitudinal motion of wheels with respect to the chassis in two sides of the same axle are not identical, and thus the two wheels at one axle will not be aligned in the same axis. The total dynamic responses, including those of the bounce, pitch and the roll of the PSS vehicle, to the asymmetric road excitation may exhibit different characteristics from those of a conventional vehicle. This paper presents an investigation into the comprehensive dynamic behaviour of a vehicle with the PSS, in such a road condition, on both the straight and curved roads. The study was carried out using an 18 DOF full-car model incorporating a radial-spring tyre-ground contact model and a 2D tyre-ground dynamic friction model. Results demonstrate that the total dynamic behaviour of a PSS vehicle is generally comparable with that of the conventional vehicle, while PSS exhibits significant improvement in absorbing the impact forces along the longitudinal direction when compared to the conventional suspension system. The PSS vehicle is found to be more stable than the conventional vehicle in terms of the directional performance against the disturbance of the road potholes on a straight line manoeuvre, while exhibiting a very similar handling performance on a curved line.

  5. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    -molecule spectroscopy and electrochemical AFM metal tip scanning microscopy, focusing on understanding the interfacial electron transfer dynamics at specific nanoscale electron transfer sites with high-spatially and temporally resolved topographic-and-spectroscopic characterization at individual molecule basis, characterizing single-molecule rate processes, reaction driving force, and molecule-substrate electronic coupling. One of the most significant characteristics of our new approach is that we are able to interrogate the complex interfacial electron transfer dynamics by actively pin-point energetic manipulation of the surface interaction and electronic couplings, beyond the conventional excitation and observation.

  6. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach

    International Nuclear Information System (INIS)

    Sakko, Arto; Rossi, Tuomas P; Nieminen, Risto M

    2014-01-01

    The presence of plasmonic material influences the optical properties of nearby molecules in untrivial ways due to the dynamical plasmon-molecule coupling. We combine quantum and classical calculation schemes to study this phenomenon in a hybrid system that consists of a Na 2 molecule located in the gap between two Au/Ag nanoparticles. The molecule is treated quantum-mechanically with time-dependent density-functional theory, and the nanoparticles with quasistatic classical electrodynamics. The nanoparticle dimer has a plasmon resonance in the visible part of the electromagnetic spectrum, and the Na 2 molecule has an electron-hole excitation in the same energy range. Due to the dynamical interaction of the two subsystems the plasmon and the molecular excitations couple, creating a hybridized molecular-plasmon excited state. This state has unique properties that yield e.g. enhanced photoabsorption compared to the freestanding Na 2 molecule. The computational approach used enables decoupling of the mutual plasmon-molecule interaction, and our analysis verifies that it is not legitimate to neglect the backcoupling effect when describing the dynamical interaction between plasmonic material and nearby molecules. Time-resolved analysis shows nearly instantaneous formation of the coupled state, and provides an intuitive picture of the underlying physics. (paper)

  7. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.; Elshenawy, M. M.; Takahashi, Masateru; Whitman, B. H.; Walter, N. G.; Hamdan, S. M.

    2011-01-01

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation

  8. Ion-ion interaction and energy transfer of 4+ transuranium ions in cerium tetrafluoride

    International Nuclear Information System (INIS)

    Liu, G.K.; Beitz, J.V.

    1990-01-01

    Dynamics of excited 5f electron states of the transuranium ions Cm 4+ and Bk 4+ in CeF 4 are compared. Based on time- and wavelength-resolved laser-induced fluorescence, excitation energy transfer processes have been probed. Depending on concentration and electronic energy level structure of the studied 4+ transuranium ion, the dominant energy transfer mechanisms were identified as cross relaxation, exciton-exciton annihilation, and trapping. Energy transfer rates derived from the fitting of the observed fluorescence decays to theoretical models, based on electric multipolar ion-ion interactions, are contrasted with prior studies of 4f states of 3+ lanthanide and 3d states of transition metal ions. 16 refs., 1 tab

  9. Dynamic response of piping system subject to flow acoustic excitation

    International Nuclear Information System (INIS)

    Wang, T.; Sun, Y.S.

    1988-01-01

    Through the use of a theoretically derived and test data-calibrated forcing function, the dynamic response of a piping system subject to flow-acoustic induced vibration is analyzed. It is shown that the piping behavior can be predicted when consideration is given to both the wall flexural vibration and the piping system vibration. Piping responded as a system to the transversal excitation due to the swirling motion of the fluid flow, as well as flexurally to the high-frequency acoustic excitations. The transverse piping system response was calculated using a lumped mass piping model. The piping model has more stringent requirements than its counterpart for waterhammer and seismic modeling due to the shorter spiral wavelength and higher frequency of the forcing function. Proper modeling ensured that both the moment stress caused by system excitation and the local stress induced by the support reaction load were properly accounted for. Flexural vibration not only poses a threat to nipples and branch connections, but also contributes substantially to the resultant total stress experienced by the pipe. The forcing function approach has the advantage that the critical locations on the piping system can be identified by means of analysis, facilitating surveillance and inspection, as well as fatigue evaluation

  10. Plasma excitation processes in flue gas simulated with Monte Carlo electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tas, M.A.; Veldhuizen, E.M. van; Rutgers, W.R. [Eindhoven University of Technology (Netherlands). Div. of Electrical Energy Systems

    1997-06-07

    The excitation of gas molecules in flue gas by electron impact is calculated with a Monte Carlo (MC) algorithm for electron dynamics in partially ionized gases. The MC algorithm is straightforward for any mixture of molecules for which cross sections are available. Electron drift is simulated in the first case for homogeneous electric fields and in the second case for secondary electrons which are produced by electron-beam irradiation. The electron energy distribution function {epsilon}-bar{sub {theta}}, V-bar{sub d}, {lambda}-bar, the energy branching and the rate of excitation are calculated for standard gas mixtures of Ar-N{sub 2}, O{sub 2} and H{sub 2}O. These fundamental process parameters are needed for the study of reactions to remove NO{sub x} from flue gas. The calculated results indicate that the production of highly excited molecules in the high electric field of a streamer corona discharge has an efficiency similar to that of electron-beam irradiation. (author)

  11. Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, NHC; Gruenke, NL; Oliver, TAA; Ballottari, M; Bassi, R; Fleming, GR

    2016-10-05

    Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.

  12. Nonlinear Dynamic Analysis of Telescopic Mechanism for Truss Structure Bridge Inspection Vehicle Under Pedestrian Excitation

    Directory of Open Access Journals (Sweden)

    Wenwen Sui

    Full Text Available Abstract Nonlinear dynamic analysis of an axially moving telescopic mechanism for truss structure bridge inspection vehicle under pedestrian excitation is carried out. A biomechanically inspired inverted-pendulum model is utilized to simplify the pedestrian. The nonlinear equations of motion for the beam-pedestrian system are derived using the Hamilton's principle. The equations are transformed into two ordinary differential equations by applying the Galerkin's method at the first two orders. The solutions to the equations are acquired by using the Newmark-β method associated with the Newton-Raphson method. The time-dependent feature of the eigenfunctions for the two beams are taken into consideration in the solutions. Accordingly, the equations of motion for a simplified system, in which the pedestrian is regarded as moving cart, are given. In the numerical examples, dynamic responses of the telescopic mechanism in eight conditions of different beam-telescoping and pedestrian-moving directions are simulated. Comparisons between the vibrations of the beams under pedestrian excitation and corresponding moving cart are carried out to investigate the influence of the pedestrian excitation on the telescopic mechanism. The results show that the displacement of the telescopic mechanism under pedestrian excitation is smaller than that under moving cart especially when the pedestrian approaches the beams end. Additionally, compared with moving cart, the pedestrian excitation can effectively strengthen the vibration when the beam extension is small or when the pedestrian is close to the beams end.

  13. Nonequilibrium Dynamics in a Quasi-Two-Dimensional Electron Plasma after Ultrafast Intersubband Excitation

    International Nuclear Information System (INIS)

    Lutgen, S.; Kaindl, R.A.; Woerner, M.; Elsaesser, T.; Hase, A.; Kuenzel, H.; Gulia, M.; Meglio, D.; Lugli, P.

    1996-01-01

    The dynamics of electrons in GaInAs/AlInAs quantum wells is studied after excitation from the n=1 to the n=2 conduction subband. Femtosecond pump-probe experiments demonstrate for the first time athermal distributions of n=1 electrons on a surprisingly long time scale of 2ps. Thermalization involves intersubband scattering of excited electrons via optical phonon emission with a time constant of 1ps and intrasubband Coulomb and phonon scattering. Ensemble Monte Carlo simulations show that the slow electron equilibration results from Pauli blocking and screening of carrier-carrier scattering. copyright 1996 The American Physical Society

  14. NO-γ emissions from streamer discharges: direct electron impact excitation versus resonant energy transfer

    International Nuclear Information System (INIS)

    Liu Ningyu; Pasko, Victor P

    2010-01-01

    It has been established that production of NO-γ emission in pulsed corona discharges is dominated by the energy transfer from N 2 (A 3 Σ u + ) to the NO ground state NO(X 2 Π r ) while direct excitation by electron impact is negligible. However, recent studies suggest that the electron impact excitation plays a more important role. In this work, we report modelling results of NO-γ emission associated with streamer discharges using two cross section data sets available in the literature. The first set was originally reported by Mojarrabi et al (1996 Phys. Rev. A 54 2977-82) and later updated by Brunger et al (2000 J. Phys. B: At. Mol. Opt. Phys. 33 809-19); the second set was published by Hayashi (1990 Nonequilibrium Processes in Partially Ionized Gases (NATO Advanced Science Institutes Series, Series B, Physics vol 220) ed M Capitelli and J N Bardsley (New York: Plenum) pp 333-40). According to the results, the role played by the electron impact excitation in the production of NO-γ is drastically different when different cross sections are used. The results indicate that the first data set leads to better agreement with experimental measurements. (fast track communication)

  15. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  16. Modeling the collective excitations in a full Heusler Co2 FeAl0.5 Si0.5 (CFAS) spin valve magnetic nanopillar in the electromagnetic field

    International Nuclear Information System (INIS)

    David, Cherine; Arumugam, Brinda; Rajamani, Amuda; Natarajan, Kanimozhi

    2014-01-01

    This paper describes the physics of collective excitations that are caused by spin-transfer torques in CFAS magnetic multilayer. When the magnetizations of the pinned and free layers are not collinear with each other, the spin-polarized currents transfer angular momentum to the magnetizations near the interfaces, giving rise to spin-transfer torques. The currents in magnetic multilayer are spin polarised and can carry enough angular momentum. When an electron spin carried by the current interacts with a magnetic layer, the exchange interaction leads to torque between the spin and the magnetization vector of the free layer. This is Spin Transfer Torque (STT) and it excites the magnetization when it is large enough. The Spin Transfer Torque induced collective excitations for the CFAS spin valve pillar have been extensively studied in this paper. - Highlights: • We have modeled LLGS equation for CFAS multilayer array. • The dynamics of collective excitation induced by STT is investigated. • The interactions exhibit solitonic behaviour at both limiting modes of polarization. • The spin components of the solitons are graphically represented

  17. Molecular-dynamics study of the dynamical excitations in commensurate monolayer films of nitrogen molecules on graphite: A test of the corrugation in the nitrogen-graphite potential

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    1995-01-01

    The dynamical excitations in a commensurate monolayer solid of N2 molecules adsorbed on graphite have been studied using molecular-dynamics simulations. Velocity and rotational correlation functions as well as coherent intermediate scattering functions and dynamical structure factors have been ca...

  18. Water-chromophore electron transfer determines the photochemistry of cytosine and cytidine

    Czech Academy of Sciences Publication Activity Database

    Szabla, Rafal; Kruse, Holger; Šponer, Jiří; Gora, R.W.

    2017-01-01

    Roč. 19, č. 27 (2017), s. 17531-17537 ISSN 1463-9076 Institutional support: RVO:68081707 Keywords : driven proton-transfer * excited-state dynamics * potentially prebiotic synthesis Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  19. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    Science.gov (United States)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  20. Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations

    Science.gov (United States)

    Fang, Fei; Xia, Guanghui; Wang, Jianguo

    2018-02-01

    The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.

  1. Direct determination of resonance energy transfer in photolyase: structural alignment for the functional state.

    Science.gov (United States)

    Tan, Chuang; Guo, Lijun; Ai, Yuejie; Li, Jiang; Wang, Lijuan; Sancar, Aziz; Luo, Yi; Zhong, Dongping

    2014-11-13

    Photoantenna is essential to energy transduction in photoinduced biological machinery. A photoenzyme, photolyase, has a light-harvesting pigment of methenyltetrahydrofolate (MTHF) that transfers its excitation energy to the catalytic flavin cofactor FADH¯ to enhance DNA-repair efficiency. Here we report our systematic characterization and direct determination of the ultrafast dynamics of resonance energy transfer from excited MTHF to three flavin redox states in E. coli photolyase by capturing the intermediates formed through the energy transfer and thus excluding the electron-transfer quenching pathway. We observed 170 ps for excitation energy transferring to the fully reduced hydroquinone FADH¯, 20 ps to the fully oxidized FAD, and 18 ps to the neutral semiquinone FADH(•), and the corresponding orientation factors (κ(2)) were determined to be 2.84, 1.53 and 1.26, respectively, perfectly matching with our calculated theoretical values. Thus, under physiological conditions and over the course of evolution, photolyase has adopted the optimized orientation of its photopigment to efficiently convert solar energy for repair of damaged DNA.

  2. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Pengfei; Zhang, Yuwen, E-mail: zhangyu@missouri.edu [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Yang, Mo [College of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2013-12-21

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  3. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    International Nuclear Information System (INIS)

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-01-01

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective

  4. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    Science.gov (United States)

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-12-01

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  5. An Experimental Investigation of the Dynamic Behavior of an In-Plane MEMS Shallow Arch Under Electrostatic Excitation

    KAUST Repository

    Ramini, Abdallah; Hafiz, Abdullah; Bellaredj, Mohammed Lamine Faycal; Al Hennawi, Qais M.; Younis, Mohammad I.

    2016-01-01

    We present experimental investigation of the nonlinear dynamics of a clamped-clamped in-plane MEMS shallow arch when excited by an electrostatic force. We explore the dynamic behaviors of the in-plane motion of the shallow arches via frequency

  6. Experimental methods of investigation of kinetics and dynamics of nuclear reactors

    International Nuclear Information System (INIS)

    Costa Oliveira, Jaime M.

    1969-03-01

    The author presents experimental methods used to study kinetic and dynamic properties of nuclear reactors. Kinetic methods aim at determining characteristic parameters of the behaviour in time of neutrons. Dynamic methods aim at establishing the relationships between the reactor behaviour and its internal and external causes (notably the measurement of transfer functions). The author proposes a classification with respect to the excitation type: periodic excitation (reactivity sinusoidal modulation, source sinusoidal modulation, periodic pulse excitation), non periodic excitation (reactivity monitoring, reactivity linear variation, reactivity variation according to any given law, removal of starting source), random excitation (random reactivity or source excitation), natural fluctuations (alpha-Rossi method, methods of reduced variance, probabilistic methods, correlation methods, spectral analysis method). He also addresses space and energy effects. Applications are reported for low power and power reactors

  7. Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Levis, Robert J.; Romanov, Dmitri A.; Smith, Stanley M.; Schlegel, H. Bernhard; Ivanov, Misha Yu.

    2004-01-01

    Electronic processes leading to dissociative ionization of polyatomic molecules in strong laser fields are investigated experimentally, theoretically, and numerically. Using time-of-flight ion mass spectroscopy, we study the dependence of fragmentation on laser intensity for a series of related molecules and report regular trends in this dependence on the size, symmetry, and electronic structure of a molecule. Based on these data, we develop a model of dissociative ionization of polyatomic molecules in intense laser fields. The model is built on three elements: (i) nonadiabatic population transfer from the ground electronic state to the excited-state manifold via a doorway (charge-transfer) transition; (ii) exponential enhancement of this transition by collective dynamic polarization of all electrons, and (iii) sequential energy deposition in both neutral molecules and resulting molecular ions. The sequential nonadiabatic excitation is accelerated by a counterintuitive increase of a large molecule's polarizability following its ionization. The generic theory of sequential nonadiabatic excitation forms a basis for quantitative description of various nonlinear processes in polyatomic molecules and ions in strong laser fields

  8. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, K K; Rybaltovsky, A A; Vel' miskin, V V; Likhachev, M E; Bubnov, M M; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Umnikov, A A; Gur' yanov, A N; Vechkanov, N N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Shestakova, I A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2014-12-31

    We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicate glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)

  9. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption.

    Science.gov (United States)

    Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander

    2015-09-28

    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

  10. Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Chunbo; Qin, Weiyang, E-mail: 353481781@qq.com; Deng, Wangzheng [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2015-08-31

    We investigated the energy harvesting of a vertical beam with tip mass under vertical excitations. We applied dynamic unstability and internal resonance to improve the efficiency of harvesting. The experiments of harmonic excitation were carried out. Results show that for the beam there exist internal resonances in the dynamically unstable and the buckling bistable cases. The dynamic unstability is a determinant for strong internal resonance or mode coupling, which can be used to create a large output from piezoelectric patches. Then, the experiments of stochastic excitation were carried out. Results prove that the internal resonance or mode coupling can transfer the excitation energy to the low order modes, mainly the first and the second one. This can bring about a large output voltage. For a stochastic excitation, it is proved that there is an optimal weight of tip mass for realizing internal resonance and producing large outputs.

  11. Energy transfer modelling of active thermoacoustic engines via Lagrangian thermoacoustic dynamics

    International Nuclear Information System (INIS)

    Hong, Boe-Shong; Chou, Chia-Yu

    2014-01-01

    Highlights: • Resonant control on thermoacoustic engines to amplify power rating. • Least-action principle of thermoacoustic dynamics to shape engine chamber. • Spatiotemporal transfer function into feedback systems. • Conservation law of thermoacoustic storage to figure out engine cycles. • Robin boundary condition to identify flow leakage. - Abstract: This paper develops energy-transfer modelling of active thermoacoustic engines resonantly controlled on boundary for amplification of power rating toward satisfaction of renewable industry. Therein the wave equation of thermoacoustic dynamics in resonators with non-uniform media and boundary actuations is derived and then turned into a least-action principle. With this least-action principle, we obtain the governing equation of longitudinal resonators with spatially variant cross-section areas to investigate how to shape the resonator for boosting piston stroke and power-transmission efficiency. It is followed by spatiotemporal transfer-function modelling that functionally represents the dynamics and interprets the boundary actuations into internal inputs. This helps formulate the overall dynamics into feedback-interconnection between the thermoacoustic dynamics in the resonator and the mechatronic dynamics of the alternative current generator, so that synthesis of feedback systems can be applied to design the entire engine. Transfer-function modelling following least-action principle leads to the conservation law of thermoacoustic storage, which figures out engine cycles, the most fundamental principle in designing active thermoacoustic engines. Based on such feedback realization, digital signal processing is programmed to numerically assess power ratings of active designs

  12. Assessment of the dynamic response of systems and measures to enhance their safety

    International Nuclear Information System (INIS)

    Serban, Viorel; Androne, Marian; Ciocan, George Alexandru; Zamfir, Madalina; Florea, Ioana; Panait, Adrian; Prisecaru, Ilie

    2007-01-01

    Buildings, equipment and pipe networks are dynamically, oscillating structures that may build-up energy or not, from the excitation, amplifying or damping their response as a function of the rate between the system vibration Eigen period and the repetition period of the dynamic excitation and the system damping capacity. This paper is an analysis in time and frequency of the dynamic response of an oscillating system subject to a periodic excitation. The results of the conducted analysis show how a system must be sized for the transfer of energy from excitation to the system be minimized, the system builds-up as less kinetic and elastic energy as possible and the system response to accelerations, velocity and distortions be also minimal. (author)

  13. Application of the Real-Time Time-Dependent Density Functional Theory to Excited-State Dynamics of Molecules and 2D Materials

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Rubio, Angel

    2018-04-01

    We review our recent developments in the ab initio simulation of excited-state dynamics within the framework of time-dependent density functional theory (TDDFT). Our targets range from molecules to 2D materials, although the methods are general and can be applied to any other finite and periodic systems. We discuss examples of excited-state dynamics obtained by real-time TDDFT coupled with molecular dynamics (MD) and the Ehrenfest approximation, including photoisomerization in molecules, photoenhancement of the weak interatomic attraction of noble gas atoms, photoenhancement of the weak interlayer interaction of 2D materials, pulse-laser-induced local bond breaking of adsorbed atoms on 2D sheets, modulation of UV light intensity by graphene nanoribbons at terahertz frequencies, and collision of high-speed ions with the 2D material to simulate the images taken by He ion microscopy. We illustrate how the real-time TDDFT approach is useful for predicting and understanding non-equilibrium dynamics in condensed matter. We also discuss recent developments that address the excited-state dynamics of systems out of equilibrium and future challenges in this fascinating field of research.

  14. Analytical formulation for modulation of time-resolved dynamical Franz-Keldysh effect by electron excitation in dielectrics

    Science.gov (United States)

    Otobe, T.

    2017-12-01

    Analytical formulation of subcycle modulation (SCM) of dielectrics including electron excitation is presented. The SCM is sensitive to not only the time-resolved dynamical Franz-Keldysh effect (Tr-DFKE) [T. Otobe et al., Phys. Rev. B 93, 045124 (2016), 10.1103/PhysRevB.93.045124], which is the nonlinear response without the electron excitation, but also the excited electrons. The excited electrons enhance the modulation with even harmonics of pump laser frequency, and generate the odd-harmonics components. The new aspect of SCM is a consequence of (i) the interference between the electrons excited by the pump laser and those excited by the probe-pulse laser and (ii) oscillation of the generated wave packed by the pump laser. When the probe- and pump-pulse polarizations are parallel, the enhancement of the even harmonics and the generation of the odd-harmonics modulation appear. However, if the polarizations are orthogonal, the effect arising from the electron excitations becomes weak. By comparing the parabolic and cosine band models, I found that the electrons under the intense laser field move as quasifree particles.

  15. On the theory of excitation transfer process in slow collisions between identical particles

    International Nuclear Information System (INIS)

    Chibisov, M.I.

    1978-01-01

    Asymptotics has been investigated at R → infinity (R is internuclear distance) of exchange interaction for the quasimolecule of two identical one-electron atoms. It is shown that the theory of exchange interaction developed previously which does not take into account the symmetry on permutations of electron is not rigid. The exchange contribution to term splitting in alkali metal atoms determines the effective cross section for transfer of excitation at 10 3 K. The Van der Waals contribution is less than the exchange one. The cross section is of the order of 10 -14 cm 2 . The cross section dependence on temperature is weak, sigma approximately ln 2 T

  16. Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides.

    Science.gov (United States)

    Hörvin Billsten, H; Herek, J L; Garcia-Asua, G; Hashøj, L; Polívka, T; Hunter, C N; Sundström, V

    2002-03-26

    LH2 complexes from Rb. sphaeroides were modified genetically so that lycopene, with 11 saturated double bonds, replaced the native carotenoids which contain 10 saturated double bonds. Tuning the S1 level of the carotenoid in LH2 in this way affected the dynamics of energy transfer within LH2, which were investigated using both steady-state and time-resolved techniques. The S1 energy of lycopene in n-hexane was determined to be approximately 12 500 +/- 150 cm(-1), by direct measurement of the S1-S2 transient absorption spectrum using a femtosecond IR-probing technique, thus placing an upper limit on the S1 energy of lycopene in the LH2 complex. Fluorescence emission and excitation spectra demonstrated that energy can be transferred from lycopene to the bacteriochlorophyll molecules within this LH2 complex. The energy-transfer dynamics within the mutant complex were compared to wild-type LH2 from Rb. sphaeroides containing the carotenoid spheroidene and from Rs. molischianum, in which lycopene is the native carotenoid. The results show that the overall efficiency for Crt --> B850 energy transfer is approximately 80% in lyco-LH2 and approximately 95% in WT-LH2 of Rb. sphaeroides. The difference in overall Crt --> BChl transfer efficiency of lyco-LH2 and WT-LH2 mainly relates to the low efficiency of the Crt S(1) --> BChl pathway for complexes containing lycopene, which was 20% in lyco-LH2. These results show that in an LH2 complex where the Crt S1 energy is sufficiently high to provide efficient spectral overlap with both B800 and B850 Q(y) states, energy transfer via the Crt S1 state occurs to both pigments. However, the introduction of lycopene into the Rb. sphaeroides LH2 complex lowers the S1 level of the carotenoid sufficiently to prevent efficient transfer of energy to the B800 Q(y) state, leaving only the Crt S1 --> B850 channel, strongly suggesting that Crt S1 --> BChl energy transfer is controlled by the relative Crt S1 and BChl Q(y) energies.

  17. Monte Carlo wave-packet approach to trace nuclear dynamics in molecular excited states by XUV-pump-IR-probe spectroscopy

    Science.gov (United States)

    Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer

    2018-04-01

    Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.

  18. Experimental study of dynamic effects in moisture transfer in building materials

    DEFF Research Database (Denmark)

    Janssen, Hans; Scheffler, Gregor Albrecht; Plagge, Rudolf

    2016-01-01

    transfer in building materials, similar to moisture transfer in soils, is not free of dynamic effects. The findings imply that the widely accepted static theory for moisture storage in porous media is not generally valid and should be corrected for the occurrences of dynamic effects. Considering......In relation to moisture storage in porous materials, it is often assumed that the process dynamics do not affect the moisture retention. There is mounting evidence though that this notion is incorrect: various studies demonstrate that the moisture retention is influenced by the (de)saturation rates...... of the moisture transfer processes involved. The available evidence primarily stems from imbibition and drainage experiments on soils however, and compared to many other porous media, these tests consider rather permeable materials with relatively dominant liquid transport at comparatively large (de...

  19. Dynamic multi-coil tailored excitation for transmit B1 correction at 7 Tesla.

    Science.gov (United States)

    Umesh Rudrapatna, S; Juchem, Christoph; Nixon, Terence W; de Graaf, Robin A

    2016-07-01

    Tailored excitation (TEx) based on interspersing multiple radio frequency pulses with linear gradient and higher-order shim pulses can be used to obtain uniform flip angle in the presence of large radio frequency transmission (B 1+) inhomogeneity. Here, an implementation of dynamic, multislice tailored excitation using the recently developed multi-coil nonlinear shim hardware (MC-DTEx) is reported. MC-DTEx was developed and tested both in a phantom and in vivo at 7 T, and its efficacy was quantitatively assessed. Predicted outcomes of MC-DTEx and DTEx based on spherical harmonic shims (SH-DTEx) were also compared. For a planned 30 ° flip angle, in a phantom, the standard deviation in excitation improved from 28% (regular excitation) to 12% with MC-DTEx. The SD in in vivo excitation improved from 22 to 12%. The improvements achieved with experimental MC-DTEx closely matched the theoretical predictions. Simulations further showed that MC-DTEx outperforms SH-DTEx for both scenarios. Successful implementation of multislice MC-DTEx is presented and is shown to be capable of homogenizing excitation over more than twofold B 1+ variations. Its benefits over SH-DTEx are also demonstrated. A distinct advantage of MC hardware over SH shim hardware is the absence of significant eddy current effects, which allows for a straightforward, multislice implementation of MC-DTEx. Magn Reson Med 76:83-93, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Dynamics of a population of oscillatory and excitable elements.

    Science.gov (United States)

    O'Keeffe, Kevin P; Strogatz, Steven H

    2016-06-01

    We analyze a variant of a model proposed by Kuramoto, Shinomoto, and Sakaguchi for a large population of coupled oscillatory and excitable elements. Using the Ott-Antonsen ansatz, we reduce the behavior of the population to a two-dimensional dynamical system with three parameters. We present the stability diagram and calculate several of its bifurcation curves analytically, for both excitatory and inhibitory coupling. Our main result is that when the coupling function is broad, the system can display bistability between steady states of constant high and low activity, whereas when the coupling function is narrow and inhibitory, one of the states in the bistable regime can show persistent pulsations in activity.

  1. Excited-state dynamics of a ruthenium(II) catalyst studied by transient photofragmentation in gas phase and transient absorption in solution

    Energy Technology Data Exchange (ETDEWEB)

    Imanbaew, D.; Nosenko, Y. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Kerner, C. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Chevalier, K.; Rupp, F. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Riehn, C., E-mail: riehn@chemie.uni-kl.de [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Thiel, W.R. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Diller, R. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany)

    2014-10-17

    Graphical abstract: - Highlights: • Ultrafast dynamics of new Ru(II) catalysts investigated in gas phase and solution. • Catalyst activation (HCl loss) achieved in ion trap by UV photoexcitation. • Electronic relaxation proceeds by IVR and IC followed by ground state dissociation. • No triplet formation in contrast to other Ru-polypyridine complexes. • Solvent prohibits catalyst activation in solution by fast vibrational cooling. - Abstract: We report studies on the excited state dynamics of new ruthenium(II) complexes [(η{sup 6}-cymene)RuCl(apypm)]PF{sub 6} (apypm=2-NR{sub 2}-4-(pyridine-2-yl)-pyrimidine, R=CH{sub 3} (1)/H (2)) which, in their active form [1{sup +}-HCl] and [2{sup +}-HCl], catalyze the transfer hydrogenation of arylalkyl ketones in the absence of a base. The investigations encompass femtosecond pump–probe transient mass spectrometry under isolated conditions and transient absorption spectroscopy in acetonitrile solution, both on the cations [(η{sup 6}-cymene)RuCl(apypm)]{sup +} (1{sup +}, 2{sup +}). Gas phase studies on mass selected ions were performed in an ESI ion trap mass spectrometer by transient photofragmentation, unambiguously proving the formation of the activated catalyst species [1{sup +}-HCl] or [2{sup +}-HCl] after photoexcitation being the only fragmentation channel. The primary excited state dynamics in the gas phase could be fitted to a biexponential decay, yielding time constants of <100 fs and 1–3 ps. Transient absorption spectroscopy performed in acetonitrile solution using femtosecond UV/Vis and IR probe laser pulses revealed additional deactivation processes on longer time scales (∼7–12 ps). However, the formation of the active catalyst species after photoexcitation could not be observed in solution. The results from both studies are compared to former CID investigations and DFT calculations concerning the activation mechanism.

  2. Continuum emission of excited sodium dimer

    International Nuclear Information System (INIS)

    Pardo, A.; Poyato, J.M.L.; Alonso, J.I.; Rico, F.R.

    1980-01-01

    A study has been made of the behaviour of excited molecular sodium using high-power Ar + laser radiation. A continuum emission was observed in the red wavelength region. This emission was thought to be caused by the formation of excited triatomic molecules. Energy transfer was observed from excited molecules to atoms. (orig.)

  3. Network dynamics and its relationships to topology and coupling structure in excitable complex networks

    International Nuclear Information System (INIS)

    Zhang Li-Sheng; Mi Yuan-Yuan; Gu Wei-Feng; Hu Gang

    2014-01-01

    All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend on network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically. (interdisciplinary physics and related areas of science and technology)

  4. Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, Vytautas; Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Augulis, Ramūnas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Gall, Andrew; Robert, Bruno [Institut de Biologie et Technologies de Saclay, Bât 532, Commissariat à l’Energie Atomique Saclay, 91191 Gif sur Yvette (France); Büchel, Claudia [Institut für Molekulare Biowissenschaften, Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt (Germany); Zigmantas, Donatas [Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund (Sweden); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania)

    2015-06-07

    Energy transfer processes and coherent phenomena in the fucoxanthin–chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Q{sub y} transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Q{sub y} transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.

  5. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  6. Imaging of propagation dynamics of optically-excited spin waves in a garnet film

    International Nuclear Information System (INIS)

    Hashimoto, Yusuke; Saitoh, Eiji

    2016-01-01

    We demonstrate the direct imaging of the propagation dynamics of the optically-excited spin waves in a garnet film observed with an all-optical pump-and-probe magneto-optical imaging technique having sub-pico second time-resolution, sub-micrometer spatial resolution, and milli-degrees of accuracy in the rotation angle of the light polarization. (author)

  7. Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach

    International Nuclear Information System (INIS)

    Unn-Toc, W.; Meier, C.; Halberstadt, N.; Uranga-Piña, Ll.; Rubayo-Soneira, J.

    2012-01-01

    A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.

  8. Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach

    Energy Technology Data Exchange (ETDEWEB)

    Unn-Toc, W.; Meier, C.; Halberstadt, N. [Laboratoire Collisions Agregats et Reactivite, IRSAMC, UMR CNRS 5589, Universite Paul Sabatier, 31062 Toulouse (France); Uranga-Pina, Ll. [Laboratoire Collisions Agregats et Reactivite, IRSAMC, UMR CNRS 5589, Universite Paul Sabatier, 31062 Toulouse (France); Facultad de Fisica, Universidad de la Habana, San Lazaro y L, Vedado, 10400 La Habana (Cuba); Rubayo-Soneira, J. [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Ave. Salvador Allende y Luaces, Habana 10600, AP 6163 La Habana (Cuba)

    2012-08-07

    A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.

  9. Molecular beam studies of reaction dynamics

    International Nuclear Information System (INIS)

    Lee, Yuan T.

    1991-03-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation

  10. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  11. Dynamics of interacting Dicke model in a coupled-cavity array

    Science.gov (United States)

    Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro

    2014-09-01

    We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.

  12. Recoil generated radiotracers in studies of molecular dynamics

    International Nuclear Information System (INIS)

    Spicer, L.D.

    1981-01-01

    This chapter summarizes many of the contributions that the recoil technique of generating excited radiotracer atoms in the presence of a thermal environment is making to the field of chemical dynamics. Specific topics discussed critically include characterization of the generation and behavior of excited molecules including fragmentation kinetics and energy transfer, measurement of thermal and hot kinetic parameters, and studies of reaction mechanisms and stereochemistry as a function of reaction energy. Distinctive features that provide unique approaches to dynamical problems are evaluated in detail and the complementarity with more conventional techniques is addressed. Prospects for future applications are also presented

  13. A Dynamic Branch-Switching Method for Parametrically Excited Systems

    Directory of Open Access Journals (Sweden)

    A.Y.T. Leung

    1999-01-01

    Full Text Available The branch-switching algorithm in static is applied to steady state dynamic problems. The governing ordinary differential equations are transformed to nonlinear algebraic equations by means of harmonic balance method using multiple frequency components. The frequency components of the (irrational nonlinearity of oscillator are obtained by Fast Fourier Transform and Toeplitz Jacobian method (FFT/TJM. All singularities, folds, flips, period doubling and period bubbling, are computed accurately in an analytical manner. Coexisting solutions can be predicted without using initial condition search. The consistence of both stability criteria in time and frequency domains is discussed. A highly nonlinear parametrically excited system is given as example. All connected solution paths are predicted.

  14. The dynamic behaviour of a non-stationary elevator compensating rope system under harmonic and stochastic excitations

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarczyk, S [School of Applied Sciences, University of Northampton, St. George' s Avenue, Northampton NN2 6JD (United Kingdom); Iwankiewicz, R [Institute of Mechanics and Ocean Engineering, Hamburg University of Technology, Eissendorfer Strasse 42 D-21073, Hamburg (Germany); Terumichi, Y, E-mail: stefan.kaczmarczyk@northampton.ac.u [Faculty of Science and Technology, Sophia University, 7-1 KIOI-CHO, CHIYODAKU, Tokyo, 102-8554 Japan (Japan)

    2009-08-01

    Moving slender elastic elements such as ropes, cables and belts are pivotal components of vertical transportation systems such as traction elevators. Their lengths vary within the host building structure during the elevator operation which results in the change of the mass and stiffness characteristics of the system. The structure of modern high-rise buildings is flexible and when subjected to loads due to strong winds and earthquakes it vibrates at low frequencies. The inertial load induced by the building motion excites the flexible components of the elevator system. The compensating ropes due to their lower tension are particularly affected and undergo large dynamic deformations. The paper focuses on the presentation of the non-stationary model of a building-compensating rope system and on the analysis to predict its dynamic response. The excitation mechanism is represented by a harmonic process and the results of computer simulations to predict transient resonance response are presented. The analysis of the simulation results leads to recommendations concerning the selection of the weight of the compensation assembly to minimize the effects of an adverse dynamic response of the system. The scenario when the excitation is represented as a narrow-band stochastic process with the state vector governed by stochastic equations is then discussed and the stochastic differential equations governing the second-order statistical moments of the state vector are developed.

  15. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  16. Development of methods to predict both the dynamic and the pseudo-static response of secondary structures subjected to seismic excitations

    International Nuclear Information System (INIS)

    Subudhi, M.; Bezler, P.

    1984-01-01

    Multiple independent support excitation time history formulations have been used to investigate simplified methods to predict the inertial (or dynamic) component of response as well as the pseudo-static (or static) component of response of secondary structures subjected to seismic excitations. For the dynamic component the independent response spectrum method is used with current industry practice for the modal and direction of excitation combinations being adopted and various procedures for the group combination and sequence being investigated. SRSS combination between support groups is found to yield satisfactory results. For the static component, support grouping by elevation for preliminary design followed by support grouping by attachment point for final design assure overall safety in the design

  17. Magnetic excitations of the Cu2 + quantum spin chain in Sr3CuPtO6

    Science.gov (United States)

    Leiner, J. C.; Oh, Joosung; Kolesnikov, A. I.; Stone, M. B.; Le, Manh Duc; Kenny, E. P.; Powell, B. J.; Mourigal, M.; Gordon, E. E.; Whangbo, M.-H.; Kim, J.-W.; Cheong, S.-W.; Park, Je-Geun

    2018-03-01

    We report the magnetic excitation spectrum as measured by inelastic neutron scattering for a polycrystalline sample of Sr3CuPtO6 . Modeling the data by the 2+4 spinon contributions to the dynamical susceptibility within the chains, and with interchain coupling treated in the random phase approximation, accounts for the major features of the powder-averaged structure factor. The magnetic excitations broaden considerably as temperature is raised, persisting up to above 100 K and displaying a broad transition as previously seen in the susceptibility data. No spin gap is observed in the dispersive spin excitations at low momentum transfer, which is consistent with the gapless spinon continuum expected from the coordinate Bethe ansatz. However, the temperature dependence of the excitation spectrum gives evidence of some very weak interchain coupling.

  18. Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure.

    Science.gov (United States)

    Li, Han; Zheng, Xin; Liu, Yu; Zhang, Zhepeng; Jiang, Tian

    2018-01-25

    The idea of fabricating artificial solids with band structures tailored to particular applications has long fascinated condensed matter physicists. Heterostructure (HS) construction is viewed as an effective and appealing approach to engineer novel electronic properties in two dimensional (2D) materials. Different from common 2D/2D heterojunctions where energy transfer is rarely observed, CsPbBr 3 quantum dots (0D-QDs) interfaced with 2D materials have become attractive HSs for exploring the physics of charge transfer and energy transfer, due to their superior optical properties. In this paper, a new 0D/2D HS is proposed and experimentally studied, making it possible to investigate both light utilization and energy transfer. Specifically, this HS is constructed between monolayer WS 2 and CsPbBr 3 QDs, and exhibits a hybrid band alignment. The dynamics of energy transfer within the investigated 0D/2D HS is characterized by femtosecond transient absorption spectrum (TAS) measurements. The TAS results reveal that ultrafast energy transfer caused by optical excitation is observed from CsPbBr 3 QDs to the WS 2 layer, which can increase the exciton fluence within the WS 2 layer up to 69% when compared with pristine ML WS 2 under the same excitation fluence. Moreover, the formation and dynamics of interlayer excitons have also been investigated and confirmed in the HS, with a calculated recombination time of 36.6 ps. Finally, the overall phenomenological dynamical scenario for the 0D/2D HS is established within the 100 ps time region after excitation. The techniques introduced in this work can also be applied to versatile optoelectronic devices based on low dimensional materials.

  19. Quasi-particle excitations and dynamical structure function of trapped Bose-condensates in the WKB approximation

    OpenAIRE

    Csordás, András; Graham, Robert; Szépfalusy, Péter

    1997-01-01

    The Bogoliubov equations of the quasi-particle excitations in a weakly interacting trapped Bose-condensate are solved in the WKB approximation in an isotropic harmonic trap, determining the discrete quasi-particle energies and wave functions by torus (Bohr-Sommerfeld) quantization of the integrable classical quasi-particle dynamics. The results are used to calculate the position and strengths of the peaks in the dynamic structure function which can be observed by off-resonance inelastic light...

  20. Electronic structure and charge transfer excited states of endohedral fullerene containing electron donoracceptor complexes utilized in organic photovoltaics

    Science.gov (United States)

    Amerikheirabadi, Fatemeh

    Organic Donor-Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor-acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self-consistent field method recently developed in our group as the standard time dependent density functional approaches fail to accurately provide them. The model photovoltaics systems analyzed are as follows: Sc3N C 80--ZnTPP, Y3 N C80-- ZnTPP and Sc3 N C80-- ZnPc. In addition, a thorough analysis of the isolated donor and acceptor molecules is also provided. The studied acceptors are chosen from a class of fullerenes named trimetallic nitride endohedral fullerenes. These molecules have shown to possess advantages as acceptors such as long lifetimes of the charge-separated states.

  1. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Wu, S. W.; Ho, W.

    2010-01-01

    The junction of a scanning tunneling microscope (STM) operating in the tunneling regime was irradiated with femtosecond laser pulses. A photoexcited hot electron in the STM tip resonantly tunnels into an excited state of a single molecule on the surface, converting it from the neutral to the anion. The electron-transfer rate depends quadratically on the incident laser power, suggesting a two-photon excitation process. This nonlinear optical process is further confirmed by the polarization measurement. Spatial dependence of the electron-transfer rate exhibits atomic-scale variations. A two-pulse correlation experiment reveals the ultrafast dynamic nature of photoinduced charging process in the STM junction. Results from these experiments are important for understanding photoinduced interfacial charge transfer in many nanoscale inorganic-organic structures.

  2. Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Arsenijević, D., E-mail: dejan@sol.physik.tu-berlin.de; Schliwa, A.; Schmeckebier, H.; Stubenrauch, M.; Spiegelberg, M.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Mikhelashvili, V. [Department of Electrical Engineering and The Russell Berrie Nanotechnology Institute, Technion, Haifa 32000 (Israel); Eisenstein, G. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Department of Electrical Engineering and The Russell Berrie Nanotechnology Institute, Technion, Haifa 32000 (Israel)

    2014-05-05

    The dynamic properties of ground- and excited-state emission in InAs/GaAs quantum-dot lasers operating close to 1.31 μm are studied systematically. Under low bias conditions, such devices emit on the ground state, and switch to emission from the excited state under large drive currents. Modification of one facet reflectivity by deposition of a dichroic mirror yields emission at one of the two quantum-dot states under all bias conditions and enables to properly compare the dynamic properties of lasing from the two different initial states. The larger differential gain of the excited state, which follows from its larger degeneracy, as well as its somewhat smaller nonlinear gain compression results in largely improved modulation capabilities. We demonstrate maximum small-signal bandwidths of 10.51 GHz and 16.25 GHz for the ground and excited state, respectively, and correspondingly, large-signal digital modulation capabilities of 15 Gb/s and 22.5 Gb/s. For the excited state, the maximum error-free bit rate is 25 Gb/s.

  3. Energy and charge transfer dynamics between Alq3 and CdSeS nanocrystals.

    Science.gov (United States)

    Zhang, Shuping; Liu, Yuqiang; Yang, Yanqiang

    2010-03-01

    The photoluminescence properties of the blend films consisting of organic small molecules and nanocrystals (NCs)--Alq3 and CdSeS NCs--were studied by steady-state and time-resolved photoluminescence (PL) spectroscopy with different excited wavelengths. Both the fluorescence intensity and lifetime are intensively dependent on the NC concentration. The detailed analysis of experiment data proves that Forster energy transfer from the Alq3 to the NCs exists simultaneously with the charge transfer and both compete with each other in the blend films.

  4. Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction

    International Nuclear Information System (INIS)

    Li Zhi-Xin; Cao Qing-Jie; Alain, Léger

    2016-01-01

    We propose an archetypal self-excited system driven by moving belt friction, which is constructed with the smooth and discontinuous (SD) oscillator proposed by the Cao et al. and the classical moving belt. The moving belt friction is modeled as the Coulomb friction to formulate the mathematical model of the proposed self-excited SD oscillator. The equilibrium states of the unperturbed system are obtained to show the complex equilibrium bifurcations. Phase portraits are depicted to present the hyperbolic structure transition, the multiple stick regions, and the friction-induced asymmetry phenomena. The numerical simulations are carried out to demonstrate the friction-induced vibration of multiple stick-slip phenomena and the stick-slip chaos in the perturbed self-excited system. The results presented here provide an opportunity for us to get insight into the mechanism of the complex friction-induced nonlinear dynamics in mechanical engineering and geography. (paper)

  5. Energy transfer mechanisms in layered 2D perovskites.

    Science.gov (United States)

    Williams, Olivia F; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M

    2018-04-07

    Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA) 2 (MA) n-1 [Pb n I 3n+1 ] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

  6. Energy transfer mechanisms in layered 2D perovskites

    Science.gov (United States)

    Williams, Olivia F.; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M.

    2018-04-01

    Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA)2(MA)n-1[PbnI3n+1] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

  7. Exciton-polariton dynamics in a GaAs bulk microcavity

    Science.gov (United States)

    Ceccherini, S.; Gurioli, M.; Bogani, F.; Colocci, M.; Tredicucci, A.; Bassani, F.; Beltram, F.; Sorba, L.

    1998-01-01

    We present a full analysis of exciton dynamics in a GaAs λ/2 bulk microcavity following excitation by ultrafast laser pulses. Coherent dynamics was probed by means of an interferometric technique; beating and dephasing times were studied for various excitation intensities. At high incident power, population effects begin to show up reducing exciton oscillator strength and suppressing Rabi splitting. This feature produces marked non-linearities in the input-output characteristic of the optical functions, which were studied in view of reaching bistable operation. Theoretical calculations performed within the transfer-matrix framework show good agreement with experimental results.

  8. Radioactive beam EXperiments at ISOLDE : Coulomb excitation and neutron transfer reactions of exotic nuclei.

    CERN Multimedia

    Kugler, E; Ratzinger, U; Wenander, F J C

    2002-01-01

    % IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.

  9. Dynamics in electron transfer protein complexes

    OpenAIRE

    Bashir, Qamar

    2010-01-01

    Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize the ensemble of encounter orientations in the short-lived electron transfer complex of yeast Cc and CcP. The complete conformational space sampled by the protein molecules during the dynamic part of ...

  10. Energy transfer in diatom/diatom molecular collisions

    International Nuclear Information System (INIS)

    Sohlberg, K.W.

    1992-01-01

    In a collision of two molecules, the translational energy of the collision may be redistributed into internal energy of rotation, vibration, or electron motion, in one or both of the colliding partners. In addition, internal energy in one or more of these modes may be open-quotes quenchedclose quotes into translation, leading to a superelastic collision. Such energy transfer may take place by a number of mechanisms. This energy transfer is of fundamental importance in understanding chemical reaction dynamics. Nearly all chemical reactions take place through a bimolecular collision process (or multiple bimolecular collisions) and the quantum state specificity of the reaction can have a major role in determining the kinetics of the reaction, In particular, the author has investigated vibrational energy transfer in collisions between two diatomic molecules. In addition to serving as models for all molecular collision process, gas phase collisions of these species are ubiquitous in atmospheric phenomena which are of critical importance in answering the current questions about the human induced degradation of the earth's atmospheric. Classical trajectory methods have been used to explore the excitation of vibrations in gas-phase collisions of the nitrogen molecular ion with its parent molecule. The near symmetry of the reactants is shown to result in a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability, even

  11. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

    DEFF Research Database (Denmark)

    Reynisson, J.; Wilbrandt, R.; Brinck, V.

    2002-01-01

    . The physical and chemical properties of the excited singlet state of the trioxatriangulenium (TOTA(+)) carbenium ion are investigated by experimental and Computational means. The degeneracy of the lowest excited states is counteracted by Jahn-Teller-type distortion, which leads to vibronic broadening...... of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...... triphenylenes is studied separately. Phosphorescence spectra, triplet lifetimes, and triplet-triplet absorption spectra are provided. In the discussion, TOTA(+) is compared to the unsubstituted xanthenium ion and its 9-phenyl derivative with respect to the excited state properties....

  12. Benchmarking the stochastic time-dependent variational approach for excitation dynamics in molecular aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Chorošajev, Vladimir [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius (Lithuania); Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius (Lithuania); Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Sauletekio 3, 10222 Vilnius (Lithuania); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius (Lithuania)

    2016-12-20

    Highlights: • The Davydov ansatze can be used for finite temperature simulations with an extension. • The accuracy is high if the system is strongly coupled to the environmental phonons. • The approach can simulate time-resolved fluorescence spectra. - Abstract: Time dependent variational approach is a convenient method to characterize the excitation dynamics in molecular aggregates for different strengths of system-bath interaction a, which does not require any additional perturbative schemes. Until recently, however, this method was only applicable in zero temperature case. It has become possible to extend this method for finite temperatures with the introduction of stochastic time dependent variational approach. Here we present a comparison between this approach and the exact hierarchical equations of motion approach for describing excitation dynamics in a broad range of temperatures. We calculate electronic population evolution, absorption and auxiliary time resolved fluorescence spectra in different regimes and find that the stochastic approach shows excellent agreement with the exact approach when the system-bath coupling is sufficiently large and temperatures are high. The differences between the two methods are larger, when temperatures are lower or the system-bath coupling is small.

  13. Eff icient energy back transfer from Ce{sup 3+} 5d state to Pr{sup 3+} {sup 1}D{sub 2} level in Lu{sub 3}Al{sub 5}O{sub 12} upon Pr{sup 3+} 4f5d excitation

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wu [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hao, Zhendong; Zhang, Xia; Pan, Guo-Hui; Luo, Yongshi; Zhang, Ligong; Zhao, Haifeng [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin (China); Zhang, Jiahua, E-mail: zhangjh@ciomp.ac.cn [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin (China)

    2017-06-15

    The step energy transfers from Pr{sup 3+} 4f5d state to Ce{sup 3+} 5d state followed by energy back transfer from Ce{sup 3+} 5d state to Pr{sup 3+} {sup 1}D{sub 2} level are studied. The Ce{sup 3+}→Pr{sup 3+} energy back transfer upon Pr{sup 3+} 4f5d excitation is found to be more efficient than the normal Ce{sup 3+}→Pr{sup 3+} energy transfer upon Ce{sup 3+} 5d excitation. The efficient energy back transfer is attributed to preferential excitation of the Ce{sup 3+} ion with an adjacent Pr{sup 3+} surrounding in Pr{sup 3+}→Ce{sup 3+} energy transfer of the first step, whereas Ce{sup 3+} is excited randomly in the normal energy transfer. The efficiencies of Ce{sup 3+}→Pr{sup 3+} energy back transfer as a function of Ce{sup 3+} and Pr{sup 3+} concentration are evaluated, respectively.

  14. Excited states rotational effects on the behavior of excited molecules

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 7 is a collection of papers that discusses the excited states of molecules. The first paper reviews the rotational involvement in intra-molecular in vibrational redistribution. This paper analyzes the vibrational Hamiltonian as to its efficacy in detecting the manifestations of intra-molecular state-mixing in time-resolved and time-averaged spectroscopic measurements. The next paper examines the temporal behavior of intra-molecular vibration-rotation energy transfer (IVRET) and the effects of IVRET on collision, reaction, and the decomposition processes. This paper also

  15. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    International Nuclear Information System (INIS)

    Tomin, Vladimir I.; Ushakou, Dzmitryi V.

    2015-01-01

    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited

  16. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tomin, Vladimir I., E-mail: tomin@apsl.edu.pl; Ushakou, Dzmitryi V.

    2015-10-15

    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited

  17. Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses

    International Nuclear Information System (INIS)

    Caird, J.A.; Ramponi, A.J.; Staver, P.R.

    1991-01-01

    Radiometrically calibrated spectroscopic techniques employing an integrating-sphere detection system have been used to determine the fluorescence quantum efficiencies for two commercially available Nd 3+ -doped phosphate laser glasses, LG-750 and LG-760. Quantum efficiencies and fluorescence lifetimes were measured for samples with various neodymium concentrations. It is shown that the effects of concentration quenching are accurately described when both resonant nonradiative excitation hopping (the Burshtein model) and annihilation by cross relaxation are accounted for by Foerster--Dexter dipole--dipole energy-transfer theory. The Foerster--Dexter critical range for nonradiative excitation hopping was found to be R DD =11 A, while the critical range for cross relaxation was close to R DA =4 A in these glasses. The quantum efficiency at low Nd 3+ concentrations was (92±5)%, implying a nonradiative relaxation rate of 210±150 s -1 for isolated ions. Improved values for the radiative lifetimes and the stimulated emission cross sections for these glasses were also deduced from the measurements

  18. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  19. Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions

    International Nuclear Information System (INIS)

    Hatcher, Elizabeth; Soudackov, Alexander; Hammes-Schiffer, Sharon

    2005-01-01

    The dynamical aspects of a model proton-coupled electron transfer (PCET) reaction in solution are analyzed with molecular dynamics simulations. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The impact of the proton donor-acceptor and solvent dynamics on the probability flux is examined. The dynamical behavior of the probability flux correlation function is dominated by a solvent damping term that depends on the energy gap correlation function. The proton donor-acceptor motion does not impact the dynamical behavior of the probability flux correlation function but does influence the magnitude of the rate. The approximations previously invoked for the calculation of PCET rates are tested. The effects of solvent damping on the proton donor-acceptor vibrational motion are found to be negligible, and the short-time solvent approximation, in which only equilibrium fluctuations of the solvent are considered, is determined to be valid for these types of reactions. The analysis of PCET reactions is compared to previous analyses of single electron and proton transfer reactions. The dynamical behavior is qualitatively similar for all three types of reactions, but the time scale of the decay of the probability flux correlation function is significantly longer for single proton transfer than for PCET and single electron transfer due to a smaller solvent reorganization energy for proton transfer

  20. Structural, Dynamic, and Vibrational Properties during Heat Transfer in Si/Ge Superlattices: A Car-Parrinello Molecular Dynamics Study

    OpenAIRE

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2016-01-01

    The structural, dynamic, and vibrational properties during the heat transfer process in Si/Ge superlattices, are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) ar...

  1. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shanlin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  2. Analytical study of synchronization in spin-transfer-driven magnetization dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Roberto [Politecnico di Torino - sede di Verres, via Luigi Barone 8, I-11029 Verres (Italy); Bertotti, Giorgio; Bortolotti, Paolo [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, I-10135 Torino (Italy); Serpico, Claudio [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' , via Claudio 21, I-80125 Napoli (Italy); D' Aquino, Massimiliano [Dipartimento per le Tecnologie, Universita di Napoli ' Parthenope' , via Medina 40, I-80133 Napoli (Italy); Mayergoyz, Isaak D, E-mail: p.bortolotti@inrim.i [Electrical and Computer Engineering Department and UMIACS, University of Maryland, College Park MD 20742 (United States)

    2010-01-01

    An analytical study of the synchronization effects in spin-transfer-driven nanomagnets subjected to either microwave magnetic fields or microwave electrical currents is discussed. Appropriate stability diagrams are constructed and the conditions under which the current-induced magnetization precession is synchronized by the microwave external excitation are derived and discussed. Analytical predictions are given for the existence of phase-locking effects in current-induced magnetization precessions and for the occurrence of hysteresis in phase-locking as a function of the spin-polarized current.

  3. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films

    Science.gov (United States)

    Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje

    2012-10-01

    We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.

  4. Observation and quantification of the quantum dynamics of a strong-field excited multi-level system.

    Science.gov (United States)

    Liu, Zuoye; Wang, Quanjun; Ding, Jingjie; Cavaletto, Stefano M; Pfeifer, Thomas; Hu, Bitao

    2017-01-04

    The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.

  5. Rate for energy transfer from excited cyclohexane to nitrous oxide in the liquid phase

    International Nuclear Information System (INIS)

    Wada, T.; Hatano, Y.

    1975-01-01

    Pure liquid cyclohexane and cyclohexane solutions of nitrous oxide have been photolyzed at 163 nm. The quantum yield of the product hydrogen in the photolysis of pure cyclohexane is found to be 1.0. The addition of nitrous oxide results in the reduction in the yield of hydrogen and in the formation of nitrogen. The decrement of the hydrogen yield is approximately equal to the increment of the nitrogen yield. About 40 percent of the hydrogen yield in pure cyclohexane is found to be produced through a path which is not affected by the addition of nitrous oxide. The effect of the addition of nitrous oxide is attributed to energy transfer from excited cyclohexane to nitrous oxide with the rate constant of k = 1.0 x 10 11 M -1 sec -1 (at 15 0 C). This value is about a factor of 10 larger than that expected as for diffusion-controlled rate. A contribution of the energy transfer process to the formation of nitrogen in the radiolysis of cyclohexane solutions of nitrous oxide has also been discussed. (auth)

  6. Energy dependence of the ionization of highly excited atoms by collisions with excited atoms

    International Nuclear Information System (INIS)

    Shirai, T.; Nakai, Y.; Nakamura, H.

    1979-01-01

    Approximate analytical expressions are derived for the ionization cross sections in the high- and low-collision-energy limits using the improved impulse approximation based on the assumption that the electron-atom inelastic-scattering amplitude is a function only of the momentum transfer. Both cases of simultaneous excitation and de-excitation of one of the atoms are discussed. The formulas are applied to the collisions between two excited hydrogen atoms and are found very useful for estimating the cross sections in the wide range of collisions energies

  7. Optimal superadiabatic population transfer and gates by dynamical phase corrections

    Science.gov (United States)

    Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.

    2018-04-01

    In many quantum technologies adiabatic processes are used for coherent quantum state operations, offering inherent robustness to errors in the control parameters. The main limitation is the long operation time resulting from the requirement of adiabaticity. The superadiabatic method allows for faster operation, by applying counterdiabatic driving that corrects for excitations resulting from the violation of the adiabatic condition. In this article we show how to construct the counterdiabatic Hamiltonian in a system with forbidden transitions by using two-photon processes and how to correct for the resulting time-dependent ac-Stark shifts in order to enable population transfer with unit fidelity. We further demonstrate that superadiabatic stimulated Raman passage can realize a robust unitary NOT-gate between the ground state and the second excited state of a three-level system. The results can be readily applied to a three-level transmon with the ladder energy level structure.

  8. Development of the Fragment Molecular Orbital Method for Calculating Nonlocal Excitations in Large Molecular Systems.

    Science.gov (United States)

    Fujita, Takatoshi; Mochizuki, Yuji

    2018-04-19

    We developed the fragment-based method for calculating nonlocal excitations in large molecular systems. This method is based on the multilayer fragment molecular orbital method and the configuration interaction single (CIS) wave function using localized molecular orbitals. The excited-state wave function for the whole system is described as a superposition of configuration state functions (CSFs) for intrafragment excitations and for interfragment charge-transfer excitations. The formulation and calculations of singlet excited-state Hamiltonian matrix elements in the fragment CSFs are presented in detail. The efficient approximation schemes for calculating the matrix elements are also presented. The computational efficiency and the accuracy were evaluated using the molecular dimers and molecular aggregates. We confirmed that absolute errors of 50 meV (relative to the conventional calculations) are achievable for the molecular systems in their equilibrium geometries. The perturbative electron correlation correction to the CIS excitation energies is also demonstrated. The present theory can compute a large number of excited states in large molecular systems; in addition, it allows for the systematic derivation of a model exciton Hamiltonian. These features are useful for studying excited-state dynamics in condensed molecular systems based on the ab initio electronic structure theory.

  9. On Emulation of Flueric Devices in Excitable Chemical Medium.

    Science.gov (United States)

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.

  10. On Emulation of Flueric Devices in Excitable Chemical Medium.

    Directory of Open Access Journals (Sweden)

    Andrew Adamatzky

    Full Text Available Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.

  11. Wave Packet Simulation of Nonadiabatic Dynamics in Highly Excited 1,3-Dibromopropane

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Y.; Møller, Klaus Braagaard; Sølling, Theis Ivan

    2008-01-01

    ]. In the experiment. DBP is excited to a Rydberg state 8 eV above the ground state. The interpretation of the results is that a torsional motion of the bromomethylene groups with a vibrational period of 680 is is activated upon excitation. The Rydberg state decays to a valence state, causing a dissociation of one...... of the carbon bromine bonds oil a time scale of 2.5 ps. Building the theoretical framework for the wave packet propagation around this model of the reaction dynamics, the Simulations reproduce, to a good extent, the time scales observed in the experiment. Furthermore. the Simulations provide insight into how...... the torsion motion influences the bond breakage, and C we can conclude that the mechanism that delays the dissociation is solely the electronic transition from the Rydberg state to the valence state and does not involve, for example, intramolecular vibrational energy redistribution (IVR)....

  12. Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions.

    Science.gov (United States)

    Watanabe, Sadayuki; Furube, Akihiro; Katoh, Ryuzi

    2006-08-31

    We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.

  13. Localizations in cellular automata with mutualistic excitation rules

    International Nuclear Information System (INIS)

    Adamatzky, Andrew

    2009-01-01

    Every cell of two-dimensional cellular automaton with eight-cell neighborhood takes three states: resting, excited and refractory, and updates excited to refractory and refractory to resting states unconditionally. A resting cell excites depending on number of excited and refractory neighbors. We made exhaustive study of spatio-temporal excitation dynamics for all rules of this type and selected several classes of rules. The classes supporting self-localizations are studied in details. We uncover basic types of mobile (gliders) and stationary localizations, and characterize their morphology and dynamics.

  14. Theoretical description of excited state dynamics in nanostructures

    Science.gov (United States)

    Rubio, Angel

    2009-03-01

    There has been much progress in the synthesis and characterization of nanostructures however, there remain immense challenges in understanding their properties and interactions with external probes in order to realize their tremendous potential for applications (molecular electronics, nanoscale opto-electronic devices, light harvesting and emitting nanostructures). We will review the recent implementations of TDDFT to study the optical absorption of biological chromophores, one-dimensional polymers and layered materials. In particular we will show the effect of electron-hole attraction in those systems. Applications to the optical properties of solvated nanostructures as well as excited state dynamics in some organic molecules will be used as text cases to illustrate the performance of the approach. Work done in collaboration with A. Castro, M. Marques, X. Andrade, J.L Alonso, Pablo Echenique, L. Wirtz, A. Marini, M. Gruning, C. Rozzi, D. Varsano and E.K.U. Gross.

  15. Molecular theory of mass transfer kinetics and dynamics at gas-water interface

    International Nuclear Information System (INIS)

    Morita, Akihiro; Garrett, Bruce C

    2008-01-01

    The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.

  16. Excited-state proton transfer in confined medium. 4-methyl-7-hydroxyflavylium and β-naphthol incorporated in cucurbit[7]uril.

    Science.gov (United States)

    Basílio, Nuno; Laia, César A T; Pina, Fernando

    2015-02-12

    Excited-state proton transfer (ESPT) was studied by fluorescent emission using a mathematical model recast from the Weller theory. The titration curves can be fitted with three parameters: pK(a) (acidity constant of the ground sate), pK(ap)* (apparent acidity constant of the excited state), and η(A*), the efficiency of excited base formation from the excited acid. β-Naphthol and 4-metyhl-7-hydroxyflavylium were studied in aqueous solution and upon incorporation in cucurbit[7]uril. For all the compounds studied the interaction with the host leads to 1:1 adducts and the ground-state pK(a) increases upon incorporation. Whereas the ESPT of 4-methyl-7-hydroxyflavylium practically does not change in the presence of the host, in the case of β-naphthol it is prevented and the fluorescence emission titration curves are coincident with those taken by absorption. The position of the guest inside the host was investigated by NMR experiments and seems to determine the efficiency of the ESPT. The ESPT decreases for the guest, exhibiting a great protection of the phenol to the bulk water interaction.

  17. Nonlinear dynamics and bifurcation characteristics of shape memory alloy thin films subjected to in-plane stochastic excitation

    International Nuclear Information System (INIS)

    Zhu, Zhi-Wen; Zhang, Qing-Xin; Xu, Jia

    2014-01-01

    A kind of shape memory alloy (SMA) hysteretic nonlinear model was developed, and the nonlinear dynamics and bifurcation characteristics of the SMA thin film subjected to in-plane stochastic excitation were investigated. Van der Pol difference item was introduced to describe the hysteretic phenomena of the SMA strain–stress curves, and the nonlinear dynamic model of the SMA thin film subjected to in-plane stochastic excitation was developed. The conditions of global stochastic stability of the system were determined in singular boundary theory, and the probability density function of the system response was obtained. Finally, the conditions of stochastic Hopf bifurcation were analyzed. The results of theoretical analysis and numerical simulation indicate that self-excited vibration is induced by the hysteretic nonlinear characteristics of SMA, and stochastic Hopf bifurcation appears when the bifurcation parameter was changed; there are two limit cycles in the stationary probability density of the dynamic response of the system in some cases, which means that there are two vibration amplitudes whose probabilities are both very high, and jumping phenomena between the two vibration amplitudes appear with the change in conditions. The results obtained in this current paper are helpful for the application of the SMA thin film in stochastic vibration fields. - Highlights: • Hysteretic nonlinear model of shape memory alloy was developed. • Van der Pol item was introduced to interpret hysteretic strain–stress curves. • Nonlinear dynamic characteristics of the shape memory alloy film were analyzed. • Jumping phenomena were observed in the change of the parameters

  18. Signatures of fission dynamics in highly excited nuclei produced in 197AU(800 A MeV) on proton collisions

    International Nuclear Information System (INIS)

    Benlliure, J.; Armbruster, P.; Bernas, M.

    2001-09-01

    197 Au(800 A MeV)-on-proton collisions are used to investigate the fission dynamics at high excitation energy. The kinematic properties together with the isotopic identification of the fission fragments allow to determine the mass, charge and excitation energy of the fissioning nucleus at saddle. The comparison of these observables and the measured total fission cross section with model calculations evidences a clear hindrance of fission at high excitation energy that can be explained in terms of nuclear dissipation. Assuming a statistical evaporation for other de-excitation channels than fission, an estimated value of the transient time of fission of (3 ± 1) . 10 -21 s is obtained. (orig.)

  19. A comprehensive spectral theory of zonal-mode dynamics in trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Gatto, R.; Baver, D.A.; Fernandez, E.

    2005-01-01

    A comprehensive, self-consistent theory for spectral dynamics in trapped electron mode (TEM) turbulence offers critical new understanding and insights into zonal-mode physics. This theory shows that 1) zonal mode structure, anisotropy, excitation, and temporal behavior arise at and from the interface of nonlinear advection and linear wave properties; 2) waves induce a marked spectral energy-transfer anisotropy that preferentially drives zonal modes relative to non zonal modes; 3) triplet correlations involving density (as opposed to those involving only flow) mediate the dominant energy transfer at long wavelengths; 4) energy transfer becomes inverse in the presence of wave anisotropy, where otherwise it is forward; 5) zonal-mode excitation is accompanied by excitation of a spectrum of damped eigenmodes, making zonal modes nonlinearly damped; and 6) the combination of anisotropic transfer to zonal modes and their nonlinear damping make this the dominant saturation mechanism for TEM turbulence. This accounts for the reduction of turbulence level by zonal modes, not zonal-flow ExB shearing. (author)

  20. Systematics in Rydberg state excitations for ion-atom collisions

    International Nuclear Information System (INIS)

    Andresen, B.; Jensen, K.; Petersen, N.B.; Veje, E.

    1976-01-01

    Rydberg state excitations in the Ne + , Mg + -He collisions have been studied in the projectile energy range 10-75 keV by means of optical spectrometry in a search for systematic trends. The relative excitation cross sections for levels of a Rydberg term series are found to follow a general (nsup(x))sup(P) behaviour with P < approximately -3 varying with collision energy and particles, regardless of whether the excited state population results from direct excitation, single electron transfer, or double electron transfer. At higher collision energies P is approximately -3 as predicted by theory. Polarization of the emitted line radiation indicates that there is no general rule for the relative excitation of the different magnetic substates of the same level. A statistical distribution of excitation is found for levels within the same term when the fine structure splitting is small. (Auth.)

  1. Excitations and relaxation dynamics in multiferroic GeV4S8 studied by terahertz and dielectric spectroscopy

    Science.gov (United States)

    Reschke, S.; Wang, Zhe; Mayr, F.; Ruff, E.; Lunkenheimer, P.; Tsurkan, V.; Loidl, A.

    2017-10-01

    We report on THz time-domain spectroscopy on multiferroic GeV4S8 , which undergoes orbital ordering at a Jahn-Teller transition at 30.5 K and exhibits antiferromagnetic order below 14.6 K. The THz experiments are complemented by dielectric experiments at audio and radio frequencies. We identify a low-lying excitation close to 0.5 THz, which is only weakly temperature dependent and probably corresponds to a molecular excitation within the electronic level scheme of the V4 clusters. In addition, we detect complex temperature-dependent behavior of a low-lying phononic excitation, closely linked to the onset of orbitally driven ferroelectricity. In the high-temperature cubic phase, which is paramagnetic and orbitally disordered, this excitation is of relaxational character becomes an overdamped Lorentzian mode in the orbitally ordered phase below the Jahn-Teller transition, and finally appears as well-defined phonon excitation in the antiferromagnetic state. Abrupt changes in the real and imaginary parts of the complex dielectric permittivity show that orbital ordering appears via a structural phase transition with strong first-order character and that the onset of antiferromagnetic order is accompanied by significant structural changes, which are of first-order character, too. Dielectric spectroscopy documents that at low frequencies, significant dipolar relaxations are present in the orbitally ordered, paramagnetic phase only. In contrast to the closely related GaV4S8 , this relaxation dynamics that most likely mirrors coupled orbital and polar fluctuations does not seem to be related to the dynamic processes detected in the THz regime.

  2. Dynamic Balance of Excitation and Inhibition in Human and Monkey Neocortex

    Science.gov (United States)

    Dehghani, Nima; Peyrache, Adrien; Telenczuk, Bartosz; Le van Quyen, Michel; Halgren, Eric; Cash, Sydney S.; Hatsopoulos, Nicholas G.; Destexhe, Alain

    2016-03-01

    Balance of excitation and inhibition is a fundamental feature of in vivo network activity and is important for its computations. However, its presence in the neocortex of higher mammals is not well established. We investigated the dynamics of excitation and inhibition using dense multielectrode recordings in humans and monkeys. We found that in all states of the wake-sleep cycle, excitatory and inhibitory ensembles are well balanced, and co-fluctuate with slight instantaneous deviations from perfect balance, mostly in slow-wave sleep. Remarkably, these correlated fluctuations are seen for many different temporal scales. The similarity of these computational features with a network model of self-generated balanced states suggests that such balanced activity is essentially generated by recurrent activity in the local network and is not due to external inputs. Finally, we find that this balance breaks down during seizures, where the temporal correlation of excitatory and inhibitory populations is disrupted. These results show that balanced activity is a feature of normal brain activity, and break down of the balance could be an important factor to define pathological states.

  3. Influence of N-O chemistry on the excitation of alkali metals by a non-transferred DC plasma jet

    International Nuclear Information System (INIS)

    Haeyrinen, Ville; Oikari, Risto; Hernberg, Rolf

    2004-01-01

    Excitation of Na(3p) and K(4p) states by a high velocity non-transferred direct current plasma jet was studied. A turbulent nitrogen plasma jet was discharged into an atmosphere consisting of nitrogen and oxygen, laden with trace amounts of alkali. The line reversal temperatures of Na and K depend on the molar fraction of oxygen and may deviate considerably from the gas temperature. The reaction pressure was 0.1 MPa. The measured line reversal temperatures were reproduced by a simple chemical model. At temperatures near 2000 K non-equilibrium is caused by association of nitrogen atoms by the Zeldovich mechanism, which affects the vibrational temperature of nitrogen molecules. Near 1000 K excitation may also take place due to a chemiluminescent mechanism between alkali metals and ozone

  4. Resonant Tidal Excitation of Internal Waves in the Earth's Fluid Core

    Science.gov (United States)

    Tyler, Robert H.; Kuang, Weijia

    2014-01-01

    It has long been speculated that there is a stably stratified layer below the core-mantle boundary, and two recent studies have improved the constraints on the parameters describing this stratification. Here we consider the dynamical implications of this layer using a simplified model. We first show that the stratification in this surface layer has sensitive control over the rate at which tidal energy is transferred to the core. We then show that when the stratification parameters from the recent studies are used in this model, a resonant configuration arrives whereby tidal forces perform elevated rates of work in exciting core flow. Specifically, the internal wave speed derived from the two independent studies (150 and 155 m/s) are in remarkable agreement with the speed (152 m/s) required for excitation of the primary normal mode of oscillation as calculated from full solutions of the Laplace Tidal Equations applied to a reduced-gravity idealized model representing the stratified layer. In evaluating this agreement it is noteworthy that the idealized model assumed may be regarded as the most reduced representation of the stratified dynamics of the layer, in that there are no non-essential dynamical terms in the governing equations assumed. While it is certainly possible that a more realistic treatment may require additional dynamical terms or coupling, it is also clear that this reduced representation includes no freedom for coercing the correlation described. This suggests that one must accept either (1) that tidal forces resonantly excite core flow and this is predicted by a simple model or (2) that either the independent estimates or the dynamical model does not accurately portray the core surface layer and there has simply been an unlikely coincidence between three estimates of a stratification parameter which would otherwise have a broad plausible range.

  5. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    Science.gov (United States)

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-03

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Elastic scattering and quasi-elastic transfers

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Experiments are presented which it will be possible to carry out at GANIL on the elastic scattering of heavy ions: diffraction phenomena if the absorption is great, refraction phenomena if absorption is low. The determination of the optical parameters can be performed. The study of the quasi-elastic transfer reactions will make it possible to know the dynamics of the nuclear reactions, form exotic nuclei and study their energy excitation spectrum, and analyse the scattering and reaction cross sections [fr

  7. Charge-Transfer Complexes Studied by Dynamic Force Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jurriaan Huskens

    2013-03-01

    Full Text Available In this paper, the strength and kinetics of two charge-transfer complexes, naphthol-methylviologen and pyrene-methylviologen, are studied using dynamic force spectroscopy. The dissociation rates indicate an enhanced stability of the pyrene-methylviologen complex, which agrees with its higher thermodynamic stability compared to naphthol-methylviologen complex.

  8. Gentlest ascent dynamics for calculating first excited state and exploring energy landscape of Kohn-Sham density functionals.

    Science.gov (United States)

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2015-12-14

    We develop the gentlest ascent dynamics for Kohn-Sham density functional theory to search for the index-1 saddle points on the energy landscape of the Kohn-Sham density functionals. These stationary solutions correspond to excited states in the ground state functionals. As shown by various examples, the first excited states of many chemical systems are given by these index-1 saddle points. Our novel approach provides an alternative, more robust way to obtain these excited states, compared with the widely used ΔSCF approach. The method can be easily generalized to target higher index saddle points. Our results also reveal the physical interest and relevance of studying the Kohn-Sham energy landscape.

  9. Role of dynamical screening in excitation kinetics of biased quantum wells: Nonlinear absorption and ultrabroadband terahertz emission

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Monozon, B. S.; Jepsen, Peter Uhd

    2006-01-01

    In this work we describe the ultrafast excitation kinetics of biased quantum well, arising from the optically induced dynamical screening of a bias electric field. The initial bia electric field inside the quantum well is screened by the optically excited polarized electron-hole pairs. This leads...... wells are in good agreement with our experimental observations [Turchinovich et al., Phys. Rev. B 68, 241307(R) (2003)], as well as in perfect compliance with qualitative considerations. ©2006 American Institute of Physics...

  10. Instantaneous Transfer Entropy for the Study of Cardiovascular and Cardiorespiratory Nonstationary Dynamics.

    Science.gov (United States)

    Valenza, Gaetano; Faes, Luca; Citi, Luca; Orini, Michele; Barbieri, Riccardo

    2018-05-01

    Measures of transfer entropy (TE) quantify the direction and strength of coupling between two complex systems. Standard approaches assume stationarity of the observations, and therefore are unable to track time-varying changes in nonlinear information transfer with high temporal resolution. In this study, we aim to define and validate novel instantaneous measures of TE to provide an improved assessment of complex nonstationary cardiorespiratory interactions. We here propose a novel instantaneous point-process TE (ipTE) and validate its assessment as applied to cardiovascular and cardiorespiratory dynamics. In particular, heartbeat and respiratory dynamics are characterized through discrete time series, and modeled with probability density functions predicting the time of the next physiological event as a function of the past history. Likewise, nonstationary interactions between heartbeat and blood pressure dynamics are characterized as well. Furthermore, we propose a new measure of information transfer, the instantaneous point-process information transfer (ipInfTr), which is directly derived from point-process-based definitions of the Kolmogorov-Smirnov distance. Analysis on synthetic data, as well as on experimental data gathered from healthy subjects undergoing postural changes confirms that ipTE, as well as ipInfTr measures are able to dynamically track changes in physiological systems coupling. This novel approach opens new avenues in the study of hidden, transient, nonstationary physiological states involving multivariate autonomic dynamics in cardiovascular health and disease. The proposed method can also be tailored for the study of complex multisystem physiology (e.g., brain-heart or, more in general, brain-body interactions).

  11. Laser pulse control of bridge mediated heterogeneous electron transfer

    International Nuclear Information System (INIS)

    Wang Luxia; May, Volkhard

    2009-01-01

    Ultrafast heterogeneous electron transfer from surface attached dye molecules into semiconductor band states is analyzed. The focus is on systems where the dye is separated from the surface by different bridge anchor groups. To simulate the full quantum dynamics of the transfer process a model of reduced dimensionality is used. It comprises the electronic levels of the dye, the bridge anchor group electronic levels and the continuum of semiconductor band states, all defined versus a single intramolecular vibrational coordinate. The effect of the bridge states is demonstrated, firstly, in studying the injection dynamics following an impulsive excitation of the dye. Then, by discussing different control tasks it is demonstrate in which way the charge injection process can be influenced by tailored laser pulses. To highlight the importance of electron wave function interference emphasis is put on asymmetric two-bridge molecule systems which are also characterized by different and complex valued electronic transfer matrix elements.

  12. Dynamic modification of the fragmentation of COq+ excited states generated with high-order harmonics

    International Nuclear Information System (INIS)

    Cao, W.; De, S.; Singh, K. P.; Chen, S.; Laurent, G.; Ray, D.; Ben-Itzhak, I.; Cocke, C. L.; Schoeffler, M. S.; Belkacem, A.; Osipov, T.; Rescigno, T.; Alnaser, A. S.; Bocharova, I. A.; Zherebtsov, S.; Kling, M. F.; Litvinyuk, I. V.

    2010-01-01

    The dynamic process of fragmentation of CO q+ excited states is investigated using a pump-probe approach. EUV radiation (32-48 eV) generated by high-order harmonics was used to ionize and excite CO molecules and a time-delayed infrared (IR) pulse (800 nm) was used to influence the evolution of the dissociating multichannel wave packet. Two groups of states, separable experimentally by their kinetic-energy release (KER), are populated by the EUV and lead to C + -O + fragmentation: direct double ionization of the neutral molecule and fragmentation of the cation leading to C + -O*, followed by autoionization of O*. The IR pulse was found to modify the KER of the latter group in a delay-dependent way which is explained with a model calculation.

  13. Dynamical ion transfer between coupled Coulomb crystals in a double-well potential.

    Science.gov (United States)

    Klumpp, Andrea; Zampetaki, Alexandra; Schmelcher, Peter

    2017-09-01

    We investigate the nonequilibrium dynamics of coupled Coulomb crystals of different sizes trapped in a double well potential. The dynamics is induced by an instantaneous quench of the potential barrier separating the two crystals. Due to the intra- and intercrystal Coulomb interactions and the asymmetric population of the potential wells, we observe a complex reordering of ions within the two crystals as well as ion transfer processes from one well to the other. The study and analysis of the latter processes constitutes the main focus of this work. In particular, we examine the dependence of the observed ion transfers on the quench amplitude performing an analysis for different crystalline configurations ranging from one-dimensional ion chains via two-dimensional zigzag chains and ring structures to three-dimensional spherical structures. Such an analysis provides us with the means to extract the general principles governing the ion transfer dynamics and we gain some insight on the structural disorder caused by the quench of the barrier height.

  14. Excited states in biological systems

    International Nuclear Information System (INIS)

    Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.

    1979-01-01

    Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt

  15. Optimal placement of excitations and sensors for verification of large dynamical systems

    Science.gov (United States)

    Salama, M.; Rose, T.; Garba, J.

    1987-01-01

    The computationally difficult problem of the optimal placement of excitations and sensors to maximize the observed measurements is studied within the framework of combinatorial optimization, and is solved numerically using a variation of the simulated annealing heuristic algorithm. Results of numerical experiments including a square plate and a 960 degrees-of-freedom Control of Flexible Structure (COFS) truss structure, are presented. Though the algorithm produces suboptimal solutions, its generality and simplicity allow the treatment of complex dynamical systems which would otherwise be difficult to handle.

  16. Excited state redox properties of phthalocyanines: influence of the axial ligand on the rates of relaxation and electron-transfer quenching of the lowest /sup 3/. pi pi. /sup */ excited state

    Energy Technology Data Exchange (ETDEWEB)

    Ferraudi, G J; Prasad, D R

    1874-01-01

    Laser flash excitations at 640 nm have been used to generate the transient spectra of the lowest-lying /sup 3/..pi pi../sup */ state of phthalocyaninatoruthenium(II) complexes. The properties of this excited state such as the properties of the maxima, lambda/sub max/ = 500 +/- 30 nm, and lifetimes, t/sub 1/2/ = 70-4500 ns, exhibit a large dependence on the electron-accepting and electron-withdrawing tendencies of the axial ligands. A similar influence was observed upon the rate of electron-transfer quenching of the /sup 3/..pi pi../sup */ state. Values between 10/sup 6/ and 10/sup 7/ dm/sup 3/ mol/sup -1/ s/sup -1/ for the self-exchange rate constant have been obtained, according to Marcus-Hush theoretical treatments, for (Ru(pc.)LL')/sup +//(/sup 3/..pi pi../sup */)(Ru(pc)LL') (L and L' = neutral axial ligands; pc = phthalocyaninate (2-)) and isoelectronic cobalt(III) and rhodium(III) couples. The redox properties of the ground and excited states are correlated with axial ligand-induced perturbations of the electronic structure.

  17. Heat Transfer from Optically Excited Gold Nanostructures into Water, Sugar, and Salt Solutions

    Science.gov (United States)

    Green, Andrew J.

    Nanotechnology has introduced a wide variety of new behaviors to study and understand. Metal nanostructures are of particular interest due to their ability to generate large amounts of heat when irradiated at the plasmon resonance. Furthermore, heat dissipation at the nanoscale becomes exceedingly more complicated with respect to bulk behavior. What are the credentials for a heat carrier to move across an interface? Is it important for both materials to have similar vibrational density of states? What changes if one material is a liquid? All of these questions have open ended answers, each of which hold potential for new technologies to be exploited once understood. This dissertation will discuss topics exploring the transfer of heat from an optically excited gold nanoparticle into a surrounding liquid. Gold nanostructures are created using conventional electron beam lithography with lift-off. The nanostructures are deposited onto a thin film thermal sensor composed of AlGaN:Er3+. Erbium(III) has two thermally coupled excited states that can be excited with a 532nm laser. The relative photoluminescence from these excited states are related by a Boltzmann factor and are thusly temperature dependent. A scanning optical microscope collects an image of Er3+ photoluminescence while simultaneously exciting the gold nanostructure. The nanostructure temperature is imaged which is directly related to the surrounding's heat dissipation properties. The first of two topics discuss the heat dissipation and phase change properties of water. A gold nanostructure is submersed under water and subsequently heated with a 532 nm laser. The water immediately surrounding the nanodot is can be superheated beyond the boiling point up to the spinodal decomposition temperature at 594 +/- 17 K. The spinodal decomposition has been confirmed with the observation of critical opalescence. We characterize the laser scattering that occurs in unison with spinodal decomposition due to an increased

  18. Dynamic analysis of the radiolysis of binary component system

    International Nuclear Information System (INIS)

    Katayama, M.; Trumbore, C.N.

    1975-01-01

    Dynamic analysis was performed on a variety of combinations of components in the radiolysis of binary system, taking the hydrogen-producing reaction with hydrocarbon RH 2 as an example. A definite rule was able to be established from this analysis, which is useful for revealing the reaction mechanism. The combinations were as follows: 1) both components A and B do not interact but serve only as diluents, 2) A is a diluent, and B is a radical captor, 3) both A and B are radical captors, 4-1) A is a diluent, and B decomposes after the reception of the exciting energy of A, 4-2) A is a diluent, and B does not participate in decomposition after the reception of the exciting energy of A, 5-1) A is a radical captor, and B decomposes after the reception of the exciting energy of A, 5-2) A is a radical captor, and B does not participate in decomposition after the reception of the exciting energy of A, 6-1) both A and B decompose after the reception of the exciting energy of the partner component; and 6-2) both A and B do not decompose after the reception of the exciting energy of the partner component. According to the dynamical analysis of the above nine combinations, it can be pointed out that if excitation transfer participates, the similar phenomena to radical capture are presented apparently. It is desirable to measure the yield of radicals experimentally with the system which need not much consideration to the excitation transfer. Isotope substitution mixture system is conceived as one of such system. This analytical method was applied to the system containing cyclopentanone, such as cyclopentanone-cyclohexane system. (Iwakiri, K.)

  19. Band excitation method applicable to scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  20. Radio galaxies radiation transfer, dynamics, stability and evolution of a synchrotron plasmon

    CERN Document Server

    Pacholczyk, A G

    1977-01-01

    Radio Galaxies: Radiation Transfer, Dynamics, Stability and Evolution of a Synchrotron Plasmon deals with the physics of a region in space containing magnetic field and thermal and relativistic particles (a plasmon). The synchrotron emission and absorption of this region are discussed, along with the properties of its spectrum; its linear and circular polarization; transfer of radiation through such a region; its dynamics and expansion; and interaction with external medium.Comprised of eight chapters, this volume explores the stability, turbulence, and acceleration of particles in a synchrotro

  1. Correlated electron capture and inner-shell excitation measurements in ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.; Bernstein, E.M.; Clark, M.W.

    1985-01-01

    In an ion-atom collision projectile excitation and charge transfer (electron capture) may occur together in a single encounter. If the excitation and capture are correlated, then the process is called resonant transfer and excitation (RTE); if they are uncorrelated, then the process is termed nonresonant transfer and excitation (NTE). Experimental work to date has shown the existence of RTE and provided strong evidence for NTE. Results presented here provide information on the relative magnitudes of RTE and NTE, the charge state dependence of RTE, the effect of the target momentum distribution on RTE, the magnitude of L-shell RTE compared to K-shell RTE, and the target Z dependences of RTE and NTE. 15 refs., 5 figs

  2. Photoionization dynamics of excited Ne, Ar, Kr and Xe atoms near threshold

    International Nuclear Information System (INIS)

    Sukhorukov, V L; Petrov, I D; Schäfer, M; Merkt, F; Ruf, M-W; Hotop, H

    2012-01-01

    A review of experimental and theoretical studies of the threshold photoionization of the heavier rare-gas atoms is presented, with particular emphasis on the autoionization resonances in the spectral region between the lowest two ionization thresholds 2 P 3/2 and 2 P 1/2 , accessed from the ground or excited states. Observed trends in the positions, widths and shapes of the autoionization resonances depending on the atomic number, the principal quantum number n, the orbital angular momentum quantum number ℓ and further quantum numbers specifying the fine- and hyperfine-structure levels are summarized and discussed in the light of ab initio and multichannel quantum defect theory calculations. The dependence of the photoionization spectra on the initially prepared neutral state are also discussed, including results on the photoionization cross sections and photoelectron angular distributions of polarized excited states. The effects of various approximations in the theoretical treatment of photoionization in these systems are analysed. The very large diversity of observed phenomena and the numerous anomalies in spectral structures associated with the threshold ionization of the rare-gas atoms can be described in terms of a limited set of interactions and dynamical processes. Examples are provided illustrating characteristic aspects of the photoionization, and sets of recommended parameters describing the energy-level structure and photoionization dynamics of the rare-gas atoms are presented which were extracted in a critical analysis of the very large body of experimental and theoretical data available on these systems in the literature. (topical review)

  3. Self-consistent treatment of spin and magnetization dynamic effect in spin transfer switching

    International Nuclear Information System (INIS)

    Guo Jie; Tan, Seng Ghee; Jalil, Mansoor Bin Abdul; Koh, Dax Enshan; Han, Guchang; Meng, Hao

    2011-01-01

    The effect of itinerant spin moment (m) dynamic in spin transfer switching has been ignored in most previous theoretical studies of the magnetization (M) dynamics. Thus in this paper, we proposed a more refined micromagnetic model of spin transfer switching that takes into account in a self-consistent manner of the coupled m and M dynamics. The numerical results obtained from this model further shed insight on the switching profiles of m and M, both of which show particular sensitivity to parameters such as the anisotropy field, the spin torque field, and the initial deviation between m and M.

  4. A novel chalcone-analogue as an optical sensor based on ground and excited states intramolecular charge transfer: A combined experimental and theoretical study

    International Nuclear Information System (INIS)

    Fayed, Tarek A.

    2006-01-01

    Steady-state absorption and emission spectroscopic techniques as well as semiempirical quantum calculations at the AM1 and ZINDO/S levels have been used to investigate the intramolecular charge transfer (ICT) behaviour of a novel chalcone namely; 1-(2-pyridyl)-5-(4-dimethylaminophenyl)-penta-2,4-diene-1-one, DMAC. The ground state DMAC has a significant ICT character and a great sensitivity to the hydrogen bond donating ability of the medium as reflected from the change of the absorption spectra in pure and mixed organic solvents. On the other hand, its excited singlet state exhibits high ICT characters as manifested by the drastic solvatochromic effects. These results are consistent with the data of charge density calculations in both the ground and excited state, which indicates enhancement of the charge transfer from the dimethyl-amino group to the carbonyl oxygen upon excitation. Also, the dipole moment calculations indicates a highly dipolar excited singlet state (Δμ eg = 15.5 D). The solvent dependence of the fluorescence quantum yield of DMAC was interpreted on the basis of positive and negative solvatokinetic as well as the hydrogen bonding effects. Incorporation of the 2-pyridyl group in the chemical structure of the present DMAC led to design of a potential optical sensor for probing acidity of the medium and metal cations such as Zn 2+ , Cd 2+ and Hg 2+ . This was concluded from the high acidochromic and metallochromic behaviour of DMAC on adding such cations to its acetonitrile solutions

  5. Excited state kinetics of anthracene-bridge-aniline intramolecular exciplexes

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Hammershøj, Peter; Kjær, Kasper Skov

    2014-01-01

    excited anthracene state (LE) and an excited state complex (exciplex, EP) in non-polar solvents. The kinetics of the excited state processes were established in decalin from the time-resolved emission, and was shown to be strongly influenced by an electron-transfer state (ET). For quantitative studies...

  6. Excitation energy transfer from the bacteriochlorophyll Soret band to carotenoids in the LH2 light-harvesting complex from Ectothiorhodospira haloalkaliphila is negligible.

    Science.gov (United States)

    Razjivin, A P; Lukashev, E P; Kompanets, V O; Kozlovsky, V S; Ashikhmin, A A; Chekalin, S V; Moskalenko, A A; Paschenko, V Z

    2017-09-01

    Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S 2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S 2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.

  7. Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules

    OpenAIRE

    Peperstraete, Yoann; Staniforth, Michael; Baker, Lewis A.; Rodrigues, Natércia D. N.; Cole-Filipiak, Neil C.; Quan, Wen-Dong; Stavros, Vasilios G.

    2016-01-01

    Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2- ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC’s and E-EHMC’s excited state dynamics upon UV-B photoexcitation to the S1 (11ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies sugges...

  8. Influence of Road Excitation and Steering Wheel Input on Vehicle System Dynamic Responses

    OpenAIRE

    Zhen-Feng Wang; Ming-Ming Dong; Liang Gu; Jagat-Jyoti Rath; Ye-Chen Qin; Bin Bai

    2017-01-01

    Considering the importance of increasing driving safety, the study of safety is a popular and critical topic of research in the vehicle industry. Vehicle roll behavior with sudden steering input is a main source of untripped rollover. However, previous research has seldom considered road excitation and its coupled effect on vehicle lateral response when focusing on lateral and vertical dynamics. To address this issue, a novel method was used to evaluate effects of varying road level and steer...

  9. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  10. Electron dynamics in the core-excited CS2 molecule revealed through resonant inelastic x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Marchenko, T; Carniato, S; Journel, L; Guillemin, R; Kawerk, E; Simon, M; Žitnik, M; Kavčič, M; Bučar, K; Bohinc, R; Petric, M; Da Cruz, V Vaz; Gel'mukhanov, F

    2015-01-01

    We present an experimental and theoretical study of resonant inelastic x-ray scattering (RIXS) in the CS 2 molecule near the S 1s edge. We show that localization of the S 1s core-hole occurs in CS 2 during the RIXS process due to the orientational dephasing of interference between the waves scattering on the two sulfur atoms. Strong evolution of the RIXS profile with the excitation energy far below the first absorption resonance reflects the onset of electron dynamics triggered by a coherent excitation of multiple electronic states. (paper)

  11. Peculiar atomic dynamics in liquid GeTe with asymmetrical bonding: Observation by inelastic x-ray scattering

    Science.gov (United States)

    Inui, M.; Koura, A.; Kajihara, Y.; Hosokawa, S.; Chiba, A.; Kimura, K.; Shimojo, F.; Tsutsui, S.; Baron, A. Q. R.

    2018-05-01

    Collective dynamics in liquid GeTe was investigated by inelastic x-ray scattering at 2 ≤Q ≤31 nm-1 . The dynamic structure factor shows clear inelastic excitations. The excitation energies at low Q disperse with increasing Q , consistent with the behavior of a longitudinal-acoustic excitation. The dispersion curve has a flat-topped region around the pseudo-Brillouin-zone boundary, similar to what is observed in liquid Bi [Inui et al., Phys. Rev. B 92, 054206 (2015), 10.1103/PhysRevB.92.054206]. The dynamic structure factor shows a low-frequency excitation, and its coupling with the longitudinal-acoustic mode plays an important role for a flat-topped dispersion. From these results, it is inferred that atomic dynamics in liquid GeTe is strongly affected by a Peierls distortion similar to liquid Bi. By comparing the momentum transfer dependence of the excitation energy and quasielastic linewidth to partial structure factors obtained by our own ab initio molecular dynamics simulation for liquid GeTe, the quasielastic and inelastic components were found to be correlated with Te-Te and Ge-(Ge,Te) partial structure factors, respectively.

  12. Ultrafast static and diffusion-controlled electron transfer at Ag 29 nanocluster/molecular acceptor interfaces

    KAUST Repository

    Aly, Shawkat Mohammede; AbdulHalim, Lina G.; Besong, Tabot M.D.; Soldan, Giada; Bakr, Osman; Mohammed, Omar F.

    2015-01-01

    Efficient absorption of visible light and a long-lived excited state lifetime of silver nanoclusters (Ag29 NCs) are integral properties for these new clusters to serve as light-harvesting materials. Upon optical excitation, electron injection at Ag29 NC/methyl viologen (MV2+) interfaces is very efficient and ultrafast. Interestingly, our femto- and nanosecond time-resolved results demonstrate clearly that both dynamic and static electron transfer mechanisms are involved in photoluminescence quenching of Ag29 NCs. © 2016 The Royal Society of Chemistry.

  13. Ultrafast static and diffusion-controlled electron transfer at Ag 29 nanocluster/molecular acceptor interfaces

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-10-29

    Efficient absorption of visible light and a long-lived excited state lifetime of silver nanoclusters (Ag29 NCs) are integral properties for these new clusters to serve as light-harvesting materials. Upon optical excitation, electron injection at Ag29 NC/methyl viologen (MV2+) interfaces is very efficient and ultrafast. Interestingly, our femto- and nanosecond time-resolved results demonstrate clearly that both dynamic and static electron transfer mechanisms are involved in photoluminescence quenching of Ag29 NCs. © 2016 The Royal Society of Chemistry.

  14. Dynamics of the helium atom close to the full fragmentation threshold: Ionization excitation

    International Nuclear Information System (INIS)

    Bouri, C.; Selles, P.; Malegat, L.; Teuler, J.M.; Njock, M. Kwato; Kazansky, A.K.

    2005-01-01

    The hyperspherical R-matrix method with semiclassical outgoing waves, designed to provide accurate double-ionization cross sections, is extended to allow for the computation of ionization-excitation data of comparable quality. Accordingly, it appears now as a complete method for treating the correlated dynamics of two-electron atoms, in particular above their full fragmentation threshold. Cross sections σ n and asymmetry parameters β n are obtained for single photoionization of helium with excitation of the residual ion up to as high a level as n=50 at 0.1 eV above the double-ionization threshold. These data are extrapolated to infinite values of n in order to check widespread assumptions regarding this limit. Our data are found consistent with the assumed n -3 dependence of the partial ionization cross sections. However, the β ∞ =-0.636 obtained still lies far from the -1 value expected at the double-ionization threshold

  15. Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.

    Science.gov (United States)

    Zhang, Jiaxu; Xie, Jing; Hase, William L

    2015-12-17

    Direct chemical dynamics simulations, at collision energies Erel of 0.32 and 1.53 eV, were performed to obtain an atomistic understanding of the F(-) + CH3I reaction dynamics. There is only the F(-) + CH3I → CH3F + I(-) bimolecular nucleophilic substitution SN2 product channel at 0.32 eV. Increasing Erel to 1.53 eV opens the endothermic F(-) + CH3I → HF + CH2I(-) proton transfer reaction, which is less competitive than the SN2 reaction. The simulations reveal proton transfer occurs by two direct atomic-level mechanisms, rebound and stripping, and indirect mechanisms, involving formation of the F(-)···HCH2I complex and the roundabout. For the indirect trajectories all of the CH2I(-) is formed with zero-point energy (ZPE), while for the direct trajectories 50% form CH2I(-) without ZPE. Without a ZPE constraint for CH2I(-), the reaction cross sections for the rebound, stripping, and indirect mechanisms are 0.2 ± 0.1, 1.2 ± 0.4, and 0.7 ± 0.2 Å(2), respectively. Discarding trajectories that do not form CH2I(-) with ZPE reduces the rebound and stripping cross sections to 0.1 ± 0.1 and 0.7 ± 0.5 Å(2). The HF product is formed rotationally and vibrationally unexcited. The average value of J is 2.6 and with histogram binning n = 0. CH2I(-) is formed rotationally excited. The partitioning between CH2I(-) vibration and HF + CH2I(-) relative translation energy depends on the treatment of CH2I(-) ZPE. Without a CH2I(-) ZPE constraint the energy partitioning is primarily to relative translation with little CH2I(-) vibration. With a ZPE constraint, energy partitioning to CH2I(-) rotation, CH2I(-) vibration, and relative translation are statistically the same. The overall F(-) + CH3I rate constant at Erel of both 0.32 and 1.53 eV is in good agreement with experiment and negligibly affected by the treatment of CH2I(-) ZPE, since the SN2 reaction is the major contributor to the total reaction rate constant. The potential energy surface and reaction dynamics for F

  16. Excited state proton transfer in 9-aminoacridine carboxamides in water and in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Charles A. [Iowa State Univ., Ames, IA (United States)

    1995-09-26

    The 9-aminoacridine molecule is important in several different fields of chemistry. The absorption and fluorescence spectra of this compound are pH sensitive and it is this property that allowed it to be used as a pH probe in different chemical environments. The compound exhibits proton transfer reactions which are among the most fundamental of chemical reactions. The planarity of 9-aminoacridine allows it to intercalate into DNA. Intercalation is a process in which the aromatic flat surface of the intercalator inserts between adjacent base pairs of DNA. The large surface area of 9-aminoacridine`s fused tricyclic ring system allows strong intercalative binding through van der Waals attractions. 9-aminoacridine and many of its derivatives have been tried as possible antitumor drugs. The cytotoxicity of an antitumor agent can be dramatically increased through the addition of one or two cationic side chains. This increase in cytotoxicity using the 9-aminoacridine compound as a parent molecule has been investigated through various derivatives with cationic side chains consisting of different number of carbon atoms between the proximal and distal N atoms. Similar derivatives varied the position of the carboxamide side chain on the aromatic ring system. The objective of this work is to first create a baseline study of the excited state kinetics of the 9-aminoacridine carboxamides in the absence of DNA. The baseline study will allow the excited state kinetics of these antitumor drugs when placed in DNA to be more fully understood.

  17. Dynamic modulation of corticospinal excitability and short-latency afferent inhibition during onset and maintenance phase of selective finger movement.

    Science.gov (United States)

    Cho, Hyun Joo; Panyakaew, Pattamon; Thirugnanasambandam, Nivethida; Wu, Tianxia; Hallett, Mark

    2016-06-01

    During highly selective finger movement, corticospinal excitability is reduced in surrounding muscles at the onset of movement but this phenomenon has not been demonstrated during maintenance of movement. Sensorimotor integration may play an important role in selective movement. We sought to investigate how corticospinal excitability and short-latency afferent inhibition changes in active and surrounding muscles during onset and maintenance of selective finger movement. Using transcranial magnetic stimulation (TMS) and paired peripheral stimulation, input-output recruitment curve and short-latency afferent inhibition (SAI) were measured in the first dorsal interosseus and abductor digiti minimi muscles during selective index finger flexion. Motor surround inhibition was present only at the onset phase, but not at the maintenance phase of movement. SAI was reduced at onset but not at the maintenance phase of movement in both active and surrounding muscles. Our study showed dynamic changes in corticospinal excitability and sensorimotor modulation for active and surrounding muscles in different movement states. SAI does not appear to contribute to motor surround inhibition at the movement onset phase. Also, there seems to be different inhibitory circuit(s) other than SAI for the movement maintenance phase in order to delineate the motor output selectively when corticospinal excitability is increased in both active and surrounding muscles. This study enhances our knowledge of dynamic changes in corticospinal excitability and sensorimotor interaction in different movement states to understand normal and disordered movements. Published by Elsevier Ireland Ltd.

  18. Ultrashort-pulse-train pump and dump excitation of a diatomic molecule

    OpenAIRE

    de Araujo, LEE

    2010-01-01

    An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emi...

  19. Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom

    International Nuclear Information System (INIS)

    Jin Shiqi; Gong Shangqing; Li Ruxin; Xu Zhizhan

    2004-01-01

    Coherent population transfer and superposition of atomic states via a technique of stimulated Raman adiabatic passage in an excited-doublet four-level atomic system have been analyzed. It is shown that the behavior of adiabatic passage in this system depends crucially on the detunings between the laser frequencies and the corresponding atomic transition frequencies. Particularly, if both the fields are tuned to the center of the two upper levels, the four-level system has two degenerate dark states, although one of them contains the contribution from the excited atomic states. The nonadiabatic coupling of the two degenerate dark states is intrinsic, it originates from the energy difference of the two upper levels. An arbitrary superposition of atomic states can be prepared due to such nonadiabatic coupling effect

  20. Ultrafast dynamics of solvation and charge transfer in a DNA-based biomaterial.

    Science.gov (United States)

    Choudhury, Susobhan; Batabyal, Subrata; Mondol, Tanumoy; Sao, Dilip; Lemmens, Peter; Pal, Samir Kumar

    2014-05-01

    Charge migration along DNA molecules is a key factor for DNA-based devices in optoelectronics and biotechnology. The association of a significant amount of water molecules in DNA-based materials for the intactness of the DNA structure and their dynamic role in the charge-transfer (CT) dynamics is less documented in contemporary literature. In the present study, we have used a genomic DNA-cetyltrimethyl ammonium chloride (CTMA) complex, a technological important biomaterial, and Hoechest 33258 (H258), a well-known DNA minor groove binder, as fluorogenic probe for the dynamic solvation studies. The CT dynamics of CdSe/ZnS quantum dots (QDs; 5.2 nm) embedded in the as-prepared and swollen biomaterial have also been studied and correlated with that of the timescale of solvation. We have extended our studies on the temperature-dependent CT dynamics of QDs in a nanoenvironment of an anionic, sodium bis(2-ethylhexyl)sulfosuccinate reverse micelle (AOT RMs), whereby the number of water molecules and their dynamics can be tuned in a controlled manner. A direct correlation of the dynamics of solvation and that of the CT in the nanoenvironments clearly suggests that the hydration barrier within the Arrhenius framework essentially dictates the charge-transfer dynamics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Many-body excitations and deexcitations in trapped ultracold bosonic clouds

    Science.gov (United States)

    Theisen, Marcus; Streltsov, Alexej I.

    2016-11-01

    We employ the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method to study excited states of interacting Bose-Einstein condensates confined by harmonic and double-well trap potentials. Two approaches to access excitations, one static and the other dynamic, are investigated and contrasted. In static simulations the low-lying excitations are computed by utilizing a linear-response theory constructed on top of a static MCTDHB solution (LR-MCTDHB). Complimentarily, we propose two dynamic protocols that address excitations by propagating the MCTDHB wave function. In particular, we investigate dipolelike oscillations induced by shifting the origin of the confining potential and breathinglike excitations by quenching the frequency of a parabolic part of the trap. To contrast static predictions and dynamic results we compute the time evolution and regard the respective Fourier transform of several local and nonlocal observables. Namely, we study the expectation value of the position operator , its variance Var [x (t )] , and a local density computed at selected positions. We find that the variance is the most sensitive and informative quantity: Along with excitations it contains information about deexcitations even in a linear regime of the induced dynamics. The dynamic protocols are found to access the many-body excitations predicted by the static LR-MCTDHB approach.

  2. The dynamics of highly excited hydrogen atoms in microwave fields: Application of the Floquet picture of quantum mechanics

    International Nuclear Information System (INIS)

    Holthaus, M.

    1990-04-01

    The study of short-time phenomena in strongly interacting quantum systems requires on the theoretical side the development of methods, which are both non-perturbative and 'dynamical', which thus regard the change of outer parameters in the slope of time. For systems with a periodic, fast and a further slow, parametric time dependence both requirements are fulfilled by the Floquet picture of quantum mechanics. This picture, which starts from the adiabatic evolution on effective quasi-energy surfaces, is presented in the first chapter of the present thesis, whereby especially the term of the adiabaticity for periodically time dependent systems is explained. In the second chapter the Floquet theory is applied to the description of microwave experiments with highly excited hydrogen atoms. Here it is shown that the Floquet picture permits to understand a manifold of experimental observations under a unified point of view. Really these microwave experiments offer an ideal possibility for the test of the Floquet picture: On the one hand there is the strength of the outer field of the same order of magnitude as that of the nuclear field, by which the highly excited electron is bound, on the other hand in the experiment an extremely precise control of amplitude, frequency, and pulse shape is possible, so that the conditions for a detailed comparison of theory and experiment are given. The insights, which model calculations yield in the dynamics of highly excited hydrogen atoms in strong alternating fields, allow a prediction of further effects, for which it is to be looked for in new experiments. In the following third chapter some further aspects of these model calculations are discussed, whereby also common properties of the dynamics of excited atoms in microwave fields and that of atoms under the influence of strong laser pulses are discussed. (orig./HSI) [de

  3. Ultrafast dynamics of laser-pulse excited semiconductors: non-Markovian quantum kinetic equations with nonequilibrium correlations

    Directory of Open Access Journals (Sweden)

    V.V.Ignatyuk

    2004-01-01

    Full Text Available Non-Markovian kinetic equations in the second Born approximation are derived for a two-zone semiconductor excited by a short laser pulse. Both collision dynamics and running nonequilibrium correlations are taken into consideration. The energy balance and relaxation of the system to equilibrium are discussed. Results of numerical solution of the kinetic equations for carriers and phonons are presented.

  4. Nuclear excitation in muonic gold

    CERN Document Server

    Robert Tissot, B; Debrunner, P; Engfer, R; Link, R; Schellenberg, L; Schneuwly, H; Walter, H K

    1973-01-01

    Energies and intensities of muonic X-rays in gold were measured at the CERN muon channel with an experimental set-up as described by Backe et al. (1972). The 2p-1s and 3d-2p transitions could only be analysed taking into account beside the static quadrupole interaction a dynamical hyperfine interaction of the 2p states, which leads to an excitation of the first four nuclear levels. The dynamical hyperfine interaction was calculated using the core excitation model (de Shalit, (1961)). (0 refs).

  5. State-to-state dynamics of molecular energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  6. The use of dendrimers as high-performance shells for round-trip energy transfer: efficient trans-cis photoisomerization from an excited triplet state produced within a dendrimer shell.

    Science.gov (United States)

    Miura, Yousuke; Momotake, Atsuya; Takeuchi, Keiichirou; Arai, Tatsuo

    2011-01-01

    A series of stilbene-cored poly(benzyl ether) dendrimers with benzophenone peripheries were synthesized and their photophysical and photochemical properties were studied. Fluorescence studies revealed that singlet-singlet energy transfer (SSET) from the stilbene core to the benzophenone units took place efficiently in dendrimers of all generations. Similarly, phosphorescence and time-resolved spectroscopic measurements indicated efficient triplet-triplet energy transfer (TTET) from the benzophenone periphery to the stilbene core. Upon excitation at 310 nm, the stilbene core isomerizes via an energy round trip within the dendrimer shell. The quantum yields for the energy round trip (Φ(ERT)), defined as the product of the quantum yields of SSET, intersystem crossing, and TTET (Φ(ERT) = Φ(SS)Φ(isc)Φ(TT)), were extremely high for all generations--99%, 95% and 94% for G1, G2, and G3, respectively--which means that the excitation energy of the dendrimer core was transferred to the dendrimer periphery and back to the core almost quantitatively. The quantum yield for photoisomerization of G1-G3 via an energy round trip was higher than for other stilbene-cored dendrimers, which mainly isomerize from the excited singlet state. Photostability in the dendrimers was also demonstrated and discussed.

  7. Probing cluster structures through sub-barrier transfer reactions

    Directory of Open Access Journals (Sweden)

    Rafferty D. C.

    2016-01-01

    Full Text Available Multinucleon transfer probabilities and excitation energy distributions have been measured in 16,18O, 19F + 208Pb at energies between 90% - 100% of the Coulomb barrier. A strong 2p2n enhancement is observed for all reactions, though most spectacularly in the 18O induced reaction. Results are interpreted in terms of the Semiclassical model, which seems to suggest α-cluster transfer in all studied systems. The relation to cluster-states in the projectile is discussed, with the experimental results consistent with previous structure studies. Dissipation of energy in the collisions of 18O is compared between different reaction modes, with cluster transfer associated with dissipation over a large number of internal states. Cluster transfer is shown to be a long range dissipation mechanism, which will inform the development of future models to treat these dynamic processes in reactions.

  8. Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-). Theoretical evidence for a competitive charge transfer mechanism.

    Science.gov (United States)

    Hu, Zhenming; Boyd, Russell J; Nakatsuji, Hiroshi

    2002-03-20

    Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-) complexes have been investigated using the B3LYP and the symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theoretical methods. All the dicarbonyl complexes have singlet ground electronic states with large singlet-triplet separations. Thermal dissociations of CO from the parent dicarbonyls are energetically unfavorable. CO thermal dissociation is an activation process for [Cl(2)Rh(CO)(2)](-) while it is a repulsive potential for CpM(CO)(2). The natures of the main excited states of CpM(CO)(2) and [Cl(2)Rh(CO)(2)](-) are found to be quite different. For [Cl(2)Rh(CO)(2)](-), all the strong transitions are identified to be metal to ligand CO charge transfer (MLCT) excitations. A significant feature of the excited states of CpM(CO)(2) is that both MLCT excitation and a ligand Cp to metal and CO charge transfer excitation are strongly mixed in the higher energy states with the latter having the largest oscillator strength. A competitive charge transfer excited state has therefore been identified theoretically for CpRh(CO)(2) and CpIr(CO)(2). The wavelength dependence of the quantum efficiencies for the photoreactions of CpM(CO)(2) reported by Lees et al. can be explained by the existence of two different types of excited states. The origin of the low quantum efficiencies for the C-H/S-H bond activations of CpM(CO)(2) can be attributed to the smaller proportion of the MLCT excitation in the higher energy states.

  9. Dynamic impedance compensation for wireless power transfer using conjugate power

    Science.gov (United States)

    Liu, Suqi; Tan, Jianping; Wen, Xue

    2018-02-01

    Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.

  10. Dynamic impedance compensation for wireless power transfer using conjugate power

    Directory of Open Access Journals (Sweden)

    Suqi Liu

    2018-02-01

    Full Text Available Wireless power transfer (WPT via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.

  11. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.; Xiao, Dequan; Batista, Victor S.; Nibbering, Erik Theodorus Johannes

    2014-01-01

    of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ

  12. General theory of excitation energy transfer in donor-mediator-acceptor systems.

    Science.gov (United States)

    Kimura, Akihiro

    2009-04-21

    General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.

  13. Self-excited vibration control for axially fast excited beam by a time delay state feedback

    International Nuclear Information System (INIS)

    Hamdi, Mustapha; Belhaq, Mohamed

    2009-01-01

    This work examines the control of self-excited vibration of a simply-supported beam subjected to an axially high-frequency excitation. The investigation of the resonant cases are not considered in this paper. The control is implemented via a corrective position feedback with time delay. The objective of this control is to eliminate the undesirable self-excited vibrations with an appropriate choice of parameters. The issue of stability is also addressed in this paper. Using the technique of direct partition of motion, the dynamic of discretized equations is separated into slow and fast components. The multiple scales method is then performed on the slow dynamic to obtain a slow flow for the amplitude and phase. Analysis of this slow flow provides analytical approximations locating regions in parameters space where undesirable self-excited vibration can be eliminated. A numerical study of these regions is performed on the original discretized system and compared to the analytical prediction showing a good agreement.

  14. KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei

    OpenAIRE

    Lu , H.; Marchix , A.; Abe , Y.; Boilley , D.

    2016-01-01

    Submitted to Computer Physics Communications; International audience; KEWPIE — a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions — has been improved and rewritten in C++ programing language to become KEWPIE2. The current version of the code comprises various nuclear models concerning the light-particle emission, fission ...

  15. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. II. Ab initio multiple spawning simulations

    Science.gov (United States)

    Glover, William J.; Mori, Toshifumi; Schuurman, Michael S.; Boguslavskiy, Andrey E.; Schalk, Oliver; Stolow, Albert; Martínez, Todd J.

    2018-04-01

    The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 11Bu (ππ*) state and non-adiabatically coupled dark 21Ag state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 11Bu state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1Bu or the dark 21Ag state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.

  16. Sediment transfer dynamics in the Illgraben

    Science.gov (United States)

    Bennett, G. L.; Molnar, P.; McArdell, B. W.; Schlunegger, F.; Burlando, P.

    2012-04-01

    Quantification of the volumes of sediment removed by rock-slope failure and debris flows and identification of their coupling and controls are pertinent to understanding mountain basin sediment yield and landscape evolution. We analyzed photogrammetrically-derived datasets of hillslope and channel erosion and deposition along with hydroclimatic variables from the Illgraben, an active debris flow catchment in the Swiss Alps, spanning 1963 - 2010. Two events in the recent history of the catchment make it particularly interesting and challenging to study: a large rock avalanche in 1961, which filled the channel with sediment, and the construction of check dams along the channel in the late 1960s and 1970s. We aimed to (1) identify the nature of hillslope-channel coupling, (2) identify the dominant controls of hillslope sediment production, channel sediment transfer and total sediment yield, (3) observe the response of the channel system to the 1961 rock avalanche and check dam construction, and (4) develop a conceptual model with which to investigate sediment transfer dynamics in various scenarios, including the absence of check dams along the channel. The study captures a multi-decadal period of channel erosion in response to the 1961 rock avalanche, punctuated by shorter cut-and-fill cycles that occur in response to changes in hillslope sediment supply and changes in transport capacity. Hillslopes eroded rapidly at an average rate of 0.34 myr¯ 1, feeding the channel head with sediment. A near doubling of hillslope erosion in the 1980s coincided with a significant increase of air temperature and reduction in snow cover duration and depth, whilst precipitation variables did not change significantly. We find that the main influence of check-dam construction on channel sediment transfer was an initial reduction in sediment transport and a drop in debris flow activity between 1963 and 1986. After 1986 sediment storages in the channel were filled and debris flow activity

  17. Isoscalar spin excitation in 40Ca

    International Nuclear Information System (INIS)

    Morlet, M.; Willis, A.; Van de Wiele, J.; Marty, N.; Johnson, B.N.; Bimbot, L.; Guillot, J.; Jourdan, F.; Langevin-Joliot, H.; Rosier, L.; Glashausser, C.; Beatty, D.; Edwards, G.W.R.; Green, A.; Djalali, C.; Youn, M.Y.

    1992-01-01

    A signature S d y of isoscalar spin-transfer strength has been tested in the inelastic scattering of 400 MeV deuterons from 12 C. It was then applied to the study of 40 Ca over an angular range from 3 deg to 7 deg (momentum transfer range from 0.26 to 0.8 fm -1 ) and an excitation energy range from 6.25 to 42 MeV. This is the first study of isoscalar spin strength in the continuum. Spin excitations were found in the 9 MeV region, and over a broad range in the continuum with a cluster of strength around 15 MeV. The results are compared with spin-flip probability measurements in proton scattering. In contrast to the total relative spin response, which is strongly enhanced at high excitation, the isoscalar relative spin response is roughly consistent with non interacting Fermi gas values. (authors) 39 refs., 13 figs., 1 tab

  18. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes.

    Science.gov (United States)

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J

    2015-11-03

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J.

    2015-11-01

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum.

  20. Dynamic Wireless Power Transfer for Logistic Robots

    OpenAIRE

    Marojahan Tampubolon; Laskar Pamungkas; Huang-Jen Chiu; Yu-Chen Liu; Yao-Ching Hsieh

    2018-01-01

    The prospect of using robots in warehouses or supply chain processes is increasing due to the growth of the online retail market. This logistic robot is available in the market and uses a battery as energy storage device. However, this battery is large and heavy. Therefore, it needs a long recharging time. Dynamic Wireless Power Transfer (DWPT) can be an alternative to the conventional charging system because of its safety and flexibility that enables in motion charging. DWPT reduces the batt...