WorldWideScience

Sample records for excitation systems

  1. Fission fragment excited laser system

    Science.gov (United States)

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  2. Excited states in biological systems

    International Nuclear Information System (INIS)

    Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.

    1979-01-01

    Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt

  3. Excitation system testing in HPP 'Uvac'

    Directory of Open Access Journals (Sweden)

    Milojčić Nemanja

    2011-01-01

    Full Text Available The excitation system of hydro unit in HPP 'Uvac' and results of testings of excitation system performed for achieving of unit's mathematical model are presented in this paper. Description of excitation system equipment, parameters of regulators and results obtained after testings are presented. The presented results showed that the regulators are properly adjusted and that the excitation system is completely functional and reliable.

  4. Nuclear excited power generation system

    International Nuclear Information System (INIS)

    Parker, R.Z.; Cox, J.D.

    1989-01-01

    A power generation system is described, comprising: a gaseous core nuclear reactor; means for passing helium through the reactor, the helium being excited and forming alpha particles by high frequency radiation from the core of the gaseous core nuclear reactor; a reaction chamber; means for coupling chlorine and hydrogen to the reaction chamber, the helium and alpha particles energizing the chlorine and hydrogen to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for coupling the helium back to the gaseous core nuclear reactor; and means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, to be coupled back to the reaction chamber in a closed loop. The patent also describes a power generation system comprising: a gaseous core nuclear reactor; means for passing hydrogen through the reactor, the hydrogen being excited by high frequency radiation from the core; means for coupling chlorine to a reaction chamber, the hydrogen energizing the chlorine in the chamber to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, and means for coupling the hydrogen back to the gaseous core nuclear reactor in a closed loop

  5. Effects of noise in excitable systems

    International Nuclear Information System (INIS)

    Lindner, B.; Garcia-Ojalvo, J.; Neiman, A.; Schimansky-Geier, L.

    2004-01-01

    We review the behavior of theoretical models of excitable systems driven by Gaussian white noise. We focus mainly on those general properties of such systems that are due to noise, and present several applications of our findings in biophysics and lasers. As prototypes of excitable stochastic dynamics we consider the FitzHugh-Nagumo and the leaky integrate-and-fire model, as well as cellular automata and phase models. In these systems, taken as individual units or as networks of globally or locally coupled elements, we study various phenomena due to noise, such as noise-induced oscillations, stochastic resonance, stochastic synchronization, noise-induced phase transitions and noise-induced pulse and spiral dynamics. Our approach is based on stochastic differential equations and their corresponding Fokker-Planck equations, treated by both analytical calculations and/or numerical simulations. We calculate and/or measure the rate and diffusion coefficient of the excitation process, as well as spectral quantities like power spectra and degree of coherence. Combined with a multiparametric bifurcation analysis of the corresponding cumulant equations, these approaches provide a comprehensive picture of the multifaceted dynamical behaviour of noisy excitable systems

  6. Encryption in Chaotic Systems with Sinusoidal Excitations

    Directory of Open Access Journals (Sweden)

    G. Obregón-Pulido

    2014-01-01

    Full Text Available In this contribution an encryption method using a chaotic oscillator, excited by “n” sinusoidal signals, is presented. The chaotic oscillator is excited by a sum of “n” sinusoidal signals and a message. The objective is to encrypt such a message using the chaotic behavior and transmit it, and, as the chaotic system is perturbed by the sinusoidal signal, the transmission security could be increased due to the effect of such a perturbation. The procedure is based on the regulation theory and consider that the receiver knows the frequencies of the perturbing signal, with this considerations the algorithm estimates the excitation in such a way that the receiver can cancel out the perturbation and all the undesirable dynamics in order to produce only the message. In this way we consider that the security level is increased.

  7. Thermal Excitation System for Shearography (TESS)

    Science.gov (United States)

    Lansing, Matthew D.; Bullock, Michael W.

    1996-01-01

    One of the most convenient and effective methods of stressing a part or structure for shearographic evaluation is thermal excitation. This technique involves heating the part, often convectively with a heat gun, and then monitoring with a shearography device the deformation during cooling. For a composite specimen, unbonds, delaminations, inclusions, or matrix cracking will deform during cooling differently than other more structurally sound regions and thus will appear as anomalies in the deformation field. However, one of the difficulties that cause this inspection to be dependent on the operator experience is the conventional heating process. Fanning the part with a heat gun by hand introduces a wide range of variability from person to person and from one inspection to the next. The goal of this research effort was to conduct research in the methods of thermal excitation for shearography inspection. A computerized heating system was developed for inspection of 0.61 m (24 in.) square panels. The Thermal Excitation System for Shearography (TESS) provides radiant heating with continuous digital measurement of the surface temperature profile to ensure repeatability. The TESS device functions as an accessory to any electronic shearography device.

  8. Spike Bursts from an Excitable Optical System

    Science.gov (United States)

    Rios Leite, Jose R.; Rosero, Edison J.; Barbosa, Wendson A. S.; Tredicce, Jorge R.

    Diode Lasers with double optical feedback are shown to present power drop spikes with statistical distribution controllable by the ratio of the two feedback times. The average time between spikes and the variance within long time series are studied. The system is shown to be excitable and present bursting of spikes created with specific feedback time ratios and strength. A rate equation model, extending the Lang-Kobayashi single feedback for semiconductor lasers proves to match the experimental observations. Potential applications to construct network to mimic neural systems having controlled bursting properties in each unit will be discussed. Brazilian Agency CNPQ.

  9. Picosecond excitation transport in disordered systems

    International Nuclear Information System (INIS)

    Hart, D.E.

    1987-11-01

    Time-resolved fluorescence decay profiles are used to study excitation transport in 2- and 3-dimensional disordered systems. Time-correlated single photon counting detection is used to collect the fluorescence depolarization data. The high signal-to-noise ratios afforded by this technique makes it possible to critically examine current theories of excitation transport. Care has been taken to eliminate or account for the experimental artifacts common to this type of study. Solutions of 3,3'-diethyloxadicarbocyanine iodide (DODCI) in glycerol serve as a radomly distributed array of energy donors in 3-dimensions. A very thin sample cell (/approximately/ 2 μm) is used to minimize the effects of fluorescence self-absorption on the decay kinetics. Evidence of a dynamic shift of the fluorescence spectrum of DODCI in glycerol due to solvent reorganization is presented. The effects of excitation trapping on the decay profiles is minimized in the data analysis procedure. The 3-body theory of Gochanour, Andersen, and Fayer (GAF) and the far less complex 2-particle analytic theory of Huber, Hamilton, and Barnett yield indistinguishable fits to the data over the wide dynamic range of concentrations and decay times studied

  10. Bifurcation and chaos in neural excitable system

    International Nuclear Information System (INIS)

    Jing Zhujun; Yang Jianping; Feng Wei

    2006-01-01

    In this paper, we investigate the dynamical behaviors of neural excitable system without periodic external current (proposed by Chialvo [Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals 1995;5(3-4):461-79] and with periodic external current as system's parameters vary. The existence and stability of three fixed points, bifurcation of fixed points, the conditions of existences of fold bifurcation, flip bifurcation and Hopf bifurcation are derived by using bifurcation theory and center manifold theorem. The chaotic existence in the sense of Marotto's definition of chaos is proved. We then give the numerical simulated results (using bifurcation diagrams, computations of Maximum Lyapunov exponent and phase portraits), which not only show the consistence with the analytic results but also display new and interesting dynamical behaviors, including the complete period-doubling and inverse period-doubling bifurcation, symmetry period-doubling bifurcations of period-3 orbit, simultaneous occurrence of two different routes (invariant cycle and period-doubling bifurcations) to chaos for a given bifurcation parameter, sudden disappearance of chaos at one critical point, a great abundance of period windows (period 2 to 10, 12, 19, 20 orbits, and so on) in transient chaotic regions with interior crises, strange chaotic attractors and strange non-chaotic attractor. In particular, the parameter k plays a important role in the system, which can leave the chaotic behavior or the quasi-periodic behavior to period-1 orbit as k varies, and it can be considered as an control strategy of chaos by adjusting the parameter k. Combining the existing results in [Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals 1995;5(3-4):461-79] with the new results reported in this paper, a more complete description of the system is now obtained

  11. Fragment emission from modestly excited nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Y. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Souza, R.T. de [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Chen, S.L. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Cornell, E.W. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Davin, B. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Fox, D. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Hamilton, T.M. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Mcdonald, K. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Tsang, M.B. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Glasmacher, T. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Dinius, J. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Gelbke, C.K. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Handzy, D.O. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility]|[Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Hsi, W.C.

    1996-07-08

    Fragment emission patterns occurring in nuclear systems of modest excitation are studied. Exclusive measurement of fragment emission in {sup 14}N+{sup 197}Au reactions at E/A=100, 130 and 156 MeV allows selection of central collisions where a single source dominates the decay. Low threshold measurement of IMF emission for these events allows investigation of the influence of detector threshold effects. The time scale of fragment emission is deduced using fragment-fragment velocity correlations. Comparisons are made to the predictions of a statistical decay model. (orig.).

  12. Modernization, reconstruction and development of excitation systems for synchronous generators

    Directory of Open Access Journals (Sweden)

    Arnautović Dušan

    2011-01-01

    Full Text Available This paper presents the previous results of work and development of excitation systems with digital automatic voltage regulators regarding their design, development, manufacturing and commissioning. A special attention was paid to the characteristics of excitation system voltage regulator.

  13. Synchronization of chaos in non-identical parametrically excited systems

    International Nuclear Information System (INIS)

    Idowu, B.A.; Vincent, U.E.; Njah, A.N.

    2009-01-01

    In this paper, we investigate the synchronization of chaotic systems consisting of non-identical parametrically excited oscillators. The active control technique is employed to design control functions based on Lyapunov stability theory and Routh-Hurwitz criteria so as to achieve global chaos synchronization between a parametrically excited gyroscope and each of the parametrically excited pendulum and Duffing oscillator. Numerical simulations are implemented to verify the results.

  14. Excited species in the FBX dosimeter system

    International Nuclear Information System (INIS)

    Gupta, B.L.

    2003-01-01

    In the FBX dosimeter solution, the excitation of xylenol orange (XO) produces maximum emission at 550-575 nm both at room and liquid nitrogen temperatures (about 85%) having a lifetime of 0.20-0.36 ns. In addition, at room temperature there is an emission at 350 nm for the excitation at 260 nm (about 15%) having a longer lifetime of 3.71-4.01 ns. Benzoic acid (BA) has excitation at 284-295 nm and emission at 320-365 nm having a lifetime of 1.38 ns. In an aqueous solution containing 5x10 -3 mol dm -3 BA, 2x10 -4 mol dm -3 XO and 0.04 mol dm -3 H 2 SO 4 there is no XO emission at 550 nm due to UV absorption at 260 nm by BA. In this solution, 2 emissions are observed near 350-360 nm, having lifetimes of 1.25 ns (89%) and 2.86 ns (11%). The wavelengths for the emission of XO and absorption of ferric-XO complex are nearly the same. Excited XO produces oxidation of ferrous ions and BA increases the chain length

  15. Isovector excitations in charge independent systems

    International Nuclear Information System (INIS)

    Menezes, D.P.

    1986-01-01

    A method for building states with good isospin, from states given by the action of an isovector excitation operator on states of the parent multiplet is developed. This new method is a generalization of Toki's method and is applicable to cases involving any isovector excitation operator and a parent state, which is not a double magic nucleus. Once obtained these states with well defined isospin, it is shown how to do a Tamm-Dancoff calculation for determining the energy levels. The transition matrix elements of an isotensor operator are also calculated. An application of this formalism to the Gamow-Teller transition strength in 90 Zr is studied. In this case, besides the double magic configuration, the 2 particles - 2 holes (Π1g 9/2 ) 2 (υ 2p 1/2 -1 ) 2 configuration is also considered. (author) [pt

  16. A portable tube exciting X-ray fluorescence analysis system

    International Nuclear Information System (INIS)

    Yang Qiang; Lai Wanchang; Ge Liangquan

    2009-01-01

    Article introduced a portable tube exciting X-ray fluorescence analysis system which is based on arm architecture. Also, we designed Tube control circuit and finished preliminary application. The energy and the intensity of the photon can be adjusted continuously by using the tube. Experiments show that high excitation efficiency obtained by setting the appropriate parameters of the tube for the various elements. (authors)

  17. Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation

    Science.gov (United States)

    Peter, Simon; Leine, Remco I.

    2017-11-01

    Phase resonance testing is one method for the experimental extraction of nonlinear normal modes. This paper proposes a novel method for nonlinear phase resonance testing. Firstly, the issue of appropriate excitation is approached on the basis of excitation power considerations. Therefore, power quantities known from nonlinear systems theory in electrical engineering are transferred to nonlinear structural dynamics applications. A new power-based nonlinear mode indicator function is derived, which is generally applicable, reliable and easy to implement in experiments. Secondly, the tuning of the excitation phase is automated by the use of a Phase-Locked-Loop controller. This method provides a very user-friendly and fast way for obtaining the backbone curve. Furthermore, the method allows to exploit specific advantages of phase control such as the robustness for lightly damped systems and the stabilization of unstable branches of the frequency response. The reduced tuning time for the excitation makes the commonly used free-decay measurements for the extraction of backbone curves unnecessary. Instead, steady-state measurements for every point of the curve are obtained. In conjunction with the new mode indicator function, the correlation of every measured point with the associated nonlinear normal mode of the underlying conservative system can be evaluated. Moreover, it is shown that the analysis of the excitation power helps to locate sources of inaccuracies in the force appropriation process. The method is illustrated by a numerical example and its functionality in experiments is demonstrated on a benchmark beam structure.

  18. Vibratory synchronization transmission of a cylindrical roller in a vibrating mechanical system excited by two exciters

    Science.gov (United States)

    Zhang, Xueliang; Wen, Bangchun; Zhao, Chunyu

    2017-11-01

    In present work vibratory synchronization transmission (VST) of a cylindrical roller with dry friction in a vibrating mechanical system excited by two exciters, is studied. Using the average method, the criterion of implementing synchronization of two exciters and that of ensuring VST of a roller, are achieved. The criterion of stability of the synchronous states satisfies the Routh-Hurwitz principle. The influences of the structural parameters of the system to synchronization and stability, are discussed numerically, which can be served as the theoretical foundation for engineering designs. An experiment is carried out, which approximately verify the validity of the theoretical and numerical results, as well as the feasibility of the method used. Utilizing the VST theory of a roller, some types of vibrating crushing or grinding equipments, etc., can be designed.

  19. Comparison of multiple support excitation solution techniques for piping systems

    International Nuclear Information System (INIS)

    Sterkel, H.P.; Leimbach, K.R.

    1980-01-01

    Design and analysis of nuclear power plant piping systems exposed to a variety of dynamic loads often require multiple support excitation analysis by modal or direct time integration methods. Both methods have recently been implemented in the computer program KWUROHR for static and dynamic analysis of piping systems, following the previous implementation of the multiple support excitation response spectrum method (see papers K 6/15 and K 6/15a of the SMiRT-4 Conference). The results of multiple support excitation response spectrum analyses can be examined by carrying out the equivalent time history analyses which do not distort the time phase relationship between the excitations at different support points. A frequent point of discussion is multiple versus single support excitation. A single support excitation analysis is computationally straightforward and tends to be on the conservative side, as the numerical results show. A multiple support excitation analysis, however, does not incur much more additional computer cost than the expenditure for an initial static solution involving three times the number, L, of excitation levels, i.e. 3L static load cases. The results are more realistic than those from a single support excitation analysis. A number of typical nuclear plant piping systems have been analyzed using single and multiple support excitation algorithms for: (1) the response spectrum method, (2) the modal time history method via the Wilson, Newmark and Goldberg integration operators and (3) the direct time history method via the Wilson integration operator. Characteristic results are presented to compare the computational quality of all three methods. (orig.)

  20. Dynamic performance estimation of stator voltage regulator in rotary exciter system with DC exciter

    Directory of Open Access Journals (Sweden)

    Stojić Đorđe

    2011-01-01

    Full Text Available In this paper, procedure for AVR parameter estimation is proposed, based on step responses when synchronous generator in idle run. The exciter system includes AVR, thyristor rectifier and DC exciter. AVR is realized in the form of cascade control structure with two control loops. PID controller in the outer loop represents the primary controller. P controller in the inner loop represents secondary controller which enables the faster field current response time. The aim of procedure is to determine equivalent gain of PID controller and thyristor rectifier. The measurements used in the parameter estimation procedure are taken from fossil power plant 'Kolubara A', aggregate A5.

  1. Multiple excitation of supports - Part 2 : Implementation in TUBO system

    International Nuclear Information System (INIS)

    Galeao, A.C.N.R.; Barbosa, H.J.C.

    1980-12-01

    From the formulation of multiple excitation support problem, discussed in the first part of this work, and with the use of numerical techniques presented there, we discuss in this second part, the implementation in TUBO system, the follow procedure: Direct integration, Modal overlap, Spectral response emphasizing the aspects related to supports excitation. Finally, we present two numerical examples of TUBO system utilization in the solution of support movement problem. The several implemented computational procedures are compared. (E.G.) [pt

  2. Rated power factor and excitation system of large turbine generator

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Watanabe, Takashi; Banjou, Minoru.

    1979-01-01

    As for the rated power factor of turbine generators for thermal power stations, 90% has been adopted since around 1960. On the other hand, power transmission system has entered 500 kV age, and 1,000 kV transmission is expected in the near future. As for the supply of reactive power from thermal and nuclear turbine generators, the necessity of supplying leading reactive power has rather increased. Now, the operating power factor of thermal and nuclear generators becomes 96 to 100% actually. As for the excess stability of turbine generators owing to the strengthening of transmission system and the adoption of super-high voltage, the demand of strict conditions can be dealt with by the adoption of super-fast response excitation system of thyristor shunt winding self exciting type. The adoption of the turbine generators with 90 to 95% power factor and the adoption of the thyristor shunt winding self exciting system were examined and evaluated. The rated power factor of generators, excitation system and economy of adopting these systems are explained. When the power factor of generators is increased from 0.9 to 0.95, about 6% of saving can be obtained in the installation cost. When the thyristor shunt winding self excitation is adopted, it is about 10% more economical than AC excitation. (Kako, I.)

  3. Multiple excitation regenerative amplifier inertial confinement system

    International Nuclear Information System (INIS)

    George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.

    1980-01-01

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation

  4. Equivalent non-Gaussian excitation method for response moment calculation of systems under non-Gaussian random excitation

    International Nuclear Information System (INIS)

    Tsuchida, Takahiro; Kimura, Koji

    2015-01-01

    Equivalent non-Gaussian excitation method is proposed to obtain the moments up to the fourth order of the response of systems under non-Gaussian random excitation. The excitation is prescribed by the probability density and power spectrum. Moment equations for the response can be derived from the stochastic differential equations for the excitation and the system. However, the moment equations are not closed due to the nonlinearity of the diffusion coefficient in the equation for the excitation. In the proposed method, the diffusion coefficient is replaced with the equivalent diffusion coefficient approximately to obtain a closed set of the moment equations. The square of the equivalent diffusion coefficient is expressed by the second-order polynomial. In order to demonstrate the validity of the method, a linear system to non-Gaussian excitation with generalized Gaussian distribution is analyzed. The results show the method is applicable to non-Gaussian excitation with the widely different kurtosis and bandwidth. (author)

  5. Coherence resonance in an excitable system with time delay

    International Nuclear Information System (INIS)

    Sethia, Gautam C.; Kurths, Juergen; Sen, Abhijit

    2007-01-01

    We study the noise activated dynamics of a model excitable system that consists of a subcritical Hopf oscillator with a time delayed nonlinear feedback. The coherence of the noise driven pulses of the system exhibits a novel double peaked structure as a function of the noise amplitude. The two peaks correspond to separate optimal noise levels for excitation of single spikes and multiple spikes (bursts) respectively. The relative magnitudes of these peaks are found to be a sensitive function of time delay. The physical significance of our results and its practical implications in various real life systems are discussed

  6. Distribution function of excitations in systems with fractional statistics

    International Nuclear Information System (INIS)

    Protogenov, A.P.

    1992-08-01

    The distribution function of low-energy excitations in 2+1D systems has been considered. It is shown that in these systems the quantum distribution function differs from the usual one by having a finite value of the entropy of linked braids. (author). 47 refs

  7. Programmable logic controller based synchronous motor excitation system

    Directory of Open Access Journals (Sweden)

    Janda Žarko

    2011-01-01

    Full Text Available This paper presents a 3.5 MW synchronous motor excitation system reconstruction. In the proposed solution programmable logic controller is used to control motor, which drives the turbo compressor. Comparing to some other solutions that are used in similar situations, the proposed solution is superior due to its flexibility and usage of mass-production hardware. Moreover, the implementation of PLC enables easy integration of the excitation system with the other technological processes in the plant as well as in the voltage regulation of 'smart grid' system. Also, implementation of various optimization algorithms can be done comfortably and it does not require additional investment in hardware. Some experimental results that depict excitation current during motor start-up, as well as, measured static characteristics of the motor, were presented.

  8. Seismic analysis of piping systems subjected to multiple support excitations

    International Nuclear Information System (INIS)

    Sundararajan, C.; Vaish, A.K.; Slagis, G.C.

    1981-01-01

    The paper presents the results of a comparative study between the multiple response spectrum method and the time-history method for the seismic analysis of nuclear piping systems subjected to different excitation at different supports or support groups. First, the necessary equations for the above analysis procedures are derived. Then, three actual nuclear piping systems subjected to single and multiple excitations are analyzed by the different methods, and extensive comparisons of the results (stresses) are made. Based on the results, it is concluded that the multiple response spectrum analysis gives acceptable results as compared to the ''exact'', but much more costly, time-history analysis. 6 refs

  9. Response moments of dynamic systems under non-Gaussian random excitation by the equivalent non-Gaussian excitation method

    International Nuclear Information System (INIS)

    Tsuchida, Takahiro; Kimura, Koji

    2016-01-01

    Equivalent non-Gaussian excitation method is proposed to obtain the response moments up to the 4th order of dynamic systems under non-Gaussian random excitation. The non-Gaussian excitation is prescribed by the probability density and the power spectrum, and is described by an Ito stochastic differential equation. Generally, moment equations for the response, which are derived from the governing equations for the excitation and the system, are not closed due to the nonlinearity of the diffusion coefficient in the equation for the excitation even though the system is linear. In the equivalent non-Gaussian excitation method, the diffusion coefficient is replaced with the equivalent diffusion coefficient approximately to obtain a closed set of the moment equations. The square of the equivalent diffusion coefficient is expressed by a quadratic polynomial. In numerical examples, a linear system subjected to nonGaussian excitations with bimodal and Rayleigh distributions is analyzed by using the present method. The results show that the method yields the variance, skewness and kurtosis of the response with high accuracy for non-Gaussian excitation with the widely different probability densities and bandwidth. The statistical moments of the equivalent non-Gaussian excitation are also investigated to describe the feature of the method. (paper)

  10. Beam excitation and damping with the transverse feedback system

    International Nuclear Information System (INIS)

    Pellegrin, J.L.; Rees, J.R.

    1979-08-01

    The questions often come up, ''What is the strength if the beam excitation system? How much damping can the transverse feedback provide?'' The design is now advanced enough to answer these questions; also, laboratory tests of some components have been conducted and we know what can be expected of the hardware. This paper discusses these questions

  11. FSI analysis of piping systems under seismic excitation

    International Nuclear Information System (INIS)

    Uras, R.A.; Ma, D.C.; Chang, Yao W.; Liu, Wing Kam

    1991-01-01

    A formulation which accounts for fluid-structure interaction of piping system under seismic excitation is presented. The governing equations of the fluid and the structure to model the pipe are stated. Using the finite element method the discretized equations are obtained. A transformation procedure for proper assembly of matrices is introduced. A solution algorithm is described. 9 refs., 2 figs

  12. Excited, bound and resonant positron-atom systems

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, M W J [Department of Physics and Computational Science Research Center, San Diego State University, San Diego CA 92182 (United States); Mitroy, J, E-mail: mbromley@physics.sdsu.ed [ARC Centre for Antimatter-Matter Studies and Faculty of Education, Health and Science, Charles Darwin University, Darwin NT 0909 (Australia)

    2010-01-01

    Calculations have demonstrated that eleven neutral atoms can bind positrons, while many more can bind positronium. This is a short review of recent progress made in understanding some of the underlying mechanisms. The emphasis here being on configuration interaction calculations with excited state configurations. These have demonstrated the existence of a {sup 2}P{sup o} excited state of e{sup +}Ca, which consists predominantly of a positronium cluster orbiting the Ca{sup +} ion in the L = 1 partial wave. Preliminary results are presented of excited state positron binding to a model alkali atom, where the excited {sup 1}P{sup o} states are stable over a limited region. Implications for the unnatural parity, {sup 2,4}S{sup o}, states of PsH, LiPs, NaPs and KPs are also discussed. The e{sup +}Mg, e{sup +}Cu, e{sup +}Zn and e{sup +}Cd systems show a lack of a {sup 2}P{sup o} excited state, each instead possessing a low-energy p-wave shape resonance of varying strength.

  13. Excited, bound and resonant positron-atom systems

    International Nuclear Information System (INIS)

    Bromley, M W J; Mitroy, J

    2010-01-01

    Calculations have demonstrated that eleven neutral atoms can bind positrons, while many more can bind positronium. This is a short review of recent progress made in understanding some of the underlying mechanisms. The emphasis here being on configuration interaction calculations with excited state configurations. These have demonstrated the existence of a 2 P o excited state of e + Ca, which consists predominantly of a positronium cluster orbiting the Ca + ion in the L = 1 partial wave. Preliminary results are presented of excited state positron binding to a model alkali atom, where the excited 1 P o states are stable over a limited region. Implications for the unnatural parity, 2,4 S o , states of PsH, LiPs, NaPs and KPs are also discussed. The e + Mg, e + Cu, e + Zn and e + Cd systems show a lack of a 2 P o excited state, each instead possessing a low-energy p-wave shape resonance of varying strength.

  14. Synchronization of Two Asymmetric Exciters in a Vibrating System

    Directory of Open Access Journals (Sweden)

    Zhaohui Ren

    2011-01-01

    Full Text Available We investigate synchronization of two asymmetric exciters in a vibrating system. Using the modified average method of small parameters, we deduce the non-dimensional coupling differential equations of the two exciters (NDDETE. By using the condition of existence for the zero solutions of the NDDETE, the condition of implementing synchronization is deduced: the torque of frequency capture is equal to or greater than the difference in the output electromagnetic torque between the two motors. Using the Routh-Hurwitz criterion, we deduce the condition of stability of synchronization that the inertia coupling matrix of the two exciters is positive definite. A numeric result shows that the structural parameters can meet the need of synchronization stability.

  15. Dynamic response of piping system subject to flow acoustic excitation

    International Nuclear Information System (INIS)

    Wang, T.; Sun, Y.S.

    1988-01-01

    Through the use of a theoretically derived and test data-calibrated forcing function, the dynamic response of a piping system subject to flow-acoustic induced vibration is analyzed. It is shown that the piping behavior can be predicted when consideration is given to both the wall flexural vibration and the piping system vibration. Piping responded as a system to the transversal excitation due to the swirling motion of the fluid flow, as well as flexurally to the high-frequency acoustic excitations. The transverse piping system response was calculated using a lumped mass piping model. The piping model has more stringent requirements than its counterpart for waterhammer and seismic modeling due to the shorter spiral wavelength and higher frequency of the forcing function. Proper modeling ensured that both the moment stress caused by system excitation and the local stress induced by the support reaction load were properly accounted for. Flexural vibration not only poses a threat to nipples and branch connections, but also contributes substantially to the resultant total stress experienced by the pipe. The forcing function approach has the advantage that the critical locations on the piping system can be identified by means of analysis, facilitating surveillance and inspection, as well as fatigue evaluation

  16. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu

    2014-01-01

    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  17. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    Van Tassle, Aaron Justin

    2006-01-01

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  18. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  19. Excitation model of pacemaker cardiomyocytes of cardiac conduction system

    Science.gov (United States)

    Grigoriev, M.; Babich, L.

    2015-11-01

    Myocardium includes typical and atypical cardiomyocytes - pacemakers, which form the cardiac conduction system. Excitation from the atrioventricular node in normal conditions is possible only in one direction. Retrograde direction of pulses is impossible. The most important prerequisite for the work of cardiomyocytes is the anatomical integrity of the conduction system. Changes in contractile force of the cardiomyocytes, which appear periodically, are due to two mechanisms of self-regulation - heterometric and homeometric. Graphic course of the excitation pulse propagation along the heart muscle more accurately reveals the understanding of the arrhythmia mechanism. These models have the ability to visualize the essence of excitation dynamics. However, they do not have the proper forecasting function for result estimation. Integrative mathematical model enables further investigation of general laws of the myocardium active behavior, allows for determination of the violation mechanism of electrical and contractile function of cardiomyocytes. Currently, there is no full understanding of the topography of pacemakers and ionic mechanisms. There is a need for the development of direction of mathematical modeling and comparative studies of the electrophysiological arrangement of cells of atrioventricular connection and ventricular conduction system.

  20. Analysis of piping system response to seismic excitations

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    This paper describes a numerical algorithm for analyzing piping system response to seismic excitations. The numerical model of the piping considers hoop, flexural, axial, and torsional modes of deformation. Hoop modes generated from internal hydrodynamic loading are superimposed on the bending and twisting modes by two extra degrees of freedom. A time-history analysis technique using the implicit temporal integration scheme is addressed. The time integrator uses a predictor-corrector successive iterative scheme which satisfies the equation of motion. Both geometrical and material nonlinearities are considered. Multiple support excitations, fluid effect, piping insulation, and material dampings can be included in the analysis. Two problems are presented to illustrate the method. The results are discussed in detail

  1. Simultaneous excitation system for efficient guided wave structural health monitoring

    Science.gov (United States)

    Hua, Jiadong; Michaels, Jennifer E.; Chen, Xin; Lin, Jing

    2017-10-01

    Many structural health monitoring systems utilize guided wave transducer arrays for defect detection and localization. Signals are usually acquired using the ;pitch-catch; method whereby each transducer is excited in turn and the response is received by the remaining transducers. When extensive signal averaging is performed, the data acquisition process can be quite time-consuming, especially for metallic components that require a low repetition rate to allow signals to die out. Such a long data acquisition time is particularly problematic if environmental and operational conditions are changing while data are being acquired. To reduce the total data acquisition time, proposed here is a methodology whereby multiple transmitters are simultaneously triggered, and each transmitter is driven with a unique excitation. The simultaneously transmitted waves are captured by one or more receivers, and their responses are processed by dispersion-compensated filtering to extract the response from each individual transmitter. The excitation sequences are constructed by concatenating a series of chirps whose start and stop frequencies are randomly selected from a specified range. The process is optimized using a Monte-Carlo approach to select sequences with impulse-like autocorrelations and relatively flat cross-correlations. The efficacy of the proposed methodology is evaluated by several metrics and is experimentally demonstrated with sparse array imaging of simulated damage.

  2. The design of a sensor with flexible circuit excitation in electromagnetic tomography system

    International Nuclear Information System (INIS)

    Liu Ze; He Min; Xiong Hanliang

    2005-01-01

    A novel sensor structure of electromagnetic tomography system is presented in this paper. Flexible circuit straps are used in the excitation layer of the sensor and current of each strip can be controlled independently according to the excitation protocol matrix. In the sensor three kinds of excitation protocols: parallel, quasi-parallel and coil pair can be generated. Furthermore excitation field simulation and image reconstruction experiments have been done for analyzing the performance of the different excitation protocols

  3. Production of excited double hypernuclei via Fermi breakup of excited strange systems

    International Nuclear Information System (INIS)

    Sanchez Lorente, Alicia; Botvina, Alexander S.; Pochodzalla, Josef

    2011-01-01

    Precise spectroscopy of multi-strange hypernuclei provides a unique chance to explore the hyperon-hyperon interaction. In the present work we explore the production of excited states in double hypernuclei following the micro-canonical break-up of an initially excited double hypernucleus which is created by the absorption and conversion of a stopped Ξ - hyperon. Rather independent on the spectrum of possible excited states in the produced double hypernuclei the formation of excited states dominates in our model. For different initial target nuclei which absorb the Ξ - , different double hypernuclei nuclei dominate. Thus the ability to assign the various observable γ-transitions in a unique way to a specific double hypernuclei by exploring various light targets as proposed by the PANDA Collaboration seems possible. We also confront our predictions with the correlated pion spectra measured by the E906 Collaboration.

  4. Power system stabilization by superconducting magnetic energystorage connected to rotating exciter

    OpenAIRE

    Mitani, Yasunori; Tsuji, K

    1993-01-01

    The authors describe a combination of a rotating exciter and a superconducting magnetic energy storage (SMES) system for efficient power system stabilization. A SMES system connected to an exciter rotating with a turbine-rotor shaft is proposed. The exciter is installed exclusively to supply current for the SMES. Since electrical power output from the SMES is converted into a mechanical torque of the generator directly by the exciter, it is expected that power swings of the generator will be ...

  5. Analysis about modeling MEC7000 excitation system of nuclear power unit

    Science.gov (United States)

    Liu, Guangshi; Sun, Zhiyuan; Dou, Qian; Liu, Mosi; Zhang, Yihui; Wang, Xiaoming

    2018-02-01

    Aiming at the importance of accurate modeling excitation system in stability calculation of nuclear power plant inland and lack of research in modeling MEC7000 excitation system,this paper summarize a general method to modeling and simulate MEC7000 excitation system. Among this method also solve the key issues of computing method of IO interface parameter and the conversion process of excitation system measured model to BPA simulation model. At last complete the simulation modeling of MEC7000 excitation system first time in domestic. By used No-load small disturbance check, demonstrates that the proposed model and algorithm is corrective and efficient.

  6. Design for the excitation systems of three generator sets of HL-2A

    International Nuclear Information System (INIS)

    Li Huajun; Xu Lirong; Liu Xuemei; You Tianxue

    2001-01-01

    The design for the excitation systems have been made on the basis of respective features and load demands of three motor-generator sets of HL-2A. The excitation systems of No.1 and No.2 generator sets which supply for toroidal field are discussed in detail and three feasible excitation plans have been proposed according to the investment

  7. Early warning signal for interior crises in excitable systems.

    Science.gov (United States)

    Karnatak, Rajat; Kantz, Holger; Bialonski, Stephan

    2017-10-01

    The ability to reliably predict critical transitions in dynamical systems is a long-standing goal of diverse scientific communities. Previous work focused on early warning signals related to local bifurcations (critical slowing down) and nonbifurcation-type transitions. We extend this toolbox and report on a characteristic scaling behavior (critical attractor growth) which is indicative of an impending global bifurcation, an interior crisis in excitable systems. We demonstrate our early warning signal in a conceptual climate model as well as in a model of coupled neurons known to exhibit extreme events. We observed critical attractor growth prior to interior crises of chaotic as well as strange-nonchaotic attractors. These observations promise to extend the classes of transitions that can be predicted via early warning signals.

  8. Four-nucleon system with Δ-isobar excitation

    International Nuclear Information System (INIS)

    Deltuva, A.; Fonseca, A.C.; Sauer, P.U.

    2008-01-01

    The four-nucleon bound state and scattering below three-body breakup threshold are described based on the realistic coupled-channel potential CD Bonn+Δ which allows the excitation of a single nucleon to a Δ isobar. The Coulomb repulsion between protons is included. In the four-nucleon system the two-baryon coupled-channel potential yields effective two-, three- and four-nucleon forces, mediated by the Δ isobar and consistent with each other and with the underlying two-nucleon force. The effect of the four-nucleon force on the studied observables is much smaller than the effect of the three-nucleon force. The inclusion of the Δ isobar is unable to resolve the existing discrepancies with the experimental data

  9. A Dynamic Branch-Switching Method for Parametrically Excited Systems

    Directory of Open Access Journals (Sweden)

    A.Y.T. Leung

    1999-01-01

    Full Text Available The branch-switching algorithm in static is applied to steady state dynamic problems. The governing ordinary differential equations are transformed to nonlinear algebraic equations by means of harmonic balance method using multiple frequency components. The frequency components of the (irrational nonlinearity of oscillator are obtained by Fast Fourier Transform and Toeplitz Jacobian method (FFT/TJM. All singularities, folds, flips, period doubling and period bubbling, are computed accurately in an analytical manner. Coexisting solutions can be predicted without using initial condition search. The consistence of both stability criteria in time and frequency domains is discussed. A highly nonlinear parametrically excited system is given as example. All connected solution paths are predicted.

  10. Study on the adjustment capability of the excitation system located inside superconducting machine electromagnetic shield

    Science.gov (United States)

    Xia, D.; Xia, Z.

    2017-12-01

    The ability for the excitation system to adjust quickly plays a very important role in maintaining the normal operation of superconducting machines and power systems. However, the eddy currents in the electromagnetic shield of superconducting machines hinder the exciting magnetic field change and weaken the adjustment capability of the excitation system. To analyze this problem, a finite element calculation model for the transient electromagnetic field with moving parts is established. The effects of three different electromagnetic shields on the exciting magnetic field are analyzed using finite element method. The results show that the electromagnetic shield hinders the field changes significantly, the better its conductivity, the greater the effect on the superconducting machine excitation.

  11. Methodology to estimate parameters of an excitation system based on experimental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra-Montes, A.J. [Carrera 80 No 65-223, Bloque M8 oficina 113, Escuela de Mecatronica, Universidad Nacional de Colombia, Medellin (Colombia); Calle 13 No 100-00, Escuela de Ingenieria Electrica y Electronica, Universidad del Valle, Cali, Valle (Colombia); Ramirez-Scarpetta, J.M. [Calle 13 No 100-00, Escuela de Ingenieria Electrica y Electronica, Universidad del Valle, Cali, Valle (Colombia); Malik, O.P. [2500 University Drive N.W., Electrical and Computer Engineering Department, University of Calgary, Calgary, Alberta (Canada)

    2011-01-15

    A methodology to estimate the parameters of a potential-source controlled rectifier excitation system model is presented in this paper. The proposed parameter estimation methodology is based on the characteristics of the excitation system. A comparison of two pseudo random binary signals, two sampling periods for each one, and three estimation algorithms is also presented. Simulation results from an excitation control system model and experimental results from an excitation system of a power laboratory setup are obtained. To apply the proposed methodology, the excitation system parameters are identified at two different levels of the generator saturation curve. The results show that it is possible to estimate the parameters of the standard model of an excitation system, recording two signals and the system operating in closed loop with the generator. The normalized sum of squared error obtained with experimental data is below 10%, and with simulation data is below 5%. (author)

  12. Pure-Phase Selective Excitation in Fast-Relaxing Systems

    Science.gov (United States)

    Zangger, Klaus; Oberer, Monika; Sterk, Heinz

    2001-09-01

    Selective pulses have been used frequently for small molecules. However, their application to proteins and other macromolecules has been limited. The long duration of shaped-selective pulses and the short T2 relaxation times in proteins often prohibited the use of highly selective pulses especially on larger biomolecules. A very selective excitation can be obtained within a short time by using the selective excitation sequence presented in this paper. Instead of using a shaped low-intensity radiofrequency pulse, a cluster of hard 90° pulses, delays of free precession, and pulsed field gradients can be used to selectively excite a narrow chemical shift range within a relatively short time. Thereby, off-resonance magnetization, which is allowed to evolve freely during the free precession intervals, is destroyed by the gradient pulses. Off-resonance excitation artifacts can be removed by random variation of the interpulse delays. This leads to an excitation profile with selectivity as well as phase and relaxation behavior superior to that of commonly used shaped-selective pulses. Since the evolution of scalar coupling is inherently suppressed during the double-selective excitation of two different scalar-coupled nuclei, the presented pulse cluster is especially suited for simultaneous highly selective excitation of N-H and C-H fragments. Experimental examples are demonstrated on hen egg white lysozyme (14 kD) and the bacterial antidote ParD (19 kD).

  13. Experimental and theoretical evidence for fluctuation driven activations in an excitable chemical system

    Science.gov (United States)

    Hastings, Harold; Sobel, Sabrina; Field, Richard; Minchenberg, Scott; Spinelli, Nicole; Zauderer, Keith

    2011-03-01

    An excitable medium is a system in which small perturbations die out, but sufficiently large perturbations generate large ``excitations.'' Biological examples include neurons and the heart; the latter supports waves of excitation normally generated by the sinus node, but occasionally generated by other mechanisms. The ferroin-catalyzed Belousov-Zhabotinsky reaction is the prototype chemical excitable medium. We present experimental and theoretical evidence for that random fluctuations can generate excitations in the Belousov-Zhabothinsky reaction. Although the heart is significantly different, there are some scaling analogies. This material is based upon work supported by the Department of Energy under Award Number DE-FG02-08ER64623.

  14. Development of tunable flashlamp excited dye laser system

    International Nuclear Information System (INIS)

    Bhanthumnavin, V.; Apikitmata, S.; Kochareon, P.

    1991-01-01

    A tunable flashlamp excited dye laser (FEDL) was successfully developed for the first time in Thailand by Thai scientists at KMIT Thonburi (Bangmod). The Rhodamine 6G dissolved in ethyl alcohol was utilized as a laser medium and circulated by a pump through a laser head. The dye cuvette had an inner diameter of 4.0 mm and was 90 mm long. The cavity mirrors M 1 , and M 2 were concave mirrors with reflectivities of 100% and 73% respectively. A power supply of 0-20 kV and current of 0-50 mA charged a capacitor of 0.3 μ f at 10-15 kV which was then discharged via a spark gap through the flashlamp. The output laser wavelengths was tunable from λ = 550-640 nm. It is the first FEDL system, locally developed, which has a tunable wavelength for the laser output. The laser pulse width is about 1.0 μs with energy of 20 mJ and peak power pf 20 KW. The repetition rate of the laser is 1/15 Hz. (author). 14 refs, 7 figs

  15. Research on the reliability of friction system under combined additive and multiplicative random excitations

    Science.gov (United States)

    Sun, Jiaojiao; Xu, Wei; Lin, Zifei

    2018-01-01

    In this paper, the reliability of a non-linearly damped friction oscillator under combined additive and multiplicative Gaussian white noise excitations is investigated. The stochastic averaging method, which is usually applied to the research of smooth system, has been extended to the study of the reliability of non-smooth friction system. The results indicate that the reliability of friction system can be improved by Coulomb friction and reduced by random excitations. In particular, the effect of the external random excitation on the reliability is larger than the effect of the parametric random excitation. The validity of the analytical results is verified by the numerical results.

  16. Excitation functions of the systems 12C+14C and 13C+12C

    International Nuclear Information System (INIS)

    Haindl, E.

    1975-01-01

    The excitation functions of the systems 12 C+ 14 C and 13 C+ 12 C are investigated for different exit channels. The excitation functions measured do not show correlated structures as in the system 12 C+ 12 C. (WL/AK) [de

  17. The conditions for attaining the greatest degree of system stability with strict generator excitation control

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, I.A.; Ekimova, M.M.; Truspekova, G.A.

    1982-01-01

    Expressions are derived for an idealized model of a complex electric power system; these expressions define the greatest level of stability of an electric power system and the optimum combination of stabilization factors with automatic excitation control in a single power system. The possibility of increasing the level of stability of an electric power system with simultaneous strict automatic excitation control of the synychronous generators in several power systems is analyzed.

  18. Semiconductor-machine system for controlling excitation of synchronous medium power generators

    Energy Technology Data Exchange (ETDEWEB)

    Vrtikapa, G

    1982-01-01

    A system for controlling excitation (ARP-29/1) is described which was developed at the ''Nikola Tesla'' institute (Czechoslavakia) for rebuilding the Zvornik hydroelectric plant with 30 MV X A units. The system corresponds to the modern level of automation and considers positive characteristics of existing equipment, it is easily included in a technological process, has small dimensions and is easily installed during overhaul of a electric generating plant, and it allows one to obtain good economic results. Two years of use have confirmed the high reliability and quality of the excitation. The excitation control system consists of synchronous motor, excitation system, automatic control of voltage, manual control of excitation unit, unit for automatic following and switching, relay automatic device with protection and warning. The excitation system of the generator has: thyristor rectifier, thyristor converter, a bridge with thyristor control unit, machine excitation generator, switch for demagnetization. The excitation system is supplied from an electric power network or from a three phase generator with permanent magnets.

  19. Chaos excited chaos synchronizations of integral and fractional order generalized van der Pol systems

    International Nuclear Information System (INIS)

    Ge Zhengming; Hsu Maoyuan

    2008-01-01

    In this paper, chaos excited chaos synchronizations of generalized van der Pol systems with integral and fractional order are studied. Synchronizations of two identified autonomous generalized van der Pol chaotic systems are obtained by replacing their corresponding exciting terms by the same function of chaotic states of a third nonautonomous or autonomous generalized van der Pol system. Numerical simulations, such as phase portraits, Poincare maps and state error plots are given. It is found that chaos excited chaos synchronizations exist for the fractional order systems with the total fractional order both less than and more than the number of the states of the integer order generalized van der Pol system

  20. Indirect control of quantum systems via an accessor: pure coherent control without system excitation

    International Nuclear Information System (INIS)

    Fu, H C; Dong Hui; Sun, C P; Liu, X F

    2009-01-01

    A pure indirect control of quantum systems via a quantum accessor is investigated. In this control scheme, we do not apply any external classical excitation fields on the controlled system and we control a quantum system via a quantum accessor and classical control fields control the accessor only. Complete controllability is investigated for arbitrary finite-dimensional quantum systems and exemplified by two- and three-dimensional systems. The scheme exhibits some advantages; it uses less qubits in the accessor and does not depend on the energy-level structure of the controlled system

  1. Development of the Fragment Molecular Orbital Method for Calculating Nonlocal Excitations in Large Molecular Systems.

    Science.gov (United States)

    Fujita, Takatoshi; Mochizuki, Yuji

    2018-04-19

    We developed the fragment-based method for calculating nonlocal excitations in large molecular systems. This method is based on the multilayer fragment molecular orbital method and the configuration interaction single (CIS) wave function using localized molecular orbitals. The excited-state wave function for the whole system is described as a superposition of configuration state functions (CSFs) for intrafragment excitations and for interfragment charge-transfer excitations. The formulation and calculations of singlet excited-state Hamiltonian matrix elements in the fragment CSFs are presented in detail. The efficient approximation schemes for calculating the matrix elements are also presented. The computational efficiency and the accuracy were evaluated using the molecular dimers and molecular aggregates. We confirmed that absolute errors of 50 meV (relative to the conventional calculations) are achievable for the molecular systems in their equilibrium geometries. The perturbative electron correlation correction to the CIS excitation energies is also demonstrated. The present theory can compute a large number of excited states in large molecular systems; in addition, it allows for the systematic derivation of a model exciton Hamiltonian. These features are useful for studying excited-state dynamics in condensed molecular systems based on the ab initio electronic structure theory.

  2. Wind turbine blade testing system using base excitation

    Science.gov (United States)

    Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay

    2014-03-25

    An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).

  3. Clustered chimera states in systems of type-I excitability

    International Nuclear Information System (INIS)

    Vüllings, Andrea; Omelchenko, Iryna; Hövel, Philipp; Hizanidis, Johanne

    2014-01-01

    The chimera state is a fascinating phenomenon of coexisting synchronized and desynchronized behaviour that was discovered in networks of nonlocally coupled identical phase oscillators over ten years ago. Since then, chimeras have been found in numerous theoretical and experimental studies and more recently in models of neuronal dynamics as well. In this work, we consider a generic model for a saddle-node bifurcation on a limit cycle representative of neural excitability type I. We obtain chimera states with multiple coherent regions (clustered chimeras/multi-chimeras) depending on the distance from the excitability threshold, the range of nonlocal coupling and the coupling strength. A detailed stability diagram for these chimera states and other interesting coexisting patterns (like traveling waves) is presented. (paper)

  4. Excitations in superfluid systems: contributions of the nuclear structure; Excitations dans les systemes superfluides: contributions de la structure nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Khan, E

    2005-12-15

    The author presents successively the theoretical aspect, the experimental aspect and the applied aspect of excitations in nuclear structures. The quasi-particle random phase approximation (QRPA) tool is first described. Recent approaches on QRPA are based on the theory of the density function where the ground state and excited states are described from the same nucleon-nucleon interaction. 2 methods for measuring the collective excitations are then presented: the proton scattering that has the potentiality to investigate the evolution of magicity, the second method is in fact a new method for measuring the giant mono-polar resonance (GMP) in exotic nuclei. Nuclear reactions are considered as a compulsory step on the way from observables like cross-sections to nuclear structure. The author highlights the assets of the convolution model that can generate the optical potential from the effective nucleon-nucleon interaction and from proton and neutron densities of the nuclei involved. R-processes in nucleosynthesis and neutron stars are reviewed as applications of collective excitations in the field of nuclear astrophysics. (A.C.)

  5. Stochastic stability of mechanical systems under renewal jump process parametric excitation

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

    2005-01-01

    A dynamic system under parametric excitation in the form of a non-Erlang renewal jump process is considered. The excitation is a random train of nonoverlapping rectangular pulses with equal, deterministic heights. The time intervals between two consecutive jumps up (or down), are the sum of two...

  6. Excitation of graphene plasmons as an analogy with the two-level system

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiahui [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China); Lv, Bo, E-mail: lb19840313@126.com [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China); Li, Rujiang [College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China); Ma, Ruyu; Chen, Wan; Meng, Fanyi [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China)

    2016-02-15

    The excitation of graphene plasmons (GPs) is presented as an interaction between the GPs and the incident electromagnetic field. In this Letter, the excitation of GPs in a plasmonic system is interpreted as an analogy with the two-level system by taking the two-coupled graphene-covered gratings as an example. Based on the equivalent circuit theory, the excitation of GPs in the graphene-covered grating is equivalent to the resonance of an oscillator. Thus, according to the governing equation, the electric currents at the resonant frequencies for two-coupled graphene-covered gratings correspond to the energy states in a two-level system. In addition, the excitation of GPs in different two-coupled graphene-covered gratings is numerically studied to validate our theoretical model. Our work provides an intuitive understanding of the excitation of GPs using an analogy with the two-level system. - Highlights: • The excitation of graphene plasmons (GPs) in graphene-covered grating is equivalent to the resonance of an oscillator. • We establish the equivalent circuit of two-level system to analyze the resonant character. • The excitation of GPs in different two-coupled graphene-covered gratings are numerically studied to validate our theoretical model.

  7. Excitation of graphene plasmons as an analogy with the two-level system

    International Nuclear Information System (INIS)

    Fu, Jiahui; Lv, Bo; Li, Rujiang; Ma, Ruyu; Chen, Wan; Meng, Fanyi

    2016-01-01

    The excitation of graphene plasmons (GPs) is presented as an interaction between the GPs and the incident electromagnetic field. In this Letter, the excitation of GPs in a plasmonic system is interpreted as an analogy with the two-level system by taking the two-coupled graphene-covered gratings as an example. Based on the equivalent circuit theory, the excitation of GPs in the graphene-covered grating is equivalent to the resonance of an oscillator. Thus, according to the governing equation, the electric currents at the resonant frequencies for two-coupled graphene-covered gratings correspond to the energy states in a two-level system. In addition, the excitation of GPs in different two-coupled graphene-covered gratings is numerically studied to validate our theoretical model. Our work provides an intuitive understanding of the excitation of GPs using an analogy with the two-level system. - Highlights: • The excitation of graphene plasmons (GPs) in graphene-covered grating is equivalent to the resonance of an oscillator. • We establish the equivalent circuit of two-level system to analyze the resonant character. • The excitation of GPs in different two-coupled graphene-covered gratings are numerically studied to validate our theoretical model.

  8. Identification of the low-energy excitations in a quantum critical system

    Directory of Open Access Journals (Sweden)

    Tom Heitmann

    2017-05-01

    Full Text Available We have identified low-energy magnetic excitations in a doped quantum critical system by means of polarized neutron scattering experiments. The presence of these excitations could explain why Ce(Fe0.76Ru0.242Ge2 displays dynamical scaling in the absence of local critical behavior or long-range spin-density wave criticality. The low-energy excitations are associated with the reorientations of the superspins of fully ordered, isolated magnetic clusters that form spontaneously upon lowering the temperature. The system houses both frozen clusters and dynamic clusters, as predicted by Hoyos and Vojta [Phys. Rev. B 74, 140401(R (2006].

  9. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    2008-01-01

    Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...

  10. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...

  11. New formalism for determining excitation spectra of many-body systems

    International Nuclear Information System (INIS)

    Saito, S.; Zhang, S.B.; Louie, S.G.; Cohen, M.L.

    1990-01-01

    We present a new general formalism for determining the excitation spectrum of interacting many-body systems. The basic assumption is that the number of the excitations is equal to the number of sites. Within this approximation, it is shown that the density-density response functions with two different pure-imaginary energies determine the excitation spectrum. The method is applied to the valence electrons of sodium clusters of differing sizes in the time-dependent local-density approximation (TDLDA). A jellium-sphere background model is used for the ion cores. The excitation spectra obtained in this way represent well the excitation spectra given by the full TDLDA calculation along the real energy axis. Important collective modes are reproduced very well

  12. Localized excitations in nonlinear complex systems current state of the art and future perspectives

    CERN Document Server

    Cuevas-Maraver, Jesús; Frantzeskakis, Dimitri; Karachalios, Nikos; Kevrekidis, Panayotis; Palmero-Acebedo, Faustino

    2014-01-01

    The study of nonlinear localized excitations is a long-standing challenge for research in basic and applied science, as well as engineering, due to their importance in understanding and predicting phenomena arising in nonlinear and complex systems, but also due to their potential for the development and design of novel applications. This volume is a compilation of chapters representing the current state-of-the-art on the field of localized excitations and their role in the dynamics of complex physical systems.

  13. Collisionally excited few-electron systems: theoretical introduction and survey

    International Nuclear Information System (INIS)

    Ford, A.L.; Reading, J.F.; Becker, R.L.

    1982-01-01

    We consider excitation, ionization, and charge transfer in collisions of protons (and antiprotons) with the single-electron targets H, He + , and Li 2+ . These collisions are first compared to other types of ion-atom collisions. A brief review of our own theoretical method is given; in particular we describe how we allow for both large charge transfer and ionization probabilities while retaining the computational efficiency that allows us to consider a variety of collision partners and collision energies. We comment on the comparison of our results to other theoretical work and to experiment. The qualitative features of the various inelastic cross sections are discussed, in particular how they scale with collision energy, target nuclear charge, and the sign of the projectile charge. 15 references, 6 figures

  14. Excitation processes in organic systems under irradiation with vacuum ultraviolet radiation

    International Nuclear Information System (INIS)

    Shefer, Y.

    1983-08-01

    The subject of this work is the fluorescence of organic systems in the excitation range where phenomena of photon multiplication begin. It was hoped to reach the excitation energy above which the distribution of the various phenomena was constant and as a result, a linear function between the variation of the fluorescence intensity with variations of the excitation, would be obtained. The experimental set-up consisted mainly of suitable light sources, monochromators and detectors. The gated measuring system consisted of an oscilloscope, integrator and recorder. The material predominantly used in the experiments was anthracene whose absorption spectrum was investigated and calculated. The absorption spectra of various polycrystalline layers were also calculated. The absorption spectrum of a randomly ordered polycrystalline layer was compared with that of a hexane solution and a good correlation between the two spectra was obtained. For the study of the relationship between the excitation spectrum of anthracene and the order of crystal, the excitation spectrum of single crystals of anthracene was measured from 4 eV to 107 eV. For the excitation region from 10 eV to 23 eV the efficiency of exciting a singlet level by a photoelectron was calculated as a function of the kinetic energy of the photoelectron, assuming the efficiency of the recombination to be constant. The excitation spectra of single crystals of p-terphenyl, pyrene and phenanthrene were also examined. In all four crystals the excitation spectrum rises monotonically with an increase in the energy of the exciting photon. (author)

  15. Exploring excited eigenstates of many-body systems using the functional renormalization group

    Science.gov (United States)

    Klöckner, Christian; Kennes, Dante Marvin; Karrasch, Christoph

    2018-05-01

    We introduce approximate, functional renormalization group based schemes to obtain correlation functions in pure excited eigenstates of large fermionic many-body systems at arbitrary energies. The algorithms are thoroughly benchmarked and their strengths and shortcomings are documented using a one-dimensional interacting tight-binding chain as a prototypical testbed. We study two "toy applications" from the world of Luttinger liquid physics: the survival of power laws in lowly excited states as well as the spectral function of high-energy "block" excitations, which feature several single-particle Fermi edges.

  16. Non-linear operation of nanomechnical systems combining photothermal excitation and magneto-motive detection

    International Nuclear Information System (INIS)

    Koenig, Daniel R; Metzger, Constanze; Camerer, Stephan; Kotthaus, Joerg P

    2006-01-01

    We present a non-linear operation of a nanomechanical beam resonator by photothermal excitation at 4 K. The resonators dimensions are 10 μm in length, 200 nm in width, and 200 nm in height. The actuation mechanism is based on a pulsed diode laser focused onto the centre of the beam resonator. Thermally induced stress caused by the different thermal expansion coefficients of the bi-layer system periodically deflects the resonator. Magnetomotively detected amplitudes up to 150 nm are reached at the fundamental resonance mode at a frequency of 8.9 MHz. Furthermore, the third eigenmode of the resonator at a frequency 36 MHz is also excited. We conclude that the photothermal excitation at 4 K should be applicable up to the GHz regime, the operation in the non-linear regime can be used for performance enhancement of nanomechanical systems, and the combination of photothermal excitation and magneto-motive detection avoids undesired cross talk

  17. Quantification of entanglement entropies for doubly excited resonance states in two-electron atomic systems

    International Nuclear Information System (INIS)

    Ho, Yew Kam; Lin, Chien-Hao

    2015-01-01

    In this work, we study the quantum entanglement for doubly excited resonance states in two-electron atomic systems such as the H - and Ps - ions and the He atom by using highly correlated Hylleraas type functions The resonance states are determined by calculation of density of resonance states with the stabilization method. The spatial (electron-electron orbital) entanglement entropies (linear and von Neumann) for the low-lying doubly excited states are quantified using the Schmidt-Slater decomposition method. (paper)

  18. Using axicons for depth discrimination in excitation-emission laser scanning imaging systems

    Science.gov (United States)

    Iglesias, Ignacio

    2017-10-01

    Besides generating good approximations to zero-order Bessel beams, an axicon lens coupled to a spatial filter can be used to collect light while preserving information on the depth coordinate of the source location. To demonstrate the principle, we describe an experimental excitation-emission fluorescence imaging system that uses an axicon twice: to generate an excitation Bessel beam and to collect the emitted light.

  19. Utilization of excitation signal harmonics for control of nonlinear systems

    DEFF Research Database (Denmark)

    Vinther, Kasper; Rasmussen, Henrik; Izadi-Zamanabadi, Roozbeh

    2012-01-01

    signal together with Fourier analysis to generate a feedback signal and simulations have shown that different system gains and time constants does not change the global equilibrium/operating point. An evaporator in a refrigeration system was used as example in the simulations, however, it is anticipated...... that the method is applicable in a wide variety of systems satisfying the sigmoid function properties....

  20. Relay protection coordination with generator capability curve, excitation system limiters and power system relay protections settings

    Directory of Open Access Journals (Sweden)

    Buha Danilo

    2016-01-01

    Full Text Available The relay protection settings performed in the largest thermal powerplant (TE "Nikola Tesla B" are reffered and explained in this paper. The first calculation step is related to the coordination of the maximum stator current limiter settings, the overcurrent protection with inverse characteristics settings and the permitted overload of the generator stator B1. In the second calculation step the settings of impedance generator protection are determined, and the methods and criteria according to which the calculations are done are described. Criteria used to provide the protection to fulfill the backup protection role in the event of malfunction of the main protection of the transmission system. are clarified. The calculation of all protection functions (32 functions of generator B1 were performed in the project "Coordination of relay protection blocks B1 and B2 with the system of excitation and power system protections -TENT B".

  1. Equipment acquisition plans for the SSCL magnet excitation power system

    International Nuclear Information System (INIS)

    Winje, R.

    1993-05-01

    This report gives a brief description of the major electrical technical equipment used in the Superconducting Super Collider accelerators systems and the present laboratory plans for the acquisition of the equipment

  2. Metastable states in parametrically excited multimode Hamiltonian systems

    CERN Document Server

    Kirr, E

    2003-01-01

    Consider a linear autonomous Hamiltonian system with time periodic bound state solutions. In this paper we study their dynamics under time almost periodic perturbations which are small, localized and Hamiltonian. The analysis proceeds through a reduction of the original infinite dimensional dynamical system to the dynamics of two coupled subsystems: a dominant m-dimensional system of ordinary differential equations (normal form), governing the projections onto the bound states and an infinite dimensional dispersive wave equation. The present work generalizes previous work of the authors, where the case of a single bound state is considered. Here, the interaction picture is considerably more complicated and requires deeper analysis, due to a multiplicity of bound states and the very general nature of the perturbation's time dependence. Parametric forcing induces coupling of bound states to continuum radiation modes, bound states directly to bound states, as well as coupling among bound states, which is mediate...

  3. Investigation of dye laser excitation of atomic systems

    International Nuclear Information System (INIS)

    Abate, J.A.

    1977-01-01

    A stabilized cw dye laser system and an optical pumping scheme for a sodium atomic beam were developed, and the improvements over previously existing systems are discussed. A method to stabilize both the output intensity and the frequency of the cw dye laser for periods of several hours is described. The fluctuation properties of this laser are investigated by photon counting and two-time correlation measurements. The results show significant departures from the usual single-mode laser theory in the region of threshold and below. The implications of the deviation from accepted theory are discussed. The atomic beam system that was constructed and tested is described. A method of preparing atomic sodium so that it behaves as a simple two-level atom is outlined, and the results of some experiments to study the resonant interaction between the atoms and the dye laser beam are presented

  4. Selective excitation, relaxation, and energy channeling in molecular systems

    International Nuclear Information System (INIS)

    Rhodes, W.C.

    1993-08-01

    Research involves theoretical studies of response, relaxation, and correlated motion in time-dependent behavior of large molecular systems ranging from polyatomic molecules to protein molecules in their natural environment. Underlying theme is subsystem modulation dynamics. Main idea is that quantum mechanical correlations between components of a system develop with time, playing a major role in determining the balance between coherent and dissipative forces. Central theme is interplay of coherence and dissipation in determining the nature of dynamic structuring and energy flow in molecular transformation mechanisms. Subsystem equations of motion are being developed to show how nonlinear, dissipative dynamics of a particular subsystem arise from correlated interactions with the rest of the system (substituent groups, solvent, lattice modes, etc.); one consequence is resonance structures and networks. Quantum dynamics and thermodynamics are being applied to understand control and energy transfer mechanisms in biological functions of protein molecules; these mechanisms are both global and local. Besides the above theory, the research deals with phenomenological aspects of molecular systems

  5. Chaotic Excitation and Tidal Damping in the GJ 876 System

    Science.gov (United States)

    Puranam, Abhijit; Batygin, Konstantin

    2018-04-01

    The M-dwarf GJ 876 is the closest known star to harbor a multi-planetary system. With three outer planets locked in a chaotic Laplace-type resonance and an appreciably eccentric short-period super-Earth, this system represents a unique exposition of extrasolar planetary dynamics. A key question that concerns the long-term evolution of this system, and the fate of close-in planets in general, is how the significant eccentricity of the inner-most planet is maintained against tidal circularization on timescales comparable to the age of the universe. Here, we employ stochastic secular perturbation theory and N-body simulations to show that the orbit of the inner-most planet is shaped by a delicate balance between extrinsic chaotic forcing and tidal dissipation. As such, the planet’s orbital eccentricity represents an indirect measure of its tidal quality factor. Based on the system’s present-day architecture, we estimate that the extrasolar super-Earth GJ 876 d has a tidal Q ∼ 104–105, a value characteristic of solar system gas giants.

  6. Excitation migration in fluctuating light-harvesting antenna systems

    NARCIS (Netherlands)

    Chmeliov, J.; Trinkunas, G.; Amerongen, van H.; Valkunas, L.

    2016-01-01

    Complex multi-exponential fluorescence decay kinetics observed in various photosynthetic systems like photosystem II (PSII) have often been explained by the reversible quenching mechanism of the charge separation taking place in the reaction center (RC) of PSII. However, this description does not

  7. Design, fabrication and testing of a 5-Hz acoustic exciter system

    Science.gov (United States)

    Lundy, D. H.; Robinson, G. D.

    1973-01-01

    A 5-Hz acoustic excitation system was designed, fabricated and checked out for use in the modulation of a stagnant gas volume contained in an absorption cell. A detailed system description of the test equipment, both mechanical and electronic, and an operating procedure are included. Conclusions are also presented.

  8. Seismic response analysis of structural system subjected to multiple support excitation

    International Nuclear Information System (INIS)

    Wu, R.W.; Hussain, F.A.; Liu, L.K.

    1978-01-01

    In the seismic analysis of a multiply supported structural system subjected to nonuniform excitations at each support point, the single response spectrum, the time history, and the multiple response spectrum are the three commonly employed methods. In the present paper the three methods are developed, evaluated, and the limitations and advantages of each method assessed. A numerical example has been carried out for a typical piping system. Considerably smaller responses have been predicted by the time history method than that by the single response spectrum method. This is mainly due to the fact that the phase and amplitude relations between the support excitations are faithfully retained in the time history method. The multiple response spectrum prediction has been observed to compare favourably with the time history method prediction. Based on the present evaluation, the multiple response spectrum method is the most efficient method for seismic response analysis of structural systems subjected to multiple support excitation. (Auth.)

  9. Excitation of electrostatic ion cyclotron wave in electron beam plasma system

    International Nuclear Information System (INIS)

    Fukumura, Takashi; Takamoto, Teruo

    1984-01-01

    The electrostatic ion cyclotron waves excited in an electron beam plasma system was investigated. The excitation condition of the waves was calculated by using Harris type dispersion relation under some assumption, and its comparison with the experimental result was made. Beam plasma discharge is a kind of RF discharge, and it is caused by the waves generated by the interaction of electron beam with plasma. It was shown that electrostatic ion cyclotron waves seemed to be the most probable as excited waves. But the excitation mechanism of these waves has not been concretely investigated. In this study, the excitation condition of electrostatic ion cyclotron waves was calculated as described above. The experimental apparatus and the results of potential, electric field and ion saturation current in beam plasma, electron drift motion in azimuthal direction and the waves excited in beam plasma are reported. The frequency of oscillation observed in beam plasma corresponds to the harmonics or subharmonics of ion cyclotron frequency. The calculation of Harris type dispersion relation, the numerical calculation and the comparison of the experimental result with the calculated result are described. (Kako, I.)

  10. Structural System Identification with Extended Kalman Filter and Orthogonal Decomposition of Excitation

    Directory of Open Access Journals (Sweden)

    Y. Ding

    2014-01-01

    Full Text Available Both the structural parameter and external excitation have coupling influence on structural response. A new system identification method in time domain is proposed to simultaneously evaluate structural parameter and external excitation. The method can be used for linear and hysteresis nonlinear structural condition assessment based on incomplete structural responses. In this method, the structural excitation is decomposed by orthogonal approximation. With this approximation, the strongly time-variant excitation identification is transformed to gentle time-variant, even constant parameters identification. Then the extended Kalman filter is applied to simultaneously identify state vector including the structural parameters and excitation orthogonal parameters in state space based on incomplete measurements. The proposed method is validated numerically with the simulation of three-story linear and nonlinear structures subject to external force. The external force on the top floor and the structural parameters are simultaneously identified with the proposed system identification method. Results from both simulations indicate that the proposed method is capable of identifing the dynamic load and structural parameters fairly accurately with contaminated incomplete measurement for both of the linear and nonlinear structural systems.

  11. Study of resonant magnet exciting system for the 3 GeV proton synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Koseki, Shoichiro; Zhang, Fengqing; Watanabe, Yasuhiro; Tani, Norio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Adachi, Toshikazu; Someya, Hirohiko [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-07-01

    Exciting system for magnets of the 3 GeV Proton synchrotron is under consideration. A resonant exciting system is studied, and two type of power supply are compared. One is a parallel supply that is used generally. Another is a modified series supply. Either of them uses IGBT sinusoidal converters. Capacity of the power converter of the series supply for bending magnets becomes 28.8 MVAp. This is lager more than twice compared with the parallel supply. In the other hand, the series supply has good control performance and flexibility. More study is necessary to decide finally. (author)

  12. Stochastic Resonance and First Arrival Time for Excitable Systems

    Science.gov (United States)

    Duki, Solomon Fekade; Taye, Mesfin Asfaw

    2018-06-01

    We study the noise induced thermally activated barrier crossing of Brownian particles that hop in a piecewise linear potential. Using the exact analytic solutions and via numerical simulations not only we explore the dependence for the first passage time of a single particle but also we calculate the first arrival time for one particle out of N particles. The first arrival time decreases as the number of particles increases as expected. We then explore the thermally activated barrier crossing rate of the system in the presence of time varying signal. The dependence of signal to noise ratio SNR as well as the power amplification (η ) on model parameters is explored. η and SNR depict a pronounced peak at particular noise strength. In the presence of N particles, η is considerably amplified as N steps up showing the weak periodic signal plays a vital role in controlling the noise induced dynamics of the system. Moreover, for the sake of generality, the viscous friction γ is considered to decrease exponentially when the temperature T of the medium increases (γ =Be^{-A T}) as proposed originally by Reynolds (Philos Trans R Soc Lond 177:157, 1886).

  13. Pattern formation in diffusive excitable systems under magnetic flow effects

    Science.gov (United States)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

  14. Some features of excited states density matrix calculation and their pairing relations in conjugated systems

    International Nuclear Information System (INIS)

    Giambiagi, M.S. de; Giambiagi, M.

    1982-01-01

    Direct PPP-type calculations of self-consistent (SC) density matrices for excited states are described and the corresponding 'thawn' molecular orbitals (MO) are discussed. Special attention is addressed to particular solutions arising in conjugated systems of a certain symmetry, and to their chemical implications. The U(2) and U(3) algebras are applied respectively to the 4-electron and 6-electron cases: a natural separation of excited states in different cases follows. A simple approach to the convergence problem for excited states is given. The complementarity relations, an alternative formulation of the pairing theorem valid for heteromolecules and non-alternant systems, allow some fruitful experimental applications. Together with the extended pairing relations shown here, they may help to rationalize general trends. (Author) [pt

  15. Modernization of the Control Systems of High-Frequency, Brush-Free, and Collector Exciters of Turbogenerators

    Energy Technology Data Exchange (ETDEWEB)

    Popov, E. N., E-mail: enpo@ruselmash.ru; Komkov, A. L.; Ivanov, S. L.; Timoshchenko, K. P. [JSC “Scientific and Industrial Enterprise “Rusélprom-Élektromash” (Russian Federation)

    2016-11-15

    Methods of modernizing the regulation systems of electric machinery exciters with high-frequency, brush-free, and collector exciters by means of microprocessor technology are examined. The main problems of modernization are to increase the response speed of a system and to use a system stabilizer to increase the stability of the power system.

  16. Spirals in a reaction-diffusion system: Dependence of wave dynamics on excitability

    Science.gov (United States)

    Mahanta, Dhriti; Das, Nirmali Prabha; Dutta, Sumana

    2018-02-01

    A detailed study of the effects of excitability of the Belousov-Zhabotinsky (BZ) reaction on spiral wave properties has been carried out. Using the Oregonator model, we explore the various regimes of wave activity, from sustained oscillations to wave damping, as the system undergoes a Hopf bifurcation, that is achieved by varying the excitability parameter, ɛ . We also discover a short range of parameter values where random oscillations are observed. With an increase in the value of ɛ , the frequency of the wave decreases exponentially, as the dimension of the spiral core expands. These numerical results are confirmed by carrying out experiments in thin layers of the BZ system, where the excitability is changed by varying the concentrations of the reactant species. Effect of reactant concentrations on wave properties like time period and wavelength are also explored in detail. Drifting and meandering spirals are found in the parameter space under investigation, with the excitability affecting the tip trajectory in a way predicted by the numerical studies. This study acts as a quantitative evidence of the relationship between the excitability parameter, ɛ , and the substrate concentrations.

  17. Spirals in a reaction-diffusion system: Dependence of wave dynamics on excitability.

    Science.gov (United States)

    Mahanta, Dhriti; Das, Nirmali Prabha; Dutta, Sumana

    2018-02-01

    A detailed study of the effects of excitability of the Belousov-Zhabotinsky (BZ) reaction on spiral wave properties has been carried out. Using the Oregonator model, we explore the various regimes of wave activity, from sustained oscillations to wave damping, as the system undergoes a Hopf bifurcation, that is achieved by varying the excitability parameter, ε. We also discover a short range of parameter values where random oscillations are observed. With an increase in the value of ε, the frequency of the wave decreases exponentially, as the dimension of the spiral core expands. These numerical results are confirmed by carrying out experiments in thin layers of the BZ system, where the excitability is changed by varying the concentrations of the reactant species. Effect of reactant concentrations on wave properties like time period and wavelength are also explored in detail. Drifting and meandering spirals are found in the parameter space under investigation, with the excitability affecting the tip trajectory in a way predicted by the numerical studies. This study acts as a quantitative evidence of the relationship between the excitability parameter, ε, and the substrate concentrations.

  18. Synchronisation and general dynamic symmetry of a vibrating system with two exciters rotating in opposite directions

    International Nuclear Information System (INIS)

    Chun-Yu, Zhao; Yi-Min, Zhang; Bang-Chun, Wen

    2010-01-01

    We derive the non-dimensional coupling equation of two exciters, including inertia coupling, stiffness coupling and load coupling. The concept of general dynamic symmetry is proposed to physically explain the synchronisation of the two exciters, which stems from the load coupling that produces the torque of general dynamic symmetry to force the phase difference between the two exciters close to the angle of general dynamic symmetry. The condition of implementing synchronisation is that the torque of general dynamic symmetry is greater than the asymmetric torque of the two motors. A general Lyapunov function is constructed to derive the stability condition of synchronisation that the non-dimensional inertia coupling matrix is positive definite and all its elements are positive. Numeric results show that the structure of the vibrating system can guarantee the stability of synchronisation of the two exciters, and that the greater the distances between the installation positions of the two exciters and the mass centre of the vibrating system are, the stronger the ability of general dynamic symmetry is

  19. A study on an object transport system using ultrasonic wave excitation

    International Nuclear Information System (INIS)

    Jeong, Sang Hwa; Kim, Gwang Ho; Choi, Suk Bong; Park, Jun Ho; Cha, Kyoung Rae

    2007-01-01

    The development of information and telecommunication industries leads to the development of semiconductor and optical industries. In recent years, the demand of optical components is growing due to the demand of faster network. On the other hand, conventional transport systems are not adequate for transporting precision optical components and semiconductors. Because the conveyor belt can damage precision optical components with contact force and a magnetic system would destroy the inner structure of semiconductor with magnetic field, a new system for transporting optical components and semiconductors is required. One of the alternatives to the existing systems is a transport system using ultrasonic wave excitation since it can transport precision components such as semiconductors and optical components without damage. In this paper, a transport system using 2-mode ultrasonic wave excitation was developed for transporting optical components and semiconductor, and its performance was evaluated. The relationship between transporting characteristics and flexural beam shapes were evaluated

  20. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation

    Directory of Open Access Journals (Sweden)

    Fuhong Min

    2016-08-01

    Full Text Available The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally, a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.

  1. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation

    Energy Technology Data Exchange (ETDEWEB)

    Min, Fuhong, E-mail: minfuhong@njnu.edu.cn; Wang, Yaoda; Peng, Guangya; Wang, Enrong [School of Electrical and Automation Engineering, Nanjing Normal University, Jiangsu, 210042 (China)

    2016-08-15

    The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally, a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.

  2. A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic Processor System.

    Science.gov (United States)

    Current, K W; Yuk, K; McConaghy, C; Gascoyne, P R C; Schwartz, J A; Vykoukal, J V; Andrews, C

    2007-06-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport fluidic droplet samples on programmable paths across the array of driving electrodes on its hydrophobically coated surface. This exciter chip is the engine for dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip systems, creating field excitations that inject and move fluidic droplets onto and about the manipulation surface. The architecture of this chip is expandable to arrays of N X N identical HV electrode driver circuits and electrodes. The exciter chip is programmable in several senses. The routes of multiple droplets may be set arbitrarily within the bounds of the electrode array. The electrode excitation waveform voltage amplitude, phase, and frequency may be adjusted based on the system configuration and the signal required to manipulate a particular fluid droplet composition. The voltage amplitude of the electrode excitation waveform can be set from the minimum logic level up to the maximum limit of the breakdown voltage of the fabrication technology. The frequency of the electrode excitation waveform can also be set independently of its voltage, up to a maximum depending upon the type of droplets that must be driven. The exciter chip can be coated and its oxide surface used as the droplet manipulation surface or it can be used with a top-mounted, enclosed fluidic chamber consisting of a variety of materials. The HV capability of the exciter chip allows the generated DEP forces to penetrate into the enclosed chamber region and an adjustable voltage amplitude can accommodate a variety of chamber floor thicknesses. This demonstration exciter chip has a 32 x 32 array of nominally 100 V electrode drivers that are individually programmable at each time point in the procedure to either of two phases: 0deg and 180deg with respect to the reference clock. For this demonstration chip, while operating the electrodes with a 100-V peak-to-peak periodic waveform, the maximum HV electrode

  3. X-ray excited optical luminescence studies on the system BaXY (X ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 2. X-ray excited optical luminescence studies on the system Ba (, =F, Cl, Br, I) ... India; Department of Chemical Engineering, National Taiwan University, Republic of China ... Proceedings of the International Workshop/Conference on Computational ...

  4. Line shape of magnetic excitations in singlet-ground-state systems

    International Nuclear Information System (INIS)

    Bak, P.

    1976-08-01

    The excitation spectrum in a paramagnetic singlet doublet system is calculated using a diagrammatic expansion technique, and the theoretical predictions are compared with experiments on praseodymium. The theory gives an accurate description of the dramatic temperature dependence of the energies and lineshapes for the exciton modes

  5. Controllability of multi-partite quantum systems and selective excitation of quantum dots

    International Nuclear Information System (INIS)

    Schirmer, S G; Pullen, I C H; Solomon, A I

    2005-01-01

    We consider the degrees of controllability of multi-partite quantum systems, as well as necessary and sufficient criteria for each case. The results are applied to the problem of simultaneous control of an ensemble of quantum dots with a single laser pulse. Finally, we apply optimal control techniques to demonstrate selective excitation of individual dots for a simultaneously controllable ensemble of quantum dots

  6. Oxygen auroral transition laser system excited by collisional and photolytic energy transfer

    International Nuclear Information System (INIS)

    Murray, J.R.; Powell, H.T.; Rhodes, C.K.

    1975-06-01

    The properties of laser media involving the auroral transition of atomic oxygen and analogous systems are examined. A discussion of the atomic properties, collisional mechanisms, excitation processes, and collisionally induced radiative phenomena is given. Crossing phenomena play a particularly important role in governing the dynamics of the medium

  7. Response of a Duffing—Rayleigh system with a fractional derivative under Gaussian white noise excitation

    International Nuclear Information System (INIS)

    Zhang Ran-Ran; Xu Wei; Yang Gui-Dong; Han Qun

    2015-01-01

    In this paper, we consider the response analysis of a Duffing–Rayleigh system with fractional derivative under Gaussian white noise excitation. A stochastic averaging procedure for this system is developed by using the generalized harmonic functions. First, the system state is approximated by a diffusive Markov process. Then, the stationary probability densities are derived from the averaged Itô stochastic differential equation of the system. The accuracy of the analytical results is validated by the results from the Monte Carlo simulation of the original system. Moreover, the effects of different system parameters and noise intensity on the response of the system are also discussed. (paper)

  8. Studies of isotopic effects in the excited electronic states of molecular systems

    International Nuclear Information System (INIS)

    1982-01-01

    Rare gas halogen (RGH) lasers serve as convenient tools for a range of photophysical processes which exhibit isotope effects. This document summarizes progress in the production of molecular systems in their electronic excited states with the aid of RGH lasers, and the various isotopic effects one can study under these conditions. We conclude that the basic physical mechanisms involved in the isotopically sensitive characteristics of excited molecular electronic states are sufficiently selective to be useful in both the detection and separation of many atomic materials

  9. Role of vortex structures in excitation of self-oscillating combustion of condensed systems

    International Nuclear Information System (INIS)

    Samsonov, V.P.; Murunov, E.Yu.; Alekseev, M.V.

    2008-01-01

    One studied experimentally the effect of the free convection and the eddy structures occurring near the gasoline burner singing flame on the excitation conditions of thermal self-oscillations in a tube-resonator. One introduces a procedure to measure the gas column oscillation amplitude. The singing flame height and the flame mass speed at the excitation of the acoustic oscillations are revealed to reduce, while the gasoline burning efficiency is found to increase. By means of the digital photometry one studied the mechanisms of the singing flame temperature field changes within one oscillation period. One derived the hysteresis dependences of the amplitude of the acoustic oscillations on the gasoline diffusion flame thermal power. One brings to the notice a mechanism of the effect of the eddy structures of the excitation of the burning self-oscillation mode of the condensed systems [ru

  10. Relationships between resting conductances, excitability, and t-system ionic homeostasis in skeletal muscle.

    Science.gov (United States)

    Fraser, James A; Huang, Christopher L-H; Pedersen, Thomas H

    2011-07-01

    Activation of skeletal muscle fibers requires rapid sarcolemmal action potential (AP) conduction to ensure uniform excitation along the fiber length, as well as successful tubular excitation to initiate excitation-contraction coupling. In our companion paper in this issue, Pedersen et al. (2011. J. Gen. Physiol. doi:10.1085/jgp.201010510) quantify, for subthreshold stimuli, the influence upon both surface conduction velocity and tubular (t)-system excitation of the large changes in resting membrane conductance (G(M)) that occur during repetitive AP firing. The present work extends the analysis by developing a multi-compartment modification of the charge-difference model of Fraser and Huang to provide a quantitative description of the conduction velocity of actively propagated APs; the influence of voltage-gated ion channels within the t-system; the influence of t-system APs on ionic homeostasis within the t-system; the influence of t-system ion concentration changes on membrane potentials; and the influence of Phase I and Phase II G(M) changes on these relationships. Passive conduction properties of the novel model agreed with established linear circuit analysis and previous experimental results, while key simulations of AP firing were tested against focused experimental microelectrode measurements of membrane potential. This study thereby first quantified the effects of the t-system luminal resistance and voltage-gated Na(+) channel density on surface AP propagation and the resultant electrical response of the t-system. Second, it demonstrated the influence of G(M) changes during repetitive AP firing upon surface and t-system excitability. Third, it showed that significant K(+) accumulation occurs within the t-system during repetitive AP firing and produces a baseline depolarization of the surface membrane potential. Finally, it indicated that G(M) changes during repetitive AP firing significantly influence both t-system K(+) accumulation and its influence on the

  11. Base excitation testing system using spring elements to pivotally mount wind turbine blades

    Science.gov (United States)

    Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott

    2013-12-10

    A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.

  12. Excitation transfer in two two-level systems coupled to an oscillator

    International Nuclear Information System (INIS)

    Hagelstein, P L; Chaudhary, I U

    2008-01-01

    We consider a generalization of the spin-boson model in which two different two-level systems are coupled to an oscillator, under conditions where the oscillator energy is much less than the two-level system energies, and where the oscillator is highly excited. We find that the two-level system transition energy is shifted, producing a Bloch-Siegert shift in each two-level system similar to what would be obtained if the other were absent. At resonances associated with energy exchange between a two-level system and the oscillator, the level splitting is about the same as would be obtained in the spin-boson model at a Bloch-Siegert resonance. However, there occur resonances associated with the transfer of excitation between one two-level system and the other, an effect not present in the spin-boson model. We use a unitary transformation leading to a rotated system in which terms responsible for the shift and splittings can be identified. The level splittings at the anticrossings associated with both energy exchange and excitation transfer resonances are accounted for with simple two-state models and degenerate perturbation theory using operators that appear in the rotated Hamiltonian

  13. Influence of Voltage Dips on the Operation of Brushless Exciter System of Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Fedotov A.

    2016-06-01

    Full Text Available This paper presents a mathematical model with continuous variables for brushless exciter system of synchronous machines, containing the thyristor elements. Discrete Laplace transform is used for transition from a mathematical model of a system with variable structure in continuous variables to equation finite difference with permanent structure. Then inverse transition is made to a mathematical model in continuous variables with permanent structure.

  14. Evolutional Properties of Localized Excitations for Generalized Broer-Kaup System in (2+1) Dimensions

    International Nuclear Information System (INIS)

    Zheng Chunlong; Ye Jianfeng; Xu Yuan

    2006-01-01

    Using a special Painleve-Baecklund transformation as well as the extended mapping approach and the linear superposition theorem, we obtain new families of variable separation solutions to the (2+1)-dimensional generalized Broer-Kaup (GBK) system. Based on the derived exact solution, we reveal some novel evolutional behaviors of localized excitations, i.e. fission and fusion phenomena in the (2+1)-dimensional GBK system.

  15. Development of the system for excitation function automatic measurement of nuclear reactions

    International Nuclear Information System (INIS)

    Sapozhnikov, A.B.

    2004-01-01

    Full text: The resonance nuclear reaction method is applied at the tandem accelerator UKP-2-1 to determinate films thickness and obtain light element depth distribution. The system for automatic measurement of the nuclear reaction excitation curve has been developed. It allowed to obtain an excitation function of nuclear reaction using continuous changing potential of the target with energy step of 6 eV. Saw-tooth voltage with amplitude up to 6 kV from the block of scanning beam is fed to a target. The amplitude is determined by constant voltage from the scanning beam block control. Nal(Tl) detector detects gamma quanta - the products of a nuclear reaction and transforms they in voltage impulses. The impulses through the amplifier income in the single-channel analyzer which forms impulses to start the analog-to-digital converter. The value of saw-tooth voltage corresponding to the moment of gamma quantum detection is read by the analog-to-digital converter, where it is transformed to digital code and transmitted to the computer. The computer program has been developed to control the process of accumulation of excitation function. The dependence a detected γ-quanta yield from a target potential is automatically plotted by the program. This dependence corresponds to the nuclear reaction excitation function. If scanning amplitude is not enough in order to scan need depth of a sample, an operator increases energy of the proton beam changing high voltage potential of the terminal up 3 keV and measures the nuclear reaction excitation function with the new energy. This procedure can be repeated some times. After that 'sewing' of excitation functions is carried out by the program under the hypothesis that nuclear reaction yield in last points be identical

  16. A new autogenous mobile system driven by vibration without impacts, excited by an impulse periodic force

    Directory of Open Access Journals (Sweden)

    Duong The-Hung

    2018-01-01

    Full Text Available This report describes a new proposed design for autogenous mobile systems which can move without any external mechanisms such as legs or wheels. A Duffing oscillator with a cubic spring, which is excited by an impulse periodic force, is utilized to drive the whole system. The rectilinear motion of the system is performed employing the periodically oscillation of the internal mass interacting without collisions with the main body. Utilizing the nonlinear restoring force of the cubic spring, the system can move in desired directions. When the ratio between the excitation force and the friction force is smaller than 2.5, backward or forward motion can be easily achieved by applying an excitation force in the same desired direction. Different from other vibro-impact drifting devices, no impact needed to drive the new proposed system. This novel structure allows to miniaturize the device as well as to simplify the control algorithm thus can significantly expand applicability of the proposed system.

  17. H∞ Excitation Control Design for Stochastic Power Systems with Input Delay Based on Nonlinear Hamiltonian System Theory

    Directory of Open Access Journals (Sweden)

    Weiwei Sun

    2015-01-01

    Full Text Available This paper presents H∞ excitation control design problem for power systems with input time delay and disturbances by using nonlinear Hamiltonian system theory. The impact of time delays introduced by remote signal transmission and processing in wide-area measurement system (WAMS is well considered. Meanwhile, the systems under investigation are disturbed by random fluctuation. First, under prefeedback technique, the power systems are described as a nonlinear Hamiltonian system. Then the H∞ excitation controller of generators connected to distant power systems with time delay and stochasticity is designed. Based on Lyapunov functional method, some sufficient conditions are proposed to guarantee the rationality and validity of the proposed control law. The closed-loop systems under the control law are asymptotically stable in mean square independent of the time delay. And we through a simulation of a two-machine power system prove the effectiveness of the results proposed in this paper.

  18. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  19. Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation

    International Nuclear Information System (INIS)

    Zhang Hailong; Zhang Ning; Wang Enrong; Min Fuhong

    2016-01-01

    The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc–Wen force–velocity (F–v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. (paper)

  20. Measurement of fusion excitation functions in the system {sup 78}Kr + {sup 100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Jiang, C.L.; Esbensen, H. [and others

    1995-08-01

    Earlier measurements of fusion reactions involving {sup 78}Kr and {sup 100}Mo projectiles and Ni-targets showed surprisingly large fusion yields at low energies which could not be explained by coupled-channels calculations. The main difference to similar measurements involving the neighboring {sup 86}Kr and {sup 92}Mo isotopes was the different slope of the excitation functions at sub-barrier energies. An analysis of a variety of experiments showed a correlation between the nuclear structure and the slope of the excitation functions, with the {open_quotes}soft{close_quotes} transitional nuclei ({sup 78}Kr, {sup 100}Mo) exhibiting shallower slopes than the {open_quotes}stiff{close_quotes} nuclei ({sup 86}Kr, {sup 92}Mo) measured at the same energies with respect to the barrier. In this experiment we studied the fusion excitation function involving two transitional nuclei {sup 78}Kr + {sup 100}Mo. The measurements were performed with {sup 78}Kr beams from the ECR source at energies between 285-370 MeV. Separation of the evaporation nucleus from the elastically scattered particles was achieved by measuring time-of-flight and magnetic rigidity in the gas-filled spectrograph. The data were completely analyzed. A comparison of the cross sections with measurements for the system {sup 86}Kr + {sup 92}Mo populating the same compound nucleus {sup 178}Pt. It shows good agreement at the highest energies, but quite different falloffs of the excitation functions toward lower energies. Coupled-channels calculations, including multi-phonon excitation for the two systems, are being performed.

  1. Application of Excitation from Multiple Locations on a Simplified High-Lift System

    Science.gov (United States)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2004-01-01

    A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.

  2. An optical authentication system based on imaging of excitation-selected lanthanide luminescence.

    Science.gov (United States)

    Carro-Temboury, Miguel R; Arppe, Riikka; Vosch, Tom; Sørensen, Thomas Just

    2018-01-01

    Secure data encryption relies heavily on one-way functions, and copy protection relies on features that are difficult to reproduce. We present an optical authentication system based on lanthanide luminescence from physical one-way functions or physical unclonable functions (PUFs). They cannot be reproduced and thus enable unbreakable encryption. Further, PUFs will prevent counterfeiting if tags with unique PUFs are grafted onto products. We have developed an authentication system that comprises a hardware reader, image analysis, and authentication software and physical keys that we demonstrate as an anticounterfeiting system. The physical keys are PUFs made from random patterns of taggants in polymer films on glass that can be imaged following selected excitation of particular lanthanide(III) ions doped into the individual taggants. This form of excitation-selected imaging ensures that by using at least two lanthanide(III) ion dopants, the random patterns cannot be copied, because the excitation selection will fail when using any other emitter. With the developed reader and software, the random patterns are read and digitized, which allows a digital pattern to be stored. This digital pattern or digital key can be used to authenticate the physical key in anticounterfeiting or to encrypt any message. The PUF key was produced with a staggering nominal encoding capacity of 7 3600 . Although the encoding capacity of the realized authentication system reduces to 6 × 10 104 , it is more than sufficient to completely preclude counterfeiting of products.

  3. Applicability of annular-source excited systems in quantitative XRF analysis

    International Nuclear Information System (INIS)

    Mahmoud, A.; Bernasconi, G.; Bamford, S.A.; Dosan, B.; Haselberger, N.; Markowicz, A.

    1996-01-01

    Radioisotope-excited XRF systems, using annular sources, are widely used in view of their simplicity, wide availability, relatively low price for the complete system and good overall performance with respect to accuracy and detection limits. However some problems arise when the use of fundamental parameter techniques for quantitative analysis is attempted. These problems are due to the fact that the systems operate with large solid angles for incoming and emerging radiation and both the incident and take-off angles are not trivial. In this paper an improved way to calculate effective values for the incident and take-off angles, using monte Carlo (M C) integration techniques is shown. In addition, a study of the applicability of the effective angles for analysing different samples, or standards was carried out. The M C method allows also calculation of the excitation-detection efficiency for different parts of the sample and estimation of the overall efficiency of a source-excited XRF setup. The former information is useful in the design of optimized XRF set-ups and prediction of the response of inhomogeneous samples. A study of the sensitivity of the results due to sample characteristics and a comparison of the results with experimentally determined values for incident and take-off angles is also presented. A flexible and user-friendly computer program was developed in order to perform efficiently the lengthy calculation involved. (author). 14 refs. 5 figs

  4. Synchronization of uncoupled excitable systems induced by white and coloured noise

    International Nuclear Information System (INIS)

    Zambrano, Samuel; Marino, Ines P; Seoane, Jesus M; Sanjuan, Miguel A F; Euzzor, Stefano; Geltrude, Andrea; Meucci, Riccardo; Arecchi, Fortunato T

    2010-01-01

    We study, both numerically and experimentally, the synchronization of uncoupled excitable systems due to a common noise. We consider two identical FitzHugh-Nagumo systems, which display both spiking and non-spiking behaviours in chaotic or periodic regimes. An electronic circuit provides a laboratory implementation of these dynamics. Synchronization is tested with both white and coloured noise, showing that coloured noise is more effective in inducing synchronization of the systems. We also study the effects on the synchronization of parameter mismatch and of the presence of intrinsic (not common) noise, and we conclude that the best performance of coloured noise is robust under these distortions.

  5. Spectroscopy of collective excitations in interacting low-dimensional many-body systems using quench dynamics.

    Science.gov (United States)

    Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail; Polkovnikov, Anatoli

    2007-11-16

    We study the problem of rapid change of the interaction parameter (quench) in a many-body low-dimensional system. It is shown that, measuring the correlation functions after the quench, the information about a spectrum of collective excitations in a system can be obtained. This observation is supported by analysis of several integrable models and we argue that it is valid for nonintegrable models as well. Our conclusions are supplemented by performing exact numerical simulations on finite systems. We propose that measuring the power spectrum in a dynamically split 1D Bose-Einsten condensate into two coupled condensates can be used as an experimental test of our predictions.

  6. On One Means of Hard Excitation of Oscillations in Nonlinear Flutter Systems

    Directory of Open Access Journals (Sweden)

    S. D. Glyzin

    2014-01-01

    Full Text Available Considered are so-called finite-dimensional flutter systems, i.e. systems of ordinary differential equations, arising from Galerkin approximations of certain boundary value problems of aeroelasticity theory as well as from a number of radiophysics applications. We study small oscillations of these equations in case of 1 : 3 resonance. By combining analytical and numerical methods, it is concluded that the mentioned resonance can cause a hard excitation of oscillations. Namely, for flutter systems shown is the possibility of coexistence, along with the stable zero state, of stable invariant tori of arbitrary finite dimension as well as chaotic attractors.

  7. Nonlinear response to the multiple sine wave excitation of a softening--hardening system

    International Nuclear Information System (INIS)

    Koplik, B.; Subudhi, M.; Curreri, J.

    1979-01-01

    In studying the earthquake response of the HTGR core, it was observed that the system can display softening--hardening characteristics. This is of great consequence in evaluating the structural safety aspects of the core. In order to obtain a better understanding of the governing parameters, an investigation was undertaken with a single-degree-of-freedom system having a softening--hardening spring characteristic and excited by multiple sine waves. A parametric study varying the input amplitudes and the spring characteristic was performed. Transients were introduced into the system, and the jump phenomena between the lower softening characteristics to the higher hardening curve was studied

  8. Stationary responses of a Rayleigh viscoelastic system with zero barrier impacts under external random excitation.

    Science.gov (United States)

    Wang, Deli; Xu, Wei; Zhao, Xiangrong

    2016-03-01

    This paper aims to deal with the stationary responses of a Rayleigh viscoelastic system with zero barrier impacts under external random excitation. First, the original stochastic viscoelastic system is converted to an equivalent stochastic system without viscoelastic terms by approximately adding the equivalent stiffness and damping. Relying on the means of non-smooth transformation of state variables, the above system is replaced by a new system without an impact term. Then, the stationary probability density functions of the system are observed analytically through stochastic averaging method. By considering the effects of the biquadratic nonlinear damping coefficient and the noise intensity on the system responses, the effectiveness of the theoretical method is tested by comparing the analytical results with those generated from Monte Carlo simulations. Additionally, it does deserve attention that some system parameters can induce the occurrence of stochastic P-bifurcation.

  9. [Study on relationship between emotional stability in flight and nerve system excitability].

    Science.gov (United States)

    Liu, Fang; Huang, Wei-fen; Jing, Xiao-lu; Zhang, Ping

    2003-06-01

    To study the related factors of emotional stability in flight. Based on the operable definition of emotional stability in flight and the related literature review, 63 experienced pilots and flight coaches were investigated and the other-rating questionnaire of emotional stability in flight was established. To test the senior nerve system, Uchida Kraeplin (UK) test was administrated on 153 19-21 years old male student pilots of the second grade in the department of flight technique in China Civil Aviation College, who were selected through 13 h flight, 35 h solo flight, and acted as the standardization group. In the end, the correlation was explored between the testing results and their emotional behavioral characteristics in flight. Significant positive correlation was found between emotional feature indexes of emotional stability in flight and excitability in UK test. The excitability in UK test are good predictors for emotional stability in flight.

  10. Formation of excited states in high-Z helium-like systems

    International Nuclear Information System (INIS)

    Fritzsche, S.; Fricke, B.; Brinzanescu, O.

    1999-12-01

    High-Z helium-like ions represent the simplest multi-electron systems for studying the interplay between electron-electron correlations, relativistic as well as quantum electrodynamical effects in strong fields. In contrast to the adjacent lithium-like ions, however, almost no experimental information is available about the excited states in the high-Z domain of the helium sequence. Here, we present a theoretical analysis of the X-ray production and decay dynamics of the excited states in helium-like uranium. Emphasize has been paid particularly to the formation of the 3 P 0 and 3 P 2 levels by using electron capture into hydrogen-like U 91+ . Both states are of interest for precise measurements on high-Z helium-like ions in the future. (orig.)

  11. Magnetic excitations in low-dimensional spin systems: neutron scattering study on AV2O5

    International Nuclear Information System (INIS)

    Nakajima, Kenji

    1997-01-01

    Recent experiments on vanadium oxide bronzes AV 2 O 5 (A=Na, Mg, Li) are reviewed. Experiments are carried out combining two triple-axis spectrometers installed at a thermal beam port and a cold neutron guide at JRR-3M. Spin-wave excitations in single crystals NaV 2 O 5 in the spin-Peierls state shows a steep intra-chain dispersion, which is consistent with estimated exchange interaction from magnetization measurement, and a weak inter-chain dispersion. In the low energy excitation measurement on powder sample of MgV 2 O 5 , we have observed energy gap of 2 meV, which indicates that this material is a ladder system with strong 1D character. Preliminary result on LiV 2 O 5 , which is expected to be a simple 1D antiferromagnet or a zig-zag chain, is also mentioned

  12. Amplitude control of the track-induced self-excited vibration for a maglev system.

    Science.gov (United States)

    Zhou, Danfeng; Li, Jie; Zhang, Kun

    2014-09-01

    The Electromagnet Suspension (EMS) maglev train uses controlled electromagnetic forces to achieve suspension, and self-excited vibration may occur due to the flexibility of the track. In this article, the harmonic balance method is applied to investigate the amplitude of the self-excited vibration, and it is found that the amplitude of the vibration depends on the voltage of the power supplier. Based on this observation, a vibration amplitude control method, which controls the amplitude of the vibration by adjusting the voltage of the power supplier, is proposed to attenuate the vibration. A PI controller is designed to control the amplitude of the vibration at a given level. The effectiveness of this method shows a good prospect for its application to commercial maglev systems. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  14. Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation

    Science.gov (United States)

    Hailong, Zhang; Enrong, Wang; Fuhong, Min; Ning, Zhang

    2016-03-01

    The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc-Wen force-velocity (F-v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51475246, 51277098, and 51075215), the Research Innovation Program for College Graduates of Jiangsu Province China (Grant No. KYLX15 0725), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131402).

  15. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    Science.gov (United States)

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  16. Adapting a compact confocal microscope system to a two-photon excitation fluorescence imaging architecture.

    Science.gov (United States)

    Diaspro, A; Corosu, M; Ramoino, P; Robello, M

    1999-11-01

    Within the framework of a national National Institute of Physics of Matter (INFM) project, we have realised a two-photon excitation (TPE) fluorescence microscope based on a new generation commercial confocal scanning head. The core of the architecture is a mode-locked Ti:Sapphire laser (Tsunami 3960, Spectra Physics Inc., Mountain View, CA) pumped by a high-power (5 W, 532 nm) laser (Millennia V, Spectra Physics Inc.) and an ultracompact confocal scanning head, Nikon PCM2000 (Nikon Instruments, Florence, Italy) using a single-pinhole design. Three-dimensional point-spread function has been measured to define spatial resolution performances. The TPE microscope has been used with a wide range of excitable fluorescent molecules (DAPI, Fura-2, Indo-1, DiOC(6)(3), fluoresceine, Texas red) covering a single photon spectral range from UV to green. An example is reported on 3D imaging of the helical structure of the sperm head of the Octopus Eledone cirrhosa labelled with an UV excitable dye, i.e., DAPI. The system can be easily switched for operating both in conventional and two-photon mode. Copyright 1999 Wiley-Liss, Inc.

  17. Performance Evaluation on Transmission Tower-Line System with Passive Friction Dampers Subjected to Wind Excitations

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2015-01-01

    Full Text Available The vibration control and performance evaluation on a transmission-tower line system by using friction dampers subjected to wind excitations are carried out in this study. The three-dimensional finite element (FE model of a transmission tower is firstly constructed. A two-dimensional lumped mass model of a transmission tower is developed for dynamic analysis. The analytical model of transmission tower-line system is proposed by taking the dynamic interaction between the tower and the transmission lines into consideration. The mechanical model of passive friction damper is presented by involving the effects of damper axial stiffness. The equation of motion of the transmission tower-line system incorporated with the friction dampers disturbed by wind excitations is established. A real transmission tower-line system is taken as an example to examine the feasibility and reliability of the proposed control approach. An extensive parameter study is carried out to find the optimal parameters of friction damper and to assess the effects of slipping force axial stiffness and hysteresis loop on control performance. The work on an example structure indicates that the application of friction dampers with optimal parameters could significantly reduce wind-induced responses of the transmission tower-line system.

  18. The excitation system of 727.5 MVA synchronous generator of the unit B1 in TPP 'Nikola Tesla B'

    Directory of Open Access Journals (Sweden)

    Ćirić Zoran

    2013-01-01

    Full Text Available This paper presents a technical solution for the replacement of the excitation system of the unit B1 in TPP 'Nikola Tesla B' as a part of the maintenance service in 2012. Since the generators of TPP 'Nikola Tesla B' have the greatest power in the power system of Serbia, it was necessary to achieve high reliability of the excitation system so that the process of producing electricity is not endangered Considering this, the implemented excitation system uses modern technology with redundancy both in the power and control blocks, which resulted in an increase in the hot reserve by 100%. In addition, it was necessary to adjust the excitation system to increased generator power and performance from 618MW to 667.5MW. In this paper, the main parameters of the excitation system are given: the power, the excitation system control, the thyristor ignition system, the event recorder system, the digital relay protection, as well as the measuring and signaling functions.

  19. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber

    Science.gov (United States)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-09-01

    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester

  20. Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic

    Science.gov (United States)

    González-Carbajal, Javier; Domínguez, Jaime

    2017-11-01

    This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.

  1. Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications

    Science.gov (United States)

    Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.

    2016-04-01

    Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.

  2. Design considerations for highly effective fluorescence excitation and detection optical systems for molecular diagnostics

    Science.gov (United States)

    Kasper, Axel; Van Hille, Herbert; Kuk, Sola

    2018-02-01

    Modern instruments for molecular diagnostics are continuously optimized for diagnostic accuracy, versatility and throughput. The latest progress in LED technology together with tailored optics solutions allows developing highly efficient photonics engines perfectly adapted to the sample under test. Super-bright chip-on-board LED light sources are a key component for such instruments providing maximum luminous intensities in a multitude of narrow spectral bands. In particular the combination of white LEDs with other narrow band LEDs allows achieving optimum efficiency outperforming traditional Xenon light sources in terms of energy consumption, heat dissipation in the system, and switching time between spectral channels. Maximum sensitivity of the diagnostic system can only be achieved with an optimized optics system for the illumination and imaging of the sample. The illumination beam path must be designed for optimum homogeneity across the field while precisely limiting the angular distribution of the excitation light. This is a necessity for avoiding spill-over to the detection beam path and guaranteeing the efficiency of the spectral filtering. The imaging optics must combine high spatial resolution, high light collection efficiency and optimized suppression of excitation light for good signal-to-noise ratio. In order to achieve minimum cross-talk between individual wells in the sample, the optics design must also consider the generation of stray light and the formation of ghost images. We discuss what parameters and limitations have to be considered in an integrated system design approach covering the full path from the light source to the detector.

  3. Lattice Boltzmann simulation for the energy and entropy of excitable systems

    Institute of Scientific and Technical Information of China (English)

    Deng Min-Yi; Tang Guo-Ning; Kong Ling-Jiang; Liu Mu-Ren

    2011-01-01

    The internal energy and the spatiotemporal entropy of excitable systems are investigated with the lattice Boltzmann method. The numerical results show that the breakup of spiral wave is attributed to the inadequate supply of energy, i.e., the internal energy of system is smaller than the energy of self-sustained spiral wave. It is observed that the average internal energy of a regular wave state reduces with its spatiotemporal entropy decreasing. Interestingly, although the energy difference between two regular wave states is very small, the different states can be distinguished obviously due to the large difference between their spatiotemporal entropies. In addition, when the unstable spiral wave converts into the spatiotemporal chaos, the internal energy of system decreases, while the spatiotemporal entropy increases, which behaves as the thermodynamic entropy in an isolated system.

  4. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    Science.gov (United States)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-02-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  5. Immersion and Invariance-Based Coordinated Generator Excitation and SVC Control for Power Systems

    Directory of Open Access Journals (Sweden)

    Adirak Kanchanaharuthai

    2014-01-01

    Full Text Available A nonlinear coordinated control of excitation and SVC of an electrical power system is proposed for transient stability, and voltage regulation enhancement after the occurrence of a large disturbance and a small perturbation. Using the concept of Immersion and Invariance (I&I design methodology, the proposed nonlinear controller is used to not only achieve power angle stability, frequency and voltage regulation but also ensure that the closed-loop system is transiently and asymptotically stable. In order to show the effectiveness of the proposed controller design, the simulation results illustrate that, in spite of the case where a large perturbation occurs on the transmission line or there is a small perturbation to mechanical power inputs, the proposed controller can not only keep the system transiently stable but also simultaneously accomplish better dynamic properties of the system as compared to operation with the existing controllers designed through a coordinated passivation technique controller and a feedback linearization scheme, respectively.

  6. Test and Control System for Chlorophyll Fluorescence Parameters Using LED as Excitation Source

    Directory of Open Access Journals (Sweden)

    Zou Qiuying

    2014-05-01

    Full Text Available A new scheme on test and control system for chlorophyll fluorescence is presented in this work, which uses light-emitting diode (LED excitation by means of measuring the fluorescence parameter fpsII. The system takes programmable power supply as LEDs illumination drive power with high sensitivity and signal-to-noise ratio. MINIPAM is used to measure fluorescence parameter fpsII and keeps communication with upper PC by serial port. The upper PC can control the power supply and process the data received from MINIPAM by software which is programmed in VB6. The results show that the system has a lot of advantages such as high accuracy and convenience. The effect of environmental factors on fluorescence parameters is analyzed comprehensively. It will be a practical measurement and control system for photosynthetic ability and have wide application foreground.

  7. Consideration of Gyroscopic Effect in Fault Detection and Isolation for Unbalance Excited Rotor Systems

    Directory of Open Access Journals (Sweden)

    Zhentao Wang

    2012-01-01

    Full Text Available Fault detection and isolation (FDI in rotor systems often faces the problem that the system dynamics is dependent on the rotor rotary frequency because of the gyroscopic effect. In unbalance excited rotor systems, the continuously distributed unbalances are hard to be determined or estimated accurately. The unbalance forces as disturbances make fault detection more complicated. The aim of this paper is to develop linear time invariant (LTI FDI methods (i.e., with constant parameters for rotor systems under consideration of gyroscopic effect and disturbances. Two approaches to describe the gyroscopic effect, that is, as unknown inputs and as model uncertainties, are investigated. Based on these two approaches, FDI methods are developed and the results are compared regarding the resulting FDI performances. Results are obtained by the application in a rotor test rig. Restrictions for the application of these methods are discussed.

  8. Multireference excitation energies for bacteriochlorophylls A within light harvesting system 2

    DEFF Research Database (Denmark)

    Anda, Andre; Hansen, Thorsten; De Vico, Luca

    2016-01-01

    Light-harvesting system 2 (LH2) of purple bacteria is one of the most popular antenna complexes used to study Nature's way of collecting and channeling solar energy. The dynamics of the absorbed energy is probed by ultrafast spectroscopy. Simulation of these experiments relies on fitting a range...... bacteriochlorophylls in LH2. We find that the excitation energies vary among the bacteriochlorophyll monomers and that they are regulated by the curvature of the macrocycle ring and the dihedral angle of an acetyl moiety. Increasing the curvature lifts the ground state energy, which causes a red shift...

  9. Optimal placement of excitations and sensors for verification of large dynamical systems

    Science.gov (United States)

    Salama, M.; Rose, T.; Garba, J.

    1987-01-01

    The computationally difficult problem of the optimal placement of excitations and sensors to maximize the observed measurements is studied within the framework of combinatorial optimization, and is solved numerically using a variation of the simulated annealing heuristic algorithm. Results of numerical experiments including a square plate and a 960 degrees-of-freedom Control of Flexible Structure (COFS) truss structure, are presented. Though the algorithm produces suboptimal solutions, its generality and simplicity allow the treatment of complex dynamical systems which would otherwise be difficult to handle.

  10. Effect of power frequency excitation character on ferroresonance in neutral-grounded system

    International Nuclear Information System (INIS)

    Hui Meng; Liu Chong-Xin

    2010-01-01

    In most earlier ferroresonance studies the traditional excitation characteristic of iron core, in which the traditional excitation characteristic contains harmonic voltages or currents, has been used as if it were made up of pure fundamental voltage or current. However, this is not always true. In comparison with traditional excitation characteristics, this paper introduces the power frequency excitation characteristic of the iron core, which contains no harmonics. The power frequency excitation characteristic of iron core has been obtained by Elector Magnetic Transient Program, resulting in discrete voltage and current pairs. Extensive simulations are carried out to analyse the effect of power frequency excitation characteristic on potential transformer ferroresonance. A detailed analysis of simulation results demonstrates that with power frequency excitation characteristic of iron core inclusion at certain excitation voltage the ferroresonance may happen, conversely it may not happen with traditional excitation characteristic inclusion. (general)

  11. Assessment of time-dependent density functional theory with the restricted excitation space approximation for excited state calculations of large systems

    Science.gov (United States)

    Hanson-Heine, Magnus W. D.; George, Michael W.; Besley, Nicholas A.

    2018-06-01

    The restricted excitation subspace approximation is explored as a basis to reduce the memory storage required in linear response time-dependent density functional theory (TDDFT) calculations within the Tamm-Dancoff approximation. It is shown that excluding the core orbitals and up to 70% of the virtual orbitals in the construction of the excitation subspace does not result in significant changes in computed UV/vis spectra for large molecules. The reduced size of the excitation subspace greatly reduces the size of the subspace vectors that need to be stored when using the Davidson procedure to determine the eigenvalues of the TDDFT equations. Furthermore, additional screening of the two-electron integrals in combination with a reduction in the size of the numerical integration grid used in the TDDFT calculation leads to significant computational savings. The use of these approximations represents a simple approach to extend TDDFT to the study of large systems and make the calculations increasingly tractable using modest computing resources.

  12. Comparison among nonlinear excitation control strategies used for damping power system oscillations

    International Nuclear Information System (INIS)

    Leon, A.E.; Solsona, J.A.; Valla, M.I.

    2012-01-01

    Highlights: ► A description and comparison of nonlinear control strategies for synchronous generators are presented. ► Advantages of using nonlinear controllers are emphasized against the use of classical PSSs. ► We find that a particular selection of IDA gains achieve the same performance that FL controllers. - Abstract: This work is focused on the problem of power system stability. A thorough description of nonlinear control strategies for synchronous generator excitation, which are designed for damping oscillations and improving transient stability on power systems, is presented along with a detailed comparison among these modern strategies and current solutions based on power system stabilizers. The performance related to damping injection in each controller, critical time enhancement, robustness against parametric uncertainties, and control signal energy consumption is analyzed. Several tests are presented to validate discussions on various advantages and disadvantages of each control strategy.

  13. Lattice relaxation theory of localized excitations in quasi-one-dimensional systems

    International Nuclear Information System (INIS)

    Wang Chuilin; Su Zhaobin; Yu Lu.

    1993-04-01

    The lattice relaxation theory developed earlier by Su and Yu for solitons and polarons in conducting polymers is applied to systems with both electron-phonon and electron-electron interactions, described by a single band Peierls-Hubbard model. The localized excitations in the competing bond-order-wave (BOW), charge-density-wave (CDW) and spin-density-wave (SDW) systems show interesting new features in their dynamics. In particular, a non-monotonic dependence of the relaxation rate on the coupling strength is predicted from the theory. The possible connection of this effect with photo-luminescence experiments is discussed. Similar phenomena may occur in other quasi-one-dimensional systems as well. (author). 21 refs, 4 figs

  14. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    International Nuclear Information System (INIS)

    Wibowo,; Zakaria,; Lambang, Lullus; Triyono,; Muhayat, Nurul

    2016-01-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  15. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com; Triyono,, E-mail: tyon-bila@yahoo.co.id; Muhayat, Nurul, E-mail: nurulmuhayat@ymail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta 57128 (Indonesia)

    2016-03-29

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  16. Excitation function of elastic scattering on 12C + 4He system, at low energies

    International Nuclear Information System (INIS)

    Perez-Torres, R.; Aguilera, E. F.; Martinez-Quiroz, E.; Murillo, G.; Belyaeva, T. L.; Maldonado-Velazquez, M.

    2011-01-01

    Interactions in the 12 C + 4 He system are of great interest in astrophysics and to help determine the relative abundances of elements in stars, at the end of helium burning [1, 2]. The Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, have made measurements of elastic scattering for this system, using the inverse kinematics method with thick white gas [3, 4], for E CM (0.5 - 4 MeV) θ CM = 180 o . In this work we obtain excitation functions of elastic scattering of 12 C + 4 He system with angular and energy dependence; E CM = 0.5 - 4 MeV and θ CM 100 o -170 o .Using inverse kinematics method with thick white gas and energy loss tables. (Author)

  17. RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Naoz, Smadar; Kocsis, Bence; Loeb, Abraham [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yunes, Nicolas, E-mail: snaoz@cfa.harvard.edu [Department of Physics, Montana State University, Bozeman, MT 59718 (United States)

    2013-08-20

    We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effects suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.

  18. Remodelling of cellular excitation (reaction) and intercellular coupling (diffusion) by chronic atrial fibrillation represented by a reaction-diffusion system

    Science.gov (United States)

    Zhang, Henggui; Garratt, Clifford J.; Kharche, Sanjay; Holden, Arun V.

    2009-06-01

    Human atrial tissue is an excitable system, in which myocytes are excitable elements, and cell-to-cell electrotonic interactions are via diffusive interactions of cell membrane potentials. We developed a family of excitable system models for human atrium at cellular, tissue and anatomical levels for both normal and chronic atrial fibrillation (AF) conditions. The effects of AF-induced remodelling of cell membrane ionic channels (reaction kinetics) and intercellular gap junctional coupling (diffusion) on atrial excitability, conduction of excitation waves and dynamics of re-entrant excitation waves are quantified. Both ionic channel and gap junctional coupling remodelling have rate dependent effects on atrial propagation. Membrane channel conductance remodelling allows the propagation of activity at higher rates than those sustained in normal tissue or in tissue with gap junctional remodelling alone. Membrane channel conductance remodelling is essential for the propagation of activity at rates higher than 300/min as seen in AF. Spatially heterogeneous gap junction coupling remodelling increased the risk of conduction block, an essential factor for the genesis of re-entry. In 2D and 3D anatomical models, the dynamical behaviours of re-entrant excitation waves are also altered by membrane channel modelling. This study provides insights to understand the pro-arrhythmic effects of AF-induced reaction and diffusion remodelling in atrial tissue.

  19. Optimization of tube parameters in a tube excited X-ray fluorescence (TEXRF) system using secondary fluorescers

    International Nuclear Information System (INIS)

    Islam, A.; Biswas, S.K.

    1995-12-01

    A study of the optimization of excitation parameters in a tube excited X-ray fluorescence system (TEXRF) having Mo as the primary target has been carried out for biological matrix. Fe, Zn and Mo were used as the secondary fluorecers. For the present investigation a cellulose based synthetic standard containing K, Cr, Ni, Zn, Se and Y was excited with the TEXRF system. All experiments were carried out under the same experimental conditions except the tube potential. For each fluorescer the minimum detection limits (MDL) of excited elements were calculated for the corresponding tube voltage. The MDLs were found to be increasing with decreasing atomic number and it was also observed that the maximum sensitivity with Fe and Zn secondary fluorescers for elements analyzed occurred around 35 kV of the excitation potential. For Mo secondary fluorescer maximum sensitivity was found at higher excitation potential. In most cases MDLs were minimum at 40-45 kV of the excitation potential. 5 refs., 12 figs

  20. Measurement and analysis of excitation functions in 16O + 103Rh system in the excitation energy range ≅ 2-4 MeV/A

    International Nuclear Information System (INIS)

    Singh, Devendra P.; Unnati; Sharma, Manoj Kumar; Singh, Pushpendra P.; Singh, B.P.; Prasad, R.; Gupta, Sunita; Rakesh Kumar; Bhardwaj, H.D.

    2006-01-01

    In the present work, excitation functions for seven evaporation residues (ERs) produced via complete fusion and incomplete fusion processes in 16 O + 103 Rh system have been measured in the energy range ≅ 47-85 MeV, using recoil catcher technique followed by off-line gamma-ray spectrometry. Comparison of the experimental data with statistical model based computer code PACE 2 revealed dominance of incomplete fusion in reactions involving alpha-emission channels. To the best of our knowledge these reactions are being reported for the first time

  1. Dynamic response of tertiary systems in structures subjected to base excitation

    International Nuclear Information System (INIS)

    Hernried, A.G.; Kai-sing Lau

    1988-01-01

    The dynamic response of very lightweight equipment (tertiary subsystem) attached to light equipment (secondary subsystem) which in turn is attached to a heavier structure (primary subsystem) that is subjected to ground shock or earthquake excitation is investigated. Both the single-degree-of-freedom and multi-degree-of-freedom subsystem models are considered. The systems are damped as well as undamped, completely detuned (all natural frequencies of the subsystems well spaced), singly tuned (one natural frequency of each subsystem equal or close to one another), or multiply tuned (more than one natural frequency of the subsystems close to each other). Efficient techniques for the determination of the tertiary subsystem response that avoid a computationally intensive numerical integration of the combined system equations are presented. (author)

  2. Perturbation Solutions for Random Linear Structural Systems subject to Random Excitation using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...

  3. Charge and energy dynamics in photo-excited poly(para-phenylenevinylene) systems

    International Nuclear Information System (INIS)

    Gisslen, L.; Johansson, A.; Stafstroem, S.

    2004-01-01

    We report results from simulations of charge and energy dynamics in poly(para-phenylenevinylene) (PPV) and PPV interacting with C 60 . The simulations were performed by solving the time-dependent Schroedinger equation and the lattice equation of motion simultaneously and nonadiabatically. The electronic system and the coupling of the electrons to the lattice were described by an extended three-dimensional version of the Su-Schrieffer-Heeger model, which also included an external electric field. Electron and lattice dynamics following electronic excitations at different energies have been simulated. The effect of additional lattice energy was also included in the simulations. Our results show that both exciton diffusion and transitions from high to lower lying excitations are stimulated by increasing the lattice energy. Also field induced charge separation occurs faster if the lattice energy is increased. This separation process is highly nonadiabatic and involves a significant rearrangement of the electron distribution. In the case of PPV coupled to C 60 , we observe a spontaneous charge separation. The separation time is in this case limited by the local concentration of C 60 molecules close to the PPV chain

  4. Process and system for isotope separation using the selective vibrational excitation of molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1976-01-01

    This invention concerns the separation of isotopes by using the isotopically selective vibrational excitation and the vibration-translation reactions of the excited particles. UF 6 molecular mixed with a carrier gas, such as argon, are directed through a refrigerated chamber lighted by a laser radiation tuned to excite vibrationally the uranium hexafluoride molecules of a particular uranium isotope. The density of the carrier gas is preferably maintained above the density of the uranium hexafluoride to allow a greater collision probability of the vibrationally excited molecules with a carried molecule. In such a case, the vibrationally excited uranium hexafluoride will collide with a carrier gas molecule provoking the conversion of the excitation energy into a translation of the excited molecule, resulting in thermal energy or greater diffusibility than that of the other uranium hexafluoride molecules [fr

  5. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

    Science.gov (United States)

    Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao

    2016-08-01

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

  6. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

    International Nuclear Information System (INIS)

    Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao

    2016-01-01

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

  7. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongge; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Yang, Guidong; Jia, Wantao [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2016-08-15

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

  8. Magnetic excitations and exchange interactions in the spin-gap system TlCuCl sub 3

    CERN Document Server

    Oosawa, A; Kato, T; Kakurai, K; Müller, M; Mikeska, H J

    2002-01-01

    The magnetic excitations from the gapped ground state in TlCuCl sub 3 have been investigated by means of inelastic neutron scattering experiments. The excitation data were collected along four different directions in the a sup * -c sup * plane. A well-defined single magnetic excitation mode was observed. The lowest excitation occurs at Q=(h,0,l) with integer h and odd l, as observed in KCuCl sub 3. The dispersion relations were analyzed by the cluster-series expansion up to the sixth order, so that the individual exchange interactions were evaluated. It was demonstrated that TlCuCl sub 3 is a strongly coupled spin-dimer system. (orig.)

  9. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    theories, each providing valuable insight. One of these is capable of predicting the vertical string lift due to stiffening in terms of simple expressions, with results that agree very well with experimental measurements for a wide range of conditions. It appears that resonance effects cannot be ignored...... for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating......, as was done in a few related studies¿¿unless the system has very low modal density or heavy damping; thus first-order consideration to resonance effects is included. Using the specific example with experimental support to put confidence on the proposed theory, expressions for predicting the stiffening effect...

  10. Dynamics of excited instantons in the system of forced Gursey nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Aydogmus, F., E-mail: fatma.aydogmus@gmail.com [Istanbul University, Department of Physics, Faculty of Science (Turkey)

    2015-02-15

    The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the “Heisenberg dream.” In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented.

  11. Theoretical and Experimental Study on Synchronization of the Two Homodromy Exciters in a Non-Resonant Vibrating System

    Directory of Open Access Journals (Sweden)

    Xue-Liang Zhang

    2013-01-01

    Full Text Available In this paper we give some theoretical analyses and experimental results on synchronization of the two non-identical exciters. Using the average method of modified small parameters, the dimensionless coupling equation of the two exciters is deduced. The synchronization criterion for the two exciters is derived as the torque of frequency capture being equal to or greater than the absolute value of difference between the residual electromagnetic torques of the two motors. The stability criterion of synchronous state is verified to satisfy the Routh-Hurwitz criterion. The regions of implementing synchronization and that of stability of phase difference for the two exciters are manifested by numeric method. Synchronization of the two exciters stems from the coupling dynamic characteristic of the vibrating system having selecting motion, especially, under the condition that the parameters of system are complete symmetry, the torque of frequency capture stemming from the circular motion of the rigid frame drives the phase difference to approach PI and carry out the swing of the rigid frame; that from the swing of the rigid frame forces the phase difference to near zero and achieve the circular motion of the rigid frame. In the steady state, the motion of rigid frame will be one of three types: pure swing, pure circular motion, swing and circular motion coexistence. The numeric and experiment results derived thereof show that the two exciters can operate synchronously as long as the structural parameters of system satisfy the criterion of stability in the regions of frequency capture. In engineering, the distance between the centroid of the rigid frame and the rotational centre of exciter should be as far as possible. Only in this way, can the elliptical motion of system required in engineering be realized.

  12. Stochastic resonance and vibrational resonance in an excitable system: The golden mean barrier

    International Nuclear Information System (INIS)

    Stan, Cristina; Cristescu, C.P.; Alexandroaei, D.; Agop, M.

    2009-01-01

    We report on stochastic resonance and vibrational resonance in an electric charge double layer configuration as usually found in electrical discharges, biological cell membranes, chemical systems and nanostructures. The experiment and numerical computation show the existence of a barrier expressible in terms of the golden mean above which the two phenomena do not take place. We consider this as new evidence for the importance of the golden mean criticality in the oscillatory dynamics, in agreement with El Naschie's E-infinity theory. In our experiment, the dynamics of a charge double layer generated in the inter-anode space of a twin electrical discharge is investigated under noise-harmonic and harmonic-harmonic perturbations. In the first case, a Gaussian noise can enhance the response of the system to a weak injected periodic signal, a clear mark of stochastic resonance. In the second case, similar enhancement can appear if the noise is replaced by a harmonic perturbation with a frequency much higher than the frequency of the weak oscillation. The amplitude of the low frequency oscillation shows a maximum versus the amplitude of the high frequency perturbation demonstrating vibrational resonance. In order to model these dynamics, we derived an excitable system by modifying a biased van der Pol oscillator. The computational study considers the behaviour of this system under the same types of perturbation as in the experimental investigations and is found to give consistent results in both situations.

  13. Generation of spiral waves pinned to obstacles in a simulated excitable system

    Science.gov (United States)

    Phantu, Metinee; Kumchaiseemak, Nakorn; Porjai, Porramain; Sutthiopad, Malee; Müller, Stefan C.; Luengviriya, Chaiya; Luengviriya, Jiraporn

    2017-09-01

    Pinning phenomena emerge in many dynamical systems. They are found to stabilize extreme conditions such as superconductivity and super fluidity. The dynamics of pinned spiral waves, whose tips trace the boundary of obstacles, also play an important role in the human health. In heart, such pinned waves cause longer tachycardia. In this article, we present two methods for generating pinned spiral waves in a simulated excitable system. In method A, an obstacle is set in the system prior to an ignition of a spiral wave. This method may be suitable only for the case of large obstacles since it often fails when used for small obstacles. In method B, a spiral wave is generated before an obstacle is placed at the spiral tip. With this method, a pinned spiral wave is always obtained, regardless the obstacle size. We demonstrate that after a transient interval the dynamics of the pinned spiral waves generated by the methods A and B are identical. The initiation of pinned spiral waves in both two- and three-dimensional systems is illustrated.

  14. Impulses and pressure waves cause excitement and conduction in the nervous system.

    Science.gov (United States)

    Barz, Helmut; Schreiber, Almut; Barz, Ulrich

    2013-11-01

    It is general accepted, that nerval excitement and conduction is caused by voltage changes. However, the influx of fluid into an elastical tube releases impulses or pressure waves. Therefore an influx of ion currents, respectively fluid motions into the elastic neuronal cells and fibres also induce impulses. This motion of charge carriers are measured by voltage devices as oscillations or action potentials, but the voltage changes may be an epiphenomenon of the (mechanical) impulses. Impulse waves can have a high speed. As stiffer or inelastic a tube wall, the greater is the speed of the impulse. Myelin sheaths cause a significant stiffening of the nerve fibre wall and myelinated fibres have a conduction velocity up to 120 m/s. The influx of fluid at the nodes of Ranvier intensifies periodically the impulse wave in the nerve fibres. The authors suggest that also the muscle end-plate acts as a conductor of axonal impulses to the inner of the muscle fibres and that the exocytosis of acetylcholine into the synaptic cleft may be an amplifier of the axonal impulse. It is discussed that intracellular actin filaments may also influence motions at the neuronal membrane. Many sensory nerve cells are excited due to exogenous or endogenous mechanical impulses. It may plausible that such impulses are conducted directly to the sensory nerve cell bodies in the dorsal root ganglia without the transformation in electric energy. Excitation conduction happens without noteworthy energy consumption because the flow of ion currents through the membranes takes place equivalent to the concentration gradient. Impulse waves cause short extensions of the lipid membranes of the cell- and fibres walls and therefore they can induce opening and closing of the included ion channels. This mechanism acts to "voltage gated" and "ligand-gated" channels likewise. The concept of neuronal impulses can be helpful to the understanding of other points of neurophysiology or neuronal diseases. This includes

  15. Effects of Isospin on Pre-scission Particle Multiplicity of Heavy Systems and Its Excitation Energy Dependence

    Institute of Scientific and Technical Information of China (English)

    YE Wei; CHEN Na

    2004-01-01

    Isospin effects on particle emission of fissioning isobaric sources 202Fr, 202po, 202Tl and isotopic sources 189,202,212Po, and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.

  16. Excitation of Ion Cyclotron Waves by Ion and Electron Beams in Compensated-current System

    Science.gov (United States)

    Xiang, L.; Wu, D. J.; Chen, L.

    2018-04-01

    Ion cyclotron waves (ICWs) can play important roles in the energization of plasma particles. Charged particle beams are ubiquitous in space, and astrophysical plasmas and can effectively lead to the generation of ICWs. Based on linear kinetic theory, we consider the excitation of ICWs by ion and electron beams in a compensated-current system. We also investigate the competition between reactive and kinetic instabilities. The results show that ion and electron beams both are capable of generating ICWs. For ICWs driven by ion beams, there is a critical beam velocity, v bi c , and critical wavenumber, k z c , for a fixed beam density; the reactive instability dominates the growth of ICWs when the ion-beam velocity {v}{bi}> {v}{bi}c and the wavenumber {k}zz≃ 2{k}zc/3 for a given {v}{bi}> {v}{bi}c. For the slow ion beams with {v}{bi}< {v}{bi}c, the kinetic instability can provide important growth rates of ICWs. On the other hand, ICWs driven by electron beams are excited only by the reactive instability, but require a critical velocity, {v}{be}c\\gg {v}{{A}} (the Alfvén velocity). In addition, the comparison between the approximate analytical results based on the kinetic theory and the exact numerical calculation based on the fluid model demonstrates that the reactive instabilities can well agree quantitatively with the numerical results by the fluid model. Finally, some possible applications of the present results to ICWs observed in the solar wind are briefly discussed.

  17. Power Management of Islanded Self-Excited Induction Generator Reinforced by Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Nachat N. Nasser

    2018-02-01

    Full Text Available Self-Excited Induction Generators (SEIGs, e.g., Small-Scale Embedded wind generation, are increasingly used in electricity distribution networks. The operational stability of stand-alone SEIG is constrained by the local load conditions: stability can be achieved by maintaining the load’s active and reactive power at optimal values. Changes in power demand are dependent on customers’ requirements, and any deviation from the pre-calculated optimum setting will affect a machine’s operating voltage and frequency. This paper presents an investigation of the operation of the SEIG in islanding mode of operation under different load conditions, with the aid of batteries as an energy storage source. In this research a current-controlled voltage-source converter is proposed to regulate the power exchange between a direct current (DC energy storage source and an alternating current (AC grid, the converter’s controller is driven by any variation between machine capability and load demand. In order to prolong the system stability when the battery reaches its operation constraints, it is recommended that an ancillary generator and a dummy local load be embedded in the system. The results show the robustness and operability of the proposed system in the islanding mode of the SEIG under different load conditions.

  18. Statistical properties of highly excited quantum eigenstates of a strongly chaotic system

    International Nuclear Information System (INIS)

    Aurich, R.; Steiner, F.

    1992-06-01

    Statistical properties of highly excited quantal eigenstates are studied for the free motion (geodesic flow) on a compact surface of constant negative curvature (hyperbolic octagon) which represents a strongly chaotic system (K-system). The eigenstates are expanded in a circular-wave basis, and it turns out that the expansion coefficients behave as Gaussian pseudo-random numbers. It is shown that this property leads to a Gaussian amplitude distribution P(ψ) in the semiclassical limit, i.e. the wavefunctions behave as Gaussian random functions. This behaviour, which should hold for chaotic systems in general, is nicely confirmed for eigenstates lying 10000 states above the ground state thus probing the semiclassical limit. In addition, the autocorrelation function and the path-correlation function are calculated and compared with a crude semiclassical Bessel-function approximation. Agreement with the semiclassical prediction is only found, if a local averaging is performed over roughly 1000 de Broglie wavelengths. On smaller scales, the eigenstates show much more structure than predicted by the first semiclassical approximation. (orig.)

  19. Application of Time-Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation.

    Science.gov (United States)

    El-Ganaini, W A A; El-Gohary, H A

    2014-08-01

    In this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steady-state solution at the selected worst resonance case is investigated applying Runge-Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work.

  20. Excitability of the T-tubular system in rat skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, O B; Ørtenblad, Niels; Lamb, G D

    2004-01-01

    Strenuous exercise causes an increase in extracellular [K(+)] and intracellular Na(+) ([Na(+)](i)) of working muscles, which may reduce sarcolemma excitability. The excitability of the sarcolemma is, however, to some extent protected by a concomitant increase in the activity of muscle Na(+)-K(+) ...

  1. Terahertz Solitons in Biomolecular Systems and their Excitation by External Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Bugay А.N.

    2015-01-01

    Full Text Available Nonlinear dynamics of charge and acoustic excitations in cellular microtubules is considered. Different types of nonlinear solitary waves were studied taking account for dissipation. The mechanism of electro-acoustic pulse excitation by external electromagnetic field of terahertz frequency is recognized.

  2. Analysis and control of the effects of over excitation limiters on the stability of the Itaipu HVAC transmission system

    Energy Technology Data Exchange (ETDEWEB)

    Jardim, J L; Macedo, N J; Santo, S E; Praca, A S [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil)

    1994-12-31

    The effect of over excitation limiters on power system voltage stability is presented in this paper. A linear analysis based on system eigenvalues for various operating conditions shows that voltage collapse is essentially a dynamic phenomenon. Time simulations using digital tools and real-time simulator were performed to verify lin ear results and study large disturbances. A control system designed to keep system in secure region is proposed. (author) 3 refs., 9 figs.

  3. Numerical prediction analysis of propeller exciting force for hull–propeller–rudder system in oblique flow

    Directory of Open Access Journals (Sweden)

    Shuai Sun

    2018-01-01

    Full Text Available In order to analyze the characteristics of propeller exciting force, the hybrid grid is adopted and the numerical prediction of KCS ship model is performed for hull–propeller–rudder system by Reynolds-Averaged Navier Stokes (RANS method and volume of fluid (VOF model. Firstly, the numerical simulation of hydrodynamics for bare hull at oblique state is carried out. The results show that with the increasing of the drift angle, the coefficients of resistance, side force and yaw moment are constantly increasing, and the bigger the drift angle, the worse the overall uniformity of propeller disk. Then, propeller bearing force for hull–propeller–rudder system in oblique flow is calculated. It is found that the propeller thrust and torque fluctuation coefficient peak in drift angle are greater than that in straight line navigation, and the negative drift angle is greater than the positive. The fluctuation peak variation law of coefficient of side force and bending moment are different due to various causes.

  4. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    Science.gov (United States)

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  5. The Modeling and Analysis for the Self-Excited Vibration of the Maglev Vehicle-Bridge Interaction System

    Directory of Open Access Journals (Sweden)

    Jinhui Li

    2015-01-01

    Full Text Available This paper addresses the self-excited vibration problems of maglev vehicle-bridge interaction system which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, two levitation models with different complexity are developed, and the comparison of the energy curves associated with the two models is carried out. We conclude that the interaction model with a single levitation control unit is sufficient for the study of the self-excited vibration. Then, the principle underlying the self-excited vibration is explored from the standpoint of work acting on the bridge done by the levitation system. Furthermore, the influences of the parameters, including the modal frequency and modal damping of bridge, the gain of the controller, the sprung mass, and the unsprung mass, on the stability of the interaction system are carried out. The study provides a theoretical guidance for solving the self-excited vibration problems of the vehicle-bridge interaction systems.

  6. Generalization of the variational principle and the Hohenberg and Kohn theorems for excited states of Fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Gonis, A., E-mail: gonis@comcast.net

    2017-01-05

    Through the entanglement of a collection of K non-interacting replicas of a system of N interacting Fermions, and making use of the properties of reduced density matrices the variational principle and the theorems of Hohenberg and Kohn are generalized to excited states. The generalization of the variational principle makes use of the natural orbitals of an N-particle density matrix describing the state of lowest energy of the entangled state. The extension of the theorems of Hohenberg and Kohn is based on the ground-state formulation of density functional theory but with a new interpretation of the concept of a ground state: It is the state of lowest energy of a system of KN Fermions that is described in terms of the excited states of the N-particle interacting system. This straightforward implementation of the line of reasoning of ground-state density functional theory to a new domain leads to a unique and logically valid extension of the theory to excited states that allows the systematic treatment of all states in the spectrum of the Hamiltonian of an interacting system. - Highlights: • Use of entanglement in connection with the properties of density matrices. • An anti-symmetric entangled state of order KN expressed in terms of excited states of an interacting N-particle system.

  7. Critical Assessment of TD-DFT for Excited States of Open-Shell Systems: I. Doublet-Doublet Transitions.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2016-01-12

    A benchmark set of 11 small radicals is set up to assess the performance of time-dependent density functional theory (TD-DFT) for the excited states of open-shell systems. Both the unrestricted (U-TD-DFT) and spin-adapted (X-TD-DFT) formulations of TD-DFT are considered. For comparison, the well-established EOM-CCSD (equation-of-motion coupled-cluster with singles and doubles) is also used. In total, 111 low-lying singly excited doublet states are accessed by all the three approaches. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as the benchmark, it is found that both U-TD-DFT and EOM-CCSD perform well for those states dominated by singlet-coupled single excitations (SCSE) from closed-shell to open-shell, open-shell to vacant-shell, or closed-shell to vacant-shell orbitals. However, for those states dominated by triplet-coupled single excitations (TCSE) from closed-shell to vacant-shell orbitals, both U-TD-DFT and EOM-CCSD fail miserably due to severe spin contaminations. In contrast, X-TD-DFT provides balanced descriptions of both SCSE and TCSE. As far as the functional dependence is concerned, it is found that, when the Hartree-Fock ground state does not suffer from the instability problem, both global hybrid (GH) and range-separated hybrid (RSH) functionals perform grossly better than pure density functionals, especially for Rydberg and charge-transfer excitations. However, if the Hartree-Fock ground state is instable or nearly instable, GH and RSH tend to underestimate severely the excitation energies. The SAOP (statistically averaging of model orbital potentials) performs more uniformly than any other density functionals, although it generally overestimates the excitation energies of valence excitations. Not surprisingly, both EOM-CCSD and adiabatic TD-DFT are incapable of describing excited states with substantial double excitation characters.

  8. Bound state and localization of excitation in many-body open systems

    Science.gov (United States)

    Cui, H. T.; Shen, H. Z.; Hou, S. C.; Yi, X. X.

    2018-04-01

    We study the exact bound state and time evolution for single excitations in one-dimensional X X Z spin chains within a non-Markovian reservoir. For the bound state, a common feature is the localization of single excitations, which means the spontaneous emission of excitations into the reservoir is prohibited. Exceptionally, the pseudo-bound state can be found, for which the single excitation has a finite probability of emission into the reservoir. In addition, a critical energy scale for bound states is also identified, below which only one bound state exists, and it is also the pseudo-bound state. The effect of quasirandom disorder in the spin chain is also discussed; such disorder induces the single excitation to locate at some spin sites. Furthermore, to display the effect of bound state and disorder on the preservation of quantum information, the time evolution of single excitations in spin chains is studied exactly. An interesting observation is that the excitation can stay at its initial location with high probability only when the bound state and disorder coexist. In contrast, when either one of them is absent, the information of the initial state can be erased completely or becomes mixed. This finding shows that the combination of bound state and disorder can provide an ideal mechanism for quantum memory.

  9. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  10. Controllable excitation of higher-order rogue waves in nonautonomous systems with both varying linear and harmonic external potentials

    Science.gov (United States)

    Jia, Heping; Yang, Rongcao; Tian, Jinping; Zhang, Wenmei

    2018-05-01

    The nonautonomous nonlinear Schrödinger (NLS) equation with both varying linear and harmonic external potentials is investigated and the semirational rogue wave (RW) solution is presented by similarity transformation. Based on the solution, the interactions between Peregrine soliton and breathers, and the controllability of the semirational RWs in periodic distribution and exponential decreasing nonautonomous systems with both linear and harmonic potentials are studied. It is found that the harmonic potential only influences the constraint condition of the semirational solution, the linear potential is related to the trajectory of the semirational RWs, while dispersion and nonlinearity determine the excitation position of the higher-order RWs. The higher-order RWs can be partly, completely and biperiodically excited in periodic distribution system and the diverse excited patterns can be generated for different parameter relations in exponential decreasing system. The results reveal that the excitation of the higher-order RWs can be controlled in the nonautonomous system by choosing dispersion, nonlinearity and external potentials.

  11. Optimum design of a Lanchester damper for a viscously damped single degree of freedom system subjected to inertial excitation

    Science.gov (United States)

    Bapat, V. A.; Prabhu, P.

    1980-11-01

    The problem of designing an optimum Lanchester damper for a viscously damped single degree of freedom system subjected to inertial harmonic excitation is investigated. Two criteria are used for optimizing the performance of the damper: (i) minimum motion transmissibility; (ii) minimum force transmissibility. Explicit expressions are developed for determining the absorber parameters.

  12. Improvement of low speed induction generator performances and reducing the power of excitation and voltage control system

    Energy Technology Data Exchange (ETDEWEB)

    Budisan, N. [Politechnica Univ. of Timisoara (Romania); Hentea, T.; Mahil, S. [Purdue Univ. Calumet, Hammond, IN (United States); Madescu, G. [Romanian Academy, Timisoara (Romania)

    1996-12-31

    In this paper we present the results of our investigations concerning the utilization of induction generators at very low speed. It is shown that, by proper design, it is possible to obtain high efficiency and high power factor values. The optimized induction generators require lower reactive power resulting in lower size and price of the excitation control system. 4 refs., 2 figs.

  13. Recent Progress in GW-based Methods for Excited-State Calculations of Reduced Dimensional Systems

    Science.gov (United States)

    da Jornada, Felipe H.

    2015-03-01

    Ab initio calculations of excited-state phenomena within the GW and GW-Bethe-Salpeter equation (GW-BSE) approaches allow one to accurately study the electronic and optical properties of various materials, including systems with reduced dimensionality. However, several challenges arise when dealing with complicated nanostructures where the electronic screening is strongly spatially and directionally dependent. In this talk, we discuss some recent developments to address these issues. First, we turn to the slow convergence of quasiparticle energies and exciton binding energies with respect to k-point sampling. This is very effectively dealt with using a new hybrid sampling scheme, which results in savings of several orders of magnitude in computation time. A new ab initio method is also developed to incorporate substrate screening into GW and GW-BSE calculations. These two methods have been applied to mono- and few-layer MoSe2, and yielded strong environmental dependent behaviors in good agreement with experiment. Other issues that arise in confined systems and materials with reduced dimensionality, such as the effect of the Tamm-Dancoff approximation to GW-BSE, and the calculation of non-radiative exciton lifetime, are also addressed. These developments have been efficiently implemented and successfully applied to real systems in an ab initio framework using the BerkeleyGW package. I would like to acknowledge collaborations with Diana Y. Qiu, Steven G. Louie, Meiyue Shao, Chao Yang, and the experimental groups of M. Crommie and F. Wang. This work was supported by Department of Energy under Contract No. DE-AC02-05CH11231 and by National Science Foundation under Grant No. DMR10-1006184.

  14. Study of a nonlinear system with shocks under broadband excitation. Application to a steam generator tube

    International Nuclear Information System (INIS)

    Thenint, Th.

    2011-01-01

    The steam generator is a heat exchanger and participates to the nuclear safety. Energy is transferred from the primary to the secondary fluid through many U-tubes maintained vertically by support plates. A sludge deposit tends to modify the boundary conditions and the secondary fluid flow. A fluid-elastic instability can then occur and lead to quick tube ruin. This thesis seeks a better understanding of the effect of contact nonlinearity on the dynamics of a tube in-air intermittently impacting the support plates and its consequences in regards with instability. The use of discretized contact conditions with circular obstacles distributed over the thickness of the plates and the use of enriched reduction bases allow quick and relevant nonlinear numerical simulations. These simulations are well correlated with experimental measurements and valid even with strong nonlinearity or negative modal damping. The evolution of power spectral densities (PSD) with growing excitation amplitude is analyzed: padding of the anti-resonances, peak shift and spread. It is then shown that an apparent stiffness associated with a permanent bilateral contact is pertinent to describe these transitions. In the case of an unstable linear system, one demonstrates that the nonlinearity keeps the responses bounded or stabilised, thus paving the way for future work with real or simulated fluid flows. (author)

  15. Beam self-excited rf cavity driver for a deflector or focusing system

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1996-01-01

    A bunched beam from and accelerator can excite and power an rf cavity which then drives either a deflecting or focusing (including nonlinear focusing) rf cavity with and amplitude related to beam current. Rf power, generated when a bunched beam loses energy to an rf field when traversing an electric field that opposes the particle's motion, is used to drive a separate (or the same) cavity to either focus or deflect the beam. The deflected beam can be stopped by an apertures or directed to a different area of a target depending on beam current. The beam-generated rf power can drive a radio-frequency quadrupole (RFQ) that can change the focusing properties of a beam channel as a function of beam current (space- charge force compensation or modifying the beam distribution on a target). An rf deflector can offset a beam to a downstream sextupole, effectively producing a position-dependent quadrupole field. The combination of rf deflector plus sextupole will produce a beam current dependent quadropole-focusing force. A static quadrupole magnet plus another rf deflector can place the beam back on the optic axis. This paper describes the concept, derives the appropriate equations for system analysis, and fives examples. A variation on this theme is to use the wake field generated in an rf cavity to cause growth in the beam emittance. The beam current would then be apertured by emittance defining slits

  16. Modelling and Analysis of Automobile Vibration System Based on Fuzzy Theory under Different Road Excitation Information

    Directory of Open Access Journals (Sweden)

    Xue-wen Chen

    2018-01-01

    Full Text Available A fuzzy increment controller is designed aimed at the vibration system of automobile active suspension with seven degrees of freedom (DOF. For decreasing vibration, an active control force is acquired by created Proportion-Integration-Differentiation (PID controller. The controller’s parameters are adjusted by a fuzzy increment controller with self-modifying parameters functions, which adopts the deviation and its rate of change of the body’s vertical vibration velocity and the desired value in the position of the front and rear suspension as the input variables based on 49 fuzzy control rules. Adopting Simulink, the fuzzy increment controller is validated under different road excitation, such as the white noise input with four-wheel correlation in time-domain, the sinusoidal input, and the pulse input of C-grade road surface. The simulation results show that the proposed controller can reduce obviously the vehicle vibration compared to other independent control types in performance indexes, such as, the root mean square value of the body’s vertical vibration acceleration, pitching, and rolling angular acceleration.

  17. General theory of excitation energy transfer in donor-mediator-acceptor systems.

    Science.gov (United States)

    Kimura, Akihiro

    2009-04-21

    General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.

  18. Exciting interdisciplinary physics quarks and gluons, atomic nuclei, relativity and cosmology, biological systems

    CERN Document Server

    2013-01-01

    Nuclear physics is an exciting, broadly faceted field. It spans a wide range of topics, reaching from nuclear structure physics to high-energy physics, astrophysics and medical physics (heavy ion tumor therapy).  New developments are presented in this volume and the status of research is reviewed. A major focus is put on nuclear structure physics, dealing with superheavy elements and with various forms of exotic nuclei: strange nuclei, very neutron rich nuclei, nuclei of antimatter. Also quantum electrodynamics of strong fields is addressed, which is linked to the occurrence of giant nuclear systems in, e.g., U+U collisions. At high energies nuclear physics joins with elementary particle physics. Various chapters address the theory of elementary matter at high densities and temperature, in particular the quark gluon plasma which is predicted by quantum chromodynamics (QCD) to occur in high-energy heavy ion collisions. In the field of nuclear astrophysics, the properties of neutron stars and quark stars are d...

  19. Soil-structure interaction effects for laterally excited liquid-tank system

    International Nuclear Information System (INIS)

    Tang, Yu; Veletsos, A.S.

    1992-01-01

    Following a brief review of the mechanical model for liquid-storage tanks which permits consideration of the effects of tank and ground flexibility, and lateral and rocking base excitations, the effects of both kinematic and inertia interaction effects on the response of the tank-liquid system are examined and elucidated. The free-field motion is defined by a power spectral density function and an incoherence function, which characterizes the spatial variability of the ground motion due to the vertically incident incoherence waves. The quantities examined are the ensemble means of the peak values of the response. The results are compared with those obtained for no soil-structure interaction and for kinematic interaction to elucidate the nature and relative importance of the two interactions. Only the impulsive actions are examined, the convective actions are for all practical purposes unaffected by both kinematic and inertia interactions. It is shown that the major reduction of the response is attributed to inertia interaction. 20 refs

  20. Beam self-excited rf cavity driver for a deflector or focusing system

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1996-01-01

    A bunched beam from an accelerator can excite and power an rf cavity which then drives either a deflecting or focusing (including nonlinear focusing) rf cavity with an amplitude related to beam current. Rf power, generated when a bunched beam loses energy to an rf field when traversing an electric field that opposes the particle's motion, is used to drive a separate (or the same) cavity to either focus or deflect the beam. The deflected beam can be stopped by an aperture or directed to a different area of a target depending on beam current. The beam-generated rf power can drive a radiofrequency quadrupole that can change the focusing properties of a beam channel as a function of beam current (space-charge-force compensation or modifying the beam distribution on a target). An rf deflector can offset a beam to a downstream sextupole, effectively producing a position-dependent quadrupole field. The combination of rf deflector plus sextupole will produce a beam current dependent quadrupole-focusing force. A static quadrupole magnet plus another rf deflector can place the beam back on the optic axis. This paper describes the concept, derives the appropriate equations for system analysis, and gives examples. A variation on this theme is to use the wake field generated in an rf cavity to cause growth in the beam emittance. The beam current would then be apertured by emittance defining slits. (author)

  1. Study of the excitation mechanisms of the second positive system in the negative glow of a N2-Ar discharge

    International Nuclear Information System (INIS)

    Isola, L; Lopez, M; Gomez, B J

    2011-01-01

    In an Ar-N 2 discharge, the high excitation transfer from Ar( 3 P 2,0 ) to N 2 produces an overpopulation of the high rotational levels of the bands of the second positive system (SPS), and so the spectra interpretation is not straightforward. This paper presents a fit function for the SPS bands measured in Ar-N 2 , which allows us to study the excitation process contributions to the N 2 (C) level. The procedure was tested in the negative glow of a pulsed Ar-N 2 discharge at a pressure of 2.5 Torr, for different mixture concentrations. In this discharge, through the fitting, it was possible to calculate the variation of the N 2 (C) densities produced by different excitation processes as well as the variation of Ar metastable density.

  2. The Design and Implementation of Test System Based on Programmable Excitation Power Supply for Mining Comprehensive Protector

    Directory of Open Access Journals (Sweden)

    Zhi-jie Zhang

    2013-11-01

    Full Text Available As comprehensive protectors for coal mining (referred to comprehensive protectors in use are prone to fail, it can timely screen out the invalid comprehensive protector by periodic functional test when it is used (it is called test in use to ensure the production safety. The test in use needs the specialized test equipment, which is not used in delivery inspection by the manufacturers of comprehensive protectors. Thus, testing excitation power becomes a constraint for the improvement of the accuracy of test in use and the degree of automation. To solve the problem, this paper developed a power frequency programmed input-output testing excitation power supply, and on that basis it also realized the mining comprehensive protector test system in use with the excitation circuit and voltage program-controlled output.

  3. Design of excitation signals for active system monitoring in a performance assessment setup

    DEFF Research Database (Denmark)

    Green, Torben; Izadi-Zamanabadi, Roozbeh; Niemann, Hans Henrik

    2011-01-01

    This paper investigates how the excitation signal should be chosen for a active performance setup. The signal is used in a setup where the main purpose is to detect whether a parameter change of the controller has changed the global performance significantly. The signal has to be able to excite...... the dynamics of the subsystem under investigation both before and after the parameter change. The controller is well know, but there exists no detailed knowledge about the dynamics of the subsystem....

  4. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-03-10

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.

  5. Increasing Mud Pump Motor Reliability against Malfunctions of DC Motor Excitation System

    Science.gov (United States)

    Nikulin, O. V.; Shabanov, V. A.

    2017-10-01

    The most widely used drilling machinery, such as mud pumps, draw-works, and rotors, use direct-current (DC) motors with independent excitation as the electric drive. Drilling machinery drives operate in harsh ambient conditions, including those with the presence of moisture, dust and vibration, which increases the malfunction rate of both drilling equipment and their electric drives. One of the frequently encountered malfunctions are DC motor excitation coil faults, which disrupt the normal functioning of electric drives, often leading to shutdown of the drilling process. In a four-pole DC motor, the malfunction of one coil leads to lack of excitation current in just one coil pair, while the other pair remains functional. In this case, DC motors and drilling equipment can remain operational, which would allow for continuing the drilling process. This paper considers the possibility of operation of a DC motor on a drilling rig in those cases when one pair of excitation coils is non-functional, and describes the device for switching between the excitation coils and the auxiliary winding in a DC motor with independent excitation.

  6. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  7. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    OpenAIRE

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-01-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on ...

  8. ANALYSIS OF THE PROCESSES IN AN INDUCTOR SYSTEM WITH AN ATTRACTING SCREEN EXCITED BY THE EXTERNAL CIRCULAR SOLENOID

    Directory of Open Access Journals (Sweden)

    E.A. Chaplygin

    2015-12-01

    Full Text Available Introduction. Developments in the field of magnetic-pulse treatment of metals (MPTM are increasingly used in the modern technologies of production and repair of the aviation, automotive and other machinery, as they are environmentally friendly and energy-efficient in comparison with classical approaches. One of the main components of the device MPTM is a tool – inductor or the inductor system with an attractive screen (ISAS. The calculated dependences to calculate the inductor system with an attractive screen were taken from previous works. The ratios were obtained for the low-frequency mode of the excited fields, when is place their significant penetration through a thin-walled metal screen and a deformed workpiece. As it was shown earlier this mode is the most efficient from point of view of a force action on the object of a processing. Purpose. The theoretical analysis of the spatial-temporal distributions of the induced currents and forces of an attraction in the inductor system with an attractive screen excited by a flat circular solenoid located on the outside of the auxiliary screen. Methodology. The calculations are shown that the induced currents both in the screen and the workpiece are unidirectional and their interaction, in accordance with the law of Ampere determines the amplitudes of excited forces of attraction. Let’s note the effective validity of the considered inductor system excited by an external circular solenoid. With sufficient simplicity of the design take place rather high values of the developed forces of attraction and their averages. Results. Physically, a higher power efficiency of the system with an «external» coil in comparison with a system where coil is located in the internal cavity, can be accounted for lade of «failure» in the radial distribution of the excited forces. This «failure» in the design with a coil between the sheet metal is caused by its screening action against the forces of attraction

  9. Non-contact test set-up for aeroelasticity in a rotating turbomachine combining a novel acoustic excitation system with tip-timing

    International Nuclear Information System (INIS)

    Freund, O; Seume, J R; Montgomery, M; Mittelbach, M

    2014-01-01

    Due to trends in aero-design, aeroelasticity becomes increasingly important in modern turbomachines. Design requirements of turbomachines lead to the development of high aspect ratio blades and blade integral disc designs (blisks), which are especially prone to complex modes of vibration. Therefore, experimental investigations yielding high quality data are required for improving the understanding of aeroelastic effects in turbomachines. One possibility to achieve high quality data is to excite and measure blade vibrations in turbomachines. The major requirement for blade excitation and blade vibration measurements is to minimize interference with the aeroelastic effects to be investigated. Thus in this paper, a non-contact—and thus low interference—experimental set-up for exciting and measuring blade vibrations is proposed and shown to work. A novel acoustic system excites rotor blade vibrations, which are measured with an optical tip-timing system. By performing measurements in an axial compressor, the potential of the acoustic excitation method for investigating aeroelastic effects is explored. The basic principle of this method is described and proven through the analysis of blade responses at different acoustic excitation frequencies and at different rotational speeds. To verify the accuracy of the tip-timing system, amplitudes measured by tip-timing are compared with strain gage measurements. They are found to agree well. Two approaches to vary the nodal diameter (ND) of the excited vibration mode by controlling the acoustic excitation are presented. By combining the different excitable acoustic modes with a phase-lag control, each ND of the investigated 30 blade rotor can be excited individually. This feature of the present acoustic excitation system is of great benefit to aeroelastic investigations and represents one of the main advantages over other excitation methods proposed in the past. In future studies, the acoustic excitation method will be used

  10. Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR.

    Science.gov (United States)

    Guardado-Alvarez, Tania M; Devi, Lekshmi Sudha; Vabre, Jean-Marie; Pecorelli, Travis A; Schwartz, Benjamin J; Durand, Jean-Olivier; Mongin, Olivier; Blanchard-Desce, Mireille; Zink, Jeffrey I

    2014-05-07

    We report the design and synthesis of a nano-container consisting of mesoporous silica nanoparticles with the pore openings covered by "snap-top" caps that are opened by near-IR light. A photo transducer molecule that is a reducing agent in an excited electronic state is covalently attached to the system. Near IR two-photon excitation causes inter-molecular electron transfer that reduces a disulfide bond holding the cap in place, thus allowing the cargo molecules to escape. We describe the operation of the "snap-top" release mechanism by both one- and two-photon activation. This system presents a proof of concept of a near-IR photoredox-induced nanoparticle delivery system that may lead to a new type of photodynamic drug release therapy.

  11. Stochastic stability of mechanical systems under renewal jump process parametric excitation

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

    2005-01-01

    independent, negative exponential distributed variables; hence, the arrival process may be termed as a generalized Erlang renewal process. The excitation process is governed by the stochastic equation driven by two independent Poisson processes, with different parameters. If the response in a single mode...... is investigated, the problem is governed in the state space by two stochastic equations, because the stochastic equation for the excitation process is autonomic. However due to the parametric nature of the excitation, the nonlinear term appears at the right-hand sides of the equations. The equations become linear...... of the stochastic equation governing the natural logarithm of the hyperspherical amplitude process and using the modification of the method wherein the time averaging of the pertinent expressions is replaced by ensemble averaging. It is found that the direct simulation is more suitable and that the asymptotic mean...

  12. Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.

    Science.gov (United States)

    Nodera, Hiroyuki; Manto, Mario

    2014-12-01

    Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.

  13. The dynamic behaviour of a non-stationary elevator compensating rope system under harmonic and stochastic excitations

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarczyk, S [School of Applied Sciences, University of Northampton, St. George' s Avenue, Northampton NN2 6JD (United Kingdom); Iwankiewicz, R [Institute of Mechanics and Ocean Engineering, Hamburg University of Technology, Eissendorfer Strasse 42 D-21073, Hamburg (Germany); Terumichi, Y, E-mail: stefan.kaczmarczyk@northampton.ac.u [Faculty of Science and Technology, Sophia University, 7-1 KIOI-CHO, CHIYODAKU, Tokyo, 102-8554 Japan (Japan)

    2009-08-01

    Moving slender elastic elements such as ropes, cables and belts are pivotal components of vertical transportation systems such as traction elevators. Their lengths vary within the host building structure during the elevator operation which results in the change of the mass and stiffness characteristics of the system. The structure of modern high-rise buildings is flexible and when subjected to loads due to strong winds and earthquakes it vibrates at low frequencies. The inertial load induced by the building motion excites the flexible components of the elevator system. The compensating ropes due to their lower tension are particularly affected and undergo large dynamic deformations. The paper focuses on the presentation of the non-stationary model of a building-compensating rope system and on the analysis to predict its dynamic response. The excitation mechanism is represented by a harmonic process and the results of computer simulations to predict transient resonance response are presented. The analysis of the simulation results leads to recommendations concerning the selection of the weight of the compensation assembly to minimize the effects of an adverse dynamic response of the system. The scenario when the excitation is represented as a narrow-band stochastic process with the state vector governed by stochastic equations is then discussed and the stochastic differential equations governing the second-order statistical moments of the state vector are developed.

  14. Electronic excitations in metallic systems: from defect annihilation to track formation

    International Nuclear Information System (INIS)

    Dunlop, A.; Lesueur, D.

    1991-01-01

    This paper presents an overview of the effects of high electronic energy deposition in metallic targets irradiated with GeV heavy ions. The main result of these investigations is that high electronic excitations lead to various and sometimes conflicting effects according to the nature of the target: - partial annealing of the defects induced by elastic collisions, - creation of additional disorder, - phase transformation (tracks formation and amorphization), - anisotropic growth. These different effects of high electronic energy deposition in metallic targets are probably manifestations at various degrees of the same basic energy transfer process between the excited electrons and the target atoms. Up to now no theoretical model explains these effects. 24 refs

  15. Validations of CNDOL approximate Hamiltonian as a fast and reliable method to obtain vertical excitation energies in polyatomic systems

    International Nuclear Information System (INIS)

    Montero-Alejo, Ana L.; Gonzalez-Santana, Susana; Montero-Cabrera, Luis A.; Hernandez-Rodriguez, Erix Wiliam; Fuentes-Montero, Maria Elena; Bunge-Molina, Carlos F.; Gonzalez, Augusto

    2008-01-01

    Theoretical prediction of vertical excitation energies and an estimation of charge distributions of polyatomic systems can be calculated, through the configuration interaction of single (CIS) excited determinants procedure, with the CNDOL (Complete Neglect of Differential Overlap considering the l azimuthal quantum number) Hamiltonians. This method does not use adjusted parameters to fit experimental data and only employ a priori data on atomic orbitals and simple formulas to substitute large computations of electronic integrals. In this sense, different functions for bi-electron integrals have been evaluated in order to improve the approximate Hamiltonian. The reliability of predictions and theoretical consistence has been tested with a benchmark set of organic molecules that covers important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic, hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. The calculations are done at identical geometries (MP2) with the same basis set (6-31G) for these medium-sized molecules and the obtained results were statistically compared with other analogous methods and experimental data. The accuracy of prediction of each CNDOL vertical transitions energy increases while the active space is more complete allowing the best variational optimization of CIS matrices i.e. molecular excited states. Moreover and due to the feasible computation procedure for large polyatomic systems, the studies have been extended, as a preliminary work, in the field of optoelectronic materials for photovoltaic applications. Hence, the excitation energies of different conjugated Phenyl-cored Thiophene Dendrimers optimized by DFT (Density Functional Theory) were calculated and show good agreement with the experiment data. The predicted charge distribution during the excitation contributes to understand the photophysics process on these kind materials. (Full text)

  16. Application of Local Fourier Transform to Mathematical Simulation of Synchronous Machines with Valve Excitation Systems

    Directory of Open Access Journals (Sweden)

    Fedotov A.

    2017-02-01

    Full Text Available The article proposes a method of mathematical simulation of electrical machines with thyristor exciters on the basis of the local Fourier transform. The present research demonstrates that this method allows switching from a variable structure model to a constant structure model. Transition from the continuous variables to the discrete variables is used. The numerical example is given in the paper.

  17. Stochastic stability of mechanical systems under renewal jump process parametric excitation

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

    2005-01-01

    independent, negative exponential distributed variables; hence, the arrival process may be termed as a generalized Erlang renewal process. The excitation process is governed by the stochastic equation driven by two independent Poisson processes, with different parameters. If the response in a single mode...

  18. The study of excited oxygen molecule gas species production and quenching on thermal protection system materials

    Science.gov (United States)

    Nordine, Paul C.; Fujimoto, Gordon T.; Greene, Frank T.

    1987-01-01

    The detection of excited oxygen and ozone molecules formed by surface catalyzed oxygen atom recombination and reaction was investigated by laser induced fluorescence (LIF), molecular beam mass spectrometric (MBMS), and field ionization (FI) techniques. The experiment used partially dissociated oxygen flows from a microwave discharge at pressures in the range from 60 to 400 Pa or from an inductively coupled RF discharge at atmospheric pressure. The catalyst materials investigated were nickel and the reaction cured glass coating used for Space Shuttle reusable surface insulation tiles. Nonradiative loss processes for the laser excited states makes LIF detection of O2 difficult such that formation of excited oxygen molecules could not be detected in the flow from the microwave discharge or in the gaseous products of atom loss on nickel. MBMS experiments showed that ozone was a product of heterogeneous O atom loss on nickel and tile surfaces at low temperatures and that ozone is lost on these materials at elevated temperatures. FI was separately investigated as a method by which excited oxygen molecules may be conveniently detected. Partial O2 dissociation decreases the current produced by FI of the gas.

  19. Test of the neoclassical theory of radiation in a weakly excited atomic system

    International Nuclear Information System (INIS)

    Brink, G.O.

    1975-01-01

    The neoclassical theory of radiation predicts that the decay rate of an excited atomic state depends on the population density of the lower state. Experimental evidence is presented here which shows that in the case of 39 K the decay rate is in agreement with the predictions of quantum electrodynamics and definitely in disagreement with the neoclassical theory

  20. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  1. Measurement and analysis of excitation functions in 20Ne + 27Al system

    International Nuclear Information System (INIS)

    Pachouri, Dipti; Singh, D.; Ali, R.; Afzal Ansari, M.; Rashid, M.H.

    2008-01-01

    In the present work, the excitation functions (EFs) for radioactive residues produced in the interaction of 20 Ne ion with 27 Al have been measured in order to study the reaction dynamics, particularly in the low mass region using the off-line γ-ray measurement activation technique for bombarding energies below 150 MeV

  2. Electro-mechanical impact system excited by a source of limited power

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav

    2008-01-01

    Roč. 15, č. 6 (2008), s. 1-10 ISSN 1802-1484 R&D Projects: GA ČR GA101/06/0063 Institutional research plan: CEZ:AV0Z20760514 Keywords : mechanical oscillations * impacts * limited power of exciter * electro-mechanical interaction Subject RIV: BI - Acoustics

  3. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  4. Slow cortical potential and theta/beta neurofeedback training in adults: effects on attentional processes, and motor system excitability

    Directory of Open Access Journals (Sweden)

    Petra eStuder

    2014-07-01

    Full Text Available Neurofeedback (NF is being successfully applied, among others, in children with ADHD and as a peak performance training in healthy subjects. However, the neuronal mechanisms mediating a successful NF training have not yet been sufficiently uncovered for both theta/beta (T/B, and slow cortical potential (SCP training, two protocols established in NF in ADHD. In the present randomized controlled investigation in adults without a clinical diagnosis (n = 59, the specificity of the effects of these two NF protocols on attentional processes, and motor system excitability were to be examined, focusing on the underlying neuronal mechanisms. NF training consisted of 10 double sessions, and self-regulation skills were analyzed. Pre- and post-training assessments encompassed performance and event-related potential measures during an attention task, and motor system excitability assessed by transcranial magnetic stimulation. Some NF protocol specific effects have been obtained. However, due to the limited sample size medium effects didn’t reach the level of significance. Self-regulation abilities during negativity trials of the SCP training were associated with increased contingent negative variation amplitudes, indicating improved resource allocation during cognitive preparation. Theta/beta training was associated with increased response speed and decreased target-P3 amplitudes after successful theta/beta regulation suggested reduced attentional resources necessary for stimulus evaluation. Motor system excitability effects after theta/beta training paralleled the effects of methylphenidate. Overall, our results are limited by the non-sufficiently acquired self-regulation skills, but some specific effects between good and poor learners could be described. Future studies with larger sample sizes and sufficient acquisition of self-regulation skills are needed to further evaluate the protocol specific effects on attention and motor system excitability

  5. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    Science.gov (United States)

    de Paor, A. M.

    Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ɛ has the value 1 is proved via the Popov theorem from feedback system stability theory.

  6. Scalable implementations of accurate excited-state coupled cluster theories: application of high-level methods to porphyrin based systems

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Karol; Krishnamoorthy, Sriram; Olson, Ryan M.; Tipparaju, Vinod; Apra, Edoardo

    2011-11-30

    The development of reliable tools for excited-state simulations is emerging as an extremely powerful computational chemistry tool for understanding complex processes in the broad class of light harvesting systems and optoelectronic devices. Over the last years we have been developing equation of motion coupled cluster (EOMCC) methods capable of tackling these problems. In this paper we discuss the parallel performance of EOMCC codes which provide accurate description of the excited-state correlation effects. Two aspects are discuss in details: (1) a new algorithm for the iterative EOMCC methods based on the novel task scheduling algorithms, and (2) parallel algorithms for the non-iterative methods describing the effect of triply excited configurations. We demonstrate that the most computationally intensive non-iterative part can take advantage of 210,000 cores of the Cray XT5 system at OLCF. In particular, we demonstrate the importance of non-iterative many-body methods for achieving experimental level of accuracy for several porphyrin-based system.

  7. Influence of Road Excitation and Steering Wheel Input on Vehicle System Dynamic Responses

    OpenAIRE

    Zhen-Feng Wang; Ming-Ming Dong; Liang Gu; Jagat-Jyoti Rath; Ye-Chen Qin; Bin Bai

    2017-01-01

    Considering the importance of increasing driving safety, the study of safety is a popular and critical topic of research in the vehicle industry. Vehicle roll behavior with sudden steering input is a main source of untripped rollover. However, previous research has seldom considered road excitation and its coupled effect on vehicle lateral response when focusing on lateral and vertical dynamics. To address this issue, a novel method was used to evaluate effects of varying road level and steer...

  8. Fast Excitation and Photon Emission of a Single-Atom-Cavity System

    International Nuclear Information System (INIS)

    Bochmann, J.; Muecke, M.; Langfahl-Klabes, G.; Erbel, C.; Weber, B.; Specht, H. P.; Moehring, D. L.; Rempe, G.

    2008-01-01

    We report on the fast excitation of a single atom coupled to an optical cavity using laser pulses that are much shorter than all other relevant processes. The cavity frequency constitutes a control parameter that allows the creation of single photons in a superposition of two tunable frequencies. Each photon emitted from the cavity thus exhibits a pronounced amplitude modulation determined by the oscillatory energy exchange between the atom and the cavity. Our technique constitutes a versatile tool for future quantum networking experiments

  9. System identification of propagating wave segments in excitable media and its application to advanced control

    Science.gov (United States)

    Katsumata, Hisatoshi; Konishi, Keiji; Hara, Naoyuki

    2018-04-01

    The present paper proposes a scheme for controlling wave segments in excitable media. This scheme consists of two phases: in the first phase, a simple mathematical model for wave segments is derived using only the time series data of input and output signals for the media; in the second phase, the model derived in the first phase is used in an advanced control technique. We demonstrate with numerical simulations of the Oregonator model that this scheme performs better than a conventional control scheme.

  10. Influence of Road Excitation and Steering Wheel Input on Vehicle System Dynamic Responses

    Directory of Open Access Journals (Sweden)

    Zhen-Feng Wang

    2017-06-01

    Full Text Available Considering the importance of increasing driving safety, the study of safety is a popular and critical topic of research in the vehicle industry. Vehicle roll behavior with sudden steering input is a main source of untripped rollover. However, previous research has seldom considered road excitation and its coupled effect on vehicle lateral response when focusing on lateral and vertical dynamics. To address this issue, a novel method was used to evaluate effects of varying road level and steering wheel input on vehicle roll behavior. Then, a 9 degree of freedom (9-DOF full-car roll nonlinear model including vertical and lateral dynamics was developed to study vehicle roll dynamics with or without of road excitation. Based on a 6-DOF half-car roll model and 9-DOF full-car nonlinear model, relationship between three-dimensional (3-D road excitation and various steering wheel inputs on vehicle roll performance was studied. Finally, an E-Class (SUV level car model in CARSIM® was used, as a benchmark, with and without road input conditions. Both half-car and full-car models were analyzed under steering wheel inputs of 5°, 10° and 15°. Simulation results showed that the half-car model considering road input was found to have a maximum accuracy of 65%. Whereas, the full-car model had a minimum accuracy of 85%, which was significantly higher compared to the half-car model under the same scenario.

  11. Numerical and experimental analysis of the vibratory behavior of a nuclear power plant piping system excitated by a pump

    International Nuclear Information System (INIS)

    Vatin, E.; Guillou, J.; Tephany, F.; Trollat, C.

    1993-08-01

    This paper presents a study on the dynamic response of piping systems installed in the French 1300 MWe Nuclear Power Plants. Variations in pressure are generated by a multi-staged centrifugal pump mounted on the piping system and provide a dynamic excitation of the pipe. This type of dynamic loading has led to nozzle cracks for some of the pipes, whereas, for other installations, it has not be found detrimental. This study presents an explanation of the different dynamic behavior observed at the various plants. To this end, a numerical model, calibrated with on-site measurements, is impleted. (authors). 8 figs., 1 tab., 5 refs

  12. Synchronization of Two Non-Identical Coupled Exciters in a Non-Resonant Vibrating System of Linear Motion. Part II: Numeric Analysis

    Directory of Open Access Journals (Sweden)

    Chunyu Zhao

    2009-01-01

    Full Text Available The paper focuses on the quantitative analysis of the coupling dynamic characteristics of two non-identical exciters in a non-resonant vibrating system. The load torque of each motor consists of three items, including the torque of sine effect of phase angles, that of coupling sine effect and that of coupling cosine effect. The torque of frequency capture results from the torque of coupling cosine effect, which is equal to the product of the coupling kinetic energy, the coefficient of coupling cosine effect, and the sine of phase difference of two exciters. The motions of the system excited by two exciters in the same direction make phase difference close to π and that in opposite directions makes phase difference close to 0. Numerical results show that synchronous operation is stable when the dimensionless relative moments of inertia of two exciters are greater than zero and four times of their product is greater than the square of their coefficient of coupling cosine effect. The stability of the synchronous operation is only dependent on the structural parameters of the system, such as the mass ratios of two exciters to the vibrating system, and the ratio of the distance between an exciter and the centroid of the system to the equivalent radius of the system about its centroid.

  13. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    DEFF Research Database (Denmark)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter

    2017-01-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum......, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based...... on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved...

  14. Analysis and optimization of hybrid excitation permanent magnet synchronous generator for stand-alone power system

    Science.gov (United States)

    Wang, Huijun; Qu, Zheng; Tang, Shaofei; Pang, Mingqi; Zhang, Mingju

    2017-08-01

    In this paper, electromagnetic design and permanent magnet shape optimization for permanent magnet synchronous generator with hybrid excitation are investigated. Based on generator structure and principle, design outline is presented for obtaining high efficiency and low voltage fluctuation. In order to realize rapid design, equivalent magnetic circuits for permanent magnet and iron poles are developed. At the same time, finite element analysis is employed. Furthermore, by means of design of experiment (DOE) method, permanent magnet is optimized to reduce voltage waveform distortion. Finally, the validity of proposed design methods is validated by the analytical and experimental results.

  15. Stochastic responses of Van der Pol vibro-impact system with fractional derivative damping excited by Gaussian white noise

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yanwen; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Wang, Liang [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2016-03-15

    This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.

  16. Stochastic responses of Van der Pol vibro-impact system with fractional derivative damping excited by Gaussian white noise.

    Science.gov (United States)

    Xiao, Yanwen; Xu, Wei; Wang, Liang

    2016-03-01

    This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.

  17. Voiced Excitations

    National Research Council Canada - National Science Library

    Holzricher, John

    2004-01-01

    To more easily obtain a voiced excitation function for speech characterization, measurements of skin motion, tracheal tube, and vocal fold, motions were made and compared to EM sensor-glottal derived...

  18. Exciting Pools

    Science.gov (United States)

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  19. A Solution Method for Linear and Geometrically Nonlinear MDOF Systems with Random Properties subject to Random Excitation

    DEFF Research Database (Denmark)

    Micaletti, R. C.; Cakmak, A. S.; Nielsen, Søren R. K.

    structural properties. The resulting state-space formulation is a system of ordinary stochastic differential equations with random coefficient and deterministic initial conditions which are subsequently transformed into ordinary stochastic differential equations with deterministic coefficients and random......A method for computing the lower-order moments of randomly-excited multi-degree-of-freedom (MDOF) systems with random structural properties is proposed. The method is grounded in the techniques of stochastic calculus, utilizing a Markov diffusion process to model the structural system with random...... initial conditions. This transformation facilitates the derivation of differential equations which govern the evolution of the unconditional statistical moments of response. Primary consideration is given to linear systems and systems with odd polynomial nonlinearities, for in these cases...

  20. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  1. Alternans and Spiral Breakup in an Excitable Reaction-Diffusion System: A Simulation Study.

    Science.gov (United States)

    Gani, M Osman; Ogawa, Toshiyuki

    2014-01-01

    The determination of the mechanisms of spiral breakup in excitable media is still an open problem for researchers. In the context of cardiac electrophysiological activities, spiral breakup exhibits complex spatiotemporal pattern known as ventricular fibrillation. The latter is the major cause of sudden cardiac deaths all over the world. In this paper, we numerically study the instability of periodic planar traveling wave solution in two dimensions. The emergence of stable spiral pattern is observed in the considered model. This pattern occurs when the heart is malfunctioning (i.e., ventricular tachycardia). We show that the spiral wave breakup is a consequence of the transverse instability of the planar traveling wave solutions. The alternans, that is, the oscillation of pulse widths, is observed in our simulation results. Moreover, we calculate the widths of spiral pulses numerically and observe that the stable spiral pattern bifurcates to an oscillatory wave pattern in a one-parameter family of solutions. The spiral breakup occurs far below the bifurcation when the maximum and the minimum excited states become more distinct, and hence the alternans becomes more pronounced.

  2. Ab initio study on electron excitation and electron transfer in tryptophan-tyrosine system

    International Nuclear Information System (INIS)

    Tong Jing; Li Xiangyuan

    2002-01-01

    In this article, ab initio calculation has been performed to evaluate the transition energy of electronic excitation in tryptophan and tyrosine by using semiempirical molecular orbital method AM1 and complete active space self-consistent field method. The solvent effect has been considered by means of the conductor-like screening model. After geometric optimizations of isolated tryptophan and tyrosine, and their corresponding radicals and cations, reaction heat of these electron transfer reactions have been obtained by the means of complete active space self-consistent field method. The transition energies from the ground state, respectively, to the lowest excited state and to the lowest triplet state of these two amino acids are also calculated and compared with the experimentally observed values. The ionization potential and electron affinity are also calculated for tryptophan and tyrosine employing Koopmans' theorem and ab initio calculation. Compared with the experimental measurements, the theoretical results are found satisfactory. Theoretical results give good explanations on the experimental phenomena that N 3 · can preferably oxide the side chain of tryptophan residue and then the electron transfer from tyrosine residue to tryptophan residue follows in peptides involving tryptophan and tyrosine

  3. Integrated modeling and analysis of ball screw feed system and milling process with consideration of multi-excitation effect

    Science.gov (United States)

    Zhang, Xing; Zhang, Jun; Zhang, Wei; Liang, Tao; Liu, Hui; Zhao, Wanhua

    2018-01-01

    The present researches about feed drive system and milling process are almost independent with each other, and ignore the interaction between the two parts, especially the influence of nonideal motion of feed drive system on milling process. An integrated modeling method of ball screw feed system and milling process with multi-excitation effect is proposed in this paper. In the integrated model, firstly an analytical model of motor harmonic torque with consideration of asymmetrical drive circuit and asymmetrical permanent magnet is given. Then, the numerical simulation procedure of cutter/workpiece engagement during milling process with displacement fluctuation induced by harmonic torque is put forward, which is followed by the solving flow for the proposed integrated model. Based on the integrated model, a new kind of quality defect shown as contour low frequency oscillation on machined surface is studied by experiments and simulations. The results demonstrate that the forming mechanism of the contour oscillation can be ascribed to the multi-excitation effect with motor harmonic torque and milling force. Moreover, the influence of different milling conditions on the contour oscillation characteristics, particularly on surface roughness, are further discussed. The results indicate that it is necessary to explain the cause of the new kind of quality defect with a view of system integration.

  4. High-Resolution Spectroscopy of Jet-Cooled 1,1 '-Diphenylethylene: Electronically Excited and Ionic States of a Prototypical Cross-Conjugated System

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C. A.; Zgierski, M. Z.; Buma, W. J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated pi-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio

  5. Observation and quantification of the quantum dynamics of a strong-field excited multi-level system.

    Science.gov (United States)

    Liu, Zuoye; Wang, Quanjun; Ding, Jingjie; Cavaletto, Stefano M; Pfeifer, Thomas; Hu, Bitao

    2017-01-04

    The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.

  6. Global Analysis of Response in the Piezomagnetoelastic Energy Harvester System under Harmonic and Poisson White Noise Excitations

    International Nuclear Information System (INIS)

    Yue Xiao-Le; Xu Wei; Zhang Ying; Wang Liang

    2015-01-01

    The piezomagnetoelastic energy harvester system subjected to harmonic and Poisson white noise excitations is studied by using the generalized cell mapping method. The transient and stationary probability density functions (PDFs) of response based on the global viewpoint are obtained by the matrix analysis method. Monte Carlo simulation results verify the accuracy of this method. It can be observed that evolutionary direction of transient and stationary PDFs is in accordance with the unstable manifold for this system, and a stochastic P-bifurcation occurs as the intensity of Poisson white noise increases. This study presents an efficient numerical tool to solve the stochastic response of a three-dimensional dynamical system and provides a new idea to analyze the energy harvester system. (paper)

  7. Breakup excitation function at backward angles from α-spectra in the 6Li + 144Sm system

    International Nuclear Information System (INIS)

    Capurro, O.A.; Pacheco, A.J.; Arazi, A.; Figueira, J.M.; Martinez Heimann, D.; Negri, A.E.

    2011-01-01

    Breakup cross sections were obtained for the 6 Li + 144 Sm system at energies above and below the Coulomb barrier from a detailed analysis of the data recorded at backward angles. These cross sections are compared with inelastic target excitations previously reported revealing a similar behavior as a function of the bombarding energy but a large absolute difference between them. Using kinematical considerations we have analyzed possible contributions from different breakup channels and we have extracted information on magnitudes such as the relative kinetic energies of the corresponding breakup fragments.

  8. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    Directory of Open Access Journals (Sweden)

    A. M. de Paor

    1998-01-01

    Full Text Available Hide (Nonlinear Processes in Geophysics, 1998 has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ε has the value 1 is proved via the Popov theorem from feedback system stability theory.

  9. Experimental fusion excitation functions and derived barrier distributions for heavy ion systems involving prolate and oblate target nuclei

    International Nuclear Information System (INIS)

    Bierman, J.D.; Chan, P.; Liang, J.F.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.

    1996-01-01

    Fusion excitation functions spanning the entire barrier region in 1 MeV energy steps for the two systems 40 Ca + 192 Os, 194 Pt are presented. The results of fission fragment angular distribution measurements for fusion-fission of 40 Ca + 197 Au at several projectile energies within the barrier region are also presented. The fusion data is of high enough precision to allow for extraction of the distribution of fusion barriers from the second differential of the product of E and σ. Basic coupled channels calculations which are in quite good agreement with the data are shown and discussed

  10. Time-dependent theory of Raman scattering for systems with several excited electronic states: Application to a H+3 model system

    International Nuclear Information System (INIS)

    Heather, R.; Metiu, H.

    1989-01-01

    The time-dependent formulation of Raman scattering theory is used to study how nonadiabatic interactions affect the Raman spectrum of a model H + 3 system, which has two excited electronic states. We start with a formula derived by Heller which gives the Raman scattering cross section as the Fourier transform (over time) of a time-dependent overlap integral. The latter is calculated with a method proposed by Fleck, Morris, and Feit, and extended to curve crossing by Alvarellos and Metiu. In performing these calculations we are especially interested in displaying effects typical of systems having more than one upper state. If the incident laser populates two electronic states there are several ways (i.e., excite to state one and emit from state two, excite to state one, and emit from state one, etc.) by which the Raman process can reach a given final state, and this leads to quantum interference. This interference is manifested in the Raman cross section as approximate selection rules controlling which final states can be reached through the Raman process. These selection rules depend on the relative orientation of the transition dipoles that radiatively couple the ground electronic state with the excited electronic states. The magnitude of the nonadiabatic contribution to the Raman emission, e.g., the contribution from absorbing to state one and emitting from state two, can be determined from the polarization dependence of the Raman emission if the transition dipoles have neither parallel nor antiparallel relative orientation

  11. Analysis and optimization of hybrid excitation permanent magnet synchronous generator for stand-alone power system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huijun, E-mail: huijun024@gmail.com [School of Instrumentation Science and Opto-electronics Engineering, Beihang University (China); Qu, Zheng; Tang, Shaofei; Pang, Mingqi [School of Instrumentation Science and Opto-electronics Engineering, Beihang University (China); Zhang, Mingju [Shanghai Aerospace Control Technology Institute, Shanghai (China)

    2017-08-15

    Highlights: • One novel permanent magnet generator structure has been proposed to reduce voltage regulation ratio. • Finite element method and equivalent circuit methods are both employed to realize rapid generator design. • Design of experiment (DOE) method is used to optimize permanent magnet shape for reduce voltage waveform distortion. • The obtained analysis and experiment results verify the proposed design methods. - Abstract: In this paper, electromagnetic design and permanent magnet shape optimization for permanent magnet synchronous generator with hybrid excitation are investigated. Based on generator structure and principle, design outline is presented for obtaining high efficiency and low voltage fluctuation. In order to realize rapid design, equivalent magnetic circuits for permanent magnet and iron poles are developed. At the same time, finite element analysis is employed. Furthermore, by means of design of experiment (DOE) method, permanent magnet is optimized to reduce voltage waveform distortion. Finally, the validity of proposed design methods is validated by the analytical and experimental results.

  12. Ground state and elementary excitations of a model valence-fluctuation system

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1979-01-01

    The nature of the valence fluctuation problem is described, and motivations are given for an Anderson-lattice model Hamiltonian. A simple trial wave function is posed for the ground state, and the variational problem is solved. This demonstrates clearly that there is no Kondo-like divergence; the present concentrated Kondo problem is thus more simple mathematically than the sngle-impurity problem. Elementary excitations are studies by the Green's function techniques of Zubarev and Hubbard. Quenching of local moments and a large specific heat are found at low temperatures. The quasi-particle spectrum exhibits a gap, but epsilon/sub F/ does not lie in this gap. The insulation-like feature of SmB 6 , SmS, and TmSe at very low temperatures is explained in terms of a strongly reduced mobility for states near the gap, and reasons are given why this feature is not observed in other valence-fluctuation compounds. 73 references

  13. Analysis and optimization of hybrid excitation permanent magnet synchronous generator for stand-alone power system

    International Nuclear Information System (INIS)

    Wang, Huijun; Qu, Zheng; Tang, Shaofei; Pang, Mingqi; Zhang, Mingju

    2017-01-01

    Highlights: • One novel permanent magnet generator structure has been proposed to reduce voltage regulation ratio. • Finite element method and equivalent circuit methods are both employed to realize rapid generator design. • Design of experiment (DOE) method is used to optimize permanent magnet shape for reduce voltage waveform distortion. • The obtained analysis and experiment results verify the proposed design methods. - Abstract: In this paper, electromagnetic design and permanent magnet shape optimization for permanent magnet synchronous generator with hybrid excitation are investigated. Based on generator structure and principle, design outline is presented for obtaining high efficiency and low voltage fluctuation. In order to realize rapid design, equivalent magnetic circuits for permanent magnet and iron poles are developed. At the same time, finite element analysis is employed. Furthermore, by means of design of experiment (DOE) method, permanent magnet is optimized to reduce voltage waveform distortion. Finally, the validity of proposed design methods is validated by the analytical and experimental results.

  14. The contribution of electronically excited states to the radiation chemistry of organic systems

    International Nuclear Information System (INIS)

    Lipsky, S.

    1990-01-01

    The photocurrent from anthracene in 2,2,4-trimethylpentane, 2.2- dimethylbutane, cyclohexane, cyclopentane, and tetramethylsilane has been studied as a function of excitation energy from the ionization threshold to the onset of strong solvent absorption. The fluroescence from solutions of hexafluorobenzene in cyclopentane, 2,2,4-trimethylpentane, 2,2-dimethylbutane and tetramethylsilane irradiated with β-particles has been studied as a function of the hexafluorobenzene concentration from c = 10 -3 -10 -1 M. The data are analyzed to permit extraction of the geminate ion-pair scavenging probability. The absorption of 160 nm light by cyclohexane in mixtures of cyclohexane, benzene and tetraphenylmethylenediamine results in an emission spectrum consisting of the simultaneous fluorescence from all three components. A mechanism for the development of this spectrum and its dependence on benzene concentration is constructed and shown to be quantitatively consistent with the results of independent measurements on the separate components. 55 refs

  15. Melnikov's criteria, parametric control of chaos, and stationary chaos occurrence in systems with asymmetric potential subjected to multiscale type excitation.

    Science.gov (United States)

    Kwuimy, C A Kitio; Nataraj, C; Litak, G

    2011-12-01

    We consider the problems of chaos and parametric control in nonlinear systems under an asymmetric potential subjected to a multiscale type excitation. The lower bound line for horseshoes chaos is analyzed using the Melnikov's criterion for a transition to permanent or transient nonperiodic motions, complement by the fractal or regular shape of the basin of attraction. Numerical simulations based on the basins of attraction, bifurcation diagrams, Poincaré sections, Lyapunov exponents, and phase portraits are used to show how stationary dissipative chaos occurs in the system. Our attention is focussed on the effects of the asymmetric potential term and the driven frequency. It is shown that the threshold amplitude ∣γ(c)∣ of the excitation decreases for small values of the driven frequency ω and increases for large values of ω. This threshold value decreases with the asymmetric parameter α and becomes constant for sufficiently large values of α. γ(c) has its maximum value for asymmetric load in comparison with the symmetric load. Finally, we apply the Melnikov theorem to the controlled system to explore the gain control parameter dependencies.

  16. The effects of individualized theta burst stimulation on the excitability of the human motor system.

    Science.gov (United States)

    Brownjohn, Philip W; Reynolds, John N J; Matheson, Natalie; Fox, Jonathan; Shemmell, Jonathan B H

    2014-01-01

    Theta burst stimulation (TBS) is a pattern of repetitive transcranial magnetic stimulation that has been demonstrated to facilitate or suppress human corticospinal excitability when applied intermittently (iTBS) or continuously (cTBS), respectively. While the fundamental pattern of TBS, consisting of bursts of 50 Hz stimulation repeated at a 5 Hz theta frequency, induces synaptic plasticity in animals and in vitro preparations, the relationship between TBS and underlying cortical firing patterns in the human cortex has not been elucidated. To compare the effects of 5 Hz iTBS and cTBS with individualized TBS paradigms on corticospinal excitability and intracortical inhibitory circuits. Participants received standard and individualized iTBS (iTBS 5; iTBS I) and cTBS (cTBS 5; cTBS I), and sham TBS, in a randomised design. For individualized paradigms, the 5 Hz theta component of the TBS pattern was replaced by the dominant cortical frequency (4-16 Hz; upper frequency restricted by technical limitations) for each individual. We report that iTBS 5 and iTBS I both significantly facilitated motor evoked potential (MEP) amplitude to a similar extent. Unexpectedly, cTBS 5 and cTBS I failed to suppress MEP amplitude. None of the active TBS protocols had any significant effects on intracortical circuits when compared with sham TBS. In summary, iTBS facilitated MEP amplitude, an effect that was not improved by individualizing the theta component of the TBS pattern, while cTBS, a reportedly inhibitory paradigm, produced no change, or facilitation of MEP amplitude in our hands. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Sampling system for pulsed signals. Study of the radioactive lifetimes of excited 32P1/2 and 32P3/2 states of Na, excited by a tunable dye laser

    International Nuclear Information System (INIS)

    Thomas, P.; Campos, J.

    1979-01-01

    A system for sampling and averaging repetitive signals in the order of nanoseconds is discussed. The system uses as storage memory a multichannel analyzer operating in multi scaling mode. This instrument is employed for the measurement of atomic level lifetimes using a dye laser to excite the atoms and is applied to the study of lifetimes of the 3 2 P1/2 and 3 2 P3/2 states of sodium. (Author) 32 refs

  18. Comparative Research on Characteristics of the Isolation Systems with Dry Friction Damping and with Vicious Damping under Base Excitation

    Science.gov (United States)

    Hou, Junfang; jing, Min; Zhang, Weihua; Lu, Yahui; He, Haiwen

    2017-12-01

    As for the isolation problem of electronic equipments on vehicle, the vibration response characteristics of dry friction damping isolation system under base displacement excitation was analyzed in theory by harmonic balance method, and the displacement response was compared between the isolation systems with dry friction damping and vicious damping separately. The results show that the isolation system with small dry friction damping can’t meet the demands of displacement reduction close to the natural frequency, and it can realize full-frequency vibration isolation by improving dry friction damping when the lock frequency passes beyond the resonance frequency band. The results imply that the damping mechanism of dry friction isolator can’t be described only by dry friction damping, and the composite damping with dry friction and vicious damping is more appropriate.

  19. Lie algebraic approach to valence bond theory of π-electron systems: a preliminary study of excited states

    Science.gov (United States)

    Paldus, J.; Li, X.

    1992-10-01

    Following a brief outline of various developments and exploitations of the unitary group approach (UGA), and its extension referred to as Clifford algebra UGA (CAUGA), in molecular electronic structure calculations, we present a summary of a recently introduced implementation of CAUGA for the valence bond (VB) method based on the Pariser-Parr-Pople (PPP)-type Hamiltonian. The existing applications of this PPP-VB approach have been limited to groundstates of various π-electron systems or, at any rate, to the lowest states of a given multiplicity. In this paper the method is applied to the low-lying excited states of several archetypal models, namely cyclobutadiene and benzene, representing antiaromatic and aromatic systems, hexatriene, representing linear polyenic systems and, finally, naphthalene, representing polyacenes.

  20. Development and performance test of picosecond pulse x-ray excited streak camera system for scintillator characterization

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Yoshikawa, Akira

    2010-01-01

    To observe time and wavelength-resolved scintillation events, picosecond pulse X-ray excited streak camera system is developed. The wavelength range spreads from vacuum ultraviolet (VUV) to near infrared region (110-900 nm) and the instrumental response function is around 80 ps. This work describes the principle of the newly developed instrument and the first performance test using BaF 2 single crystal scintillator. Core valence luminescence of BaF 2 peaking around 190 and 220 nm is clearly detected by our system, and the decay time turned out to be of 0.7 ns. These results are consistent with literature and confirm that our system properly works. (author)

  1. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties

    International Nuclear Information System (INIS)

    Stránský, Pavel; Macek, Michal; Cejnar, Pavel

    2014-01-01

    Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies

  2. Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)

    2015-05-15

    This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.

  3. Excited fermions

    International Nuclear Information System (INIS)

    Boudjema, F.; Djouadi, A.; Kneur, J.L.

    1992-01-01

    The production of excited fermions with mass above 100 GeV is considered. f→Vf (1) decay widths are calculated where V=γ, Z or W. Excited fermion pair production in e + e - annihilation and in γγ collisions, and single production in e + e - annihilation, eγ and γγ collisions is also discussed. Cross sections are calculated for all these cases. The discovery potential of the NLC at 500 GeV is compared with that of other colliders. (K.A.) 15 refs., 5 figs., 2 tabs

  4. Radio frequency plasma excitation

    International Nuclear Information System (INIS)

    Burden, M.St.J.; Cross, K.B.

    1979-01-01

    An investigation into the use of rf sputtering for ion cleaning of insulating substrates before ion plating is reported. Initial experiments consisted of sputtering metals with rf power followed by the deposition of copper onto glass slides using rf plasma excitation and biasing supply. It was found that good quality films were obtained by rf ion plating onto plastics with excellent adhesion over a wide operating pressure range. A block schematic of the rf plasma excitation system is shown. (UK)

  5. Feasibility for detection of autofluorescent signatures in rat organs using a novel excitation-scanning hyperspectral imaging system

    Science.gov (United States)

    Favreau, Peter F.; Deal, Joshua A.; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.

    2016-04-01

    The natural fluorescence (autofluorescence) of tissues has been noted as a biomarker for cancer for several decades. Autofluorescence contrast between tumors and healthy tissues has been of significant interest in endoscopy, leading to development of autofluorescence endoscopes capable of visualizing 2-3 fluorescence emission wavelengths to achieve maximal contrast. However, tumor detection with autofluorescence endoscopes is hindered by low fluorescence signal and limited quantitative information, resulting in prolonged endoscopic procedures, prohibitive acquisition times, and reduced specificity of detection. Our lab has designed a novel excitation-scanning hyperspectral imaging system with high fluorescence signal detection, low acquisition time, and enhanced spectral discrimination. In this study, we surveyed a comprehensive set of excised tissues to assess the feasibility of detecting tissue-specific pathologies using excitation-scanning. Fresh, untreated tissue specimens were imaged from 360 to 550 nm on an inverted fluorescence microscope equipped with a set of thin-film tunable filters (Semrock, A Unit of IDEX). Images were subdivided into training and test sets. Automated endmember extraction (ENVI 5.1, Exelis) with PCA identified endmembers within training images of autofluorescence. A spectral library was created from 9 endmembers. The library was used for identification of endmembers in test images. Our results suggest (1) spectral differentiation of multiple tissue types is possible using excitation scanning; (2) shared spectra between tissue types; and (3) the ability to identify unique morphological features in disparate tissues from shared autofluorescent components. Future work will focus on isolating specific molecular signatures present in tissue spectra, and elucidating the contribution of these signatures in pathologies.

  6. Rectangular Ring Antenna Excited by Circular Disc Monopole for WiMAX System

    Directory of Open Access Journals (Sweden)

    Souphanna Vongsack

    2014-01-01

    Full Text Available This research presents a rectangular ring antenna excited by a circular disc monopole (CDM mounted in front of a square reflector. The proposed antenna is designed to cover a frequency range of 2.300–5.825 GHz and thereby is suitable for WiMAX applications. Multiple parametric studies were carried out using the CST Microwave Studio simulation program. A prototype antenna was fabricated and experimented. The measurements were taken and compared with the simulation results, which indicates good agreement between both results. The prototype antenna produces an impedance bandwidth (|S11| < −10 dB that covers the WiMAX frequency range and a constant unidirectional radiation pattern (θ=0° and ∅=90°. The minimum and maximum gains are 3.7 and 8.7 dBi, respectively. The proposed antenna is of compact size and has good unidirectional radiation performance. Thus, it is very suitable for a multitude of WiMAX applications.

  7. System characterization of neuronal excitability in the hippocampus and its relevance to observed dynamics of spontaneous seizure-like transitions

    Science.gov (United States)

    Zalay, Osbert C.; Serletis, Demitre; Carlen, Peter L.; Bardakjian, Berj L.

    2010-06-01

    Most forms of epilepsy are marked by seizure episodes that arise spontaneously. The low-magnesium/high-potassium (low-Mg2+/high-K+) experimental model of epilepsy is an acute model that produces spontaneous, recurring seizure-like events (SLEs). To elucidate the nature of spontaneous seizure transitions and their relationship to neuronal excitability, whole-cell recordings from the intact hippocampus were undertaken in vitro, and the response of hippocampal CA3 neurons to Gaussian white noise injection was obtained before and after treatment with various concentrations of low-Mg2+/high-K+ solution. A second-order Volterra kernel model was estimated for each of the input-output response pairs. The spectral energy of the responses was also computed, providing a quantitative measure of neuronal excitability. Changes in duration and amplitude of the first-order kernel correlated positively with the spectral energy increase following treatment with low-Mg2+/high-K+ solution, suggesting that variations in neuronal excitability are coded by the system kernels, in part by differences to the profile of the first-order kernel. In particular, kernel duration was more sensitive than amplitude to changes in spectral energy, and correlated more strongly with kernel area. An oscillator network model of the hippocampal CA3 was constructed to investigate the relationship of kernel duration to network excitability, and the model was able to generate spontaneous, recurrent SLEs by increasing the duration of a mode function analogous to the first-order kernel. Results from the model indicated that disruption to the dynamic balance of feedback was responsible for seizure-like transitions and the observed intermittency of SLEs. A physiological candidate for feedback imbalance consistent with the network model is the destabilizing interaction of extracellular potassium and paroxysmal neuronal activation. Altogether, these results (1) validate a mathematical model for epileptiform

  8. Approximate Forward Difference Equations for the Lower Order Non-Stationary Statistics of Geometrically Non-Linear Systems subject to Random Excitation

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    Geometrically non-linear multi-degree-of-freedom (MDOF) systems subject to random excitation are considered. New semi-analytical approximate forward difference equations for the lower order non-stationary statistical moments of the response are derived from the stochastic differential equations...... of motion, and, the accuracy of these equations is numerically investigated. For stationary excitations, the proposed method computes the stationary statistical moments of the response from the solution of non-linear algebraic equations....

  9. Suppression of Squeal Noise Excited by the Pressure Pulsation from the Flapper-Nozzle Valve inside a Hydraulic Energy System

    Directory of Open Access Journals (Sweden)

    Meng Chen

    2018-04-01

    Full Text Available Squeal noise often occurs in a two-stage electrohydraulic servo-valve, which is an unfavorable issue of modern hydraulic energy systems. The root causes of such noise from the servo-valve are still unclear. The objective of this paper is to explore the noise mechanism in a servo-valve excited by the pressure pulsations from the hydraulic energy system perspective. The suppressing capability of squeal noise energy is investigated by changing the pressure pulsation frequency and natural frequency of the flapper-armature assembly. The frequencies of the pressure pulsations are adjusted by setting different speeds of the hydraulic pump varying from 10,400–14,400 rpm, and two flapper-armature assemblies with different armature lengths are used in the tested hydraulic energy system. The first eight vibration mode shapes and natural frequencies of the flapper-armature assembly are obtained by numerical modal analysis using two different armature lengths. The characteristics of pressure pulsations at the pump outlet and in the chamber of the flapper-nozzle valve, armature vibration and noise are tested and compared with the natural frequencies of the flapper-armature assembly. The results reveal that the flapper-armature assembly vibrates and makes the noise with the same frequencies as the pressure pulsations inside the hydraulic energy system. Resonance appears when the frequency of the pressure pulsations coincides with the natural frequency of the flapper-armature assembly. Therefore, it can be concluded that the pressure pulsation energy from the power supply may excite the vibration of the flapper-armature assembly, which may consequently cause the squeal noise inside the servo-valve. It is verified by the numerical simulations and experiments that setting the pressure pulsation frequencies different from the natural frequencies of the flapper-armature assembly can suppress the resonance and squeal noise.

  10. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    Science.gov (United States)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-02-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved by 39% compared to that of the Xenon flash lamp based unit, due to the LEDs narrower emission spectrum and longer pulse width. Key parameters of the LED system are discussed to further optimize the signal-to-noise ratio and signal-to-background, and hence the sensitivity of the instrument.

  11. Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation

    International Nuclear Information System (INIS)

    Praveen Kumar; Jangid, R.S.; Reddy, G.R.

    2013-01-01

    Highlights: ► Piping system with semi-active variable stiffness damper is investigated under different seismic excitations. ► Switching control law and modified switching control law are adopted. ► There exist an optimum parameters of the SAVSD. ► Substantial reduction of the seismic response of piping system with SAVSD is observed. ► Good amount of energy dissipation is observed. -- Abstract: Seismic loads on piping system due to earthquakes can cause excessive vibrations, which can lead to serious instability resulting in damage or complete failure. In this paper, semi-active variable stiffness dampers (SAVSDs) have been studied to mitigate seismic response and vibration control of piping system used in the process industries, fossil and fissile fuel power plant. The SAVSD changes its stiffness depending upon the piping response and accordingly adds the control forces in the piping system. A study is conducted on the performance of SAVSD due to variation in device stiffness ratios in the switching control law and modified switching control law, which plays an important role in the present control algorithm of the damper. The effectiveness of the SAVSD in terms of reduction in the responses, namely, displacements, accelerations and base shear of the piping system is investigated by comparing uncontrolled responses under four different artificial earthquake motions with increasing amplitudes. The analytical results demonstrate that the SAVSDs under particular optimum parameters are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping systems

  12. Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, E-mail: praveen@barc.gov.in [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jangid, R.S. [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Reddy, G.R. [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-05-15

    Highlights: ► Piping system with semi-active variable stiffness damper is investigated under different seismic excitations. ► Switching control law and modified switching control law are adopted. ► There exist an optimum parameters of the SAVSD. ► Substantial reduction of the seismic response of piping system with SAVSD is observed. ► Good amount of energy dissipation is observed. -- Abstract: Seismic loads on piping system due to earthquakes can cause excessive vibrations, which can lead to serious instability resulting in damage or complete failure. In this paper, semi-active variable stiffness dampers (SAVSDs) have been studied to mitigate seismic response and vibration control of piping system used in the process industries, fossil and fissile fuel power plant. The SAVSD changes its stiffness depending upon the piping response and accordingly adds the control forces in the piping system. A study is conducted on the performance of SAVSD due to variation in device stiffness ratios in the switching control law and modified switching control law, which plays an important role in the present control algorithm of the damper. The effectiveness of the SAVSD in terms of reduction in the responses, namely, displacements, accelerations and base shear of the piping system is investigated by comparing uncontrolled responses under four different artificial earthquake motions with increasing amplitudes. The analytical results demonstrate that the SAVSDs under particular optimum parameters are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping systems.

  13. Response of HDR-VKL piping system to seismic test excitations: Comparison of analytical predictions and test measurements

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1989-01-01

    As part of the earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, simulated seismic tests (SHAM) were performed during April--May 1988 on the VKL (Versuchskreislauf) piping system. The purpose of these experiments was to study the behavior of piping subjected to a range of seismic excitation levels including those that exceed design levels manifold and that might induce failure of pipe supports or plasticity in the pipe runs, and to establish seismic margins for piping and pipe supports. Data obtained in the tests are also used to validate analysis methods. Detailed reports on the SHAM experiments are given elsewhere. The objective of this document is to evaluate a subsystem analysis module of the SMACS code. This module is a linear finite-element based program capable of calculating the response of nuclear power plant subsystems subjected to independent multiple-acceleration input excitation. The evaluation is based on a comparison of computational results of simulation of SHAM tests with corresponding test measurements

  14. Study on excitation and fluorescence spectrums of Japanese citruses to construct machine vision systems for acquiring fluorescent images

    Science.gov (United States)

    Momin, Md. Abdul; Kondo, Naoshi; Kuramoto, Makoto; Ogawa, Yuichi; Shigi, Tomoo

    2011-06-01

    Research was conducted to acquire knowledge of the ultraviolet and visible spectrums from 300 -800 nm of some common varieties of Japanese citrus, to investigate the best wave-lengths for fluorescence excitation and the resulting fluorescence wave-lengths and to provide a scientific background for the best quality fluorescent imaging technique for detecting surface defects of citrus. A Hitachi U-4000 PC-based microprocessor controlled spectrophotometer was used to measure the absorption spectrum and a Hitachi F-4500 spectrophotometer was used for the fluorescence and excitation spectrums. We analyzed the spectrums and the selected varieties of citrus were categorized into four groups of known fluorescence level, namely strong, medium, weak and no fluorescence.The level of fluorescence of each variety was also examined by using machine vision system. We found that around 340-380 nm LEDs or UV lamps are appropriate as lighting devices for acquiring the best quality fluorescent image of the citrus varieties to examine their fluorescence intensity. Therefore an image acquisition device was constructed with three different lighting panels with UV LED at peak 365 nm, Blacklight blue lamps (BLB) peak at 350 nm and UV-B lamps at peak 306 nm. The results from fluorescent images also revealed that the findings of the measured spectrums worked properly and can be used for practical applications such as for detecting rotten, injured or damaged parts of a wide variety of citrus.

  15. Synchronization of Two Non-Identical Coupled Exciters in a Non-Resonant Vibrating System of Linear Motion. Part I: Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Chunyu Zhao

    2009-01-01

    Full Text Available In this paper an analytical approach is proposed to study the feature of frequency capture of two non-identical coupled exciters in a non-resonant vibrating system. The electromagnetic torque of an induction motor in the quasi-steady-state operation is derived. With the introduction of two perturbation small parameters to average angular velocity of two exciters and their phase difference, we deduce the Equation of Frequency Capture by averaging two motion equations of two exciters over their average period. It converts the synchronization problem of two exciters into that of existence and stability of zero solution for the Equation of Frequency Capture. The conditions of implementing frequency capture and that of stabilizing synchronous operation of two motors have been derived. The concept of torque of frequency capture is proposed to physically explain the peculiarity of self-synchronization of the two exciters. An interesting conclusion is reached that the moments of inertia of the two exciters in the Equation of Frequency Capture reduce and there is a coupling moment of inertia between the two exciters. The reduction of moments of inertia and the coupling moment of inertia have an effect on the stability of synchronous operation.

  16. Dynamic stability of a vertically excited non-linear continuous system

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Fischer, Cyril

    2015-01-01

    Roč. 155, July (2015), s. 106-114 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : non-linear systems * auto-parametric systems * semi-trivial solution * dynamic stability * system recovery * post- critical response Subject RIV: JM - Building Engineering Impact factor: 2.425, year: 2015 http://www.sciencedirect.com/science/article/pii/S0045794915000024

  17. Inelastic response of piping systems subjected to in-structure seismic excitation

    International Nuclear Information System (INIS)

    Campbell, R.D.; Kennedy, R.P.; Trasher, R.D.

    1983-01-01

    A study was undertaken to examine the inelastic response of single-degree-of-freedom systems and a simple piping system to varying levels of earthquake loading with superimposed static loading. The objective was to examine the conservatism inherent in ASME code rules for the design of piping systems by quantifying the ratio of the dynamic margin to the static margin for various degrees of inelastic strain, system frequencies and instructure time histories. Previous studies of elastic, perfectly-plastic and bilinear strain-hardening, single-degree-of-freedom models subjected to earthquake ground motion records have demonstrated the conservatism in current design methodology and design codes for earthquake resistant design of structures. This study compares response of single degree of freedom and simple piping system subjected to typical in-structure earthquake time histories and focuses on the excess margin inherent in current design criteria for piping systems. It is shown that the factor of safety against failure is variable and is dependent upon the frequency content of the loading, the dynamic characteristics of the piping system and the allowable system ductility. A recommendation is made for revision to current criteria on the basis of maintaining a constant factor of safety for dynamic and static loading

  18. Dynamic Response of Non-Linear Inelsatic Systems to Poisson-Driven Stochastic Excitations

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Iwankiewicz, R.

    of an equivalent linearization techni que and substituting the non-analytical non-linearity in the original system by the cubic form in the pertinent state variables. The response moments are evaluated for the equivalent systems with the help of a generalized Ito's differential rule. The analytical results...

  19. ANALYSIS OF VIBRATORY PROTECTION SYSTEM VIBRATION DURING HARMONIC AND POLYHARMONIC EXCITATIONS

    Directory of Open Access Journals (Sweden)

    T. N. Mikulik

    2011-01-01

    Full Text Available The paper considers a mathematical model of local «driver-seat» system and an algorithm for vibratory loading formation at external actions. Results of the investigations on the system vibration according to minimum vibration acceleration depending on transfer force factor acting on the seat and a vibration isolation factor are presented in the paper.

  20. Excited baryons

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested

  1. Excited baryons

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  2. Systems and methods for selective detection and imaging in coherent Raman microscopy by spectral excitation shaping

    Science.gov (United States)

    Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei

    2016-03-15

    A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.

  3. Reparameterization invariance of NRQED self-energy corrections and improved theory for excited D states in hydrogenlike systems

    International Nuclear Information System (INIS)

    Wundt, Benedikt J.; Jentschura, Ulrich D.

    2008-01-01

    Canonically, the quantum electrodynamic radiative corrections in bound systems have been evaluated in photon energy regularization, i.e., using a noncovariant overlapping parameter that separates the high-energy relativistic scales of the virtual quanta from the nonrelativistic domain. Here, we calculate the higher-order corrections to the one-photon self-energy calculation with three different overlapping parameters (photon energy, photon mass and dimensional regularization) and demonstrate the reparameterization invariance of nonrelativistic quantum electrodynamics (NRQED) using this particular example. We also present new techniques for the calculation of the low-energy part of this correction, which lead to results for the Lamb shift of highly excited states that are important for high-precision spectroscopy

  4. Reparameterization invariance of NRQED self-energy corrections and improved theory for excited D states in hydrogenlike systems

    Energy Technology Data Exchange (ETDEWEB)

    Wundt, Benedikt J. [Max-Planck-Institut fuer Kernphysik, Postfach 103980, 69029 Heidelberg (Germany); Jentschura, Ulrich D. [Max-Planck-Institut fuer Kernphysik, Postfach 103980, 69029 Heidelberg (Germany); Institut fuer Theoretische Physik, Philosophenweg 16, 69120 Heidelberg (Germany)], E-mail: ulrich.jentschura@mpi-hd.mpg.de

    2008-01-24

    Canonically, the quantum electrodynamic radiative corrections in bound systems have been evaluated in photon energy regularization, i.e., using a noncovariant overlapping parameter that separates the high-energy relativistic scales of the virtual quanta from the nonrelativistic domain. Here, we calculate the higher-order corrections to the one-photon self-energy calculation with three different overlapping parameters (photon energy, photon mass and dimensional regularization) and demonstrate the reparameterization invariance of nonrelativistic quantum electrodynamics (NRQED) using this particular example. We also present new techniques for the calculation of the low-energy part of this correction, which lead to results for the Lamb shift of highly excited states that are important for high-precision spectroscopy.

  5. Investigation of incomplete fusion dynamics by measurement of excitation functions in the 20Ne + 59Co system

    International Nuclear Information System (INIS)

    Singh, D.; Linda, Sneha Bharti; Giri, Pankaj K.; Singh, Smita Shree; Kumar, Harish; Afzal Ansari, M.; Ali, Rahbar; Rashid, M.H.; Guin, R.; Das, S.K.

    2015-01-01

    In the present work, an attempt has been made to address some important aspects of CF and ICF dynamics for the system 20 Ne + 59 Co in the projectile energy range ≈ 62–150 MeV by using recoil catcher activation technique with the following off-line γ-ray spectroscopy. Excitation Functions (EFs) for the following reactions: 59 Co(Ne, α p4n) 70 Ga, 59 Co(Ne, 3αp3n) 63 Zn, 59 Co (Ne, 3αp4n) 62 Zn and 59 Co (Ne, 4α3n) 60 Cu have been measured. No precursor decay contribution has been observed for these measured evaporation residues. The measured values of total fusion cross-sections of the above evaporation residues have been compared with the theoretical total complete fusion cross sections calculated by code PACE-2, which do not take into account ICF contribution

  6. THE EXCITED LOADS OF ATTRACTION IN A SYMMETRICAL INDUCTOR SYSTEM FOR THE MAGNETIC PULSE REMOVING OF THE BODY CAR

    Directory of Open Access Journals (Sweden)

    A. V. Gnatov

    2015-04-01

    Full Text Available Recently, repair and recovery of vehicle body operations become more and more popular. A special place here is taken by equipment that provides performance of given repair operations. The most interesting are methods for recovery of car body panels that allow the straightening without disassembling of car body panels and damaging of existing protective coating. Now, there are several technologies for repair and recovery of car body panels without their disassembly and dismantling. The most perspective is magnetic-pulse technology of external noncontact straightening. Results. The calculation of excited loads attractions in a symmetrical inductor system in the universal tool of magnetic-pulse straightening is provided. According to the obtained analytical dependence of the numerical evaluation of volumetric construction diagrams, phase and amplitude of the radial dependence of the spatial distribution of the excited efforts of attraction is obtained. The influence of the magnetic properties of the blank screen and manifested in the appearance of powerful magnetic attraction forces is determined. Originality. A new trend of research of magnetic-pulse working of thin-walled metals has been formulated and received further development, which allows to create not only new equipment, but principally new technological processes of external non-contact repair and recovery of vehicle body panels. Scientific basis of electrodynamic and magnetic attraction of thin-walled sheet metals with using the energy of high-power pulsed fields was created for the first time and proved theoretically and experimentally. Scientific and technical solutions in design of effective tools based on single-turn inductor systems of cylindrical geometry for straightening and recovery of car body panels were formulated and proved theoretically, as well as experimentally. Practical value. Using the results of the calculations we can create effective tools for an external magnetic

  7. Comparative performance of passive devices for piping system under seismic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: pra_veen74@rediffmail.com [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Jangid, R.S. [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Reddy, G.R. [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India)

    2016-03-15

    Highlights: • Correlated the analytical results obtained from the proposed analytical procedures with experimental results in the case of XPD. • Substantial reduction of the seismic response of piping system with passive devices is observed. • Significant increase in the modal damping of the piping system is noted. • There exist an optimum parameters of the passive devices. • Good amount of energy dissipation is observed by using passive devices. - Abstract: Among several passive control devices, X-plate damper, viscous damper, visco-elastic damper, tuned mass damper and multiple tuned mass dampers are popular and used to mitigate the seismic response in the 3-D piping system. In the present paper detailed studies are made to see the effectiveness of the dampers when used in 3-D piping system subjected to artificial earthquake with increasing amplitudes. The analytical results obtained using Wen's model are compared with the corresponding experimental results available which indicated a good match with the proposed analytical procedure for the X-plate dampers. It is observed that there is significant reduction in the seismic response of interest like relative displacement, acceleration and the support reaction of the piping system with passive devices. In general, the passive devices under particular optimum parameters such as stiffness and damping are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping system.

  8. A truncated spherical shell model for nuclear collective excitations: Applications to the odd-mass systems, neutron-proton systems, and other topics

    International Nuclear Information System (INIS)

    Wu, Hua.

    1989-01-01

    One of the most elusive quantum system in nature is the nucleus, which is a strongly interacting many body system. In the hadronic (a la neutrons and protons) phase, the primary concern of this thesis, the nucleus' single particle excitations are intertwined with their various collective excitations. Although the underpinning of the nucleus is the spherical shell model, it is rendered powerless without a severe, but intelligent truncation of the infinite Hilbert space. The recently proposed Fermion Dynamical Symmetry Model (FDSM) is precisely such a truncation scheme and in which a symmetry-dictated truncation scheme is introduced in nuclear physics for the first time. In this thesis, extensions and explorations of the FDSM are made to specifically study the odd mass (where the most intricate mixing of the single particle and the collective excitations are observed) and the neutron-proton systems. In particular, the author finds that the previously successful phenomenological particle-rotor-model of the Copenhagen school can now be well understood microscopically via the FDSM. Furthermore, the well known Coriolis attenuation and variable moment of inertia effects are naturally understood from the model as well. A computer code FDUO was written by one of us to study, for the first time, the numerical implications of the FDSM. Several collective modes were found even when the system does not admit a group chain description. In addition, the code is most suitable to study the connection between level statistical behavior (a at Gaussian Orthogonal Ensemble) and dynamical symmetry. It is found that there exist critical region of the interaction parameter space were the system behaves chaotically. This information is certainly crucial to understanding quantum chaotic behavior

  9. Experimental system to measure excitation cross-sections by electron impact. Measurements for ArI and ArII

    International Nuclear Information System (INIS)

    Blanco, F.; Sanchez, J.A.; Aguilera, J.A.; Campos, J.

    1989-01-01

    An experimental set-up to measure excitation cross-section of atomic and molecular levels by electron impact based on the optical method is reported. We also present some measurements on the excitation cross-section for ArI 5p'(1/2)0 level, and for simultaneous ionization and excitation of Ar leading to ArII levels belonging to the 3p 4 4p and 3p 4 4d configurations. (Author)

  10. Main tasks of studying strong regulation of excitation of complex electrical system generators

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, I.A.; Yekimova, M.M.

    1982-01-01

    A survey is made of the current state of studies of the damping properties of complex electricity systems. The calculation programs of stability are based on frequency methods using the method of D-division. Now, when ARV of strong effect dominates at the SG, the task of coordinating their adjustments develops. Consequently, the following questions are discussed: study of the properties of quality functional with several points of regulation in the circuits of different structure; development of the efficient procedures for coordinating the ARV adjustment of the related energy systems; and creation of resources for solving these tasks. Results are presented of coordinating the ARV adjustments of the generators of the 3-machine electricity system. As an example, nonlinear relationships are shown between the obtained degree of stability and the coefficient of stabilization.

  11. On the inherent self-excited macroscopic randomness of chaotic three-body system

    OpenAIRE

    Liao, Shijun; Li, Xiaoming

    2014-01-01

    What is the origin of macroscopic randomness (uncertainty)? This is one of the most fundamental open questions for human being. In this paper, 10000 samples of reliable (convergent), multiple-scale (from 1.0E-60 to 100) numerical simulations of a chaotic three-body system indicate that, without any external disturbance, the microscopic inherent uncertainty (in the level of 1.0E-60) due to physical fluctuation of initial positions of the three-body system enlarges exponentially into macroscopi...

  12. Localized excitations in discrete nonlinear Schrodinger systems: Effects of nonlocal dispersive interactions and noise

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Christiansen, Peter Leth; Johansson, Magnus

    1998-01-01

    A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are exp...

  13. Persistent breather excitations in an ac-driven sine-Gordon system with loss

    International Nuclear Information System (INIS)

    Lomdahl, P.S.; Samuelsen, M.R.

    1986-01-01

    In a sine-Gordon system with loss and applied ac driver, a breather can be maintained as a persistent entrained oscillation if the driver is strong enough. The threshold field is determined by a perturbation method and compared to numerical experiments. Excellent agreement is found

  14. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek

    2016-01-01

    of the fibers. The experimental findings are complemented via finite-difference time-domain (FDTD) modeling. The presented results lead to a better understanding and control of hybrid-mode systems, which are crucial elements in future low-loss energy transfer devices. © (2016) COPYRIGHT Society of Photo...

  15. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    Science.gov (United States)

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  16. Stability, diffusion and interactions of nonlinear excitations in a many body system

    Science.gov (United States)

    Coste, Christophe; Jean, Michel Saint; Dessup, Tommy

    2017-04-01

    When repelling particles are confined in a quasi-one-dimensional trap by a transverse potential, a configurational phase transition happens. All particles are aligned along the trap axis at large confinement, but below a critical transverse confinement they adopt a staggered row configuration (zigzag phase). This zigzag transition is a subcritical pitchfork bifurcation in extended systems and in systems with cyclic boundary conditions in the longitudinal direction. Among many evidences, phase coexistence is exhibited by localized nonlinear patterns made of a zigzag phase embedded in otherwise aligned particles. We give the normal form at the bifurcation and we show that these patterns can be described as solitary wave envelopes that we call bubbles. They are stable in a large temperature range and can diffuse as quasi-particles, with a diffusion coefficient that may be deduced from the normal form. The potential energy of a bubble is found to be lower than that of the homogeneous bifurcated phase, which explains their stability. We observe also metastable states, that are pairs of solitary wave envelopes which spontaneously evolve toward a stable single bubble. We evidence a strong effect of the discreteness of the underlying particles system and introduce the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive so that the bubbles come closer and eventually merge as a single bubble. In contrast, the bubbles interaction is found to be repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: it is attractive for NF-systems, repulsive for F-systems, and decreases exponentially with the bubbles distance.

  17. Radioisotopic-excited x-ray fluorescent system for PPM measurement of toxic heavy metals

    International Nuclear Information System (INIS)

    Leddicotte, G.W.; Tolea, F.; Hansen, J.S.

    1974-01-01

    In agricultural research there is a continual awareness of the need to determine the role trace elements have as micronutrients in soil-plant systems. Similarly, these agronomic needs have a strong relationship to the concern other life sciences researchers have about the roles and effects of toxic trace elements on the natural environment and the physiological well-being of man and animals. However, in order for these interest areas to carry out more effective study efforts, more practical and precise analytical methodology and devices need to be developed. This report describes a research effort to develop an analytical system for micronutient as well as toxic elements based on x-ray fluorescence

  18. An adiabatic spectroscopic investigation of the CsRb system in ground and numerous excited states

    Science.gov (United States)

    Souissi, Hanen; Jellali, Soulef; Maha, Chaieb; Habli, Héla; Oujia, Brahim; Gadéa, Florent Xavier

    2017-10-01

    Via ab-initio approximations, we investigate the electronic and structural features of the CsRb molecule. Adiabatic potential energy curves of 261,3Σ+, 181,3Π and 61,3Δ electronic states with their derived spectroscopic constants as well as vibrational levels spacing have been carried out and well explained. Our approach is founded on an Effective Core Potential (ECP) describing the valence electrons of the system. Using a large Gaussian basis set, the full valence Configuration Interaction can be applied easily on the two-effective valence electrons of the CsRb system. Furthermore, a detailed analysis of the electric dipolar properties has been made through the investigation of both permanent and transition dipole moments (PDM and TDM). It is significant that the ionic character connected with electron transfer that is linked to Cs+ Rb- state has been clearly illustrated in the adiabatic permanent dipole moment.

  19. Persistence and failure of mean-field approximations adapted to a class of systems of delay-coupled excitable units

    Science.gov (United States)

    Franović, Igor; Todorović, Kristina; Vasović, Nebojša; Burić, Nikola

    2014-02-01

    We consider the approximations behind the typical mean-field model derived for a class of systems made up of type II excitable units influenced by noise and coupling delays. The formulation of the two approximations, referred to as the Gaussian and the quasi-independence approximation, as well as the fashion in which their validity is verified, are adapted to reflect the essential properties of the underlying system. It is demonstrated that the failure of the mean-field model associated with the breakdown of the quasi-independence approximation can be predicted by the noise-induced bistability in the dynamics of the mean-field system. As for the Gaussian approximation, its violation is related to the increase of noise intensity, but the actual condition for failure can be cast in qualitative, rather than quantitative terms. We also discuss how the fulfillment of the mean-field approximations affects the statistics of the first return times for the local and global variables, further exploring the link between the fulfillment of the quasi-independence approximation and certain forms of synchronization between the individual units.

  20. Spectroscopic and electric dipole properties of Sr+Ar and SrAr systems including high excited states

    Science.gov (United States)

    Hamdi, Rafika; Abdessalem, Kawther; Dardouri, Riadh; Al-Ghamdi, Attieh A.; Oujia, Brahim; Gadéa, Florent Xavier

    2018-01-01

    The spectroscopic properties of the fundamental and several excited states of Sr+Ar and SrAr, Van der Waals systems are investigated by employing an ab initio method in a pseudo-potential approach. The potential energy curves and the spectroscopic parameters are displayed for the 1-10 2Σ+, 1-6 2Π and 1-3 2Δ electronic states of the Sr+Ar molecule and for the 1-6 1Σ+, 1-4 3Σ+, 1-3 1,3Π and 1-3 1,3Δ states of the neutral molecule SrAr. In addition, from these curves, the vibrational levels and their energy spacing are deduced for Σ+, Π and Δ symmetries. The spectra of the permanent and transition dipole moments are studied for the 1,3Σ+ states of SrAr, which are considered to be two-electron systems and 2Σ+ states of the single electron Sr+Ar ion. The spectroscopic parameters obtained for each molecular system are compared with previous theoretical and experimental works. A significant correlation revealed the accuracy of our results.

  1. Response of a thermal barrier system to acoustic excitation in a gas turbine nuclear reactor

    International Nuclear Information System (INIS)

    Betts, W.S. Jr.; Blevins, R.D.

    1980-11-01

    A gas turbine located within a High-Temperature Gas-Cooled Reactor (HTGR) induces high acoustic sound pressure levels into the primary coolant (helium). This acoustic loading induces high cycle fatigue stresses which may control the design of the thermal barrier system. This study examines the dynamic response of a thermal barrier configuration consisting of a fibrous insulation compressed against the reactor vessel by a coverplate which is held in position by a central attachment fixture. The results of dynamic vibration analyses indicate the effect of the plate size and curvature and the attachment size on the response of the thermal barrier

  2. Localized excitations in a nonlinearly coupled magnetic drift wave-zonal flow system

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2010-01-01

    We consider the amplitude modulation of the magnetic drift wave (MDW) by zonal flows (ZFs) in a nonuniform magnetoplasma. For this purpose, we use the two-fluid model to derive a nonlinear Schroedinger equation for the amplitude modulated MDWs in the presence of the ZF potential, and an evolution equation for the ZF potential which is reinforced by the nonlinear Lorentz force of the MDWs. Our nonlinearly coupled MDW-ZFs system of equations admits stationary solutions in the form of a localized MDW envelope and a shock-like ZF potential profile.

  3. A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn; Tao, Gang, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, 200 XiaoLingwei Street, Nanjing 210094 (China)

    2014-09-01

    The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.

  4. A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation.

    Science.gov (United States)

    Huang, Yong; Tao, Gang

    2014-09-01

    The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.

  5. Seismic response analysis of a piping system subjected to multiple support excitations in a base isolated NPP building

    International Nuclear Information System (INIS)

    Surh, Han-Bum; Ryu, Tae-Young; Park, Jin-Sung; Ahn, Eun-Woo; Choi, Chul-Sun; Koo, Ja Choon; Choi, Jae-Boong; Kim, Moon Ki

    2015-01-01

    Highlights: • Piping system in the APR 1400 NPP with a base isolation design is studied. • Seismic response of piping system in base isolated building are investigated. • Stress classification method is examined for piping subjected to seismic loading. • Primary stress of piping is reduced due to base isolation design. • Substantial secondary stress is observed in the main steam piping. - Abstract: In this study, the stress response of the piping system in the advanced power reactor 1400 (APR 1400) with a base isolation design subjected to seismic loading is addressed. The piping system located between the auxiliary building with base isolation and the turbine building with a fixed base is considered since it can be subjected to substantial relative support movement during seismic events. First, the support responses with respect to the base characteristic are investigated to perform seismic analysis for multiple support excitations. Finite element analyses are performed to predict the piping stress response through various analysis methods such as the response spectrum, seismic support movement and time history method. To separately evaluate the inertial effect and support movement effect on the piping stress, the stress is decomposed into a primary and secondary stress using the proposed method. Finally, influences of the base isolation design on the piping system in the APR 1400 are addressed. The primary stress based on the inertial loading is effectively reduced in a base isolation design, whereas a considerable amount of secondary stress is generated in the piping system connecting a base isolated building with a fixed base building. It is also confirmed that both the response spectrum analysis and seismic support movement analysis provide more conservative estimations of the piping stress compared to the time history analysis

  6. Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems

    Science.gov (United States)

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    2018-01-01

    We use the two-temperature model in molecular dynamic simulations of 150 keV Ni ion cascades in nickel and nickel-based alloys to investigate the effect of the energy exchange between the atomic and the electronic systems during the primary stages of radiation damage. We find that the electron-phonon interactions result in a smaller amount of defects and affect the cluster formation, resulting in smaller clusters. These results indicate that ignoring the local heating due to the electrons results in the overestimation of the amount of damage and the size of the defect clusters. A comparison of the average defect production to the Norgett-Robinson-Torrens (NRT) prediction over a range of energies is provided.

  7. Solar pv fed stand-alone excitation system of a synchronous machine for reactive power generation

    Science.gov (United States)

    Sudhakar, N.; Jain, Siddhartha; Jyotheeswara Reddy, K.

    2017-11-01

    This paper presents a model of a stand-alone solar energy conversion system based on synchronous machine working as a synchronous condenser in overexcited state. The proposed model consists of a Synchronous Condenser, a DC/DC boost converter whose output is fed to the field of the SC. The boost converter is supplied by the modelled solar panel and a day time variable irradiance is fed to the panel during the simulation time. The model also has one alternate source of rechargeable batteries for the time when irradiance falls below a threshold value. Also the excess power produced when there is ample irradiance is divided in two parts and one is fed to the boost converter while other is utilized to recharge the batteries. A simulation is done in MATLAB-SIMULINK and the obtained results show the utility of such modelling for supplying reactive power is feasible.

  8. Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system

    Science.gov (United States)

    Samosvat, D. M.; Chikalova-Luzina, O. P.; Vyatkin, V. M.; Zegrya, G. G.

    2016-11-01

    In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones.

  9. Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system

    International Nuclear Information System (INIS)

    Samosvat, D M; Chikalova-Luzina, O P; Zegrya, G G; Vyatkin, V M

    2016-01-01

    In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones. (paper)

  10. Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges

    Directory of Open Access Journals (Sweden)

    Attila Oláh

    2017-11-01

    Full Text Available It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (−-trans-Δ9-tetrahydrocannabinol (THC, (−-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB, e.g., arachidonoylethanolamine (anandamide, AEA, 2-arachidonoylglycerol (2-AG, etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc., and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS, a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption. Thus, the objective of the current article is (i to summarize the most recent findings of the field; (ii to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii to identify open questions and key challenges; and (iv to suggest promising future directions for cannabinoid-based drug development.

  11. Collective excitations and superconductivity in reduced dimensional systems - Possible mechanism for high Tc

    International Nuclear Information System (INIS)

    Santoyo, B.M.

    1989-01-01

    The author studies in full detail a possible mechanism of superconductivity in slender electronic systems of finite cross section. This mechanism is based on the pairing interaction mediated by the multiple modes of acoustic plasmons in these structures. First, he shows that multiple non-Landau-damped acoustic plasmon modes exist for electrons in a quasi-one dimensional wire at finite temperatures. These plasmons are of two basic types. The first one is made up by the collective longitudinal oscillations of the electrons essentially of a given transverse energy level oscillating against the electrons in the neighboring transverse energy level. The modes are called Slender Acoustic Plasmons or SAP's. The other mode is the quasi-one dimensional acoustic plasmon mode in which all the electrons oscillate together in phase among themselves but out of phase against the positive ion background. He shows numerically and argues physically that even for a temperature comparable to the mode separation Δω the SAP's and the quasi-one dimensional plasmon persist. Then, based on a clear physical picture, he develops in terms of the dielectric function a theory of superconductivity capable of treating the simultaneous participation of multiple bosonic modes that mediate the pairing interaction. The effect of mode damping is then incorporated in a simple manner that is free of the encumbrance of the strong-coupling, Green's function formalism usually required for the retardation effect. Explicit formulae including such damping are derived for the critical temperature T c and the energy gap Δ 0 . With those modes and armed with such a formalism, he proceeds to investigate a possible superconducting mechanism for high T c in quasi-one dimensional single-wire and multi-wire systems

  12. Effect of Various Excitation Conditions on Vibrational Energy in a Multi-Degree-of-Freedom Torsional System with Piecewise-Type Nonlinearities

    Directory of Open Access Journals (Sweden)

    Jong-Yun Yoon

    2015-09-01

    Full Text Available Dynamic behaviors in practical driveline systems for wind turbines or vehicles are inherently affected by multiple nonlinearities such as piecewise-type torsional springs. However, various excitation conditions with different levels of magnitudes also show strong relationships to the dynamic behaviors when system responses are examined in both frequency and time domains. This study investigated the nonlinear responses of torsional systems under various excitations by using the harmonic balance method and numerical analysis. In order to understand the effect of piecewise-type nonlinearities on vibrational energy with different excitations, the nonlinear responses were investigated with various comparisons. First, two different jumping phenomena with frequency up- and down-sweeping conditions were determined under severe excitation levels. Second, practical system analysis using the phase plane and Poincaré map was conducted in various ways. When the system responses were composed of quasi-periodic components, Poincaré map analysis clearly revealed the nonlinear dynamic characteristics and thus it is suggested to investigate complicated nonlinear dynamic responses in practical driveline systems.

  13. A high excitation magnetic quadrupole lens quadruplet incorporating a single octupole lens for a low spherical aberration probe forming lens system

    Science.gov (United States)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi

    2018-03-01

    This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.

  14. Zebrafish: an exciting model for investigating the spatio-temporal pattern of enteric nervous system development.

    LENUS (Irish Health Repository)

    Doodnath, Reshma

    2012-02-01

    AIM: Recently, the zebrafish (Danio rerio) has been shown to be an excellent model for human paediatric research. Advantages over other models include its small size, externally visually accessible development and ease of experimental manipulation. The enteric nervous system (ENS) consists of neurons and enteric glia. Glial cells permit cell bodies and processes of neurons to be arranged and maintained in a proper spatial arrangement, and are essential in the maintenance of basic physiological functions of neurons. Glial fibrillary acidic protein (GFAP) is expressed in astrocytes, but also expressed outside of the central nervous system. The aim of this study was to investigate the spatio-temporal pattern of GFAP expression in developing zebrafish ENS from 24 h post-fertilization (hpf), using transgenic fish that express green fluorescent protein (GFP). METHODS: Zebrafish embryos were collected from transgenic GFP Tg(GFAP:GFP)(mi2001) adult zebrafish from 24 to 120 hpf, fixed and processed for whole mount immunohistochemistry. Antibodies to Phox2b were used to identify enteric neurons. Specimens were mounted on slides and imaging was performed using a fluorescent laser confocal microscope. RESULTS: GFAP:GFP labelling outside the spinal cord was identified in embryos from 48 hpf. The patterning was intracellular and consisted of elongated profiles that appeared to migrate away from the spinal cord into the periphery. At 72 and 96 hpf, GFAP:GFP was expressed dorsally and ventrally to the intestinal tract. At 120 hpf, GFAP:GFP was expressed throughout the intestinal wall, and clusters of enteric neurons were identified using Phox2b immunofluorescence along the pathway of GFAP:GFP positive processes, indicative of a migratory pathway of ENS precursors from the spinal cord into the intestine. CONCLUSION: The pattern of migration of GFAP:GFP expressing cells outside the spinal cord suggests an organized, early developing migratory pathway to the ENS. This shows for the

  15. Macoilin, a conserved nervous system-specific ER membrane protein that regulates neuronal excitability.

    Directory of Open Access Journals (Sweden)

    Fausto Arellano-Carbajal

    2011-03-01

    Full Text Available Genome sequence comparisons have highlighted many novel gene families that are conserved across animal phyla but whose biological function is unknown. Here, we functionally characterize a member of one such family, the macoilins. Macoilins are characterized by several highly conserved predicted transmembrane domains towards the N-terminus and by coiled-coil regions C-terminally. They are found throughout Eumetazoa but not in other organisms. Mutants for the single Caenorhabditis elegans macoilin, maco-1, exhibit a constellation of behavioral phenotypes, including defects in aggregation, O₂ responses, and swimming. MACO-1 protein is expressed broadly and specifically in the nervous system and localizes to the rough endoplasmic reticulum; it is excluded from dendrites and axons. Apart from subtle synapse defects, nervous system development appears wild-type in maco-1 mutants. However, maco-1 animals are resistant to the cholinesterase inhibitor aldicarb and sensitive to levamisole, suggesting pre-synaptic defects. Using in vivo imaging, we show that macoilin is required to evoke Ca²(+ transients, at least in some neurons: in maco-1 mutants the O₂-sensing neuron PQR is unable to generate a Ca²(+ response to a rise in O₂. By genetically disrupting neurotransmission, we show that pre-synaptic input is not necessary for PQR to respond to O₂, indicating that the response is mediated by cell-intrinsic sensory transduction and amplification. Disrupting the sodium leak channels NCA-1/NCA-2, or the N-,P/Q,R-type voltage-gated Ca²(+ channels, also fails to disrupt Ca²(+ responses in the PQR cell body to O₂ stimuli. By contrast, mutations in egl-19, which encodes the only Caenorhabditis elegans L-type voltage-gated Ca²(+ channel α1 subunit, recapitulate the Ca²(+ response defect we see in maco-1 mutants, although we do not see defects in localization of EGL-19. Together, our data suggest that macoilin acts in the ER to regulate assembly or

  16. Electronic excitation of composite systems. Progress report, August 1, 1975--July 31, 1976

    International Nuclear Information System (INIS)

    Ashraf El-Bayoumi, M.

    1976-04-01

    The effects of pH and temperature solvent deuteration on the fluorescence spectra and quantum yields of 7-azaindole in ethanol and in water were studied. Evidence was provided for double proton transfer in 7-azaindole complexes with alcohol and water. Observation of double proton transfer in a model system azacarbazole (α-carboline) was made. Synthesis of the compound and its corresponding tautomer were completed. Fluorescence measurements under various conditions were performed. The effects of temperature and polarity of the medium on the fluorescence yield and life-time of a fluorescence-polarity probe (namely, Dansylsulfonamide) was also studied along with the effect of the solvent-deuterium isotope substitution. Polarization decay measurements of rhodamine B in glycerol at room temperature were performed. The anisotropy decay was found to be double exponential with values of approximately 9 nsec and 96 nsec for rotation about the major and minor axes, respectively. The study of rotational relaxations of dansylated lysozyme at two different temperatures indicated the possibility of monomer-dimer equilibrium

  17. Development of novel solvent extraction system by utilizing the metal ions excitation with ultraviolet pulse laser

    International Nuclear Information System (INIS)

    Saeki, Morihisa; Sasaki, Yuji; Yokoyama, Atsushi

    2010-01-01

    Novel liquid-liquid extraction technique was developed using ultraviolet pulse laser. The liquid-liquid system was composed of pure water and the 1-octanol solution of EuCl 3 and TODGA (TODGA = N,N,N',N'-tetraoctyl-diglycolamide). The Eu 3+ ion, which was formed to be the Eu 3+ (TODGA) n complex in 1-octanol, was reduced to Eu 2+ by irradiation of fourth harmonic of Nd:YAG laser (266 nm). The Eu 2+ ion was stabilized by addition of 15-Crown-5 (15C5). The observation by in-situ emission spectroscopy showed that the Eu 2+ ion reduced by the 266 nm-laser irradiation resulted in back-extraction of Eu from the 1-octanol solution to the water. The emission spectrum observed in 1-octanol suggested the change from the Eu 3+ (TODGA) n to the Eu 2+ (15C5) m complex after the reduction by the 266 nm laser. Time dependence of the concentration of Eu 2+ (15C5) m was investigated at the aqueous phase, the organic one and their interface. The results suggest that (1) rapid formation of Eu 2+ (15C5) m in 1-octanol after the irradiation of the 266 nm laser, (2) slow diffusion of Eu 2+ (15C5) m in 1-octanol, and (3) existence of time-lag between the formation of Eu 2+ (15C5) m in 1-octanol and its back-extraction to the water. (author)

  18. Chaotic dynamic and control for micro-electro-mechanical systems of massive storage with harmonic base excitation

    International Nuclear Information System (INIS)

    Perez Polo, Manuel F.; Perez Molina, Manuel; Gil Chica, Javier

    2009-01-01

    This paper explores chaotic behaviour and control of micro-electro-mechanical systems (MEMS), which consist of thousands of small read/write probe tips that access gigabytes of data stored in a non-volatile magnetic surface. The model of the system is formed by two masses connected by a nonlinear spring and a viscous damping. The paper shows that, by means of an adequate feedback law, the masses can behave as two coupled Duffing's oscillators, which may reach chaotic behaviour when harmonic forces are applied. The chaotic motion is destroyed by applying the following control strategies: (i) static output feedback control law with constant forces and (ii) geometric nonlinear control. The aim is to drive the masses to a set point even with harmonic base excitation, by using chaotic dynamics and nonlinear control. The paper shows that it is possible to obtain a positioning time around a few ms with sub-nanometre accuracy, velocities, accelerations and forces, as it appears in the design of present MEMS devices. Numerical simulations are used to verify the mathematical discussions.

  19. Global analysis of crisis in twin-well Duffing system under harmonic excitation in presence of noise

    International Nuclear Information System (INIS)

    Xu Wei; He Qun; Fang Tong; Rong Haiwu

    2005-01-01

    Evolution of a crisis in a twin-well Duffing system under a harmonic excitation in presence of noise is explored in detail by the generalized cell mapping with digraph (GCMD in short) method. System parameters are chosen in the range that there co-exist chaotic attractors and/or chaotic saddles, together with their evolution. Due to noise effects, chaotic attractors and chaotic saddles here are all noisy (random or stochastic) ones, so is the crisis. Thus, noisy crisis happens whenever a noisy chaotic attractor collides with a noisy saddle, whether the latter is chaotic or not. A crisis, which results in sudden appear (or dismissal) of a chaotic attractor, together with its attractive basin, is called a catastrophic one. In addition, a crisis, which just results in sudden change of the size of a chaotic attractor and its attractive basin, is called an explosive one. Our study reveals that noisy catastrophic crisis and noisy explosive crisis often occur alternatively during the evolutionary long run of noisy crisis. Our study also reveals that the generalized cell mapping with digraph method is a powerful tool for global analysis of crisis, capable of providing clear and vivid scenarios of the mechanism of development, occurrence, and evolution of a noisy crisis

  20. Chaotic dynamic and control for micro-electro-mechanical systems of massive storage with harmonic base excitation

    Energy Technology Data Exchange (ETDEWEB)

    Perez Polo, Manuel F. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)], E-mail: manolo@dfists.ua.es; Perez Molina, Manuel [Facultad de Ciencias Matematicas, Universidad Nacional de Educacion a Distancia. UNED, C/Boyero 12-1A, Alicante 03007 (Spain)], E-mail: ma_perez_m@hotmail.com; Gil Chica, Javier [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)], E-mail: gil@dfists.ua.es

    2009-02-15

    This paper explores chaotic behaviour and control of micro-electro-mechanical systems (MEMS), which consist of thousands of small read/write probe tips that access gigabytes of data stored in a non-volatile magnetic surface. The model of the system is formed by two masses connected by a nonlinear spring and a viscous damping. The paper shows that, by means of an adequate feedback law, the masses can behave as two coupled Duffing's oscillators, which may reach chaotic behaviour when harmonic forces are applied. The chaotic motion is destroyed by applying the following control strategies: (i) static output feedback control law with constant forces and (ii) geometric nonlinear control. The aim is to drive the masses to a set point even with harmonic base excitation, by using chaotic dynamics and nonlinear control. The paper shows that it is possible to obtain a positioning time around a few ms with sub-nanometre accuracy, velocities, accelerations and forces, as it appears in the design of present MEMS devices. Numerical simulations are used to verify the mathematical discussions.

  1. Nonlinear characteristics of the rotating exciter system of power plant generators in case of electricity accidents; Transientes Verhalten des rotierenden Erregersystems von Kraftwerksgeneratoren bei elektrischen Stoerfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Ataei, Nader

    2006-05-09

    Different types of exciter are used for voltage supply to the synchronous generators of power stations depending on the required power and design. The exciter system of the generator, which as a rule consists syncronous motors and commutators, is commonly modeled in conventional models by control units with nonlinear characteristics which do not give an accurate picture of the dynamic processes inside the exciter motor. It was not possible to assess the component loads of the exciter components and the physical characteristics within the exciter system. In this study, a brushless exciter for the grid-connected synchronous generator was investigated which consists of two synchronous motors as primary and secondary exciter and two commutator bridges. A dynamic simulation model was developed for calculating the interactions between the grid, generator and exciter unit in consideration of electromagnetic and galvanic coupling. For this, the normal control units were replaced by physical components of the exciter system, i.e. electric exciter motors and commutators. The study was carried out using an enhanced version of the Siemens NETOMAC software, which provided information on the loads on the exciter components in case of internal and external failures. In particular, loads in coils and commutators were calculated that could not be measured before. The findings enable more accurate dimensioning of the exciter unit making it more fail-safe, and the protective systems can be adjusted more accurately. One important result of the investigation was the identification of all dynamic processes going on between the exciter motors, commutators, generator and grid induced by external and internal failures. (orig.) [German] Zur Spannungsversorgung der Synchrongeneratoren in Kraftwerken werden je nach Leistungsanforderung und Baukonzept unterschiedliche Erregereinrichtungen verwendet. Das Erregersystem des Generators, das in der Regel aus Erregersynchronmaschinen und

  2. Vibrational-rotational excitation: chemical reactions of vibrationally excited molecules

    International Nuclear Information System (INIS)

    Moore, C.B.; Smith, I.W.M.

    1979-03-01

    This review considers a limited number of systems, particularly gas-phase processes. Excited states and their preparation, direct bimolecular reactions, reactions of highly excited molecules, and reactions in condensed phases are discussed. Laser-induced isotope separation applications are mentioned briefly. 109 references

  3. High-resolution spectroscopy of jet-cooled 1,1 '-diphenylethylene: electronically excited and ionic states of a prototypical cross-conjugated system

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C.A.; Zgierski, M.Z.; Buma, W.J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated π-system, 1,1′-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We

  4. Photoinduced Ultrafast Intramolecular Excited-State Energy Transfer in the Silylene-Bridged Biphenyl and Stilbene (SBS) System: A Nonadiabatic Dynamics Point of View.

    Science.gov (United States)

    Wang, Jun; Huang, Jing; Du, Likai; Lan, Zhenggang

    2015-07-09

    The photoinduced intramolecular excited-state energy-transfer (EET) process in conjugated polymers has received a great deal of research interest because of its important role in the light harvesting and energy transport of organic photovoltaic materials in photoelectric devices. In this work, the silylene-bridged biphenyl and stilbene (SBS) system was chosen as a simplified model system to obtain physical insight into the photoinduced intramolecular energy transfer between the different building units of the SBS copolymer. In the SBS system, the vinylbiphenyl and vinylstilbene moieties serve as the donor (D) unit and the acceptor (A) unit, respectively. The ultrafast excited-state dynamics of the SBS system was investigated from the point of view of nonadiabatic dynamics with the surface-hopping method at the TDDFT level. The first two excited states (S1 and S2) are characterized by local excitations at the acceptor (vinylstilbene) and donor (vinylbiphenyl) units, respectively. Ultrafast S2-S1 decay is responsible for the intramolecular D-A excitonic energy transfer. The geometric distortion of the D moiety play an essential role in this EET process, whereas the A moiety remains unchanged during the nonadiabatic dynamics simulation. The present work provides a direct dynamical approach to understand the ultrafast intramolecular energy-transfer dynamics in SBS copolymers and other similar organic photovoltaic copolymers.

  5. Magnetic excitation spectra of strongly correlated quasi-one-dimensional systems: Heisenberg versus Hubbard-like behavior

    Science.gov (United States)

    Nocera, A.; Patel, N. D.; Fernandez-Baca, J.; Dagotto, E.; Alvarez, G.

    2016-11-01

    We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small as U /t ˜2 -3 , although ratios of peak intensities at different momenta continue evolving with increasing U /t converging only slowly to the Heisenberg limit. We discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U /t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.

  6. Study of the excitation mechanisms of the second positive system in the negative glow of a N{sub 2}-Ar discharge

    Energy Technology Data Exchange (ETDEWEB)

    Isola, L; Lopez, M; Gomez, B J, E-mail: isola@ifir-conicet.gov.ar [Instituto de Fisica Rosario (CONICET-UNR) 27 Febrero 210 Bis. (S2000EZP) Rosario (Argentina)

    2011-09-21

    In an Ar-N{sub 2} discharge, the high excitation transfer from Ar({sup 3}P{sub 2,0}) to N{sub 2} produces an overpopulation of the high rotational levels of the bands of the second positive system (SPS), and so the spectra interpretation is not straightforward. This paper presents a fit function for the SPS bands measured in Ar-N{sub 2}, which allows us to study the excitation process contributions to the N{sub 2}(C) level. The procedure was tested in the negative glow of a pulsed Ar-N{sub 2} discharge at a pressure of 2.5 Torr, for different mixture concentrations. In this discharge, through the fitting, it was possible to calculate the variation of the N{sub 2}(C) densities produced by different excitation processes as well as the variation of Ar metastable density.

  7. Topological excitations in magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D., E-mail: bazeia@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Doria, M.M. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Dipartimento di Fisica, Università di Camerino, I-62032 Camerino (Italy); Rodrigues, E.I.B. [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil)

    2016-05-20

    In this work we propose a new route to describe topological excitations in magnetic systems through a single real scalar field. We show here that spherically symmetric structures in two spatial dimensions, which map helical excitations in magnetic materials, admit this formulation and can be used to model skyrmion-like structures in magnetic materials.

  8. The MSINDO-sCIS and MSINDO-UCIS methods. Procedures for the calculation of properties of excited states in molecules and periodic systems by a semiempirical approach

    International Nuclear Information System (INIS)

    Gadaczek, Immanuel Patrick

    2013-01-01

    Theoretical background, parameterization and performance of the newly developed semiempirical configuration interaction singles (CIS) method MSINDO-sCIS (scaled configuration interaction singles) are presented. The CIS Hamiltonian is modified by scaling of the Coulomb and exchange integrals and a semiempirical correction of the diagonal elements. For a recently proposed benchmark set of 28 medium-sized organic molecules, vertical excitation energies for singlet and triplet states have been calculated and statistically evaluated. A full reparameterization of the MSINDO method for both ground and excited state properties was performed. The results of the reparameterized MSINDO-sCIS method are compared to the currently best semiempirical method for excited states, OM3-CISDTQ by Thiel et al., and to other standard methods, such as time-dependent density- functional theory. The mean absolute deviation with respect to the theoretical best estimates (TBEs) for MSINDO-sCIS is 0.44 eV, comparable to the OM3 method but significantly smaller than for Zerner's INDO/S. The computational effort is strongly reduced compared to OM3-CISDTQ and OM3-MRCISD, since only single excitations are taken into account. Higher excitations are implicitly included by parameterization and the empirical correction term. By application of the Davidson-Liu block diagonalization method high computational efficiency is achieved. Furthermore it is demonstrated, that the MSINDO-sCIS method correctly describes charge-transfer (CT) states, that represent a crucial problem for time-dependent density functional theory (TD-DFT) methods. Additionally this method is extended to open-shell systems by the UCIS (unrestricted CIS) approach. MSINDO allows the calculation of periodic systems via the cyclic cluster model (CCM) which is a direct-space approach and therefore can be in principle combined with all molecular quantum-chemical techniques. The sCIS/UCIS equations are solved for a cluster with periodic

  9. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2016-06-14

    Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems.

  10. Nonlinear excitations in biomolecules

    International Nuclear Information System (INIS)

    Peyrard, M.

    1995-01-01

    The aim of the workshop entitled ''Nonlinear Excitations in Biomolecules'' is to attempt to bridge the gap between the physicists and biologists communities which is mainly due to language and cultural barriers. The progress of nonlinear science in the last few decades which have shown that the combination of nonlinearity, which characterize most biological phenomena, and cooperative effects in a system having a large number of degrees of freedom, can give rise to coherent excitations with remarkable properties. New concepts, such as solitons nd nonlinear energy localisation have become familiar to physicists and applied mathematicians. It is thus tempting to make an analogy between these coherent excitations and the exceptional stability of some biological processes, such as for instance DNA transcription, which require the coordination of many events in the ever changing environment of a cell. Physicists are now invoking nonlinear excitations to describe and explain many bio-molecular processes while biologists often doubt that the seemingly infinite variety of phenomena that they are attempting to classify can be reduced to such simple concepts. A large part of the meeting is devoted to tutorial lectures rather than to latest research results. The book provides a pedagogical introduction to the two topics forming the backbone of the meeting: the theory of nonlinear excitations and solitons, and their application in biology; and the structure and function of biomolecules, as well as energy and charge transport in biophysics. In order to emphasize the link between physics and biology, the volume is not divided along these two topics but according to biological subjects. Each chapter starts with a short introduction attempting to help the reader to find his way among the contributions and point out the connection between them. 23 lectures over the 32 presented have been selected and refers to quantum properties of macro-molecules. (J.S.)

  11. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Yukihira, Nao [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Sugai, Yuko [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Fujiwara, Masazumi [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Kosumi, Daisuke [Institute of Pulsed Power Science; Kumamoto University; Kumamoto; Japan; Iha, Masahiko [South Product Co. Ltd.; Uruma-shi; Japan; Sakaguchi, Kazuhiko [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Katsumura, Shigeo [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Gardiner, Alastair T. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Cogdell, Richard J. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Hashimoto, Hideki [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan

    2017-01-01

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.

  12. Subharmonic response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random excitation.

    Science.gov (United States)

    Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong

    2009-08-01

    The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.

  13. Formation of Bonded Exciplex in the Excited States of Dicyanoanthracene-Pyridine System : Time Dependent Density Functional Theory Study

    NARCIS (Netherlands)

    Setiawan, D.; Sethio, D.; Martoprawiro, M.A.; Filatov, M.; Gaol, FL; Nguyen, QV

    2012-01-01

    Strong quenching of fluorescence was recently observed in pyridine solutions of 9,10-dicyanoanthracene chromophore. It was hypothesized that quenching may be attributed to the formation of bound charge transfer complexes in the excited states of the molecules. In this work, using time-dependent

  14. The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems

    International Nuclear Information System (INIS)

    Sadeghi, S M

    2009-01-01

    We study the inhibition of optical excitation and enhancement of Rabi flopping and frequency in semiconductor quantum dots via plasmonic effects. This is done by demonstrating that the interaction of a quantum dot with a laser field in the vicinity of a metallic nanoparticle can be described in terms of optical Bloch equations with a plasmically normalized Rabi frequency. We show that in the weak-field regime plasmonic effects can suppress the interband transitions, inhibiting exciton generation. In the strong-field regime these effects delay the response of the quantum dot to the laser field and enhance Rabi flopping. We relate these to the conversion of Rabi frequency from a real quantity into a complex and strongly frequency-dependent quantity as plasmonic effects become significant. We show that, within the strong-field regime, in the wavelength range where real and imaginary parts of this frequency reach their maxima, a strongly frequency-dependent enhancement of carrier excitation can happen.

  15. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    OpenAIRE

    A. M. de Paor

    1998-01-01

    International audience; Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ? has the value 1 is proved via ...

  16. System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents

    Science.gov (United States)

    Levenson, Richard; Demos, Stavros

    2018-05-08

    A method is disclosed for analyzing a thin tissue sample and adapted to be supported on a slide. The tissue sample may be placed on a slide and exposed to one or more different exogenous fluorophores excitable in a range of about 300 nm-200 nm, and having a useful emission band from about 350 nm-900 nm, and including one or more fluorescent dyes or fluorescently labeled molecular probes that accumulate in tissue or cellular components. The fluorophores may be excited with a first wavelength of UV light between about 200 nm-290 nm. An optical system collects emissions from the fluorophores at a second wavelength, different from the first wavelength, which are generated in response to the first wavelength of UV light, to produce an image for analysis.

  17. Fluorescence lifetime selectivity in excitation-emission matrices for qualitative analysis of a two-component system

    International Nuclear Information System (INIS)

    Millican, D.W.; McGown, L.B.

    1989-01-01

    Steady-state fluorescence excitation-emission matrices (EEMs), and phase-resolved EEMs (PREEMs) collected at modulation frequencies of 6, 18, and 30 MHz, were used for qualitative analysis of mixtures of benzo[k]fluoranthene (τ = 8 ns) and benzo[b]fluoranthene (τ = 29 ns) in ethanol. The EEMs of the individual components were extracted from mixture EEMs by means of wavelength component vector-gram (WCV) analysis. Phase resolution was found to be superior to steady-state measurements for extraction of the component spectra, for mixtures in which the intensity contributions from the two components are unequal

  18. Excitation of surface waves and electrostatic fields by a RF (radiofrequency systems) wave in a plasma sheath with current

    International Nuclear Information System (INIS)

    Gutierrez Tapia, C.

    1990-01-01

    It is shown in a one-dimensional model that when a current in a plasma sheath is present, the excitation of surface waves and electrostatic fields by a RF wave is possible in the sheath. This phenomena depends strongly on the joint action of Miller's and driven forces. It is also shown that the action of these forces are carried out at different characteristic times when the wave front travels through the plasma sheath. The influence of the current, in the steady limit, is taken into account by a small functional variation of the density perturbations and generated electrostatic field. (Author)

  19. Dose-dependent effects of theta burst rTMS on cortical excitability and resting-state connectivity of the human motor system.

    Science.gov (United States)

    Nettekoven, Charlotte; Volz, Lukas J; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-05-14

    Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. Copyright © 2014 the authors 0270-6474/14/346849-11$15.00/0.

  20. Determination of excited states of quantum systems by finite difference time domain method (FDTD) with supersymmetric quantum mechanics (SUSY-QM)

    Energy Technology Data Exchange (ETDEWEB)

    Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id [Physics Study Program, University of Mataram, Jln. Majapahit 62 Mataram, NTB (Indonesia)

    2016-04-19

    We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.

  1. Generalized vibrating potential model for collective excitations in spherical, deformed and superdeformed systems: (1) atomic nuclei, (2) metal clusters

    International Nuclear Information System (INIS)

    Nesterenko, V.O.; Kleinig, W.

    1995-01-01

    The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated (''jungle-like'') structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonance in spherical sodium clusters Na 8 , Na 20 and Na 40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data. (orig.)

  2. Exciting story of the high-end television projection systems and the novel compact EIDOPHOR AE-12

    Science.gov (United States)

    Schulz-Hennig, Joerg F.

    1998-04-01

    With the new light valve technologies and availability of international broad-band communication channels high-end large screen TV projection is a highly growing contribution to the multi-media world of today. The exciting story already started 58 years ago with the invention of the EIDOPHOR diffractive oil light modulator. The long way to turn electronic cinema into a reality triggered novel applications, e.g. teleconferencing and real time surgery transmissions at universities. Several technical approaches of spatial light modulation were tried, and finally several different solutions are feasible to provide video projectors, meeting the requirements of the different display applications of today and tomorrow. The technical history is reviewed and the limitations and feasibilities of new technologies are presented in respect to existing and new applications.

  3. Magnetic field effects on exciplex-forming systems: the effect on the locally excited fluorophore and its dependence on free energy.

    Science.gov (United States)

    Kattnig, Daniel R; Rosspeintner, Arnulf; Grampp, Günter

    2011-02-28

    This study addresses magnetic field effects in exciplex forming donor-acceptor systems. For moderately exergonic systems, the exciplex and the locally excited fluorophore emission are found to be magneto-sensitive. A previously introduced model attributing this finding to excited state reversibility is confirmed. Systems characterised by a free energy of charge separation up to approximately -0.35 eV are found to exhibit a magnetic field effect on the fluorophore. A simple three-state model of the exciplex is introduced, which uses the reaction distance and the asymmetric electron transfer reaction coordinate as pertinent variables. Comparing the experimental emission band shapes with those predicted by the model, a semi-quantitative picture of the formation of the magnetic field effect is developed based on energy hypersurfaces. The model can also be applied to estimate the indirect contribution of the exchange interaction, even if the perturbative approach fails. The energetic parameters that are essential for the formation of large magnetic field effects on the exciplex are discussed.

  4. Dynamic Model and Vibration Power Flow of a Rigid-Flexible Coupling and Harmonic-Disturbance Exciting System for Flexible Robotic Manipulator with Elastic Joints

    Directory of Open Access Journals (Sweden)

    Yufei Liu

    2015-01-01

    Full Text Available This paper investigates the dynamic of a flexible robotic manipulator (FRM which consists of rigid driving base, flexible links, and flexible joints. With considering the motion fluctuations caused by the coupling effect, such as the motor parameters and mechanism inertias, as harmonic disturbances, the system investigated in this paper remains a parametrically excited system. An elastic restraint model of the FRM with elastic joints (FRMEJ is proposed, which considers the elastic properties of the connecting joints between the flexible arm and the driving base, as well as the harmonic disturbances aroused by the electromechanical coupling effect. As a consequence, the FRMEJ accordingly remains a flexible multibody system which conveys the effects of rigid-flexible couple and electromechanical couple. The Lagrangian function and Hamilton’s principle are used to establish the dynamic model of the FRMEJ. Based on the dynamic model proposed, the vibration power flow is introduced to show the vibration energy distribution. Numerical simulations are conducted to investigate the effect of the joint elasticities and the disturbance excitations, and the influences of the structure parameters and motion parameters on the vibration power flow are studied. The results obtained in this paper contribute to the structure design, motion optimization, and vibration control of FRMs.

  5. Excited charmed mesons

    International Nuclear Information System (INIS)

    Butler, J.N.; Shukla, S.

    1995-05-01

    The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one

  6. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  7. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-01-01

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected

  8. Theoretical treatment of electron capture and excitation in two-electron system ion-atom, atom-atom collisions at low to intermediate energy

    International Nuclear Information System (INIS)

    Kimura, M.

    1986-01-01

    A review of various theoretical treatments which have been used to study electron-capture and excitation processes in two-electron-system ion-atom, atom-atom collisions at low to intermediate energy is presented. Advantages as well as limitations associated with these theoretical models in application to practical many-electron ion-atom, atom-atom collisions are specifically pointed out. Although a rigorous theoretical study of many-electron systems has just begun so that reports of theoretical calculations are scarce to date in comparison to flourishing experimental activities, some theoretical results are of great interest and provide important information for understanding collision dynamics of the system which contains many electrons. Selected examples are given for electron capture in a multiply charged ion-He collision, ion-pair formation in an atom-atom collision and alignment and orientation in a Li + + He collision. (Auth.)

  9. Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system.

    Science.gov (United States)

    Wang, Dong; Chen, Chuan; Ke, Xuebin; Kang, Ning; Shen, Yuqing; Liu, Yongliang; Zhou, Xi; Wang, Hongjun; Chen, Changqing; Ren, Lei

    2015-02-11

    A novel core-shell structure based on upconversion fluorescent nanoparticles (UCNPs) and dopamine-melanin has been developed for evaluation of the antioxidant capacity of biological fluids. In this approach, dopamine-melanin nanoshells facilely formed on the surface of UCNPs act as ultraefficient quenchers for upconversion fluorescence, contributing to a photoinduced electron-transfer mechanism. This spontaneous oxidative polymerization of the dopamine-induced quenching effect could be effectively prevented by the presence of various antioxidants (typically biothiols, ascorbic acid (Vitamin C), and Trolox). The chemical response of the UCNPs@dopamine-melanin hybrid system exhibited great selectivity and sensitivity toward antioxidants relative to other compounds at 100-fold higher concentration. A satisfactory correlation was established between the ratio of the "anti-quenching" fluorescence intensity and the concentration of antioxidants. Besides the response of the upconversion fluorescence signal, a specific evaluation process for antioxidants could be visualized by the color change from colorless to dark gray accompanied by the spontaneous oxidation of dopamine. The near-infrared (NIR)-excited UCNP-based antioxidant capacity assay platform was further used to evaluate the antioxidant capacity of cell extracts and human plasma, and satisfactory sensitivity, repeatability, and recovery rate were obtained. This approach features easy preparation, fluorescence/visual dual mode detection, high specificity to antioxidants, and enhanced sensitivity with NIR excitation, showing great potential for screening and quantitative evaluation of antioxidants in biological systems.

  10. Synaptic control of motoneuronal excitability

    DEFF Research Database (Denmark)

    Rekling, J C; Funk, G D; Bayliss, D A

    2000-01-01

    important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization......, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions...... and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward...

  11. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  12. a simple a simple excitation control excitation control excitation

    African Journals Online (AJOL)

    eobe

    field voltages determined follow a simple quadratic relationship that offer a very simple control scheme, dependent on only the stator current. Keywords: saturated reactances, no-load field voltage, excitation control, synchronous generators. 1. Introduction. Introduction. Introduction. The commonest generator in use today is ...

  13. Mechanism of deactivation of triplet-excited riboflavin by ascorbate, carotenoids, and tocopherols in homogeneous and heterogeneous aqueous food model systems.

    Science.gov (United States)

    Cardoso, Daniel R; Olsen, Karsten; Skibsted, Leif H

    2007-07-25

    Tocopherols (alpha, beta, gamma, and delta) and Trolox were found to deactivate triplet-excited riboflavin in homogeneous aqueous solution (7:3 v/v tert-butanol/water) with second-order reaction rates close to diffusion control [k2 between 4.8 x 10(8) (delta-tocopherol) and 6.2 x 10(8) L mol(-1) s(-1) (Trolox) at 24.0 +/- 0.2 degrees C] as determined by laser flash photolysis transient absorption spectroscopy. In aqueous buffer (pH 6.4) the rate constant for Trolox was 2.6 x 10(9) L mol(-1) s1 and comparable to the rate constant found for ascorbate (2.0 x 10(9) L mol(-1) s(-1)). The deactivation rate constant was found to be inferior in heterogeneous systems as shown for alpha-tocopherol and Trolox in aqueous Tween-20 emulsion (approximately by a factor of 4 compared to 7:3 v/v tert-butanol/water). Neither beta-carotene (7:3 v/v tert-butanol/water and Tween-20 emulsion), lycopene (7:3 v/v tert-butanol/water), nor crocin (aqueous buffer at pH 6.4, 7:3 v/v tert-butanol/water, and Tween-20 emulsion) showed any quenching on the triplet excited state of riboflavin. Therefore, all carotenoids seem to reduce the formation of triplet-excited riboflavin through an inner-filter effect. Activation parameters were based on the temperature dependence of the triplet-excited deactivation between 15 and 35 degrees C, and the isokinetic behavior, which was found to include purine derivatives previously studied, confirms a common deactivation mechanism with a bimolecular diffusion-controlled encounter with electron (or hydrogen atom) transfer as rate-determining step. DeltaH for deactivation by ascorbic acid, Trolox, and homologue tocopherols (ranging from 18 kJ mol(-1) for Trolox in Tween-20 emulsion to 184 kJ mol(-1) for ascorbic acid in aqueous buffer at pH 6.4) showed a linear dependence on DeltaS (ranging from -19 J mol(-1) K(-1) for Trolox in aqueous buffer at pH 6.4 to +550 J mol(-1) K(-1) for ascorbic acid in aqueous buffer pH 6.4). Among photooxidation products from the

  14. Exciplex ensemble modulated by excitation mode in intramolecular charge-transfer dyad: effects of temperature, solvent polarity, and wavelength on photochemistry and photophysics of tethered naphthalene-dicyanoethene system.

    Science.gov (United States)

    Aoki, Yoshiaki; Matsuki, Nobuo; Mori, Tadashi; Ikeda, Hiroshi; Inoue, Yoshihisa

    2014-09-19

    Solvent, temperature, and excitation wavelength significantly affected the photochemical outcomes of a naphthalene-dicyanoethene system tethered by different number (n) of methylene groups (1-3). The effect of irradiation wavelength was almost negligible for 2a but pronounced for 3a. The temperature dependence and theoretical calculations indicated the diversity of exciplex conformations, an ensemble of which can be effectively altered by changing excitation wavelength to eventually switch the regioselectivity of photoreactions.

  15. Octopamine increases the excitability of neurons in the snail feeding system by modulation of inward sodium current but not outward potassium currents

    Directory of Open Access Journals (Sweden)

    Szabó Henriette

    2005-12-01

    Full Text Available Abstract Background Although octopamine has long been known to have major roles as both transmitter and modulator in arthropods, it has only recently been shown to be functionally important in molluscs, playing a role as a neurotransmitter in the feeding network of the snail Lymnaea stagnalis. The synaptic potentials cannot explain all the effects of octopamine-containing neurons on the feeding network, and here we test the hypothesis that octopamine is also a neuromodulator. Results The excitability of the B1 and B4 motoneurons in the buccal ganglia to depolarising current clamp pulses is significantly (P IA current and a sustained IK delayed-rectifier current, but neither was modulated by octopamine in any of these three buccal neurons. The fast inward current was eliminated in sodium – free saline and so is likely to be carried by sodium ions. 10 μM octopamine enhanced this current by 33 and 45% in the B1 and B4 motoneurons respectively (P Conclusion We conclude that octopamine is also a neuromodulator in snails, changing the excitability of the buccal neurons. This is supported by the close relationship from the voltage clamp data, through the quantitative simulation, to the action potential threshold, changing the properties of neurons in a rhythmic network. The increase in inward sodium current provides an explanation for the polycyclic modulation of the feeding system by the octopamine-containing interneurons, making feeding easier to initiate and making the feeding bursts more intense.

  16. A VUV detection system for the direct photonic identification of the first excited isomeric state of "2"2"9Th

    International Nuclear Information System (INIS)

    Seiferle, B.; Von der Wense, L.; Thirolf, P.G.; Laatiaoui, M.

    2016-01-01

    With an expected energy of 7.6(5) eV, "2"2"9Th possesses the lowest excited nuclear state in the landscape of all presently known nuclei. The energy corresponds to a wavelength of about 160 nm and would conceptually allow for an optical laser excitation of a nuclear transition. We report on a VUV optical detection system that was designed for the direct detection of the isomeric ground-state transition of "2"2"9Th. "2"2"9"("m") Th ions originating from a "2"3"3U α-recoil source are collected on a micro electrode that is placed in the focus of an annular parabolic mirror. The latter is used to parallelize the UV fluorescence that may emerge from the isomeric ground-state transition of "2"2"9Th. The parallelized light is then focused by a second annular parabolic mirror onto a CsI-coated position-sensitive MCP detector behind the mirror exit. To achieve a high signal-to-background ratio, a small spot size on the MCP detector needs to be achieved. Besides extensive ray-tracing simulations of the optical setup, we present a procedure for its alignment, as well as test measurements using a D_2 lamp, where a focal-spot size of ∼100 μm has been achieved. Assuming a purely photonic decay, a signal-to-background ratio of ∼7000:1 could be achieved. (authors)

  17. Small systems of Duffing oscillators and the Fermi-Pasta-Ulam-Tsingou system An examination of the possible reasons for the unusual stability of localized nonlinear excitations in these systems

    Science.gov (United States)

    Kashyap, Rahul; Westley, Alexandra; Sen, Surajit

    The Duffing oscillator, a nonlinear oscillator with a potential energy with both quadratic and cubic terms, is known to show highly chaotic solutions in certain regions of its parameter space. Here, we examine the behaviors of small chains of harmonically and anharmonically coupled Duffing oscillators and show that these chains exhibit localized nonlinear excitations (LNEs) similar to the ones seen in the Fermi-Pasta-Ulam-Tsingou (FPUT) system. These LNEs demonstrate properties such as long-time energy localization, high periodicity, and slow energy leaking which rapidly accelerates upon frequency matching with the adjacent particles all of which have been observed in the FPUT system. Furthermore, by examining bifurcation diagrams, we will show that many qualitative properties of this system during the transition from weakly to strongly nonlinear behavior depend directly upon the frequencies associated with the individual Duffing oscillators.

  18. Autoresonant Excitation of Antiproton Plasmas

    CERN Document Server

    Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Butler, Eoin; Carpenter, P T; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayden, Michael E; Humphries, Andrew J; Hurt, J L; Hydomako, Richard; Jonsell, Svante; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  19. Modeling, control and fault diagnosis of an isolated wind energy conversion system with a self-excited induction generator subject to electrical faults

    International Nuclear Information System (INIS)

    Attoui, Issam; Omeiri, Amar

    2014-01-01

    Highlights: • A new model of the SEIG is developed to simulate both the rotor and stator faults. • This model takes iron loss, main flux and cross flux saturation into account. • A new control strategy based on Fractional-Order Controller (FOC) is proposed. • The control strategy is developed for the control of the wind turbine speed. • An on-line diagnostic procedure based on the stator currents analysis is presented. - Abstract: In this paper, a contribution to modeling and fault diagnosis of rotor and stator faults of a Self-Excited Induction Generator (SEIG) in an Isolated Wind Energy Conversion System (IWECS) is proposed. In order to control the speed of the wind turbine, while basing on the linear model of wind turbine system about a specified operating point, a new Fractional-Order Controller (FOC) with a simple and practical design method is proposed. The FOC ensures the stability of the nonlinear system in both healthy and faulty conditions. Furthermore, in order to detect the stator and rotor faults in the squirrel-cage self-excited induction generator, an on-line fault diagnostic technique based on the spectral analysis of stator currents of the squirrel-cage SEIG by a Fast Fourier Transform (FFT) algorithm is used. Additionally, a generalized model of the squirrel-cage SEIG is developed to simulate both the rotor and stator faults taking iron loss, main flux and cross flux saturation into account. The efficiencies of generalized model, control strategy and diagnostic procedure are illustrated with simulation results

  20. Stabilization of nonlinear excitations by disorder

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    Using analytical and numerical techniques we analyze the static and dynamical properties of solitonlike excitations in the presence of parametric disorder in the one-dimensional nonlinear Schrodinger equation with a homogeneous power nonlinearity. Both the continuum and the discrete problem...... are investigated. We find that otherwise unstable excitations can be stabilized by the presence of disorder in the continuum problem. For the very narrow excitations of the discrete problem we find that the disorder has no effect on the averaged behavior. Finally, we show that the disorder can be applied to induce...... a high degree of controllability of the spatial extent of the stable excitations in the continuum system....

  1. Orientation of nuclei excited by polarized neutrons

    International Nuclear Information System (INIS)

    Lifshits, E.P.

    1986-01-01

    Polarization and radiation angular distribution of oriented nuclei in inelastic scattering of polarized neutrons were investigated. Nucleus orientation in the final state was described by polarization density matrix (PDM). If PDM is known, angular distributions, linear and circular polarization of γ-quanta emitted by a nucleus can be determined. Analytical expression for PDM, conditions of its diagonalization in the case of direct nucleus excitation and excitation by the stage of compound nucleus were obtained. Orientation of 12 C nuclei in the excited state 4.439 MeV, 2 + at energy of incident neutrons in the laboratory system from 4.8 MeV (excitation threshold) upt to 9 MeV was calculated as an example. Neutrons in initial state are completely polarized along Z axis. Calculations showed that excitation proceeds mainly by the stage of compound nucleus formation and 12 C nucleus is highly polarized in excited state

  2. On isospin excitation energy

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments

  3. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  4. Excited states v.6

    CERN Document Server

    Lim, Edward C

    1982-01-01

    Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho

  5. Singularity Structure Analysis of the Higher-Dimensional Time-Gated Manakov System: Periodic Excitations and Elastic Scattering

    International Nuclear Information System (INIS)

    Kuetche, Victor Kamgang; Bouetou, Thomas Bouetou; Kofane, Timoleon Crepin

    2010-12-01

    We investigate the singularity structure analysis of the higher-dimensional time-gated Manakov system referring to the (2+1)-dimensional coupled nonlinear Schroedinger (CNLS) equations, and we show that these equations are Painleve-integrable. By means of the Weiss et al.'s methodology, we show the arbitrariness of the expansion coefficients and the consistency of the truncation corresponding to a special Baecklund transformation (BT) of these CNLS equations. In the wake of such transformation, following the Hirota's formalism, we derive a one-soliton solution. Besides, by using the Zakharov-Shabat (ZS) scheme which provides a general Lax-representation of an evolution system, we show that the (2+1)-dimensional CNLS system under interests is completely integrable. Furthermore, using the arbitrariness of the above coefficients, we unearth and investigate a typical spectrum of periodic coherent structures while depicting elastic interactions amongst such patterns. (author)

  6. Electron excitation of alkali atoms

    International Nuclear Information System (INIS)

    Ormonde, S.

    1979-02-01

    The development and testing of a synthesized close-coupling effective model potential ten-channel electron-atom scattering code and some preliminary calculations of resonances in cross sections for the excitation of excited states of potassium by low energy electrons are described. The main results obtained are: identification of 1 S and 1 D structures in excitation cross sections below the 5 2 S threshold of neutral potassium; indications of additional structures - 1 P and 1 D between the 5 2 S and 5 2 D thresholds; and a suggested explanation of anomalously high interstate-electron impact excitation cross sections inferred from experiments on potassium-seeded plasmas. The effective potential model imbedded in the code can be used to simulate any atomic system that can be approximated by a single bound electron outside an ionic core. All that is needed is a set of effective potential parameters--experimental or theoretical. With minor modifications the code could be adapted to calculations of electron scattering by two-electron systems

  7. Symmetry characterization of electrons and lattice excitations

    Directory of Open Access Journals (Sweden)

    Schober H.

    2012-03-01

    Full Text Available Symmetry concerns all aspects of a physical system from the electronic orbitals to structural and magnetic excitations. In this article we will try to elaborate the fundamental connection between symmetry and excitations. As excitations are manyfold in physical systems it is impossible to treat them exhaustively. We thus concentrate on the two topics of Bloch electrons and phonons. These two examples are complementary in the sense that Bloch electrons describe single particles in an external periodic potential while phonons exemplify a decoupled system of interacting particles. The way we develop the argument gives as by-product a short account of molecular orbitals and molecular vibrations.

  8. Operating function tests of the PWR type RHR pump for engineering safety system under simulated strong ground excitation

    International Nuclear Information System (INIS)

    Uga, Takeo; Shiraki, Kazuhiro; Homma, Toshiaki; Inazuka, Hisashi; Nakajima, Norifumi.

    1979-08-01

    Results are described of operating function verification tests of a PWR RHR pump during an earthquake. Of the active reactor components, the PWR residual heat removal pump was chosen from view points of aseismic classification, safety function, structural complexity and past aseismic tests. Through survey of the service conditions and structure of this pump, seismic test conditions such as acceleration level, simulated seismic wave form and earthquake duration were decided for seismicity of the operating pump. Then, plans were prepared to evaluate vibration chracteristics of the pump and to estimate its aseismic design margins. Subsequently, test facility and instrumentation system were designed and constructed. Experimental results could thus be acquired on vibration characteristics of the pump and its dynamic behavior during different kinds and levels of simulated earthquake. In conclusion: (1) Stiffeners attached to the auxiliary system piping do improve aseismic performance of the pump. (2) The rotor-shaft-bearing system is secure unless it is subjected to transient disturbunces having high frequency content. (3) The motor and pump casing having resonance frequencies much higher than frequency content of the seismic wave show only small amplifications. (4) The RHR pump possesses an aseismic design margin more than 2.6 times the expected ultimate earthquake on design basis. (author)

  9. Picosecond studies of excitation transport in a finite volume: The clustered transport system octadecyl rhodamine B in triton X-100 micelles

    International Nuclear Information System (INIS)

    Ediger, M.D.; Domingue, R.P.; Fayer, M.D.

    1984-01-01

    A detailed experimental and theoretical examination of electronic excited state transport in the finite volume system, octadecyl rhodamine B molecules in triton X-100 micelles, is presented. Picosecond fluorescence mixing and transient grating techniques were used to examine systems in which the average number of chromophores per micelle ranged from 0.1 to 11. Because of the clustering of chromophores in the small micelles, the energy transport observed is extremely efficient. A statistical mechanical theory, based on a density expansion with a Pade approximant, is developed for donor--donor transport on a spherical surface. This theory accurately accounts for the experimental data with only the micelle radius as an adjustable parameter. The radius obtained from this procedure is in good agreement with determinations by other methods. This demonstrates that quantitative information about the spatial extent of chromophore distributions in small volumes can be obtained when appropriate finite volume energy transport theories are employed. It is shown that theories developed for infinite volumes are not applicable to systems such as the ones considered here. Finally the partitioning of rhodamine B and octadecyl rhodamine B between aqueous and micellar phases is measured, and lifetimes and rotation times are reported

  10. Devlopments of components for the detector driving system of the PANDA calorimeter and studies on the photoproduction of excited η mesons with the CB/ELSA experiment

    International Nuclear Information System (INIS)

    Triffterer, Tobias

    2016-01-01

    This PhD thesis (written in German language) consists of two parts: The first part describes developments for the Detector Control System of the electromagnetic calorimeter of the PANDA detector. An alarm and current border regulation system has been developed for this to ensure the correct functioning of the detector and to prevent damages. In addition, a database system (endcap production database) has been created to accompany the construction of the forward endcap and archive the characteristics of the photodetectors. The second part deals with the investigation into excited η mesons using the data measured with the CB/ELSA experiment. The distribution of the η' production angle in the decay channel η'→ ηπ 0 π 0 has been calculated for the first time within the beam photo energy range of 2500 to 2950 MeV. Furthermore, the relative effective cross section of the η(1405) to the η' could be determined to 0.16±0.05 (3.2σ). This shows evidence for a more complex nature of the η(1405).

  11. Efficient Blind System Identification of Non-Gaussian Auto-Regressive Models with HMM Modeling of the Excitation

    DEFF Research Database (Denmark)

    Li, Chunjian; Andersen, Søren Vang

    2007-01-01

    We propose two blind system identification methods that exploit the underlying dynamics of non-Gaussian signals. The two signal models to be identified are: an Auto-Regressive (AR) model driven by a discrete-state Hidden Markov process, and the same model whose output is perturbed by white Gaussi...... outputs. The signal models are general and suitable to numerous important signals, such as speech signals and base-band communication signals. Applications to speech analysis and blind channel equalization are given to exemplify the efficiency of the new methods....

  12. Faraday waves under time-reversed excitation.

    Science.gov (United States)

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.

  13. Bi-decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Zanchettin, D.; Lorenz, S.; Lohmann, K.; Jungclaus, J.H. [Max Planck Institute for Meteorology, Ocean in the Earth System Department, Hamburg (Germany); Timmreck, C. [Max Planck Institute for Meteorology, Atmosphere in the Earth System Department, Hamburg (Germany); Graf, H.-F. [University of Cambridge, Centre for Atmospheric Science, Cambridge (United Kingdom); Rubino, A. [Ca' Foscari University, Department of Environmental Sciences, Venice (Italy); Krueger, K. [Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany)

    2012-07-15

    Decadal and bi-decadal climate responses to tropical strong volcanic eruptions (SVEs) are inspected in an ensemble simulation covering the last millennium based on the Max Planck Institute - Earth system model. An unprecedentedly large collection of pre-industrial SVEs (up to 45) producing a peak annual-average top-of-atmosphere radiative perturbation larger than -1.5 Wm{sup -2} is investigated by composite analysis. Post-eruption oceanic and atmospheric anomalies coherently describe a fluctuation in the coupled ocean-atmosphere system with an average length of 20-25 years. The study provides a new physically consistent theoretical framework to interpret decadal Northern Hemisphere (NH) regional winter climates variability during the last millennium. The fluctuation particularly involves interactions between the Atlantic meridional overturning circulation and the North Atlantic gyre circulation closely linked to the state of the winter North Atlantic Oscillation. It is characterized by major distinctive details. Among them, the most prominent are: (a) a strong signal amplification in the Arctic region which allows for a sustained strengthened teleconnection between the North Pacific and the North Atlantic during the first post-eruption decade and which entails important implications from oceanic heat transport and from post-eruption sea ice dynamics, and (b) an anomalous surface winter warming emerging over the Scandinavian/Western Russian region around 10-12 years after a major eruption. The simulated long-term climate response to SVEs depends, to some extent, on background conditions. Consequently, ensemble simulations spanning different phases of background multidecadal and longer climate variability are necessary to constrain the range of possible post-eruption decadal evolution of NH regional winter climates. (orig.)

  14. The Naples High- and Low-Excitability rats: selective breeding, behavioral profile, morphometry, and molecular biology of the mesocortical dopamine system.

    Science.gov (United States)

    Viggiano, Davide; Vallone, Daniela; Welzl, Hans; Sadile, Adolfo G

    2002-09-01

    The Naples High- (NHE) and Low-Excitability (NLE) rat lines have been selected since 1976 on the basis of behavioral arousal to novelty (Làt-maze). Selective breeding has been conducted under continuous genetic pressure, with no brother-sister mating. The behavioral analyses presented here deal with (1) activity in environments of different complexity, i.e., holeboard and Làt maze; (2) maze learning in hexagonal tunnel, Olton, and Morris water mazes and; (3) two-way active avoidance and conditioned taste aversion tests. Morphometric analyses deal with central dopaminergic systems at their origin and target sites, as well as the density of dopamine transporter immunoreactivity. Molecular biology analyses are also presented, dealing with recent experiments on the prefrontal cortex (PFc), cloning and identifying differentially expressed genes using subtractive libraries and RNAase protection. The divergence between NLE and NHE rats varies as a function of the complexity level of the environment, with an impaired working and reference memory in both lines compared to random bred (NRB) controls. Moreover, data from the PFc of NHE rats show a hyperdopaminergic innervation, with overexpression of mRNA species involved in basal metabolism, and down-regulation of dopamine D1 receptors. Altogether, the evidence gathered so far supports a hyperfunctioning mesocorticolimbic system that makes NHE rats a useful tool for the study of hyperactivity and attention deficit, learning and memory disabilities, and drug abuse.

  15. Harmonic excitations in quasicrystals

    International Nuclear Information System (INIS)

    Luck, J.M.

    1986-03-01

    The harmonic excitations (phonons) of quasicrystals are studied in a simple one-dimensional model. The spectrum is a Cantor set, which exhibits selfsimilarity properties. The eigenstates are generically ''critical'', i.e. neither extended nor localized

  16. Excitation methods for energy dispersive analysis

    International Nuclear Information System (INIS)

    Jaklevic, J.M.

    1976-01-01

    The rapid development in recent years of energy dispersive x-ray fluorescence analysis has been based primarily on improvements in semiconductor detector x-ray spectrometers. However, the whole analysis system performance is critically dependent on the availability of optimum methods of excitation for the characteristic x rays in specimens. A number of analysis facilities based on various methods of excitation have been developed over the past few years. A discussion is given of the features of various excitation methods including charged particles, monochromatic photons, and broad-energy band photons. The effects of the excitation method on background and sensitivity are discussed from both theoretical and experimental viewpoints. Recent developments such as pulsed excitation and polarized photons are also discussed

  17. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  18. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems

    International Nuclear Information System (INIS)

    Meer, R. van; Gritsenko, O. V.; Baerends, E. J.

    2014-01-01

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ω α and oscillator strengths f α for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ω α (R) curves along the bond dissociation coordinate R for the molecules LiH, Li 2 , and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate

  19. Symmetrized density matrix renormalization group algorithm for low-lying excited states of conjugated carbon systems: Application to 1,12-benzoperylene and polychrysene

    Science.gov (United States)

    Prodhan, Suryoday; Ramasesha, S.

    2018-05-01

    The symmetry adapted density matrix renormalization group (SDMRG) technique has been an efficient method for studying low-lying eigenstates in one- and quasi-one-dimensional electronic systems. However, the SDMRG method had bottlenecks involving the construction of linearly independent symmetry adapted basis states as the symmetry matrices in the DMRG basis were not sparse. We have developed a modified algorithm to overcome this bottleneck. The new method incorporates end-to-end interchange symmetry (C2) , electron-hole symmetry (J ) , and parity or spin-flip symmetry (P ) in these calculations. The one-to-one correspondence between direct-product basis states in the DMRG Hilbert space for these symmetry operations renders the symmetry matrices in the new basis with maximum sparseness, just one nonzero matrix element per row. Using methods similar to those employed in the exact diagonalization technique for Pariser-Parr-Pople (PPP) models, developed in the 1980s, it is possible to construct orthogonal SDMRG basis states while bypassing the slow step of the Gram-Schmidt orthonormalization procedure. The method together with the PPP model which incorporates long-range electronic correlations is employed to study the correlated excited-state spectra of 1,12-benzoperylene and a narrow mixed graphene nanoribbon with a chrysene molecule as the building unit, comprising both zigzag and cove-edge structures.

  20. Vector boson excitations near deconfined quantum critical points.

    Science.gov (United States)

    Huh, Yejin; Strack, Philipp; Sachdev, Subir

    2013-10-18

    We show that the Néel states of two-dimensional antiferromagnets have low energy vector boson excitations in the vicinity of deconfined quantum critical points. We compute the universal damping of these excitations arising from spin-wave emission. Detection of such a vector boson will demonstrate the existence of emergent topological gauge excitations in a quantum spin system.

  1. Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren

    1994-01-01

    indicate that phenyl torsional motion is not important to the excited-state dynamics and reveal alternative excited-state reaction pathways. The results demonstrate how molecular systems that are structually similar can exhibit different electronic properties and excited-state dynamics....

  2. Magnetic excitations in thulium metal

    International Nuclear Information System (INIS)

    Fernandez-Baca, J.A.; Nicklow, R.M.; Rhyne, J.J.

    1989-01-01

    We have performed inelastic neutron scattering measurements on a single crystal specimen of Tm at wavevectors rvec κ = (1,1, ζ) and (0,0,2 + ζ) (ζ = 0, hor-ellipsis, 1). Most of the measurements have been made at T = 5K, where Tm exhibits a seven layer ferrimagnetic-antiphase-domain structure (four moments up, parallel to the c-axis, followed by three moments down). At this temperature the excitation spectra consist of three peaks. The two lower energy excitations have been identified as originating from magneto-vibrational scattering from the TA phonon, while the higher energy excitation is magnetic and exhibits only a weak dispersion (between 8.3 and 9.6 meV). At T = 50K, a temperature at which the system exhibits a c-axis sinusoidally modulated structure, the magnetic mode shows significant softening and broadening. The magneto-vibrational scattering vanishes above the Neel temperature (T N = 58.5K) while the magnetic mode persists at least up to T = 70K. These results suggest that the Hamiltonian in this system is dominated by the crystal-field-anistropy energy, and that the exchange interaction is relatively weak. 9 refs., 2 figs

  3. Receiver-exciter controller design

    Science.gov (United States)

    Jansma, P. A.

    1982-01-01

    A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.

  4. Few Issues Related to an Electrodynamic Exciter Control

    OpenAIRE

    Čala, M.

    2015-01-01

    There are multiple problems to solve when controlling an electromagnetic exciter for vibrations generation. Main challenge is to straighten a frequency response of an exciter which is normally not uniform due to resonances resulting from the mechanical construction of an exciter, specimen to test, or mounting fixture. This paper describes number of aspects to consider, which arose during implementation of the control system for small electrodynamic exciter on the Department of Control and Ins...

  5. International Observe the Moon Night - An Opportunity to Participate in the Year of the Solar System While Sharing the Excitement of Lunar Science and Exploration with the Public

    Science.gov (United States)

    Bleacher, L.; Daou, D.; Day, B. H.; Hsu, B. C.; Jones, A. P.; Mitchell, B.; Shaner, A. J.; Shipp, S. S.

    2010-12-01

    International Observe the Moon Night (InOMN) is a multi-nation effort to share the excitement of recent lunar missions and new science results with education communities, amateur astronomers, space enthusiasts, and the general public. It is also intended to encourage the world to experience the thrill of observing Earth’s closest neighbor. The inaugural InOMN took place on September 18, 2010. People in over 26 countries gathered together in groups big and small to learn about the Moon through presentations by scientists, astronomers, and engineers; participate in hands-on activities; and observe the Moon through telescopes, binoculars, and the naked eye. Next year’s InOMN will take place on October 8, 2011 during the Year of the Solar System (YSS). The October 2011 YSS theme will be “Moons/Rings Across the Solar System.” InOMN is perfectly suited as an event that any museum, science center, planetarium, university, school, or other group can implement to celebrate YSS. The InOMN Coordinating Committee has developed a variety of resources and materials to make it easy to host an InOMN event of any size. Interested groups are encouraged to utilize the InOMN website (observethemoonnight.org) in planning their InOMN event for 2011/YSS. The website contains links to Moon resources, educational activities, suggestions for hosting an event, free downloads of logos and flyers for advertising an event, and contests. New for 2011 will be a discussion forum for event hosts to share their plans, tips, and experiences. Together, YSS and InOMN will enable the public to maintain its curiosity about the Moon and to gain a better understanding of the Moon’s formation, evolution, and place in the night sky.

  6. Spatial discrimination against background with different optical systems for collection of fluorescence in laser-excited atomic fluorescence spectrometry with a graphite tube electrothermal atomizer.

    Science.gov (United States)

    Yuzefovsky, A I; Lonardo, R F; Michel, R G

    1995-07-01

    A single 90 degrees off-axis ellipsoidal mirror fragment was used in a dispersive detection system for electrothermal atomization laser-excited atomic fluorescence spectrometry. The performance of the new optical arrangement was compared with those of optical arrangements that employed a plane mirror in combination with biconvex or plano-convex lenses. All the optical arrangements collected fluorescence in a scheme called front surface illustration. BEAM-4, an optical ray tracing program, was used for calculations of spatial ray distributions and optical collection efficiency for the various optical configurations. Experimentally, the best collection efficiency was obtained by use of the ellipsoidal mirror, in qualitative agreement with simulations done by use of the BEAM-4 software. The best detection limit for cobalt with the new optical arrangement was 20 fg, which was a factor of 5 better than that obtained with conventional optical arrangements with otherwise the same instrumentation. The signal-to-background ratio and the fluorescence collection efficiency were also studied as a function of position of the optical components for the various optical arrangements. For both cobalt and phosphorus, the signal-to-background ratio with the new optical arrangement remained stable within 10-20% during +/- 8 mm shifts in the position of the detection system from the focal plane of the optics. Overall, the new optical arrangement offered high collection efficiency, excellent sensitivity, and facile optical alignment due to efficient spatial separation between the fluorescence signal and the background radiation. The advantages of the new optical arrangement were particularly important during measurements in the presence of high levels of blackbody radiation.

  7. Controlling flexible rotor vibrations using parametric excitation

    Energy Technology Data Exchange (ETDEWEB)

    Atepor, L, E-mail: katepor@yahoo.co [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom)

    2009-08-01

    This paper presents both theoretical and experimental studies of an active vibration controller for vibration in a flexible rotor system. The paper shows that the vibration amplitude can be modified by introducing an axial parametric excitation. The perturbation method of multiple scales is used to solve the equations of motion. The steady-state responses, with and without the parametric excitation terms, is investigated. An experimental test machine uses a piezoelectric exciter mounted on the end of the shaft. The results show a reduction in the rotor response amplitude under principal parametric resonance, and some good correlation between theory and experiment.

  8. Surface and bulk excitations in condensed matter

    International Nuclear Information System (INIS)

    Ritchie, R.H.

    1988-01-01

    In this lecture collective and single-particle electron excitations of solids will be discussed with emphasis on the properties of metallic and semiconducting materials. However, some of the general properties of long-wavelength collective modes to be discussed are valid for insulators as well, and some considerations apply to nuclear excitations such as optical or acoustical phonons, dipolar plasmons, etc. The concept of elementary excitations in solids, pioneered by Bohm and Pines almost 4 decades ago, has proved to be extremely useful in understanding the properties of systems of many particles, especially in respect to the response to the action of external probes. 32 refs., 12 figs

  9. Optical studies of multiply excited states

    International Nuclear Information System (INIS)

    Mannervik, S.

    1989-01-01

    Optical studies of multiply-excited states are reviewed with emphasis on emission spectroscopy. From optical measurements, properties such as excitation energies, lifetimes and autoionization widths can be determined with high accuracy, which constitutes a challenge for modern computational methods. This article mainly covers work on two-, three- and four-electron systems, but also sodium-like quartet systems. Furthermore, some comments are given on bound multiply-excited states in negative ions. Fine structure effects on transition wavelengths and lifetimes (autoionization) are discussed. In particular, the most recent experimental and theoretical studies of multiply-excited states are covered. Some remaining problems, which require further attention, are discussed in more detail. (orig.) With 228 refs

  10. Giant resonances on excited states

    International Nuclear Information System (INIS)

    Besold, W.; Reinhard, P.G.; Toepffer, C.

    1984-01-01

    We derive modified RPA equations for small vibrations about excited states. The temperature dependence of collective excitations is examined. The formalism is applied to the ground state and the first excited state of 90 Zr in order to confirm a hypothesis which states that not only the ground state but every excited state of a nucleus has a giant resonance built upon it. (orig.)

  11. Excitation of Nucleon Resonances

    International Nuclear Information System (INIS)

    Burkert, Volker D.

    2001-01-01

    I discuss developments in the area of nucleon resonance excitation, both necessary and feasible, that would put our understanding of nucleon structure in the regime of strong QCD on a qualitatively new level. They involve the collection of high quality data in various channels, a more rigorous approach in the search for ''missing'' resonances, an effort to compute some critical quantities in nucleon resonance excitations from first principles, i.e. QCD, and a proposal focused to obtain an understanding of a fundamental quantity in nucleon structure

  12. Microstructure ion Nuclear Spectra at High Excitation

    International Nuclear Information System (INIS)

    Ericson, T.E.O.

    1969-01-01

    The statistical microstructure of highly excited systems is illustrated by the distribution and fluctuations of levels, widths and cross-sections of nuclei both for the case of sharp resonances and the continuum case. The coexistence of simple modes of excitation with statistical effects in terms of strength functions is illustrated by isobaric analogue states. The analogy is made with similar phenomena for coherent light, is solid-state physics and high-energy physics. (author)

  13. Suppression of radiation excitation in focusing environment

    International Nuclear Information System (INIS)

    Huang, Z.; Ruth, R.D.

    1996-12-01

    Radiation damping and quantum excitation in an electron damping ring and a straight focusing channel are reviewed. They are found to be the two limiting cases in the study of a general bending and focusing combined system. In the intermediate regime where the radiation formation length is comparable to the betatron wavelength, quantum excitation can be exponentially suppressed by focusing field. This new regime may have interesting applications in the generation of ultra-low emittance beams

  14. A current-excited triple-time-voltage oversampling method for bio-impedance model for cost-efficient circuit system.

    Science.gov (United States)

    Yan Hong; Yong Wang; Wang Ling Goh; Yuan Gao; Lei Yao

    2015-08-01

    This paper presents a mathematic method and a cost-efficient circuit to measure the value of each component of the bio-impedance model at electrode-electrolyte interface. The proposed current excited triple-time-voltage oversampling (TTVO) method deduces the component values by solving triple simultaneous electric equation (TSEE) at different time nodes during a current excitation, which are the voltage functions of time. The proposed triple simultaneous electric equations (TSEEs) allows random selections of the time nodes, hence numerous solutions can be obtained during a single current excitation. Following that, the oversampling approach is engaged by averaging all solutions of multiple TSEEs acquired after a single current excitation, which increases the practical measurement accuracy through the improvement of the signal-to-noise ratio (SNR). In addition, a print circuit board (PCB) that consists a switched current exciter and an analog-to-digital converter (ADC) is designed for signal acquisition. This presents a great cost reduction when compared against other instrument-based measurement data reported [1]. Through testing, the measured values of this work is proven to be in superb agreements on the true component values of the electrode-electrolyte interface model. This work is most suited and also useful for biological and biomedical applications, to perform tasks such as stimulations, recordings, impedance characterizations, etc.

  15. Quinary excitation method for pulse compression ultrasound measurements.

    Science.gov (United States)

    Cowell, D M J; Freear, S

    2008-04-01

    A novel switched excitation method for linear frequency modulated excitation of ultrasonic transducers in pulse compression systems is presented that is simple to realise, yet provides reduced signal sidelobes at the output of the matched filter compared to bipolar pseudo-chirp excitation. Pulse compression signal sidelobes are reduced through the use of simple amplitude tapering at the beginning and end of the excitation duration. Amplitude tapering using switched excitation is realised through the use of intermediate voltage switching levels, half that of the main excitation voltages. In total five excitation voltages are used creating a quinary excitation system. The absence of analogue signal generation and power amplifiers renders the excitation method attractive for applications with requirements such as a high channel count or low cost per channel. A systematic study of switched linear frequency modulated excitation methods with simulated and laboratory based experimental verification is presented for 2.25 MHz non-destructive testing immersion transducers. The signal to sidelobe noise level of compressed waveforms generated using quinary and bipolar pseudo-chirp excitation are investigated for transmission through a 0.5m water and kaolin slurry channel. Quinary linear frequency modulated excitation consistently reduces signal sidelobe power compared to bipolar excitation methods. Experimental results for transmission between two 2.25 MHz transducers separated by a 0.5m channel of water and 5% kaolin suspension shows improvements in signal to sidelobe noise power in the order of 7-8 dB. The reported quinary switched method for linear frequency modulated excitation provides improved performance compared to pseudo-chirp excitation without the need for high performance excitation amplifiers.

  16. Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?

    Science.gov (United States)

    Bianco, Nicholas A; Patten, Carolynn; Fregly, Benjamin J

    2018-01-01

    Accurate prediction of muscle and joint contact forces during human movement could improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson's disease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-dimensional representation of a large set of muscle electromyographic (EMG) signals (henceforth called "muscle excitations"), may reduce the redundancy of muscle excitation solutions predicted by optimization methods. This study explores the feasibility of using muscle synergy information extracted from eight muscle EMG signals (henceforth called "included" muscle excitations) to accurately construct muscle excitations from up to 16 additional EMG signals (henceforth called "excluded" muscle excitations). Using treadmill walking data collected at multiple speeds from two subjects (one healthy, one poststroke), we performed muscle synergy analysis on all possible subsets of eight included muscle excitations and evaluated how well the calculated time-varying synergy excitations could construct the remaining excluded muscle excitations (henceforth called "synergy extrapolation"). We found that some, but not all, eight-muscle subsets yielded synergy excitations that achieved >90% extrapolation variance accounted for (VAF). Using the top 10% of subsets, we developed muscle selection heuristics to identify included muscle combinations whose synergy excitations achieved high extrapolation accuracy. For 3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5% lower than corresponding reconstruction VAF values for each associated eight-muscle subset. These results suggest that synergy excitations obtained from experimentally measured muscle excitations can accurately construct unmeasured muscle excitations, which could help limit muscle excitations predicted by muscle force optimizations.

  17. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  18. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  19. Excited lepton search

    International Nuclear Information System (INIS)

    Behrend, H.J.; Buerger, J.; Criegee, L.; Fenner, H.; Field, J.H.; Franke, G.; Fuster, J.; Holler, Y.; Meyer, J.; Schroeder, V.; Sindt, H.; Timm, U.; Winter, G.G.; Zimmermann, W.; Bussey, P.J.; Campbell, A.J.; Dainton, J.B.; Hendry, D.; McCurrach, G.; Scarr, J.M.; Skillicorn, I.O.; Smith, K.M.; Blobel, V.; Poppe, M.; Spitzer, H.; Boer, W. de; Buschhorn, G.; Christiansen, W.; Grindhammer, G.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kroha, H.; Lueers, D.; Oberlack, H.; Sack, B.; Schacht, P.; Shooshtari, G.; Wiedenmann, W.; Cordier, A.; Davier, M.; Fournier, D.; Gaillard, M.; Grivaz, J.F.; Haissinski, J.; Janot, P.; Journe, V.; Le Diberder, F.; Ros, E.; Spadafora, A.; Veillet, J.J.; Aleksan, R.; Cozzika, G.; Ducros, Y.; Jarry, P.; Lavagne, Y.; Ould Saada, F.; Pamela, J.; Pierre, F.; Zacek, J.; Alexander, G.; Bella, G.; Gnat, Y.; Grunhaus, J.

    1986-02-01

    Using the CELLO detector at PETRA we have searched for excited leptons by studying e + e - interactions which yield p + p - γγ, l + l - γ and γγ final states, where l = 3, μ or τ. We observe good agreement with QED and set new limits on e*, μ*, and τ* production. (orig.)

  20. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  1. The influence of the Itaipu 60 Hz excitation system and stabilizer in the dynamic performance of the south/southeastern interconnected system

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Filho, Xisto; Gomes, P.; Garos, I. [ELETROBRAS, Rio de Janeiro, RJ (Brazil); Pedroso, A. [Centro de Pesquisas de Energia Eletrica, Rio de Janeiro, RJ (Brazil); Jardim, J.L [FURNAS, Rio de Janeiro, RJ (Brazil); Queiroz, V. [Itaipu Binacional, Foz do Iguacu, PR (Brazil)

    1987-12-31

    This paper presents the main characteristics of Brazilian South/Southeastern interconnected system. Special attention is given to the Itaipu power plant which was considered the main basis for hydro generation expansion in the Brazilian interconnected system for the period 1982/1990. The paper also analyses the flexibility of the Itaipu 60 Hz Power System Stabilizer (PSS) for a more effective contribution to attenuate the dynamic problems, considering its influence not only for local mode oscillations, but also for the inter-area types. 7 refs., 6 figs., 6 tabs.

  2. Dynamics of transfer of electron excitation in a donor-acceptor system with a carbon chain and ways of its relaxation

    Directory of Open Access Journals (Sweden)

    M.M. Sevryukova

    2017-12-01

    Full Text Available The optical properties and dynamics of transport of electron excitation and the ways of its relaxation in the supramolecular D–π–A complex on the basis of merocyanines have been investigated. There have been found two components in the transfer of charge: fast and slow, which correspond to different conformational states of the carbon chain in merocyanines. It was found that the main photoluminescence of the studied molecular solutions of merocyanines by its nature is similar to the exciplex luminescence, as a manifestation of resonant and charge transfer interaction in an excited state. The lifetime in this state is about 2000 ps.

  3. The Mammalian Cortex as a Self-Organizing Complex System: Multi-Scale Homeostatic Approaches to Criticality via Dynamical Balance of Inhibition against Excitation

    Science.gov (United States)

    Ng, Tony T.

    The mammalian cortex is a highly structured network of densely packed neurons that interact strongly with each other in very specific ways. Loosely speaking, neurons are cells that fire clicks at each other as a means of communication. Common sites of communication, known as synapses, are enabled by transmitter molecules released from presynaptic sender cells, which bind to receptors on postsynaptic receiver cells. There are two major classes of neurons - excitatory ones that prompt their downstream neighbors to fire spikes through depolarization, and inhibitory ones that suppress spike activity of their postsynaptic partners via hyperpolarization. Depolarization and hyperpolarization make membrane potential of a cell more positive and more negative, respectively. A sufficiently depolarized neuron fires a spike, which technically is called an action potential. In this thesis, we focus on the interplay between three of the cortex's most ubiquitous features and examine some of the consequences that their interactions have on cortical dynamics. One of the features, widespread projections between clusters of excitatory neurons, is topological. The two remaining features, homeostasis and balance between the amount of excitatory and inhibitory activity are dynamical. Here, homeostasis refers to the regulatory mechanism of individual cells or collections of cells that maintains constant levels of spike activity over time. Simply by varying the average homeostatic firing rate in clusters of excitatory neurons or by tuning the common homoeostatic rate of individual inhibitory neurons, we show via simulation that cluster-based activity bursts can exhibit critical dynamics and display power-law distributions with exponents that are consistent with those found in in vivo experiments of awake animals. Criticality is an idea that originated in statistical physics. At the critical point, activity levels of sites across an entire system, such as those of different cortical regions

  4. On Emulation of Flueric Devices in Excitable Chemical Medium.

    Directory of Open Access Journals (Sweden)

    Andrew Adamatzky

    Full Text Available Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.

  5. On Emulation of Flueric Devices in Excitable Chemical Medium.

    Science.gov (United States)

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.

  6. The DSS-14 C-band exciter

    Science.gov (United States)

    Rowan, D. R.

    1989-01-01

    The development and implementation of a C-band exciter for use with the Block IV Receiver-Exciter Subsystem at Deep Space Station 14 (DSS-14) has been completed. The exciter supplements the standard capabilities of the Block IV system by providing a drive signal for the C-band transmitter while generating coherent translation frequencies for C-band (5-GHz) to S-band (2.2- to 2.3-GHz) Doppler extraction, C-band to L-band (1.6-GHz) zero delay measurements, and a level calibrated L-band test signal. Exciter functions are described, and a general explanation and description of the C-band uplink controller is presented.

  7. Wideband MEMS Resonator Using Multifrequency Excitation

    KAUST Repository

    Jaber, Nizar; Ramini, Abdallah; Al Hennawi, Qais M.; Younis, Mohammad I.

    2016-01-01

    We demonstrate the excitation of combination resonances of additive and subtractive types and their exploitations to realize a large bandwidth micro-machined resonator of large amplitude even at higher harmonic modes of vibrations. The investigation is conducted on a Microelectromechanical systems (MEMS) clamped-clamped microbeam fabricated using polyimide as a structural layer coated with nickel from top and chromium and gold layers from bottom. The microbeam is excited by a two-source harmonic excitation, where the first frequency source is swept around the targeted resonance (first or third mode of vibration) while the second source frequency is kept fixed. We report for the first time a large bandwidth and large amplitude response near the higher order modes of vibration. Also, we show that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled.

  8. Dissociative Excitation of Thymine by Electron Impact

    Science.gov (United States)

    McConkey, William; Tiessen, Collin; Hein, Jeffrey; Trocchi, Joshuah; Kedzierski, Wladek

    2014-05-01

    A crossed electron-gas beam system coupled to a VUV spectrometer has been used to investigate the dissociation of thymine (C5H6N2O2) into excited atomic fragments in the electron-impact energy range from threshold to 375 eV. A special stainless steel oven is used to vaporize the thymine and form it into a beam where it is intersected by a magnetically collimated electron beam, typical current 50 μA. The main features in the spectrum are the H Lyman series lines. The probability of extracting excited C or N atoms from the ring is shown to be very small. In addition to spectral data, excitation probability curves as a function of electron energy will be presented for the main emission features. Possible dissociation channels and excitation mechanisms in the parent molecule will be discussed. The authors thank NSERC (Canada) for financial support.

  9. Wideband MEMS Resonator Using Multifrequency Excitation

    KAUST Repository

    Jaber, Nizar

    2016-03-09

    We demonstrate the excitation of combination resonances of additive and subtractive types and their exploitations to realize a large bandwidth micro-machined resonator of large amplitude even at higher harmonic modes of vibrations. The investigation is conducted on a Microelectromechanical systems (MEMS) clamped-clamped microbeam fabricated using polyimide as a structural layer coated with nickel from top and chromium and gold layers from bottom. The microbeam is excited by a two-source harmonic excitation, where the first frequency source is swept around the targeted resonance (first or third mode of vibration) while the second source frequency is kept fixed. We report for the first time a large bandwidth and large amplitude response near the higher order modes of vibration. Also, we show that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled.

  10. Language identification using excitation source features

    CERN Document Server

    Rao, K Sreenivasa

    2015-01-01

    This book discusses the contribution of excitation source information in discriminating language. The authors focus on the excitation source component of speech for enhancement of language identification (LID) performance. Language specific features are extracted using two different modes: (i) Implicit processing of linear prediction (LP) residual and (ii) Explicit parameterization of linear prediction residual. The book discusses how in implicit processing approach, excitation source features are derived from LP residual, Hilbert envelope (magnitude) of LP residual and Phase of LP residual; and in explicit parameterization approach, LP residual signal is processed in spectral domain to extract the relevant language specific features. The authors further extract source features from these modes, which are combined for enhancing the performance of LID systems. The proposed excitation source features are also investigated for LID in background noisy environments. Each chapter of this book provides the motivatio...

  11. Excited states in stochastic electrodynamics

    International Nuclear Information System (INIS)

    Franca, H.M.; Marshall, T.W.

    1987-12-01

    It is shown that the set of Wigner functions associated with the excited states of the harmonic oscillator constitute a complete set of functions over the phase space. An arbitraty distribution can be expanded in terms of these Wigner functions. By studying the time evolution, according to Stochastic Electrodynamics, of the expansion coefficients, becomes feasible to separate explicity the contributionsof the radiative reaction and the vaccuum field to the Einsten. A coefficients for this system. A simple semiclassical explanation of the Weisskopf-Heitler phenomenon in resonance fluorescence is also supplied. (author) [pt

  12. Technological upgrade of static system excitation of a hydraulic generator of 700 Mwats of the Hydroelectric Power Station Guri; Actualizacion tecnologica del sistema de excitacion estatico de un generador hidraulico de 700 MVA de la Central Hidroelectrica de Guri

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Romy; Guevara, Olivia [C.V.G. Electrificacion del Caroni, C.A. (EDELCA) (Venezuela)

    2004-07-01

    The Generating Units of 700 Mwatts of the Guri Plant from EDELCA are equipped with static excitation systems of analogue technology that using the closure and field's opening switch as a mechanism for the respective processes of excitation and generator dropout. This operational pattern, although functional, has been discontinuing by existing producers because of the inconvenience involved in the management of energy stored in field generator during the dropout. Alternatively, the manufacturers employ a technique of dropout without opening the switch field, based on return to the excitation transformer the energy contained in the field generator. This paper summarizes the EDELCA initiative to upgrade technologically their Generating Units, converting the excitement and dropout switch without opening the field. The project started with a phase of preliminary tests that showed the feasibility of the change and ended with the final implementation of the new scheme in a first unit (Generator n. 15). The results were successful, covering the expectations of the company, so it was decided to continue the project, extending it to the rest of the Generating Units. (author)

  13. Excited cooper pairs

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)

    2001-02-01

    Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es

  14. Dipole-Dipole Electron Excitation Energy Transfer in the System CdSe/ZnS Quantum Dot - Eosin in Butyral Resin Matrix

    Science.gov (United States)

    Myslitskaya, N. A.; Samusev, I. G.; Bryukhanov, V. V.

    2014-11-01

    The electron excitation energy transfer from CdSe/ZnS quantum dots to eosin molecules in the polymer matrix of butyral resin is investigated. The main characteristics of energy transfer are determined. By means of luminescence microscopy and correlation spectroscopy methods we found that quantum dots in the polymer are in an aggregate state.

  15. Electronic-excitation energy transfer in heterogeneous dye solutions under laser excitation

    International Nuclear Information System (INIS)

    Levshin, L.V.; Mukushev, B.T.; Saletskii, A.M.

    1995-01-01

    An experimental study has been made of electronic-excitation energy transfer (EEET) among dye molecules of different types for different exciting-fight wavelengths and temperatures. Upon selective laser excitation of the donor, the inhomogeneous broadening of molecular levels increases the probability of EEET from the donor to acceptor molecules. The efficiency of this process is directly proportional to the acceptor molecule concentration and is temperature dependent. The EEET is accompanied by the spectral migration of energy among donor molecules, which reduces the fluorescence quantum efficiency of the donor. Increasing the frequency of the exciting light decreases in the donor fluorescence quantum efficiency. An increase in the acceptor molecule concentration results in a decrease of the spectral migration of excitation in the donor molecule system. 5 refs., 5 figs

  16. Thermodynamical description of excited nuclei

    International Nuclear Information System (INIS)

    Bonche, P.

    1989-01-01

    In heavy ion collisions it has been possible to obtain composite systems at rather high excitation energies corresponding to temperatures of several MeV. The theoretical studies of these systems are based on concepts borrowed from thermodynamics or statistical physics, such as the temperature. In these lectures, we present the concepts of statistical physics which are involved in the physics of heavy ion as they are produced nowadays in the laboratory and also during the final stage of a supernova collapse. We do not attempt to describe the reaction mechanisms which yield such nuclear systems nor their decay by evaporation or fragmentation. We shall only study their static properties. The content of these lectures is organized in four main sections. The first one gives the basic features of statistical physics and thermodynamics necessary to understand quantum mechanics at finite temperature. In the second one, we present a study of the liquid-gas phase transition in nuclear physics. A phenomenological approach of the stability of hot nuclei follows. The microscopic point of view is proposed in the third part. Starting from the basic concepts derived in the first part, it provides a description of excited or hot nuclei which confirms the qualitative results of the second part. Furthermore it gives a full description of most properties of these nuclei as a function of temperature. Finally in the last part, a microscopic derivation of the equation of state of nuclear matter is proposed to study the collapse of a supernova core

  17. New excitation equipment for 220 MW generators in Kozloduy NPP

    International Nuclear Information System (INIS)

    Tomerlin, D.

    2001-01-01

    Rehabilitation on the excitation equipment for Generator 5, Reactor Unit 3, in Kozloduy NPP was completed in November 2000. ABB's Static Excitation System based on UNITROL 5000 technology has been chosen by the Bulgarian National Utility and Kozloduy NPP to substitute the original Russian excitation system equipment with electro-magnetic voltage regulators. The substitution is in a rehabilitation package of four excitation system equipment for Generator 5 and 6 of Reactor Unit 3 and Generator 7 and 8 of Reactor Unit 4 after a short overview of the original excitation system this paper describes the new Static Excitation System UNITROL 5000 including configuration with block diagram, its main features and merits such as modes of operation, limiter, special control functions and diagnostic facilities. Furthermore, new facilities, which are implemented in UNITROL 5000, such as dynamic current distribution among the thyristors working in parallel as well as the start-up from the residual magnetism are mentioned. Special functions including a so-called free-running mode of operation and automatic change over sequence from new excitation system to the stand-by excitation system, which is DC exciter machine, are described. Some records of the transient responses performed during the commissioning and a photograph of a manufactured system are provided. (author)

  18. Exotic nuclear excitations

    CERN Document Server

    Pancholi, S C

    2011-01-01

    By providing the reader with a foundational background in high spin nuclear structure physics and exploring exciting current discoveries in the field, this book presents new phenomena in a clear and compelling way. The quest for achieving the highest spin states has resulted in some remarkable successes which this monograph will address in comprehensive detail. The text covers an array of pertinent subject matter, including the rotational alignment and bandcrossings, magnetic rotation, triaxial strong deformation and wobbling motion and chirality in nuclei. Dr. Pancholi offers his readers a clearly-written and up-to-date treatment of the topics covered. The prerequisites for a proper appreciation are courses in nuclear physics and nuclear models and measurement techniques of observables like gamma-ray energies, intensities, multi-fold coincidences, angular correlations or distributions, linear polarization, internal conversion coefficients, short lifetime (pico-second range) of excited states etc. and instrum...

  19. Excited nuclei fragmentation

    International Nuclear Information System (INIS)

    Ngo, C.

    1986-11-01

    Experimental indications leading to the thought of a very excited nucleus fragmentation are resumed. Theoretical approaches are briefly described; they are used to explain the phenomenon in showing off they are based on a minimum information principle. This model is based on time dependent Thomas-Fermi calculation which allows the mean field effect description, and with a site-bound percolation model which allows the fluctuation description [fr

  20. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Morgan, T.

    1985-01-01

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  1. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: Manifestations of two mechanisms of graphene-enhanced Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, T.; Mojzeš, P.; Melníková Komínková, Zuzana; Kalbáč, Martin; Sutrová, Veronika; Šloufová, I.; Vlčková, B.

    2017-01-01

    Roč. 48, č. 10 (2017), s. 1270-1281 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : graphene-enhanced Raman scattering * single-layer graphene * free base phthalocyanine * Raman excitation profiles * photoinduced charge transfer Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 2.969, year: 2016

  2. From fusion hierarchy to excited state TBA

    International Nuclear Information System (INIS)

    Juettner, G.; Kluemper, A.

    1998-01-01

    Functional relations among the fusion hierarchy of quantum transfer matrices give a novel derivation of the TBA equations, namely without string hypothesis. This is demonstrated for two important models of 1D highly correlated electron systems, the supersymmetric t-J model and the supersymmetric extended Hubbard model. As a consequence, ''the excited state TBA'' equations, which characterize correlation lengths, are explicitly derived for the t-J model. To the authors' knowledge, this is the first explicit derivation of excited state TBA equations for 1D lattice electron systems. (orig.)

  3. Multi-Pulse Excitation for Underwater Analysis of Copper-Based Alloys Using a Novel Remote Laser-Induced Breakdown Spectroscopy (LIBS) System.

    Science.gov (United States)

    Guirado, Salvador; Fortes, Francisco J; Laserna, J Javier

    2016-04-01

    In this work, the use of multi-pulse excitation has been evaluated as an effective solution to mitigate the preferential ablation of the most volatile elements, namely Sn, Pb, and Zn, observed during laser-induced breakdown spectroscopy (LIBS) analysis of copper-based alloys. The novel remote LIBS prototype used in this experiments featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The remote instrument is capable of performing chemical analysis of submersed materials up to a depth of 50 m. Laser-induced breakdown spectroscopy analysis was performed at air pressure settings simulating the conditions during a real subsea analysis. A set of five certified bronze standards with variable concentration of Cu, As, Sn, Pb, and Zn were used. In SP-LIBS, signal emission is strongly sensitive to ambient pressure. In this case, fractionation effect was observed. Multi-pulse excitation circumvents the effect of pressure over the quantitative analysis, thus avoiding the fractionation phenomena observed in single pulse LIBS. The use of copper as internal standard minimizes matrix effects and discrepancies due to variation in ablated mass. © The Author(s) 2016.

  4. Excited QCD 2017

    CERN Document Server

    2017-01-01

    This edition is the ninth in a series of workshops that had been previously organised in Poland (2009), Slovakia (2010 and 2015), France (2011), Portugal (2012 and 2016) and Bosnia and Herzegovina (2013 and 2014). In the year 2017 the workshop goes to the beautiful Sintra near Lisbon, Portugal. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, new resonances, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-gluon plasma, holography, colour-glass condensate, compact stars, applications to astrophysics.

  5. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  6. Laser-induced fluorescence with an OPO system. Part II: direct determination of lead content in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF).

    Science.gov (United States)

    Le Bihan, A; Lijour, Y; Giamarchi, P; Burel-Deschamps, L; Stephan, L

    2003-03-01

    Fluorescence was induced by coupling a laser with an optical parametric oscillator (OPO) to develop an analytical method for the direct determination of lead content, at ultra-trace level, in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF). The optimization of atomization conditions, laser pulse energy, and mainly temporal parameters allowed us to reach a 3 fg detection limit (0.3 ng L(-1)) despite the low repetition rate of the device. The expected error on predicted concentrations of lead, at trace levels, in seawater was below 15%.

  7. An Improved Multidimensional MPA Procedure for Bidirectional Earthquake Excitations

    OpenAIRE

    Wang, Feng; Sun, Jian-Gang; Zhang, Ning

    2014-01-01

    Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA) method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two compone...

  8. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  9. The Mean Excitation Energy of Atomic Ions

    DEFF Research Database (Denmark)

    Sauer, Stephan; Oddershede, Jens; Sabin, John R.

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  10. Multipurpose exciter with low phase noise

    Science.gov (United States)

    Conroy, B.; Le, D.

    1989-01-01

    Results of an effort to develop a lower-cost exciter with high stability, low phase noise, and controllable phase and frequency for use in Deep Space Network and Goldstone Solar System Radar applications are discussed. Included is a discussion of the basic concept, test results, plans, and concerns.

  11. Collective excitations of harmonically trapped ideal gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show

  12. Topics in magnetism: magnetic excitations in insulators

    International Nuclear Information System (INIS)

    Rezende, S.M.

    1975-01-01

    The concept of spin waves is introduced and green's functions formalism is used in connection with thermodynamic properties of ferromagnets. Simple features of magnons in ferromagnetic insulators are discussed and also of those with dipolar and anisotropic contributions in the hamiltonian. Magnons in more complex systems, e.g. antiferromagnetic crystals, are dealt with. Finally, excitation and detection of magnons are also discussed [pt

  13. Excitation dynamics and relaxation in a molecular heterodimer

    International Nuclear Information System (INIS)

    Balevičius, V.; Gelzinis, A.; Abramavicius, D.; Mančal, T.; Valkunas, L.

    2012-01-01

    Highlights: ► Dynamics of excitation within a heterogenous molecular dimer. ► Excited states can be swapped due to different reorganization energies of monomers. ► Conventional excitonic basis becomes renormalized due to interaction with the bath. ► Relaxation is independent of mutual positioning of monomeric excited states. -- Abstract: The exciton dynamics in a molecular heterodimer is studied as a function of differences in excitation and reorganization energies, asymmetry in transition dipole moments and excited state lifetimes. The heterodimer is composed of two molecules modeled as two-level systems coupled by the resonance interaction. The system-bath coupling is taken into account as a modulating factor of the molecular excitation energy gap, while the relaxation to the ground state is treated phenomenologically. Comparison of the description of the excitation dynamics modeled using either the Redfield equations (secular and full forms) or the Hierarchical quantum master equation (HQME) is demonstrated and discussed. Possible role of the dimer as an excitation quenching center in photosynthesis self-regulation is discussed. It is concluded that the system-bath interaction rather than the excitonic effect determines the excitation quenching ability of such a dimer.

  14. Clinical Comparison of Pulse and Chirp Excitation

    DEFF Research Database (Denmark)

    Pedersen, Morten Høgholm; Misaridis, T.; Jensen, Jørgen Arendt

    2002-01-01

    Coded excitation (CE) using frequency modulated signals (chirps) combined with modified matched filtering has earlier been presented showing promising results in simulations and in-vitro. In this study an experimental ultrasound system is evaluated in a clinical setting, where image sequences...... and short pulse excitation to simultaneously produce identical image sequences using both techniques. Nine healthy male volunteers were scanned in abdominal locations. All sequences were evaluated by 3 skilled medical doctors, blinded to each other and to the technique used. They assessed the depth (1...

  15. Multipole giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Xia Keding; Cai Yanhuang

    1989-01-01

    The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed

  16. Dissociative Excitation of Adenine by Electron Impact

    Science.gov (United States)

    McConkey, J. William; Trocchi, Joshuah; Dech, Jeffery; Kedzierski, Wladek

    2017-04-01

    Dissociative excitation of adenine (C6H5NH2) into excited atomic fragments has been studied in the electron impact energy range from threshold to 300 eV. A crossed beam system coupled to a vacuum ultraviolet (VUV) monochromator is used to study emissions in the wavelength range from 110 to 200 nm. The beam of adenine vapor from a stainless steel oven is crossed at right angles by the electron beam and the resultant UV radiation is detected in a mutually orthogonal direction. The strongest feature in the spectrum is H Lyman- α. Financial support from NSERC and CFI, Canada, is gratefully acknowledged.

  17. Low-frequency excitations in zirconium hydrides

    International Nuclear Information System (INIS)

    Radulescu, A.; Padureanu, I.; Rapeanu, S.N.; Beldiman, A.; Kozlov, Zh.A.; Semenov, V.A.

    1999-01-01

    The slow inelastic neutron scattering (INS) on ZrH x systems (x = 0.38, 0.52) revealed new excitations located within the energy range 2-10 MeV. Besides the acoustic vibrations specific to α-HCP Zr and γ-FCO Zr hydride the fine structure of these excitations is clearly observed. The origin of the new observed peaks is not very clear but a proton tunneling or a resonance effect in α-Zr lattice could be taken into account

  18. CINE: Comet INfrared Excitation

    Science.gov (United States)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  19. Soliton excitation in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Twum, A.K.

    1995-10-01

    Excitation of soliton in superlattice has been investigated theoretically. It is noted that the soliton velocity u and the length L depend on the amplitude E 0 and that an increase in the amplitude causes soliton width L to approach zero and the velocity u to that of light V in homogeneous medium. The characteristic parameters of soliton u, L and E 0 are related by expression u/L E 0 = ed/2(h/2π) which is constant depending only on the SL period d. It is observed also that the soliton has both energy E = 8V 2 (1 - u 2 /V 2 ) -1/2 and momentum P = u/V 2 E which makes it behave as relativistic free particle with rest energy 8V 2 . Its interaction with electrons can cause the soliton electric effect in SL. (author). 27 refs

  20. Springing response due to bidirectional wave excitation

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena

    2005-01-01

    theories deal with the unidirectional wave excitation. This is quite standard. The problem is how to include more than one directional wave systems described by a wave spectrum with arbitrary heading. The main objective of the present work has been to account for the additional second-order springing......-linear (second order) high frequency springing analyses with unidirectional wave excitation are much more scattered. Some of the reasons are different level of wave excitation accounted in the different Executive Summary ivtheories, inclusion of additional hydrodynamic phenomena e.g. slamming in the time...... because, to the author's knowledge, this is the first time that the wave data were collected simultaneously with stress records on the deck of the ship. This is highly appreciated because one can use the precise input and not only the most probable sea state statistics. The actual picture of the sea waves...

  1. Pilot testing of a hydraulic bridge exciter

    Directory of Open Access Journals (Sweden)

    Andersson Andreas

    2015-01-01

    Full Text Available This paper describes the development of a hydraulic bridge exciter and its first pilot testing on a full scale railway bridge in service. The exciter is based on a hydraulic load cylinder with a capacity of 50 kN and is intended for controlled dynamic loading up to at least 50 Hz. The load is applied from underneath the bridge, enabling testing while the railway line is in service. The system is shown to produce constant load amplitude even at resonance. The exciter is used to experimentally determine frequency response functions at all sensor locations, which serve as valuable input for model updating and verification. An FE-model of the case study bridge has been developed that is in good agreement with the experimental results.

  2. Adaptive transition rates in excitable membranes

    Directory of Open Access Journals (Sweden)

    Shimon Marom

    2009-02-01

    Full Text Available Adaptation of activity in excitable membranes occurs over a wide range of timescales. Standard computational approaches handle this wide temporal range in terms of multiple states and related reaction rates emanating from the complexity of ionic channels. The study described here takes a different (perhaps complementary approach, by interpreting ion channel kinetics in terms of population dynamics. I show that adaptation in excitable membranes is reducible to a simple Logistic-like equation in which the essential non-linearity is replaced by a feedback loop between the history of activation and an adaptive transition rate that is sensitive to a single dimension of the space of inactive states. This physiologically measurable dimension contributes to the stability of the system and serves as a powerful modulator of input-output relations that depends on the patterns of prior activity; an intrinsic scale free mechanism for cellular adaptation that emerges from the microscopic biophysical properties of ion channels of excitable membranes.

  3. Charmonium non-potential excitations

    International Nuclear Information System (INIS)

    Borue, V.Y.; Khokhlachev, S.B.

    1990-01-01

    Within the framework of an effective theory of quantum gluodynamics formulated earlier in terms of the glueball degrees of freedom, the excitations of gluon bunch formed by heavy quark and antiquark are considered. It is shown that these excitations correspond to the vibration of the gluon bunch shape and lie nearly 800 MeV higher than the charmonium ground state. The consequences of the existence of these excitations are discussed

  4. Block 3 X-band receiver-exciter

    Science.gov (United States)

    Johns, C. E.

    1987-01-01

    The development of an X-band exciter, for use in the X-Band Uplink Subsystem, was completed. The exciter generates the drive signal for the X-band transmitter and also generates coherent test signals for the S- and X-band Block 3 translator and a Doppler reference signal for the Doppler extractor system. In addition to the above, the exciter generates other reference signals that are described. Also presented is an overview of the exciter design and some test data taken on the prototype. A brief discussion of the Block 3 Doppler extractor is presented.

  5. Modeling pulsed excitation for gas-phase laser diagnostics

    International Nuclear Information System (INIS)

    Settersten, Thomas B.; Linne, Mark A.

    2002-01-01

    Excitation dynamics for pulsed optical excitation are described with the density-matrix equations and the rate equations for a two-level system. A critical comparison of the two descriptions is made with complete and consistent formalisms that are amenable to the modeling of applied laser-diagnostic techniques. General solutions, resulting from numerical integration of the differential equations describing the excitation process, are compared for collisional conditions that range from the completely coherent limit to the steady-state limit, for which the two formalisms are identical. This analysis demonstrates the failure of the rate equations to correctly describe the transient details of the excitation process outside the steady-state limit. However, reasonable estimates of the resultant population are obtained for nonsaturating (linear) excitation. This comparison provides the laser diagnostician with the means to evaluate the appropriate model for excitation through a simple picture of the breakdown of the rate-equation validity

  6. Sampling system for pulsed signals. Study of the radioactive lifetimes of excited 3{sup 2}P1/2 and 3{sup 2}P3/2 states of Na, excited by a tunable dye laser; Sistema de muestreo para senales pulsadas. Estudio de vidas medias de niveles 3{sup 2} P1/2 y 3{sup 2}P3/2 excitados por un laser de colorantes pulsado

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P; Campos, J

    1979-07-01

    A system for sampling and averaging repetitive signals in the order of nanoseconds is discussed. The system uses as storage memory a multichannel analyzer operating in multi scaling mode. This instrument is employed for the measurement of atomic level lifetimes using a dye laser to excite the atoms and is applied to the study of lifetimes of the 3{sup 2}P1/2 and 3{sup 2}P3/2 states of sodium. (Author) 32 refs.

  7. Intrinsic and defect related luminescence in double oxide films of Al–Hf–O system under soft X-ray and VUV excitation

    Energy Technology Data Exchange (ETDEWEB)

    Pustovarov, V.A., E-mail: vpustovarov@bk.ru [Ural Federal University, 19 Mira Street, 620002 Yekaterinburg (Russian Federation); Smirnova, T.P.; Lebedev, M.S. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Science, Novosibirsk 630090 (Russian Federation); Gritsenko, V.A. [Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk National Research University, 2 Pirogova Street, 630090 Novosibirsk (Russian Federation); Kirm, M. [Institute of Physics, University of Tartu, 14c Ravila, 50411 Tartu (Estonia)

    2016-02-15

    Low temperature time-resolved luminescence spectra in the region of 2.5–9.5 eV under soft X-ray excitation as well as time-resolved luminescence excitation spectra in the UV–VUV region (3.7–12 eV) of solid solutions Al{sub x}Hf{sub y}O{sub 1−x−y} thin films were investigated. The values of x and Al/Hf ratio were determined from X-ray photoelectron srectroscopy data. Hafnia films and films mixed with alumina were grown in a flow-type chemical vapor deposition reactor with argon as a carrier gas. In addition, pure alumina films were prepared by the atomic layer deposition method. A strong emission band with the peak position at 4.4 eV and with the decay time in the μs-range was revealed for pure hafnia films. The emission peak at 7.74 eV with short nanosecond decay kinetics was observed in the luminescence spectra for pure alumina films. These emission bands were ascribed to the radiative decay of self-trapped excitons (an intrinsic luminescence) in pure HfO{sub 2} and Al{sub 2}O{sub 3} films, respectively. Along with intrinsic host emission, defect related luminescence bands with a larger Stokes shift were observed. In the emission spectra of the solid solution films (x=4; 17; 20 at%) the intrinsic emission bands are quenched and only the luminescence of defects (an anion vacancies) was observed. Based on transformation of the luminescence spectra and ns-luminescence decay kinetics, as well as changes in the time-resolved luminescence and luminescence excitation spectra, the relaxation processes in the films of solid solution are discussed. - Highlights: • Low temperature time−resolved PL spectra were studied in a broad range (1.5−9.5 eV). • We carried out a luminescent control of point defects (anion vacancies) and self−trapped excitons. • We observed photoluminescence of excitons bound on defects. • We observed changes of photoluminescence properties with varying ratio components.

  8. B-periodic oscillations in the Hall-resistance induced by a dc-current-bias under combined microwave-excitation and dc-current bias in the GaAs/AlGaAs 2D system.

    Science.gov (United States)

    Liu, Han-Chun; Reichl, C; Wegscheider, W; Mani, R G

    2018-05-18

    We report the observation of dc-current-bias-induced B-periodic Hall resistance oscillations and Hall plateaus in the GaAs/AlGaAs 2D system under combined microwave radiation- and dc bias excitation at liquid helium temperatures. The Hall resistance oscillations and plateaus appear together with concomitant oscillations also in the diagonal magnetoresistance. The periods of Hall and diagonal resistance oscillations are nearly identical, and source power (P) dependent measurements demonstrate sub-linear relationship of the oscillation amplitude with P over the span 0 < P ≤ 20 mW.

  9. Subsurface excitations in a metal

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Sosolik, C. E.

    2009-01-01

    We investigate internal hot carrier excitations in a Au thin film bombarded by hyperthermal and low energy alkali and noble gas ions. Excitations within the thin film of a metal-oxide-semiconductor device are measured revealing that ions whose velocities fall below the classical threshold given...... by the free-electron model of a metal still excite hot carriers. Excellent agreement between these results and a nonadiabatic model that accounts for the time-varying ion-surface interaction indicates that the measured excitations are due to semilocalized electrons near the metal surface....

  10. Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment.

    Science.gov (United States)

    Hermann, Petra M; Watson, Shawn N; Wildering, Willem C

    2014-01-01

    The aging brain undergoes a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (per)oxidation of membrane lipids and activation of phospholipase A2 (PLA2) enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the biology of cognitive aging we portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain.

  11. Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment.

    Directory of Open Access Journals (Sweden)

    Petra Maria Hermann

    2014-12-01

    Full Text Available TThe aging brain can undergo a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (peroxidation of membrane lipids and activation of phospholipase A2 (PLA2 enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the Biology of cognitive aging we (1 portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and (2 recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain.

  12. New insights into structure-function relationship of the DHPR beta1a subunit in skeletal muscle excitation-contraction coupling using zebrafish 'relaxed' as an expression system

    International Nuclear Information System (INIS)

    Dayal, A.

    2010-01-01

    The paralyzed zebrafish strain relaxed carries a null mutation for the skeletal muscle dihydropyridine receptor (DHPR) [beta]1a subunit. The lack of [beta]1a not only impedes functional [alpha]1S membrane expression but also precludes the skeletal muscle-specific ultrastructural arrangement of DHPRs into tetrads opposite ryanodine receptor (RyR1), coherent with the absence of skeletal muscle excitation-contraction (EC) coupling. With the plethora of experimental approaches feasible with zebrafish model organism and importantly with the [beta]1-null mutation having a monogenetic inheritance and because of the survival of the relaxed larvae for some days, we were able to establish the zebrafish relaxed as an expression system. Linking in vitro to in vivo observations, a clear differentiation between the major functional roles of [beta] subunits in EC coupling was feasible. The skeletal muscle [beta]1a subunit was able to restore all parameters of EC coupling upon expression in relaxed myotubes and larvae. Expression of the phylogenetically closest isoform to [beta]1a, the cardiac/neuronal [beta]2a subunit or the most distant neuronal [beta]M from the housefly in relaxed myotubes and larvae was likewise able to fully restore [alpha]1S triad targeting and facilitate charge movement. However, efficient tetrad formation and thus intact DHPR-RyR1 coupling was exclusively promoted by the [beta]1a isoform. Consequently, we postulated a model according to which [beta]1a acts as a unique allosteric modifier of [alpha]1S conformation crucial for skeletal muscle EC coupling. Therefore, unique structural elements in [beta]1a must be present which endow it with this exclusive property. Earlier, a unique hydrophobic heptad repeat motif (LVV) in the [beta]1a C-terminus was postulated by others to be essential for skeletal muscle EC coupling. We wanted to address the question if the proposed [beta]1a heptad repeat motif could be an active element of the DHPR-RyR1 signal transduction

  13. An efficient method to calculate excitation energy transfer in light-harvesting systems: application to the Fenna-Matthews-Olson complex

    International Nuclear Information System (INIS)

    Ritschel, Gerhard; Roden, Jan; Eisfeld, Alexander; Strunz, Walter T

    2011-01-01

    A master equation derived from non-Markovian quantum state diffusion is used to calculate the excitation energy transfer in the photosynthetic Fenna-Matthews-Olson pigment-protein complex at various temperatures. This approach allows us to treat spectral densities that explicitly contain the coupling to internal vibrational modes of the chromophores. Moreover, the method is very efficient and as a result the transfer dynamics can be calculated within about 1 min on a standard PC, making systematic investigations w.r.t. parameter variations tractable. After demonstrating that our approach is able to reproduce the results of the numerically exact hierarchical equations of motion approach, we show how the inclusion of vibrational modes influences the transfer. (paper)

  14. Anisotropy of electronic states excited in ion-atom collisions

    International Nuclear Information System (INIS)

    Boskamp, E.B.

    1983-01-01

    The author reports coincidence measurements made on the He + + Ne and He + + He systems. The complex population amplitudes for the magnetic sublevels of the investigated excited states, Ne(2p 4 3s 2 ) 1 D and He(2p 2 ) 1 D, were completely determined and possible excitation mechanisms are described. (Auth.)

  15. High energy magnetic excitations

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1988-01-01

    The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La 2 CuO 4 , which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)

  16. Coulomb excitation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Marlete; Britos, Tatiane Nassar [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Ciencias Exatas e da Terra; Descouvemont, Pierre [Universite Libre de Bruxelles (ULB), Brussels (Belgium). Physique Nucleaire Theorique et Physique Mathematique; Lepine-Szily, Alinka; Lichtenthaler Filho, Rubens; Barioni, Adriana; Silva, Diego Medeiros da; Pereira, Dirceu; Mendes Junior, Djalma Rosa; Pires, Kelly Cristina Cezaretto; Gasques, Leandro Romero; Morais, Maria Carmen; Added, Nemitala; Neto Faria, Pedro; Rec, Rafael [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear

    2012-07-01

    Full text: This work shows the Coulomb Excitation of {sup 8}Li on targets that have effectively behavior of Rutherford in angles and energies of interest for determining the value of the B(E2) electromagnetic transition. Theoretical aspects involved in this type of measure, known as COULEX [1], and some results in the literature [2-3] will be presented. Some problems with the targets and measurement system while performing an experiment on Coulomb Excitation of {sup 8}Li will be discussed: the energy resolution, background, possible contributions of the primary beam and also the excited states of the target near the region of elastic and inelastic peaks. They will be illustrated by measurements of the Coulomb Excitation of {sup 8}Li on targets of {sup 197}Au and {sup 208}Pb using the system RIBRAS(Brazilian Radioactive Ion Beam). In this case, the {sup 8}Li beam(T{sub 1/2} = 838 ms)is produced by {sup 9}Be({sup 7}Li;{sup 8} Li){sup 8}Be reaction from RIBRAS system which is installed at Instituto de Fisica of the Universidade de Sao Paulo. The primary {sup 7L}i beam is provided by Pelletron Accelerator. [1] K. Alder and A. Winther, Electromagnetic Excitation, North-Holland, New York, 1975; [2] P. Descouvemont and D. Baye, Phys. Letts. B 292, 235-238, 1992; [3] J. A. Brown, F. D. Becchetti, J. W. Jaenecke, K, Ashktorab, and D. A. Roberts, J. J. Kolata, R. J. Smith, and K. Lamkin, R. E. Warner, Phys. Rev. Letts., 66, 19, 1991; [4] R. J. Smith, J. J Kolata, K. Lamkin and A. Morsard, F. D. Becchetti, J. A. Brown, W. Z. Liu, J. W. Jaenecke, and D. A. Roberts, R. E. Warner, Phys. Rev. C, 43, 5, 1991. (author)

  17. Characteristics of the fluorescent substances in the Yodo River system by three-dimensional excitation emission matrix spectroscopy; Sanjigen reiki/keiko kodoho ni yoru yodogawa suikeichu no keiko busshitsu no tokucho

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Nakaguchi, Y.; Hiraki, K.; Kudo, M.; Kimura, M.; Nagao, S. [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1998-08-01

    Organic substances in the river water in Yodo River system were analyzed by three-dimensional excitation emission matrix spectroscopy. Fluorescent substances were taken as an index of organic substances. The amount of fluorescent substances varied widely depending on the environment of river basin. It is suggested that the fluorescent substances are composed of organic substances which is not directly originated from biological activity. It is suggested that the fluorescent substances were produced by leaching of river bottom sediment. The fluorescent substances in Yodo River system consists of fulvic acid-like substances and protein. The analysis of fluorescent substances in river water by three-dimensional excitation emission matrix spectroscopy can be useful means for estimation of variation and origin of fluorescent substances. For better understanding of features of fluorescent substances in the surface water into which various kinds of substances enter, it is necessary to determine the exact sampling points based on the consideration of different sources and to make a database of peak positions for identification of fluorescent substances from fluorescence intensity peak. 29 refs., 3 figs., 2 tabs.

  18. Excited waves in shear layers

    Science.gov (United States)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  19. Elementary spin excitations in ultrathin itinerant magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, Khalil, E-mail: zakeri@mpi-halle.de

    2014-12-10

    Elementary spin excitations (magnons) play a fundamental role in condensed matter physics, since many phenomena e.g. magnetic ordering, electrical (as well as heat) transport properties, ultrafast magnetization processes, and most importantly electron/spin dynamics can only be understood when these quasi-particles are taken into consideration. In addition to their fundamental importance, magnons may also be used for information processing in modern spintronics. Here the concept of spin excitations in ultrathin itinerant magnets is discussed and reviewed. Starting with a historical introduction, different classes of magnons are introduced. Different theoretical treatments of spin excitations in solids are outlined. Interaction of spin-polarized electrons with a magnetic surface is discussed. It is shown that, based on the quantum mechanical conservation rules, a magnon can only be excited when a minority electron is injected into the system. While the magnon creation process is forbidden by majority electrons, the magnon annihilation process is allowed instead. These fundamental quantum mechanical selection rules, together with the strong interaction of electrons with matter, make the spin-polarized electron spectroscopies as appropriate tools to excite and probe the elementary spin excitations in low-dimensional magnets e.g ultrathin films and nanostructures. The focus is put on the experimental results obtained by spin-polarized electron energy loss spectroscopy and spin-polarized inelastic tunneling spectroscopy. The magnon dispersion relation, lifetime, group and phase velocity measured using these approaches in various ultrathin magnets are discussed in detail. The differences and similarities with respect to the bulk excitations are addressed. The role of the temperature, atomic structure, number of atomic layers, lattice strain, electronic complexes and hybridization at the interfaces are outlined. A possibility of simultaneous probing of magnons and phonons

  20. Nuclear excitations and reaction mechanisms

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1990-01-01

    The main theme of this report is the study and interpretation of the sequence of events that occur during the collisions of nuclear particles. Some of the processes discussed in parts A and B involve short range interactions; others involve interactions of long range. In most of part A one of the particles in the initial or in the final state (or in both) is a photon, which serves as a probe of the second particle, which may be a nucleus, a proton, a pion or any other hadron. The complexity of the processes taking place during the collisions makes it necessary to simplify some aspects of the physical problem. This leads to the introduction of modals which are used to describe a limited number of features in as much detail as possible. The main interest is the understanding of the hadronic excitations which result from the absorption of a photon and the determination of the fundamental structure constants of the target particle. In part B, all the particles are hadrons. The purpose here is to develop and apply optimal quantal methods appropriate for describing the interacting systems. Of particular interest are three-particle collision systems in which the final state consists of three free particles. Part B also considers the process of nuclear fusion as catalyzed by bound muons

  1. Effectiveness of the mechanical excitation applied to the olive paste: possible improving of the oil yield, in malaxation phase, by vibration systems

    Directory of Open Access Journals (Sweden)

    Tullia Gallina Toschi

    2014-02-01

    Full Text Available The mechanical vibrations characterized by a frequency lower than 200 Hz could promote the cells breakage and improve the oil extraction process by avoiding, at the same time, the negative effects on the commercial qualitative parameters due to the use of the heating during malaxation. Vibration tests were conducted by means of an electrodynamic shaker in order to find the optimal frequency levels of excitation, able to put in a resonant condition the olive paste. Sinusoidal accelerations at constant acceleration (120 m/s2, in a range between 5 and 200 Hz were explored. The 50 Hz and 80 Hz frequencies were able to put in resonant condition the olive paste. In the vibrated samples at 50 Hz (15 min of treatment, the maximum increment of the extraction efficiency (about 53% in comparison with the control, was observed. Further studies could be conducted in order to assess the synergic effect of the mechanical vibrations and the malaxation on the oil extraction efficiency, with the aim of reducing the time of the whole phase and avoiding changes in the oil quality traits.

  2. Self-excitation of single nanomechanical pillars

    Science.gov (United States)

    Kim, Hyun S.; Qin, Hua; Blick, Robert H.

    2010-03-01

    Self-excitation is a mechanism that is ubiquitous for electromechanical power devices such as electrical generators. This is conventionally achieved by making use of the magnetic field component in electrical generators (Nedic and Lipo 2000 IEEE/IAS Conf. Records (Rome, Italy) vol 1 pp 51-6), a good and widely visible example of which is the wind turbine farm (Muljadi et al 2005 J. Sol. Energy Eng. 127 581-7). In other words, a static force, such as the wind acting on rotor blades, can generate a resonant excitation at a certain mechanical frequency. For nanomechanical systems (Craighead 2000 Science 290 1532-5 Roukes 2001 Phys. World 14 25-31 Cleland 2003 Foundations of Nanomechanics (Berlin: Springer); Ayari et al 2007 Nano Lett. 7 2252-7 Koenig et al 2008 Nat. Nanotechnol. 3 482-4) such a self-excitation (SE) mechanism is also highly desirable, because it can generate mechanical oscillations at radio frequencies by simply applying a dc bias voltage. This is of great importance for low-power signal communication devices and detectors, as well as for mechanical computing elements. For a particular nanomechanical system—the single electron shuttle—this effect was predicted some time ago by Gorelik et al (Phys. Rev. Lett. 80 4526-9). Here, we use a nanoelectromechanical single electron transistor (NEMSET) to demonstrate self-excitation for both the soft and hard regimes, respectively. The ability to use self-excitation in nanomechanical systems may enable the detection of quantum mechanical backaction effects (Naik et al 2006 Nature 443 193-6) in direct tunneling, macroscopic quantum tunneling (Savelev et al 2006 New J. Phys. 8 105-15) and rectification (Pistolesi and Fazio 2005 Phys. Rev. Lett. 94 036806-4). All these effects have so far been overshadowed by the large driving voltages that had to be applied.

  3. Does intrinsic motivation enhance motor cortex excitability?

    Science.gov (United States)

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research. © 2016 Society for Psychophysiological Research.

  4. Excitation spectrum of Heisenberg spin ladders

    International Nuclear Information System (INIS)

    Barnes, T.; Dagotto, E.; Riera, J.; Swanson, E.S.

    1993-01-01

    Heisenberg antiferromagnetic spin ''ladders'' (two coupled spin chains) are low-dimensional magnetic systems which for S=1/2 interpolate between half-integer-spin chains, when the chains are decoupled, and effective integer-spin one-dimensional chains in the strong-coupling limit. The spin-1/2 ladder may be realized in nature by vanadyl pyrophosphate, (VO) 2 P 2 O 7 . In this paper we apply strong-coupling perturbation theory, spin-wave theory, Lanczos techniques, and a Monte Carlo method to determine the ground-state energy and the low-lying excitation spectrum of the ladder. We find evidence of a nonzero spin gap for all interchain couplings J perpendicular >0. A band of spin-triplet excitations above the gap is also analyzed. These excitations are unusual for an antiferromagnet, since their long-wavelength dispersion relation behaves as (k-k 0 ) 2 (in the strong-coupling limit J perpendicular much-gt J, where J is the in-chain antiferromagnetic coupling). Their band is folded, with a minimum energy at k 0 =π, and a maximum between k 1 =π/2 (for J perpendicular =0) and 0 (for J perpendicular =∞). We also give numerical results for the dynamical structure factor S(q,ω), which can be determined in neutron scattering experiments. Finally, possible experimental techniques for studying the excitation spectrum are discussed

  5. Uniform excitations in magnetic nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt

    2010-01-01

    We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....

  6. Uniform excitations in magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Steen Mørup

    2010-11-01

    Full Text Available We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering.

  7. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    International Nuclear Information System (INIS)

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-01-01

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations

  8. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1977-01-01

    A system for isotope separation or enrichment wherein molecules of a selected isotope type in a flow of molecules of plural isotope types are vibrationally excited and collided with a background gas to provide enhanced diffusivity for the molecules of the selected isotope type permitting their separate collection. The system typically is for the enrichment of uranium using a uranium hexafluoride gas in combination with a noble gas such as argon. The uranium hexafluoride molecules having a specific isotope of uranium are vibrationally excited by laser radiation. The vibrational energy is converted to a translation energy upon collision with a particle of the background gas and the added translation energy enhances the diffusivity of the selected hexafluoride molecules facilitating its condensation on collection surfaces provided for that purpose. This process is periodically interrupted and the cryogenic flow halted to permit evaporation of the collected molecules to provide a distinct, enriched flow

  9. Excitation equilibria in plasmas: a classification

    International Nuclear Information System (INIS)

    Mullen, J.-J.A.M. van der.

    1986-01-01

    In this thesis the author presents a classification of plasmas based on the atomic state distribution function. The study is based on the relation between the distribution function and the underlying processes and starts with the proper understanding of thermodynamic equilibrium (TE). Four types of proper balances are relevant: The 'Maxwell balance' of kinetic energy transfer, the 'Boltzmann balance' of excitation/deexcitation, the 'Saha balance' of ionization/recombination and the 'Planck balance' for interaction of atoms with radiation. Special attention is paid to the distribution function of the ionizing excitation saturation balance. The classification theory of the distribution functions in relation with underlying balances is supported by experimental evidence in an ionizing argon plasma. The AR I system provides a pertinent support of the theory. Experimental facts found in the AR II system can be interpreted in global terms. (Auth.)

  10. Multiflavour excited mesons from the fifth dimension

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Angel [Centre de Physique Theorique, Ecole Polytechnique, 91128 Palaiseau (France)]. E-mail: angel.paredes@cpht.polytechnique.fr; Talavera, Pere [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Jordi Girona 1-3, E-08034 Barcelona (Spain)]. E-mail: pere.talavera@upc.es

    2005-05-02

    We study the Regge trajectories and the quark-antiquark energy in excited hadrons composed by different dynamical mass constituents via the gauge/string correspondence. First we exemplify the procedure in a supersymmetric system, D3-D7, in the extremal case. Afterwards we discuss the model dual to large-N{sub c} QCD, D4-D6 system. In the latter case we find the field theory expected gross features of vector like theories: the spectrum resembles that of heavy quarkonia and the Chew-Frautschi plot of the singlet and first excited states is in qualitative agreement with those of lattice QCD. We stress the salient points of including different constituents masses.

  11. Multiflavour excited mesons from the fifth dimension

    International Nuclear Information System (INIS)

    Paredes, Angel; Talavera, Pere

    2005-01-01

    We study the Regge trajectories and the quark-antiquark energy in excited hadrons composed by different dynamical mass constituents via the gauge/string correspondence. First we exemplify the procedure in a supersymmetric system, D3-D7, in the extremal case. Afterwards we discuss the model dual to large-N c QCD, D4-D6 system. In the latter case we find the field theory expected gross features of vector like theories: the spectrum resembles that of heavy quarkonia and the Chew-Frautschi plot of the singlet and first excited states is in qualitative agreement with those of lattice QCD. We stress the salient points of including different constituents masses

  12. Excitable particles in an optical torque wrench

    Science.gov (United States)

    Pedaci, Francesco; Huang, Zhuangxiong; van Oene, Maarten; Barland, Stephane; Dekker, Nynke H.

    2011-03-01

    The optical torque wrench is a laser trapping technique capable of applying and directly measuring torque on microscopic birefringent particles using spin momentum transfer, and has found application in the measurement of static torsional properties of biological molecules such as single DNAs. Motivated by the potential of the optical torque wrench to access the fast rotational dynamics of biological systems, a result of its all-optical manipulation and detection, we focus on the angular dynamics of the trapped birefringent particle, demonstrating its excitability in the vicinity of a critical point. This links the optical torque wrench to nonlinear dynamical systems such as neuronal and cardiovascular tissues, nonlinear optics and chemical reactions, all of which display an excitable binary (`all-or-none') response to input perturbations. On the basis of this dynamical feature, we devise and implement a conceptually new sensing technique capable of detecting single perturbation events with high signal-to-noise ratio and continuously adjustable sensitivity.

  13. small signal analysis of load angle governing and excitation control

    African Journals Online (AJOL)

    Dr Obe

    system stabilizers (PSS) or using terminal voltage for control of exciter and speed signal for governor. ... Vfd= generator field voltage. Xd, Xq ... each other in the frequency domain, and therefore ..... angle sensing equipment, relays and.

  14. Electroluminescence from graphene excited by electron tunneling

    International Nuclear Information System (INIS)

    Beams, Ryan; Bharadwaj, Palash; Novotny, Lukas

    2014-01-01

    We use low-energy electron tunneling to excite electroluminescence in single layer graphene. Electrons are injected locally using a scanning tunneling microscope and the luminescence is analyzed using a wide-angle optical imaging system. The luminescence can be switched on and off by inverting the tip–sample bias voltage. The observed luminescence is explained in terms of a hot luminescence mechanism. (paper)

  15. Controlling nonlinear waves in excitable media

    International Nuclear Information System (INIS)

    Puebla, Hector; Martin, Roland; Alvarez-Ramirez, Jose; Aguilar-Lopez, Ricardo

    2009-01-01

    A new feedback control method is proposed to control the spatio-temporal dynamics in excitable media. Applying suitable external forcing to the system's slow variable, successful suppression and control of propagating pulses as well as spiral waves can be obtained. The proposed controller is composed by an observer to infer uncertain terms such as diffusive transport and kinetic rates, and an inverse-dynamics feedback function. Numerical simulations shown the effectiveness of the proposed feedback control approach.

  16. Controlling nonlinear waves in excitable media

    Energy Technology Data Exchange (ETDEWEB)

    Puebla, Hector [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, Azcapotzalco 02200, DF, Mexico (Mexico)], E-mail: hpuebla@correo.azc.uam.mx; Martin, Roland [Laboratoire de Modelisation et d' Imagerie en Geosciences, CNRS UMR and INRIA Futurs Magique-3D, Universite de Pau (France); Alvarez-Ramirez, Jose [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa (Mexico); Aguilar-Lopez, Ricardo [Departamento de Biotecnologia y Bioingenieria, CINVESTAV-IPN (Mexico)

    2009-01-30

    A new feedback control method is proposed to control the spatio-temporal dynamics in excitable media. Applying suitable external forcing to the system's slow variable, successful suppression and control of propagating pulses as well as spiral waves can be obtained. The proposed controller is composed by an observer to infer uncertain terms such as diffusive transport and kinetic rates, and an inverse-dynamics feedback function. Numerical simulations shown the effectiveness of the proposed feedback control approach.

  17. Scattering of highly excited atoms

    International Nuclear Information System (INIS)

    Raith, W.

    1980-01-01

    Experimental methods to excite atomic beams into Rydberg states and the first results of collision experiments with such beams are reported. For further information see hints under relevant topics. (orig.) [de

  18. High power laser exciter accelerators

    International Nuclear Information System (INIS)

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  19. Autowaves in moving excitable media

    Directory of Open Access Journals (Sweden)

    V.A.Davydov

    2004-01-01

    Full Text Available Within the framework of kinematic theory of autowaves we suggest a method for analytic description of stationary autowave structures appearing at the boundary between the moving and fixed excitable media. The front breakdown phenomenon is predicted for such structures. Autowave refraction and, particulary, one-side "total reflection" at the boundary is considered. The obtained analytical results are confirmed by computer simulations. Prospects of the proposed method for further studies of autowave dynamics in the moving excitable media are discussed.

  20. Magnetic excitations in amorphous ferromagnets

    International Nuclear Information System (INIS)

    Continentino, M.A.

    The propagation of magnetic excitations in amorphous ferromagnets is studied from the point of view of the theory of random frequency modulation. It is shown that the spin waves in the hydrodynamic limit are well described by perturbation theory while the roton-like magnetic excitations with wavevector about the peak in the structure factor are not. A criterion of validity of perturbation theory is found which is identical to a narrowing condition in magnetic resonance. (author) [pt

  1. Excitations of strange bottom baryons

    Energy Technology Data Exchange (ETDEWEB)

    Woloshyn, R.M. [TRIUMF, Vancouver, British Columbia (Canada)

    2016-09-15

    The ground-state and first-excited-state masses of Ω{sub b} and Ω{sub bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations. (orig.)

  2. Doubly and triply excited states for different plasma sources

    International Nuclear Information System (INIS)

    More, R.M.; Safronova, U.I.

    2000-01-01

    Autoionizing rates of doubly excited states as nln'l' configurations with n=2-9 and n'=2-9 are calculated. Analytical expressions of decay amplitude for two-electron system are derived. Expressions for autoionizing rates with averaging over LS are obtained for many-electron systems. The n and l dependence of doubly excited states as nln'l' configurations are investigated. (author)

  3. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  4. 46 CFR 111.12-3 - Excitation.

    Science.gov (United States)

    2010-10-01

    ... 46 CFR 110.10-1). In particular, no static exciter may be used for excitation of an emergency generator unless it is provided with a permanent magnet or a residual-magnetism-type exciter that has the...

  5. Electron-excited molecule interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Tennessee Univ., Knoxville, TN

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10 6 to 10 7 times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs

  6. Effects of intermediate load on performance limitations in excitation control

    Directory of Open Access Journals (Sweden)

    Pichai Aree

    2008-05-01

    Full Text Available The stability of excitation control systems is of great concern in power system operations. In this paper, the effects of intermediate load on performance limitation in excitation control are studied. The results reveal that the open-loop characteristic of synchronous machine’s flux linkage can be changed from minimum to non-minimum phase at a high level of intermediate load. This change leads to instability of synchronous machines under manual excitation control. A particular emphasis is also given to investigate the fundamental limitations in excitation control, imposed by non-minimum phases with regard to the open-loop right-half-plane (ORHP pole. The study demonstrates the difficulties of excitation control tuning to achieve the desired performance and robustness under the ORHP pole occurrence. Moreover, this paper shows the conditional stability in excitation control loop, where either an increase or decrease of the exciter gain causes a destabilization of the system’s stability. Frequency response techniques are used for these investigations.

  7. Efficient Electric Powertrain with externally excited synchronous machine without rare earth magnets using the example of the Renault system solution; Effizienter Elektroantrieb mit fremderregter Synchronmaschine ohne seltene Erden am Beispiel der Renault Systemloesung

    Energy Technology Data Exchange (ETDEWEB)

    Fennel, H.; Hakvoort, H. [Continental, Nuernberg (Germany); Hackmann, W. [Continental, Berlin (Germany); Vignaud, A.; Forin-Crouvoisier, L. [Renault, Guyancourt (France)

    2012-11-01

    The Renault Fluence Z.E. and Kangoo Z.E. electric vehicles were launched in mass production in 2011 with an innovative electric power-train. The vehicles show high performance, reliability and comfort and this without any emission and nearly no engine noise. The potential market, taken into account driver usage patterns, autonomy and vehicle price, would already exceed three million electric vehicles. The electric powertrain consists of an externally excited synchronous machine and the second generation power electronics developed and produced by Continental. The powertrain ensures a good compromise between efficiency requirements and cost, especially facing the actual fluctuation of the permanent magnet price. Additionally the approach of a compact axle drive unit, including electric motor and gears, is an effective solution to reduce overall system cost. State of the art safety norms are fulfilled for which the independent shutoff paths of stator and rotor are beneficial. Further standardization is the key to reduce costs. (orig.)

  8. Complete and incomplete fusion measurement and analysis of excitation functions in sup 1 sup 2 C + sup 1 sup 2 sup 8 Te system at energies near and above the coulomb barrier

    CERN Document Server

    Sharma, M K; Prasad, R; Gupta, S; Musthafa, M M; Bhardwaj, H D; Sinha, A K

    2003-01-01

    In order to study complete and incomplete fusion in heavy ion induced reactions the experiment has been carried out for measuring excitation functions (EF's) for several reactions in the system sup 1 sup 2 C + sup 1 sup 2 sup 8 Te, in the energy range approx = 42 - 82 MeV, using activation technique. To the best of our knowledge EF's for presently measured reactions are being reported for the first time. The measured EF's have been compared with those calculated theoretically using codes CASCADE and ALICE-91. Effect of variation of parameters, of the codes, on calculated EF's has also been studied. The analysis of the present data indicates presence of contributions from incomplete fusion in some cases. In general, theoretical calculations agree well with the experimental data.

  9. Exciting Normal Distribution

    Science.gov (United States)

    Fuchs, Karl Josef; Simonovits, Reinhard; Thaller, Bernd

    2008-01-01

    This paper describes a high school project where the mathematics teaching and learning software M@th Desktop (MD) based on the Computer Algebra System Mathematica was used for symbolical and numerical calculations and for visualisation. The mathematics teaching and learning software M@th Desktop 2.0 (MD) contains the modules Basics including tools…

  10. Collective excitations in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1998-01-01

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors)

  11. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  12. Nonlinear stability of spin-flip excitations

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1975-01-01

    A rather complete discussion of the nonlinear electrodynamic behavior of a negative-temperature spin system is presented. The method presented here is based on a coupled set of master equations, one describing the time evolution of the photon (i.e., the spin-flip excitation) distribution function and the other describing the time evolution of the particle distribution function. It is found that the initially unstable (i.e., growing) spin-flip excitations grow to such a large amplitude that their nonlinear reaction on the particle distribution function becomes important. It is then shown that the initially totally inverted two-level spin system evolves rapidly (through this nonlinear photon-particle coupling) towards a quasilinear steady state where the populations of the spin-up and the spin-down states are equal to each other. Explicit expressions for the time taken to reach this quasilinear steady state and the energy in the spin-flip excitations at this state are also presented

  13. Production and de excitation of hot nuclei

    International Nuclear Information System (INIS)

    Auger, F.; Faure, B.; Wirleczki, J.P.; Cunsolo, A.; Foti, A.; Plagnol, E.

    1988-01-01

    We studied Kr induced reactions on C, Al and Ti at 26.4, 34.4 and 45.4 MeV/nucleon. The aims of these experiments were to learn about the influence of the incident energy and asymmetry of the system on the incomplete fusion mechanism, that is on the characteristics (E,l) of the nuclei formed in the reactions and on the competition between massive transfer and preequilibrium emission. We also wanted to study the influence of excitation energy and angular momentum of the nuclei on their deexcitation modes, specially on the competition between light particles (n, p, α) and complex fragments (M>4). Considering the available energies (2.8 < ε < 10.5 MeV/nucleon), the grazing and the total masses (96 ≤ M ≤ 132), nuclei with masses around 100 are likely to be formed with very different excitation energies and angular momenta

  14. Antiferromagnetic resonance excited by oscillating electric currents

    Science.gov (United States)

    Sluka, Volker

    2017-12-01

    In antiferromagnetic materials the order parameter exhibits resonant modes at frequencies that can be in the terahertz range, making them interesting components for spintronic devices. Here, it is shown that antiferromagnetic resonance can be excited using the inverse spin-Hall effect in a system consisting of an antiferromagnetic insulator coupled to a normal-metal waveguide. The time-dependent interplay between spin torque, ac spin accumulation, and magnetic degrees of freedom is studied. It is found that the dynamics of the antiferromagnet affects the frequency-dependent conductivity of the normal metal. Further, a comparison is made between spin-current-induced and Oersted-field-induced excitation under the condition of constant power injection.

  15. Ultrafast electronic relaxation of excited state vitamin B12 in the gas phase

    International Nuclear Information System (INIS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoit

    2008-01-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states

  16. Electron spectroscopy of collisional excited atoms

    International Nuclear Information System (INIS)

    Straten, P. van der.

    1987-01-01

    In this thesis measurements are described in which coincidences are detected between scattered projectiles and emitted electrons. This yields information on two-electron excitation processes. In order to show what can be learnt from coincidence experiments a detailed theoretical analysis is given. The transition amplitudes, which contain all the information, are introduced (ch.2). In ch.3 the experimental set-up is shown. The results for the Li + -He system are shown in ch. 7 and are compared with predictions based on the Molecular-Orbitalmodel which however does not account for two-excitation mechanisms. With the transition amplitudes also the wave function of the excited atom has been completely determined. In ch.8 the shape of the electron cloud, induced by the collision, is derived from the amplitudes. The relation between the oscillatory motion of this cloud after the collision and the correlation between the two electrons of the excited atom is discussed. In ch. 6 it is shown that the broad structures in the non-coincident energy spectra of the Li + -He system are erroneously interpretated as a result of electron emission from the (Li-He) + -quasimolecule. A model is presented which explains, based on the results obtained from the coincidence measurements, these broad structures. In ch. 4 the Post-Collision Interaction process is treated. It is shown that for high-energy collisions, in contrast with general assumptions, PCI is important. In ch. 5 the importance of PCI-processes in photoionization of atoms, followed by Auger decay, are studied. From the formulas derived in ch. 4 simple analytical results are obtained. These are applied to recent experiments and good agreement is achieved. 140 refs.; 55 figs.; 9 tabs

  17. Excited states rotational effects on the behavior of excited molecules

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 7 is a collection of papers that discusses the excited states of molecules. The first paper reviews the rotational involvement in intra-molecular in vibrational redistribution. This paper analyzes the vibrational Hamiltonian as to its efficacy in detecting the manifestations of intra-molecular state-mixing in time-resolved and time-averaged spectroscopic measurements. The next paper examines the temporal behavior of intra-molecular vibration-rotation energy transfer (IVRET) and the effects of IVRET on collision, reaction, and the decomposition processes. This paper also

  18. Collective excitations in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1997-01-01

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author)

  19. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    1997-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  20. Accurate calculations of the ground state and low-lying excited states of the (RbBa)+ molecular ion: a proposed system for ultracold reactive collisions

    DEFF Research Database (Denmark)

    Knecht, Stefan; Sørensen, Lasse Kragh; Jensen, Hans Jørgen Aagaard

    2010-01-01

    Collisions of ultracold Ba+ ions on a Rb Bose–Einstein condensate have been suggested as a possible benchmark system for ultracold ion-neutral collision experiments. However, a priori knowledge of the possible processes is desirable. For this purpose, we here present high-level four-component cou...