High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics
Energy Technology Data Exchange (ETDEWEB)
Svensson, C.E.; Cameron, J.A.; Flibotte, S. [McMaster Univ., Ontario (Canada)] [and others
1996-12-31
The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.
International Nuclear Information System (INIS)
Wilson, A.N.; Singh, A.K.; Huebel, H.; Rossbach, D.; Schonwasser, G.; Davidson, P.M.; Dracoulis, G.D.; Lane, G.J.; Goergen, A.; Korichi, A.; Hannachi, F.; Lopez-Martens, A.; Astier, A.; Azaiez, F.; Bourgeois, C.; Bazzacco, D.; Kroell, T.; Rossi-Alvarez, C.; Buforn, N.; Redon, N.
2005-01-01
The excitation energy of the lowest-energy superdeformed band in 196 Pb is established using the techniques of time-correlated γ-ray spectroscopy. Together with previous measurements on 192 Pb and 194 Pb, this result allows superdeformed excitation energies, binding energies, and two-proton and two-neutron separation energies to be studied systematically, providing stringent tests for current nuclear models. The results are examined for evidence of a 'superdeformed shell gap'
International Nuclear Information System (INIS)
Li Wenfei; Zhang Fengshou; Chen Liewen
2001-01-01
Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments
High energy nuclear excitations
International Nuclear Information System (INIS)
Gogny, D.; Decharge, J.
1983-09-01
The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering
Hardness and excitation energy
Indian Academy of Sciences (India)
It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...
High energy magnetic excitations
International Nuclear Information System (INIS)
Endoh, Yasuo
1988-01-01
The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La 2 CuO 4 , which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)
Systematics in Rydberg state excitations for ion-atom collisions
International Nuclear Information System (INIS)
Andresen, B.; Jensen, K.; Petersen, N.B.; Veje, E.
1976-01-01
Rydberg state excitations in the Ne + , Mg + -He collisions have been studied in the projectile energy range 10-75 keV by means of optical spectrometry in a search for systematic trends. The relative excitation cross sections for levels of a Rydberg term series are found to follow a general (nsup(x))sup(P) behaviour with P < approximately -3 varying with collision energy and particles, regardless of whether the excited state population results from direct excitation, single electron transfer, or double electron transfer. At higher collision energies P is approximately -3 as predicted by theory. Polarization of the emitted line radiation indicates that there is no general rule for the relative excitation of the different magnetic substates of the same level. A statistical distribution of excitation is found for levels within the same term when the fine structure splitting is small. (Auth.)
Mean excitation energies for molecular ions
Energy Technology Data Exchange (ETDEWEB)
Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)
2017-03-01
The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.
Systematics of excitation functions for (n, charged particle) reactions
International Nuclear Information System (INIS)
Zhao Zhixiang; Zhou Delin
1986-06-01
On the bases of evaporation model considering the preequilibrium emission under some approximations, the analytical expressions including two adjustable parameters have been derived for excitation functions of (n, charged particle) reactions. Fitting these expressions to the available measured data, these parameters have been extracted and the systematic behaviour of the parameters have been studied. More accurate predictions than before could be obtained by using these expressions and systematic parameters. In the present work the neutron energy is considered up to about 20 MeV and the target mass region is 23< A<197
Mean excitation energies for molecular ions
DEFF Research Database (Denmark)
Jensen, Phillip W.K.; Sauer, Stephan P.A.; Oddershede, Jens
2017-01-01
The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...
Excitation methods for energy dispersive analysis
International Nuclear Information System (INIS)
Jaklevic, J.M.
1976-01-01
The rapid development in recent years of energy dispersive x-ray fluorescence analysis has been based primarily on improvements in semiconductor detector x-ray spectrometers. However, the whole analysis system performance is critically dependent on the availability of optimum methods of excitation for the characteristic x rays in specimens. A number of analysis facilities based on various methods of excitation have been developed over the past few years. A discussion is given of the features of various excitation methods including charged particles, monochromatic photons, and broad-energy band photons. The effects of the excitation method on background and sensitivity are discussed from both theoretical and experimental viewpoints. Recent developments such as pulsed excitation and polarized photons are also discussed
High energy excitations in itinerant ferromagnets
International Nuclear Information System (INIS)
Prange, R.E.
1984-01-01
Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations
The Mean Excitation Energy of Atomic Ions
DEFF Research Database (Denmark)
Sauer, Stephan; Oddershede, Jens; Sabin, John R.
2015-01-01
A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...
Hot nuclei, limiting temperatures and excitation energies
International Nuclear Information System (INIS)
Peter, J.
1986-09-01
Hot fusion nuclei are produced in heavy ion collisions at intermediate energies (20-100 MeV/U). Information on the maximum excitation energy per nucleon -and temperatures- indicated by the experimental data is compared to the predictions of static and dynamical calculations. Temperatures around 5-6 MeV are reached and seem to be the limit of formation of thermally equilibrated fusion nuclei
Integrated light in direct excitation and energy transfer luminescence
Chimczak, Eugeniusz
2007-01-01
Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.
Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms
International Nuclear Information System (INIS)
Kishimoto, Y.; Tada, M.; Kominato, K.; Shibata, M.; Yamada, S.; Haseyama, T.; Ogawa, I.; Funahashi, H.; Yamamoto, K.; Matsuki, S.
2002-01-01
Pulsed field ionization of high-n (90≤n≤150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated n region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing n, exceeding 80% at n=147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms
Low energy spin excitations in chromium metal
International Nuclear Information System (INIS)
Pynn, R.; Azuah, R.T.; Stirling, W.G.
1997-01-01
Neutron scattering experiments with full polarization analysis have been performed with a single crystal of chromium to study the low-energy spin fluctuations in the transverse spin density wave (TSDW) state. A number of remarkable results have been found. Inelastic scattering observed close to the TSDW satellite positions at (1 ± δ,0,0) does not behave as expected for magnon scattering. In particular, the scattering corresponds to almost equally strong magnetization fluctuations both parallel and perpendicular to the ordered moments of the TSDW phase. As the Neel temperature is approached from below, scattering at the commensurate wavevector (1,0,0) increases in intensity as a result of critical scattering at silent satellites (1,0, ± δ) being included within the spectrometer resolution function. This effect, first observed by Sternlieb et al, does not account for all of the inelastic scattering around the (1,0,0) position, however, Rather, there are further collective excitations, apparently emanating from the TSDW satellites, which correspond to magnetic fluctuations parallel to the ordered TSDW moments. These branches have a group velocity that is close to that of (1,0,0) longitudinal acoustic (LA) phonons, but assigning their origin to magneto-elastic scattering raises other unanswered questions
Convergence of environment polarization effects in multiscale modeling of excitation energies
DEFF Research Database (Denmark)
Beerepoot, Maarten; Steindal, Arnfinn Hykkerud; Ruud, Kenneth
2014-01-01
We present a systematic investigation of the influence of polarization effects from a surrounding medium on the excitation energies of a chromophore. We use a combined molecular dynamics and polarizable embedding time-dependent density functional theory (PE-TD-DFT) approach for chromophores in pr...
Electronic-excitation energy transfer in heterogeneous dye solutions under laser excitation
International Nuclear Information System (INIS)
Levshin, L.V.; Mukushev, B.T.; Saletskii, A.M.
1995-01-01
An experimental study has been made of electronic-excitation energy transfer (EEET) among dye molecules of different types for different exciting-fight wavelengths and temperatures. Upon selective laser excitation of the donor, the inhomogeneous broadening of molecular levels increases the probability of EEET from the donor to acceptor molecules. The efficiency of this process is directly proportional to the acceptor molecule concentration and is temperature dependent. The EEET is accompanied by the spectral migration of energy among donor molecules, which reduces the fluorescence quantum efficiency of the donor. Increasing the frequency of the exciting light decreases in the donor fluorescence quantum efficiency. An increase in the acceptor molecule concentration results in a decrease of the spectral migration of excitation in the donor molecule system. 5 refs., 5 figs
International Nuclear Information System (INIS)
Frascaria, N.
1987-09-01
A review of experimental results on high excitation energy structures in heavy ion inelastic scattering is presented. The contribution to the spectra of the pick-up break-up mechanism is discussed in the light of the data obtained with light heavy ion projectiles. Recent results obtained with 40 Ar beams at various energies will show that target excitations contribute strongly to the measured cross section
Energy dependence of the ionization of highly excited atoms by collisions with excited atoms
International Nuclear Information System (INIS)
Shirai, T.; Nakai, Y.; Nakamura, H.
1979-01-01
Approximate analytical expressions are derived for the ionization cross sections in the high- and low-collision-energy limits using the improved impulse approximation based on the assumption that the electron-atom inelastic-scattering amplitude is a function only of the momentum transfer. Both cases of simultaneous excitation and de-excitation of one of the atoms are discussed. The formulas are applied to the collisions between two excited hydrogen atoms and are found very useful for estimating the cross sections in the wide range of collisions energies
Study of excitation energy dependence of nuclear level density parameter
International Nuclear Information System (INIS)
Mohanto, G.; Nayak, B.K.; Saxena, A.
2016-01-01
In the present study, we have populated CN by fusion reaction and excitation energy of the intermediate nuclei is determined after first chance α-emission to investigate excitation energy dependence of the NLD parameter. Evaporated neutron spectra were measured following alpha evaporation for obtaining NLD parameter for the reaction 11 B + 197 Au, populating CN 208 Po. This CN after evaporating an α-particle populates intermediate nucleus 204 Pb. The 204 Pb has magic number of Z=82. Our aim is to study the excitation energy dependence of NLD parameter for closed shell nuclei
On the determination of the mean excitation energy of water
DEFF Research Database (Denmark)
Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.
2013-01-01
Water is a ubiquitous substance in nature, and thus the mean excitation energy of water is an important quantity for understanding and prediction of the details of many fast ion/molecule collision processes such as those involved in external beam radiotherapy of tumors. There are several methods...... for determining numerical values for a mean excitation energy for water, both theoretical and experimental. Here the factors affecting the determination of the value of the mean excitation energy of water, especially from experiment, are discussed....
Dependence of the giant dipole strength function on excitation energy
International Nuclear Information System (INIS)
Draper, J.E.; Newton, J.O.; Sobotka, L.G.; Lindenberger, H.; Wozniak, G.J.; Moretto, L.G.; Stephens, F.S.; Diamond, R.M.; McDonald, R.J.
1982-01-01
Spectra of γ rays associated with deep-inelastic products from the 1150-MeV 136 Xe+ 181 Ta reaction have been measured. The yield of 10--20-MeV γ rays initially increases rapidly with the excitation energy of the products and then more slowly for excitation energies in excess of 120 MeV. Statistical-model calculations with ground-state values of the giant dipole strength function fail to reproduce the shape of the measured γ-ray spectra. This suggests a dependence of the giant dipole strength function on excitation energy
Roles of the Excitation in Harvesting Energy from Vibrations.
Directory of Open Access Journals (Sweden)
Hui Zhang
Full Text Available The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency.
Spectroscopic probes of vibrationally excited molecules at chemically significant energies
Energy Technology Data Exchange (ETDEWEB)
Rizzo, T.R. [Univ. of Rochester, NY (United States)
1993-12-01
This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.
Design and development of a parametrically excited nonlinear energy harvester
International Nuclear Information System (INIS)
Yildirim, Tanju; Ghayesh, Mergen H.; Li, Weihua; Alici, Gursel
2016-01-01
Highlights: • A parametrically broadband energy harvester was fabricated. • Strong softening-type nonlinear behaviour was observed. • Experiments were conducted showing the large bandwidth of the device. - Abstract: An energy harvester has been designed, fabricated and tested based on the nonlinear dynamical response of a parametrically excited clamped-clamped beam with a central point-mass; magnets have been used as the central point-mass which pass through a coil when parametrically excited. Experiments have been conducted for the energy harvester when the system is excited (i) harmonically near the primary resonance; (ii) harmonically near the principal parametric resonance; (iii) by means of a non-smooth periodic excitation. An electrodynamic shaker was used to parametrically excite the system and the corresponding displacement of the magnet and output voltages of the coil were measured. It has been shown that the system displays linear behaviour at the primary resonance; however, at the principal parametric resonance, the motion characteristic of the magnet substantially changed displaying a strong softening-type nonlinearity. Theoretical simulations have also been conducted in order to verify the experimental results; the comparison between theory and experiment were within very good agreement of each other. The energy harvester developed in this paper is capable of harvesting energy close to the primary resonance as well as the principal parametric resonance; the frequency-band has been broadened significantly mainly due to the nonlinear effects as well as the parametric excitation.
Excitation and photon decay of giant resonances excited by intermediate energy heavy ions
International Nuclear Information System (INIS)
Bertrand, F.E.; Beene, J.R.
1987-01-01
Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon 17 O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the 208 Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab
Vibrational excitation of D2 by low energy electrons
International Nuclear Information System (INIS)
Buckman, S.J.; Phelps, A.V.
1985-01-01
Excitation coefficients for the production of vibrationally exicted D 2 by low energy electrons have been determined from measurements of the intensity of infrared emission from mixtures of D 2 and small concentrations of CO 2 or CO. The measurements were made using the electron drift tube technique and covered electric field to gas density ratios (E/n) from (5 to 80) x 10 -21 V m 2 , corresponding to mean electron energies between 0.45 and 4.5 eV. The CO 2 and CO concentrations were chosen to allow efficient excitation transfer from the D 2 to the carbon containing molecule, but to minimize direct excitation of the CO 2 or CO. The measured infrared intensities were normalized to predicted values for N 2 --CO 2 and N 2 --CO mixtures at E/n where the efficiency of vibrational excitation is known to be very close to 100%. The experimental excitation coefficients are in satisfactory agreement with predictions based on electron--D 2 cross sections at mean electron energies below 1 eV, but are about 50% too high at mean energies above about 2 eV. Application of the technique to H 2 did not yield useful vibrational excitation coefficients. The effective coefficients in H 2 --CO 2 mixtures were a factor of about 3 times the predicted values. For our H 2 --CO mixtures the excitation of CO via excitation transfer from H 2 is small compared to direct electron excitation of CO molecules. Published experiments and theories on electron--H 2 and electron--D 2 collisions are reviewed to obtain the cross sections used in the predictions
Energy Technology Data Exchange (ETDEWEB)
Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Koch, Henrik [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Cappelli, Chiara [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 3 I-56124 Pisa (Italy)
2014-12-14
In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.
Energy-optimal electrical excitation of nerve fibers.
Jezernik, Saso; Morari, Manfred
2005-04-01
We derive, based on an analytical nerve membrane model and optimal control theory of dynamical systems, an energy-optimal stimulation current waveform for electrical excitation of nerve fibers. Optimal stimulation waveforms for nonleaky and leaky membranes are calculated. The case with a leaky membrane is a realistic case. Finally, we compare the waveforms and energies necessary for excitation of a leaky membrane in the case where the stimulation waveform is a square-wave current pulse, and in the case of energy-optimal stimulation. The optimal stimulation waveform is an exponentially rising waveform and necessitates considerably less energy to excite the nerve than a square-wave pulse (especially true for larger pulse durations). The described theoretical results can lead to drastically increased battery lifetime and/or decreased energy transmission requirements for implanted biomedical systems.
Energy-dependent collisional deactivation of vibrationally excited azulene
International Nuclear Information System (INIS)
Shi, J.; Barker, J.R.
1988-01-01
Collisional energy transfer parameters for highly vibrationally excited azulene have been deduced from new infrared fluorescence (IRF) emission lifetime data with an improved calibration relating IRF intensity to vibrational energy [J. Shi, D. Bernfeld, and J. R. Barker, J. Chem. Phys. 88, XXXX (1988), preceding paper]. In addition, data from previous experiments [M. J. Rossi, J. R. Pladziewicz, and J. R. Barker, J. Chem. Phys. 78, 6695 (1983)] have been reanalyzed based on the improved calibration. Inversion of the IRF decay curves produced plots of energy decay, which were analyzed to determine , the average energy transferred per collision. Master equation simulations reproduced both the original IRF decays and the deduced energy decays. A third (simple) method of determination agrees well with the other two. The results show to be nearly directly proportional to the vibrational energy of the excited azulene from ∼8000 to 33 000 cm -1 . At high energies, there are indications that the energy dependence may be slightly reduced
A scalable piezoelectric impulse-excited energy harvester for human body excitation
International Nuclear Information System (INIS)
Pillatsch, P; Yeatman, E M; Holmes, A S
2012-01-01
Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s −2 a maximal power output of 2.1 mW was achieved. (paper)
Spin-isospin excitations induced by heavy ions at Saturne energies
International Nuclear Information System (INIS)
Hennino, T.
1989-01-01
Our program on the Spin-Isospin excitations started with the ( 3 He, 3 H) and ( 2 H, 2 He) reactions was extended with the heavy ion beams available at Saturne ( 12 C, 16 0, 20 Ne and 40 Ar) to study systematically the Δ excitation energy region. Projectile-ejectile dependences were measured. The Δ peak shift appears as a common feature in all charge exchange reactions. The first cross section calculations for the ( 12 C, 12 N) reaction are in good quantitative agreement with the data [fr
Realistic level densities in fragment emission at high excitation energies
International Nuclear Information System (INIS)
Mustafa, M.G.; Blann, M.; Ignatyuk, A.V.
1993-01-01
Heavy fragment emission from a 44 100 Ru compound nucleus at 400 and 800 MeV of excitation is analyzed to study the influence of level density models on final yields. An approach is used in which only quasibound shell-model levels are included in calculating level densities. We also test the traditional Fermi gas model for which there is no upper energy limit to the single particle levels. We compare the influence of these two level density models in evaporation calculations of primary fragment excitations, kinetic energies and yields, and on final product yields
Energies and lifetimes of excited states in copperlike Kr VIII
International Nuclear Information System (INIS)
Livingston, A.E.; Curtis, L.J.; Schectman, R.M.; Berry, H.G.
1980-01-01
The spectrum of Kr VIII has been observed between 180 and 2000 A by using foil excitation of 2.5--3.5-MeV krypton ions. Twenty new transitions have been classified and eleven new excited-state energies have been determined within the n=4 --7 shells. The ionization potential is derived to be 1 015 800 +- 200 cm -1 . The excited-state energies and fine structures are compared with recent relativistic Hartree-Fock calculations. The 4p-state lifetime has been measured by performing a simultaneous analysis of decay data for the 4p level and for its dominant cascade-repopulating levels. The 4p lifetime is found to be 30% shorter than previously measured values and is in excellent agreement with the result of a recent multiconfiguration Hartree-Fock calculation. The source of the discrepancy between this result and earlier measurements is discussed
Excitation-energy influence at the scission configuration
Directory of Open Access Journals (Sweden)
Ramos D.
2017-01-01
Full Text Available Transfer- and fusion-induced fission in inverse kinematics was proven to be a powerful tool to investigate nuclear fission, widening the information of the fission fragments and the access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign for fission investigation has being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through transfer and fusion reactions, with excitation energies that range from few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer permitted the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. The neutron excess, the total neutron multiplicity, and the even-odd staggering in the nuclear charge of fission fragments are presented as a function of the excitation energy of the fissioning system. Structure effects are observed at Z∼50 and Z∼55, where their impact evolves with the excitation energy.
Complex fragment emission at low and high excitation energy
International Nuclear Information System (INIS)
Moretto, L.G.
1986-08-01
Complex fragment emission has been certified as a compound nucleus process at low energies. An extension of the measurements to heavy ion reactions up to 50 MeV/u shows that most complex fragments are emitted by highly excited compound nuclei formed in incomplete fusion reactions. 12 refs., 26 figs
El strength function at high spin and excitation energy
International Nuclear Information System (INIS)
Barrette, J.
1983-04-01
Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed
Mott transition: Low-energy excitations and superconductivity
International Nuclear Information System (INIS)
Ioffe, L.B.; Larkin, A.I.
1988-09-01
It is possible that metal-dielectric transition does not result in changes of magnetic or crystallographic symmetry. In this case a fermionic spectrum is not changed at the transition, but additional low-energy excitations appear which can be described as a gauge field that has the same symmetry as an electromagnetic one. In the case of a non half-filled band gapless scalar Bose excitations also appear. Due to the presence of additional gauge field the physical conductivity is determined by the lowest conductivity of the Fermi or Bose subsystems. (author). 11 refs
Neutron scattering investigation of magnetic excitations at high energy transfers
International Nuclear Information System (INIS)
Loong, C.K.
1984-01-01
With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures
International Nuclear Information System (INIS)
Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao
2014-01-01
In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N 4 ). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S ^2 〉 are also developed and tested
Energy Technology Data Exchange (ETDEWEB)
Peng, Degao; Yang, Yang; Zhang, Peng [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)
2014-12-07
In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.
Ab initio calculation of electron excitation energies in solids
International Nuclear Information System (INIS)
Louie, S.G.
1996-02-01
Progress in the first-principles calculation of electron excitation energies in solids is discussed. Quasiparticle energies are computed by expanding the electron self energy to first order in the screened Coulomb interaction in the so-called GW approximation. The method was applied to explain and predict spectroscopic properties of a variety of systems. Several illustrative applications to semiconductors, materials under pressure, chemisorption, and point defects in solids are presented. A recent reformulation of the method employing mixed- space functions and imaginary time techniques is also discussed
Rydberg energies using excited state density functional theory
International Nuclear Information System (INIS)
Cheng, C.-L.; Wu Qin; Van Voorhis, Troy
2008-01-01
We utilize excited state density functional theory (eDFT) to study Rydberg states in atoms. We show both analytically and numerically that semilocal functionals can give quite reasonable Rydberg energies from eDFT, even in cases where time dependent density functional theory (TDDFT) fails catastrophically. We trace these findings to the fact that in eDFT the Kohn-Sham potential for each state is computed using the appropriate excited state density. Unlike the ground state potential, which typically falls off exponentially, the sequence of excited state potentials has a component that falls off polynomially with distance, leading to a Rydberg-type series. We also address the rigorous basis of eDFT for these systems. Perdew and Levy have shown using the constrained search formalism that every stationary density corresponds, in principle, to an exact stationary state of the full many-body Hamiltonian. In the present context, this means that the excited state DFT solutions are rigorous as long as they deliver the minimum noninteracting kinetic energy for the given density. We use optimized effective potential techniques to show that, in some cases, the eDFT Rydberg solutions appear to deliver the minimum kinetic energy because the associated density is not pure state v-representable. We thus find that eDFT plays a complementary role to constrained DFT: The former works only if the excited state density is not the ground state of some potential while the latter applies only when the density is a ground state density.
Experimental determination of fragment excitation energies in multifragmentation events
International Nuclear Information System (INIS)
Marie, N.; Natowitz, J.B.; Assenard, M.; Bacri, Ch.O.
1998-01-01
For 50 MeV/nucleon 129 Xe + nat Sn multifragmentation events, by means of correlation techniques, the multiplicities of the hydrogen and helium isotopes which were emitted by the hot primary excited fragments produced at the stage of the disassembly of an equilibrated hot source are determined. The relative kinetic energy distributions between the primary clusters and the light charged particles that they evaporate are also derived. From the comparison between the secondary multiplicities observed experimentally and the multiplicities predicted by the GEMINI model, it is concluded that the source breaks into primary fragments which are characterized by the same N/Z ratio as the combined system. Knowing the secondary light charged particle multiplicities and kinetic energies, the average charges of the hot fragments and are reconstructed their mean excitation energies are estimated. The fragment excitation energies are equal to 3.0 MeV/nucleon for the full range of intermediate mass fragment atomic number. This global constancy indicates that, on the average, thermodynamical equilibrium was achieved at the disassembly stage of the source. (author)
Experimental determination of fragment excitation energies in multifragmentation events
Energy Technology Data Exchange (ETDEWEB)
Marie, N.; Natowitz, J.B. [Texas A and M Univ., College Station, TX (United States). Cyclotron Inst.; Chbihi, A.; Le Fevre, A.; Salou, S.; Wieleczko, J.P.; Gingras, L.; Auger, G. [Grand Accelerateur National d`Ions Lourds, 14 - Caen (France); Assenard, M. [Nantes Univ., 44 (France); Bacri, Ch.O. [Centre National de la Recherche Scientifique, CNRS, 91 - Orsay (France)] [and others
1998-03-17
For 50 MeV/nucleon {sup 129}Xe + {sup nat}Sn multifragmentation events, by means of correlation techniques, the multiplicities of the hydrogen and helium isotopes which were emitted by the hot primary excited fragments produced at the stage of the disassembly of an equilibrated hot source are determined. The relative kinetic energy distributions between the primary clusters and the light charged particles that they evaporate are also derived. From the comparison between the secondary multiplicities observed experimentally and the multiplicities predicted by the GEMINI model, it is concluded that the source breaks into primary fragments which are characterized by the same N/Z ratio as the combined system. Knowing the secondary light charged particle multiplicities and kinetic energies, the average charges of the hot fragments and are reconstructed their mean excitation energies are estimated. The fragment excitation energies are equal to 3.0 MeV/nucleon for the full range of intermediate mass fragment atomic number. This global constancy indicates that, on the average, thermodynamical equilibrium was achieved at the disassembly stage of the source. (author) 25 refs.
Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias
2011-04-15
The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.
General theory for environmental effects on (vertical) electronic excitation energies.
Schwabe, Tobias
2016-10-21
Almost 70 years ago, the first theoretical model for environmental effects on electronic excitation energies has been derived. Since then, several different interpretations and refined models have been proposed for the perichromic shift of a chromophore due to its surrounding medium. Some of these models are contradictory. Here, the contributing terms are derived within the framework of long-range perturbation theory with the least approximations so far. The derivation is based on a state-specific interpretation of the interaction energies and all terms can be identified with individual properties of either the chromophore or the surroundings, respectively. Further, the much debated contribution due to transition moments coupled to the environment can be verified in the form of a non-resonant excitonic coupling to the dynamic polarizabilities in the environment. These general insights should clarify discussions and interpretations of environmental effects on electronic excitations and should foster the development of new models for the computation of these effects.
Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A
2015-04-15
A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.
Atomic excitation and molecular dissociation by low energy electron collisions
International Nuclear Information System (INIS)
Weyland, Marvin
2016-01-01
In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.
Atomic excitation and molecular dissociation by low energy electron collisions
Energy Technology Data Exchange (ETDEWEB)
Weyland, Marvin
2016-11-16
In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.
The systematics of emerging nuclear energy concepts
International Nuclear Information System (INIS)
Harms, A.A.; Ligou, J.
1980-01-01
The basic systematics pertaining to emerging nuclear energy concepts are examined from a historical and categorical perspective. For this purpose a complementary formulation of the interdependence of the vital fission-fusion-acceleration processes is established and then developed to accommodate explicitly recent developments for advanced synergetic nuclear energy proposals. The papers presented at the conference which form these proceeding are shown to integrate well and thus ecluidate the generalized systematics of this formulation. (orig.) [de
DEFF Research Database (Denmark)
Bohr, Henrik; Malik, F. Bary
2013-01-01
The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter...
Coulomb excitation of 206Hg at relativistic energies
Alexander, Tom
The region of the nuclear chart surrounding the doubly-magic nucleus 208Pb provides a key area to constrain and develop contemporary nuclear structure models. One aspect of particular interest is the transition strength of the first excited 2+ state in even-even nuclei; this work describes the measurement of this value for the case of 206Hg, where the Z=80 line meets the N=126 shell closure. The nuclei of interest were synthesized using relativistic-energy projectile fragmentation at the GSI facility in Germany. They were produced in the fragmentation of a primary 208Pb beam at an energy of 1 GeV per nucleon, and separated and identifed using the Fragment Separator. The secondary beams with an energy of 140 MeV per nucleon were Coulomb excited on a secondary target of 400 mg/cm. 2 gold. Gamma-rays were detected with the Advanced GAmma Tracking Array (AGATA). The precise scattering angle for Doppler-correction was determined with position information from the Lund-York-Cologne-CAlorimeter(LYCCA). Using the sophisticated tracking algorithm native to AGATA in conjunction with pulse-shape analysis, a precise Doppler-correction is performed on the gamma spectra, and using a complex n-dimensional analysis, the B(E2) value for 206Hg is extracted relative to the known value also measured in 206Pb. A total of 409 million 206Hg particles were measured, and a cross-section of 50 mb was determined for the 2+ state at 1068 keV. The measurement of the B(E2) transition strength was found to be 1.109 W.u. This result is compared to a number of theoretical calculations, including two Gogny forces, and a modified shell model parametrization and is found to be smaller than all calculated estimations, implying that the first excited 2. + state in . {206}Hg is uncollective in nature.
Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang
2017-12-21
Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.
Excitation of higher lying energy states in a rubidium DPAL
Wallerstein, A. J.; Perram, Glen; Rice, Christopher A.
2018-02-01
The spontaneous emission in a cw rubidium diode dumped alkali laser (DPAL) system was analyzed. The fluorescence from higher lying states decreases with additional buffer gas. The intermediate states (7S, 6P, 5D) decay more slowly with buffer gas and scale super-linearly with alkali density. A detailed kinetic model has been constructed, where the dominant mechanisms are energy pooling and single photon ionization. It also includes pumping into the non-Lorentzian wings of absorption profiles, fine structure mixing, collisional de-excitation, and Penning ionization. Effects of ionization in a high powered CW rubidium DPAL were assessed.
Calculation of 0-0 excitation energies of organic molecules by CIS(D) quantum chemical methods
International Nuclear Information System (INIS)
Grimme, Stefan; Izgorodina, Ekaterina I.
2004-01-01
The accuracy and reliability of the CIS(D) quantum chemical method and a spin-component scaled variant (SCS-CIS(D)) are tested for calculating 0-0 excitation energies of organic molecules. The ground and excited state geometries and the vibrational zero-point corrections are taken from (TD)DFT-B3LYP calculations. In total 32 valence excited states of different character are studied: π → π* states of polycyclic aromatic compounds/polyenes and n → π* states of carbonyl, thiocarbonyl and aza(azo)-aromatic compounds. This set is augmented by two systems of special interest, i.e., indole and the TICT state of dimethylaminbenzonitrile (DMABN). Both methods predict excitation energies that are on average higher than experiment by about 0.2 eV. The errors are found to be quite systematic (with a standard deviation of about 0.15 eV) and especially SCS-CIS(D) provides a more balanced treatment of π → π* vs. n → π* states. For the test suite of states, both methods clearly outperform the (TD)DFT-B3LYP approach. Opposed to previous conclusions about the performance of CIS(D), these methods can be recommended as reliable and efficient tools for computational studies of excited state problems in organic chemistry. In order to obtain conclusive results, however, the use of optimized excited state geometries and comparison with observables (0-0 excitation energies) are necessary
Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo
2017-01-01
Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...
Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation
Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš
2017-09-01
Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.
A simplified approach for the coupling of excitation energy transfer
Energy Technology Data Exchange (ETDEWEB)
Shi Bo [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Gao Fang, E-mail: gaofang@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Liang Wanzhen [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China)
2012-02-06
Highlights: Black-Right-Pointing-Pointer We propose a simple method to calculate the coupling of singlet-to-singlet and triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer. Black-Right-Pointing-Pointer Effect from the intermolecular charge-transfer states dorminates in triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer This method can be expanded by including correlated wavefunctions. - Abstract: A simplified approach for computing the electronic coupling of nonradiative excitation-energy transfer is proposed by following Scholes et al.'s construction on the initial and final states [G.D. Scholes, R.D. Harcourt, K.P. Ghiggino, J. Chem. Phys. 102 (1995) 9574]. The simplification is realized through defining a set of orthogonalized localized MOs, which include the polarization effect of the charge densities. The method allows calculating the coupling of both the singlet-to-singlet and triplet-to-triplet energy transfer. Numerical tests are performed for a few of dimers with different intermolecular orientations, and the results demonstrate that Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer whereas in the case of triplet-to-triplet energy transfer, the dominant effect is arisen from the intermolecular charge-transfer states. The present application is on the Hartree-Fock level. However, the correlated wavefunctions which are normally expanded in terms of the determinant wavefunctions can be employed in the similar way.
Plunger lifetime measurements after Coulomb excitation at intermediate beam energies
Energy Technology Data Exchange (ETDEWEB)
Hackstein, Matthias; Dewald, Alfred; Fransen, Christoph; Ilie, Gabriela; Jolie, Jan; Melon, Barbara; Pissulla, Thomas; Rother, Wolfram; Zell, Karl-Oskar [University of Cologne (Germany); Petkov, Pavel [University of Cologne (Germany); INRNE (Bulgaria); Chester, Aaron; Adrich, Przemyslaw; Bazin, Daniel; Bowen, Matt; Gade, Alexandra; Glasmacher, Thomas; Miller, Dave; Moeller, Victoria; Starosta, Krzysztof; Stolz, Andreas; Vaman, Constantin; Voss, Philip; Weissharr, Dirk [Michigan State Univerity (United States); Moeller, Oliver [TU Darmstadt (Germany)
2008-07-01
Two recoil-distance-doppler-shift (RDDS) experiments were performed at the NSCL/MSU using Coulomb excitations of the projectile nuclei {sup 110}Pd, {sup 114}Pd at beam energies of 54 MeV/u in order to investigate the evolution of deformation of neutron rich paladium isotopes. The experimental set-up consisted of a dedicated plunger device, developed at the University of Cologne, the SEGA Ge-array and the S800 spectrometer. Lifetimes of the 2{sub 1}{sup +}-states in {sup 110}Pd and {sup 114}Pd were derived from the analysis of the {gamma}-line-shapes as well as from the measured decay-curves. Special features of the data analysis, e.g. features originating from the very high recoil velocities, are discussed.
Collective and single-particle states at high excitation energy
International Nuclear Information System (INIS)
Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.
2000-01-01
Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)
International Nuclear Information System (INIS)
Hudan, S.; Chbihi, A.; Frankland, J.D.
2000-01-01
Characteristics of the primary fragments produced in central collisions of Xe + Sn system from 32 to 50 AMeV have been deduced. By using the relative velocity correlation technique between the light charged particles (LCP) and detected fragments, we were able to extract the multiplicities and average kinetic energy of the secondary evaporated LCP. We then reconstructed the size and excitation energy of the primary fragments. For each bombarding energy a constant value of the excitation energy per nucleon, over the whole range of fragment charge has been found, suggesting that on the average thermodynamical equilibrium has been achieved at the freeze-out. This value increases slightly from 2.8 to 3.8 AMeV with a large increase of bombarding energy, 32 to 50 AMeV. (authors)
Energy Technology Data Exchange (ETDEWEB)
Hudan, S.; Chbihi, A.; Frankland, J.D. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)] [and others
2000-07-01
Characteristics of the primary fragments produced in central collisions of Xe + Sn system from 32 to 50 AMeV have been deduced. By using the relative velocity correlation technique between the light charged particles (LCP) and detected fragments, we were able to extract the multiplicities and average kinetic energy of the secondary evaporated LCP. We then reconstructed the size and excitation energy of the primary fragments. For each bombarding energy a constant value of the excitation energy per nucleon, over the whole range of fragment charge has been found, suggesting that on the average thermodynamical equilibrium has been achieved at the freeze-out. This value increases slightly from 2.8 to 3.8 AMeV with a large increase of bombarding energy, 32 to 50 AMeV. (authors)
Electron emission from materials at low excitation energies
International Nuclear Information System (INIS)
Urma, N.; Kijek, M.; Millar, J.J.
1996-01-01
Full text: An experimental system has been designed and developed with the purpose of measuring the total electron emission yield from materials at low energy excitation. In the first instance the reliability of the system was checked by measuring the total electron emission yield for a well defined surface (aluminium 99.45%). The obtained data was in the expected range given by the literature, and consequently the system will be used further for measuring the total electron yield for a range of materials with interest in the instrumentation industry. We intend to measure the total electron emission yield under electron bombardment as a function of incident electron energy up to 1200 eV, angle of incidence, state of the surface and environment to which the surface has been exposed. Dependence of emission on total electron irradiated dose is also of interest. For many practical application of the 'Secondary Electron Emission', the total electron yield is desired to be as large as possible. The above phenomenon has practical applicability in electron multiplier tube and Scanning electron microscopy - when by means of the variation of the yield of the emitted electrons one may produce visible images of small sample areas. The electron multiplier tube, is a device which utilises the above effect to detect and amplify both single particles and low currents streams of charged particles. The majority of electron tubes use electrons with low energy, hundreds of eV. Not a lot has been published in the literature about this regime and also about the emission when the impinging electrons have small energy, up to 1 KeV. The information obtained from the experimental measurements concerning the total electron emission yield is used to asses the investigated materials as a potential electron emitting surfaces or dynodes in an electron multiplier tube
Auditing energy use -a systematic approach for enhancing energy efficiency
International Nuclear Information System (INIS)
Ardhapnrkar, P.M.; Mahalle, A.M.
2005-01-01
Energy management is a critical activity in the developing as well as developed countries owing to constraints in the availability of primary energy resources and the increasing demand for energy from the industrial and non-industrial users. Energy consumption is a vital parameter that determines the economic growth of any country. An energy management system (EMS) can save money by allowing greater control over energy consuming equipment. The foundation for the energy program is the energy audit, which is the systematic study of factory or building to determine where and how well energy is being used. It is the nucleus of any successful energy saving program -it is tool, not a solution. Conventional energy conservation methods are mostly sporadic and lack a coordinated plan of action. Consequently only apparent systems are treated without the analysis of system interaction. Energy audit on the other hand, involves total system approach and aims at optimizing energy use efficiently for the entire plant. In the present paper a new approach to pursue energy conservation techniques is being discussed. The focus is mainly on the methodology of energy audit, energy use analysis, relating energy with the production, and reducing energy losses, etc. It is observe that with this systematic approach, if adopted, which consists of three essential segments namely capacity utilization fine-tuning of the equipment and technology up-gradation can result in phenomenal savings in the energy, building competitive edge for the industry. This approach along with commitment can provide the right impetus to reap the benefits of energy conservation on a sustained basis. (author)
Energy harvesting from human motion: exploiting swing and shock excitations
International Nuclear Information System (INIS)
Ylli, K; Hoffmann, D; Willmann, A; Becker, P; Folkmer, B; Manoli, Y
2015-01-01
Modern compact and low power sensors and systems are leading towards increasingly integrated wearable systems. One key bottleneck of this technology is the power supply. The use of energy harvesting techniques offers a way of supplying sensor systems without the need for batteries and maintenance. In this work we present the development and characterization of two inductive energy harvesters which exploit different characteristics of the human gait. A multi-coil topology harvester is presented which uses the swing motion of the foot. The second device is a shock-type harvester which is excited into resonance upon heel strike. Both devices were modeled and designed with the key constraint of device height in mind, in order to facilitate the integration into the shoe sole. The devices were characterized under different motion speeds and with two test subjects on a treadmill. An average power output of up to 0.84 mW is achieved with the swing harvester. With a total device volume including the housing of 21 cm 3 a power density of 40 μW cm −3 results. The shock harvester generates an average power output of up to 4.13 mW. The power density amounts to 86 μW cm −3 for the total device volume of 48 cm 3 . Difficulties and potential improvements are discussed briefly. (paper)
Kowalski, Karol
2009-05-21
In this article we discuss the problem of proper balancing of the noniterative corrections to the ground- and excited-state energies obtained with approximate coupled cluster (CC) and equation-of-motion CC (EOMCC) approaches. It is demonstrated that for a class of excited states dominated by single excitations and for states with medium doubly excited component, the newly introduced nested variant of the method of moments of CC equations provides mathematically rigorous way of balancing the ground- and excited-state correlation effects. The resulting noniterative methodology accounting for the effect of triples is tested using its parallel implementation on the systems, for which iterative CC/EOMCC calculations with full inclusion of triply excited configurations or their most important subset are numerically feasible.
Low-energy charge transfer excitations in NiO
International Nuclear Information System (INIS)
Sokolov, V I; Yermakov, A Ye; Uimin, M A; Gruzdev, N B; Pustovarov, V A; Churmanov, V N; Ivanov, V Yu; Sokolov, P S; Baranov, A N; Moskvin, A S
2012-01-01
Comparative analysis of photoluminescence (PL) and photoluminescence excitation (PLE) spectra of NiO poly- and nanocrystals in the spectral range 2-5.5 eV reveals two PLE bands peaked near 3.7 and 4.6 eV with a dramatic rise in the low-temperature PLE spectral weight of the 3.7 eV PLE band in the nanocrystalline NiO as compared with its polycrystalline counterpart. In frames of a cluster model approach we assign the 3.7 eV PLE band to the low-energy bulk-forbidden p-d (t 1g (π)-e g ) charge transfer (CT) transition which becomes the allowed one in the nanocrystalline state while the 4.6 eV PLE band is related to a bulk allowed d-d (e g -e g ) CT transition scarcely susceptible to the nanocrystallization. The PLE spectroscopy of the nanocrystalline materials appears to be a novel informative technique for inspection of different CT transitions.
Vibrational energy transfer in selectively excited diatomic molecules
International Nuclear Information System (INIS)
Dasch, C.J.
1978-09-01
Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295 0 K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295 0 K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ΔJ transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references
Aspects of kinematical coincidence measurements of excitation energy division in damped reactions
International Nuclear Information System (INIS)
Toke, J.; Schroeder, W.U.; Huizenga, J.R.; Rochester Univ., NY
1990-01-01
It is shown that the finite resolution inherent in the kinematical coincidence method leads to systematic errors in the deduced (primary) physical quantities if the latter are calculated based on mass and linear momentum conservation equations alone. As an example, application of this method for measuring excitation energy of the fragments from damped reactions is reviewed. In such a case, finite resolution effects generate significant instrumental, or 'background' correlations between the physical quantities reconstructed in a straightforward fashion, hence, if not accounted for, they may lead to the qualitative misinterpretation of the data. Experimental measures are discussed which appear necessary in order to ensure proper accuracy of the finite resolution corrections. An alternative method of data analysis is presented which is much less susceptible to the finite resolution effects discussed. (orig.)
International Nuclear Information System (INIS)
Dorner, B.
1996-01-01
A short introduction to instrumental resolution is followed by a discussion of visibilities of phonon modes due to their eigenvectors. High precision phonon dispersion curves in GaAs are presented together with 'ab initio' calculations. Al 2 O 3 is taken as an example of selected visibility due to group theory. By careful determination of phonon intensities eigenvectors can be determined, such as in Silicon and Diamond. The investigation of magnon modes is shown for the garnet Fe 2 Ca 3 (GeO 4 ) 3 , where also a quantum gap due to zero point spin fluctuations was observed. The study of the splitting of excitons in CsFeCl 3 in an applied magnetic field demonstrates the possibilities of neutron polarisation analysis, which made it possible to observe a mode crossing. An outlook to inelastic X-ray scattering with very high energy resolution of synchrotron radiation is given with the examples of phonons in Beryllium and in water. (author) 19 figs., 36 refs
Z-dependence of Mean Excitation Energies for Second and Third Row Atoms and Their Ions
DEFF Research Database (Denmark)
Sauer, Stephan P. A.; Sabin, John R.; Oddershede, Jens
2018-01-01
All mean excitations energies for second and third row atoms and their ions are calculated in the random‐phase approximation using large basis sets. To a very good approximation it turns out that mean excitation energies within an isoelectronic series is a quadratic function of the nuclear charge...
Excitation energy of a helium 3 quasiparticle in the bulk mixture at constant pressure
International Nuclear Information System (INIS)
Yim, M.B.
1981-01-01
A 3 He quasiparticle excitation energy in bulk mixture at zero pressure and 6% solution is calculated to O(x) using the bulk effective interaction of Yim and Massey. The present 3 He quasiparticle excitation energy is in agreement with the experimental result of Hilton, Scherm and Stirling. (author)
Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics
International Nuclear Information System (INIS)
Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen; De Meyer, Thierry; De Clerck, Karen
2014-01-01
A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed
Directory of Open Access Journals (Sweden)
N. Davari
2014-03-01
Full Text Available The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.
International Nuclear Information System (INIS)
Hirakawa, Kazutaka; Segawa, Hiroshi
2016-01-01
Dendritic heptad molecules in which four pyrenyl groups are connected at the central phosphorus atom of the edge-porphyrins of the center-to-edge type porphyrin trimers were synthesized to investigate a multi-step excitation energy transfer. As the central energy acceptor, two types porphyrins which one was phosphorus(V)tetraphenylporphyrin (H2) and another was its derivative substituted by butoxy groups at four para-position of meso-phenyl groups (H1) were used. In the photoexcited state of the pyrene units, the excitation energy transfer to the central-porphyrin unit was observed in toluene. The excitation energy transfer is considered to be through two pathways; one is a stepwise pathway through the edge-porphyrin unit and another is a direct excitation energy transfer to the central porphyrin. The direct excitation energy transfer from pyrenes to the edge-porphyrin and central-porphyrin were observed in the case for H1. From the excited state of the edge-porphyrins, the excitation energy transfer to the central-porphyrin occurs in the H1 case. In the H2 case, the excitation energy of central-porphyrin is higher than that of H1, and the electron transfer from edge-porphyrin to the central-porphyrin become predominant process. - Highlights: • Dendritic pyrene-porphyrin heptads were synthesized. • Excitation energy transfer occurs from the pyrenyl moiety to the phosphorus(V)porphyrin. • The stepwise and direct energy transfer pathways were observed. • The quantum yields of these energy transfer pathways could be determined.
Energy Technology Data Exchange (ETDEWEB)
Hirakawa, Kazutaka, E-mail: hirakawa.kazutaka@shizuoka.ac.jp [Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Segawa, Hiroshi [Department of Multi-Disciplinary Science - General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8904 (Japan); Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904 (Japan)
2016-11-15
Dendritic heptad molecules in which four pyrenyl groups are connected at the central phosphorus atom of the edge-porphyrins of the center-to-edge type porphyrin trimers were synthesized to investigate a multi-step excitation energy transfer. As the central energy acceptor, two types porphyrins which one was phosphorus(V)tetraphenylporphyrin (H2) and another was its derivative substituted by butoxy groups at four para-position of meso-phenyl groups (H1) were used. In the photoexcited state of the pyrene units, the excitation energy transfer to the central-porphyrin unit was observed in toluene. The excitation energy transfer is considered to be through two pathways; one is a stepwise pathway through the edge-porphyrin unit and another is a direct excitation energy transfer to the central porphyrin. The direct excitation energy transfer from pyrenes to the edge-porphyrin and central-porphyrin were observed in the case for H1. From the excited state of the edge-porphyrins, the excitation energy transfer to the central-porphyrin occurs in the H1 case. In the H2 case, the excitation energy of central-porphyrin is higher than that of H1, and the electron transfer from edge-porphyrin to the central-porphyrin become predominant process. - Highlights: • Dendritic pyrene-porphyrin heptads were synthesized. • Excitation energy transfer occurs from the pyrenyl moiety to the phosphorus(V)porphyrin. • The stepwise and direct energy transfer pathways were observed. • The quantum yields of these energy transfer pathways could be determined.
Dai, Quanqi; Harne, Ryan L.
2017-04-01
Effective development of vibration energy harvesters is required to convert ambient kinetic energy into useful electrical energy as power supply for sensors, for example in structural health monitoring applications. Energy harvesting structures exhibiting bistable nonlinearities have previously been shown to generate large alternating current (AC) power when excited so as to undergo snap-through responses between stable equilibria. Yet, most microelectronics in sensors require rectified voltages and hence direct current (DC) power. While researchers have studied DC power generation from bistable energy harvesters subjected to harmonic excitations, there remain important questions as to the promise of such harvester platforms when the excitations are more realistic and include both harmonic and random components. To close this knowledge gap, this research computationally and experimentally studies the DC power delivery from bistable energy harvesters subjected to such realistic excitation combinations as those found in practice. Based on the results, it is found that the ability for bistable energy harvesters to generate peak DC power is significantly reduced by introducing sufficient amount of stochastic excitations into an otherwise harmonic input. On the other hand, the elimination of a low amplitude, coexistent response regime by way of the additive noise promotes power delivery if the device was not originally excited to snap-through. The outcomes of this research indicate the necessity for comprehensive studies about the sensitivities of DC power generation from bistable energy harvester to practical excitation scenarios prior to their optimal deployment in applications.
Luminescence decay in condensed argon under high energy excitation
International Nuclear Information System (INIS)
Carvalho, M.J.; Klein, G.
1978-01-01
α and β particles were used to study the luminescence of condensed argon. The scintillation decay has always two components independently of the phase and the kind of the exciting particles. Decay time constants are given for solid, liquid and also gaseous argon. Changes in the relative intensity values of the two components are discussed in terms of track effects
Ordering and low energy excitations in strongly correlated bronzes
Sagara, Dodderi Manjunatha
2006-01-01
Summary In any solid system, whether it is superconducting, shows a charge-density-wave behavior, or any other kind of ground state, two aspects drag the attention of the scientific community. They are order and excitations in solids. The ordering may be due to electronic, lattice, spin or orbital
Energy Technology Data Exchange (ETDEWEB)
Lan, C. B.; Qin, W. Y. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)
2014-09-15
This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.
Ioniclike energy structure of neutral core-excited states in free Kr clusters
International Nuclear Information System (INIS)
Peredkov, S.; Sorensen, S.L.; Kivimaeki, A.; Schulz, J.; Maartensson, N.; Oehrwall, G.; Lundwall, M.; Rander, T.; Lindblad, A.; Bergersen, H.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.
2005-01-01
The development of electronic states in krypton clusters is investigated by high-resolution core-level electron spectroscopy. The energy ordering of bulk versus surface 3d -1 np(n>5) core-excited states in neutral clusters is demonstrated to be reversed to the 3d -1 5p level situation. The cluster 3d -1 6p,7p states are proven to be at a lower energy than the corresponding atomic levels. These findings reveal the ioniclike energy structure of the neutral cluster core-excited levels. The phenomenon is explained by a spatial spread of the excited orbitals over the cluster lattice
Rebolini, Elisa; Teale, Andrew M.; Helgaker, Trygve; Savin, Andreas; Toulouse, Julien
2018-06-01
A Görling-Levy (GL)-based perturbation theory along the range-separated adiabatic connection is assessed for the calculation of electronic excitation energies. In comparison with the Rayleigh-Schrödinger (RS)-based perturbation theory this GL-based perturbation theory keeps the ground-state density constant at each order and thus gives the correct ionisation energy at each order. Excitation energies up to first order in the perturbation have been calculated numerically for the helium and beryllium atoms and the hydrogen molecule without introducing any density-functional approximations. In comparison with the RS-based perturbation theory, the present GL-based perturbation theory gives much more accurate excitation energies for Rydberg states but similar excitation energies for valence states.
Energy transfer and quenching processes of excited uranyl ion and lanthanide ions in solutions
International Nuclear Information System (INIS)
Yamamura, Tomoo; Tomiyasu, Hiroshi
1995-01-01
Deactivation processes of photoexcited uranyl ion by various lanthanide ions in aqueous solution were studied. Each lanthanide ions show different interaction with excited uranyl ion depending on its lowest excited energy level, the number of 4f electrons and the acid concentration of the solution. (author)
DEFF Research Database (Denmark)
Sauer, Stephan P. A.; Pitzner-Frydendahl, Henrik Frank; Buse, Mogens
2015-01-01
methods, the original SOPPA method as well as SOPPA(CCSD) and RPA(D) in the calculation of vertical electronic excitation energies and oscillator strengths is investigated for a large benchmark set of 28 medium-size molecules with 139 singlet and 71 triplet excited states. The results are compared...
Analytical Energy Gradients for Excited-State Coupled-Cluster Methods
Wladyslawski, Mark; Nooijen, Marcel
The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit
Hadron fragment emission in cluster excitation processes at medium energies
International Nuclear Information System (INIS)
Kovacs, Zs.
1985-12-01
An extended version of the cluster excitation model is proposed to describe the emission of various particle types in nuclear reactions in a consistent way. At first pion, proton deuteron and triton spectra from neutron-carbon interactions at 545 MeV in the angular region from deg 73 to deg 165 were tried to interpret by the model. The results are compared with model calculations. (author)
Quasi-particle excitations in low energy fission
International Nuclear Information System (INIS)
Ashgar, M.; Djebara, M.; Bocquet, J.P.; Brissot, R.; Maurel, M.; Nifenecker, H.; Ristori, C.
1985-05-01
Proton odd-even effect for 229 Th(nsub(th),f) and 232 U(nsub(th),f) has been determined with a ΔE-Esub(R) gas telescope. These data indicate that the qp-particle excitation probability at the saddle point is small and most of its results, when the nucleus moves from saddle to scission and the neck ruptures into final fragments. These results are discussed in terms of the different ideas and models
Chatterji, Tapan; Jalarvo, Niina
2013-04-17
We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.
Mean excitation energies for use in Bethe's stopping-power formula
International Nuclear Information System (INIS)
Berger, M.J.; Seltzer, S.M.
1983-01-01
A review has been made of the mean excitation energies that can be derived from the analysis of stopping-power and range measurements, and from semi-empirical dipole oscillator-strength distributions for gases and dielectric-response functions for solids. On the basis of this review, mean excitation energies have been selected for 43 elemental substances and 54 compounds. Additivity rules have also been considered which allow one to estimate the mean excitation energies for compounds for which no direct data are available. These additivity rules are based on the use of mean excitation energies for atomic constituents which, to a certain extent, take into account the effects of chemical binding and physical aggregation
Ultrafast excitation energy transfer from encapsulated quaterrylene to single-walled carbon nanotube
Energy Technology Data Exchange (ETDEWEB)
Koyama, Takeshi, E-mail: koyama@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Tsunekawa, Takuya [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Saito, Takeshi [Research Center for Advanced Carbon Materials, AIST, Tsukuba, Ibaraki 305-8565 (Japan); Asaka, Koji; Saito, Yahachi [Department of Quantum Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Kishida, Hideo [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nakamura, Arao [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192 (Japan)
2016-01-15
We investigate excitation energy transfer from an encapsulated quaterrylene molecule to a single-walled carbon nanotube by means of femtosecond pump-probe spectroscopy. The time constant of energy transfer becomes shorter with increasing average diameter of nanotube: 1.4±0.2 ps for 1.0 nm, 1.1±0.2 ps for 1.4 nm, and 0.4±0.1 ps for 1.8 nm. The observed behavior is discussed considering the distance of less than 1 nm between the molecule and the nanotube wall. - Highlights: • Dynamical properties of excited states in quaterrylene/SWNT composites were studied. • Excitation energy transfer occurs in the time range of 0.4-1.4 ps. • The transfer rate depends on the nanotube diameter, i.e. molecule-nanotube wall distance. • This dependence indicates the feature of excitation energy transfer on the nanoscale.
Optogalvanic monitoring of collisional transfer of laser excitation energy in a neon RF plasma
International Nuclear Information System (INIS)
Armstrong, T.D.
1994-01-01
The optogalvanic signals produced by pulsed laser excitation of 1s5--2p8 and 1s5-2p9 (Paschen notation) transition by a ∼29 MHz radiofrequency (rf) discharge at ∼5 torr have been investigated. The optogalvanic signal produced by 1s5-2p9 excitations indicates that there is transfer of energy from the 2p9 state to some other state. The state to which this energy is transferred is believed to be mainly the 2p8 state because of the very small energy gap between the 2p9 and 2p8 states. To verify this transfer, the 1s5-2p8 transition was investigated. The similarity of the temporal profiles of the optogalvanic signals in both excitations confirms the collisional transfer of laser excitation energy from 2p9 to 2p8
Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume II
International Nuclear Information System (INIS)
Silver, R.N.
1984-12-01
This volume covers electronic excitations, momentum distributions, high energy photons, and a wrap-up session. Abstracts of individual items from the conference were prepared separately for the data base
Effect of Optical Excitation Energy on the Red Luminescence of Eu(3+) in GaN
National Research Council Canada - National Science Library
Peng, H. Y; Lee, C. W; Everitt, H. O; Lee, D. S; Steckl, A. J; Zavada, J. M
2005-01-01
...)] transition from GaN:Eu. Time-resolved PL measurements revealed that for excitation at the GaN bound exciton energy, the decay transients are almost temperature insensitive between 86 K and 300 K, indicating an efficient...
International Nuclear Information System (INIS)
Frey, R.W.
1978-01-01
Using high resolution inelastic electron scattering magnitic dipole and quadrupole excitations in 208 Pb were investigated in the energy range between 6 MeV and 8 MeV. The electron energy was 50 MeV and 63.5 MeV. With a mean absolute energy resolution of 33 kev. 44 excited states were found in the above energy range. The measured angular distributions were compared with DWBA-calculations using random phase approximated wave functions. (FKS)
Identification of the low-energy excitations in a quantum critical system
Directory of Open Access Journals (Sweden)
Tom Heitmann
2017-05-01
Full Text Available We have identified low-energy magnetic excitations in a doped quantum critical system by means of polarized neutron scattering experiments. The presence of these excitations could explain why Ce(Fe0.76Ru0.242Ge2 displays dynamical scaling in the absence of local critical behavior or long-range spin-density wave criticality. The low-energy excitations are associated with the reorientations of the superspins of fully ordered, isolated magnetic clusters that form spontaneously upon lowering the temperature. The system houses both frozen clusters and dynamic clusters, as predicted by Hoyos and Vojta [Phys. Rev. B 74, 140401(R (2006].
Excitation energy of the lowest 2+ and 3- levels in 32Mg and 146Gd
International Nuclear Information System (INIS)
Barranco, M.; Lombard, R.J.
1978-06-01
The excitation energy of the lowest 2 + and 3 - levels are calculated for neutron rich Mg-isotopes as well as for N=82 isotones. The calculations are made by assuming quadrupole-quadrupole and octupole-octupole forces. The quasi-particles energies and occupation numbers are taken from the energy density method
Effect of magnetic field on the impurity binding energy of the excited ...
Indian Academy of Sciences (India)
The effect of external magnetic field on the excited state energies in a spherical quantum dot was studied. The impurity energy and binding energy were calculated using the variational method within the effective mass approximation and finite barrier potential. The results showed that by increasing the magnetic field, the ...
Effect of magnetic field on the impurity binding energy of the excited ...
Indian Academy of Sciences (India)
Abstract. The effect of external magnetic field on the excited state energies in a spher- ical quantum dot was studied. The impurity energy and binding energy were calculated using the variational method within the effective mass approximation and finite barrier potential. The results showed that by increasing the magnetic ...
Energy risk management through self-exciting marked point process
International Nuclear Information System (INIS)
Herrera, Rodrigo
2013-01-01
Crude oil is a dynamically traded commodity that affects many economies. We propose a collection of marked self-exciting point processes with dependent arrival rates for extreme events in oil markets and related risk measures. The models treat the time among extreme events in oil markets as a stochastic process. The main advantage of this approach is its capability to capture the short, medium and long-term behavior of extremes without involving an arbitrary stochastic volatility model or a prefiltration of the data, as is common in extreme value theory applications. We make use of the proposed model in order to obtain an improved estimate for the Value at Risk in oil markets. Empirical findings suggest that the reliability and stability of Value at Risk estimates improve as a result of finer modeling approach. This is supported by an empirical application in the representative West Texas Intermediate (WTI) and Brent crude oil markets. - Highlights: • We propose marked self-exciting point processes for extreme events in oil markets. • This approach captures the short and long-term behavior of extremes. • We improve the estimates for the VaR in the WTI and Brent crude oil markets
The structure of nuclear states at low, intermediate and high excitation energies
International Nuclear Information System (INIS)
Soloviev, V.G.
1976-01-01
It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed
Influence of donor-donor transport on excitation energy transfer
Energy Technology Data Exchange (ETDEWEB)
Pandey, K K; Joshi, H C; Pant, T C [Kumaun University, Nainital (India). Department of Physics
1989-01-01
Energy migration and transfer from acriflavine to rhodamine B and malachite green in poly (methylmethacrylate) have been investigated using the decay function analysis. It is found that the influence of energy migration in energy transfer can be described quite convincingly by making use of the theories of Loring, Andersen and Fayer (LAF) and Huber. At high acceptor concentration direct donor-acceptor transfer occurs through Forster mechanism. (author). 17 refs., 5 figs.
Isobar excitations and low energy spectra of light nuclei
International Nuclear Information System (INIS)
Czerski, P.
1984-01-01
The aim of this investigation is to study the possible influence of inner excitations of nucleons into the Δ(3,3)-resonance on the low lying spectra of light nuclei like 12 C and 16 O. Before we can study the effect of such exotic configurations one has to perform a reliable investigation within the normal nuclear model, which is based on a microscopic theory. This is achieved by performing RPA (Random Phase Approximation) calculations using a realistic residual interaction derived from the Brueckner G-matrix. An efficient parametrisation of the residual interaction is introduced and the reliability of the more phenomenological parametrisations which are generally used is discussed. Within such realistic calculations, the isobar effects are small. (orig.) [de
σ-SCF: A direct energy-targeting method to mean-field excited states.
Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D; Van Voorhis, Troy
2017-12-07
The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry-a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states-ground or excited-are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H 2 , HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.
Effect of neutron irradiation on the density of low-energy excitations in vitreous silica
International Nuclear Information System (INIS)
Smith, T.L.
1979-01-01
Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity were made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat C/sub ex/, the thermal conductivity kappa, and the anomalous temperature dependence of the ultrasound velocity Δv/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that kappa and Δv/v are determined by the same localized excitations responsible for C/sub ex/, but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. A consistent account for the measured C/sub ex/, kappa, and Δv/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model
X-ray yields by low energy heavy ion excitation in alkali halide solid targets
International Nuclear Information System (INIS)
Kurup, M.B.; Prasad, K.G.; Sharma, R.P.
1981-01-01
Solid targets of the alkali halides KCl, NaCl and KBr are bombarded with ion beams of 35 Cl + , 40 Ar + and 63 Cu + in the energy range 165 keV to 320 keV. The MO and characteristic K X-ray yields resulting from the ion-atom collision have been systematically studied. Both MO and Cl K X-ray yields are enhanced by factors 3.5 and 2 respectively in KCl targets as compared to that in NaCl when bombarded with either Cl + or Ar + projectiles. An intercomparison of MO and K X-ray yields for a given projectile-target combination has shown that the latter increases ten times faster than the former as the energy of the projectile is increased from 165 to 320 keV indicating a correspondingly stronger velocity dependence of the K X-ray production process. The X-ray yields observed in the symmetric Cl-Cl collision are identical to those observed in the asymmetric Ar-Cl collision for the same projectile velocities in both KCl and NaCl targets. It is inferred that the multiple ionization of the projectile resulting in an increase in the binding energy of its inner shells offsets the expected enhancement in the X-ray yields in a symmetric collision. The same projectiles, Ar or Cl, incident on KBr targets have produced only Br L X-rays. Using substantially heavier projectiles than the target atoms (Na, K and Cl), like 63 Cu + ions, the inner shell excitation by recoiling atoms is shown. (orig.)
Influence of collision energy and vibrational excitation on the ...
Indian Academy of Sciences (India)
tions of potential energy surface (PES) for BrH2 system are more ... rier heights for both the exchange and abstraction are smaller than ... The complete picture on the dynamics of ..... Kurosaki Y and Takayanagi T private communication. 20.
Energy Technology Data Exchange (ETDEWEB)
Shamim, Md; Harbola, Manoj K, E-mail: sami@iitk.ac.i, E-mail: mkh@iitk.ac.i [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India)
2010-11-14
Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.
International Nuclear Information System (INIS)
Shamim, Md; Harbola, Manoj K
2010-01-01
Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.
Energy Technology Data Exchange (ETDEWEB)
Pietralla, N., E-mail: pietralla@ikp.tu-darmstadt.d [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Li, T.C. [Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Fritzsche, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Ahmed, M.W. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Ahn, T.; Costin, A. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Enders, J. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Li, J. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Mueller, S.; Neumann-Cosel, P. von [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Pinayev, I.V. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Ponomarev, V.Yu.; Savran, D. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Tonchev, A.P.; Tornow, W.; Weller, H.R. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Werner, V. [A.W. Wright Nuclear Structure Laboratory (WNSL), Yale University, New Haven, CT (United States); Wu, Y.K. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Zilges, A. [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany)
2009-10-26
The Pb(gamma{sup -}>,gamma{sup '}) photon scattering reaction has been studied with the nearly monochromatic, linearly polarized photon beams at the High Intensity gamma-ray Source (HIgammaS) at the DFELL. Azimuthal scattering intensity asymmetries measured with respect to the polarization plane of the beam have been used for the first time to assign both the spin and parity quantum numbers of dipole excited states of {sup 206,207,208}Pb at excitation energies in the vicinity of 5.5 MeV. Evidence for dominant particle-core coupling is deduced from these results along with information on excitation energies and electromagnetic transition matrix elements. Implications of the existence of weakly coupled states built on highly excited core states in competition with 1homega single particle (hole) excitations at comparable energies are discussed.
Glass-like, low-energy excitations in neutron-irradiated quartz
International Nuclear Information System (INIS)
Gardner, J.W.
1980-01-01
The specific heat and thermal conductivity of neutron-irradiated crystalline quartz have been measured for temperatures approx. = 0.1 to 5 K. Four types of low-energy excitations are observed in the irradiated samples, two of which can be removed selectively by heat treatment. One set of remaining excitations gives rise to low-temperature thermal behavior characteristic of glassy (amorphous) solids. The density of these glass-like excitations can be 50% the density observed in vitreous silica, yet the sample still retains long-range atomic order. In a less-irradiated sample, glass-like excitations may be present with a density only approx. = 2.5% that observed in vitreous silica and possess a similar broad energy spectrum over 0.1 to 1 K
Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain
Wang, Luxia; May, Volkhard
2017-08-01
The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.
International Nuclear Information System (INIS)
Kuzin, A.; Thompson, M.N.; Rassool, R.; Adler, J.O.; Fissum, K.; Issaksson, L.; Ruijter, H.; Schroeder, B.; Annand, J.R.M.; McGeorge, J.C.; Crawford, G.I.; Gregel, J.
1997-01-01
The 12 C (γ,p) reaction was studied. The experiment was done at the MAX Laboratory of Lund University, using tagged photons with energy between 50 and 70 MeV and natural carbon targets. It has been possible to detect γ-ray emitted from the residual nucleus, in coincidence with photoprotons leading to the excited residual state. The 200 KeV gamma-ray resolution permitted the identification of the residual states and allowed off-line cuts to be made in order to identify the excitation region in 11 B from what particular de-excitation gamma-ray were seen. 9 refs., 1 tab., 3 figs
Study of excitation energy sharing in heavy ion collisions as a function of their inelasticity
International Nuclear Information System (INIS)
Lott, B.
1986-01-01
The excitation energy sharing between the fragments of a heavy ion collision has been studied for quasi-elastic and deep inelastic mechanisms. A 32 S beam of 232 MeV incident energy has been used to bombard several targets (S, 58 Ni, 93 Nb). The evaporated charged particle multiplicities have been measured by inclusive measurements of the projectile-like nuclei and exclusive measurements of the two final nuclei. Evaporation calculations using the Hauser-Feshbach formalism allows us to deduce from the multiplicity measurements the projectile-like excitation energy. These results are compatible with the assumption of an equal sharing of excitation energies for quasi-elastic reaction products, and with the assumption of a mass ratio sharing for fully relaxed reaction products. Limiting values for the relaxation time of this mode have been deduced and are in agreement with predictions from the model developed by Randrup [fr
Singlet-triplet splittings from the virial theorem and single-particle excitation energies
Becke, Axel D.
2018-01-01
The zeroth-order (uncorrelated) singlet-triplet energy difference in single-particle excited configurations is 2Kif, where Kif is the Coulomb self-energy of the product of the transition orbitals. Here we present a non-empirical, virial-theorem argument that the correlated singlet-triplet energy difference should be half of this, namely, Kif. This incredibly simple result gives vertical HOMO-LUMO excitation energies in small-molecule benchmarks as good as the popular TD-B3LYP time-dependent approach to excited states. For linear acenes and nonlinear polycyclic aromatic hydrocarbons, the performance is significantly better than TD-B3LYP. In addition to the virial theorem, the derivation borrows intuitive pair-density concepts from density-functional theory.
Effect of collision energy and vibrational excitation on endothermic ion-molecule reactions
International Nuclear Information System (INIS)
Turner, T.P.
1984-07-01
This thesis is divided into two major parts. In the first part an experimental study of proton and deuteron transfer in H 2 + + He and HD + + He has been carried out as a function of kinetic and vibrational energy. The data gives evidence that at lower kinetic energies, the spectator stripping mechanism indeed plays an important role when H 2 + or HD + is vibrationally excited. The second half of this thesis examines the relative efficiencies between the excitation of C-C stretching vibration and collision energy on the promotion of the H atom transfer reaction of C 2 H 2 + + H 2 → C 2 H 3 + + H
Energy Technology Data Exchange (ETDEWEB)
Do, T. P. T. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); School of Education, Can Tho University, Campus II, 3/2 Street, Xuan Khanh, Ninh Kieu, Can Tho City (Viet Nam); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Konovalov, D. A.; White, R. D. [College of Science, Technology and Engineering, James Cook University, Townsville (Australia); Brunger, M. J., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jones, D. B., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia)
2015-03-28
We report differential cross sections (DCSs) for electron-impact vibrational-excitation of tetrahydrofuran, at intermediate incident electron energies (15-50 eV) and over the 10°-90° scattered electron angular range. These measurements extend the available DCS data for vibrational excitation for this species, which have previously been obtained at lower incident electron energies (≤20 eV). Where possible, our data are compared to the earlier measurements in the overlapping energy ranges. Here, quite good agreement was generally observed where the measurements overlapped.
The EDDA experiment: proton-proton elastic scattering excitation functions at intermediate energies
International Nuclear Information System (INIS)
Hinterberher, F.
1996-01-01
The EDDA experiment is designed to provide a high precision measurement of proton-proton elastic scattering excitation functions ranging from 0.5 to 2.5 GeV of (lab) incident kinetic energy. It is an internal target experiment utilizing the proton beam of the cooler synchrotron COSY operated by KFA Juelich. The excitation functions are measured during the acceleration ramp of COSY. (author)
Probing shape coexistence in neutron-deficient $^{72}$Se via low-energy Coulomb excitation
We propose to study the evolution of nuclear structure in neutron-deficient $^{72}$Se by performing a low-energy Coulomb excitation measurement. Matrix elements will be determined for low-lying excited states allowing for a full comparison with theoretical predictions. Furthermore, the intrinsic shape of the ground state, and the second 0$^{+}$ state, will be investigated using the quadrupole sum rules method.
σ-SCF: A direct energy-targeting method to mean-field excited states
Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D.; Van Voorhis, Troy
2017-12-01
The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry—a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states—ground or excited—are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.
Generating Excitement: Build Your Own Generator to Study the Transfer of Energy
Fletcher, Kurt; Rommel-Esham, Katie; Farthing, Dori; Sheldon, Amy
2011-01-01
The transfer of energy from one form to another can be difficult to understand. The electrical energy that turns on a lamp may come from the burning of coal, water falling at a hydroelectric plant, nuclear reactions, or gusts of wind caused by the uneven heating of the Earth. The authors have developed and tested an exciting hands-on activity to…
Augulis, Ramunas; Pugzlys, Audrius; Hurenkamp, Johannes; Feringa, Ben L.; van Esch, Jan H.; van Loosdrecht, Paul H. M.
2007-01-01
Energy transfer properties of novel coumarin-perylene bisimide dendrimer are studied by means of steady state and time-resolved UV/vis spectroscopy. At low donor excitation density fast (transfer rate similar to 10 ps(-1)) and efficient (quantum yield similar to 99.5%) donor-acceptor energy transfer
Excitation and dissociation of molecules by low-energy (0-15 eV) electrons
International Nuclear Information System (INIS)
Verhaart, G.J.
1980-01-01
The author deals with excitation and dissociation processes which result from the interaction between low-energy (0.15 eV) electrons and molecules. Low-energy electron-impact spectroscopy is used to gain a better knowledge of the electronic structure of halomethanes, ethylene and some of its halogen substituted derivatives, and some more complex organic molecules. (Auth.)
Excitation energy transfer from dye molecules to doped graphene
Indian Academy of Sciences (India)
Recently, we have reported theoretical studies on the rate of energy transfer ... Dirac cone approximation and hence our conclusions are of qualitative nature. 2. .... make another change of variable to r given by r = ki q/2 to get. G1 (q) = Aq2.
Range-separated density-functional theory for molecular excitation energies
International Nuclear Information System (INIS)
Rebolini, E.
2014-01-01
Linear-response time-dependent density-functional theory (TDDFT) is nowadays a method of choice to compute molecular excitation energies. However, within the usual adiabatic semi-local approximations, it is not able to describe properly Rydberg, charge-transfer or multiple excitations. Range separation of the electronic interaction allows one to mix rigorously density-functional methods at short range and wave function or Green's function methods at long range. When applied to the exchange functional, it already corrects most of these deficiencies but multiple excitations remain absent as they need a frequency-dependent kernel. In this thesis, the effects of range separation are first assessed on the excitation energies of a partially-interacting system in an analytic and numerical study in order to provide guidelines for future developments of range-separated methods for excitation energy calculations. It is then applied on the exchange and correlation TDDFT kernels in a single-determinant approximation in which the long-range part of the correlation kernel vanishes. A long-range frequency-dependent second-order correlation kernel is then derived from the Bethe-Salpeter equation and added perturbatively to the range-separated TDDFT kernel in order to take into account the effects of double excitations. (author)
International Nuclear Information System (INIS)
Agarwal, Avinash; Rizvi, I.A.; Gupta, Meenal; Ahamad, Tauseef; Ghugre, S.S.; Sinha, A.K.; Chaubey, A.K.
2008-01-01
With the motivation of studying the complete and incomplete fusion reactions, excitation functions for the reactions 93 Nb(Ne, p2n) 110 Sn, 93 Nb(Ne, 2pn) 110 In, 93 Nb(Ne, 2p2n) 109 In, 93 Nb(Ne, αn) 108 In, 93 Nb(Neα2n) 107 In and 93 Nb(Ne, α p n) 107 Cd have been measured at the incident energy ranging from 91.4 MeV - 145 MeV. The well established activation technique followed by off line high purity gamma- ray spectroscopy was employed. The measured excitation functions were compared with the statistical model calculations by using the codes ALICE-91 and Pace-4. The effect of variation of different parameters including level density parameter involved in these codes has also been studied. Excellent agreement was found between theoretical and experimental values in some of the fusion evaporation reaction channels. However, significant enhancement of cross-section observed in α-emission channels may be due to incomplete fusion process. (author)
Coherent excitation-energy transfer and quantum entanglement in a dimer
International Nuclear Information System (INIS)
Liao Jieqiao; Sun, C. P.; Huang Jinfeng; Kuang Leman
2010-01-01
We study coherent energy transfer of a single excitation and quantum entanglement in a dimer, which consists of a donor and an acceptor modeled by two two-level systems. Between the donor and the acceptor, there exists a dipole-dipole interaction, which provides the physical mechanism for coherent energy transfer and entanglement generation. The donor and the acceptor couple to two independent heat baths with diagonal couplings that do not dissipate the energy of the noncoupling dimer. Special attention is paid to the effect on single-excitation energy transfer and entanglement generation of the energy detuning between the donor and the acceptor and the temperatures of the two heat baths. It is found that, the probability for single-excitation energy transfer largely depends on the energy detuning in the low temperature limit. Concretely, the positive and negative energy detunings can increase and decrease the probability at steady state, respectively. In the high temperature limit, however, the effect of the energy detuning on the probability is negligibly small. We also find that the probability is negligibly dependent on the bath temperature difference of the two heat baths. In addition, it is found that quantum entanglement can be generated in the process of coherent energy transfer. As the bath temperature increases, the generated steady-state entanglement decreases. For a given bath temperature, the steady-state entanglement decreases with the increase of the absolute value of the energy detuning.
Fusion-fission of superheavy nuclei at low excitation energies
International Nuclear Information System (INIS)
Itkis, M.G.; Oganesyan, Yu.Ts.; Kozulin, E.M.
2000-01-01
The process of fusion-fission of superheavy nuclei with Z = 102 -122 formed in the reactions with 22 Ne, 26 Mg, 48 Ca, 58 Fe and 86 Kr ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR) using a time-of-flight spectrometer of fission fragments CORSET and a neutron multi-detector DEMON. As a result of the experiments, mass and energy distributions of fission fragments, fission and quasi-fission cross sections, multiplicities of neutrons and gamma-rays and their dependence on the mechanism of formation and decay of compound superheavy systems have been studied
International Nuclear Information System (INIS)
Artz, B.E.; Short, M.A.
1976-01-01
A comparison was made between the direct tube excitation mode and the secondary target excitation mode using a Kevex 0810 energy dispersive x-ray fluorescence system. Relative sensitivities and detection limits were determined with two system configurations. The first configuration used a standard, high power, x-ray fluorescence tube to directly excite the specimen. Several x-ray tubes, including chromium, molybdenum, and tungsten, both filtered and not filtered, were employed. The second configuration consisted of using the x-ray tube to excite a secondary target which in turn excited the specimen. Appropriate targets were compared to the direct excitation results. Relative sensitivities and detection limits were determined for K-series lines for elements from magnesium to barium contained in a low atomic number matrix and in a high atomic number matrix
International Nuclear Information System (INIS)
Malinina, L.V.; Alkhazov, G.D.; Augustyniak, W.
2001-01-01
A study of inelastic scattering of polarized 3.73 GeV/c deuterons on protons in the energy region of the Roper N* (1440) and the Δ(1232) resonances excitation has been performed in an exclusive experiment at LNS (Laboratoire National SATURNE, Saclay, France) using the SPES4-π setup. Tensor and vector analyzing powers of pion production for the reactions d+p→d+n+π + , d+p→d+p+π 0 , d+p→d+N+ππ have been measured as functions of the squared deuteron 4-momentum transfer t, of the effective mass of the subsystems (Nπ), (Nππ) and of the pion emission angle. A strong dependence of these analyzing powers upon the pion emission angle is observed. It is found that A yy values for the considered reaction channels are systematically larger than the known inclusive p(d,d')X world data at the nearest beam energy
Malinina, L V; Augustyniak, W; Boivin, M; Boyard, J L; Dahl, R; Drews, M; Ellegaard, C; Fahri, L; Gaarde, C; Hennino, T; Jourdain, J C; Kagarlis, M A; Kravtsov, A V; Künne, R A; Larsen, J C; Morsch, P; Mylnikov, V A; Orichtchin, E M; Perdrisat, C F; Piskunov, N M; Prokofiev, A N; Punjabi, V; Radvanyi, P; Ramstein, B; Razmyslovich, B V; Roy-Stephan, M; Sitnik, I M; Skousen, M; Strokovsky, E A; Tkach, I I; Tomasi-Gustafsson, E; Volkov, S S; Zhdanov, A A; Zupranski, P
2001-01-01
A study of inelastic scattering of polarized 3.73 GeV/c deuterons on protons in the energy region of the Roper N*(1440) and the {DELTA}(1232) resonances excitation has been performed in an exclusive experiment at LNS (Laboratoire National SATURNE, Saclay, France) using the SPES-{pi} setup.Tensor and vector analyzing powers of pion production for the reactions d + p {\\to} d + n + pi^{+}, d + p {\\to} d + p + pi^{0}, d + p {\\to} d + N + pi pi have been measured as functions of the squared deuteron 4-momentum transfer t, of the effective mass of the subsystems (N pi), (N pi pi) and of the pion emission angle. A strong dependence of these analyzing powers upon the pion emission angle is observed. It is found that A_{yy} values for the considered reaction channels are systematically larger than the known inclusive {p (d, d {\\prime}) X} world data at the nearest beam energy.
Fang, Fei; Xia, Guanghui; Wang, Jianguo
2018-02-01
The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.
JANUS - A setup for low-energy Coulomb excitation at ReA3
Lunderberg, E.; Belarge, J.; Bender, P. C.; Bucher, B.; Cline, D.; Elman, B.; Gade, A.; Liddick, S. N.; Longfellow, B.; Prokop, C.; Weisshaar, D.; Wu, C. Y.
2018-03-01
A new experimental setup for low-energy Coulomb excitation experiments was constructed in a collaboration between the National Superconducting Cyclotron Laboratory (NSCL), Lawrence Livermore National Laboratory (LLNL), and the University of Rochester and was commissioned at the general purpose beam line of NSCL's ReA3 reaccelerator facility. The so-called JANUS setup combines γ-ray detection with the Segmented Ge Array (SeGA) and scattered particle detection using a pair of segmented double-sided Si detectors (Bambino 2). The low-energy Coulomb excitation program that JANUS enables will complement intermediate-energy Coulomb excitation studies that have long been performed at NSCL by providing access to observables that quantify collectivity beyond the first excited state, including the sign and magnitude of excited-state quadrupole moments. In this work, the setup and its performance will be described based on the commissioning run that used stable 78Kr impinging onto a 1.09 mg/cm2208Pb target at a beam energy of 3.9 MeV/u.
Energy principle for excitations in plasmas with counterstreaming electron flows
Kumar, Atul; Shukla, Chandrasekhar; Das, Amita; Kaw, Predhiman
2018-05-01
A relativistic electron beam propagating through plasma induces a return electron current in the system. Such a system of interpenetrating forward and return electron current is susceptible to a host of instabilities. The physics of such instabilities underlies the conversion of the flow kinetic energy to the electromagnetic field energy. Keeping this in view, an energy principle analysis has been enunciated in this paper. Such analyses have been widely utilized earlier in the context of conducting fluids described by MHD model [I. B. Bernstein et al., Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 244(1236), 17-40 (1958)]. Lately, such an approach has been employed for the electrostatic two stream instability for the electron beam plasma system [C. N. Lashmore-Davies, Physics of Plasmas 14(9), 092101 (2007)]. In contrast, it has been shown here that even purely growing mode like Weibel/current filamentation instability for the electron beam plasma system is amenable to such a treatment. The treatment provides an understanding of the energetics associated with the growing mode. The growth rate expression has also been obtained from it. Furthermore, it has been conclusively demonstrated in this paper that for identical values of S4=∑αn0 αv0α 2/n0γ0 α, the growth rate is higher when the counterstreaming beams are symmetric (i.e. S3 = ∑αn0αv 0α/n0γ0α = 0) compared to the case when the two beams are asymmetric (i.e. when S3 is finite). Here, v 0α, n0α and γ0α are the equilibrium velocity, electron density and the relativistic factor for the electron species `α' respectively and n0 = ∑αn0α is the total electron density. Particle - In - Cell simulations have been employed to show that the saturated amplitude of the field energy is also higher in the symmetric case.
Relativistic Energy Density Functionals: Exotic modes of excitation
International Nuclear Information System (INIS)
Vretenar, D.; Paar, N.; Marketin, T.
2008-01-01
The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of β-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.
Selective excitation, relaxation, and energy channeling in molecular systems
International Nuclear Information System (INIS)
Rhodes, W.C.
1993-08-01
Research involves theoretical studies of response, relaxation, and correlated motion in time-dependent behavior of large molecular systems ranging from polyatomic molecules to protein molecules in their natural environment. Underlying theme is subsystem modulation dynamics. Main idea is that quantum mechanical correlations between components of a system develop with time, playing a major role in determining the balance between coherent and dissipative forces. Central theme is interplay of coherence and dissipation in determining the nature of dynamic structuring and energy flow in molecular transformation mechanisms. Subsystem equations of motion are being developed to show how nonlinear, dissipative dynamics of a particular subsystem arise from correlated interactions with the rest of the system (substituent groups, solvent, lattice modes, etc.); one consequence is resonance structures and networks. Quantum dynamics and thermodynamics are being applied to understand control and energy transfer mechanisms in biological functions of protein molecules; these mechanisms are both global and local. Besides the above theory, the research deals with phenomenological aspects of molecular systems
International Nuclear Information System (INIS)
Erturk, A; Inman, D J
2009-01-01
Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of Rayleigh–Ritz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler–Bernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance
Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.
Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon
2018-04-05
The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.
Farooq, Shazia; Chmeliov, Jevgenij; Trinkunas, Gediminas; Valkunas, Leonas; van Amerongen, Herbert
2016-04-07
We have compared picosecond fluorescence decay kinetics for stacked and unstacked photosystem II membranes in order to evaluate the efficiency of excitation energy transfer between the neighboring layers. The measured kinetics were analyzed in terms of a recently developed fluctuating antenna model that provides information about the dimensionality of the studied system. Independently of the stacking state, all preparations exhibited virtually the same value of the apparent dimensionality, d = 1.6. Thus, we conclude that membrane stacking does not affect the efficiency of the delivery of excitation energy toward the reaction centers but ensures a more compact organization of the thylakoid membranes within the chloroplast and separation of photosystems I and II.
Anda, André; De Vico, Luca; Hansen, Thorsten
2017-06-08
Light-harvesting system 2 (LH2) executes the primary processes of photosynthesis in purple bacteria; photon absorption, and energy transportation to the reaction center. A detailed mechanistic insight into these operations is obscured by the complexity of the light-harvesting systems, particularly by the chromophore-environment interaction. In this work, we focus on the effects of the protein residues that are ligated to the bacteriochlorophylls (BChls) and construct potential energy surfaces of the ground and first optically excited state for the various BChl-residue systems where we in each case consider two degrees of freedom in the intermolecular region. We find that the excitation energies are only slightly affected by the considered modes. In addition, we see that axial ligands and hydrogen-bonded residues have opposite effects on both excitation energies and oscillator strengths by comparing to the isolated BChls. Our results indicate that only a small part of the chromophore-environment interaction can be associated with the intermolecular region between a BChl and an adjacent residue, but that it may be possible to selectively raise or lower the excitation energy at the axial and planar residue positions, respectively.
International Nuclear Information System (INIS)
Chamberlain, M.B.; Baun, W.L.
1975-01-01
Soft x-ray appearance potential spectra of the 3d and 4d levels of polycrystalline cerium metal are reported in this paper. Resonant x-ray emissions are observed when the electron-excitation energy sweeps through the ionization energies of the 3d and 4d levels. The resonant x rays excited at the 3d-level onsets are considerably more intense, and are excited at a lower electron-excitation energy than the 3d-series characteristic x rays. In the neighborhood of the 4d-electron thresholds, four line-like structures extend to approx.8 eV below the 4d-electron binding energies, while two broad and more intense structures occur above the 4d onsets, with the largest one reaching a peak intensity at 12 eV above the 4d thresholds. The resonant emissions apparently arise from the decay of threshold-excited states which are bound to the inner vacancy and have core configurations nd 9 4f 3 , (n=3,4). The exchange interaction between the three 4f electrons and the respective d-orbital vacancy spreads the 4d-threshold structures over a 20 eV range of excitation energies and the 3d-threshold structures over a much smaller range
Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions
DEFF Research Database (Denmark)
Macdonald, W A; Ørtenblad, N; Nielsen, Ole Bækgaard
2007-01-01
High-frequency stimulation of skeletal muscle has long been associated with ionic perturbations, resulting in the loss of membrane excitability, which may prevent action potential propagation and result in skeletal muscle fatigue. Associated with intense skeletal muscle contractions are large...... with control muscles, the resting metabolites ATP, phosphocreatine, creatine, and lactate, as well as the resting muscle excitability as measured by M-waves, were unaffected by treatment with BTS plus dantrolene. Following 20 or 30 s of continuous 60-Hz stimulation, BTS-plus-dantrolene-treated muscles showed...... changes in muscle metabolites. However, the role of metabolites in the loss of muscle excitability is not clear. The metabolic state of isolated rat extensor digitorum longus muscles at 30 degrees C was manipulated by decreasing energy expenditure and thereby allowed investigation of the effects of energy...
Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP
Masters, T. A.; Robinson, N. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.
2018-04-01
Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment ⟨α40 ⟩ present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of ⟨α40 ⟩ to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both ⟨α20 ⟩ (quadrupolar) and ⟨α40 ⟩ transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.
Estimation of excitation forces for wave energy converters control using pressure measurements
Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.
2017-08-01
Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.
Radiative transport and collisional transfer of excitation energy in Cs vapors mixed with Ar or He
International Nuclear Information System (INIS)
Vadla, Cedomil; Horvatic, Vlasta; Niemax, Kay
2003-01-01
This paper is a review (with a few original additions) on the radiative transport and collisional transfer of energy in laser-excited cesium vapors in the presence of argon or helium. Narrow-band excitation of lines with Lorentz, Doppler and Voigt profiles is studied in order to calculate effective rates for pumping of spectral lines with profiles comprising inhomogeneous broadening components. The radiative transport of excitation energy is considered, and a new, simple and robust, but accurate theoretical method for quantitative treatment of radiation trapping in relatively optically thin media is presented. Furthermore, comprehensive lists of experimental values for the excitation energy transfer cross-sections related to thermal collisions in Cs-Ar and Cs-He mixtures are given. Within the collected cross-section data sets, specific regularities with respect to the energy defect, as well as the temperature, are discerned. A particular emphasis is put on the radiative and collisional processes important for the optimization of resonance-fluorescence imaging atomic filters based on Cs-noble gas systems
Two types of charge transfer excitations in low dimensional cuprates: an electron energy-loss study
Czech Academy of Sciences Publication Activity Database
Knupfer, M.; Fink, J.; Drechsler, S.-L.; Hayn, R.; Málek, Jiří; Moskvin, A.S.
137-140, - (2004), s. 469-473 ISSN 0368-2048 Institutional research plan: CEZ:AV0Z1010914 Keywords : cuprates * electronic excitations * electron energy-loss spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.069, year: 2004
Energy Technology Data Exchange (ETDEWEB)
Buta, A.M.; Steckmeyer, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Auger, G. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)] [and others
2002-03-01
The excitation energy of the quasi-projectiles produced in heavy-ion collisions is determined for the {sup 58}Ni+{sup 197}Au reactions at 52 and 90 AMeV. A new method is proposed for isolating unambiguously the particles evaporated by the source. It consists in observing them at small angles along the flight direction of the source. (authors)
Interqubit coupling mediated by a high-excitation-energy quantum object
Ashhab, S.; Niskanen, A.O.; Harrabi, K.; Nakamura, Y.; Picot, T.; De Groot, P.C.; Harmans, C.J.P.M.; Mooij, J.E.; Nori, F.
2008-01-01
We consider a system composed of two qubits and a high excitation energy quantum object used to mediate coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well known
Energy Technology Data Exchange (ETDEWEB)
Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.
1997-01-01
Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)
Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.
Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M
2016-09-27
Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.
Measurements of vibrational excitation of N2, CO, and NO by low energy proton impact
International Nuclear Information System (INIS)
Krutein, J.; Linder, F.
1979-01-01
Differential scattering experiments are reported for proton impact on N 2 , CO, and NO in the energy range E/sub lab/=30--80 eV. The measurements include the range of very small scattering angles around 0 0 as well as the rainbow region. The vibrationally resolved energy-loss spectra show a relatively low vibrational inelasticity for all three systems. Differential cross sections, transition probabilities, and the mean vibrational energy transfer are presented. Rotational excitation is indicated by the broadening of the energy-loss peaks which is most significant for H + --NO. The small-angle scattering data for vibrational excitation in CO show good agreement with the impact parameter theory using the known long-range interactions for this system
International Nuclear Information System (INIS)
Kumar, Rajiv; Sharma, Shagun; Singh, Pradeep; Kharab, Rajesh
2016-01-01
The energy-independent touching spheres schemes commonly used for the determination of the safe minimum value of the impact parameter for Coulomb excitation experiments are modified through the inclusion of an energy-dependent term. The touching spheres+3fm scheme after modification emerges out to be the best one while touching spheres+4fm scheme is found to be better in its unmodified form. (orig.)
Brøndsted Nielsen, Steen; Brøndsted Nielsen, Mogens; Rubio, Angel
2014-04-15
gas-phase ion spectroscopy in Aarhus is given, and we address issues of whether double bonds or triple bonds best convey electronic coupling between the phenolate oxygen and the nitro group, the significance of separating the donor and acceptor spatially, the influence of cross-conjugation versus linear conjugation, and along this line ortho versus meta versus para configuration, and not least the effect of a single solvent molecule (water, methanol, or acetonitrile). From systematic studies, a clear picture has emerged that has been supported by high-level calculations of electronically excited states. Our work shows that CC2 coupled-cluster calculations of vertical excitation energies are within 0.2 eV of experimental band maxima, and importantly, that the theoretical method is excellent in predicting the relative order of excitation energies of a series of nitrophenolates. Finally, we discuss future challenges such as following the change in absorption as a function of the number of solvent molecules and when gradually approaching the bulk limit.
Excitation energy partition in 74Ge + 165Ho collision at energy 8.5 MeV/A
International Nuclear Information System (INIS)
Blocki, J.; Grotowski, K.; Planeta, R.
1990-01-01
The distribution of the excitation energy between both fragments in Heavy Ion Collision has been measured recently for the reaction 74 Ge + 165 Ho at 8.5 MeV/A. One can see from the experimental data a gradual transition from moreless equal partition of the heat for the peripheral collisions (small energy loss) toward equal temperatures in more central collisions (high energy loss). The similar dependence of the heat partition as a function of the energy loss was observed earlier by Vandenbosch et al for the reaction 56 Fe + 238 U at 8.5 MeV/A and by Benton et al for the 56 Fe + 165 Ho for a broad range of energy dissipation. Theoretical calculations leading to the excitation energy division between both fragments have been carried out by Randrup and by Feldmeier. In both calculations the same excitation mechanism was assumed which is the exchange of particles between colliding nuclei. Differences between results are mainly due to the different shape parametrization and calculation of the potential energy. Randrup's results are moving much faster towards equal temperatures limit if one goes to more central collisions. Both models however do not predict the direction of the experimental mass flow for the 56 Fe + 165 Ho system. In the present paper classical dynamical calculations following Feldmeir's approach with some modifications are presented for 74 Ge + 165 Ho system
Multireference excitation energies for bacteriochlorophylls A within light harvesting system 2
DEFF Research Database (Denmark)
Anda, Andre; Hansen, Thorsten; De Vico, Luca
2016-01-01
Light-harvesting system 2 (LH2) of purple bacteria is one of the most popular antenna complexes used to study Nature's way of collecting and channeling solar energy. The dynamics of the absorbed energy is probed by ultrafast spectroscopy. Simulation of these experiments relies on fitting a range...... bacteriochlorophylls in LH2. We find that the excitation energies vary among the bacteriochlorophyll monomers and that they are regulated by the curvature of the macrocycle ring and the dihedral angle of an acetyl moiety. Increasing the curvature lifts the ground state energy, which causes a red shift...
Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.
2010-06-01
Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.
A new recoil distance technique using low energy coulomb excitation in inverse kinematics
Energy Technology Data Exchange (ETDEWEB)
Rother, W., E-mail: wolfram.rother@googlemail.com [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Dewald, A.; Pascovici, G.; Fransen, C.; Friessner, G.; Hackstein, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Ilie, G. [Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520 (United States); National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele (Romania); Iwasaki, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Jolie, J. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Melon, B. [Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, Sesto Fiorentino (Firenze) I-50019 (Italy); Petkov, P. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); INRNE-BAS, Sofia (Bulgaria); Pfeiffer, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Pissulla, Th. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Bundesumweltministerium, Robert-Schuman-Platz 3, D - 53175 Bonn (Germany); Zell, K.-O. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Jakobsson, U.; Julin, R.; Jones, P.; Ketelhut, S.; Nieminen, P.; Peura, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); and others
2011-10-21
We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3-10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in {sup 128}Xe and is suited to be a useful tool for experiments with radioactive ion beams.
Energies and damping rates of elementary excitations in spin-1 Bose-Einstein-condensed gases
International Nuclear Information System (INIS)
Szirmai, Gergely; Szepfalusy, Peter; Kis-Szabo, Krisztian
2003-01-01
The finite temperature Green's function technique is used to calculate the energies and damping rates of the elementary excitations of homogeneous, dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature in both the density and spin channels. For this purpose a self-consistent dynamical Hartree-Fock model is formulated, which takes into account the direct and exchange processes on equal footing by summing up certain classes of Feynman diagrams. The model is shown to satisfy the Goldstone theorem and to exhibit the hybridization of one-particle and collective excitations correctly. The results are applied to gases of 23 Na and 87 Rb atoms
Li, Chenyang; Verma, Prakash; Hannon, Kevin P.; Evangelista, Francesco A.
2017-08-01
We propose an economical state-specific approach to evaluate electronic excitation energies based on the driven similarity renormalization group truncated to second order (DSRG-PT2). Starting from a closed-shell Hartree-Fock wave function, a model space is constructed that includes all single or single and double excitations within a given set of active orbitals. The resulting VCIS-DSRG-PT2 and VCISD-DSRG-PT2 methods are introduced and benchmarked on a set of 28 organic molecules [M. Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. Taking CC3 results as reference values, mean absolute deviations of 0.32 and 0.22 eV are observed for VCIS-DSRG-PT2 and VCISD-DSRG-PT2 excitation energies, respectively. Overall, VCIS-DSRG-PT2 yields results with accuracy comparable to those from time-dependent density functional theory using the B3LYP functional, while VCISD-DSRG-PT2 gives excitation energies comparable to those from equation-of-motion coupled cluster with singles and doubles.
International Nuclear Information System (INIS)
Bolotin, H.H.; Stuchbery, A.E.; Morrison, I.; Kennedy, D.L.; Ryan, C.G.; Sie, S.H.
1981-01-01
The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1 + levels in 196 198 Pt were determined by the rcoil-distance method (RDM). Gamma-ray angular distributions in 198 Pt were also measured. These states were populated by multiple Coulomb excitation using 220-MeV 58 Ni ion beams and the measurements carried out in coincidence with backscattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194 - 198 Pt isotopes, are critically compared with our structure calculations employing the Interacting Boson Approximation (IBA) model incorporating a symmetry-breaking quadrupole force. Evaluative comparisons are also made with Boson Expansion Theory (BET) calculations
Bolotin, H. H.; Stuchbery, A. E.; Morrison, I.; Kennedy, D. L.; Ryan, C. G.; Sie, S. H.
1981-11-01
The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1+ levels in 196, 198Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58Ni ion beams and the measurements were carried out in coincidence with back-scattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194-198Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations.
International Nuclear Information System (INIS)
Bolotin, H.H.; Stuchbery, A.E.; Morrison, I.; Kennedy, D.L.; Ryan, C.G.; Sie, S.H.
1981-01-01
The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 + 1 levels in sup(196, 198)Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198 Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58 Ni ion beams and the measurements were carried out in coincidence with backscattering projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even sup(194-198)Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations. (orig.)
Raman active high energy excitations in URu{sub 2}Si{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Buhot, Jonathan [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France); High Field Magnet Laboratory (HFML - EMFL), Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France); Piekarz, Przemysław [Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakòw (Poland); Lapertot, Gérard [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Aoki, Dai [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Méasson, Marie-Aude, E-mail: marie-aude.measson@univ-paris-diderot.fr [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France)
2017-02-01
We have performed Raman scattering measurements on URu{sub 2}Si{sub 2} single crystals on a large energy range up to ∼1300 cm{sup −1} and in all the Raman active symmetries as a function of temperature down to 15 K. A large excitation, active only in the E{sub g} symmetry, is reported. It has been assigned to a crystal electric field excitation on the Uranium site. We discuss how this constrains the crystal electric field scheme of the Uranium ions. Furthermore, three excitations in the A{sub 1g} symmetry are observed. They have been associated to double Raman phonon processes consistently with ab initio calculations of the phonons dispersion.
International Nuclear Information System (INIS)
Duque, H. V.; Chiari, L.; Jones, D. B.; Pettifer, Z.; Silva, G. B. da; Limão-Vieira, P.; Blanco, F.; García, G.; White, R. D.; Lopes, M. C. A.; Brunger, M. J.
2014-01-01
Differential and integral cross section measurements, for incident electron energies in the 20–50 eV range, are reported for excitation of several composite vibrational modes in α-tetrahydrofurfuryl alcohol (THFA). Optimisation and frequency calculations, using GAUSSIAN 09 at the B3LYP/aug-cc-pVDZ level, were also undertaken for the two most abundant conformers of THFA, with results being reported for their respective mode classifications and excitation energies. Those calculations assisted us in the experimental assignments of the composite features observed in our measured energy loss spectra. There are, to the best of our knowledge, no other experimental or theoretical data currently available in the literature against which we can compare the present results
Intermediate energy electron impact excitation of composite vibrational modes in phenol
Energy Technology Data Exchange (ETDEWEB)
Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física ‘Gleb Wataghin,’ Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-990 Curitiba, Paraná (Brazil); Silva, G. B. da [Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2015-05-21
We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.
Energy Technology Data Exchange (ETDEWEB)
Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Chiari, L.; Jones, D. B.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); White, R. D. [School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia)
2014-06-07
Differential and integral cross section measurements, for incident electron energies in the 20–50 eV range, are reported for excitation of several composite vibrational modes in α-tetrahydrofurfuryl alcohol (THFA). Optimisation and frequency calculations, using GAUSSIAN 09 at the B3LYP/aug-cc-pVDZ level, were also undertaken for the two most abundant conformers of THFA, with results being reported for their respective mode classifications and excitation energies. Those calculations assisted us in the experimental assignments of the composite features observed in our measured energy loss spectra. There are, to the best of our knowledge, no other experimental or theoretical data currently available in the literature against which we can compare the present results.
Self-energy correction to the hyperfine splitting for excited states
International Nuclear Information System (INIS)
Wundt, B. J.; Jentschura, U. D.
2011-01-01
The self-energy corrections to the hyperfine splitting is evaluated for higher excited states in hydrogenlike ions using an expansion in the binding parameter Zα, where Z is the nuclear-charge number and α is the fine-structure constant. We present analytic results for D, F, and G states, and for a number of highly excited Rydberg states, with principal quantum numbers in the range 13≤n≤16, and orbital angular momenta l=n-2 and l=n-1. A closed-form analytic expression is derived for the contribution of high-energy photons, valid for any state with l≥2 and arbitrary n, l, and total angular momentum j. The low-energy contributions are written in the form of generalized Bethe logarithms and evaluated for selected states.
Ren, Xinguo; Rinke, Patrick; Tkatchenko, Alexandre; Scheffler, Matthias
2010-01-01
The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice-evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals-leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior ca...
Lattice Boltzmann simulation for the energy and entropy of excitable systems
Institute of Scientific and Technical Information of China (English)
Deng Min-Yi; Tang Guo-Ning; Kong Ling-Jiang; Liu Mu-Ren
2011-01-01
The internal energy and the spatiotemporal entropy of excitable systems are investigated with the lattice Boltzmann method. The numerical results show that the breakup of spiral wave is attributed to the inadequate supply of energy, i.e., the internal energy of system is smaller than the energy of self-sustained spiral wave. It is observed that the average internal energy of a regular wave state reduces with its spatiotemporal entropy decreasing. Interestingly, although the energy difference between two regular wave states is very small, the different states can be distinguished obviously due to the large difference between their spatiotemporal entropies. In addition, when the unstable spiral wave converts into the spatiotemporal chaos, the internal energy of system decreases, while the spatiotemporal entropy increases, which behaves as the thermodynamic entropy in an isolated system.
International Nuclear Information System (INIS)
Tel, E.; Aydin, E. G.; Aydin, A.; Kaplan, A.
2007-01-01
The hybrid reactor is a combination of the fusion and fission processes. In the fusion-fission hybrid reactor, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of (n,t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at energies up to 20 MeV. In this study, we have investigated the asymmetry term effect for the (n,t) reaction cross sections at 14-15 neutron incident energy. It has been discussed the odd even effect and the pairing effect considering binding energy systematic of the nuclear shell model for the new experimental data and new cross section formulas (n,t) reactions developed by Tel et al. We have determined a different parameter groups by the classification of nuclei into even-even, even-odd and odd-even for (n,t) reactions cross sections. The obtained empirical formulas by fitting two parameter for (n,t) reactions were given. All calculated results have been compared with the experimental data. By using the new cross sections formulas (n,t) reactions the obtained results have been discussed and compared with the available experimental data
DEFF Research Database (Denmark)
List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard; Rocha-Rinza, Tomás
2012-01-01
this task. We present an evaluation of the performance of commonly used XC-functionals for the prediction of excitation energies of GFP-like chromophores. In particular, we have considered the TD-DFT vertical excitation energies of chromophores displaying different charge states. We compare the quality...
International Nuclear Information System (INIS)
Djalali, C.; Marty, N.; Morlet, M.
1982-01-01
In a series of seventeen nuclei ranging from 51 V to 140 Ca, broad resonance structures are observed at energies between 8 and 10 MeV, nearly mass independent. These resonances have very forward peaked angular distributions which imply that they are populated by an angular momentum transfer of zero. This together with the observed excitation energies suggests an M1 character for these resonances. In 51 V, 58 Ni, 60 Ni, 62 Ni, a sharp peak located at an excitation energy above the threshold for neutron emission is interpreted as a part of the T 0+1 component of the M1 resonances. Cross-sections are given for all the M1 resonances. For 58 Ni, 90 Zr, 92 Mo, 120 Sn and 140 Ca, an ''attenuation'' factor for the cross-sections is extracted in a OWIA calculation assuming simple shell model structures for these resonances
Energy Technology Data Exchange (ETDEWEB)
Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)
2017-02-12
We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.
Predictors of Energy Compensation during Exercise Interventions: A Systematic Review
Directory of Open Access Journals (Sweden)
Marie-Ève Riou
2015-05-01
Full Text Available Weight loss from exercise-induced energy deficits is usually less than expected. The objective of this systematic review was to investigate predictors of energy compensation, which is defined as body energy changes (fat mass and fat-free mass over the total amount of exercise energy expenditure. A search was conducted in multiple databases without date limits. Of 4745 studies found, 61 were included in this systematic review with a total of 928 subjects. The overall mean energy compensation was 18% ± 93%. The analyses indicated that 48% of the variance of energy compensation is explained by the interaction between initial fat mass, age and duration of exercise interventions. Sex, frequency, intensity and dose of exercise energy expenditure were not significant predictors of energy compensation. The fitted model suggested that for a shorter study duration, lower energy compensation was observed in younger individuals with higher initial fat mass (FM. In contrast, higher energy compensation was noted for younger individuals with lower initial FM. From 25 weeks onward, energy compensation was no longer different for these predictors. For studies of longer duration (about 80 weeks, the energy compensation approached 84%. Lower energy compensation occurs with short-term exercise, and a much higher level of energy compensation accompanies long-term exercise interventions.
Energy Technology Data Exchange (ETDEWEB)
Manokhin, Vassily N. [Russian Nuclear Data Center, Institute of Physics and Power Engineering, Obninsk (Russian Federation); Odano, Naoteru; Hasegawa, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-03-01
An approach for consistent evaluation of (n,2n) and (n,np) reaction excitation functions for some even-even isotopes with the (n,np) reaction thresholds lower than (n,2n) reaction ones is described. For determination of cross sections in the maximum of the (n,2n) and (n,np) reaction excitation functions some empirical systematics developed by Manokhin were used together with trends in dependence of gaps between the (n,2n) and (n,np) thresholds on atomic mass number A. The shapes of the (n,2n) and (n,np) reaction excitation functions were calculated using the normalized functions from the Manokhin's systematics. Excitation functions of (n,2n) and (n,np) reactions were evaluated for several nuclei by using the systematics and it was found that the approach used for the present study gives reasonable results. (author)
International Nuclear Information System (INIS)
Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.
2005-01-01
In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function
Munafò, A; Panesi, M; Magin, T E
2014-02-01
A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.
Systematics of fission cross sections at the intermediate energy region
Energy Technology Data Exchange (ETDEWEB)
Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)
International Nuclear Information System (INIS)
Carlotti, G.; Madami, M.; Gubbiotti, G.; Tacchi, S.
2014-01-01
Sub-200 nm patterned magnetic dots are key elements for the design of magnetic switches, memory cells or elementary units of nanomagnetic logic circuits. In this paper, we analyse by micromagnetic simulations the magnetization reversal, the dissipated energy and the excited spin eigenmodes in bistable magnetic switches, consisting of elliptical nanodots with 100×60 nm lateral dimensions. Two different strategies for reversal are considered and the relative results compared: (i) the irreversible switching obtained by the application of an external field along the easy axis, in the direction opposite to the initial magnetization; (ii) the precessional switching accomplished by the application of a short magnetic field pulse, oriented perpendicular to the initial magnetization direction. The obtained results are discussed in terms of deviation from the macrospin behavior, energy dissipation and characteristics of the spectrum of spin eigenmodes excited during the magnetization reversal process
Evolution of collectivity in the 78Ni region: Coulomb excitation of 74Ni at intermediate energies.
Directory of Open Access Journals (Sweden)
Marchi T.
2014-03-01
Full Text Available The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic observables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the effective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope (64Ni towards the 78Ni nucleus where the large neutron excess coincides with a double shell closure. In this framework, we have recently performed an experiment with the goal to extract the B(E2; 0+ → 2+ value for the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment: preliminary results are discussed.
Neutron-scattering study of low-energy excitations in triphenyl phosphite
Mayer, J; Massalska-Arodz, M; Janik, J A; Natkaniec, I; Steinsvoll, O
2002-01-01
The low-energy excitations in crystalline and glassy triphenyl phosphite were studied by inelastic incoherent neutron scattering with two different instruments. The results - the incoherent dynamic structure factor S(2 theta,omega) and the density of states G(omega) - were obtained using direct and inverted geometry time-of-flight spectrometers, respectively. The probable origin of the excess density of states in the glass (boson peak) is discussed. (orig.)
Neutron-scattering study of low-energy excitations in triphenyl phosphite
International Nuclear Information System (INIS)
Mayer, J.; Krawczyk, J.; Massalska-Arodz, M.; Janik, J.A.; Natkaniec, I.; Steinsvoll, O.
2002-01-01
The low-energy excitations in crystalline and glassy triphenyl phosphite were studied by inelastic incoherent neutron scattering with two different instruments. The results - the incoherent dynamic structure factor S(2θ,ω) and the density of states G(ω) - were obtained using direct and inverted geometry time-of-flight spectrometers, respectively. The probable origin of the excess density of states in the glass (boson peak) is discussed. (orig.)
Radiative proton capture to the first excited state of sup 29 P nucleus at subbarrier energies
Energy Technology Data Exchange (ETDEWEB)
Matulewicz, T; Dabrowska, M; Decowski, P; Kicinska-Habior, M; Sikora, B [Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej; Toke, J [Rochester Univ., NY (USA). Nuclear Structure Research Lab.; Somorjai, E [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete
1985-08-01
Differential cross sections at 0 deg and 90 deg measured for {sup 28}Si(p,{gamma}{sub 1}){sup 29}P reaction at proton energy range 2.3-2.9 MeV have been analyzed in terms of the direct-semidirect capture model extended by the effective potential approach. Spectroscopic factor of the first excited states of {sup 29}P nucleus was found to be 0.10+-0.05. 9 refs., 1 fig. (author).
Compact alpha-excited sources of low energy x-rays
International Nuclear Information System (INIS)
Amlauer, K.; Tuohy, I.
1976-01-01
A discussion is given of the use of alpha emitting isotopes, such as 210 Po and 244 Cm, for the production of low energy x-rays (less than 5.9 keV). The design of currently available sources is described, and x-ray fluxes observed from various target materials are presented. Commercial applications of the alpha excitation technique are briefly discussed
Papailiou, D. D. (Editor)
1975-01-01
Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.
Low-energy Coulomb excitation of neutron-rich zinc isotopes
Van de Walle, J; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V; Fraile, L M; Franchoo, S; Gernhäuser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Pantea, M; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielinska, M
2009-01-01
At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,20) values in 74-80Zn, B(E2,42) values in 74,76Zn and the determination of the energy of the first excited 2 states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, i...
Accurate adiabatic energy surfaces for the ground and first excited states of He2+
International Nuclear Information System (INIS)
Lee, E.P.F.
1993-01-01
Different factors affecting the accuracy of the computed energy surfaces of the ground and first excited state of He 2 + have been examined, including the choice of the one-and many-particle bases, the configurational space in the MRCI (multi-reference configuration interaction) calculations and other corrections such as the Davidson and the full counterpoise (CP) correction. From basis-variation studies, it was concluded that multi-reference direct-CI calculations (MRDCI) using CASSCF MOs and/or natural orbitals (NOs) from a smaller CISD calculation, gave results close to full CI. The computed dissociation energies, D e , for the ground and first excited state of He 2 + were 2.4670 (2.4659) eV and 17.2 (17.1) cm -1 , respectively, at the highest level [without and with CP correction for basis-set superposition errors (BSSE)] of calculation with an [11s8p3d1f] GTO contraction, in reasonably good agreement with previous calculations, and estimated correct values, where available. It is believed that the computed D e , and the energy surface for the first excited state should be reasonably accurate. However, for the ground state, the effects of multiple f functions and/or functions of higher angular momentum have not been investigated owing to limitation of the available computing resources. This is probably the only weakness is the present study. (Author)
Distribution of radiative strength with excitation energy: the E1 and M1 giant resonances
International Nuclear Information System (INIS)
Brown, G.E.; Speth, J.
1979-01-01
Calculations of the giant dipole resonance in the particle-hole model, employing empirical values for the unperturbed particle and hole energies, have been unsuccessful in pushing the dipole state to a sufficiently high energy. it is argued that unperturbed levels correspondign to an effective mass of m*/m approx. 0.6 to 0.7 should be employed. The couplings of particles and holes to vibrations are the crucial ingredients in these considerations. More generally, it is argued that the effective mass relevant to excitations near the Fermi surface is that corresponding to empirical single-particle levels, m*/m greater than or equal to 1.0. For particle-hole excitations above the Fermi surface, it is a decreasing function of excitation energy, reaching the above values 0.6 to 0.7 for E greater than or equal to 2 dirac constant/b omega, dirac constant/sub omega/ being the shell spacing. This has the consequence of spreading out the M1 strength. A new interpretation of experimental strengths is proposed
Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen
Barklem, P. S.
2018-02-01
Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data
Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron
Barklem, P. S.
2018-05-01
Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90
Environment-assisted Quantum Critical Effect for Excitation Energy Transfer in a LH2-type Trimer
Xu, Lan; Xu, Bo
2015-10-01
In this article, we are investigating excitation energy transfer (EET) in a basic unit cell of light-harvesting complex II (LH2), named a LH2-type trimer. Calculation of energy transfer efficiency (ETE) in the framework of non-Markovian environment is also implemented. With these achievements, we theoretically predict the environment-assisted quantum critical effect, where ETE exhibits a sudden change at the critical point of quantum phase transition (QPT) for the LH2-type trimer. It is found that highly efficient EET with nearly unit efficiency may occur in the vicinity of the critical point of QPT.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yijing, E-mail: yzhng123@illinois.edu; Moore, Keegan J.; Vakakis, Alexander F. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); McFarland, D. Michael [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2015-12-21
We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.
The energy structure and decay channels of the 4p6-shell excited states in Sr
Kupliauskienė, A.; Kerevičius, G.; Borovik, V.; Shafranyosh, I.; Borovik, A.
2017-11-01
The ejected-electron spectra arising from the decay of the 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } autoionizing states in Sr atoms have been studied precisely at the incident-electron energies close to excitation and ionization thresholds of the 4{{{p}}}6 subshell. The excitation behaviors for 58 lines observed between 12 and 21 eV ejected-electron kinetic energy have been investigated. Also, the ab initio calculations of excitation energies, autoionization probabilities and electron-impact excitation cross sections of the states 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } (nl = 4d, 5s, 5p; {n}{\\prime }{l}{\\prime } = 4d, 5s, 5p; {n}{\\prime\\prime }{l}{\\prime\\prime } = 5s, 6s, 7s, 8s, 9s, 5p, 6p, 5d, 6d, 7d, 8d, 4f, 5g) have been performed by employing the large-scale configuration-interaction method in the basis of the solutions of Dirac-Fock-Slater equations. The obtained experimental and theoretical data have been used for the accurate identification of the 60 lines in ejected-electron spectra and the 68 lines observed earlier in photoabsorption spectra. The excitation and decay processes for 105 classified states in the 4p55s{}2{nl}, 4p54d{}2{nl} and 4p55s{{nln}}{\\prime }{l}{\\prime } configurations have been considered in detail. In particular, most of the states lying below the ionization threshold of the 4p6 subshell at 26.92 eV possess up to four decay channels with formation of Sr+ in 5s{}1/2, 4d{}3/{2,5/2} and 5p{}1/{2,3/2} states. Two-step autoionization and two-electron Auger transitions with formation of Sr2+ in the 4p6 {}1{{{S}}}0 ground state are the main decay paths for high-lying autoionizing states. The excitation threshold of the 4{{{p}}}6 subshell in Sr has been established at 20.98 ± 0.05 eV.
Charge and energy dynamics in photo-excited poly(para-phenylenevinylene) systems
International Nuclear Information System (INIS)
Gisslen, L.; Johansson, A.; Stafstroem, S.
2004-01-01
We report results from simulations of charge and energy dynamics in poly(para-phenylenevinylene) (PPV) and PPV interacting with C 60 . The simulations were performed by solving the time-dependent Schroedinger equation and the lattice equation of motion simultaneously and nonadiabatically. The electronic system and the coupling of the electrons to the lattice were described by an extended three-dimensional version of the Su-Schrieffer-Heeger model, which also included an external electric field. Electron and lattice dynamics following electronic excitations at different energies have been simulated. The effect of additional lattice energy was also included in the simulations. Our results show that both exciton diffusion and transitions from high to lower lying excitations are stimulated by increasing the lattice energy. Also field induced charge separation occurs faster if the lattice energy is increased. This separation process is highly nonadiabatic and involves a significant rearrangement of the electron distribution. In the case of PPV coupled to C 60 , we observe a spontaneous charge separation. The separation time is in this case limited by the local concentration of C 60 molecules close to the PPV chain
Systematics on incomplete fusion dynamics at low energy
International Nuclear Information System (INIS)
Rahbar Ali; Afzal Ansari, M.; Kumar, Harish
2016-01-01
In the present work, an attempt has been made to study CF and ICF reaction dynamics extensively by using activation and particle-γ coincidence techniques. The excitation functions (EFs) of evaporation residues (ERs) in 20 Ne + 55 Mn, 19 F + 144 Sm, 20 Ne + 159 Tb and 16 O + 156 Gd systems in the energy range ∼ 3-8 MeV/nucleon have been measured by using recoil catcher activation technique followed by γ-ray spectrometry
The mechanism of three-body process of energy transfer from excited xenon atoms to molecules
International Nuclear Information System (INIS)
Wojciechowski, K.; Forys, M.
1999-01-01
The mechanism of energy transfer from Xe(6 s[3/2] 1 ) resonance state (E=8.44 eV) and higher excited Xe(6p, 6p', 6 d) atoms produced in pulse radiolysis to molecules have been discussed. The analysis of the kinetic data for these processes shows that in the sensitized photolysis and radiolysis of Xe-M mixtures the excited atoms decay in 'ordinary' two-body reaction: Xe(6s[3/2] 1 0 )+M→products (r.1) and in fast 'accelerated' third order process: Xe(6s[3/2] 1 0 )+M+Xe→products (r.2) The discussion shows that three-body process occurs via reactions: Xe(6s[3/2] 1 0 )+Xe k w ↔ k d Xe 2 ** (r.2a) Xe 2 **+M k q →[Xe 2 M]*→products (r.2b) It was shown that this mechanism concerns also higher excited Xe atoms and can explain a similar process in He-M mixtures and suggests that it is a general mechanism of energy transfer in all irradiated rare gas-molecule systems
DEFF Research Database (Denmark)
Kadkhodazadeh, Shima; Wagner, Jakob Birkedal; Joseph, Virginia
2013-01-01
in an optical experiment and electron energy loss intensity at energies corresponding to excitation wavelengths used for optical probing. This inverse relation exists independent on specific nanoaggregate geometries and is mainly controlled by the gap size between the particles forming the aggregate. The ratio...... between two- and one-photon excited SERS measured at different excitation wavelengths provides information about local fields in the hottest spots and their dependence on the photon energy. Our data verify experimentally the predicted increase of local optical fields in the hot spots with increasing wave...
Resonant states in 13C and 16,17O at high excitation energy
International Nuclear Information System (INIS)
Rodrigues, M R D; Borello-Lewin, T; Miyake, H; Duarte, J L M; Rodrigues, C L; Horodynski-Matsushigue, L B; Ukita, G M; Cappuzzello, F; Foti, A; Cavallaro, M; Agodi, C; Cunsolo, A; Carbone, D; Bondi, M; Napoli, M De; Roeder, B T; Linares, R; Lombardo, I
2014-01-01
The 9 Be( 6 Li,d) 13 C and 12,13 C( 6 Li,d) 16,17 O reactions were measured at the São Paulo Pelletron-Enge-Spectrograph facility at 25.5 MeV incident energy. The nuclear emulsion detection technique was applied. Several narrow resonances were populated up to approximately 17 MeV of excitation energy. An excellent energy resolution was obtained: 40 keV for 13 C and 15-30 keV for 16 O. The upper limit for the resonance widths were determined. Recently, d-a angular correlations were measured at θ d = 0° with incident energy of 25 MeV using the LNS Tandem-MAGNEX Spectrometer facility
Resonant states in 13C and 16,17O at high excitation energy
Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Duarte, J. L. M.; Rodrigues, C. L.; Horodynski-Matsushigue, L. B.; Ukita, G. M.; Cappuzzello, F.; Cavallaro, M.; Foti, A.; Agodi, C.; Cunsolo, A.; Carbone, D.; Bondi, M.; De Napoli, M.; Roeder, B. T.; Linares, R.; Lombardo, I.
2014-12-01
The 9Be(6Li,d)13C and 12,13C(6Li,d)16,17O reactions were measured at the São Paulo Pelletron-Enge-Spectrograph facility at 25.5 MeV incident energy. The nuclear emulsion detection technique was applied. Several narrow resonances were populated up to approximately 17 MeV of excitation energy. An excellent energy resolution was obtained: 40 keV for 13C and 15-30 keV for 16O. The upper limit for the resonance widths were determined. Recently, d-a angular correlations were measured at θd = 0° with incident energy of 25 MeV using the LNS Tandem-MAGNEX Spectrometer facility.
Excitation of vibrational quanta in furfural by intermediate-energy electrons
Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Blanco, F.; Brunger, M. J.
2015-12-01
We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.
Probing core polarization around 78Ni: intermediate energy Coulomb excitation of 74Ni
Directory of Open Access Journals (Sweden)
Marchi T.
2013-12-01
We have recently measured the B(E2; 0+ → 2+ of the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory of the Michigan State University. The 74Ni secondary beam has been produced by fragmentation of 86Kr at 140 AMeV on a thick Be target. Selected radioactive fragments impinged on a secondary 197Au target where the measurement of the emitted γ-rays allows to extract the Coulomb excitation cross section and related structure information. Preliminary B(E2 values do not point towards an enhancement of the transition matrix element and the comparison to what was already measured by Aoi and co-workers in [1] opens new scenarios in the interpretation of the shell evolution of the Z=28 isotopes.
Electron energy distributions and excitation rates in high-frequency argon discharges
International Nuclear Information System (INIS)
Ferreira, C.M.; Loureiro, J.
1983-06-01
The electron energy distribution functions and rate coefficients for excitation and ionisation in argon under the action of an uniform high-frequency electric field were calculated by numerically solving the homogeneous Boltzmann equation. Analytic calculations in the limiting cases ω>>νsub(c) and ω<<νsub(c), where ω is the wave angular frequency and νsub(c) is the electron-neutral collision frequency for momentum transfer, are also presented and shown to be in very good agreement with the numerical computations. The results reported here are relevant for the modelling of high-frequency discharges in argon and, in particular, for improving recent theoretical descriptions of a plasma column sustained by surface microwaves. The properties of surface wave produced plasmas make them interesting as possible substitutes for other more conventional plasma sources for such important applications as plasma chemistry laser excitation, plasma etching spectroscopic sources etc...
Excitation of vibrational quanta in furfural by intermediate-energy electrons
Energy Technology Data Exchange (ETDEWEB)
Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-580 São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); and others
2015-12-14
We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.
Excitation of vibrational quanta in furfural by intermediate-energy electrons
International Nuclear Information System (INIS)
Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.
2015-01-01
We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule
Schmid, S.A.; Abbel, R.J.; Schenning, A.P.H.J.; Meijer, E.W.; Herz, L.M.
2010-01-01
We have investigated the extent to which delocalization of the ground-state and excited-state wave functions of a p-conjugated molecule affects the excitation energy transfer (EET) between such molecules. Using femtosecond photoluminescence spectroscopy, we experimentally monitored the EET along
Luminescence of the SrCl2:Pr crystals under high-energy excitation
International Nuclear Information System (INIS)
Antonyak, O.T.; Voloshinovskii, A.S.; Vistovskyy, V.V.; Stryganyuk, G.B.; Kregel, O.P.
2014-01-01
The present research was carried out in order to elucidate the mechanisms of energy transfer from the crystal lattice to Pr 3+ ions in SrCl 2 . The luminescence excitation and emission spectra as well as luminescence kinetics of the SrCl 2 :Pr single crystals containing 0.2 mol% Pr were investigated at 300 and 10 K using the vacuum ultraviolet (VUV) synchrotron radiation. The X-ray excited luminescence spectra of the SrCl 2 :Pr (C Pr =0.2 and 0.5 mol%) and SrCl 2 :Pr, K (C Pr =1.5 mol%; C K =1.5 mol%) crystals were studied at 294 and 80 K. Under optical excitation of the samples in the Pr 3+ absorption bands, there were observed five fast ultraviolet emissions assigned to the 4f 1 5d→4f 2 transitions, and two long-wave bands corresponding to the f–f transitions. Furthermore, the intrinsic emission bands of SrCl 2 were observed at 10 K. The X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal containing 0.2 mol% Pr, besides intrinsic emission band near 400 nm, has got a long-wave band at about 490 nm of the Pr 3+ centers. There were not observed any emission bands of the Pr 3+ centers corresponding to the 4f 1 5d–4f 2 transitions in the X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal. The possible mechanisms of energy transfer from the SrCl 2 matrix to the Pr 3+ centers are discussed. -- Highlights: • Spectral-luminescent properties of SrCl 2 :Pr have been investigated. • The identification of emission 4f–4f and 5d–4f bands of Pr 3+ ions was performed. • Adding of potassium prevents clustering of the Pr 3+ centers in the SrCl 2 :Pr, K crystals. • Under X-ray excitation at 80–300 K only Pr 3+ 4f–4f and intrinsic emission is observed
Control of base-excited dynamical systems through piezoelectric energy harvesting absorber
Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.
2017-09-01
The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester
Akhtar, Parveen; Lingvay, Mónika; Kiss, Teréz; Deák, Róbert; Bóta, Attila; Ughy, Bettina; Garab, Győző; Lambrev, Petar H
2016-04-01
Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane. Copyright © 2016 Elsevier B.V. All rights reserved.
van Meer, R; Gritsenko, O V; Baerends, E J
2014-10-14
In recent years, several benchmark studies on the performance of large sets of functionals in time-dependent density functional theory (TDDFT) calculations of excitation energies have been performed. The tested functionals do not approximate exact Kohn-Sham orbitals and orbital energies closely. We highlight the advantages of (close to) exact Kohn-Sham orbitals and orbital energies for a simple description, very often as just a single orbital-to-orbital transition, of molecular excitations. Benchmark calculations are performed for the statistical average of orbital potentials (SAOP) functional for the potential [J. Chem. Phys. 2000, 112, 1344; 2001, 114, 652], which approximates the true Kohn-Sham potential much better than LDA, GGA, mGGA, and hybrid potentials do. An accurate Kohn-Sham potential does not only perform satisfactorily for calculated vertical excitation energies of both valence and Rydberg transitions but also exhibits appealing properties of the KS orbitals including occupied orbital energies close to ionization energies, virtual-occupied orbital energy gaps very close to excitation energies, realistic shapes of virtual orbitals, leading to straightforward interpretation of most excitations as single orbital transitions. We stress that such advantages are completely lost in time-dependent Hartree-Fock and partly in hybrid approaches. Many excitations and excitation energies calculated with local density, generalized gradient, and hybrid functionals are spurious. There is, with an accurate KS, or even the LDA or GGA potentials, nothing problematic about the "band gap" in molecules: the HOMO-LUMO gap is close to the first excitation energy (the optical gap).
Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine
Energy Technology Data Exchange (ETDEWEB)
Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Ellis-Gibbings, L.; García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY (United Kingdom); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2015-09-07
We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.
International Nuclear Information System (INIS)
Ayyad, Y.; Benlliure, J.; Casajeros, E.; Alvarez Pol, H.; Paradela, C.; Perez-Loureido, D.; Tarrio, D.; Bacquias, A.; Boudard, A.; Kezzar, K.; Leray, S.; Enqvist, T.; Foehr, V.; Kelic, A.; Pleskac, R.
2010-01-01
In this work we have investigated the total fission cross section of 181 Ta + 1 H at FRS (Fragment Separator - GSI) at 1, 0.8, 0.5 and 0.3 GeV with a specific setup, providing high accuracy measurements of the cross section values. the comparison of our data with previous results reveals a good agreement at high energies. However the situation remains unclear at lower energies. In general, our results covering a wide range of energy, are smoother. We have also compared the results obtained in this experiment, with several calculations performed with the intra-nuclear cascade model (INCL v4.1) coupled to de-excitation code (ABLAv3p), according to two different models describing fission process at high-excitation energies: statistical model of Bohr and Wheeler and the dynamical description of the fission process. We have showed that a simple statistical description largely over-predict the measured cross-section. Only a dynamical description of the fission, involving the role of the viscosity of the nuclear matter, provides a realistic result.
Mechanism and models for collisional energy transfer in highly excited large polyatomic molecules
International Nuclear Information System (INIS)
Gilbert, R. G.
1995-01-01
Collisional energy transfer in highly excited molecules (say, 200-500 kJ mol -1 above the zero-point energy of reactant, or of product, for a recombination reaction) is reviewed. An understanding of this energy transfer is important in predicting and interpreting the pressure dependence of gas-phase rate coefficients for unimolecular and recombination reactions. For many years it was thought that this pressure dependence could be calculated from a single energy-transfer quantity, such as the average energy transferred per collision. However, the discovery of 'super collisions' (a small but significant fraction of collisions which transfer abnormally large amounts of energy) means that this simplistic approach needs some revision. The 'ordinary' (non-super) component of the distribution function for collisional energy transfer can be quantified either by empirical models (e.g., an exponential-down functional form) or by models with a physical basis, such as biased random walk (applicable to monatomic or diatomic collision partners) or ergodic (for polyatomic collision partners) treatments. The latter two models enable approximate expressions for the average energy transfer to be estimated from readily available molecular parameters. Rotational energy transfer, important for finding the pressure dependence for recombination reactions, can for these purposes usually be taken as transferring sufficient energy so that the explicit functional form is not required to predict the pressure dependence. The mechanism of 'ordinary' energy transfer seems to be dominated by low-frequency modes of the substrate, whereby there is sufficient time during a vibrational period for significant energy flow between the collision partners. Super collisions may involve sudden energy flow as an outer atom of the substrate is squashed between the substrate and the bath gas, and then is moved away from the interaction by large-amplitude motion such as a ring vibration or a rotation; improved
Ghosh, Soumen
This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2
Confab - Systematic generation of diverse low-energy conformers
Directory of Open Access Journals (Sweden)
O'Boyle Noel M
2011-03-01
Full Text Available Abstract Background Many computational chemistry analyses require the generation of conformers, either on-the-fly, or in advance. We present Confab, an open source command-line application for the systematic generation of low-energy conformers according to a diversity criterion. Results Confab generates conformations using the 'torsion driving approach' which involves iterating systematically through a set of allowed torsion angles for each rotatable bond. Energy is assessed using the MMFF94 forcefield. Diversity is measured using the heavy-atom root-mean-square deviation (RMSD relative to conformers already stored. We investigated the recovery of crystal structures for a dataset of 1000 ligands from the Protein Data Bank with fewer than 1 million conformations. Confab can recover 97% of the molecules to within 1.5 Å at a diversity level of 1.5 Å and an energy cutoff of 50 kcal/mol. Conclusions Confab is available from http://confab.googlecode.com.
A new analysis technique to measure fusion excitation functions with large beam energy dispersions
Figuera, P.; Di Pietro, A.; Fisichella, M.; Lattuada, M.; Shotter, A. C.; Ruiz, C.; Zadro, M.
2018-01-01
Peculiar nuclear structures of two colliding nuclei such has clustering, neutron halo/skin or very low breakup thresholds can affect the reaction dynamics below the Coulomb barrier and this may also have astrophysical consequences. In order to have a better understanding of this topic, in the last decade, several experiments were performed. A typical experimental challenge of such studies is the need to measure excitation functions below the Coulomb barrier, having a strong energy dependence, with rather large beam energy dispersions inside the target. This may easily lead to ambiguities in associating the measured cross section with a proper beam energy. In this paper a discussion on this topic is reported and a new technique to deal with the above problem will be proposed.
Microscopic unitary description of tidal excitations in high-energy string-brane collisions
D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele
2013-01-01
The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.
Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System
Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.
2018-02-01
We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.
High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells
Hardin, Brian E.
2010-08-11
The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.
Application of radionuclide sources for excitation in energy-dispersive X-ray fluorescence analysis
International Nuclear Information System (INIS)
Hoffmann, P.
1986-01-01
X-ray fluorescence (XRF) analysis is in broad application in many fields of science where elemental determinations are necessary. Solid and liquid samples are analyzed by this method. Solids are introduced in thin or thick samples as melted glass, pellets, powders or as original specimen. The excitation of X-ray spectra can be performed by specific and polychromic radiation of X-ray tubes, by protons, deuterons, α-particles, heavy ions and synchrotron radiation from accelerators and by α-particles, X- and γ-rays and by bremsstrahlung generated by β - -particles from radionuclide sources. The radionuclides are devided into groups with respect to their decay mode and the energy of the emitted radiation. The broad application of radionuclides in XRF excitation is shown in examples as semi-quantitative analysis of glasses, as quantitative analysis of coarse ceramics and as quantitative determination of heavy elements (mainly actinides) in solutions. The advantages and disadvantages of radionuclide excitation in XRF analysis are discussed. (orig.) [de
International Nuclear Information System (INIS)
Liu Ningyu; Pasko, Victor P
2010-01-01
It has been established that production of NO-γ emission in pulsed corona discharges is dominated by the energy transfer from N 2 (A 3 Σ u + ) to the NO ground state NO(X 2 Π r ) while direct excitation by electron impact is negligible. However, recent studies suggest that the electron impact excitation plays a more important role. In this work, we report modelling results of NO-γ emission associated with streamer discharges using two cross section data sets available in the literature. The first set was originally reported by Mojarrabi et al (1996 Phys. Rev. A 54 2977-82) and later updated by Brunger et al (2000 J. Phys. B: At. Mol. Opt. Phys. 33 809-19); the second set was published by Hayashi (1990 Nonequilibrium Processes in Partially Ionized Gases (NATO Advanced Science Institutes Series, Series B, Physics vol 220) ed M Capitelli and J N Bardsley (New York: Plenum) pp 333-40). According to the results, the role played by the electron impact excitation in the production of NO-γ is drastically different when different cross sections are used. The results indicate that the first data set leads to better agreement with experimental measurements. (fast track communication)
Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals.
Ranjbar Choubeh, Reza; Sonani, Ravi R; Madamwar, Datta; Struik, Paul C; Bader, Arjen N; Robert, Bruno; van Amerongen, Herbert
2018-03-01
Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores. APC trimers were amongst the first light-harvesting complexes to be crystallized. APC trimers have two spectrally different PCBs per monomer, a high- and a low-energy pigment. The crystal structure of the APC trimer reveals the close distance (~21 Å) between those two chromophores (the distance within one monomer is ~51 Å) and this explains the ultrafast (~1 ps) excitation energy transfer (EET) between them. Both chromophores adopt a somewhat different structure, which is held responsible for their spectral difference. Here we used spectrally resolved picosecond fluorescence to study EET in these APC trimers both in crystallized and in solubilized form. We found that not all closely spaced pigment couples consist of a low- and a high-energy pigment. In ~10% of the cases, a couple consists of two high-energy pigments. EET to a low-energy pigment, which can spectrally be resolved, occurs on a time scale of tens of picoseconds. This transfer turns out to be three times faster in the crystal than in the solution. The spectral characteristics and the time scale of this transfer component are similar to what have been observed in the whole cells of Synechocystis sp. PCC 6803, for which it was ascribed to EET from C-phycocyanin to APC. The present results thus demonstrate that part of this transfer should probably also be ascribed to EET within APC trimers.
International Nuclear Information System (INIS)
Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime
2013-01-01
Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy. (paper)
Influence of primary fragment excitation energy and spin distributions on fission observables
Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre
2018-03-01
Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.
Vibrational and electronic excitation of hexatriacontane thin films by low energy electron impact
International Nuclear Information System (INIS)
Vilar, M.R.; Schott, M.; Pfluger, P.
1990-01-01
Thin polycrystalline films of hexatriacontane (HTC) were irradiated with low energy (E=0.5--15 eV) electrons, and off-specular backscattered electron spectra were measured. Below E∼7 eV, single and multiple vibrational excitations only are observed, which relax the electrons down to the bottom of the HTC conduction band. Due to the negative electron affinity of HTC, thermal electrons are emitted into vacuum. Structure in the backscattered electron current at kinetic energies about 1.5 and 4 eV are associated to conduction band density of states. Above E∼7 eV, the dominant losses correspond to electronic excitations, excitons, or above a threshold (energy of the electron inside the HTC film) at 9.2±0.1 eV, electron--hole pair generation. The latter process is very efficient and reaches a yield of the order of one ∼11 eV. Evidence for chemical reaction above E∼4 eV is observed
Xu, Wei-Qing; Xu, Long-Quan; Qi, De-Guang; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan
2018-04-01
The differential cross sections and generalized oscillator strengths for the low-lying excitations of the valence-shell 1eg orbital electron in ethane have been measured for the first time at a high incident electron energy of 1500 eV and a scattering angular range of 1.5°-10°. A weak feature, termed X here, with a band center of about 7.5 eV has been observed, which was also announced by the previous experimental and theoretical studies. The dynamic behaviors of the generalized oscillator strengths for the 3s (8.7 eV), 3s+3p (9.31 eV, 9.41 eV), and X (˜7.5 eV) transitions on the momentum transfer squared have been obtained. The integral cross sections of these transitions from their thresholds to 5000 eV have been obtained with the aid of the BE-scaling (B is the binding energy and E is the excitation energy) method. The optical oscillator strengths of the above transitions determined by extrapolating their generalized oscillator strengths to the limit of the squared momentum transfer K2 → 0 are in good agreement with the ones from the photoabsorption spectrum [J. W. Au et al., Chem. Phys. 173, 209 (1993)], which indicates that the present differential cross sections, generalized oscillator strengths, and integral cross sections can serve as benchmark data.
Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime
2013-06-01
Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy.
Low-energy heavy-atom impact as a tool for production and classification of doubly excited states
International Nuclear Information System (INIS)
Andersen, N.
1985-01-01
Low-energy heavy-atom impact may be an efficient way of preferentially populating doubly excited levels. Using neon as an example, this paper discusses why this is so. The similarity of the structure of the energy level diagrams for doubly excited neon and the level scheme for neutral magnesium is pointed out, suggesting that collective quantum numbers may describe the electron pair. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Zhuravlev, K. [V.A. Kotelnikov Institute of Radioengineering and Electronics of RAS, 1 Vvedenskii sq., Fryazino Moscow reg. 141190 (Russian Federation); Tsaryuk, V., E-mail: vit225@ire216.msk.s [V.A. Kotelnikov Institute of Radioengineering and Electronics of RAS, 1 Vvedenskii sq., Fryazino Moscow reg. 141190 (Russian Federation); Kudryashova, V.; Pekareva, I. [V.A. Kotelnikov Institute of Radioengineering and Electronics of RAS, 1 Vvedenskii sq., Fryazino Moscow reg. 141190 (Russian Federation); Sokolnicki, J. [Faculty of Chemistry, University of WrocLaw, 14 F. Joliot-Curie str., WrocLaw 50-383 (Poland); Yakovlev, Yu. [V.A. Kotelnikov Institute of Radioengineering and Electronics of RAS, 1 Vvedenskii sq., Fryazino Moscow reg. 141190 (Russian Federation)
2010-08-15
A series of compounds Ln(RCOO){sub 3}.Phen (Ln=Eu, Gd, Tb; RCOO{sup -}-1- and 2-naphthoate, 1- and 2-naphthylacetate, 1- and 2-naphthoxyacetate anions, Phen-1,10-phenanthroline) was investigated by methods of optical spectroscopy. Compounds of composition Ln(RCOO){sub 3}.nH{sub 2}O with the same carboxylate ligands are also considered. Results of studies of the effects of methylene spacer decoupling the {pi}-{pi}- or p-{pi}-conjugation in the naphthylcarboxylate ligand on the structure of Eu{sup 3+} coordination centre, on the lifetime of {sup 5}D{sub 0} (Eu{sup 3+}) state, and on processes of the excitation energy transfer to Eu{sup 3+} or Tb{sup 3+} ions are presented. Introduction of the methylene bridge in the ligand weakens the influence of the steric hindrances in forming of a crystal lattice and results in lowering the distortion of the Eu{sup 3+} luminescence centre, and in elongation of the observed {sup 5}D{sub 0} lifetime {tau}{sub obs}. The latter is caused by decrease in contribution of the radiative processes rate 1/{tau}{sub r}. This is confirmed by the correlation between the lifetimes {tau}{sub obs} and the quantities '{tau}{sub r}.const' inversely proportional to the total integral intensities of Eu(RCOO){sub 3}.Phen luminescence spectra. The methylene spacer performs a role of regulator of sensitization of the Ln{sup 3+} luminescence efficiency by means of an influence on mutual location of lowest triplet states of the ligands, the ligand-metal charge transfer (LMCT) states, and the emitting states of Ln{sup 3+} ions. The lowest triplet state in lanthanide naphthylcarboxylate adducts with Phen is related to carboxylate anion. A presence of the methylene spacer in naphthylcarboxylate ligand increases the triplet state energy. At the same time, the energy of 'carboxylic group-Eu{sup 3+} ion' charge transfer states falls, which can promote the degradation of excitation energy. In naphthylcarboxylates investigated a range of the
International Nuclear Information System (INIS)
Morozov, A.; Kruecken, R.; Ulrich, A.; Wieser, J.
2006-01-01
Side-view intensity profiles of fluorescent light were measured for neon and nitrogen excited with 12 keV electron beams at gas pressures from 250 to 1400 hPa. The intensity profiles were compared with theoretical profiles calculated using the CASINO program which performs Monte Carlo simulations of electron scattering. It was assumed that the spatial distribution of fluorescent intensity is directly proportional to the spatial distribution of energy loss by primary electrons. The comparison shows good correlation of experimental data and the results of numeric simulations
Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212.
Ino, Akihiro; Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shinichi
2013-12-05
: The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.
Harne, R. L.; Zhang, Chunlin; Li, Bing; Wang, K. W.
2016-07-01
Impulsive energies are abundant throughout the natural and built environments, for instance as stimulated by wind gusts, foot-steps, or vehicle-road interactions. In the interest of maximizing the sustainability of society's technological developments, one idea is to capture these high-amplitude and abrupt energies and convert them into usable electrical power such as for sensors which otherwise rely on less sustainable power supplies. In this spirit, the considerable sensitivity to impulse-type events previously uncovered for bistable oscillators has motivated recent experimental and numerical studies on the power generation performance of bistable vibration energy harvesters. To lead to an effective and efficient predictive tool and design guide, this research develops a new analytical approach to estimate the electroelastic response and power generation of a bistable energy harvester when excited by an impulse. Comparison with values determined by direct simulation of the governing equations shows that the analytically predicted net converted energies are very accurate for a wide range of impulse strengths. Extensive experimental investigations are undertaken to validate the analytical approach and it is seen that the predicted estimates of the impulsive energy conversion are in excellent agreement with the measurements, and the detailed structural dynamics are correctly reproduced. As a result, the analytical approach represents a significant leap forward in the understanding of how to effectively leverage bistable structures as energy harvesting devices and introduces new means to elucidate the transient and far-from-equilibrium dynamics of nonlinear systems more generally.
International Nuclear Information System (INIS)
Djerad, M.T.
1987-01-01
This study concerns mainly ionising collisions involving excited states in a saturated mixture of K-Rb vapours, at thermal energy. The experimental method consists into continuous resonant two steps laser excitation of the atoms (n ≤ 10) and mass spectrometry of ion currents. Radiative and collisional relaxation of the atoms create a complex medium. The most efficient collisional processes are Penning ionisation and Hornbeck-Molnar ionisation. In the heteronuclear system Rb(n1) + K(4P), the following exit channels may be operative: Rb(n1) + K(4P) → Rb + + e - + K Rb(n1) + K(4p) → K + + e - + Rb Rb(n1) + K(4P) → KRb + + e - . The measurements show that the first channel has an average cross section ∼ 10 -13 cm 2 . Those of the other channels are at least three orders of magnitude smaller and thus comparatively negligible. The data obtained from 5D to 10S allow to conclude that the flux in the entrance channel ionises at large separation between Rb(n1) and K(4P). The process of ionisation is dominated by polarisation forces, exchange forces being negligible. In the present mixture, Hornbeck-Molnar ionisation leads to homonuclear molecular ions K 2 + , Rb 2 + as well as the heteronuclear one KRb + . We have measured the rate coefficients for the systems: K(n1) + Rb → KRb + + e - Rb(n1) + K → KRb + + e - . The rate coefficients increase with the excitation energy of the level n1; they do not exhibit fundamental differences with those measured in pure alkali vapours [fr
International Nuclear Information System (INIS)
Cabrera-Trujillo, R.; Sabin, J.R.; Oddershede, J.
2003-01-01
Recently, Porter observed [L.E. Porter, Int. J. Quantum Chem. 90, 684 (2002)] that the mean excitation energy and stopping cross section of a target, obtained from fitting experimental data at given projectile charge to a modified Bethe-Block theory, gives projectile dependent results. The main result of his work is that there is a trend for the inferred target mean excitation energy, to decrease as the projectile atomic number increases. However, this result is inconsistent with the usual definition of the mean excitation energy as a function of target excitation properties only. Here we present an explanation of Porter's results based on the Bethe theory extended to take projectile electronic structure explicitly into account
Velasco, A M; Lavín, C; Dolgounitcheva, O; Ortiz, J V
2014-08-21
Vertical excitation energies of the methyl and silyl radicals were inferred from ab initio electron propagator calculations on the electron affinities of CH3(+) and SiH3(+). Photoionization cross sections and angular distribution of photoelectrons for the outermost orbitals of both CH3 and SiH3 radicals have been obtained with the Molecular Quantum Defect Orbital method. The individual ionization cross sections corresponding to the Rydberg channels to which the excitation of the ground state's outermost electron gives rise are reported. Despite the relevance of methyl radical in atmospheric chemistry and combustion processes, only data for the photon energy range of 10-11 eV seem to be available. Good agreement has been found with experiment for photoionization cross section of this radical. To our knowledge, predictions of the above mentioned photoionization parameters on silyl radical are made here for the first time, and we are not aware of any reported experimental measurements. An analysis of our results reveals the presence of a Cooper minimum in the photoionization of the silyl radical. The adequacy of the two theoretical procedures employed in the present work is discussed.
Sutherland, B. R.
2016-02-01
It is well established that two-dimensional internal plane waves and modes in uniformly stratified fluid efficiently transfer energy to smaller scale waves and ultimately turbulent mixing through parametric subharmonic instability (PSI). The numerical simulations of MacKinnon & Winters (GRL 2005) predicted PSI should act efficiently to disrupt the internal tide. However, while in situ observations showed the presence of PSI, it was not found to be appreciable. One reason for the discrepancy between simulations and observations is that the former examined an internal mode in uniformly stratified fluid whereas, in reality, the internal tide exists in non-uniform stratification and is manifest as sinusoidal oscillations of the thermocline. Through theory supported by numerical simulations, it is shown that internal modes in non-uniform stratification immediately excite superharmonics, not subharmonic disturbances. These have double the horizontal wavenumber and double the frequency of the parent mode and hence move with the same horizontal phase speed of the parent mode. As the disturbances grow in amplitude, however, they interact with the parent mode generating small-scale vertically propagating internal waves within the strongly stratified layer. The occurrence of PSI over very long times can occur, as in the simulations of Hazewinkel and Winters (JPO 2011). However, a comprehensive understanding of the energy cascade from the internal tide to small scales must consider the evolution of excited superharmonic disturbances.
Excitation of high energy levels under laser exposure of suspensions of nanoparticles in liquids
Energy Technology Data Exchange (ETDEWEB)
Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute, 38, Vavilov Street, 119991 Moscow (Russian Federation)], E-mail: shafeev@kapella.gpi.ru; Simakin, A.V. [Wave Research Center of A.M. Prokhorov General Physics Institute, 38, Vavilov Street, 119991 Moscow (Russian Federation); Bozon-Verduraz, F. [ITODYS, UMR CNRS 7086, Universite Paris 7-Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France); Robert, M. [Laboratoire d' Electrochimie Moleculaire, UMR CNRS 7591, Universite Paris 7 Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France)
2007-12-15
Laser exposure of suspensions of nanoparticles in liquids leads to excitation of high energy levels in both liquid and nanoparticle material. The emission spectrum of the colloidal solution under exposure of a suspension metallic nanoparticles in water to radiation of a Nd:YAG laser of a picosecond range of pulse duration is discussed. Excitation of nuclear energy levels and neutron release is experimentally studied on the model system of transmutation of Hg into Au that occurs under exposure of Hg nanodrops suspended in D{sub 2}O. The proposed mechanism involves: (i) emission of X-ray photons by Hg nanoparticles upon laser exposure, leading to neutron release from D{sub 2}O, (ii) initiation of Hg {yields} Au transmutation by the capture of neutrons. The effect of transmutation is more pronounced using {sup 196}Hg isotope instead of Hg of natural isotope composition. The influence of laser pulse duration on the degree of transmutation (from fs through ns range) is discussed.
Ab initio theoretical calculations of the electronic excitation energies of small water clusters.
Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro
2011-12-14
A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.
Excitation energy and angular momentum dependence of the nuclear level densities
International Nuclear Information System (INIS)
Razavi, R.; Kakavand, T.; Behkami, A. N.
2007-01-01
We have investigated the excitation energy (E) dependence of nuclear level density for Bethe formula and constant temperature model. The level density parameter aa nd the back shifted energy from the Bethe formula are obtained by fitting the complete level schemes. Also the level density parameters from the constant temperature model have been determined for several nuclei. we have shown that the microscopic theory provides more precise information on the nuclear level densities. On the other hand, the spin cut-off parameter and effective moment of inertia are determined by studying of the angular momentum (J) dependence of the nuclear level density, and effective moment of inertia is compared with rigid body value.
DEFF Research Database (Denmark)
Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads
2008-01-01
is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-state energy within standard DFT. We extend the Delta SCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can...... be estimated, which is not possible in traditional Delta SCF because of very delocalized Kohn-Sham orbitals. The method is applied to N2, CO, and NO adsorbed on different metallic surfaces and compared to ordinary Delta SCF without our modification, spatially constrained DFT, and inverse...
Excitation function of elastic scattering on 12C + 4He system, at low energies
International Nuclear Information System (INIS)
Perez-Torres, R.; Aguilera, E. F.; Martinez-Quiroz, E.; Murillo, G.; Belyaeva, T. L.; Maldonado-Velazquez, M.
2011-01-01
Interactions in the 12 C + 4 He system are of great interest in astrophysics and to help determine the relative abundances of elements in stars, at the end of helium burning [1, 2]. The Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, have made measurements of elastic scattering for this system, using the inverse kinematics method with thick white gas [3, 4], for E CM (0.5 - 4 MeV) θ CM = 180 o . In this work we obtain excitation functions of elastic scattering of 12 C + 4 He system with angular and energy dependence; E CM = 0.5 - 4 MeV and θ CM 100 o -170 o .Using inverse kinematics method with thick white gas and energy loss tables. (Author)
Manser, Joseph S.
travel 220 nm over the course of 2 ns after photoexcitation, with an extrapolated diffusion length greater than one micrometer over the full excited state lifetime. The solution-processability of metal halide perovskites necessarily raises questions as to the properties of the solvated precursors and their connection to the final solid-state perovskite phase. Through structural and steady-state and time-resolved absorption studies, the important link between the excited state properties of the precursor components, composed of solvated and solid-state halometallate complexes, and CH3NH3PbI3 is evinced. This connection provides insight into optical nonlinearities and electronic properties of the perovskite phase. Fundamental studies of CH 3NH3PbI3 ultimately serve as a foundation for application of this and other related materials in high-performance devices. In the final chapter, the operation of CH3NH3PbI 3 solar cells in a tandem architecture is presented. The quest for economic, large scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. In light of this, we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard terrestrial one sun illumination, the photoanode-photovoltaic architecture, in conjunction with an earthabundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially
International Nuclear Information System (INIS)
Thirumalai, D.; Onda, K.; Truhlar, D.G.
1981-01-01
Coupled-channels calculations based on an effective potential are presented for electron scattering by CO 2 at 10 eV impact energy. The processes studied are pure elastic scattering, rotational excitation, and vibrational excitation of the asymmetric stretch; the vibrational excitation is always accompanied by rotational excitation. The quantities calculated are differential, partial, integral, and momentum transfer cross sections, both state to state and summed over final rotational states for a given final vibrational level. The effective potential is based on the INDOX2/1s method for the static and polarization potentials and the semiclassical exchange approximation for the exchange potential. There are no empirical parameters. The present calculations are compared to experiment and to previous calculations where available, and we also perform calculations with an altered polarization potential to further elucidate the reasons for the differences from one of the previous calculations. The agreement of the present results with the experimental rotationally summed, vibrationally inelastic differential cross section is excellent
Zeng, Qiao; Liang, WanZhen
2015-10-07
The time-dependent density functional theory (TDDFT) has become the most popular method to calculate the electronic excitation energies, describe the excited-state properties, and perform the excited-state geometric optimization of medium and large-size molecules due to the implementation of analytic excited-state energy gradient and Hessian in many electronic structure software packages. To describe the molecules in condensed phase, one usually adopts the computationally efficient hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) models. Here, we extend our previous work on the energy gradient of TDDFT/MM excited state to account for the mutual polarization effects between QM and MM regions, which is believed to hold a crucial position in the potential energy surface of molecular systems when the photoexcitation-induced charge rearrangement in the QM region is drastic. The implementation of a simple polarizable TDDFT/MM (TDDFT/MMpol) model in Q-Chem/CHARMM interface with both the linear response and the state-specific features has been realized. Several benchmark tests and preliminary applications are exhibited to confirm our implementation and assess the effects of different treatment of environmental polarization on the excited-state properties, and the efficiency of parallel implementation is demonstrated as well.
A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies.
Helmich, Benjamin; Hättig, Christof
2013-08-28
We demonstrate how to extend the pair natural orbital (PNO) methodology for excited states, presented in a previous work for the perturbative doubles correction to configuration interaction singles (CIS(D)), to iterative coupled cluster methods such as the approximate singles and doubles model CC2. The original O(N(5)) scaling of the PNO construction is reduced by using orbital-specific virtuals (OSVs) as an intermediate step without spoiling the initial accuracy of the PNO method. Furthermore, a slower error convergence for charge-transfer states is analyzed and resolved by a numerical Laplace transformation during the PNO construction, so that an equally accurate treatment of local and charge-transfer excitations is achieved. With state-specific truncated PNO expansions, the eigenvalue problem is solved by combining the Davidson algorithm with deflation to project out roots that have already been determined and an automated refresh with a generation of new PNOs to achieve self-consistency of the PNO space. For a large test set, we found that truncation errors for PNO-CC2 excitation energies are only slightly larger than for PNO-CIS(D). The computational efficiency of PNO-CC2 is demonstrated for a large organic dye, where a reduction of the doubles space by a factor of more than 1000 is obtained compared to the canonical calculation. A compression of the doubles space by a factor 30 is achieved by a unified OSV space only. Moreover, calculations with the still preliminary PNO-CC2 implementation on a series of glycine oligomers revealed an early break even point with a canonical RI-CC2 implementation between 100 and 300 basis functions.
Energy Technology Data Exchange (ETDEWEB)
Gorelik, M.L.; Shlomo, S. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Tulupov, B.A. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Institute for Nuclear Research, RAS, Moscow 117312 (Russian Federation); Urin, M.H., E-mail: urin@theor.mephi.ru [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)
2016-11-15
The particle–hole dispersive optical model, developed recently, is applied to study properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. The energy-averaged strength functions of the isoscalar giant monopole resonance and its overtone in {sup 208}Pb are analyzed. In particular, we analyze the energy-averaged isoscalar monopole double transition density, the key quantity in the description of the hadron–nucleus inelastic scattering, and studied the validity of the factorization approximation using semi classical and microscopic one body transition densities, respectively, in calculating the cross sections for the excitation of isoscalar giant resonances by inelastic alpha scattering.
Energy Technology Data Exchange (ETDEWEB)
Sood, B S; Allawadhi, K L; Arora, S K [Punjabi Univ., Patiala (India). Nuclear Science Labs.
1982-02-15
The method developed for the determination of K/L shell photoionization cross sections in various elements, 39 <= Z <= 92, in the characteristic X-ray energy region using a gamma excited variable energy X-ray source has been used for the measurement of Lsub(III) subshell photoionization cross section in Pb, Th and U. The measurements are made at the K X-ray energies of Rb, Nb and Mo, since these are able to excite selectively the Lsub(III) subshells of Pb, Th and U, respectively. The results, when compared with theoretical calculations of Scofield, are found to agree within the uncertainties of determination.
Renewable energy stocks and risk : (systematic risk factors in the renewable energy sector)
Strømme, Janne
2016-01-01
The renewable energy sector is an industry that expects tremendously growth in years to come. This opens interesting investment opportunities for investors and poses challenges for government and legislators as to how to best support the change to a low-carbon emission energy mix. In this study, we have explored the risk and returns characteristics for stocks, focusing on macroeconomic systematic risk. The stock returns from renewable energy sector was regressed on the macroeconomic variables...
DEFF Research Database (Denmark)
Ghiringhelli, G.; Piazzalunga, A.; Wang, X.
2009-01-01
of the 3d transition metals with unprecedented energy resolution, of the order of 100 meV for Mn, Ni and Cu. We present here some preliminary spectra on CuO, malachite, NiO, , MnO and . The dd excitations are very well resolved allowing accurate experimental evaluation of 3d state energy splitting. The low...
van Meer, R.; Gritsenko, O.V.; Baerends, E.J.
2014-01-01
In recent years, several benchmark studies on the performance of large sets of functionals in time-dependent density functional theory (TDDFT) calculations of excitation energies have been performed. The tested functionals do not approximate exact Kohn-Sham orbitals and orbital energies closely. We
Sun, Jin; Li, Guang; Liang, WanZhen
2015-07-14
A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.
Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy
International Nuclear Information System (INIS)
Butorin, S.M.; Guo, J.; Magnuson, M.
1997-01-01
Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state
Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others
1997-04-01
Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.
Energy dispersive soft X-ray fluorescence analysis by radioisotopic α-particle excitation
International Nuclear Information System (INIS)
Robertson, R.
1977-01-01
A Si(Li) X-ray detector system and 210 Po α-particle excitation source are combined to form a spectrometer for low energy X-rays. Its response in terms of Ksub(α) X-ray rate is shown for thick targets of elements from fluorine to copper. Potential applications of the equipment to useful quantitative elemental analysis of geological, biological and organic materials are explored. The results of analyses for oxygen and silicon in rocks and potassium in vegetation samples are included. A semi-empirical method of correcting for absorption and enhancement effects is employed. This is based upon X-ray production and photon absorption cross-sections taken from the literature and upon a minimal number of experimentally derived coefficients. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Chen, T., E-mail: tao.chen@fysik.su.se, E-mail: henning@fysik.su.se; Gatchell, M.; Stockett, M. H.; Schmidt, H. T.; Cederquist, H.; Zettergren, H., E-mail: tao.chen@fysik.su.se, E-mail: henning@fysik.su.se [Department of Physics, Stockholm University, S-106 91 Stockholm (Sweden); Delaunay, R.; Rousseau, P.; Adoui, L. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); Université de Caen Basse-Normandie, Esplanade de la Paix, F-14032 Caen (France); Domaracka, A.; Huber, B. A. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); Micelotta, E. R. [Université Paris Sud, Institut d’Astrophysique Spatiale, UMR 8617, 91405 Orsay (France); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)
2015-04-14
We have investigated the effectiveness of molecular hydrogen (H{sub 2}) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H{sub 2} formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H{sub 2} emission is correlated with multi-fragmentation processes, which means that the [PAH-2H]{sup +} peak intensities in the mass spectra may not be used for estimating H{sub 2}-formation rates.
Mean excitation energy of polystyrene extracted from proton-stopping-power measurements
International Nuclear Information System (INIS)
Porter, L.E.
1980-01-01
The measured stopping power of polystyrene for 2.2- to 5.9-MeV protons has been analyzed with the Bloch projectile-z 4 correction term and a modified low-velocity projectile-z 3 term included in the Bethe-Bloch formula. When the full-strength Walske K-shell correction was utilized, the mean excitation energy corresponding to the best fit of the measurements was (71.1 +- 1.8) eV. This result was obtained for a value of the free parameter of the low-velocity projectile-z 3 effect formalism of 1.90 +- 0.05, whether or not a Walske L-shell correction was included
International Nuclear Information System (INIS)
Fink, R.F.; Pfister, J.; Schneider, A.; Zhao, H.; Engels, B.
2008-01-01
We present new, generally applicable protocols for the computation of the coupling parameter, J, of excitation energy transfer with quantum chemical ab initio methods. The protocols allow to select the degree of approximation and computational demand such that they are applicable for realistic systems and still allow to control the quality of the approach. We demonstrate the capabilities of the different protocols using the CO dimer as a first example. Correlation effects are found to scale J by a factor of about 0.7 which is in good agreement to earlier results obtained for the ethene dimer. The various levels of the protocol allow to assess the influence of ionic configurations and the polarisation within the dimer. Further, the interplay between the Foerster and Dexter contribution to J is investigated. The computations also show error compensation within approximations that are widely used for extended systems as in particular the transition density cube method
International Nuclear Information System (INIS)
Barbatti, M.; Paier, J.; Lischka, H.
2004-01-01
Multireference configuration interaction with singles and doubles (MR-CISD) calculations have been performed for the optimization of conical intersections and stationary points on the ethylene excited-state energy surfaces using recently developed methods for the computation of analytic gradients and nonadiabatic coupling terms. Basis set dependence and the effect of various choices of reference spaces for the MR-CISD calculations have been investigated. The crossing seam between the S 0 and S 1 states has been explored in detail. This seam connects all conical intersections presently known for ethylene. Major emphasis has been laid on the hydrogen-migration path. Starting in the V state of twisted-orthogonal ethylene, a barrierless path to ethylidene was found. The feasibility of ethylidene formation will be important for the explanation of the relative yield of cis and trans H 2 elimination
Excitation energy deactivation funnel in 3-substituted BODIPY-porphyrin conjugate
International Nuclear Information System (INIS)
Nguyen, Nguyen Tran; Verbelen, Bram; Leen, Volker; Waelkens, Etienne; Dehaen, Wim; Kruk, Mikalai
2016-01-01
BODIPYs absorb in the visible region which is complementary to that of porphyrins and therefore can be suggested as promising antenna groups to improve the light-harvesting potential of porphyrins. A boron-dipyrromethene dye was combined at the 3-position with a Zn-porphyrin to afford a conjugate. The fluorescence of the conjugate was found to originate from the BODIPY moiety independently of the excitation wavelength due to an unique set of energy transfer rates between the BODIPY and Zn-porphyrin moieties. The fluorescence intensity was shown to be tunable over a wide range using the solvent properties. This feature makes the studied BODIPY-porphyrin conjugate a promising compound for the design of new photochromic devices.
Nuclei far from stability. Individual and collective excitations at low energy
International Nuclear Information System (INIS)
Meyer, M.
1984-01-01
The low energy structure of exotic nuclei is discussed in terms of self-consistent microscopic models. The experimental striking features of the spectroscopy of these nuclei are briefly surveyed and the schematic steps performed to obtain from effective N-N interactions their spectroscopic properties are presented. Their saturation and deformation properties are given by the Hartree-Fock approximation (HF). Then it is shown how to describe the dynamics of even-even exotic nuclei excited states by solving the complete Bohr Hamiltonian, built microscopically using the HF approximation and the adiabatic limit (and its derivatives) of the time-dependent HF approximation (ATDHF). The structure of odd and doubly odd nuclei is discussed in the framework of the unified model, ie the microscopic rotor + quasiparticles model. Finally possible future directions of experimental research concerning exotic nuclei are described and improvements or new theoretical approaches discussed [fr
Study on germ toxicity of exciting energy resource 147Pm of fluorescent paint
International Nuclear Information System (INIS)
Zhu Shoupeng; Lun Minyue; Tao Feng
1993-02-01
The germ toxicity of exciting energy resource 147 Pm of fluorescent paint was studied. It was shown that the placenta was a barrier for 147 Pm entering into the fetus. The retention T 1/2 was 105 days in testes. The retention value of 147 Pm in testis was high and hardly to excrete. The results showed that 147 Pm can induce abnormal sperms, most of them were non-hock sperms. The chromosome aberrations in germ cells also can be induced. Among the type of chromosome aberrations of spermatogonia, chromatid breakage was predominant. The 147 Pm can cause the chromosome fragment and translocations of primary spermatocytes, and increasing of lethality. The dominant skeletal aberrations in offspring is proportional to the accumulated radioactivity of 147 Pm in tests
Excitation energy deactivation funnel in 3-substituted BODIPY-porphyrin conjugate
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Nguyen Tran [Chemistry Department, University of Education, The University of DaNang, Ton Duc Thang 459, Da Nang (Viet Nam); Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Verbelen, Bram; Leen, Volker [Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Waelkens, Etienne [Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 901, 3000 Leuven (Belgium); Dehaen, Wim, E-mail: wim.dehaen@kuleuven.be [Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Kruk, Mikalai, E-mail: m.kruk@belstu.by [Belarusian State Technological University, Physics Department, Sverdlov Str., 13a, Minsk 220006 (Belarus)
2016-11-15
BODIPYs absorb in the visible region which is complementary to that of porphyrins and therefore can be suggested as promising antenna groups to improve the light-harvesting potential of porphyrins. A boron-dipyrromethene dye was combined at the 3-position with a Zn-porphyrin to afford a conjugate. The fluorescence of the conjugate was found to originate from the BODIPY moiety independently of the excitation wavelength due to an unique set of energy transfer rates between the BODIPY and Zn-porphyrin moieties. The fluorescence intensity was shown to be tunable over a wide range using the solvent properties. This feature makes the studied BODIPY-porphyrin conjugate a promising compound for the design of new photochromic devices.
Excited baryon form-factors at high momentum transfer at CEBAF at higher energies
Energy Technology Data Exchange (ETDEWEB)
Stoler, P. [Rensselaer Polytechnic Inst., Troy, NY (United States)
1994-04-01
The possibilities of measuring the properties of excited nucleons at high Q{sup 2} by means of exclusive single meson production at CEBAF with an electron energy of 8 GeV is considered. The motivation is to access short range phenomena in baryon structure, and to investigate the transition from the low Q{sup 2} non-perturbative QCD regime, where constituent quark models are valid, to higher Q{sup 2} where it is believed perturbative QCD plays an increasingly important role. It is found that high quality baryon decay angular distributions can be obtained for the most prominent states up to Q{sup 2} {approximately} 12 GeV{sup 2}/c{sup 2} using a set of moderate resolution, large solid angle magnetic spectrometers.
Energy levels of the single excited states in NaI and Na-like ions
International Nuclear Information System (INIS)
El-Sherbini, T.M.; Wahby, A.S.
1987-08-01
Energy levels of the single excited 1s 2 2s 2 2p 6 ns( 2 S), 1s 2 2s 2 2p 6 mp( 2 P), 1s 2 2s 2 2p 6 md( 2 D) and 1s 2 2s 2 2p 6 nf( 2 F); n=4-7, m=3-6 states for NaI and Na-like ions are calculated using the one configuration Hartree-Fock method. Good agreement is obtained between our results for the higher members of the NaI sequence and previous data from photo-absorption and beam foil experiments. (author). 11 refs, 3 figs, 9 tabs
Energy Technology Data Exchange (ETDEWEB)
Fink, R.F. [University of Wuerzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Wuerzburg (Germany)], E-mail: reinhold.fink@rub.de; Pfister, J.; Schneider, A.; Zhao, H.; Engels, B. [University of Wuerzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Wuerzburg (Germany)
2008-01-29
We present new, generally applicable protocols for the computation of the coupling parameter, J, of excitation energy transfer with quantum chemical ab initio methods. The protocols allow to select the degree of approximation and computational demand such that they are applicable for realistic systems and still allow to control the quality of the approach. We demonstrate the capabilities of the different protocols using the CO dimer as a first example. Correlation effects are found to scale J by a factor of about 0.7 which is in good agreement to earlier results obtained for the ethene dimer. The various levels of the protocol allow to assess the influence of ionic configurations and the polarisation within the dimer. Further, the interplay between the Foerster and Dexter contribution to J is investigated. The computations also show error compensation within approximations that are widely used for extended systems as in particular the transition density cube method.
Piezoelectric Wind Energy Harvesting from Self-Excited Vibration of Square Cylinder
Directory of Open Access Journals (Sweden)
Junlei Wang
2016-01-01
Full Text Available Self-excited vibration of a square cylinder has been considered as an effective way in harvesting piezoelectric wind energy. In present work, both of the vortex-induced vibration and unstable galloping phenomenon process are investigated in a reduced velocity (Ur=U/ωn·D range of 4≤Ur≤20 with load resistance ranging in 100 Ω≤R≤1 MΩ. The vortex-induced vibration covers presynchronization, synchronization, and postsynchronization branches. An aeroelectromechanical model is given to describe the coupling of the dynamic equation of the fluid-structure interaction and the equation of Gauss law. The effects of load resistance are investigated in both the open-circuit and close-circuit system by a linear analysis, which covers the parameters of the transverse displacement, aerodynamic force, output voltage, and harvested power utilized to measure the efficiency of the system. The highest level of the transverse displacement and the maximum value of harvested power of synchronization branch during the vortex-induced vibration and galloping are obtained. The results show that the large-amplitude galloping at high wind speeds can generate energy. Additionally, energy can be harvested by utilization of the lock-in phenomenon of vortex-induced vibration under low wind speed.
High-sensitivity measurements of the excitation function for Bhabha scattering at MeV energies
International Nuclear Information System (INIS)
Tsertos, H.; Kozhuharov, C.; Armbruster, P.; Kienle, P.; Krusche, B.; Schreckenbach, K.
1989-02-01
Using a monochromatic e + beam scattered on a Be foil and a high-resolution detector device, the excitation function for elastic e + e - scattering was measured with a statistical accuracy of 0.25% in 1.4 keV steps in the c.m.-energy range between 770 keV and 840 keV (1.79 - 1.86 MeV/c 2 ) at c.m. scattering angles between 80 0 and 100 0 (FWHM). Within the experimental sensitivity of 0.5 b.eV/sr (c.m.) for the energy-integrated differential cross section no resonances were observed (97% CL). From this limit we infer that a hypothetical spinless resonant state should have a width of less than 1.9 meV corresponding to a lifetime limit of 3.5x10 -13 s. This limit establishes the most stringent bound for new particles in this mass range derived from Bhabha scattering and is independent of assumptions about the internal structure of the hypothetical particles. Less sensitivite limits were, in addition, derived around 520 keV c.m. energy (≅ 1.54 MeV/c 2 ) from an investigation with a thorium and a mylar foil as scatterers. (orig.)
Instrumental aspects of tube-excited energy-dispersive X-ray fluorescence analysis
International Nuclear Information System (INIS)
Adams, F.; Nullens, H.; Espen, P. van
1983-01-01
Energy-dispersive X-ray fluorescence spectrometry is an attractive and widely used method for sensitive multi-element analysis. The method suffers from the extreme density of spectral components in a rather limited energy range which implies the need for computer based spectrum analysis. The method of iterative least squares analysis is the most powerful tool for this. It requires a systematic and accurate description of the spectral features. Other important necessities for accurate analysis are the calibration of the spectrometer and the correction for matrix absorption effects in the sample; they can be calculated from available physical constants. Ours and similar procedures prove that semi-automatic analyses are possible with an accuracy of the order of 5%. (author)
Sarma, Manabendra; Adhikari, S; Mishra, Manoj K
2007-01-28
Vibrational excitation (nu(f), where psi(nu(i))(R,t) approximately =e(-iH(A(2))-(R)t/h phi(nu(i))(R) with time evolution under the influence of the resonance anionic Hamiltonian H(A(2) (-))(A(2) (-)=N(2)(-)/H(2) (-)) implemented using Lanczos and fast Fourier transforms. The target (A(2)) vibrational eigenfunctions phi(nu(i))(R) and phi(nu(f))(R) are calculated using Fourier grid Hamiltonian method applied to potential energy (PE) curves of the neutral target. Application of this simple systematization to calculate vibrational structure in e-N(2) and e-H(2) scattering cross-sections provides mechanistic insights into features underlying presence/absence of structure in e-N(2) and e-H(2) scattering cross-sections. The results obtained with approximate PE curves are in reasonable agreement with experimental/calculated cross-section profiles, and cross correlation functions provide a simple demarcation between the boomerang and impulse models.
International Nuclear Information System (INIS)
Singh, Devendra P.; Unnati; Sharma, Manoj Kumar; Singh, Pushpendra P.; Singh, B.P.; Prasad, R.; Gupta, Sunita; Rakesh Kumar; Bhardwaj, H.D.
2006-01-01
In the present work, excitation functions for seven evaporation residues (ERs) produced via complete fusion and incomplete fusion processes in 16 O + 103 Rh system have been measured in the energy range ≅ 47-85 MeV, using recoil catcher technique followed by off-line gamma-ray spectrometry. Comparison of the experimental data with statistical model based computer code PACE 2 revealed dominance of incomplete fusion in reactions involving alpha-emission channels. To the best of our knowledge these reactions are being reported for the first time
International Nuclear Information System (INIS)
Lisitsyn, V.M.; Grechkina, T. V.; Korepanov, V.I.; Lisitsyna, L.A.
2004-01-01
Full text: In this paper we present results of comparison of efficiency creations of primary defects in crystals of fluorides of two different lattice structures: stone salt - LiF and rutile MgF 2 . We have used the methods with nanosecond time-resolved of pulse spectroscopy and found laws of creation and evolution self-trapped exciton (STE) and the F centers in a temperature range from 12.5 to 500 K and a time interval from 10 -8 to 10 -1 s after the ending of influence of a pulse electron. The density of excitation of crystals in a pulse is no more than 0.1 J·cm -3 , average energy electrons made 200 keV, duration electron pulse - 7 ns. It is established, that in crystal LiF under action of radiation are created STE two types which have various spectral-kinetic parameters absorption and emission transitions, various values of activation energy of processes of a post-industrial relaxation and different character of temperature dependences of creation efficiency under action electron pulse. In the field of low temperatures (12.5 K) created on center STE has absorption bands on 5.5 and 5.1 eV and emission band on 5.8 eV. Off-center STE has absorption on 5.3 and 4.75 eV and emission on 4.4 eV bands and are created in the interval 12.5-170 K with peak efficiency h area 60 K. In crystal MgF 2 at low temperatures (20 K) under action of radiation one STE with a nucleus occupying off-center configuration, having luminescence band on 3.2 eV and a series absorption transitions in area 4-5.5 eV is created. Concurrently with STE in both crystals under action of a pulse electron the F-centers with efficiency, not dependent on temperature of a crystal in area 20-100 K are created. There are two alternative processes under action of an irradiation with growth of temperature higher 100 K: reducing of STE creation and increasing of F centers creation. In both crystals quenching temperature of luminescence STE at T>60 K which is not accompanied by growth of efficiency of creation
Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J
2015-03-17
Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron
Charge transfer and excitation in high-energy ion-atom collisions
International Nuclear Information System (INIS)
Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.
1986-11-01
Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture
International Nuclear Information System (INIS)
Boneva, S.T.; Khitrov, V.A.; Sukhovoj, A.M.; Vojnov, A.V.
1990-01-01
Intensities of two-quanta cascades are obtained for 2-3 final low-lying levels of the following nuclei 146 Nd, 174 Yb and 183 W. These measured intensities are compared with the intensities calculated in the frame of various models at primary transition energies ranging from 0.5 MeV to the neutron binding energy. Some excitation energy intervals are revealed, experimentally obtained intensities of cascade are inconsistent with model calculations. 15 refs.; 7 figs
International Nuclear Information System (INIS)
Gil, T.J.; McCurdy, C.W.; Rescigno, T.N.; Lengsfield, B.H. III
1994-01-01
The authors are reporting results of ab-initio calculations of electron-impact excitation of water and methane occurring at scattering energies up to 60 eV. The authors consider dissociative excited states of both systems since the understanding of their chemistry has considerable importance in plasma technology and atmospheric research. In the case of methane the authors are dealing with the promotion of a valence electron into Rydberg orbitals, while in water the excited states have one electron in an antibonding unoccupied valence orbital and support Feshbach resonances. The authors discuss issues related to convergence of the close-coupling expansion in the case of Rydberg excitation, where the authors have coupled up to 16 channels. The practical realization of the calculation within the framework of the complex Kohn variational principle represents merging of quantum chemistry and quantum scattering theory and is also discussed
Excitation energy partition in deeply inelastic collisions between 40Ar and Ag at 27 MeV per nucleon
International Nuclear Information System (INIS)
Borderie, B.; Rivet, M.F.; Cabot, C.; Fuchs, H.; Gardes, D.; Hanappe, F.; Jouan, D.; Montoya, M.
1991-01-01
The dynamics of the two partners produced in dissipative collisions has been experimentally studied for the system 40 Ar+Ag at 27 MeV per nucleon. Primary masses of the fragments can then be calculated; the excitation energy partition between the two fragments is derived from the number of particles evaporated by each fragment. We found that this division evolves from equipartition to a repartition close to thermal equilibrium in the excitation energy range 300-350 MeV or interaction times 5-10x10 -22 s. (orig.)
Identification of an isomer in 110Ag at 1-keV excitation energy
International Nuclear Information System (INIS)
Clark, D.D.; Kostroun, V.O.; Siems, N.E.
1975-01-01
The existence of a new isomeric state in 110 Ag at approx. 1 keV excitation has been established in two experiments using a new instrument, the inner-shell-vacancy (ISV) detector. In the first experiment, a transition with a half-life of 660 plus-or-minus 40 ns was observed to follow the well-known 116-keV M4 transition that depopulates the 6 + 250-day isomeric level in 110 Ag; the energy of the new transition was deduced to be 109 Ag(n, γ) 110 Ag reaction to follow γ transitions previously assigned by others to populate a 1-keV excited state. The two results indicate the existence of a 2 - 660-ns isomer at 1.11 keV. Under the assumption that the newly observed transition is from a 2 - 1.11-keV state to the 1 + ground state, its hindrance factor with respect to the Moszkowski estimate is approx. 2.6 times 10 3 . Possible chemical-state perturbations of the measured half-life are estimated to be much smaller than the measurement error. In both experiments the approx. 1-keV transition was detected with the ISV detector, a new device based on the well-established atomic effect that within approx. 10 -14 s after the formation of an inner shell vacancy an atom will undergo a multiple loss of []lectrons ranging from several to 20 or more, the number being a function of Z and subshell. The emitted electrons, which are very soft, are collected with an accelerating and focusing electrostatic lens and detected with a plastic scintillator and a photomultiplier tube. Nuclear transitions that cause ISVs can thus be sensed. Experiments are described that show the detector is fast, sensitive, selective, and efficient in responding to ISVs.
Bellemans, Aurélie; Parente, Alessandro; Magin, Thierry
2018-04-01
The present work introduces a novel approach for obtaining reduced chemistry representations of large kinetic mechanisms in strong non-equilibrium conditions. The need for accurate reduced-order models arises from compression of large ab initio quantum chemistry databases for their use in fluid codes. The method presented in this paper builds on existing physics-based strategies and proposes a new approach based on the combination of a simple coarse grain model with Principal Component Analysis (PCA). The internal energy levels of the chemical species are regrouped in distinct energy groups with a uniform lumping technique. Following the philosophy of machine learning, PCA is applied on the training data provided by the coarse grain model to find an optimally reduced representation of the full kinetic mechanism. Compared to recently published complex lumping strategies, no expert judgment is required before the application of PCA. In this work, we will demonstrate the benefits of the combined approach, stressing its simplicity, reliability, and accuracy. The technique is demonstrated by reducing the complex quantum N2(g+1Σ) -N(S4u ) database for studying molecular dissociation and excitation in strong non-equilibrium. Starting from detailed kinetics, an accurate reduced model is developed and used to study non-equilibrium properties of the N2(g+1Σ) -N(S4u ) system in shock relaxation simulations.
Rate for energy transfer from excited cyclohexane to nitrous oxide in the liquid phase
International Nuclear Information System (INIS)
Wada, T.; Hatano, Y.
1975-01-01
Pure liquid cyclohexane and cyclohexane solutions of nitrous oxide have been photolyzed at 163 nm. The quantum yield of the product hydrogen in the photolysis of pure cyclohexane is found to be 1.0. The addition of nitrous oxide results in the reduction in the yield of hydrogen and in the formation of nitrogen. The decrement of the hydrogen yield is approximately equal to the increment of the nitrogen yield. About 40 percent of the hydrogen yield in pure cyclohexane is found to be produced through a path which is not affected by the addition of nitrous oxide. The effect of the addition of nitrous oxide is attributed to energy transfer from excited cyclohexane to nitrous oxide with the rate constant of k = 1.0 x 10 11 M -1 sec -1 (at 15 0 C). This value is about a factor of 10 larger than that expected as for diffusion-controlled rate. A contribution of the energy transfer process to the formation of nitrogen in the radiolysis of cyclohexane solutions of nitrous oxide has also been discussed. (auth)
Power Management of Islanded Self-Excited Induction Generator Reinforced by Energy Storage Systems
Directory of Open Access Journals (Sweden)
Nachat N. Nasser
2018-02-01
Full Text Available Self-Excited Induction Generators (SEIGs, e.g., Small-Scale Embedded wind generation, are increasingly used in electricity distribution networks. The operational stability of stand-alone SEIG is constrained by the local load conditions: stability can be achieved by maintaining the load’s active and reactive power at optimal values. Changes in power demand are dependent on customers’ requirements, and any deviation from the pre-calculated optimum setting will affect a machine’s operating voltage and frequency. This paper presents an investigation of the operation of the SEIG in islanding mode of operation under different load conditions, with the aid of batteries as an energy storage source. In this research a current-controlled voltage-source converter is proposed to regulate the power exchange between a direct current (DC energy storage source and an alternating current (AC grid, the converter’s controller is driven by any variation between machine capability and load demand. In order to prolong the system stability when the battery reaches its operation constraints, it is recommended that an ancillary generator and a dummy local load be embedded in the system. The results show the robustness and operability of the proposed system in the islanding mode of the SEIG under different load conditions.
General theory of excitation energy transfer in donor-mediator-acceptor systems.
Kimura, Akihiro
2009-04-21
General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.
Bose, Samik; Chakrabarty, Suman; Ghosh, Debashree
2016-05-19
Hybrid quantum mechanics/molecular mechanics (QM/MM) is applied to the fluorinated green fluorescent protein (GFP) chromophore (DFHBDI) in its deprotonated form to understand the solvatochromic shifts in its vertical detachment energy (VDE) and vertical excitation energy (VEE). This variant of the GFP chromophore becomes fluorescent in an RNA environment and has a wide range of applications in biomedical and biochemical fields. From microsolvation studies, we benchmark (with respect to full QM) the accuracy of our QM/MM calculations with effective fragment potential (EFP) as the MM method of choice. We show that while the solvatochromic shift in the VEE is minimal (0.1 eV blue shift) and its polarization component is only 0.03 eV, the effect of the solvent on the VDE is quite large (3.85 eV). We also show by accurate calculations on the solvatochromic shift of the VDE that polarization accounts for ∼0.23 eV and therefore cannot be neglected. The effect of the counterions on the VDE of the deprotonated chromophore in solvation is studied in detail, and a charge-smearing scheme is suggested for charged chromophores.
A coherent modified Redfield theory for excitation energy transfer in molecular aggregates
Energy Technology Data Exchange (ETDEWEB)
Hwang-Fu, Yu-Hsien; Chen, Wei; Cheng, Yuan-Chung, E-mail: yuanchung@ntu.edu.tw
2015-02-02
Highlights: • A CMRT method for coherent energy transfer in molecular aggregates was developed. • Applicability of the method was verified in two-site systems with various parameters. • CMRT accurately describes population dynamics in the FMO-complex. • The method is accurate in a large parameter space and computationally efficient. - Abstract: Excitation energy transfer (EET) is crucial in photosynthetic light harvesting, and quantum coherence has been recently proven to be a ubiquitous phenomenon in photosynthetic EET. In this work, we derive a coherent modified Redfield theory (CMRT) that generalizes the modified Redfield theory to treat coherence dynamics. We apply the CMRT method to simulate the EET in a dimer system and compare the results with those obtained from numerically exact path integral calculations. The comparison shows that CMRT provides excellent computational efficiency and accuracy within a large EET parameter space. Furthermore, we simulate the EET dynamics in the FMO complex at 77 K using CMRT. The results show pronounced non-Markovian effects and long-lasting coherences in the ultrafast EET, in excellent agreement with calculations using the hierarchy equation of motion approach. In summary, we have successfully developed a simple yet powerful framework for coherent EET dynamics in photosynthetic systems and organic materials.
YIELDS OF IONS AND EXCITED STATES IN NONPOLAR LIQUIDS EXPOSED TO X-RAYS OF 1 TO 30 KEV ENERGY
International Nuclear Information System (INIS)
HOLROYD, R.A.
1999-01-01
When x-rays from a synchrotron source are absorbed in a liquid, the x-ray energy (E x ) is converted by the photoelectric effect into the kinetic energy of the electrons released. For hydrocarbons, absorption by the K-electrons of carbon dominates. Thus the energy of the photoelectron (E pe ) is E x -E b , where E b is the K-shell binding energy of carbon. Additional electrons with energy equal to E b is released in the Auger process that fills the hole in the K-shell. These energetic electrons will produce many ionizations, excitations and products. The consequences of the high density of ionizations and excitations along the track of the photoelectron and special effects near the K-edge are examined here
Institute of Scientific and Technical Information of China (English)
YE Wei; CHEN Na
2004-01-01
Isospin effects on particle emission of fissioning isobaric sources 202Fr, 202po, 202Tl and isotopic sources 189,202,212Po, and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.
Li, Chen; Lu, Jianfeng; Yang, Weitao
2015-12-14
We develop the gentlest ascent dynamics for Kohn-Sham density functional theory to search for the index-1 saddle points on the energy landscape of the Kohn-Sham density functionals. These stationary solutions correspond to excited states in the ground state functionals. As shown by various examples, the first excited states of many chemical systems are given by these index-1 saddle points. Our novel approach provides an alternative, more robust way to obtain these excited states, compared with the widely used ΔSCF approach. The method can be easily generalized to target higher index saddle points. Our results also reveal the physical interest and relevance of studying the Kohn-Sham energy landscape.
Inner-shell excitation in heavy ion collisions up to intermediate incident energies
International Nuclear Information System (INIS)
Reus, T. de.
1987-04-01
Electronic excitations in collisions of very heavy ions with a total nuclear charge Z greater than 1/α ≅ 137 at bombarding energies reaching from 3.6 MeV/n up to 100 MeV/n are the subject of this thesis. The dynamical behaviour of the electron-positron-field is described within a semiclassical model, which is reviewed and extended to include electronic interactions via a mean field. A detailed comparison with experimental data of K-vacancy formation, δ-electron and positron emission shows an improved agreement compared with former calculations. Structures in spectra of positrons emitted in sub- and supercritical collision are discussed in two respects: Firstly as a signal of the vacuum decay in supercritical electromagnetic fields which evolve in the vicinity of long living giant nuclear molecules. Secondly as an atomic effect, which might be related to an instaneous formation of molecular 1sσ- and 2p 1/2 σ- levels. However, beyond this speculation the emission spectra of electrons and positrons in deep inelastic reactions have proven to be a powerful tool for measuring nuclear reaction or delay times in the order of 10 -21 s. This property was transfered to the domain of intermediate energy collisions. In first order perturbation theory we derived a scaling law, exhibiting how nuclear stopping times could be extracted from the emission spectra of high energetic δ-electrons. Quantitative calculations within a coupled channel code have been carried out for the system Pb+Pb, yielding cross sections of up to 20 nb for the emission of electrons with a kinetic energy of 50 MeV in 60 MeV/n-collisions. (orig./HSI)
Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene.
Shu, Huabing; Li, Yunhai; Wang, Shudong; Wang, Jinlan
2015-02-14
Using density functional theory, the G0W0 method and Bethe-Salpeter equation calculations, we systematically explore the structural, electronic and optical properties of hydrogenated and fluorinated germanene. The hydrogenated/fluorinated germanene tends to form chair and zigzag-line configurations and its electronic and optical properties show close geometry dependence. The chair hydrogenated/fluorinated and zigzag-line fluorinated germanene are direct band-gap semiconductors, while the zigzag-line hydrogenated germanene owns an indirect band-gap. Moreover, the quasi-particle corrections are significant and strong excitonic effects with large exciton binding energies are observed. Moreover, the zigzag-line hydrogenated/fluorinated germanene shows highly anisotropic optical responses, which may be used as a good optical linear polarizer.
Systematic features of mass yield curves in low-energy fission of actinides
International Nuclear Information System (INIS)
Nagame, Yuichiro
1999-01-01
excitation energy and angular distribution. (9) Based on the systematic analysis of the heavy asymmetric mass yield curves in thermal neutron- and proton-induced fission of actinides, and spontaneous fission of medium and heavy actinides, the relation between the fragment shell structure and the shape of the mass yield curves which reflect the final mass division process is discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Li, Zhong Wei; Min, Chun Gang; Ren, Ai Min; Feng, Ji Kang [Jilin University, Changchun (China); Guo, Jing Fu [Northeast Normal University, Jilin (China); Goddard, John D. [University of Guelph, Ontario (Canada); Zuo, Liang [North China Mineral and Geology Testing Center of CNNC, Tianjin (China)
2010-04-15
In order to find a relationship between firefly luciferases structure and bioluminescence spectra, we focus on excited substrate geometries which may be affected by rigid luciferases. Density functional theory (DFT) and time dependent DFT (TDDFT) were employed. Changes in only six bond lengths of the excited substrate are important in determining the emission spectra. Analysis of these bonds suggests the mechanism whereby luciferases restrict more or less the excited substrate geometries and to produce multicolor bioluminescence.
Smirnov, Yu M.
2018-03-01
Electron-impact excitation of lead atom levels belonging to 6pnd configurations has been studied in experiment. One hundred two excitation cross-sections have been measured at an incident electron energy of 50 eV. Eleven optical excitation functions (OEFs) have been recorded in the exciting electron energy range of E = 0-200 eV. The resulting findings were used to study the excitation cross-sections dependence on the principal quantum number of upper levels for thirteen PbI spectral series.
Ihalainen, J.A.; Linnanto, J.; Myllyperkiö, P.; van Stokkum, I.H.M.; Ücker, B.; Scheer, H.; Korppi-Tommola, J.E.I.
2001-01-01
Two color transient absorption measurements were performed on a LH2 complex from Rhodospirillum molischianum by using several excitation wavelengths (790, 800, 810, and 830 nm) and probing in the spectral region from 790 to 870 nm at room temperature. The observed energy transfer time of ∼1.0 ps
Mester, Dávid; Nagy, Péter R.; Kállay, Mihály
2018-03-01
A reduced-cost implementation of the second-order algebraic-diagrammatic construction [ADC(2)] method is presented. We introduce approximations by restricting virtual natural orbitals and natural auxiliary functions, which results, on average, in more than an order of magnitude speedup compared to conventional, density-fitting ADC(2) algorithms. The present scheme is the successor of our previous approach [D. Mester, P. R. Nagy, and M. Kállay, J. Chem. Phys. 146, 194102 (2017)], which has been successfully applied to obtain singlet excitation energies with the linear-response second-order coupled-cluster singles and doubles model. Here we report further methodological improvements and the extension of the method to compute singlet and triplet ADC(2) excitation energies and transition moments. The various approximations are carefully benchmarked, and conservative truncation thresholds are selected which guarantee errors much smaller than the intrinsic error of the ADC(2) method. Using the canonical values as reference, we find that the mean absolute error for both singlet and triplet ADC(2) excitation energies is 0.02 eV, while that for oscillator strengths is 0.001 a.u. The rigorous cutoff parameters together with the significantly reduced operation count and storage requirements allow us to obtain accurate ADC(2) excitation energies and transition properties using triple-ζ basis sets for systems of up to one hundred atoms.
International Nuclear Information System (INIS)
Faust, H.; Koester, U.; Kessedjian, G.; Sage, C.; Chebboubi, A.
2013-01-01
We review the statistical model and its application for the process of nuclear fission. The expressions for excitation energy and spin distributions for the individual fission fragments are given. We will finally emphasize the importance of measuring prompt gamma decay to further test the statistical model in nuclear fission with the FIPPS project. (authors)
Low energy excitations in superconducting La1.86Sr0.14CuO4
DEFF Research Database (Denmark)
Mason, T.E.; Aeppli, G.; Hayden, S.M.
1993-01-01
We present magnetic neutron scattering and specific heat data on the high-T(c) superconductor La1.86Sr0.14CuO4. Even when the samples are superconducting and the magnetic response, chi'', is suppressed, there are excitations with energies well below 3.5k(B)T(c). The wave-vector dependence of chi...
Heßelmann, Andreas
2015-04-14
Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.
Energies of the ground state and first excited 0 sup + state in an exactly solvable pairing model
Dinh Dang, N
2003-01-01
Several approximations are tested by calculating the ground-state energy and the energy of the first excited 0 sup + state using an exactly solvable model with two symmetric levels interacting via a pairing force. They are the BCS approximation (BCS), Lipkin-Nogami (LN) method, random-phase approximation (RPA), quasiparticle RPA (QRPA), the renormalized RPA (RRPA), and renormalized QRPA (RQRPA). It is shown that, in the strong-coupling regime, the QRPA which neglects the scattering term of the model Hamiltonian offers the best fit to the exact solutions. A recipe is proposed using the RRPA and RQRPA in combination with the pairing gap given by the LN method. Applying this recipe, it is shown that the superfluid-normal phase transition is avoided, and a reasonably good description for both of the ground-state energy and the energy of the first excited 0 sup + state is achieved. (orig.)
Low-energy excitations in impurity substituted CuGeO3
International Nuclear Information System (INIS)
Jones, B. R.; Sushkov, A. B.; Musfeldt, J. L.; Wang, Y. J.; Revcolevschi, A.; Dhalenne, G.
2001-01-01
We report far-infrared reflectance measurements of Zn- and Si-doped CuGeO 3 single crystals as a function of applied magnetic field at low temperature. Overall, the low-energy far-infrared spectra are extraordinarily sensitive to the various phase boundaries in the H-T diagram, with the features being especially rich in the low-temperature dimerized state. Zn impurity substitution rapidly collapses the 44 cm -1 zone-boundary spin Peierls gap, although broadened magnetic excitations are observed at the lightest doping level (0.2%) and a remnant is still observable at 0.7% substitution. In a 0.7% Si-doped sample, there is no evidence of the spin gap. Impurity substitution effects on the intensity of the 98 cm -1 zone-folding mode are striking as well. The lightly doped Zn crystals display an enhanced response, and even at intermediate doping levels, the mode intensity is larger than that in the pristine material. The Si-doped sample also displays an increased intensity of the 98 cm -1 mode in the spin Peierls phase relative to the pure material. The observed trends are discussed in terms of the effect of disorder on the spin gap and 98 cm -1 mode, local oscillator strength sum rules, and broken selection rules
The surrogate-reaction method and excitation-energy sorting in nuclear fission
International Nuclear Information System (INIS)
Jurado, Beatriz
2015-01-01
This manuscript summarises the main activities that I have carried out during the last ten years of research at the Centre d'etudes Nucleaires de Bordeaux-Gradignan (CENBG). It is, to a great extent, a synthesis of nine articles. They can be consulted by the reader that would like to have more detailed information. These articles are denoted as Article I, II.. all along the manuscript. The manuscript is intended to be accessible to PhD students not familiar with the topic. Chapter 1 recalls some of the basic ideas of statistical mechanics and discusses the applicability of its concepts to nuclei. Some of these concepts, in particular the concept of statistical equilibrium, are essential for the topics covered by chapters 2 and 3. Chapter 2 summarises the studies performed by the CENBG collaboration on the surrogate-reaction method in the last ten years. Chapter 3 summarises part of the work done on the modelling of nuclear fission in collaboration with Karl-Heinz Schmidt, it considers the partition of excitation energy and unpaired nucleons in fission on the basis of statistical mechanics. Chapters 2 and 3 contain the bulk of my work, each of them has its own introduction and conclusion sections. Chapter 4 presents the medium and long-term experimental perspectives for the topics described in chapters 2 and 3. (author)
Excitation of short wavelength Alfven oscillations by high energy ions in tokamak
International Nuclear Information System (INIS)
Beasley, C.O. Jr.; Lominadze, J.G.; Mikhailovskii, A.B.
1975-08-01
The excitation of Alfven waves by fast untrapped ions in axisymmetric tokamaks is described by the dispersion relation epsilon 11 - c 2 k/sub parallel bars/ 2 /ω 2 = 0. Using this relation a new class of instability connected with the excitation of Alfven oscillations is described. (U.S.)
Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.
Khoromskaia, Venera; Khoromskij, Boris N
2015-12-21
We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches.
Energy Technology Data Exchange (ETDEWEB)
Dasch, C.J.
1978-09-01
Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295/sup 0/K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295/sup 0/K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ..delta..J transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references.
Energy relaxation in IR laser excited Hg1-xCdxTe
International Nuclear Information System (INIS)
Storebo, A K; Brudevoll, T; Olsen, O; Norum, O C; Breivik, M
2009-01-01
IR laser excitation of Hg l-x Cd x Te by low-fluence femtosecond and high fluence microsecond pulses was explored for the technologically important alloy fractions x ∼ 0.2 and x ∼ 0.28. We have used first principles (LAPW) electronic structure calculations and finite element modelling, supported by Monte Carlo simulation for the description of femtosecond pulse carrier relaxation and the transport parameters. Laser wavelengths considered were 6.4 - 10.6 μm for x ∼ 0.2 and 3.8 - 4.8 μm for x ∼ 0.28, with an incident 1 microsecond pulse fluence of 2 J/cm 2 . Many energy transfer mechanisms are invoked due to the long timescales of the microsecond pulses, and a main challenge is therefore to elucidate how these interplay in situations away from thermal equilibrium. Mechanisms studied include one- and two-photon absorption (OPA and TPA) across the band gap, inter-valence band absorption (IVA) between light- and heavy hole bands, electron-hole recombination/impact ionization, band gap renormalisation, intra-band free carrier absorption (FCA), excess carrier temperatures, non-equilibrium phonon generation, and refractive index changes. In the high fluence case, lattice temperatures evolve considerably during the laser pulse in response to the heated carriers. The chosen photon energies lie just above the band gap at the starting lattice temperature of 77 K, and nonlinear effects therefore dominate as the material heats up and the band gap begins to exceed the photon energy. Because of the low photon energy we must rely on Auger recombination, inter-valence band absorption and free carrier absorption to heat the carrier plasma. Although some Hg l-x Cd x Te material parameters are now relatively well known, existing data for many of the processes are inadequate for cases far away from thermal equilibrium. Furthermore, the role of Auger recombination in relation to non-intrinsic recombination has been a matter of debate lately. In this respect, information from
Obstructive sleep apnea and energy balance regulation: A systematic review.
Shechter, Ari
2017-08-01
Obesity and obstructive sleep apnea (OSA) have a reciprocal relationship. Sleep disruptions characteristic of OSA may promote behavioral, metabolic, and/or hormonal changes favoring weight gain and/or difficulty losing weight. The regulation of energy balance (EB), i.e., the relationship between energy intake (EI) and energy expenditure (EE), is complex and multi-factorial, involving food intake, hormonal regulation of hunger/satiety/appetite, and EE via metabolism and physical activity (PA). The current systematic review describes the literature on how OSA affects EB-related parameters. OSA is associated with a hormonal profile characterized by abnormally high leptin and ghrelin levels, which may encourage excess EI. Data on actual measures of food intake are lacking, and not sufficient to make conclusions. Resting metabolic rate appears elevated in OSA vs. Findings on PA are inconsistent, but may indicate a negative relationship with OSA severity that is modulated by daytime sleepiness and body weight. A speculative explanation for the positive EB in OSA is that the increased EE via metabolism induces an overcompensation in the drive for hunger/food intake, which is larger in magnitude than the rise in EI required to re-establish EB. Understanding how OSA affects EB-related parameters can help improve weight loss efforts in these patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Ritschel, Gerhard; Roden, Jan; Eisfeld, Alexander; Strunz, Walter T
2011-01-01
A master equation derived from non-Markovian quantum state diffusion is used to calculate the excitation energy transfer in the photosynthetic Fenna-Matthews-Olson pigment-protein complex at various temperatures. This approach allows us to treat spectral densities that explicitly contain the coupling to internal vibrational modes of the chromophores. Moreover, the method is very efficient and as a result the transfer dynamics can be calculated within about 1 min on a standard PC, making systematic investigations w.r.t. parameter variations tractable. After demonstrating that our approach is able to reproduce the results of the numerically exact hierarchical equations of motion approach, we show how the inclusion of vibrational modes influences the transfer. (paper)
Grosveld, Ferdinand W.
1990-01-01
The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.
On mechanism of Ar(3p54p) states excitation in low-energy Ar-Ar collisions
International Nuclear Information System (INIS)
Kurskov, S Y; Kashuba, A S
2009-01-01
The present work is devoted to study of Ar(3p 5 4p) states excitation in binary low-energy Ar-Ar collisions. The results of the experimental investigation of excitation cross sections of Ar I 4p'[l/2] 1 , 4p'[3/2] 1 , 4p'[3/2] 2 and 4p[3/2] 2 levels in the collision energy range from threshold up to 500 eV (cm) and degree of polarization for 4s[3/2] 2 0 -4p'[l/2] 1 and 4s[3/2] 2 0 -4p[3/2] 2 transitions in this energy range are represented.
Durrant, James R
2013-08-13
This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.
Komoto, Keenan T; Kowalczyk, Tim
2016-10-06
To support the development and characterization of chromophores with targeted photophysical properties, excited-state electronic structure calculations should rapidly and accurately predict how derivatization of a chromophore will affect its excitation and emission energies. This paper examines whether a time-independent excited-state density functional theory (DFT) approach meets this need through a case study of BODIPY chromophore photophysics. A restricted open-shell Kohn-Sham (ROKS) treatment of the S 1 excited state of BODIPY dyes is contrasted with linear-response time-dependent density functional theory (TDDFT). Vertical excitation energies predicted by the two approaches are remarkably different due to overestimation by TDDFT and underestimation by ROKS relative to experiment. Overall, ROKS with a standard hybrid functional provides the more accurate description of the S 1 excited state of BODIPY dyes, but excitation energies computed by the two methods are strongly correlated. The two approaches also make similar predictions of shifts in the excitation energy upon functionalization of the chromophore. TDDFT and ROKS models of the S 1 potential energy surface are then examined in detail for a representative BODIPY dye through molecular dynamics sampling on both model surfaces. We identify the most significant differences in the sampled surfaces and analyze these differences along selected normal modes. Differences between ROKS and TDDFT descriptions of the S 1 potential energy surface for this BODIPY derivative highlight the continuing need for validation of widely used approximations in excited state DFT through experimental benchmarking and comparison to ab initio reference data.
Frank, Marius S.; Hättig, Christof
2018-04-01
We present a pair natural orbital (PNO)-based implementation of coupled cluster singles and doubles (CCSD) excitation energies that builds upon the previously proposed state-specific PNO approach to the excited state eigenvalue problem. We construct the excited state PNOs for each state separately in a truncated orbital specific virtual basis and use a local density-fitting approximation to achieve an at most quadratic scaling of the computational costs for the PNO construction. The earlier reported excited state PNO construction is generalized such that a smooth convergence of the results for charge transfer states is ensured for general coupled cluster methods. We investigate the accuracy of our implementation by applying it to a large and diverse test set comprising 153 singlet excitations in organic molecules. Already moderate PNO thresholds yield mean absolute errors below 0.01 eV. The performance of the implementation is investigated through the calculations on alkene chains and reveals an at most cubic cost-scaling for the CCSD iterations with the system size.
International Nuclear Information System (INIS)
Morjean, M.; Galin, J.; Goldenbaum, F.; Lienard, E.; Chevallier, M.; Dauvergne, D.; Kirsch, R.; Jacquet, D.; and others.
1997-01-01
The blocking technique was used to infer fission lifetimes as a function of excitation energy for uranium-like nuclei formed in the U+Si reactions at 24 MeV/nucleon. The fission lifetimes are found larger than 10 -19 s for excitation energies up to about 250 MeV. (K.A.)
Cross sections for energy transfer in collisions between two excited sodium atoms
International Nuclear Information System (INIS)
Huennekens, J.; Gallagher, A.
1983-01-01
We have measured cross sections, sigma/sub n/L, for the excitation transfer process Na(3P)+Na(3P)→Na(3S)+Na(nL), where nL is the 4D or 5S level. Our results are sigma/sub 4D/ = 23 A 2 +- 35% and sigma/sub 5S/ = 16 A 2 +- 35% at Tapprox.600 K. To obtain these cross sections we have used pulsed excitation and measured the intensities of 4D, 5S, and 3P fluorescence emissions, and the spatial distribution of excited atoms resulting from radiation diffusion, as well as the excited atom density as a function of time. Additionally, we have accounted for (time-dependent) radiation trapping of 3P and nL level radiation and for the resulting anisotropies of these fluorescence emissions. Comparisons of our results with theory have been made, and their relevance to other experiments is discussed
International Nuclear Information System (INIS)
Montero-Alejo, Ana L.; Gonzalez-Santana, Susana; Montero-Cabrera, Luis A.; Hernandez-Rodriguez, Erix Wiliam; Fuentes-Montero, Maria Elena; Bunge-Molina, Carlos F.; Gonzalez, Augusto
2008-01-01
Theoretical prediction of vertical excitation energies and an estimation of charge distributions of polyatomic systems can be calculated, through the configuration interaction of single (CIS) excited determinants procedure, with the CNDOL (Complete Neglect of Differential Overlap considering the l azimuthal quantum number) Hamiltonians. This method does not use adjusted parameters to fit experimental data and only employ a priori data on atomic orbitals and simple formulas to substitute large computations of electronic integrals. In this sense, different functions for bi-electron integrals have been evaluated in order to improve the approximate Hamiltonian. The reliability of predictions and theoretical consistence has been tested with a benchmark set of organic molecules that covers important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic, hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. The calculations are done at identical geometries (MP2) with the same basis set (6-31G) for these medium-sized molecules and the obtained results were statistically compared with other analogous methods and experimental data. The accuracy of prediction of each CNDOL vertical transitions energy increases while the active space is more complete allowing the best variational optimization of CIS matrices i.e. molecular excited states. Moreover and due to the feasible computation procedure for large polyatomic systems, the studies have been extended, as a preliminary work, in the field of optoelectronic materials for photovoltaic applications. Hence, the excitation energies of different conjugated Phenyl-cored Thiophene Dendrimers optimized by DFT (Density Functional Theory) were calculated and show good agreement with the experiment data. The predicted charge distribution during the excitation contributes to understand the photophysics process on these kind materials. (Full text)
Jennings, Robert C; Zucchelli, Giuseppe
2014-01-01
We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.
New even parity energy levels of Pr I found by excitation of transitions in the region 560 - 695 nm
Energy Technology Data Exchange (ETDEWEB)
Syed, Tanweer Iqbal; Khan, Shamim; Imran, Siddiqui; Zaheer, Uddin; Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)
2011-07-01
The knowledge of electronic levels is essentially needed for a description of the interactions between the electrons of an atom and for the classification of an atomic spectrum. We have studied the hyperfine structure of Praseodymium spectral lines in the region from 560 to 695 nm. The hyperfine structure of a large number of unclassified Pr I-lines have been investigated by using the method of laser induced fluorescence in a hollow cathode discharge. During this investigation, we have discovered twelve energy levels with even parity, which were previously unknown. The excitation source was a ring dye laser operated with R6G, Kiton red, or DCM. J-quantum numbers and magnetic dipole interaction constants A for upper and lower levels have been determined from the recorded hyperfine structures. The energies of new levels have been determined by using these constants, excitation and fluorescence wavelengths. Promising excitation wavelengths have been taken from Fourier transform spectra. The new levels were confirmed by at least one second laser excitation.
International Nuclear Information System (INIS)
Oreg, J.; Bar-Shalom, A.; Mandlebaum, P.; Mittnik, D.; Meroz, E.; Schwob, J.L.; Klapisch, M.
1991-01-01
A systematic variation in the line intensity ratios of GaI-like and ZnI-like ions of rare earth elements has been recently observed in spectra emitted in a low density, high temperature tokamak plasma. This variation is shown to be correlated with the gradual opening of autoionizing channels through inner-shell excited configurations of the GaI-like charge-state. These channels enhance the indirect ionization rate of GaI-like ions through excitation-autoionization (EA), effecting the ionization balance and temperatures of greatest abundance. We present a systematic investigation of EA and direct impact ionization (DI) in the GaI-like isoelectronic sequence from Mo (Z = 42) to Dy (Z = 66). As Z decreases from Dy to Pr (Z = 59) the levels of the configuration 3d 9 4p4f, which are excited from the ground state by strong dipole collisional transitions, gradually cross the first ionization limit of the ion and are responsible for this ionization enhancement. When Z decreases further an additional channel is opened through the configuration 3d 9 4p4d. 9 refs., 3 figs., 1 tab
International Nuclear Information System (INIS)
Oreg, J.; Bar-Shalom, A.; Goldstein, W.H.; Mandlebaum, P.; Mittnik, D.; Meroz, E.; Schwob, J.L.; Klapisch, M.
1991-01-01
A systematic variation in the line intensity ratios of GaI-like and ZnI-like ions of rare earth elements has been recently observed in spectra emitted in a low density, high temperature Tokamak plasma. This variation is shown to be correlated with the gradual opening of autoionizing channels through inner-shell excited configurations of the GaI-like charge-state. These channels enhance the indirect ionization rate of GaI-like ions through excitation-autoionization (EA), effecting the ionization balance and temperatures of greatest abundance. The authors a systematic investigations of EA and direct impact ionizations (DI) in the GaI-like isoelectronic sequence from Mo (Z = 42) to Dy (Z = 66). As Z decreases from Dy to Pr (Z = 59) the levels of the configuration 3d 9 4p4f, which are excited from the ground state by strong dipole collisional transitions, gradually cross the first ionization limit of the ion and are responsible for this ionization enhancement. When Z decreases further an additional channel is opened through the configuration 3d 9 4p4d
International Nuclear Information System (INIS)
Pouliot, J.; Dore, D.; Houde, S.; Laforest, R.; Roy, R.; St-Pierre, C.; Chan, Y.; Horn, D.; Horn, D.
1991-01-01
A comparison of the multiple breakup of 16 O projectiles scattered by a Au target at three different energies (32.5, 50 and 70 MeV/N) is presented. The excitation energy spectra of the primary projectile-like nuclei decaying into specific output channels were reconstructed. The excitation energy of the target is found to increase faster with beam energy than the one for the quasi-projectile
International Nuclear Information System (INIS)
Charity, R.J.; Sobotka, L.G.
2005-01-01
In the independent-particle model, the nuclear level density is determined from the neutron and proton single-particle level densities. The single-particle level density for the positive-energy continuum levels is important at high excitation energies for stable nuclei and at all excitation energies for nuclei near the drip lines. This single-particle level density is subdivided into compound-nucleus and gas components. Two methods are considered for this subdivision: In the subtraction method, the single-particle level density is determined from the scattering phase shifts. In the Gamov method, only the narrow Gamov states or resonances are included. The level densities calculated with these two methods are similar; both can be approximated by the backshifted Fermi-gas expression with level-density parameters that are dependent on A, but with very little dependence on the neutron or proton richness of the nucleus. However, a small decrease in the level-density parameter is predicted for some nuclei very close to the drip lines. The largest difference between the calculations using the two methods is the deformation dependence of the level density. The Gamov method predicts a very strong peaking of the level density at sphericity for high excitation energies. This leads to a suppression of deformed configurations and, consequently, the fission rate predicted by the statistical model is reduced in the Gamov method
Excitation of contained modes by high energy nuclei and correlated cyclotron emission
International Nuclear Information System (INIS)
Coppi, B.; Penn, G.; Riconda, C.
1997-01-01
In experiments with fusing plasmas, enhanced radiation emission at the harmonics of the cyclotron frequency of fusion reaction products has been observed. A theory is presented that explains key features of these observations and indicates the possibility of extracting significant information about the fusion product population distribution, both in velocity space and over the plasma cross section. The considered model is consistent in particular with the fact that, in DT plasmas, the radiation peaks occur at frequencies corresponding to harmonics of the α particles cyclotron frequency Ω a evaluated at the outer edge of the plasma column, and that a transition to a open-quotes continuumclose quotes spectrum at high frequencies (ω approx-gt 7Ω α ) can be identified. In this model, the radiation is the result of the excitation of radially open-quotes containedclose quotes modes which are driven unstable by the fusion products. The modes considered to be responsible for the discrete part of the spectrum are spatially localized near the plasma edge. The radial containment, which is associated mainly with the inhomogeneity of the plasma density, is in fact a fundamental characteristic since only contained modes can grow out of a relatively weak mode-particle interaction and justify the detected emission power levels. The contained mode is a solution to a set of macroscopic equations, in which the electron motion is tied to that of the magnetic field (Hall effect). The growth rate has been evaluated considering the particle orbits in a toroidal confinement configuration and modelling the distribution function of the interacting particles with the energy at birth before slowing down occurs. The growth rate depends linearly on the α-particle density and can be larger than, or of the order of, the bounce frequency of the magnetically trapped α-particles, which can have a resonant interaction with the mode. According to the theoretical model presented, the discrete
International Nuclear Information System (INIS)
Kleymann, G.
1976-01-01
This paper is a compilation of results of experimental and theoretical studies on the term diagrams of odd-even nuclei from the isotope series of Nb, Tc, Rh and Ag, published until October 1975. As a relatively simple interpretation of the excitements of these nuclei, De Shalit proposed the coupling of a particle, whose quantum numbers may be derived from a shell model, to excited states of the core of the nucleus. (orig./BJ) [de
International Nuclear Information System (INIS)
Hemanadhan, M; Shamim, Md; Harbola, Manoj K
2014-01-01
The modified local spin density (MLSD) functional and the related local potential for excited states is tested by employing the ionization potential theorem. The exchange functional for an excited state is constructed by splitting k-space. Since its functional derivative cannot be obtained easily, the corresponding exchange potential is given by an analogy to its ground-state counterpart. Further, to calculate the highest occupied orbital energy ϵ max accurately, the potential is corrected for its asymptotic behaviour by employing the van Leeuwen and Baerends (LB) correction to it. ϵ max so obtained is then compared with the ΔSCF ionization energy calculated using the MLSD functional with self-interaction correction for the orbitals involved in the transition. It is shown that the two match quite accurately. The match becomes even better by tuning the LB correction with respect to a parameter in it. (paper)
Lowest excited-state impurity binding energy in InGaN/GaN parabolic QWW: magnetic field effect
International Nuclear Information System (INIS)
Haddou El Ghazi; Anouar Jorio; Izeddine Zorkani
2013-01-01
In this paper, we have investigated the magnetic field effect on the lowest excited-state binding energy of hydrogenic shallow-donor impurity in wurtzite (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) using the finite-difference method within the quasi-one-dimensional effective potential model. The calculations are performed within the framework of the effective mass approximation. A cylindrical QWW effective radius is taken into account to describe the lateral confinement strength. The numerical results show that: (i) the probability density is the largest on a circularity whose radius is the effective radius and (ii) the lowest excited-state binding energy is the largest when an impurity is located on this circularity while it starts to decrease as the impurity is away from the circularity. (author)
Excitation of the 4.3-μm bands of CO2 by low-energy electrons
International Nuclear Information System (INIS)
Bulos, R.R.; Phelps, A.V.
1976-01-01
Rate coefficients for the excitation of the 4.3-μm bands of CO 2 by low-energy electrons in CO 2 have been measured using a drift-tube technique. The CO 2 density [(1.5 to 7) x 10 17 molecules/cm 3 ] was chosen to maximize the radiation reaching the detector. Line-by-line transmission calculations were used to take into account the absorption of 4.3-μm radiation. A small fraction of the approximately 10 -8 W of the 4.3-μm radiation produced by the approximately 10 -7 -A electron current was incident on an InSb photovoltaic detector. The detector calibration and absorption calculations were checked by measuring the readily calculated excitation coefficients for vibrational excitation of N 2 containing a small concentration of CO 2 . For pure CO 2 the number of molecules capable of emitting 4.3-μm radiation produced per cm of electron drift and per CO 2 molecule varied from 10 -17 cm -2 at E/N = 6 x 10 -17 V cm 2 to 5.4 x 10 -16 cm -2 at E/N = 4 x 10 -16 V cm 2 . Here E is the electric field and N is total gas density. The excitation coefficients at lower E/N are much larger than estimated previously. A set of vibrational excitation cross sections is obtained for CO 2 which is consistent with the excitation coefficient data and with most of the published electron-beam data
Taner UÇAR; Onur MERTER
2018-01-01
In energy-based seismic design approach, earthquake ground motion is considered as an energy input to structures. The earthquake input energy is the total of energy components such as kinetic energy, damping energy, elastic strain energy and hysteretic energy, which contributes the most to structural damage. In literature, there are many empirical formulas based on the hysteretic model, damping ratio and ductility in order to estimate hysteretic energy, whereas they do not directly consider t...
Fission of 255,256Es, 255-257Fm, and 258Md at moderate excitation energies
Britt, H.C.; Hoffman, D.C.; Plicht, J. van der; Wilhelmy, J.; Cheifetz, E.; Dupzyk, R.J.; Lougheed, R.W.
1984-01-01
The fission of 255,256Es, 255-257Fm, and 258Md has been studied in the excitation energy range from threshold to 25 MeV. A target of 254Es was used in the direct reaction studies; (d,pf), (t,pf), (3He,df), (3He,pf), and in the compound induced fission reactions formed with p, d, t, and α particle
International Nuclear Information System (INIS)
Gareev, F.A.; Zhidkova, I.E.; Ratis, Yu.L.
2004-01-01
We have concluded that cold transmutation of nuclei is possible in the framework of the modern physical theory - excitation and ionization of atoms and the universal resonance synchronization principle are responsible for it. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics. The results of this research field can provide a new source of energy, substances and technologies. (author)
The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin
International Nuclear Information System (INIS)
Buta, A.
2003-02-01
During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)
Hinterberger, F; Altmeier, M; Bauer, F; Bisplinghoff, J; Büsser, K; Busch, M; Colberg, T; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jonas, E; Krause, H; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuk, T; Meinerzhagen, A; Naehle, O; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Trelle, H J; Weise, E; Wellinghausen, A; Woller, K; Ziegler, R
2000-01-01
The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH sub 2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power A sub N and the polarization correlation parameters A sub N sub N , A sub S sub S and A sub S sub L are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent d sigma/d OMEGA and A sub N data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.
Black hole spectroscopy: Systematic errors and ringdown energy estimates
Baibhav, Vishal; Berti, Emanuele; Cardoso, Vitor; Khanna, Gaurav
2018-02-01
The relaxation of a distorted black hole to its final state provides important tests of general relativity within the reach of current and upcoming gravitational wave facilities. In black hole perturbation theory, this phase consists of a simple linear superposition of exponentially damped sinusoids (the quasinormal modes) and of a power-law tail. How many quasinormal modes are necessary to describe waveforms with a prescribed precision? What error do we incur by only including quasinormal modes, and not tails? What other systematic effects are present in current state-of-the-art numerical waveforms? These issues, which are basic to testing fundamental physics with distorted black holes, have hardly been addressed in the literature. We use numerical relativity waveforms and accurate evolutions within black hole perturbation theory to provide some answers. We show that (i) a determination of the fundamental l =m =2 quasinormal frequencies and damping times to within 1% or better requires the inclusion of at least the first overtone, and preferably of the first two or three overtones; (ii) a determination of the black hole mass and spin with precision better than 1% requires the inclusion of at least two quasinormal modes for any given angular harmonic mode (ℓ , m ). We also improve on previous estimates and fits for the ringdown energy radiated in the various multipoles. These results are important to quantify theoretical (as opposed to instrumental) limits in parameter estimation accuracy and tests of general relativity allowed by ringdown measurements with high signal-to-noise ratio gravitational wave detectors.
International Nuclear Information System (INIS)
Wundt, Benedikt J.; Jentschura, Ulrich D.
2008-01-01
Canonically, the quantum electrodynamic radiative corrections in bound systems have been evaluated in photon energy regularization, i.e., using a noncovariant overlapping parameter that separates the high-energy relativistic scales of the virtual quanta from the nonrelativistic domain. Here, we calculate the higher-order corrections to the one-photon self-energy calculation with three different overlapping parameters (photon energy, photon mass and dimensional regularization) and demonstrate the reparameterization invariance of nonrelativistic quantum electrodynamics (NRQED) using this particular example. We also present new techniques for the calculation of the low-energy part of this correction, which lead to results for the Lamb shift of highly excited states that are important for high-precision spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Wundt, Benedikt J. [Max-Planck-Institut fuer Kernphysik, Postfach 103980, 69029 Heidelberg (Germany); Jentschura, Ulrich D. [Max-Planck-Institut fuer Kernphysik, Postfach 103980, 69029 Heidelberg (Germany); Institut fuer Theoretische Physik, Philosophenweg 16, 69120 Heidelberg (Germany)], E-mail: ulrich.jentschura@mpi-hd.mpg.de
2008-01-24
Canonically, the quantum electrodynamic radiative corrections in bound systems have been evaluated in photon energy regularization, i.e., using a noncovariant overlapping parameter that separates the high-energy relativistic scales of the virtual quanta from the nonrelativistic domain. Here, we calculate the higher-order corrections to the one-photon self-energy calculation with three different overlapping parameters (photon energy, photon mass and dimensional regularization) and demonstrate the reparameterization invariance of nonrelativistic quantum electrodynamics (NRQED) using this particular example. We also present new techniques for the calculation of the low-energy part of this correction, which lead to results for the Lamb shift of highly excited states that are important for high-precision spectroscopy.
Low-energy scattering of excited helium atoms by rare gases
International Nuclear Information System (INIS)
Peach, G.
1978-01-01
The construction of semi-empirical model potentials for systems composed of helium in an excited state (Hestar) and a rare-gas atom (He or Ne) is described. The model of the atom-atom pair which has been adopted is one in which the excited electron is included explicitly, but the residual He + ion and the rare-gas atom are treated simply as cores which may be polarised. The results obtained are in satisfactory agreement with other calculations where they are available. (author)
International Nuclear Information System (INIS)
Steckmeyer, J.C.; Genouin-Duhamel, E.; Vient, E.; Colin, J.; Durand, D.; Auger, G.; Bacri, C.O.; Bellaize, N.; Borderie, B.; Bougault, R.; Bouriquet, B.; Brou, R.; Buchet, P.; Charvet, J.L.; Chbihi, A.; Cussol, D.; Dayras, R.; De Cesare, N.; Demeyer, A.; Dore, D.; Frankland, J.D.; Galichet, E.; Gerlic, E.; Guinet, D.; Hudan, S.; Lautesse, P.; Lavaud, F.; Laville, J.L.; Lecolley, J.F.; Leduc, C.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Maskay, A.M.; Nalpas, L.; Normand, J.; Parlog, M.; Pawlowski, P.; Plagnol, E.; Rivet, M.F.; Rosato, E.; Saint-Laurent, F.; Tabacaru, G.; Tamain, B.; Tassan-Got, L.; Tirel, O.; Turzo, K.; Vigilante, M.; Volant, C.; Wieleczko, J.P.
2001-01-01
The excitation energy and angular momentum transferred to quasiprojectiles have been measured in the 129 Xe+ nat Sn collisions at bombarding energies between 25 and 50 MeV/nucleon. The excitation energy of quasiprojectiles has been determined from the kinetic energy of all decay products (calorimetry). It increases with the violence of the collision, approaching 10 MeV/nucleon in the most dissipative ones. The angular momentum has been deduced from the kinetic energies and angular distributions of the emitted light charged particles (p, d, t, 3 He and α). The (apparent) spin value decreases with the violence of the collision. Larger spin values are observed at the lowest bombarding energy. Data are compared with the predictions of dynamical and statistical models. They reproduce the data in a quantitative way indicating that large spin values are transferred to quasiprojectiles during the interaction. The results show that the one-body dissipation formalism still applies at intermediate bombarding energies and low-energy dissipations. With the increase of the energy, the data seem to be better described when the two-body interaction is accounted for
International Nuclear Information System (INIS)
Runge, Serge.
1980-12-01
The relative cross-sections of ionizing collisions between He + He and He + Ne atoms, have been studied, the helium being excited in a state (3 1 p) by a laser beam. The results obtained made it possible (a) to reveal in a direct manner the production of molecular ions He 2 + and He Ne + and (b) to determine the relative change in the associative ionizing cross-section in the area (0.035 - 0.17 eV) in the He (3 1 P) + Ne collision, despite the very short life of the He (3 1 P) excited state (1.7 ns). The production of He 2 + ions from an He (3 1 P) + He collision sets an upper limit to the appearance potential of these ions. The experimental study of the associative ionization in the He (3 1 P) + Ne system made it possible to extend the utilization of the GAMMA(R) self ionization model, already tested for the metastable states, to the radiative states. The GAMMA(R) model seems well suited for the description of collisions of the A excited + B type, where the excitation energy of A is greater than the ionization potential of B [fr
Freundorfer, Katrin; Kats, Daniel; Korona, Tatiana; Schütz, Martin
2010-12-28
A new multistate local CC2 response method for calculating excitation energies and first-order properties of excited triplet states in extended molecular systems is presented. The Laplace transform technique is employed to partition the left/right local CC2 eigenvalue problems as well as the linear equations determining the Lagrange multipliers needed for the properties. The doubles part in the equations can then be inverted on-the-fly and only effective equations for the singles part must be solved iteratively. The local approximation presented here is adaptive and state-specific. The density-fitting method is utilized to approximate the electron-repulsion integrals. The accuracy of the new method is tested by comparison to canonical reference values for a set of 12 test molecules and 62 excited triplet states. As an illustrative application example, the lowest four triplet states of 3-(5-(5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophene-2-yl)thiophene-2-yl)-2-cyanoacrylic acid, an organic sensitizer for solar-cell applications, are computed in the present work. No triplet charge-transfer states are detected among these states. This situation contrasts with the singlet states of this molecule, where the lowest singlet state has been recently found to correspond to an excited state with a pronounced charge-transfer character having a large transition strength.
Systematic studies for medium-heavy even-even nuclei
International Nuclear Information System (INIS)
Chen, Y.; Zhao, Y.M.; Chen, J.Q.
1995-01-01
The systematics for the excitation energies of the ground, β, and γ bands are presented using the empirical total np interaction V NP . Some regularities found in the previous studies are tested by the systematics in the V NP schemes. The systematics of the β and γ bands are presented in detail. Elegant regularities are observed for the excitation energies. The correlation phenomenon of the general behavior among different bands within each major shell is pointed out
Systematic analysis of hot Yb{sup *} isotopes using the energy density formalism
Energy Technology Data Exchange (ETDEWEB)
Jain, Deepika; Sharma, Manoj K.; Rajni [Thapar University, School of Physics and Materials Science, Patiala (India); Kumar, Raj [University of Padova, Department of Physics and Astronomy, Padova (Italy); Gupta, Raj K. [Panjab University, Department of Physics, Chandigarh (India)
2014-10-15
A systematic study of the spin-orbit density interaction potential is carried out, with spherical as well as deformed choices of nuclei, for a variety of near-symmetric and asymmetric colliding nuclei leading to various isotopes of the compound nucleus Yb{sup *}, using the semiclassical extended Thomas-Fermi formulation (ETF) of the Skyrme energy density formalism (SEDF). We observe that the spin-orbit density interaction barrier height (V{sub JB}) and barrier position (R{sub JB}) increase systematically with the increase in number of neutrons in both the projectile and target, for spherical systems. On allowing deformation effects with optimum orientations, the barrier-height increases by a large order of magnitude, as compared to the spherical case, in going from {sup 156}Yb{sup *} to {sup 172}Yb{sup *} nuclear systems formed via near-symmetric Ni+Mo or asymmetric O+Sm colliding nuclei, except that for the oblate-shaped nuclei, the V{sub JB} is the highest and R{sub JB} shifts towards a smaller (compact) interaction radius. The temperature does not change the behavior of spin-orbit density dependent (V{sub J}) and independent (V{sub P}) interaction potentials, except for some minor changes in the magnitude. The orientation degree of freedom also plays an important role in modifying the barrier characteristics and hence produces a large effect on the fusion cross section. The fusion excitation function of the compound nuclei {sup 160,} {sup 164}Yb{sup *} formed in different incoming channels, show clearly that the new forces GSkI and KDE0v1 respond better than the old SIII force. Among the first two, KDE0v1 seems to perform better. The fusion cross-sections are also predicted for a few other isotopes of Yb{sup *}. (orig.)
POSITRON-ELECTRON DECAY OF SI-28, AT AN EXCITATION-ENERGY OF 50-MEV
BUDA, A; BACELAR, JC; BALANDA, A; VANDERPLOEG, H; SUJKOWSKI, Z; VANDERWOUDE, A
1993-01-01
The electron-positron pair decay of Si-28 at 50 MeV excitation produced by the isospin T=0 (alpha + Mg-24) and the mixed isospin T=0,1 (He-3 + Mg-25) reactions has been studied using a special designed Positron-Electron pair spectrometer PEPSI.
Positron-electron decay of 28Si at an excitation energy of 50 MeV
International Nuclear Information System (INIS)
Buda, A.; Bacelar, J.C.; Balanda, A.; Ploeg, H. van der; Sujkowski, Z.; Woude, A. van der
1993-01-01
The electron-positron pair decay of 28 Si at 50 MeV excitation produced by the isospin T=0 (α+ 24 Mg) and the mixed isospin T=0, 1 ( 3 He+ 25 Mg) reactions has been studied using a special designed Positron-Electron pair spectrometer PEPSI. (orig.)
Oxygen auroral transition laser system excited by collisional and photolytic energy transfer
International Nuclear Information System (INIS)
Murray, J.R.; Powell, H.T.; Rhodes, C.K.
1975-06-01
The properties of laser media involving the auroral transition of atomic oxygen and analogous systems are examined. A discussion of the atomic properties, collisional mechanisms, excitation processes, and collisionally induced radiative phenomena is given. Crossing phenomena play a particularly important role in governing the dynamics of the medium
Radgolchin, Moeen; Moeenfard, Hamid
2018-02-01
The construction of self-powered micro-electro-mechanical units by converting the mechanical energy of the systems into electrical power has attracted much attention in recent years. While power harvesting from deterministic external excitations is state of the art, it has been much more difficult to derive mathematical models for scavenging electrical energy from ambient random vibrations, due to the stochastic nature of the excitations. The current research concerns analytical modeling of micro-bridge energy harvesters based on random vibration theory. Since classical elasticity fails to accurately predict the mechanical behavior of micro-structures, strain gradient theory is employed as a powerful tool to increase the accuracy of the random vibration modeling of the micro-harvester. Equations of motion of the system in the time domain are derived using the Lagrange approach. These are then utilized to determine the frequency and impulse responses of the structure. Assuming the energy harvester to be subjected to a combination of broadband and limited-band random support motion and transverse loading, closed-form expressions for mean, mean square, correlation and spectral density of the output power are derived. The suggested formulation is further exploited to investigate the effect of the different design parameters, including the geometric properties of the structure as well as the properties of the electrical circuit on the resulting power. Furthermore, the effect of length scale parameters on the harvested energy is investigated in detail. It is observed that the predictions of classical and even simple size-dependent theories (such as couple stress) appreciably differ from the findings of strain gradient theory on the basis of random vibration. This study presents a first-time modeling of micro-scale harvesters under stochastic excitations using a size-dependent approach and can be considered as a reliable foundation for future research in the field of
Tajti, Attila; Szalay, Péter G
2016-11-08
Describing electronically excited states of molecules accurately poses a challenging problem for theoretical methods. Popular second order techniques like Linear Response CC2 (CC2-LR), Partitioned Equation-of-Motion MBPT(2) (P-EOM-MBPT(2)), or Equation-of-Motion CCSD(2) (EOM-CCSD(2)) often produce results that are controversial and are ill-balanced with their accuracy on valence and Rydberg type states. In this study, we connect the theory of these methods and, to investigate the origin of their different behavior, establish a series of intermediate variants. The accuracy of these on excitation energies of singlet valence and Rydberg electronic states is benchmarked on a large sample against high-accuracy Linear Response CC3 references. The results reveal the role of individual terms of the second order similarity transformed Hamiltonian, and the reason for the bad performance of CC2-LR in the description of Rydberg states. We also clarify the importance of the T̂ 1 transformation employed in the CC2 procedure, which is found to be very small for vertical excitation energies.
International Nuclear Information System (INIS)
Wang Guang-Qing; Liao Wei-Hsin
2015-01-01
This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is validated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM. (paper)
International Nuclear Information System (INIS)
Inaguma, Yoshiyuki; Tsuchiya, Takeshi; Katsumata, Tetsuhiro
2007-01-01
Pr 3+ -doped perovskites R 1/2 Na 1/2 TiO 3 :Pr (R=La, Gd, Lu, and Y) were synthesized, and their structures, optical absorption and luminescent properties were investigated, and the relationship between structures and optical properties are discussed. Optical band gap of R 1/2 Na 1/2 TiO 3 increases in the order R=La, Gd, Y, and Lu, which is primarily due to a decrease in band width accompanied by a decrease in Ti-O-Ti bond angle. Intense red emission assigned to f-f transition of Pr 3+ from the excited 1 D 2 level to the ground 3 H 4 state upon the band gap photo-excitation (UV) was observed for all compounds. The wavelength of emission peaks was red-shifted in the order R=La, Gd, Y, and Lu, which originates from the increase in crystal field splitting of Pr 3+ . This is attributed to the decrease in inter-atomic distances of Pr-O together with the inter-atomic distances (R, Na)-O, i.e., increase in covalency between Pr and O. The results indicate that the luminescent properties in R 1/2 Na 1/2 TiO 3 :Pr are governed by the relative energy level between the ground and excited state of 4f 2 for Pr 3+ , and the conduction and valence band, which is primarily dependent on the structure, e.g., the tilt of TiO 6 octahedra and the Pr-Ti inter-atomic distance and the site symmetry of Pr ion. - Graphical abstract: The red intense emission assigned to f-f transition of Pr 3+ from the excited 1 D 2 level to the ground 3 H 4 state upon the band gap photo-excitation (UV) was observed upon the band gap photo-excitation in perovskites R 1/2 Na 1/2 TiO 3 :Pr(R=La, Gd, Lu, and Y). It was found that the systematic changes in their luminescent properties are strongly dependent on the structure
International Nuclear Information System (INIS)
Patnaik, R.; Patra, R.; Satpathy, L.
1975-01-01
For even-even nuclei, the excitation energy E2 and the reduced transition probability B (E2) between the ground state and the first excited 2 + state have been considered. On the basis of different models, it is shown that for a nucleus N, Z the relations E2N, Z + E2N + 2,Z + 2 - E2N + 2, Z - E2N, Z + 2 approx. = 0 and B (E2)N, Z + B (E2)N + 2,Z + 2 - B (E2)N + 2,Z - B (E2)N, Z + 2 approx. = 0 hold good, except in certain specified regions. The goodness of these difference equations is tested with the available experimental data. The difference equation of Ross and Bhaduri is shown to follow from our approach. Some predictions of unmeasured E2 and B (E2) values have been made
Low-energy excitations of the correlation-gap insulator SmB6: A light-scattering study
International Nuclear Information System (INIS)
Nyhus, P.; Cooper, S.L.; Fisk, Z.; Sarrao, J.
1997-01-01
We present the results of Raman scattering studies of single-crystal SmB 6 for temperatures down to 4 K and in magnetic fields up to 8 T. At temperatures below T * ∼50K the electronic Raman continuum exhibits an abrupt redistribution of scattering intensity around a temperature-independent (open-quotes isobesticclose quotes) energy, Δ c ∼290cm -1 , reflecting the opening of a pseudogap which is larger than previously suggested by transport measurements. Additionally, the Raman response exhibits at least four well-defined excitations within the gap below T * . The field dependencies of some of these in-gap states are consistent with the expected g factor (g eff =2/7) for the Sm 3+ Γ 8 level, suggesting that these gap edge states are crystal-electric-field excitations of the Sm 3+ ion split by magnetoelastic coupling. copyright 1997 The American Physical Society
Komatsu, Ryutaro; Ohsawa, Tatsuya; Sasabe, Hisahiro; Nakao, Kohei; Hayasaka, Yuya; Kido, Junji
2017-02-08
The development of efficient and robust deep-blue emitters is one of the key issues in organic light-emitting devices (OLEDs) for environmentally friendly, large-area displays or general lighting. As a promising technology that realizes 100% conversion from electrons to photons, thermally activated delayed fluorescence (TADF) emitters have attracted considerable attention. However, only a handful of examples of deep-blue TADF emitters have been reported to date, and the emitters generally show large efficiency roll-off at practical luminance over several hundreds to thousands of cd m -2 , most likely because of the long delayed fluorescent lifetime (τ d ). To overcome this problem, we molecularly manipulated the electronic excited state energies of pyrimidine-based TADF emitters to realize deep-blue emission and reduced τ d . We then systematically investigated the relationships among the chemical structure, properties, and device performances. The resultant novel pyrimidine emitters, called Ac-XMHPMs (X = 1, 2, and 3), contain different numbers of bulky methyl substituents at acceptor moieties, increasing the excited singlet (E S ) and triplet state (E T ) energies. Among them, Ac-3MHPM, with a high E T of 2.95 eV, exhibited a high external quantum efficiency (η ext,max ) of 18% and an η ext of 10% at 100 cd m -2 with Commission Internationale de l'Eclairage chromaticity coordinates of (0.16, 0.15). These efficiencies are among the highest values to date for deep-blue TADF OLEDs. Our molecular design strategy provides fundamental guidance to design novel deep-blue TADF emitters.
Chatterji, T; Jalarvo, N; Kumar, C M N; Xiao, Y; Brückel, Th
2013-07-17
We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 ± 0.04 μeV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV.
Viaggiu, S.
2018-04-01
In this paper, we continue the investigations present in Refs. 1-3. In particular, we extend the theorem proved in Ref. 3 to any massless excitation in a given spherical box. As a first interesting result, we show that it is possible, contrary to the black hole case studied in detail in Refs. 1-3, to build macroscopic configurations with a dark energy equation of state. To this purpose, by requiring a stable configuration, a macroscopic dark fluid is obtained with an internal energy U scaling as the volume V, but with a fundamental correction looking like ˜ 1/R motivated by quantum fluctuations. Thanks to the proposition in Sec. 3 (and in Ref. 3 for gravitons), one can depict the dark energy in terms of massless excitations with a discrete spectrum. This fact opens the possibility to test a possible physical mechanism converting usual radiation into dark energy in a macroscopic configuration, also in a cosmological context. In fact, for example, in a Friedmann flat universe with a cosmological constant, particles are marginally trapped at the Hubble horizon for any given comoving observer.
International Nuclear Information System (INIS)
Ostafin, A.E.; Lipsky, S.
1993-01-01
Fluorescence action spectra have been obtained for the neat liquids, cis-decalin, trans-decalin, bicyclohexyl, cyclohexane, methylcyclohexane, isobutylcyclohexane, 2,3,4-trimethylpentane, 2,3-dimethylbutane, 3-methylhexane, 3-methylpentane, n-decane, n-dodecane, and n-pentadecane at excitation energies, ε, ranging from their absorption onsets (at ca. 7 eV) to 10.3 eV. For all compounds, with the exception of cis-decalin, the fluorescence quantum yield is observed to monotonically decline with increasing ε, reaching a minimum value at an energy, ε m (a few tenths of an eV above the liquid phase ionization threshold, ε l ) followed by a slow increase. In the case of cis-decalin, the fluorescence quantum yield remains constant over the entire range of excitation energies studied, permitting its use as a quantum counter replacing the standard sodium salicylate, at least over a spectral range from 185 to 120 nm. The recovery of the fluorescence quantum yield for ε>ε m is attributed to an increasing probability for electron ejection followed by e - +RH + geminate recombination, to produce an excited state of RH with energy less than ε l . From a simple analysis of the action spectrum, a lower bound estimate of the electron ejection probability, φ ± , is obtained as a function of ε. In the case of cyclohexane, where φ ± has been obtained by other techniques at ε congruent 10 eV, the lower bound estimate agrees with the experimental value. From this agreement, arguments are presented to make plausible the conjecture that in all these liquids, the initially produced e - +RH + geminate ion pair first rapidly internally converts to an ion-pair state ca
Systematics of the level density parameters
International Nuclear Information System (INIS)
Ignatyuk, A.V.; Istekov, K.K.; Smirenkin, G.N.
1977-01-01
The excitation energy dependence of nucleus energy-level density is phenomenologically systematized in terms of the Fermi gas model. The analysis has been conducted in the atomic mass number range of A(>=)150, where the collective effects are mostly pronounced. The density parameter a(U) is obtained using data on neutron resonances. To depict energy spectra of nuclear states in the Fermi gas model (1) the contributions from collective rotational and vibrational modes (2), as well as from pair correlations (3) are also taken into account. It is shown, that at excitation energies close to the neutron binding energy all three systematics of a(U) yield practically the same energy-level densities. At high energies only the (2) and (3) systematics are valid, and at energies lower than the neutron binding energy only the last systematics will be adequate
International Nuclear Information System (INIS)
Pan, Jie; Jiang, Lijun; Chan, Chi-Fai; Tsoi, Tik-Hung; Shiu, Kwok-Keung; Kwong, Daniel W.J.; Wong, Wing-Tak; Wong, Wai-Kwok; Wong, Ka-Leung
2017-01-01
Porphyrins are good photodynamic therapy (PDT) agents due to its flexibility for modifications to achieve tumor localization and photo-cytotoxicity against cancer. Yet they are not perfect. In a Ru(polypyridyl)-porphyrin system, the Ru(polypyridyl) moiety improves the water solubility and cell permeability. Consider the similar excited state energies between Ru(polypyridyl) and porphyrin moieties; a small perturbation (e.g. Zn(II) metalation) would lead to a marked change in the energy migration process. In this work, we have synthesized a series of porphyrins conjugated with Ru(polypyridyl) complexes using different linkers and investigated their photophysical properties, which included singlet oxygen quantum yield and their in vitro biological properties, resulting from linker variation and porphyrin modification by Zn(II) metalation. - Graphical abstract: Four amphiphilic ruthenium(II)-porphyrin complexes were prepared that display energy transfer conversion with zinc coordination, lysosome specific target, low dark toxicity and efficient photodynamic therapy.
Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander
2015-09-28
We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.
Directory of Open Access Journals (Sweden)
Meng Chen
2018-04-01
Full Text Available Squeal noise often occurs in a two-stage electrohydraulic servo-valve, which is an unfavorable issue of modern hydraulic energy systems. The root causes of such noise from the servo-valve are still unclear. The objective of this paper is to explore the noise mechanism in a servo-valve excited by the pressure pulsations from the hydraulic energy system perspective. The suppressing capability of squeal noise energy is investigated by changing the pressure pulsation frequency and natural frequency of the flapper-armature assembly. The frequencies of the pressure pulsations are adjusted by setting different speeds of the hydraulic pump varying from 10,400–14,400 rpm, and two flapper-armature assemblies with different armature lengths are used in the tested hydraulic energy system. The first eight vibration mode shapes and natural frequencies of the flapper-armature assembly are obtained by numerical modal analysis using two different armature lengths. The characteristics of pressure pulsations at the pump outlet and in the chamber of the flapper-nozzle valve, armature vibration and noise are tested and compared with the natural frequencies of the flapper-armature assembly. The results reveal that the flapper-armature assembly vibrates and makes the noise with the same frequencies as the pressure pulsations inside the hydraulic energy system. Resonance appears when the frequency of the pressure pulsations coincides with the natural frequency of the flapper-armature assembly. Therefore, it can be concluded that the pressure pulsation energy from the power supply may excite the vibration of the flapper-armature assembly, which may consequently cause the squeal noise inside the servo-valve. It is verified by the numerical simulations and experiments that setting the pressure pulsation frequencies different from the natural frequencies of the flapper-armature assembly can suppress the resonance and squeal noise.
Directory of Open Access Journals (Sweden)
Lei Huang
2013-01-01
Full Text Available Linear generators have the advantage of a simple structure of the secondary, which is suitable for the application of wave energy conversion. Based on the vernier hybrid machines (VHMs, widely used for direct drive wave energy converters, this paper proposes a novel hybrid excitation flux-switching generator (LHEFSG, which can effectively improve the performance of this kind of generators. DC hybrid excitation windings and multitooth structure were used in the proposed generator to increase the magnetic energy and overcome the disadvantages of easily irreversible demagnetization of VHMs. Firstly, the operation principle and structure of the proposed generator are introduced. Secondly, by using the finite element method, the no-load performance of the proposed generator is analyzed and composed with ones of conventional VHM. In addition, the on-load performance of the proposed generator is obtained by finite element analysis (FEA. A dislocation of pole alignments method is implemented to reduce the cogging force. Lastly, a prototype of the linear flux-switching generator is used to verify the correctness of FEA results. All the results validate that the proposed generator has better performance than its counterparts.
Charge transfer in low-energy collisions of H with He+ and H+ with He in excited states
Loreau, J.; Ryabchenko, S.; Muñoz Burgos, J. M.; Vaeck, N.
2018-04-01
The charge transfer process in collisions of excited (n = 2, 3) hydrogen atoms with He+ and in collisions of excited helium atoms with H+ is studied theoretically. A combination of a fully quantum-mechanical method and a semi-classical approach is employed to calculate the charge-exchange cross sections at collision energies from 0.1 eV u‑1 up to 1 keV u‑1. These methods are based on accurate ab initio potential energy curves and non-adiabatic couplings for the molecular ion HeH+. Charge transfer can occur either in singlet or in triplet states, and the differences between the singlet and triplet spin manifolds are discussed. The dependence of the cross section on the quantum numbers n and l of the initial state is demonstrated. The isotope effect on the charge transfer cross sections, arising at low collision energy when H is substituted by D or T, is investigated. Rate coefficients are calculated for all isotopes up to 106 K. Finally, the impact of the present calculations on models of laboratory plasmas is discussed.
Towards limits of excitation energy in the reaction 3He(1.8 GeV) + natAg
International Nuclear Information System (INIS)
Pollacco, E.C.; Brzychczyk, J.; Volant, C.; Legrain, R.; Nalpas, L.; Bracken, D.S.; Kwiatkowski, K.; Morley, K.B.; Foxford, E.R.; Viola, V.E.; Yoder, N.R.
1996-03-01
Hot nuclei are studied, where through an appropriate choice of incident channel and event selection, dynamical effects are attenuated and multifragmentation is limited. Three preparatory results are given, the 3 He(1.8 GeV) + nat Ag can be described using an intranuclear cascade, INC, model; through a suitable selection of events a limit of the excitation energy that a nucleus can absorb without breaking into large pieces is given, it is shown that corresponding alpha decay is consistent with an evaporative process. (K.A.)
International Nuclear Information System (INIS)
Broda, R.
1980-01-01
The experimental results are presented indicating the existence of the energy gap in the single particle level sequence at proton number Z=64. Studied experimentally yrast states of the 64 146 Gd 82 closed core nucleus and of the neighbouring nuclei are interpreted within the framework of the spherical shell model. The consideration of the simple shell model multiparticle configurations is suggested to explain the observed frequent appearance of the high-spin isomers in nuclei of the A approximately 150 region. Emphasized is the role of the octupole excitations in the level structures of considered nuclei and some aspects of the coupling of octupole vibrations with valence nucleons are discussed. (author)
International Nuclear Information System (INIS)
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)
International Nuclear Information System (INIS)
Oppermann, R.; Rosenow, B.
1997-10-01
We report large effects of Parisi replica permutation symmetry breaking (RPSB) on elementary excitations of fermionic systems with frustrated magnetic interactions. The electronic density of states is obtained exactly in the zero temperature limit for (K = 1)- step RPSB together with relations for arbitrary breaking K, which lead to a new fermionic and dynamical Parisi solution at K = ∞. The Ward identity for charge conservation indicates RPSB-effects on the conductivity in metallic quantum spin glasses. This implies that RPSB is essential for any fermionic system showing spin glass sections within its phase diagram. An astonishing similarity with a neural network problem is also observed. (author)
Spin-orbit excitation energies, anisotropic exchange, and magnetic phases of honeycomb RuCl3
Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; Brink, Jeroen van den; Hozoi, Liviu
2016-01-01
Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d 5 honeycomb halide ?-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferro...
Brückner, Charlotte; Engels, Bernd
2017-01-01
Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.
Energy Flow Exciting Field-Aligned Current at Substorm Expansion Onset
Ebihara, Y.; Tanaka, T.
2017-12-01
At substorm expansion onset, upward field-aligned currents (FACs) increase abruptly, and a large amount of electromagnetic energy starts to consume in the polar ionosphere. A question arises as to where the energy comes from. Based on the results obtained by the global magnetohydrodynamics simulation, we present energy flow and energy conversion associated with the upward FACs that manifest the onset. Our simulations show that the cusp/mantle region transmits electromagnetic energy to almost the entire region of the magnetosphere when the interplanetary magnetic field is southward. Integral curve of the Poynting flux shows a spiral moving toward the ionosphere, probably suggesting the pathway of electromagnetic energy from the cusp/mantle dynamo to the ionosphere. The near-Earth reconnection initiates three-dimensional redistribution of the magnetosphere. Flow shear in the near-Earth region results in the generation of the near-Earth dynamo and the onset FACs. The onset FACs are responsible to transport the electromagnetic energy toward the Earth. In the near-Earth region, the electromagnetic energy coming from the cusp/mantle dynamo is converted to the kinetic energy (known as bursty bulk flow) and the thermal energy (associated with high-pressure region in the inner magnetosphere). Then, they are converted to the electromagnetic energy associated with the onset FACs. A part of electromagnetic energy is stored in the lobe region during the growth phase. The release of the stored energy, together with the continuously supplied energy from the cusp/mantle dynamo, contributes to the energy supply to the ionosphere during the expansion phase.
Directory of Open Access Journals (Sweden)
Mohamed E. A. Farrag
2014-01-01
Full Text Available Incentives, such as the Feed-in-tariff are expected to lead to continuous increase in the deployment of Small Scale Embedded Generation (SSEG in the distribution network. Self-Excited Induction Generators (SEIG represent a significant segment of potential SSEG. The quality of SEIG output voltage magnitude and frequency is investigated in this paper to support the SEIG operation for different network operating conditions. The dynamic behaviour of the SEIG resulting from disconnection, reconnection from/to the grid and potential operation in islanding mode is studied in detail. The local load and reactive power supply are the key factors that determine the SEIG performance, as they have significant influence on the voltage and frequency change after disconnection from the grid. Hence, the aim of this work is to identify the optimum combination of the reactive power supply (essential for self excitation of the SEIG and the active load (essential for balancing power generation and demand. This is required in order to support the SEIG operation after disconnection from the grid, during islanding and reconnection to the grid. The results show that the generator voltage and speed (frequency can be controlled and maintained within the statuary limits. This will enable safe disconnection and reconnection of the SEIG from/to the grid and makes it easier to operate in islanding mode.
The 4p6 autoionization cross section of Rb atoms excited by low-energy electron impact
International Nuclear Information System (INIS)
Borovik, A; Roman, V; Kupliauskienė, A
2012-01-01
The autoionization cross section of rubidium atoms was obtained by measuring the total normalized intensities of ejected-electron spectra arising from the decay of the 4p 5 n 1 l 1 n 2 l 2 autoionizing levels. The electron impact energy range from the 4p 6 excitation threshold at 15.31 up to 50 eV was investigated. The cross section reaches the maximum value of (2.9 ± 0.6) × 10 −16 cm 2 at 21.8 eV impact energy. The general behaviours of the cross section and the role of particular autoionizing configurations in its formation were considered on the basis of large-scale configuration interaction calculations of energies, cross sections, autoionization probabilities in 5snl(n ⩽ 7; l ⩽ 4) and 4d nl(n ⩽ 5; l ⩽ 2) configurations as well as the measured excitation functions for the lowest levels in 5s 2 and 4d5s configurations. The resonance behaviour of the cross section between 15.3 and 18.5 eV impact energy is caused exclusively by the negative-ion resonances present close to the excitation thresholds of the (5s 2 ) 2 P and (4d5s) 4 P autoionizing levels. At higher impact energies, the autoionization cross section is composed of contributions from the high-lying quartet and doublet levels in 4d5s, 5p and 5s5p, 5d, 6s, 6p configurations. From the comparison of the present data with available experimental and calculated ionization cross sections, the 5s + 4p 6 direct ionization cross section of rubidium atoms was determined with the maximum value of (7.2 ± 2.2) × 10 −16 cm 2 at 36 eV. It was also found that the 4p 6 excitation–autoionization is the dominant indirect ionization process contributing over 30% of the total single ionization of rubidium atoms by electron impact in the 15.3–50 eV energy range. (paper)
International Nuclear Information System (INIS)
Biswas, S.; Schmidt, D.J.; Abuhoza, A.; Frankenfeld, U.; Garabatos, C.; Hehner, J.; Kleipa, V.; Morhardt, T.; Schmidt, C.J.; Schmidt, H.R.; Wiechula, J.
2016-01-01
Systematic studies on the gain and the energy resolution have been carried out by varying the voltage across the GEM foils for both single mask and double mask triple GEM detector prototypes. Variation of the gain and the energy resolution has also been measured by varying either the drift voltage, transfer voltage and induction voltage keeping other voltages constant. The results of the systematic measurements have been presented.
A new ab initio potential energy surface for the collisional excitation of N2H+ by H2
International Nuclear Information System (INIS)
Spielfiedel, Annie; Balança, Christian; Feautrier, Nicole; Senent, Maria Luisa; Kalugina, Yulia; Scribano, Yohann; Lique, François
2015-01-01
We compute a new potential energy surface (PES) for the study of the inelastic collisions between N 2 H + and H 2 molecules. A preliminary study of the reactivity of N 2 H + with H 2 shows that neglecting reactive channels in collisional excitation studies is certainly valid at low temperatures. The four dimensional (4D) N 2 H + –H 2 PES is obtained from electronic structure calculations using the coupled cluster with single, double, and perturbative triple excitation level of theory. The atoms are described by the augmented correlation consistent triple zeta basis set. Both molecules were treated as rigid rotors. The potential energy surface exhibits a well depth of ≃2530 cm −1 . Considering this very deep well, it appears that converged scattering calculations that take into account the rotational structure of both N 2 H + and H 2 should be very difficult to carry out. To overcome this difficulty, the “adiabatic-hindered-rotor” treatment, which allows para-H 2 (j = 0) to be treated as if it were spherical, was used in order to reduce the scattering calculations to a 2D problem. The validity of this approach is checked and we find that cross sections and rate coefficients computed from the adiabatic reduced surface are in very good agreement with the full 4D calculations
A new ab initio potential energy surface for the collisional excitation of N2H(+) by H2.
Spielfiedel, Annie; Senent, Maria Luisa; Kalugina, Yulia; Scribano, Yohann; Balança, Christian; Lique, François; Feautrier, Nicole
2015-07-14
We compute a new potential energy surface (PES) for the study of the inelastic collisions between N2H(+) and H2 molecules. A preliminary study of the reactivity of N2H(+) with H2 shows that neglecting reactive channels in collisional excitation studies is certainly valid at low temperatures. The four dimensional (4D) N2H(+)-H2 PES is obtained from electronic structure calculations using the coupled cluster with single, double, and perturbative triple excitation level of theory. The atoms are described by the augmented correlation consistent triple zeta basis set. Both molecules were treated as rigid rotors. The potential energy surface exhibits a well depth of ≃2530 cm(-1). Considering this very deep well, it appears that converged scattering calculations that take into account the rotational structure of both N2H(+) and H2 should be very difficult to carry out. To overcome this difficulty, the "adiabatic-hindered-rotor" treatment, which allows para-H2(j = 0) to be treated as if it were spherical, was used in order to reduce the scattering calculations to a 2D problem. The validity of this approach is checked and we find that cross sections and rate coefficients computed from the adiabatic reduced surface are in very good agreement with the full 4D calculations.
Energy Technology Data Exchange (ETDEWEB)
Ledermüller, Katrin; Schütz, Martin, E-mail: martin.schuetz@chemie.uni-regensburg.de [Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg (Germany)
2014-04-28
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.
Ledermüller, Katrin; Schütz, Martin
2014-04-28
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.
International Nuclear Information System (INIS)
Ledermüller, Katrin; Schütz, Martin
2014-01-01
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest
Excitation energy distributions in fusion reactions induced by Ar projectiles at 50 and 70 MeV/u
International Nuclear Information System (INIS)
Vient, E.; Badala, A.; Barbera, R.; Bizard, G.; Bougault, R.; Brou, R.; Cussol, D.; Colin, J.; Durand, D.; Drouet, A.; Horn, D.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Leflecher, C.; Louvel, M.; Patry, J.P.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Eudes, P.; Guilbault, F.; Lebrun, C.; Oubahadou, A.
1992-01-01
In the present experiment, we have studied the Ar+Ag system at two bombarding energies: 50 and 70 MeV/u. We have first focused on the standard decay of the corresponding hot nuclei, i.e. on the formation of evaporated residues, which have been detected in coincidence with most of the decay charged particles (use of a 4 π device). From this very complete knowledge of the events, it has been possible to determine the excitation energy distribution of the initial hot nuclei. In a second step of the analysis, we have extended the triggering conditions to more complicated events including multi-fragment emission. In section 2 of this paper, we describe the experimental set up. Section 3 is devoted to the results involving an evaporation residue. Section 4 is devoted to triggering conditions based on the multiplicity detected in the 4 π device. Section 5 is a summary of the results
International Nuclear Information System (INIS)
Yue Xiao-Le; Xu Wei; Zhang Ying; Wang Liang
2015-01-01
The piezomagnetoelastic energy harvester system subjected to harmonic and Poisson white noise excitations is studied by using the generalized cell mapping method. The transient and stationary probability density functions (PDFs) of response based on the global viewpoint are obtained by the matrix analysis method. Monte Carlo simulation results verify the accuracy of this method. It can be observed that evolutionary direction of transient and stationary PDFs is in accordance with the unstable manifold for this system, and a stochastic P-bifurcation occurs as the intensity of Poisson white noise increases. This study presents an efficient numerical tool to solve the stochastic response of a three-dimensional dynamical system and provides a new idea to analyze the energy harvester system. (paper)
Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic
González-Carbajal, Javier; Domínguez, Jaime
2017-11-01
This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.
Energy Technology Data Exchange (ETDEWEB)
Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp
2012-01-15
A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.
Directory of Open Access Journals (Sweden)
Mirosława Ostrowska
2012-11-01
Full Text Available A semi-empirical, physical models have been derived of the quantum yield ofthe deactivation processes (fluorescence, photosynthesis and heat productionof excited states in phytoplankton pigment molecules. Besides some alreadyknown models (photosynthesis and fluorescence, this novel approachincorporates the dependence of the dissipation yield of the excitation energyin phytoplankton pigment molecules on heat. The quantitative dependences ofthe quantum yields of these three processes on three fundamental parameters ofthe marine environment are defined: the chlorophyll concentration in the surface water layer Ca(0 (the basin trophicity,the irradiance PAR(z and the temperature temp(z at the study site.The model is complemented with two other relevant models describing thequantum yield of photosynthesis and of natural Sun-Induced Chlorophyll a Fluorescence (SICF in the sea, derived earlier by the author or with herparticipation on the basis of statistical analyses of a vast amount ofempirical material. The model described in the present paper enables theestimation of the quantum yields of phytoplankton pigment heat production forany region and season, in waters of any trophicity at different depths fromthe surface to depths of ca 60 m. The model can therefore be used to estimatethe yields of these deactivation processes in more than half the thickness ofthe euphotic zone in oligotrophic waters and in the whole thickness (anddeeper of this zone in mesotrophic and eutrophic waters. In particular theserelationships may be useful for a component analysis of the budget of lightenergy absorbed by phytoplankton pigments, namely, its utilization influorescence, photochemical quenching and nonphotochemical radiationlessdissipation - i.e. direct heat production.
Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces
DEFF Research Database (Denmark)
Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob
2009-01-01
We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...
Managheb, S. A. M.; Ziaei-Rad, S.; Tikani, R.
2018-05-01
The coupling between polarization and strain gradients is called flexoelectricity. This phenomenon exists in all dielectrics with any symmetry. In this paper, energy harvesting from a Timoshenko beam is studied by considering the flexoelectric and strain gradient effects. General governing equations and related boundary conditions are derived using Hamilton's principle. The flexoelectric effects are defined by gradients of normal and shear strains which lead to a more general model. The developed model also covers the classical Timoshenko beam theory by ignoring the flexoelectric effect. Based on the developed model, flexoelectricity effect on dielectric beams and energy harvesting from cantilever beam under harmonic base excitation is investigated. A parametric study was conducted to evaluate the effects of flexoelectric coefficients, strain gradient constants, base acceleration and the attaching tip mass on the energy harvested from a cantilever Timoshenko beam. Results show that the flexoelectricity has a significant effect on the energy harvester performance, especially in submicron and nano scales. In addition, this effect makes the beam to behave softer than before and also it changes the harvester first resonance frequency. The present study provides guidance for flexoelectric nano-beam analysis and a method to evaluate the performance of energy harvester in nano-dielectric devices.
Colomer-Poveda, D; Romero-Arenas, S; Hortobagyi, T; Márquez, G
2018-01-02
Unilateral resistance training has been shown to improve muscle strength in both the trained and the untrained limb. One of the most widely accepted theories is that this improved performance is due to nervous system adaptations, specifically in the primary motor cortex. According to this hypothesis, increased corticospinal excitability (CSE), measured with transcranial magnetic stimulation, is one of the main adaptations observed following prolonged periods of training. The principal aim of this review is to determine the degree of adaptation of CSE and its possible functional association with increased strength in the untrained limb. We performed a systematic literature review of studies published between January 1970 and December 2016, extracted from Medline (via PubMed), Ovid, Web of Science, and Science Direct online databases. The search terms were as follows: (transcranial magnetic stimulation OR excitability) AND (strength training OR resistance training OR force) AND (cross transfer OR contralateral limb OR cross education). A total of 10 articles were found. Results regarding increased CSE were inconsistent. Although the possibility that the methodology had a role in this inconsistency cannot be ruled out, the results appear to suggest that there may not be a functional association between increases in muscle strength and in CSE. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Dependence of the K x-ray energy on the mode of excitation
International Nuclear Information System (INIS)
Wang, K.C.; Boehm, F.; Hahn, A.A.; Vogel, P.
1977-01-01
The energy shifts in the Ta K x rays resulting from the K-capture of 181 W, fluorescence of Ta, and β - decay of 181 Hf followed by internal conversion in 181 Ta are reported. Both W metal and WO 3 on one hand, and Ta metal and Ta 2 O 5 on the other hand, were used. Comparison of the K x-ray energies of the K-capture sources 153 Gd (Eu x rays) and 175 Hf (Lu x rays) and the corresponding fluorescence sources was also made. Various effects which may influence the K x-ray energies are discussed. 9 references
Enriquez, Miriam M.; LaFountain, Amy M.; Budarz, James; Fuciman, Marcel; Gibson, George N.; Frank, Harry A.
2010-06-01
Steady-state and femtosecond time-resolved transient absorption spectra of diadinoxanthin and diatoxanthin were measured in the visible and near-infrared (NIR) regions at 293 K. The difference in energy between the visible S 0 → S 2 transitions from the steady-state absorption measurements and the S 1 → S 2 transitions observed in the transient absorption spectra in the NIR region yields precise values of the S 1 energies. The data are important for evaluating the mechanism by which excess energy is dissipated by algal systems that interconvert these xanthophylls in response to changes in photon flux levels in the marine environment.
Excitation of giant resonances through inelastic scattering
International Nuclear Information System (INIS)
Kailas, S.
1981-01-01
In the last few years, exciting developments have taken place in the study of giant resonances (GR). In addition to the already well known gjant dipole resonance (GDR), the presence of at least two more new GRs viz. giant quadrupole resonance (GQR) and giant monopole resonance (GMR) has been experimentally established. The systematics covering these GRs is found to be consistent with the theoretical expectation. Though the existence of higher multipoles has been predjcted by theory, so far only some of these have been found to be excited experimentally. Various probe particles - electrons, protons (polarized and unpolarized), light and heavy ions and pions - at different bombarding energies have been used to excite the GR region, primarily through the inelastic scattering process. Detailed experiments, looking at the decay modes of GR region, have also been performed. These studies have contributed significantly to a better understanding of the phenomenon of nuclear collective excitation. In this report, the current status of 'GR' research is reviewed. (author)
DEFF Research Database (Denmark)
Sneskov, Kristian; Gras, Eduard Matito; Kongsted, Jacob
2010-01-01
as being applicable for averaging over many solvent configurations derived from, for example, molecular simulations. We test the proposed model using as a benchmark the two lowest-lying valence singlet excitations (n → π* and π → π*) of acrolein, formamide, and N-methylacetamide in aqueous solution as well...
Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system
Samosvat, D. M.; Chikalova-Luzina, O. P.; Vyatkin, V. M.; Zegrya, G. G.
2016-11-01
In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones.
Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system
International Nuclear Information System (INIS)
Samosvat, D M; Chikalova-Luzina, O P; Zegrya, G G; Vyatkin, V M
2016-01-01
In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones. (paper)
Impulse-Excited Energy Harvester based on Potassium-Ion- Electret
Ashizawa, H.; Mitsuya, H.; Ishibashi, K.; Ishikawa, T.; Fujita, H.; Hashiguchi, G.; Toshiyoshi, H.
2015-12-01
We have developed an energy harvester that is specifically desired for impulse acceleration of infrastructure vibrations such as sudden motion at railway bridges. The energy harvester based on potassium-ion-electret on the sidewalls of 1.8- μm-gap comb electrodes generated a 64 μAp-p current during low impulse acceleration, which was large enough to light a green LED.
Three-fold increase of M1 strength in 40Ar at 10 MeV excitation energy
Tornow, Werner; Finch, Sean; Krishichayan, Fnu; Tonchev, Anton
2017-09-01
We reexamined the excitation energy region of 40Ar around 9.8 MeV with the goal of determining the known M1 strength located at 9.76 MeV more accurately. The physics motivation was based on the fact that i) the neutrino-nucleus interaction cross section is proportional to the M1 strength of a nucleus, ii) DUNE, the Deep Underground Neutrino Experiment at SURF will be using liquid argon as detector medium, iii) the energy spectrum of supernova neutrinos is peaked at approximately 10 MeV. Mono-energetic and linearly polarized photons of 9.88 MeV were produced via Compton backscattering of 548 nm FEL photons from 543 MeV electrons at the High-Intensity γ-ray Source (HI γS) facility at TUNL. The 1.25 cm diameter photon beam with energy spread of 300 keV (FWHM) interacted with argon gas contained in a high-pressure cell. The cell was viewed with HPGe detectors placed at 90o relative to the incident photon beam in the horizontal and vertical planes to distinguish between E1 and M1 de-excitation γ-rays. Our re-measurement provided an increase in M1 strength by a factor of approximately 3, mostly due to the discovery that the known level in 40Ar at 9.84 MeV is of M1 character and not of E1 character, as previously thought. In addition to the already known M1 state at 9.76 MeV, we observed weaker M1 states at 9.70, 9.81, 9.87, and 9.89 MeV.
Low-energy vibrational excitations in carbon nanotubes studied by heat capacity
Lasjaunias, J. C.; Biljakovic, K.; Monceau, P.; Sauvajol, J. L.
2003-09-01
We present low-temperature heat capacity measurements performed on two different kinds of single-walled carbon nanotube bundles which essentially differ in their mean number of tubes (NT) per bundle. For temperatures below a few kelvin, the vibrational heat capacity can be analysed as the sum of two contributions. The first one is a regular T3 phononic one, characteristic of the three-dimensional (3D) elastic character of the bundle for long-wavelength phonons. A crossover to a lower effective dimensionality appears at a few kelvin. From the 3D contribution, we estimate a mean sound velocity, and hence a mean shear modulus of the bundle. The difference in amplitude of the acoustic term and in the crossover temperature between the two samples is ascribed to the different bundle topology (i.e. NT). The second contribution, of similar amplitude in both kinds of samples, shows a peculiar power law Talpha variation (alpha < 1) indicative of localized excitations, very probably due to intrinsic structural defects of the nanotubes.
A piezoelectric energy harvester for broadband rotational excitation using buckled beam
Directory of Open Access Journals (Sweden)
Zhengqiu Xie
2018-01-01
Full Text Available This paper proposes a rotational energy harvester using a piezoelectric bistable buckled beam to harvest low-speed rotational energy. The proposed harvester consists of a piezoelectric buckled beam with a center magnet, and a rotary magnet pair with opposite magnetic poles mounted on a revolving host. The magnetic plucking is used to harvest the angular kinetic energy of the host. The nonlinear snap-through mechanism is utilized to improve the vibration displacement and output voltage of the piezoelectric layer over a wide rotation frequency range. Theoretical simulation and experimental results show that the proposed energy harvester can yield a stable average output power ranging between 6.91-48.01 μW over a rotation frequency range of 1-14 Hz across a resistance load of 110 kΩ. Furthermore, dual attraction magnets were employed to overcome the suppression phenomenon at higher frequencies, which yields a broadband and flat frequency response over 6-14 Hz with the output power reaching 42.19-65.44 μW, demonstrating the great potential of the bistable buckled beam for wideband rotation motion energy harvesting.
A piezoelectric energy harvester for broadband rotational excitation using buckled beam
Xie, Zhengqiu; Kitio Kwuimy, C. A.; Wang, Zhiguo; Huang, Wenbin
2018-01-01
This paper proposes a rotational energy harvester using a piezoelectric bistable buckled beam to harvest low-speed rotational energy. The proposed harvester consists of a piezoelectric buckled beam with a center magnet, and a rotary magnet pair with opposite magnetic poles mounted on a revolving host. The magnetic plucking is used to harvest the angular kinetic energy of the host. The nonlinear snap-through mechanism is utilized to improve the vibration displacement and output voltage of the piezoelectric layer over a wide rotation frequency range. Theoretical simulation and experimental results show that the proposed energy harvester can yield a stable average output power ranging between 6.91-48.01 μW over a rotation frequency range of 1-14 Hz across a resistance load of 110 kΩ. Furthermore, dual attraction magnets were employed to overcome the suppression phenomenon at higher frequencies, which yields a broadband and flat frequency response over 6-14 Hz with the output power reaching 42.19-65.44 μW, demonstrating the great potential of the bistable buckled beam for wideband rotation motion energy harvesting.
A systematic review of factors affecting energy intake of adolescent ...
African Journals Online (AJOL)
The goal is not to change behavior of all but to increase the percentage of people adopt- ing healthier .... spontaneous daily energy consumption and a reduction in energy ... adolescents who reported eating at a fast food restaurant. ≥3 times ...
Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements
Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans
2001-05-01
Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.
Energy Technology Data Exchange (ETDEWEB)
Chiari, L.; Jones, D. B.; Thorn, P. A.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Duflot, D. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille, F-59655 Villeneuve d’Ascq Cedex (France); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, B-4000 Liège 1 (Belgium); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); and others
2014-07-14
We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20–50 eV, while the scattered electron was detected in the 10°–90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, “rotationally averaged” elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].
Determination of r Factor of Kalbach-Mann Systematics for Energy Balance
International Nuclear Information System (INIS)
Zhang Jingshang
2008-01-01
Kalbach-Mann systematics is a very useful formula to discrete the double-differential cross sections of emitted particles. However, the energy balance by using this systematics is still a task to be studied. In the form of Legendre polynomial expansion the energy balance has been proved analytically. In terms of this approach, the formula to determine the pre-equilibrium fraction r factor of Kalbach-Mann systematics has been obtained for keeping energy balance strictly. This formula could be straightforwardly applied for describing the double-differential cross sections of all projectile types in the continuum spectrum emissions. It indicates that Legendre expansion coefficient with l = 1 is the key term in the energy balance
International Nuclear Information System (INIS)
Kharab, Rajesh; Chahal, Rajiv; Kumar, Rajiv
2017-01-01
In the present work we have analyzed the fusion excitation function for CF process using the simple Wong’s formula in conjunction with the energy dependent Woods-Saxon potential (EDWSP) in near barrier energy region for 7 Li+ 152 Sm, 197 Au and 209 Bi reactions
Myslitskaya, N. A.; Samusev, I. G.; Bryukhanov, V. V.
2014-11-01
The electron excitation energy transfer from CdSe/ZnS quantum dots to eosin molecules in the polymer matrix of butyral resin is investigated. The main characteristics of energy transfer are determined. By means of luminescence microscopy and correlation spectroscopy methods we found that quantum dots in the polymer are in an aggregate state.
High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells
Hardin, Brian E.; Yum, Jun-Ho; Hoke, Eric T.; Jun, Young Chul; Péchy, Peter; Torres, Tomás; Brongersma, Mark L.; Nazeeruddin, Md. Khaja; Grätzel, Michael; McGehee, Michael D.
2010-01-01
The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3
Kurihara, Youji; Aoki, Yuriko; Imamura, Akira
1997-09-01
In the present article, the excitation energies of the all-trans and the 11,12s-dicis retinals were calculated by using the elongation method. The geometries of these molecules were optimized with the 4-31G basis set by using the GAUSSIAN 92 program. The wave functions for the calculation of the excitation energies were obtained with CNDO/S approximation by the elongation method, which enables us to analyze electronic structures of aperiodic polymers in terms of the exciton-type local excitation and the charge transfer-type excitation. The excitation energies were calculated by using the single excitation configuration interaction (SECI) on the basis of localized molecular orbitals (LMOs). The LMOs were obtained in the process of the elongation method. The configuration interaction (CI) matrices were diagonalized by Davidson's method. The calculated results were in good agreement with the experimental data for absorption spectra. In order to consider the isomerization path from 11,12s-dicis to all-trans retinals, the barriers to the rotations about C11-C12 double and C12-C13 single bonds were evaluated.
Nuclear de-excitation processes following medium energy heavy ion collisions
International Nuclear Information System (INIS)
Blann, M.
1986-09-01
As heavy ion reaction studies have progressed from beam energies below 10 MeV/nucleon to higher energies, many non-equilibrium reaction phenomena have been observed. Among these are nucleon emission with velocities in excess of the beam velocity, incomplete momentum transfer to evaporation residue and fission-like fragments, γ-rays with energies in excess of 100 MeV, and π 0 production when beam energies are below the threshold for production by the nucleon-nucleon collision mechanism. Additionally, prefission neutrons have been observed in excess of numbers expected from equilibrium models. A few of the approaches which have been applied to these phenomena are as follows: Intranuclear cascade: two body collisions are assumed to mediate the equilibration. The geometry and momentum space is followed semiclassically. The approach has many successes though it may suffer in a few applications is not following holes; TDHF considers one body processes only; in the energy regime of interest, two body processes are important so that this may not be a viable approach; Boltzmann-Uehling-Uhlenbeck or Vlasov-Uehling-Uhlenbeck (BUU/VUU) equations combine both one body and two body dynamics. The spatial and momentum evolution of the reactions are followed in a mean field. These should be the Cadillacs of the models. They are computationally tedious, and sometimes significant approximations are made in order to achieve computational tract ability; models of collective deceleration. A very simple model approach is discussed to interpret these phenomena, the Boltzmann master equation (BME). The hybrid model was the first to be applied to the question of heavy ion precompound decay, and the BME second. 26 refs., 5 figs., 2 tabs
Fission excitation function for 19F + 194,196,198Pt at near and above barrier energies
Directory of Open Access Journals (Sweden)
Singh Varinderjit
2015-01-01
Full Text Available Fission excitation functions for 19F + 194,196,198Pt reactions populating 213,215,217Fr compound nuclei are reported. Out of these three compound nuclei, 213Fr is a shell closed (N=126 compound nucleus and the other two are away from the shell closure. From a comparison of the experimental fission cross-sections with the statistical model predictions, it is observed that the fission cross-sections are underestimated by the statistical model predictions using shell corrected finite range rotating liquid drop model (FRLDM fission barriers. Further the FRLDM fission barriers are reduced to fit the fission cross-sections over the entire measured energy range.
Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Haga, Yoshinori; Yamamoto, Etsuji; Amitsuka, Hiroshi; Tsutsumi, Yasumasa; Machida, Kazushige
2015-04-10
Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}.
May, Volkhard; Megow, Jörg; Zelinskyi, Iaroslav
2012-04-01
Excitation energy transfer (EET) in molecular systems is studied theoretically. Chromophore complexes are considered which are formed by a butanediamine dendrimer with four pheophorbide-a molecules. To achieve a description with an atomic resolution and to account for the effect of an ethanol solvent a mixed quantum classical methodology is utilized. Details of the EET and spectra of transient anisotropy showing signatures of EET are presented. A particular control of intermolecular EET is achieved by surface plasmons of nearby placed metal nanoparticles (MNP). To attain a quantum description of the molecule-MNP system a microscopic theory is introduced. As a particular application surface plasmon affected absorption spectra of molecular complexes placed in the proximity of a spherical MNP are discussed.
Systematics of elastic scattering at high and intermediate energy
Energy Technology Data Exchange (ETDEWEB)
Dias De Deus, J [Instituto de Fisica e Matematica, Lisboa (Portugal); Kroll, P [Wuppertal Univ. (Gesamthochschule) (Germany, F.R.)
1977-01-01
A model for elastic scattering valid in the intermediate and high-energy region is proposed. The model includes three kinds of entities: the pomeron, a universal GS pomeron; the reggeons, also universal and of GS type; and the core, a low-energy central real piece required by dispersion relations. The number of free functions and parameters is rather small. The approach supports naive duality and, in general, agrees with the results of absorptive models.
Energy Technology Data Exchange (ETDEWEB)
Sudbrock, F.; Herpers, U. [Koeln Univ. (Germany); Synal, H.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Gloris, M.; Michel, R. [Hannover Univ. (Germany)
1997-09-01
Studies concerning the production of the long-lived radionuclides {sup 10}Be, {sup 26}Al and {sup 36}Cl measured via accelerator mass spectrometry have been continued. Recently measured data on the production of {sup 36}Cl by medium and high energy protons are discussed. (author) 1 figs., 4 refs.
/B(E2) values from low-energy Coulomb excitation at an ISOL facility: the /N=80,82 Te isotopes
Barton, C. J.; Caprio, M. A.; Shapira, D.; Zamfir, N. V.; Brenner, D. S.; Gill, R. L.; Lewis, T. A.; Cooper, J. R.; Casten, R. F.; Beausang, C. W.; Krücken, R.; Novak, J. R.
2003-01-01
B(E2;0+1→2+1) values for the unstable, neutron-rich nuclei 132,134Te were determined through Coulomb excitation, in inverse kinematics, of accelerated beams of these nuclei. The systematics of measured B(E2) values from the ground state to the first excited state have been extended to the N=82 shell closure in the Te nuclei and have been compared with the predictions of different theories. The measurements were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) using the GRAFIK detector. The success of this approach, which couples a 5.7% efficient through-well NaI(Tl) γ-ray detector with thin foil microchannel plate beam detectors, also demonstrates the feasibility for Coulomb excitation studies of neutron-rich nuclei even further from the valley of beta stability, both at present-generation ISOL facilities and at the proposed Rare Isotope Accelerator.
Some dispersive X-ray fluorescence applications in energies with radioisotopic excitation source
International Nuclear Information System (INIS)
Adelfang, P.; Vazquez, C.
1990-01-01
The aim of this work is based on the use of interelemental correction coefficients which are calculated through fundamental parameters. To this purpose, it is necessary to know about the physical constants for each element including the absorption coefficient values and fluorescence yield, the incidence radiation energy, geometric and instrumental parameters. Besides, a special application of the program for the determination of a Nd-La mixed crystal formula is included. (Author) [es
Hartree-Fock energies of the doubly excited states of the boron isoelectronic sequence
International Nuclear Information System (INIS)
El-Sherbini, T.M.; Mansour, H.M.; Farrag, A.A.; Rahman, A.A.
1985-08-01
Hartree-Fock energies of the 1s 2 2s 2p ns( 4 P), 1s 2 2s 2p np ( 4 P, 4 D) and 1s 2 2s 2p nd ( 4 P, 4 D); n=3-6 states in the boron isoelectronic sequence are reported. The results show a fairly good agreement with the experimental data of Bromander for O IV. (author)
International Nuclear Information System (INIS)
Dhara, Sangita; Misra, N.L.; Aggarwal, S.K.; Venugopal, V.
2010-01-01
An energy dispersive X-ray fluorescence method for determination of cadmium (Cd) in uranium (U) matrix using continuum source of excitation was developed. Calibration and sample solutions of cadmium, with and without uranium were prepared by mixing different volumes of standard solutions of cadmium and uranyl nitrate, both prepared in suprapure nitric acid. The concentration of Cd in calibration solutions and samples was in the range of 6 to 90 μg/mL whereas the concentration of Cd with respect to U ranged from 90 to 700 μg/g of U. From the calibration solutions and samples containing uranium, the major matrix uranium was selectively extracted using 30% tri-n-butyl phosphate in dodecane. Fixed volumes (1.5 mL) of aqueous phases thus obtained were taken directly in specially designed in-house fabricated leak proof Perspex sample cells for the energy dispersive X-ray fluorescence measurements and calibration plots were made by plotting Cd Kα intensity against respective Cd concentration. For the calibration solutions not having uranium, the energy dispersive X-ray fluorescence spectra were measured without any extraction and Cd calibration plots were made accordingly. The results obtained showed a precision of 2% (1σ) and the results deviated from the expected values by < 4% on average.
Search for aligned structure of 12C-α-12C type at high excitation energy in 28Si
International Nuclear Information System (INIS)
Burnereau, Nicole.
1975-01-01
The 16 O+ 12 C→ 12 C+α+ 12 C reaction is studied mainly at 46MeV (at this energy a state of 28 Si is presumably formed with a spin value of 14 + ; resonance of 19.7MeV c.m.). The motivation is to detect an α particle with a negligible energy in the c.m. system. This is the signature of the preformation of three aligned clusters in which the average location of the α particle is in between the two 12 C's at the center of symmetry of the system. Such a detection is performed by detecting two 12 C's in coincidence at specific angles. The data are understood by three-body calculations with a coupling of relative angular momenta governed by an unique J value. Experimentally, an α energy of 200keV is measured with good statistics, supporting the idea of aligned clusters as 28 Si intrinsic shape, related to some highly excited states [fr
International Nuclear Information System (INIS)
Lee, Sang Uck
2013-01-01
The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry
Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.
Krafft, C; Volokitin, A
2013-05-01
Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Venhart, M., E-mail: martin.venhart@savba.sk [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Wood, J.L. [Department of Physics, Georgia Institute of Technology, Atlanta GA 30332 (United States); Boston, A.J. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Cocolios, T.E. [School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); KU Leuven, Instituut voor Kern, en Stralingsfysica, B-3001 Leuven (Belgium); Harkness-Brennan, L.J.; Herzberg, R.-D.; Joss, D.T.; Judson, D.S. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Kliman, J.; Matoušek, V. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Motyčák, Š. [Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, SK-812 19 Bratislava (Slovakia); Page, R.D.; Patel, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Petrík, K.; Sedlák, M.; Veselský, M. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia)
2017-03-21
A technique for elucidating β-decay schemes of isotopes with a large density of states at low excitation energy has been developed, in which a Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial hyper-pure germanium detectors. The power of this technique is demonstrated using the example of {sup 183}Hg decay. Mass-separated samples of {sup 183}Hg were produced by a deposition of the low-energy radioactive-ion beam delivered by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe detector allowed γ-ray energies to be determined with a precision of a few tens of eV, which was sufficient for the analysis of the Rydberg-Ritz combinations (in conjunction with γ-γ coincidences) in the level scheme. The timestamped structure of the data was used for unambiguous separation of γ rays arising from the decay of {sup 183}Hg from those due to the daughter decays.
Temperature and excitation energy of hot nuclei in the reaction of 40Ar+197Au at 25 MeV/nucleon
International Nuclear Information System (INIS)
Wu, H.; Jin, G.; Li, Z.; Dai, G.; Qi, Y.; He, Z.; Luo, Q.; Duan, L.; Wen, W.; Zhang, B.
1997-01-01
The coincidence measurements between heavy fission fragments and light charged particles with Z ≤2 were carried out for the 40 Ar+ 197 Au reaction at 25 MeV/nucleon, to study the properties of hot nuclei in heavy ion induced reactions. The linear momentum transfers (LMTs) were deduced from the folding angle and the time-of-flight difference between two fission fragments of heavy residues. The relationship of the nuclear temperature (slope parameter of the energy spectrum) and the excitation energy was determined independently from the measurement of the kinetic energy spectra in the frames of the emitting sources and from the LMT analysis. Both the temperature and the excitation energy increase with decreasing impact parameter, which suggests that a plateau temperature of 5.5 MeV is reached at an excitation energy of 3.1 MeV/nucleon. The result was also compared with various statistical models that explain the plateau by the multifragmentation process, where the excitation energy is assumed to be stored in compression and expansion effects. (orig.)
Piezoelectric energy harvesting in coupling-chamber excited by the vortex-induced pressure
Cheng, Tinghai; Wang, Yingting; Qin, Feng; Song, Zhaoyang; Lu, Xiaohui; Bao, Gang; Zhao, Xilu
2016-08-01
The performance of a piezoelectric energy harvester with a coupling chamber was investigated under vortex-induced pressure. The harvester consisted of a power chamber, a buffer, and a storage chamber. Different types of vortex (i.e., clockwise or counter-clockwise) could be induced by changing the volume ratio between the power chamber and the storage chamber. The peak voltage of the harvester could be tuned by changing the volume ratio. For example, under a pressure of 0.30 MPa, input cycle of 2.0 s, and flow rate of 200 l/min, the peak voltage decreased from 79.20 to 70.80 V with increasing volume ratio. The optimal volume ratio was 2.03, which resulted in the formation of a clockwise vortex. The corresponding effective power through a 600 kΩ resistor was 1.97 mW.
International Nuclear Information System (INIS)
Duffy, D.; Haas, S.; Kim, E.
1998-01-01
The Hubbard Hamiltonian on a two-leg ladder is studied numerically using quantum Monte Carlo and exact diagonalization techniques. A rung interaction, V, is turned on such that the resulting model has an exact SO(5) symmetry when V=-U. The evolution of the low-energy excitation spectrum is presented from the pure Hubbard ladder to the SO(5) ladder. It is shown that the low-energy excitations in the pure Hubbard ladder have an approximate SO(5) symmetry. copyright 1998 The American Physical Society
Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.
Beloy, K
2014-02-14
We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.
International Nuclear Information System (INIS)
Ghazi, Haddou El; Jorio, Anouar; Zorkani, Izeddine
2013-01-01
External electric field effect on the lowest-excited state in wurtzite (In,Ga)N–GaN spherical quantum dot is considered. By means of a traditional Ritz variational method within the effective-mass approximation and finite potential barrier, the lowest-excited state energy with and without the presence of the impurity is investigated. The normalized binding energy under electric field effect is also performed. Our numerical results are compared with the previous theoretical findings and show a good agreement with those concerning especially the ground-state for different semiconductors materials and different QDs-shapes
Energy Technology Data Exchange (ETDEWEB)
Ghazi, Haddou El, E-mail: hadghazi@gmail.com [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P 1796 Atlas, Fez (Morocco); Special Mathematics, CPGE Kénitra (Morocco); Jorio, Anouar; Zorkani, Izeddine [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P 1796 Atlas, Fez (Morocco)
2013-10-01
External electric field effect on the lowest-excited state in wurtzite (In,Ga)N–GaN spherical quantum dot is considered. By means of a traditional Ritz variational method within the effective-mass approximation and finite potential barrier, the lowest-excited state energy with and without the presence of the impurity is investigated. The normalized binding energy under electric field effect is also performed. Our numerical results are compared with the previous theoretical findings and show a good agreement with those concerning especially the ground-state for different semiconductors materials and different QDs-shapes.
Energy Technology Data Exchange (ETDEWEB)
Ryszard Jankowiak, Kansas State University, Department of Chemistry, CBC Bldg., Manhattan KS, 66505; Phone: (785) 532-6785
2012-09-12
In this project we studied both natural photosynthetic antenna complexes and various artificial systems (e.g. chlorophyll (Chl) trefoils) using high resolution hole-burning (HB) spectroscopy and excitonic calculations. Results obtained provided more insight into the electronic (excitonic) structure, inhomogeneity, electron-phonon coupling strength, vibrational frequencies, and excitation energy (or electron) transfer (EET) processes in several antennas and reaction centers. For example, our recent work provided important constraints and parameters for more advanced excitonic calculations of CP43, CP47, and PSII core complexes. Improved theoretical description of HB spectra for various model systems offers new insight into the excitonic structure and composition of low-energy absorption traps in very several antenna protein complexes and reaction centers. We anticipate that better understanding of HB spectra obtained for various photosynthetic complexes and their simultaneous fits with other optical spectra (i.e. absorption, emission, and circular dichroism spectra) provides more insight into the underlying electronic structures of these important biological systems. Our recent progress provides a necessary framework for probing the electronic structure of these systems via Hole Burning Spectroscopy. For example, we have shown that the theoretical description of non-resonant holes is more restrictive (in terms of possible site energies) than those of absorption and emission spectra. We have demonstrated that simultaneous description of linear optical spectra along with HB spectra provides more realistic site energies. We have also developed new algorithms to describe both nonresonant and resonant hole-burn spectra using more advanced Redfield theory. Simultaneous description of various optical spectra for complex biological system, e.g. artificial antenna systems, FMO protein complexes, water soluble protein complexes, and various mutants of reaction centers
Directory of Open Access Journals (Sweden)
Mette Talseth Solnørdal
2018-02-01
Full Text Available Research has identified an extensive potential for energy efficiency within the manufacturing sector, which is responsible for a substantial share of global energy consumption and greenhouse gas emissions. The purpose of this study is to enhance the knowledge of vital drivers for energy efficiency in this sector by providing a critical and systematic review of the empirical literature on drivers to energy efficiency in manufacturing firms at the firm level. The systematic literature review (SLR is based on peer-reviewed articles published between 1998 and 2016. The findings reveal that organizational and economic drivers are, from the firms’ perspective, the most prominent stimulus for energy efficiency and that they consider policy instruments and market drivers to be less important. Secondly, firm size has a positive effect on the firms’ energy efficiency, while the literature is inconclusive considering sectorial impact. Third, the studies are mainly conducted in the US and Western European countries, despite the fact that future increase in energy demand is expected outside these regions. These findings imply a potential mismatch between energy policy-makers’ and firm mangers’ understanding of which factors are most important for achieving increased energy efficiency in manufacturing firms. Energy policies should target the stimulation of management, competence, and organizational structure in addition to the provision of economic incentives. Further understanding about which and how internal resources, organizational capabilities, and management practices impact energy efficiency in manufacturing firms is needed. Future energy efficiency scholars should advance our theoretical understanding of the relationship between energy efficiency improvements in firms, the related change processes, and the drivers that affect these processes.
Low-energy excitations in amorphous films of silicon and germanium
International Nuclear Information System (INIS)
Liu, X.; Pohl, R.O.
1998-01-01
We present measurements of internal friction and shear modulus of amorphous Si (a-Si) and amorphous Ge (a-Ge) films on double-paddle oscillators at 5500 Hz from 0.5 K up to room temperature. The temperature- independent plateau in internal friction below 10 K, which is common to all amorphous solids, also exists in these films. However, its magnitude is smaller than found for all other amorphous solids studied to date. Furthermore, it depends critically on the deposition methods. For a-Si films, it decreases in the sequence of electron-beam evaporation, sputtering, self-ion implantation, and hot-wire chemical-vapor deposition (HWCVD). Annealing can also reduce the internal friction of the amorphous films considerably. Hydrogenated a-Si with 1 at.% H prepared by HWCVD leads to an internal friction more than two orders of magnitude smaller than observed for all other amorphous solids. The internal friction increases after the hydrogen is removed by effusion. Our results are compared with earlier measurements on a-Si and a-Ge films, none of which had the sensitivity achieved here. The variability of the low-energy tunneling states in the a-Si and a-Ge films may be a consequence of the tetrahedrally bonded covalent continuous random network. The perfection of this network, however, depends critically on the preparation conditions, with hydrogen incorporation playing a particularly important role. copyright 1998 The American Physical Society
International Nuclear Information System (INIS)
Lorenzen, J.; Brune, D.
1973-01-01
The present chapter has been formulated with the aim of making it useful in various fields of nuclear applications with emphasis on charged particle activation analysis. Activation analysis of light elements using charged particles has proved to be an important tool in solving various problems in analytical chemistry, e g those associated with metal surfaces. Scientists desiring to evaluate the distribution of light elements in the surface of various matrices using charged particle reactions require accurate data on cross sections in the MeV-region. A knowledge of cross section data and yield-functions is of great interest in many applied fields involving work with charged particles, such as radiological protection and health physics, material research, semiconductor material investigations and corrosion chemistry. The authors therefore decided to collect a limited number of data which find use in these fields. Although the compilation is far from being complete, it is expected to be of assistance in devising measurements of charged particle reactions in Van de Graaff or other low energy accelerators
Energy Technology Data Exchange (ETDEWEB)
Lorenzen, J; Brune, D
1973-07-01
The present chapter has been formulated with the aim of making it useful in various fields of nuclear applications with emphasis on charged particle activation analysis. Activation analysis of light elements using charged particles has proved to be an important tool in solving various problems in analytical chemistry, e g those associated with metal surfaces. Scientists desiring to evaluate the distribution of light elements in the surface of various matrices using charged particle reactions require accurate data on cross sections in the MeV-region. A knowledge of cross section data and yield-functions is of great interest in many applied fields involving work with charged particles, such as radiological protection and health physics, material research, semiconductor material investigations and corrosion chemistry. The authors therefore decided to collect a limited number of data which find use in these fields. Although the compilation is far from being complete, it is expected to be of assistance in devising measurements of charged particle reactions in Van de Graaff or other low energy accelerators
Thermionic and Photo-excited Electron Emission for Energy Conversion Processes
Directory of Open Access Journals (Sweden)
Patrick T. McCarthy
2014-12-01
Full Text Available This article describes advances in thermionic and photoemission materials and applications dating back to the work on thermionic emission by Guthrie in 1873 and the photoelectric effect by Hertz in 1887. Thermionic emission has been employed for electron beam generation from Edison’s work with the light bulb to modern day technologies such as scanning and transmission electron microscopy. The photoelectric effect has been utilized in common devices such as cameras and photocopiers while photovoltaic cells continue to be widely successful and further researched. Limitations in device efficiency and materials have thus far restricted large-scale energy generation sources based on thermionic and photoemission. However, recent advances in the fabrication of nanoscale emitters suggest promising routes for improving both thermionic and photo-enhanced electron emission along with newly developed research concepts, e.g., photonically enhanced thermionic emission. However, the abundance of new emitter materials and reduced dimensions of some nanoscale emitters increases the complexity of electron emission theory and engender new questions related to the dimensionality of the emitter. This work presents derivations of basic two and three-dimensional thermionic and photoemission theory along with comparisons to experimentally acquired data. The resulting theory can be applied to many different material types regardless of composition, bulk and surface structure.
Thermionic and Photo-Excited Electron Emission for Energy-Conversion Processes
Energy Technology Data Exchange (ETDEWEB)
McCarthy, Patrick T. [Birck Nanotechnology Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States); Reifenberger, Ronald G. [Birck Nanotechnology Center, School of Physics, Purdue University, West Lafayette, IN (United States); Fisher, Timothy S., E-mail: tsfisher@purdue.edu [Birck Nanotechnology Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States)
2014-12-09
This article describes advances in thermionic and photo-emission materials and applications dating back to the work on thermionic emission by Guthrie (1873) and the photoelectric effect by Hertz (1893). Thermionic emission has been employed for electron beam generation from Edison’s work with the light bulb to modern day technologies such as scanning and transmission electron microscopy. The photoelectric effect has been utilized in common devices such as cameras and photocopiers while photovoltaic cells continue to be widely successful and further researched. Limitations in device efficiency and materials have thus far restricted large-scale energy generation sources based on thermionic and photoemission. However, recent advances in the fabrication of nanoscale emitters suggest promising routes for improving both thermionic and photo-enhanced electron emission along with newly developed research concepts, e.g., photonically enhanced thermionic emission. However, the abundance of new emitter materials and reduced dimensions of some nanoscale emitters increases the complexity of electron-emission theory and engender new questions related to the dimensionality of the emitter. This work presents derivations of basic two and three-dimensional thermionic and photo-emission theory along with comparisons to experimentally acquired data. The resulting theory can be applied to many different material types regardless of composition, bulk, and surface structure.
Directory of Open Access Journals (Sweden)
K. Nishio
2015-09-01
Full Text Available Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E⁎(Hg180=33–66 MeV and E⁎(Hg190=48–71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses A¯L/A¯H=79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of A¯L/A¯H=83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.
Wang, Jun; Huang, Jing; Du, Likai; Lan, Zhenggang
2015-07-09
The photoinduced intramolecular excited-state energy-transfer (EET) process in conjugated polymers has received a great deal of research interest because of its important role in the light harvesting and energy transport of organic photovoltaic materials in photoelectric devices. In this work, the silylene-bridged biphenyl and stilbene (SBS) system was chosen as a simplified model system to obtain physical insight into the photoinduced intramolecular energy transfer between the different building units of the SBS copolymer. In the SBS system, the vinylbiphenyl and vinylstilbene moieties serve as the donor (D) unit and the acceptor (A) unit, respectively. The ultrafast excited-state dynamics of the SBS system was investigated from the point of view of nonadiabatic dynamics with the surface-hopping method at the TDDFT level. The first two excited states (S1 and S2) are characterized by local excitations at the acceptor (vinylstilbene) and donor (vinylbiphenyl) units, respectively. Ultrafast S2-S1 decay is responsible for the intramolecular D-A excitonic energy transfer. The geometric distortion of the D moiety play an essential role in this EET process, whereas the A moiety remains unchanged during the nonadiabatic dynamics simulation. The present work provides a direct dynamical approach to understand the ultrafast intramolecular energy-transfer dynamics in SBS copolymers and other similar organic photovoltaic copolymers.
Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure
Energy Technology Data Exchange (ETDEWEB)
Shahrokhi, Masoud, E-mail: shahrokhimasoud37@gmail.com
2016-12-30
Highlights: • The electronic and optical properties of ZnS honeycomb sheet are investigated. • The electronic properties were analyzed at three levels of GW approach. • The optical properties of these materials are investigated using the BSE approach. • Optical properties of ZnS sheet strongly dominated by excitonic effects. • Spectrum is dominated by strongly bound Frenkel excitons. - Abstract: Using ab-initio density functional theory calculations combined with many-body perturbation formalism we carried out the electronic structure and optical properties of 2D graphene-like ZnS structure. The electronic properties were analyzed at three levels of many-body GW approach (G{sub 0}W{sub 0}, GW{sub 0} and GW) constructed over a Generalized Gradient Approximation functional. Our results indicate that ZnS sheet has a direct band gap at the Γ-point. Also it is seen that inclusion of electron–electron interaction does not change the sort of direct semiconducting band gap in ZnS sheet. The optical properties and excitonic effects of these materials are investigated using the Bethe-Salpeter equation (BSE) approach. The formation of first exciton peaks at 3.86, 4.26, and 4.57 eV with large binding energy of 0.36, 0.49 and 0.73 eV using G{sub 0}W{sub 0} + BSE, GW{sub 0} + BSE and GW + BSE, respectively, was observed. We show that the optical absorption spectrum of 2D ZnS structure is dominated by strongly bound Frenkel excitons. The enhanced excitonic effects in the ZnS monolayer sheet can be useful in designing optoelectronic applications.
International Nuclear Information System (INIS)
Ayoub, N.Y.
1980-02-01
The ground and some excited O + (J=O, T=O positive parity) energy levels of closed-shell nuclei are examined, in an oscillator basis, using matrix techniques. The effect of states outside the mixed (O+2(h/2π)ω). model space in 4 He (namely configurations at 4(h/2π)ω excitation) are taken into account by renormalization using the generalized Rayleigh-Schroedinger perturbation expressions for a mixed multi-configurational model space, where the resultant non-symmetric energy matrices are diagonalized. It is shown that the second-order renormalized O + energy spectrum is close to the corresponding energy spectrum obtained by diagonalizing the O+2+4(h/2π)ω 4 He energy matrix. The effect, on the ground state and the first few low-lying excited O + energy levels, of renormalizing certain parts of the model space energy matrix up to second order in various approximations is also studied in 4 He and 16 O. It is found that the low-lying O + energy levels in these various approximations behave similarly in both 4 He and 16 O. (author)
DEFF Research Database (Denmark)
Sauer, Stephan P. A.; Ul Haq, Inam; Sabin, John R.
2014-01-01
by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42:28 eV (Helium) and I0 = 19:62 eV (H2), correspond to full conguration interaction results and are therefore the exact, non-relativistic theoretical values......Using an asymmetric-Lanczos-chain algorithm for the calculation of the coupled cluster linear response functions at the CCSD and CC2 levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule H2. Convergence with respect...... for the mean excitation energy of these two systems within the Bethe theory for the chosen basis set and, in the case of H2, at the experimental equilibrium geometry....
Systematics of threshold incident energy for deep sub-barrier fusion hindrance
International Nuclear Information System (INIS)
Ichikawa, Takatoshi; Hagino, Kouichi; Iwamoto, Akira
2007-01-01
We systematically evaluate the potential energy at the touching configuration for heavy-ion reactions using various potential models. We point out that the energy at the touching point, especially that estimated with the Krappe-Nix-Sierk (KNS) potential, strongly correlates with the threshold incident energy for steep falloff of fusion cross sections observed recently for several systems at extremely low energies. This clearly indicates that the steep fall-off phenomenon can be attributed to the dynamics after the target and projectile touch with each other, e.g., the tunneling process and the nuclear saturation property in the overlap region
Performance Evaluation of Bluetooth Low Energy: A Systematic Review
Directory of Open Access Journals (Sweden)
Jacopo Tosi
2017-12-01
Full Text Available Small, compact and embedded sensors are a pervasive technology in everyday life for a wide number of applications (e.g., wearable devices, domotics, e-health systems, etc.. In this context, wireless transmission plays a key role, and among available solutions, Bluetooth Low Energy (BLE is gaining more and more popularity. BLE merges together good performance, low-energy consumption and widespread diffusion. The aim of this work is to review the main methodologies adopted to investigate BLE performance. The first part of this review is an in-depth description of the protocol, highlighting the main characteristics and implementation details. The second part reviews the state of the art on BLE characteristics and performance. In particular, we analyze throughput, maximum number of connectable sensors, power consumption, latency and maximum reachable range, with the aim to identify what are the current limits of BLE technology. The main results can be resumed as follows: throughput may theoretically reach the limit of ~230 kbps, but actual applications analyzed in this review show throughputs limited to ~100 kbps; the maximum reachable range is strictly dependent on the radio power, and it goes up to a few tens of meters; the maximum number of nodes in the network depends on connection parameters, on the network architecture and specific device characteristics, but it is usually lower than 10; power consumption and latency are largely modeled and analyzed and are strictly dependent on a huge number of parameters. Most of these characteristics are based on analytical models, but there is a need for rigorous experimental evaluations to understand the actual limits.
Systematic studies of binding energy dependence of neutron-proton momentum correlation function
International Nuclear Information System (INIS)
Wei, Y B; Ma, Y G; Shen, W Q; Ma, G L; Wang, K; Cai, X Z; Zhong, C; Guo, W; Chen, J G; Fang, D Q; Tian, W D; Zhou, X F
2004-01-01
Hanbury Brown-Twiss (HBT) results of the neutron-proton correlation function have been systematically investigated for a series of nuclear reactions with light projectiles with the help of the isospin-dependent quantum molecular dynamics model. The relationship between the binding energy per nucleon of the projectiles and the strength of the neutron-proton HBT at small relative momentum has been obtained. Results show that neutron-proton HBT results are sensitive to the binding energy per nucleon
International Nuclear Information System (INIS)
Krajcar-Bronic, I.; Kimura, M.
1995-01-01
Electron thermalization in methane and argon--methane mixtures is studied by using the Boltzmann equation. The presence of low-lying vibrational excited states in methane significantly changes electron energy distribution functions and relaxation times. We found that (i) the mean electron energy just below the first vibrational excited state is reached faster by 1000 times when the vibrational states are taken into account, and (ii) electron energy distribution functions have distinct peaks at energy intervals equal to the vibrational threshold energies. Both these effects are due to large vibrational stopping cross section. The thermalization time in mixtures of argon--methane (without vibrational states) smoothly changes as the mixture composition varies, and no significant difference in the electron energy distribution function is observed. When the vibrational excited states are taken into account, thermalization is almost completely defined by CH 4 , even at very low fractional concentrations of CH 4 . The sensitivity of the electron energy distribution functions on the momentum transfer cross sections used in calculation on the thermalization is discussed. copyright 1995 American Institute of Physics
Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY
2012-03-13
The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.
Stopping powers of Zr, Pd, Cd, In and Pb for 6.5 MeV protons and mean excitation energies
International Nuclear Information System (INIS)
Ishiwari, R.; Shiomi, N.; Sakamoto, N.
1983-01-01
Stopping powers of Zr, Pd, Cd, In and Pb have been measured for 6.5 MeV protons. Mean excitation energies have been extracted from the stopping power data by taking into account Bloch correction and Z 1 3 correction. For the shell correction the Bonderup shell correction has been used. The results agree fairly well with those of other authors
Redeckas, Kipras; Voiciuk, Vladislava; Zigmantas, Donatas; Hiller, Roger G; Vengris, Mikas
2017-04-01
Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S 0 →S 2 transition of the carotenoid peridinin. A portion of the peridinin-based emissive intramolecular charge transfer (ICT) state was then depopulated by applying an ultrashort NIR pulse that perturbed the interaction between S 1 and ICT states and the energy flow from the carotenoids to the chlorophylls. The presented data indicate that the peridinin S 1 and ICT states are spectrally distinct and coexist in an excited state equilibrium in the PCP complex. Moreover, numeric analysis of the experimental data asserts ICT→Chl-a as the main energy transfer pathway in the photoexcited PCP systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Czech Academy of Sciences Publication Activity Database
Srnec, Martin; Wong, S. D.; Solomon, E. I.
2014-01-01
Roč. 43, č. 47 (2014), s. 17567-17577 ISSN 1477-9226 Institutional support: RVO:61388955 Keywords : excited state potential energy * chemical analysis * Frontier molecular orbitals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014
Driever, S.M.; Baker, N.R.
2011-01-01
Electron flux from water via photosystem II (PSII) and PSI to oxygen (water–water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO2 assimilation is restricted. Mass spectrometry was used to measure O2 uptake and evolution together with CO2 uptake in leaves
Electron impact excitation of xenon from the metastable state to the excited states
Energy Technology Data Exchange (ETDEWEB)
Jiang Jun; Dong Chenzhong; Xie Luyou; Zhou Xiaoxin [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Jianguo [Institute of Applied Physics and Computational Mathematic, Beijing 100088 (China)], E-mail: dongcz@nwnu.edu.cn
2008-12-28
The electron impact excitation cross sections from the lowest metastable state 5p{sup 5}6sJ = 2 to the six lowest excited states of the 5p{sup 5}6p configuration of xenon are calculated systematically by using the fully relativistic distorted wave method. In order to discuss the effects of target state descriptions on the electron impact excitation cross sections, two correlation models are used to describe the target states based on the multiconfiguration Dirac-Fock (MCDF) method. It is found that the correlation effects play a very important role in low energy impact. For high energy impact, however, the cross sections are not sensitive to the description of the target states, but many more partial waves must be included.
Chen, Xin; Cao, Jianshu; Silbey, Robert J
2013-06-14
The recent experimental discoveries about excitation energy transfer (EET) in light harvesting antenna (LHA) attract a lot of interest. As an open non-equilibrium quantum system, the EET demands more rigorous theoretical framework to understand the interaction between system and environment and therein the evolution of reduced density matrix. A phonon is often used to model the fluctuating environment and convolutes the reduced quantum system temporarily. In this paper, we propose a novel way to construct complex-valued Gaussian processes to describe thermal quantum phonon bath exactly by converting the convolution of influence functional into the time correlation of complex Gaussian random field. Based on the construction, we propose a rigorous and efficient computational method, the covariance decomposition and conditional propagation scheme, to simulate the temporarily entangled reduced system. The new method allows us to study the non-Markovian effect without perturbation under the influence of different spectral densities of the linear system-phonon coupling coefficients. Its application in the study of EET in the Fenna-Matthews-Olson model Hamiltonian under four different spectral densities is discussed. Since the scaling of our algorithm is linear due to its Monte Carlo nature, the future application of the method for large LHA systems is attractive. In addition, this method can be used to study the effect of correlated initial condition on the reduced dynamics in the future.
Torchynska, T.; Khomenkova, L.; Slaoui, A.
2018-04-01
Si-rich SiN x films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiN x films. Spectroscopic ellipsometry was used to determine the refractive index of the SiN x films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiN x films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1-3.0 eV are related to the carrier recombination via radiative native defects in the SiN x host. Simultaneously, the PL bands with the peaks at 1.5-2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiN x emission is discussed.
International Nuclear Information System (INIS)
Lee, Weon Gyu; Kelly, Aaron; Rhee, Young Min
2012-01-01
Recently, it has been shown that quantum coherence appears in energy transfers of various photosynthetic light harvesting complexes at from cryogenic to even room temperatures. Because the photosynthetic systems are inherently complex, these findings have subsequently interested many researchers in the field of both experiment and theory. From the theoretical part, simplified dynamics or semiclassical approaches have been widely used. In these approaches, the quantum-classical Liouville equation (QCLE) is the fundamental starting point. Toward the semiclassical scheme, approximations are needed to simplify the equations of motion of various degrees of freedom. Here, we have adopted the Poisson bracket mapping equation (PBME) as an approximate form of QCLE and applied it to find the time evolution of the excitation in a photosynthetic complex from marine algae. The benefit of using PBME is its similarity to conventional Hamiltonian dynamics. Through this, we confirmed the coherent population transfer behaviors in short time domain as previously reported with a more accurate but more time-consuming iterative linearized density matrix approach. However, we find that the site populations do not behave according to the Boltzmann law in the long time limit. We also test the effect of adding spurious high frequency vibrations to the spectral density of the bath, and find that their existence does not alter the dynamics to any significant extent as long as the associated reorganization energy is changed not too drastically. This suggests that adopting classical trajectory based ensembles in semiclassical simulations should not influence the coherence dynamics in any practical manner, even though the classical trajectories often yield spurious high frequency vibrational features in the spectral density
Dadak, Selma; Beall, Craig; Vlachaki Walker, Julia M; Soutar, Marc P M; McCrimmon, Rory J; Ashford, Michael L J
2017-03-27
The unsaturated fatty acid, oleate exhibits anorexigenic properties reducing food intake and hepatic glucose output. However, its mechanism of action in the hypothalamus has not been fully determined. This study investigated the effects of oleate and glucose on GT1-7 mouse hypothalamic cells (a model of glucose-excited (GE) neurons) and mouse arcuate nucleus (ARC) neurons. Whole-cell and perforated patch-clamp recordings, immunoblotting and cell energy status measures were used to investigate oleate- and glucose-sensing properties of mouse hypothalamic neurons. Oleate or lowered glucose concentration caused hyperpolarization and inhibition of firing of GT1-7 cells by the activation of ATP-sensitive K + channels (K ATP ). This effect of oleate was not dependent on fatty acid oxidation or raised AMP-activated protein kinase activity or prevented by the presence of the UCP2 inhibitor genipin. Oleate did not alter intracellular calcium, indicating that CD36/fatty acid translocase may not play a role. However, oleate activation of K ATP may require ATP metabolism. The short-chain fatty acid octanoate was unable to replicate the actions of oleate on GT1-7 cells. Although oleate decreased GT1-7 cell mitochondrial membrane potential there was no change in total cellular ATP or ATP/ADP ratios. Perforated patch and whole-cell recordings from mouse hypothalamic slices demonstrated that oleate hyperpolarized a subpopulation of ARC GE neurons by K ATP activation. Additionally, in a separate small population of ARC neurons, oleate application or lowered glucose concentration caused membrane depolarization. In conclusion, oleate induces K ATP- dependent hyperpolarization and inhibition of firing of a subgroup of GE hypothalamic neurons without altering cellular energy charge. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Directory of Open Access Journals (Sweden)
Di Pietro Alessia
2017-01-01
Full Text Available In the present paper it is described an analysis procedure suited for experiments where cross-sections strongly varying with energy are measured using beams having large energy dispersion. These cross-sections are typically the sub-barrier fusion excitation function of reactions induced by radioactive beams. The large beam energy dispersion, typical of these experiments, can lead to ambiguities in the association of the effective beam energy to the reaction product yields and consequently to an error in the determination of the excitation function. As a test case, the approach is applied to the experiments 6Li+120Sn and 7Li+119Sn measured in the energy range 14 MeV ≤ Ec.m. ≤28 MeV. The complete fusion cross sections are deduced from activation measurements using the stacked target technique. The results of these experiments, that employ the two weakly-bound stable Li isotopes, show that the complete fusion cross sections above the barrier are suppressed of about 70% and 85% with respect to the Universal Fusion Function, used as a standard reference, in the 6Li and 7Li induced reactions respectively. Moreover, the excitation functions of the two systems at energies below the barrier, do not show significant differences, despite the two systems have different n-transfer Qvalue.
Energy relaxation in IR laser excited Hg{sub 1-x}Cd{sub x}Te
Energy Technology Data Exchange (ETDEWEB)
Storebo, A K; Brudevoll, T [FFI - Norwegian Defence Research Establishment, PO Box 25, NO-2027 Kjeller, Norway NTNU (Norwegian University of Science and Technology) (Norway); Olsen, O; Norum, O C [Department of Physics and Department of Electronics and Telecommunications NO-7491 Trondheim (Norway); Breivik, M, E-mail: asta-katrine.storebo@ffi.n [Department of Electronics and Telecommunications NO-7491 Trondheim (Norway)
2009-11-15
IR laser excitation of Hg{sub l-x}Cd{sub x}Te by low-fluence femtosecond and high fluence microsecond pulses was explored for the technologically important alloy fractions x {approx} 0.2 and x {approx} 0.28. We have used first principles (LAPW) electronic structure calculations and finite element modelling, supported by Monte Carlo simulation for the description of femtosecond pulse carrier relaxation and the transport parameters. Laser wavelengths considered were 6.4 - 10.6 {mu}m for x {approx} 0.2 and 3.8 - 4.8 {mu}m for x {approx} 0.28, with an incident 1 microsecond pulse fluence of 2 J/cm{sup 2}. Many energy transfer mechanisms are invoked due to the long timescales of the microsecond pulses, and a main challenge is therefore to elucidate how these interplay in situations away from thermal equilibrium. Mechanisms studied include one- and two-photon absorption (OPA and TPA) across the band gap, inter-valence band absorption (IVA) between light- and heavy hole bands, electron-hole recombination/impact ionization, band gap renormalisation, intra-band free carrier absorption (FCA), excess carrier temperatures, non-equilibrium phonon generation, and refractive index changes. In the high fluence case, lattice temperatures evolve considerably during the laser pulse in response to the heated carriers. The chosen photon energies lie just above the band gap at the starting lattice temperature of 77 K, and nonlinear effects therefore dominate as the material heats up and the band gap begins to exceed the photon energy. Because of the low photon energy we must rely on Auger recombination, inter-valence band absorption and free carrier absorption to heat the carrier plasma. Although some Hg{sub l-x}Cd{sub x}Te material parameters are now relatively well known, existing data for many of the processes are inadequate for cases far away from thermal equilibrium. Furthermore, the role of Auger recombination in relation to non-intrinsic recombination has been a matter of debate
Improving the evidence base for energy policy: The role of systematic reviews
International Nuclear Information System (INIS)
Sorrell, Steve
2007-01-01
The concept of evidence-based policy and practice (EBPP) has gained increasing prominence in the UK over the last 10 years and now plays a dominant role in a number of policy areas, including healthcare, education, social work, criminal justice and urban regeneration. But despite this substantial, influential and growing activity, the concept remains largely unknown to policymakers and researchers within the energy field. This paper defines EBPP, identifies its key features and examines the potential role of systematic reviews of evidence in a particular area of policy. It summarises the methods through which systematic reviews are achieved; discusses their advantages and limitations; identifies the particular challenges they face in the energy policy area; and assesses whether and to what extent they can usefully be applied to contemporary energy policy questions. The concept is illustrated with reference to a proposed review of evidence for a 'rebound effect' from improved energy efficiency. The paper concludes that systematic reviews may only be appropriate for a subset of energy policy questions and that research-funding priorities may need to change if their use is to become more widespread
Razjivin, A P; Lukashev, E P; Kompanets, V O; Kozlovsky, V S; Ashikhmin, A A; Chekalin, S V; Moskalenko, A A; Paschenko, V Z
2017-09-01
Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S 2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S 2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.
Energy Technology Data Exchange (ETDEWEB)
Yukihira, Nao [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Sugai, Yuko [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Fujiwara, Masazumi [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Kosumi, Daisuke [Institute of Pulsed Power Science; Kumamoto University; Kumamoto; Japan; Iha, Masahiko [South Product Co. Ltd.; Uruma-shi; Japan; Sakaguchi, Kazuhiko [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Katsumura, Shigeo [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Gardiner, Alastair T. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Cogdell, Richard J. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Hashimoto, Hideki [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan
2017-01-01
Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyll
Elioff, Michael S.; Wall, Mark C.; Lemoff, Andrew S.; Mullin, Amy S.
1999-03-01
Energy dependent studies of the collisional relaxation of highly vibrationally excited pyrazine through collisions with CO2 were performed for initial pyrazine energies Evib=31 000-35 000 cm-1. These studies are presented along with earlier results for pyrazine with Evib=36 000-41 000 cm-1. High-resolution transient IR laser absorption of individual CO2 (0000) rotational states (J=56-80) was used to investigate the magnitude and partitioning of energy gain into CO2 rotation and translation, which comprises the high energy tail of the energy transfer distribution function. Highly vibrationally excited pyrazine was prepared by absorption of pulsed UV light at seven wavelengths in the range λ=281-324 nm, followed by radiationless decay to pyrazine's ground electronic state. Nascent CO2 (0000) rotational populations were measured for each UV excitation wavelength and distributions of nascent recoil velocities for individual rotational states of CO2 (0000) were obtained from Doppler-broadened transient linewidth measurements. Measurements of energy transfer rate constants at each UV wavelength yield energy-dependent probabilities for collisions involving large ΔE values. These results reveal that the magnitude of large ΔE collisional energy gain in CO2 (0000) is fairly insensitive to the amount of vibrational energy in pyrazine for Evib=31 000-35 000 cm-1. A comparison with earlier studies on pyrazine with Evib=36 000-41 000 cm-1 indicates that the V→RT energy transfer increases both in magnitude and probability for Evib>36 000 cm-1. Implications of incomplete intramolecular vibrational relaxation, electronic state coupling, and isomerization barriers are discussed in light of these results.
International Nuclear Information System (INIS)
McGowan, F.K.; Stelson, P.H.
1974-01-01
The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)
International Nuclear Information System (INIS)
Haeusser, O.; Sawafta, R.; Jeppesen, R.G.
1988-01-01
Forward-angle cross sections for 1 + , T = 1 and 1 + , T = 0 states in 28 Si excited by the (p,p') reaction have been measured to determine the energy dependence of important pieces of the effective nucleon-nucleus interaction. The isovector spin-transfer transitions depend on energy as expected from distorted-wave impulse approximation calculations based on the dominant V/sub Σ//sub tau/ part of the Franey-Love interaction. The parts of this interaction responsible for exciting the 9.5 MeV isosca- lar spin-flip transition predict a weaker energy dependence than is observed experimentally. The summed Gamow-Teller strength for isovector transitions below 14.5 MeV is found to be (0.89 +- 0.09) times the result of large-scale shell model calculations
Energy Technology Data Exchange (ETDEWEB)
Amusia, M.Ya. [The Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); A F Ioffe Physical-Technical Institute, 194921 St Petersburg (Russian Federation); Mikhailov, A.I.; Mikhailov, I.A. [St Petersburg Nuclear Physics Institute, Gatchina, 188350 St Petersburg (Russian Federation)
1999-10-28
Double ionization and ionization with excitation of helium-like ions with Z>>1 from 2 {sup 1}S and 2 {sup 3}S states on the absorption of a high-frequency photon have been considered. The analytical calculation is performed in the non-relativistic photon energy range in the lowest order of perturbation theory in the inter-electron interaction. Coulomb wavefunctions and the Coulomb Green function are used as a zeroth-order approximation. Differential and total cross sections of the processes are expressed via the corresponding values for the single photoionization. The photoelectron energy spectrum is obtained in the marginal energy range (i.e. for p{sub 1}>>p{sub 2}, p{sub 1} and p{sub 2} momenta of photoelectrons) for the double-ionization process. Simple relations between the cross sections of double ionization and ionization with excitation are derived. (author)
International Nuclear Information System (INIS)
Samanta, R; Purkait, M
2012-01-01
Boundary Corrected Continuum Intermediate State (BCCIS) approximation and Classical Trajectory Monte Carlo (CTMC) methods are applied to calculate the charge transfer and excitation cross sections for ion-ion collisions.
Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.
2018-06-01
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.
Directory of Open Access Journals (Sweden)
Carbone D.
2016-01-01
Full Text Available The 13C(18O,16O15C reaction has been studied at 84 MeV incident energy. The ejectiles have been momentum analized by the MAGNEX spectrometer and 15C excitation energy spectra have been obtained up to about 20 MeV. In the region above the two-neutron separation energy, a bump has been observed at 13.7 MeV. The extracted cross section angular distribution for this structure, obtained by using different models for background, displays a clear oscillating pattern, typical of resonant state of the residual nucleus.
Excitation functions of proton induced reactions on {sup nat}Fe in the energy region up to 45 MeV
Energy Technology Data Exchange (ETDEWEB)
Kim, Kwangsoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Khandaker, Mayeen Uddin [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Naik, Haladhara [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Radiochemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)
2014-03-01
The excitation functions of various reaction products such as {sup 55,56,57}Co, {sup 52}Fe, {sup 52,54}Mn, and {sup 51}Cr in the {sup nat}Fe(p, x) reactions were measured by the stacked-foil activation technique in the energy range between their respective reaction threshold and 45 MeV at the MC-50 cyclotron of the Korean Institute of Radiological and Medical Sciences, Korea. The present experimental data were compared with the existing literature data. It was found that excitation function of {sup 56,57}Co and {sup 51}Cr from the {sup nat}Fe(p, x) reaction are in agreement with the literature data. However, the cross-sections for {sup nat}Fe(p, x){sup 52}Fe reactions are lower and those for {sup nat}Fe(p, x){sup 52}Mn and {sup nat}Fe(p, x){sup 54}Mn reactions are higher than the literature data. The reaction cross-sections of the above mentioned reaction products were also compared with those from the TENDL-2012 library based on the TALYS-1.4 program as a function of proton energy, which was reproduced the trend of the excitation functions of the experimental {sup nat}Fe(p, x) reaction cross-section. The integral yields for thick target of the investigated radionuclides were calculated from the excitation function.
Zhao, Xiuli; Asante Antwi, Henry; Yiranbon, Ethel
2014-01-01
The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, "least-cost," and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.
Directory of Open Access Journals (Sweden)
Xiuli Zhao
2014-01-01
Full Text Available The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.
Regeta, Khrystyna; Bannwarth, Christoph; Grimme, Stefan; Allan, Michael
2015-06-28
The technique of low energy (0-30 eV) electron impact spectroscopy, originally developed for gas phase molecules, is applied to room temperature ionic liquids (IL). Electron energy loss (EEL) spectra recorded near threshold, by collecting 0-2 eV electrons, are largely continuous, assigned to excitation of a quasi-continuum of high overtones and combination vibrations of low-frequency modes. EEL spectra recorded by collecting 10 eV electrons show predominantly discrete vibrational and electronic bands. The vibrational energy-loss spectra correspond well to IR spectra except for a broadening (∼0.04 eV) caused by the liquid surroundings, and enhanced overtone activity indicating a contribution from resonant excitation mechanism. The spectra of four representative ILs were recorded in the energy range of electronic excitations and compared to density functional theory multireference configuration interaction (DFT/MRCI) calculations, with good agreement. The spectra up to about 8 eV are dominated by π-π* transitions of the aromatic cations. The lowest bands were identified as triplet states. The spectral region 2-8 eV was empty in the case of a cation without π orbitals. The EEL spectrum of a saturated solution of methylene green in an IL band showed the methylene green EEL band at 2 eV, indicating that ILs may be used as a host to study nonvolatile compounds by this technique in the future.
Shell evolution of stable N = 50-56 Zr and Mo nuclei with respect to low-lying octupole excitations
Energy Technology Data Exchange (ETDEWEB)
Gregor, E.T.; Scheck, M.; Chapman, R.; Gaffney, L.P.; Keatings, J.; Mashtakov, K.R.; O' Donnell, D.; Smith, J.F.; Spagnoletti, P.; Wiseman, C. [University of the West of Scotland, School of Engineering and Computing, Paisley (United Kingdom); SUPA, Scottish Universities Physics Alliance, Glasgow (United Kingdom); Thuerauf, M.; Werner, V. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)
2017-03-15
For the N = 50-56 zirconium (Z = 40) and molybdenum (Z = 42) isotopes, the evolution of subshells is evaluated by extracting the effective single-particle energies from available particle-transfer data. The extracted systematic evolution of neutron subshells and the systematics of the excitation energy of the octupole phonons provide evidence for type-II shape coexistence in the Zr isotopes. Employing a simplistic approach, the relative effective single-particle energies are used to estimate whether the formation of low-lying octupole-isovector excitations is possible at the proposed energies. The results raise doubts about this assignment. (orig.)
Disentangling dark energy and cosmic tests of gravity from weak lensing systematics
Laszlo, Istvan; Bean, Rachel; Kirk, Donnacha; Bridle, Sarah
2012-06-01
We consider the impact of key astrophysical and measurement systematics on constraints on dark energy and modifications to gravity on cosmic scales. We focus on upcoming photometric ‘stage III’ and ‘stage IV’ large-scale structure surveys such as the Dark Energy Survey (DES), the Subaru Measurement of Images and Redshifts survey, the Euclid survey, the Large Synoptic Survey Telescope (LSST) and Wide Field Infra-Red Space Telescope (WFIRST). We illustrate the different redshift dependencies of gravity modifications compared to intrinsic alignments, the main astrophysical systematic. The way in which systematic uncertainties, such as galaxy bias and intrinsic alignments, are modelled can change dark energy equation-of-state parameter and modified gravity figures of merit by a factor of 4. The inclusion of cross-correlations of cosmic shear and galaxy position measurements helps reduce the loss of constraining power from the lensing shear surveys. When forecasts for Planck cosmic microwave background and stage IV surveys are combined, constraints on the dark energy equation-of-state parameter and modified gravity model are recovered, relative to those from shear data with no systematic uncertainties, provided fewer than 36 free parameters in total are used to describe the galaxy bias and intrinsic alignment models as a function of scale and redshift. While some uncertainty in the intrinsic alignment (IA) model can be tolerated, it is going to be important to be able to parametrize IAs well in order to realize the full potential of upcoming surveys. To facilitate future investigations, we also provide a fitting function for the matter power spectrum arising from the phenomenological modified gravity model we consider.
International Nuclear Information System (INIS)
Stryganyuk, G.; Shalapska, T.; Voloshinovskii, A.; Gektin, A.; Krasnikov, A.; Zazubovich, S.
2011-01-01
Spectral-kinetic characteristics of Gd 3+ and Ce 3+ luminescence from a series of Ce 3+ -doped alkali gadolinium phosphates of MGdP 4 O 12 type (M=Li, Na, Cs) have been studied within 4.2-300 K temperature range using time-resolved luminescence spectroscopy techniques. The processes of energy migration along the Gd 3+ sub-lattice and energy transfer between the Gd 3+ and Ce 3+ ions have been investigated. Peculiarities of these processes have been compared for MGdP 4 O 12 phosphate hosts with different alkali metal ions. A contribution of different levels from the 6 P j multiplet of the lowest Gd 3+ excited state into the energy migration and transfer processes has been clarified. The phonon-assisted occupation of high-energy 6 P 5/2,3/2 levels by Gd 3+ in the excited 6 P j state has been revealed as a shift of Gd 3+6 P j → 8 S 7/2 emission into the short-wavelength spectral range upon the temperature increase. The relaxation of excited Gd 3+ via phonon-assisted population of Gd 3+6 P 5/2 level (next higher one to the lowest excited 6 P 7/2 ) is supposed to be responsible for the rise in probability of energy migration within the Gd 3+ sub-lattice initiating the Gd 3+ →Ce 3+ energy transfer at T 3+ →Ce 3+ energy transfer at T>150 K is explained by the increase in probability of Gd 3+ relaxation into the highest 6 P 3/2 level of the 6 P j multiplet. An efficient reversed Ce 3+ →Gd 3+ energy transfer has been revealed for the studied phosphates at 4.2 K. - Highlights: →We investigate the Gd 3+ -Ce 3+ energy transfer in alkali gadolinium phosphates. → Thermal population of Gd 3+6 P 5/2 level improves migration along the Gd sub-lattice. → Increasing overlap of Gd 3+ and Ce 3+ states enhances the Gd 3+ -Ce 3+ energy transfer. → In LiGdP 4 O 12 :Ce and NaGdP 4 O 12 :Ce an efficient Ce 3+ -Gd 3+ transfer occurs at 4-300 K. → An effective reverse Gd 3+ -Ce 3+ energy transfer becomes possible at T>150 K.
International Nuclear Information System (INIS)
Genouin-Duhamel, Emmanuel
1999-01-01
This work is a contribution to the study of properties of hot nuclei formed in heavy ion collisions at intermediate energies. The experiment has been performed with the INDRA multidetector. It is shown that most of the reaction cross section is associated with binary dissipative collisions, accompanied by the production of particles from a region between the two reaction partners. This study is focussed on excitation energy and angular momentum of projectile-like fragment (PLF) in 129 Xe + nat Sn reactions from 25 to 50 MeV per nucleon. Several methods are used to characterize hot nuclei (velocity, charge, mass and excitation energy). All these methods are compared between them and indicate that high energies are deposited in the nuclei during collision (it may exceed the nucleus binding energy). The angular momentum transferred into intrinsic spin to PLF in the peripheral collisions has been deduced from angular distributions and kinetic energies of the emitted light charged particles (atomic number smaller ar equal to 2). Both methods agree qualitatively. The spin values decrease with the violence of the collision. These values correspond to values averaged over the whole deexcitation chain of nuclei. The predictions of transport models reproduce qualitatively the most peripheral collisions and suggest that high spins are transferred to PLF (from 30 to 50 ℎ). Larger angular momentum values are observed at the lowest incident energy. The time hierarchy in the evaporation process and the role of mid-rapidity emission are also discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Klump, K N; Lassettre, E N
1975-01-01
Generalized oscillator strengths have been determined for the 7.4 eV excitation in H/sub 2/O at initial electron kinetic energies from 300 to 600 eV and squared momentum changes (of the colliding electron) to 4.5 a.u. These data are employed, in an approximate formula developed by Lassettre and Dillon, to calculate the excitation energy of the lowest /sup 3/B/sub 1/ state of H/sub 2/O. The value obtained, 7.0 eV, is in good agreement with accurate quantum chemical calculations and with experiment. The estimated uncertainty, based on errors found for CO and He, is 0.1 eV. This is a plausible estimate, not an upper bound.
Sokolowski-Tinten, K; Shen, X; Zheng, Q; Chase, T; Coffee, R; Jerman, M; Li, R K; Ligges, M; Makasyuk, I; Mo, M; Reid, A H; Rethfeld, B; Vecchione, T; Weathersby, S P; Dürr, H A; Wang, X J
2017-09-01
We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.
Mcpeak, W. L.
1975-01-01
A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.
Haby, Michelle M; Chapman, Evelina; Clark, Rachel; Galvão, Luiz A C
2016-04-01
Objective To inform policy by providing an overview of systematic reviews on interventions that facilitate sustainable energy use and have a positive impact on health. Methods Systematic review methods were used to synthesize evidence from multiple systematic reviews and economic evaluations through a comprehensive search of 13 databases and nine websites based on a pre-defined protocol, including clear inclusion criteria. Both grey and peer-reviewed literature published in English, Spanish, and Portuguese during the 17 years from January 1997 - January 2014 was included. To classify as "sustainable," interventions needed to aim to positively impact at least two dimensions of the integrated framework for sustainable development and include measures of health impact. Results Five systematic reviews and one economic evaluation met the inclusion criteria. The most promising interventions that impacted health were electricity for lighting and other uses (developing countries); improved stoves for cooking and health and/or cleaner fuels for cooking (developing countries); and household energy efficiency measures (developed countries). These interventions also had potential environmental and economic impacts. Their cost-effectiveness is not known, nor is their impact on health inequalities. Conclusions What is needed now is careful implementation of interventions where the impacts are likely to be positive but their implementation needs to be rigorously evaluated, including possible adverse impacts. Care needs to be taken not to exacerbate health inequalities and to consider context, human behavior and cultural factors so that the potential health benefits are realized in real-life implementation. Possible impact on health inequalities needs to be considered and measured in future primary studies and systematic reviews.
DEFF Research Database (Denmark)
Åstrand, P.-O.; Sommer-Larsen, P.; Hvilsted, Søren
2000-01-01
been investigated as diazo components for a potential use in optical das storage materials. It is found that the diazo compounds with two heterocyclic five-membered rings have pi --> pi* excitation energies corresponding to laser wavelengths in the region 450-500 nm whereas one five-membered ring...... and a phenyl group as diazo components results in wavelengths in the region 400-335 nm. (C) 2000 Published by Elsevier Science B.V....
Oyarzabal, I; Ruiz, J; Ruiz, E; Aravena, D; Seco, J M; Colacio, E
2015-08-11
The trinuclear complex [ZnCl(μ-L)Dy(μ-L)ClZn]PF6 exhibits a single-molecule magnetic behaviour under zero field with a relatively large effective energy barrier of 186 cm(-1). Ab initio calculations reveal that the relaxation of the magnetization is symmetry-driven (the Dy(III) ion possesses a C2 symmetry) and occurs via the second excited state.
Energy Technology Data Exchange (ETDEWEB)
Boo, Bong Hyun; Kwak, Hae Ran; Hong, Seung Ki [Chungnam National University, Daejeon (Korea, Republic of); Park, Chan Jo [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); No, Kwang Hyun [Sookmyung Womens University, Seoul (Korea, Republic of)
2010-08-15
We have searched low-lying conformers of calix[4]arene and found one global minimum having a cone shape, together with three conformers such as partial cone-shape conformers. We then elucidated the thermodynamics for the conformational changes by performing density-functional theory (DFT) calculations. The time-dependent DFT calculation enabled us to assign the absorption spectrum and to reveal a variation of the excitation energies with geometry.
Dissanayaka, Thusharika; Zoghi, Maryam; Farrell, Michael; Egan, Gary F; Jaberzadeh, Shapour
2017-08-01
Numerous studies have explored the effects of transcranial electrical stimulation (tES) - including anodal transcranial direct current stimulation (a-tDCS), cathodal transcranial direct current stimulation (c-tDCS), transcranial alternative current stimulation (tACS), transcranial random noise stimulation (tRNS) and transcranial pulsed current stimulation (tPCS) - on corticospinal excitability (CSE) in healthy populations. However, the efficacy of these techniques and their optimal parameters for producing robust results has not been studied. Thus, the aim of this systematic review was to consolidate current knowledge about the effects of various parameters of a-tDCS, c-tDCS, tACS, tRNS and tPCS on the CSE of the primary motor cortex (M1) in healthy people. Leading electronic databases were searched for relevant studies published between January 1990 and February 2017; 126 articles were identified, and their results were extracted and analysed using RevMan software. The meta-analysis showed that a-tDCS application on the dominant side significantly increases CSE (P < 0.01) and that the efficacy of a-tDCS is dependent on current density and duration of application. Similar results were obtained for stimulation of M1 on the non-dominant side (P = 0.003). The effects of a-tDCS reduce significantly after 24 h (P = 0.006). Meta-analysis also revealed significant reduction in CSE following c-tDCS (P < 0.001) and significant increases after tRNS (P = 0.03) and tPCS (P = 0.01). However, tACS effects on CSE were only significant when the stimulation frequency was ≥140 Hz. This review provides evidence that tES has substantial effects on CSE in healthy individuals for a range of stimulus parameters. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Lili Du
2015-09-01
Full Text Available Energy issues in transportation systems have garnered increasing attention recently. This study proposes a systematic methodology for policy-makers to minimize energy consumption in multimodal intercity transportation systems considering suppliers’ operational constraints and travelers’ mobility requirements. A bi-level optimization model is developed for this purpose and considers the air, rail, private auto, and transit modes. The upper-level model is a mixed integer nonlinear program aiming to minimize energy consumption subject to transportation suppliers’ operational constraints and traffic demand distribution to paths resulting from the lower-level model. The lower-level model is a linear program seeking to maximize the trip utilities of travelers. The interactions between the multimodal transportation suppliers and intercity traffic demand are considered under the goal of minimizing system energy consumption. The proposed bi-level mixed integer model is relaxed and transformed into a mathematical program with complementarity constraints, and solved using a customized branch-and-bound algorithm. Numerical experiments, conducted using multimodal travel options between Lafayette, Indiana and Washington, D.C. reiterate that shifting traffic demand from private cars to the transit and rail modes significantly reduce energy consumption. Moreover, the proposed methodology provides tools to quantitatively analyze system energy consumption and traffic demand distribution among transportation modes under specific policy instruments. The results illustrate the need to systematically incorporate the interactions among traveler preferences, network structure, and supplier operational schemes to provide policy-makers insights for developing traffic demand shift mechanisms to minimize system energy consumption. Hence, the proposed methodology provide policy-makers the capability to analyze energy consumption in the transportation sector by a
Systematic investigations of low energy Ar ion beam sputtering of Si and Ag
Energy Technology Data Exchange (ETDEWEB)
Feder, R., E-mail: rene.feder@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig (Germany); Frost, F.; Neumann, H.; Bundesmann, C.; Rauschenbach, B. [Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig (Germany)
2013-12-15
Ion beam sputter deposition (IBD) delivers some intrinsic features influencing the growing film properties, because ion properties and geometrical process conditions generate different energy and spatial distributions of the sputtered and scattered particles. Even though IBD has been used for decades, the full capabilities are not investigated systematically and specifically used yet. Therefore, a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the generated secondary particles and backscattered ions and the deposited films needs to be done. A vacuum deposition chamber has been set up which allows ion beam sputtering of different targets under variation of geometrical parameters (ion incidence angle, position of substrates and analytics in respect to the target) and of ion beam parameters (ion species, ion energy) to perform a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the properties of the sputtered and scattered particles, and the properties of the deposited films. A set of samples was prepared and characterized with respect to selected film properties, such as thickness and surface topography. The experiments indicate a systematic influence of the deposition parameters on the film properties as hypothesized before. Because of this influence, the energy distribution of secondary particles was measured using an energy-selective mass spectrometer. Among others, experiments revealed a high-energetic maximum for backscattered primary ions, which shifts with increasing emission angle to higher energies. Experimental data are compared with Monte Carlo simulations done with the well-known Transport and Range of Ions in Matter, Sputtering version (TRIM.SP) code [J.P. Biersack, W. Eckstein, Appl. Phys. A: Mater. Sci. Process. 34 (1984) 73]. The thicknesses of the films are in good agreement with those calculated from simulated particle fluxes. For the positions of the
Systematic studies of heavy ion collisions in the low SIS energy region
International Nuclear Information System (INIS)
Li Qingfeng; Wang Yongjia; Guo Chenchen; Li Zhuxia
2014-01-01
After inserting the Skyrme potential energy density functions for potential update, more detailed medium modifications for nucleon-nucleon elastic cross sections, and the isospin effect for cluster recognition into the Ultra-relativistic Quantum Molecular Dynamics (UrQMD), the dynamic process of heavy ion collisions (HICs) at low SIS energies (about 40∼400 MeV/u) is primarily studied. And, after systematically studying the emission and collective flows of light clusters from HICs in such beam energy region, the sensitive observables especially to the density dependent symmetry energy at supra-normal densities are focused. It is found that: (1)the initial neutron/proton ratio dependence of the balance energy of neutrons from mass-symmetric Sn isotopes can be taken as a useful probe to constrain the stiffness of the nuclear symmetry energy; (2) the transverse velocity/momentum dependence of the elliptic flow ratio of neutrons and protons or hydrogen isotopes (v 2 n /v 2 p,H ) is also sensitive to symmetry energy. The χ 2 analysis from the difference bet e the theoretical (taking Skyrme potential parametrizations with incompressibility K 0 being almost same but the slope parameter L of symmetry energy being largely different) and experimental (taking FOPI/LAND data) v 2 n /v 2 H values determines the value of L to be (89 ± 45) MeV within in a 2σ uncertainty. (authors)
Directory of Open Access Journals (Sweden)
Jong-Yun Yoon
2015-09-01
Full Text Available Dynamic behaviors in practical driveline systems for wind turbines or vehicles are inherently affected by multiple nonlinearities such as piecewise-type torsional springs. However, various excitation conditions with different levels of magnitudes also show strong relationships to the dynamic behaviors when system responses are examined in both frequency and time domains. This study investigated the nonlinear responses of torsional systems under various excitations by using the harmonic balance method and numerical analysis. In order to understand the effect of piecewise-type nonlinearities on vibrational energy with different excitations, the nonlinear responses were investigated with various comparisons. First, two different jumping phenomena with frequency up- and down-sweeping conditions were determined under severe excitation levels. Second, practical system analysis using the phase plane and Poincaré map was conducted in various ways. When the system responses were composed of quasi-periodic components, Poincaré map analysis clearly revealed the nonlinear dynamic characteristics and thus it is suggested to investigate complicated nonlinear dynamic responses in practical driveline systems.
International Nuclear Information System (INIS)
Nichitiu, F.; Falomkin, I.V.; Sapozhnikov, M.G.; Shcherbakov, Yu.A.; Piragino, G.
1981-06-01
In the 24 MeV-260 MeV kinetic energy interval, the energy dependent phase shift analysis of π 4 He elastic scattering is done. The eneray dependence is given by the rational fraction approximants of the partial S matrix. The search for the stable S matrix zero-pole pairs in the k and √s complex plane give some proofs for the existence of the (π 4 He) excited states in the S, P and probably D partial waves. (authors)
Heydenreich, Juliane; Kayser, Bengt; Schutz, Yves; Melzer, Katarina
2017-12-01
Endurance athletes perform periodized training in order to prepare for main competitions and maximize performance. However, the coupling between alterations of total energy expenditure (TEE), energy intake, and body composition during different seasonal training phases is unclear. So far, no systematic review has assessed fluctuations in TEE, energy intake, and/or body composition in endurance athletes across the training season. The purpose of this study was to (1) systematically analyze TEE, energy intake, and body composition in highly trained athletes of various endurance disciplines and of both sexes and (2) analyze fluctuations in these parameters across the training season. An electronic database search was conducted on the SPORTDiscus and MEDLINE (January 1990-31 January 2015) databases using a combination of relevant keywords. Two independent reviewers identified potentially relevant studies. Where a consensus was not reached, a third reviewer was consulted. Original research articles that examined TEE, energy intake, and/or body composition in 18-40-year-old endurance athletes and reported the seasonal training phases of data assessment were included in the review. Articles were excluded if body composition was assessed by skinfold measurements, TEE was assessed by questionnaires, or data could not be split between the sexes. Two reviewers assessed the quality of studies independently. Data on subject characteristics, TEE, energy intake, and/or body composition were extracted from the included studies. Subjects were categorized according to their sex and endurance discipline and each study allocated a weight within categories based on the number of subjects assessed. Extracted data were used to calculate weighted means and standard deviations for parameters of TEE, energy intake, and/or body composition. From 3589 citations, 321 articles were identified as potentially relevant, with 82 meeting all of the inclusion criteria. TEE of endurance athletes was
International Nuclear Information System (INIS)
Koopman, R.P.
1977-01-01
A series of experiments was performed in which gamma-ray spectra were measured, using a Ge(Li) detector, for incident 7 to 26-MeV protons on the even-even vibrational nuclei 56 Fe, 62 Ni, 64 Zn, 108 Pd, 110 Cd, 114 Cd, 116 Cd, 116 Sn, 120 Sn, and 206 Pb, and for incident 14-MeV neutrons on natural Fe, Ni, Zn, Cd, Sn, and Pb. These measurements yielded gamma-ray cross sections from which it was inferred that almost all of the gamma cascades from (p,p') and (n,n') reactions passed down through the first 2 + levels. Consequently, the strength of the 2 + → 0 + gamma transitions were found to be an indirect measure of the (p,p') or (n,n') cross sections. Several types of nuclear model calculations were performed and compared with experimental results. These calculations included coupled-channel calculations to reproduce the direct, collective excitation of the low-lying levels, and statistical plus pre-equilibrium model calculations to reproduce the (p,p') and the (n,n') cross sections for comparison with the 2 + → 0 + gamma measurements. The agreement between calculation and experiment was generally good except at high energies, where pre-equilibrium processes dominate (i.e. around 26-MeV). Here discrepancies between calculations from the two different pre-equilibrium models and between the data and the calculations were found. Significant isospin mixing of T/sub greater than/ into T/sub less than/ states was necessary in order to have the calculations match the data for the (p,p') reactions, up to about 18-MeV
Log mirror symmetry between the lifetime and the excitation energy of the 9/2+ isomer in mass ∼ 80
International Nuclear Information System (INIS)
Kumar, V.; Kumar, S.; Hasan, Z.; Kumar, D.; Koranga, B.S.; Rohitash; Negi, D.
2011-01-01
In this report, the systematically study of 9/2 + isomer in mass ∼ 80, will be explored in such a way that lead to a dependence on the number of neutrons and protons in the active shell (N p N n ). An attempt has been made to understand general systematics and the role of the g 9/2 orbit rather than to reproduce exact agreement between theory and experiment
Na(3p left-arrow 3s) excitation by impact of slow multiply charged ions
International Nuclear Information System (INIS)
Horvath, G.; Schweinzer, J.; Winter, H.; Aumayr, F.
1996-01-01
We present a systematic experimental and theoretical study of Na(3p left-arrow 3s) excitation by slow (v NaI with projectile ion charge state q is investigated. Due to the dominance of the competing electron capture channels at low collision energies E, the excitation cross sections deviate significantly from a commonly applied σ/q=f(E/q) cross-section scaling relation. copyright 1996 The American Physical Society
Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.
2015-10-01
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.
International Nuclear Information System (INIS)
Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.
2015-01-01
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range
Energy Technology Data Exchange (ETDEWEB)
Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Institut de Chimie-Bât. B6C, Université de Liège, B-4000 Liège 1 (Belgium); Brunger, M. J., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); and others
2015-10-14
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.
Excited-atom production by electron and ion bombardment of alkali halides
International Nuclear Information System (INIS)
Walkup, R.E.; Avouris, P.; Ghosh, A.P.
1987-01-01
We present experimental results on the production of excited atoms by electron and ion bombardment of alkali halides. For the case of electron bombardment, Doppler shift measurements show that the electronically excited atoms have a thermal velocity distribution in equilibrium with the surface temperature. Measurements of the absolute yield of excited atoms, the distribution of population among the excited states, and the systematic dependence on incident electron current and sample temperature support a model in which the excited atoms are produced by gas-phase collisions between desorbed ground-state atoms and secondary electrons. In contrast, for the case of ion bombardment, the excited atoms are directly sputtered from the surface, with velocity distributions characteristic of a collision cascade, and with typical energies of --10 eV
Belyaeva, N E; Schmitt, F-J; Paschenko, V Z; Riznichenko, G Yu; Rubin, A B; Renger, G
2011-02-01
Our recently presented PS II model (Belyaeva et al., 2008) was improved in order to permit a consistent simulation of Single Flash Induced Transient Fluorescence Yield (SFITFY) traces that were earlier measured by Steffen et al. (2005) on whole leaves of Arabidopsis (A.) thaliana at four different energies of the actinic flash. As the essential modification, the shape of the actinic flash was explicitly taken into account assuming that an exponentially decaying rate simulates the time dependent excitation of PS II by the 10 ns actinic flash. The maximum amplitude of this excitation exceeds that of the measuring light by 9 orders of magnitude. A very good fit of the SFITFY data was achieved in the time domain from 100 ns to 10s for all actinic flash energies (the maximum energy of 7.5 × 10¹⁶ photons/(cm²flash) is set to 100%, the relative energies of weaker actinic flashes were of ∼8%, 4%, ∼1%). Our model allows the calculation and visualization of the transient PS II redox state populations ranging from the dark adapted state, via excitation energy and electron transfer steps induced by pulse excitation, followed by final relaxation into the stationary state eventually attained under the measuring light. It turned out that the rate constants of electron transfer steps are invariant to intensity of the actinic laser flash. In marked contrast, an increase of the actinic flash energy by more than two orders of magnitude from 5.4×10¹⁴ photons/(cm²flash) to 7.5×10¹⁶ photons/(cm²flash), leads to an increase of the extent of fluorescence quenching due to carotenoid triplet (³Car) formation by a factor of 14 and of the recombination reaction between reduced primary pheophytin (Phe(-)) and P680(+) by a factor of 3 while the heat dissipation in the antenna complex remains virtually constant. The modified PS II model offers new opportunities to compare electron transfer and dissipative parameters for different species (e.g. for the green algae and the
National Research Council Canada - National Science Library
Holzricher, John
2004-01-01
To more easily obtain a voiced excitation function for speech characterization, measurements of skin motion, tracheal tube, and vocal fold, motions were made and compared to EM sensor-glottal derived...
Wright, Bradford L.
1975-01-01
Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)
International Nuclear Information System (INIS)
Fischer, C.F.
1990-01-01
Variational procedures for predicting energy differences of many-electron systems are investigated. Several different calculations for few-electron systems are considered that illustrate the problems encountered when a many-electron system is modeled as a core plus outer electrons. It is shown that sequences of increasingly more accurate calculations for outer correlation may converge yielding wrong transition energies. At the same time, accurate core-polarization calculations overestimate the binding energy, requiring a core-valence correction. For the high-spin, core-excited states of Li, it was found that outer correlation only predicted electron affinities as accurately as full-correlation studies. This observation suggested a prediction of the core-excited 4 P endash 4 S transition in Be - , based on observed 3 P 0 endash 3 P transition energies of the neutral species, predicted electron affinities including only outer correlation, and a core-valence correction, that is shown to be in good agreement with experiment. A similar calculation for Mg - predicts a wavelength of 2895.1 A for this transition
Energy Technology Data Exchange (ETDEWEB)
Denis-Alpizar, Otoniel, E-mail: otonieldenisalpizar@gmail.com [Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex (France); Departamento de Física, Universidad de Matanzas, Matanzas 40100 (Cuba); Kalugina, Yulia [LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058, Le Havre (France); Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin av., Tomsk 634050 (Russian Federation); Stoecklin, Thierry [Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex (France); Vera, Mario Hernández [LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058, Le Havre (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Quinta de Los Molinos, Plaza, La Habana 10600 (Cuba); Lique, François, E-mail: francois.lique@univ-lehavre.fr [Departamento de Física, Universidad de Matanzas, Matanzas 40100 (Cuba)
2013-12-14
We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H{sub 2}. Ab initio calculations of the HCN–H{sub 2} van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN–H{sub 2} with the nitrogen pointing towards H{sub 2} at an intermolecular separation of 7.20 a{sub 0}. The corresponding well depth is −195.20 cm{sup −1}. A secondary minimum of −183.59 cm{sup −1} was found for a T-shape configuration with the H of HCN pointing to the center of mass of H{sub 2}. We also determine the rovibrational energy levels of the HCN–para-H{sub 2} and HCN–ortho-H{sub 2} complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm{sup −1} and 60.26 cm{sup −1}, respectively. The calculated ro-vibrational transitions in the HCN–H{sub 2} complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.
Lim, Edward C
1974-01-01
Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab
The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment
Albrecht, Tamee R.; Crootof, Arica; Scott, Christopher A.
2018-04-01
The water-energy-food (WEF) nexus is rapidly expanding in scholarly literature and policy settings as a novel way to address complex resource and development challenges. The nexus approach aims to identify tradeoffs and synergies of water, energy, and food systems, internalize social and environmental impacts, and guide development of cross-sectoral policies. However, while the WEF nexus offers a promising conceptual approach, the use of WEF nexus methods to systematically evaluate water, energy, and food interlinkages or support development of socially and politically-relevant resource policies has been limited. This paper reviews WEF nexus methods to provide a knowledge base of existing approaches and promote further development of analytical methods that align with nexus thinking. The systematic review of 245 journal articles and book chapters reveals that (a) use of specific and reproducible methods for nexus assessment is uncommon (less than one-third); (b) nexus methods frequently fall short of capturing interactions among water, energy, and food—the very linkages they conceptually purport to address; (c) assessments strongly favor quantitative approaches (nearly three-quarters); (d) use of social science methods is limited (approximately one-quarter); and (e) many nexus methods are confined to disciplinary silos—only about one-quarter combine methods from diverse disciplines and less than one-fifth utilize both quantitative and qualitative approaches. To help overcome these limitations, we derive four key features of nexus analytical tools and methods—innovation, context, collaboration, and implementation—from the literature that reflect WEF nexus thinking. By evaluating existing nexus analytical approaches based on these features, we highlight 18 studies that demonstrate promising advances to guide future research. This paper finds that to address complex resource and development challenges, mixed-methods and transdisciplinary approaches are needed
Low-energy Coulomb excitation of $^{62}$Fe and $^{62}$Mn following in-beam decay of $^{62}$Mn
Gaffney, L P; Bastin, B; Bildstein, V; Blazhev, A; Bree, N; Darby, I; De Witte, H; DiJulio, D; Diriken, J; Fedosseev, V N; Fransen, Ch; Gernhäuser, R; Gustafsson, A; Hess, H; Huyse, M; Kesteloot, N; Kröll, Th; Lutter, R; Marsh, B A; Reiter, P; Seidlitz, M; Van Duppen, P; Voulot, D; Warr, N; Wenander, F; Wimmer, K; Wrzosek-Lipska, K
2015-01-01
Sub-barrier Coulomb-excitation was performed on a mixed beam of $^{62}$Mn and $^{62}$Fe, following in-trap $\\beta^{-}$ decay of $^{62}$Mn at REX-ISOLDE, CERN. The trapping and charge breeding times were varied in order to alter the composition of the beam, which was measured by means of an ionisation chamber at the zero-angle position of the Miniball array. A new transition was observed at 418 keV, which has been tentatively associated to a $2^{(+)},3^{(+)}\\rightarrow1^{+}_{g.s.}$ transition. This fixes the relative positions of the $\\beta$-decaying $4^{(+)}$ and $1^{+}$ states in $^{62}$Mn for the first time. Population of the $2^{+}_{1}$ state was observed in $^{62}$Fe and the cross-section determined by normalisation to the $^{109}$Ag target excitation. Combining this Coulomb-excitation cross-section with previously measured lifetimes of the $2^{+}_{1}$ state, the spectroscopic quadrupole moment, $Q_{s}(2^{+}_{1})$, is extracted, albeit with a large uncertainty.
Multi-quasiparticle excitations in 145Tb
International Nuclear Information System (INIS)
Zheng Yong; Zhou Xiaohong; Zhang Yuhu; Liu Minliang; Guo Yingxiang; Lei Xiangguo; Kusakari, H.; Sugawara, M.
2004-01-01
High-spin states in 145 Tb have been populated using the 118 Sn( 32 S, 1p4n) reaction at a beam energy of 165 MeV. The level scheme of 145 Tb has been established for the first time. The level scheme shows characteristics of spherical or slightly oblate nucleus. Based on the systematic trends of the level structure in the neighboring N=80 isotones, the level structure in 145 Tb below 2 MeV excitation is well explained by coupling an h 11/2 valence proton to the even-even 144 Gd core. Above 2 MeV excitation, most of the yrast levels are interpreted with multi-quasiparticle shell-model configurations. (authors)
Saeidifard, Farzane; Medina-Inojosa, Jose R; Supervia, Marta; Olson, Thomas P; Somers, Virend K; Erwin, Patricia J; Lopez-Jimenez, Francisco
2018-03-01
Background Replacing sitting with standing is one of several recommendations to decrease sedentary time and increase the daily energy expenditure, but the difference in energy expenditure between standing versus sitting has been controversial. This systematic review and meta-analysis aimed to determine this difference. Designs and methods We searched Ovid MEDLINE, Ovid Embase Scopus, Web of Science and Google Scholar for observational and experimental studies that compared the energy expenditure of standing versus sitting. We calculated mean differences and 95% confidence intervals using a random effects model. We conducted different predefined subgroup analyses based on characteristics of participants and study design. Results We identified 658 studies and included 46 studies with 1184 participants for the final analysis. The mean difference in energy expenditure between sitting and standing was 0.15 kcal/min (95% confidence interval (CI) 0.12-0.17). The difference among women was 0.1 kcal/min (95% CI 0.0-0.21), and was 0.19 kcal/min (95% CI 0.05-0.33) in men. Observational studies had a lower difference in energy expenditure (0.11 kcal/min, 95% CI 0.08-0.14) compared to randomised trials (0.2 kcal/min, 95% CI 0.12-0.28). By substituting sitting with standing for 6 hours/day, a 65 kg person will expend an additional 54 kcal/day. Assuming no increase in energy intake, this difference in energy expenditure would be translated into the energy content of about 2.5 kg of body fat mass in 1 year. Conclusions The substitution of sitting with standing could be a potential solution for a sedentary lifestyle to prevent weight gain in the long term. Future studies should aim to assess the effectiveness and feasibility of this strategy.
Energy Technology Data Exchange (ETDEWEB)
Pan, Jie; Jiang, Lijun; Chan, Chi-Fai [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Tsoi, Tik-Hung [Department of Applied Biology and Chemical Technology, Hung Hom, Hong Kong Special Administrative Region (Hong Kong); Shiu, Kwok-Keung; Kwong, Daniel W.J. [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Wong, Wing-Tak [Department of Applied Biology and Chemical Technology, Hung Hom, Hong Kong Special Administrative Region (Hong Kong); Wong, Wai-Kwok, E-mail: wkwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Wong, Ka-Leung, E-mail: klwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong)
2017-04-15
Porphyrins are good photodynamic therapy (PDT) agents due to its flexibility for modifications to achieve tumor localization and photo-cytotoxicity against cancer. Yet they are not perfect. In a Ru(polypyridyl)-porphyrin system, the Ru(polypyridyl) moiety improves the water solubility and cell permeability. Consider the similar excited state energies between Ru(polypyridyl) and porphyrin moieties; a small perturbation (e.g. Zn(II) metalation) would lead to a marked change in the energy migration process. In this work, we have synthesized a series of porphyrins conjugated with Ru(polypyridyl) complexes using different linkers and investigated their photophysical properties, which included singlet oxygen quantum yield and their in vitro biological properties, resulting from linker variation and porphyrin modification by Zn(II) metalation. - Graphical abstract: Four amphiphilic ruthenium(II)-porphyrin complexes were prepared that display energy transfer conversion with zinc coordination, lysosome specific target, low dark toxicity and efficient photodynamic therapy.
International Nuclear Information System (INIS)
Safronova, University I.; Safronova, A. S.; Beiersdorfer, P.
2016-01-01
Energy levels, radiative transition probabilities, and autoionization rates for [Ni]4s 2 4p 6 nl, [Ni]4s 2 4p 5 4l ′ nl (l ′ =d,f,n = 4–7), [Ni]4s4p 6 4l ′ nl, (l ′ =d,f,n = 4–7), [Ni]4s 2 4p 5 5l ′ nl (n = 5–7), and [Ni]4s4p 6 6l ′ nl (n = 6–7) states in Rb-like tungsten (W37+) are calculated using the relativistic many-body perturbation theory method (RMBPT code) and the Hartree–Fock-relativistic method (COWAN code). Autoionizing levels above the [Ni]4s 2 4p 6 threshold are considered. It is found that configuration mixing among [Ni]4s 2 4p 5 4l ′ nl and [Ni]4s4p 6 4l ′ nl plays an important role for all atomic characteristics. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the [Ni]4s 2 4p 6 nl (n = 4–7) singly excited states, as well as the [Ni]4s 2 4p 5 4dnl, [Ni]4s 2 4p 5 4fnl, [Ni]4s4p 6 4dnl, [Ni]4s 2 4p 6 4fnl, (n = 4–6), and [Ni]4s 2 4p 5 5l ′ 5l doubly excited nonautoionizing states in Rb-like W37+ ion. Contributions from the [Ni]4s24p 6 4fnl (n = 6–7), [Ni]4s 2 4p 5 5l ′ nl (n = 5–6), and [Ni]4s 2 4p 5 6l ′ nl (n = 6–7) doubly excited autoionizing states are evaluated numerically. The high-n state (with n up to 500) contributions are very important for high temperatures. These contributions are determined by using a scaling procedure. Synthetic dielectronic satellite spectra from Rb-like W are simulated in a broad spectral range from 8 to 70 Å. Here, these calculations provide highly accurate values for a number of W 37+ properties useful for a variety of applications including for fusion applications.