WorldWideScience

Sample records for exchange-biased planar hall

  1. Exchange-biased planar Hall effect sensor optimized for biosensor applications

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Freitas, S.C.; Freitas, P.P.

    2008-01-01

    This article presents experimental investigations of exchange-biased Permalloy planar Hall effect sensor crosses with a fixed active area of w x w = 40 x 40 mu m(2) and Permalloy thicknesses of t = 20, 30, and 50 nm. It is shown that a single domain model describes the system well...

  2. Temperature effects in exchange-biased planar Hall sensors for bioapplications

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Dalslet, Bjarke Thomas; Freitas, S.C.

    2009-01-01

    The temperature dependence of exchange biased planar Hall effect sensors is investigated between T = −10 and 70 °C. It is shown that a single domain model describes the system well and that the temperature coefficient of the low-field sensitivity at T = 25 °C is 0.32%/°C. A procedure...... for temperature correction by use of a reference sensor is demonstrated. Consequences for magnetic biosensing are exemplified with calculations on M-280 Dynabeads®....

  3. Size-dependent effects in exchange-biased planar Hall effect sensor crosses

    DEFF Research Database (Denmark)

    Donolato, Marco; Dalslet, Bjarke Thomas; Damsgaard, Christian Danvad

    2011-01-01

    Exchange-biased planar Hall effect magnetic field sensor crosses with arm width w have been studied as function of w. For large values of w, the magnetic behavior is hysteresis-free and follows the single domain Stoner-Wohlfarth model. When w is decreased, hysteresis is observed in the sensor...... by an increasing magnetic shape anisotropy of the arms of the cross. We propose a simple analytical model that captures the essential physics of the observations and parameterizes the effects of the cross-shape on the central part of the cross. (C) 2011 American Institute of Physics. [doi:10.1063/1.3561364]...

  4. Reversible and irreversible temperature-induced changes in exchange-biased planar Hall effect bridge (PHEB) magnetic field sensors

    DEFF Research Database (Denmark)

    Rizzi, G.; Lundtoft, N.C.; Østerberg, F.W.

    2012-01-01

    We investigate the changes of planar Hall effect bridge magnetic field sensors upon exposure to temperatures between 25° C and 90°C. From analyses of the sensor response vs. magnetic fields we extract the exchange bias field Hex, the uniaxial anisotropy field HK and the anisotropic...

  5. Planar Hall effect bridge magnetic field sensors

    DEFF Research Database (Denmark)

    Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.

    2010-01-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....

  6. Observation of pure inverse spin Hall effect in ferromagnetic metals via ferromagnetic/antiferromagnetic exchange-bias structures

    Science.gov (United States)

    Wu, H.; Wan, C. H.; Yuan, Z. H.; Zhang, X.; Jiang, J.; Zhang, Q. T.; Wen, Z. C.; Han, X. F.

    2015-08-01

    We report that the spin current generated by the spin Seebeck effect (SSE) in yttrium iron garnet (YIG) can be detected by a ferromagnetic metal (NiFe). By using the ferromagnetic/antiferromagnetic (FM/AFM) exchange bias structure (NiFe/IrMn), the inverse spin Hall effect (ISHE) and planar Nernst effect (PNE) of NiFe can be unambiguously separated, allowing us to observe a pure ISHE signal. After eliminating the in-plane temperature gradient in NiFe, we can even observe a pure ISHE signal without PNE from NiFe itself. It is worth noting that a large spin Hall angle (0.098) of NiFe is obtained, which is comparable with Pt. This work provides a kind of FM/AFM exchange bias structure to detect the spin current by charge signals, and highlights that ISHE in ferromagnetic metals can be used in spintronic research and applications.

  7. Planar Hall effect sensor for magnetic micro- and nanobead detection

    DEFF Research Database (Denmark)

    Ejsing, Louise Wellendorph; Hansen, Mikkel Fougt; Menon, Aric Kumaran

    2004-01-01

    Magnetic bead sensors based on the planar Hall effect in thin films of exchange-biased permalloy have been fabricated and characterized. Typical sensitivities are 3 muV/Oe mA. The sensor response to an applied magnetic field has been measured without and with coatings of commercially available 2 ...

  8. Inverse spin Hall and spin rectification effects in NiFe/FeMn exchange-biased thin films

    Science.gov (United States)

    Garcia, W. J. S.; Seeger, R. L.; da Silva, R. B.; Harres, A.

    2017-11-01

    Materials presenting high spin-orbit coupling are able to convert spin currents in charge currents. The phenomenon, known as inverse spin Hall effect, promises to revolutionize spintronic technology enabling the electrical detection of spin currents. It has been observed in a variety of systems, usually non-magnetic metals. We study the voltage emerging in exchange biased Ta/NiFe/FeMn/Ta thin films near the ferromagnetic resonance. Measured signals are related to both inverse spin Hall and spin rectification effects, and two distinct protocols were employed to separate their contributions.The curve shift due to the exchange bias effect may enable high frequency applications without an external applied magnetic field.

  9. Planar Hall effect sensor with magnetostatic compensation layer

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Donolato, Marco; Hansen, Mikkel Fougt

    2012-01-01

    Demagnetization effects in cross-shaped planar Hall effect sensors cause inhomogeneous film magnetization and a hysteretic sensor response. Furthermore, when using sensors for detection of magnetic beads, the magnetostatic field from the sensor edges attracts and holds magnetic beads near the sen...... flow 60 times smaller than a flow that failed to remove beads from an uncompensated sensor.......Demagnetization effects in cross-shaped planar Hall effect sensors cause inhomogeneous film magnetization and a hysteretic sensor response. Furthermore, when using sensors for detection of magnetic beads, the magnetostatic field from the sensor edges attracts and holds magnetic beads near...... the sensor edges causing inhomogeneous and non-specific binding of the beads. We show theoretically that adding a compensation magnetic stack beneath the sensor stack and exchange-biasing it antiparallel to the sensor stack, the magnetostatic field is minimized. We show experimentally that the compensation...

  10. Planar Hall Effect Sensors for Biodetection

    DEFF Research Database (Denmark)

    Rizzi, Giovanni

    as labels and planar Hall effect bridge (PHEB) magnetic field sensor as readout for the beads. The choice of magnetic beads as label is motivated by the lack of virtually any magnetic background from biological samples. Moreover, magnetic beads can be manipulated via an external magnetic field...... system capable of generating both temperature and concentration gradients over the sensor surface. The temperature and buffer concentration can be varied in order to perform denaturation analysis of the DNA hybrids. In this thesis, this kind assay is tested with temperature varying from 20ºC to 70º...

  11. Experimental comparison of ring and diamond shaped planar Hall effect bridge magnetic field sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2015-01-01

    Planar Hall effect magnetic field sensors with ring and diamond shaped geometries are experimentally compared with respect to their magnetic field sensitivity and total signal variation. Theoretically, diamond shaped sensors are predicted to be 41% more sensitive than corresponding ring shaped...... improvement varied from 0% to 35% where the largest improvement was observed for sensor stacks with comparatively strong exchange bias. This is explained by the ring sensors being less affected by shape anisotropy than the diamond sensors. To study the effect of shape anisotropy, we also characterized sensors...... that were surrounded by the magnetic stack with a small gap of 3 lm. These sensors were found to be less effected by shape anisotropy and thus showed higher low-field sensitivities....

  12. Composed planar Hall effect sensors with dual-mode operation

    Directory of Open Access Journals (Sweden)

    Vladislav Mor

    2016-02-01

    Full Text Available We present a composed planar Hall effect sensor with two modes of operation: (a an ON mode where the composed sensor responds to magnetic field excitations similarly to the response of a regular planar Hall effect sensor, and (b an OFF mode where the response is negligible. The composed planar Hall effect sensor switches from the OFF mode to the ON mode when it is exposed to a magnetic field which exceeds a certain threshold determined by the sensor design. The features of this sensor make it useful as a switch triggered by magnetic field and as a sensing device with memory, as its mode of operation indicates exposure to a magnetic field larger than a certain threshold without the need to be activated during the exposure itself.

  13. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    Science.gov (United States)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).

  14. Low-frequency noise in planar Hall effect bridge sensors

    DEFF Research Database (Denmark)

    Persson, Anders; Bejhedb, R.S.; Bejhed, R.S.

    2011-01-01

    The low-frequency characteristics of planar Hall effect bridge sensors are investigated as function of the sensor bias current and the applied magnetic field. The noise spectra reveal a Johnson-like spectrum at high frequencies, and a 1/f-like excess noise spectrum at lower frequencies, with a knee...

  15. Planar Hall effect bridge sensors with NiFe/Cu/IrMn stack optimized for self-field magnetic bead detection

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2016-01-01

    The stack composition in trilayer Planar Hall effect bridge sensors is investigated experimentally to identify the optimal stack for magnetic bead detection using the sensor self-field. The sensors were fabricated using exchange-biased stacks Ni80Fe20(tFM)/Cu(tCu)/Mn80Ir20(10 nm) with tFM = 10, 20....... The exchange bias field was found to decay exponentially with tCu and inversely with tFM. The reduced exchange field for larger values of tFM and tCu resulted in higher sensitivities to both magnetic fields and magnetic beads. We argue that the maximum magnetic bead signal is limited by Joule heating...

  16. Novel Planar Hall Effect in the Surface of Topological Insulators

    Science.gov (United States)

    Taskin, Alexey; Legg, Henry; Yang, Fan; Sasaki, Satoshi; Kanai, Yasushi; Matsumoto, Kazuhiko; Rosch, Achim; Ando, Yoichi

    The progress in the study of topological materials depends on the ability to measure their surface properties. Recent advances in MBE growth allowed us to obtain suitable topological insulators (TIs). Here we report a magneto-transport study of high-quality bulk-insulating Bi2-xSbxTe3 thin films, which were fabricated into devices with electrostatic gates on both bottom and top surfaces. For magnetic fields applied parallel to the surface of a TI, we found a clear anisotropy in magnetoresistance (MR) and related planar Hall effect. This anisotropy is a consequence of two fundamental facts: 1) the time-reversal symmetry is broken by the magnetic field, lifting the topological protection of spin-momentum locked Dirac electrons against backscattering from impurities; 2) the in-plane magnetic field does not open the gap in the surface state, preserving the Dirac physics. As a result the back scattering protection can still be maintained for electrons with spins parallel/antiparallel to the direction of the magnetic field, giving rise to the scattering-rate anisotropy. The key signature of anisotropic MR is a strong dependence on the gate voltage with a characteristic two-peak structure near the Dirac point, which was observed by employing the dual-gating technique.

  17. On-Chip Magnetorelaxometry Using Planar Hall Effect Magnetic Field Sensors

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard

    the relaxation of magnetic beads without the need of any external fields and estimates of the forces that influence magnetic beads near a planar Hall effect sensor. The temperature dependence of measurements using planar Hall effect sensors is investigated. This is done both with respect to how the sensor...... signals depend on temperature and how temperature influences the Brownian relaxation of magnetic beads. It is shown that the hydrodynamic diameter of the magnetic beads can be extracted from AC susceptibility measurements with planar Hall effect sensors when the temperature and dynamic viscosity...... of using planar Hall effect magnetic field sensors to measure magnetorelaxomety of magnetic beads. This can be used as the readout principle for volume-based biosensing, by detecting changes in the hydrodynamic diameter of magnetic beads due to binding of analytes. Traditionally magnetorelaxomety...

  18. Planar Hall ring sensor for ultra-low magnetic moment sensing

    DEFF Research Database (Denmark)

    Hung, Tran Quang; Terki, Ferial; Kamara, Souleymanne

    2015-01-01

    The field sensitivity of a planar Hall effect (PHE) micro-ring type biosensor has been investigated as a function of magnetizing angle of the sensor material, for the sensing of low magnetic moment superparamagnetic labels. The field sensitivity is maximal at a magnetizing angle of α = 20...

  19. Measurements of Brownian relaxation of magnetic nanobeads using planar Hall effect bridge sensors

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Zardán Gómez de la Torre, T.

    2013-01-01

    We compare measurements of the Brownian relaxation response of magnetic nanobeads in suspension using planar Hall effect sensors of cross geometry and a newly proposed bridge geometry. We find that the bridge sensor yields six times as large signals as the cross sensor, which results in a more...

  20. Planar Hall effect sensor bridge geometries optimized for magnetic bead detection

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Henriksen, Anders Dahl

    2014-01-01

    Novel designs of planar Hall effect bridge sensors optimized for magnetic bead detection are presented and characterized. By constructing the sensor geometries appropriately, the sensors can be tailored to be sensitive to an external magnetic field, the magnetic field due to beads being magnetized...

  1. Planar Hall effect and magnetic anisotropy in epitaxially strained chromium dioxide thin films

    NARCIS (Netherlands)

    Goennenwein, S.T.B.; Keizer, R.S.; Schink, S.W.; Van Dijk, I.; Klapwijk, T.M.; Miao, G.X.; Xiao, G.; Gupta, A.

    2007-01-01

    We have measured the in-plane anisotropic magnetoresistance of 100?nm thick CrO2 thin films at liquid He temperatures. In low magnetic fields H, both the longitudinal and the transverse (planar Hall) resistance show abrupt switches, which characteristically depend on the orientation of H. All the

  2. Electric control of exchange bias training.

    Science.gov (United States)

    Echtenkamp, W; Binek, Ch

    2013-11-01

    Voltage-controlled exchange bias training and tunability are introduced. Isothermal voltage pulses are used to reverse the antiferromagnetic order parameter of magnetoelectric Cr(2)O(3), and thus continuously tune the exchange bias of an adjacent CoPd film. Voltage-controlled exchange bias training is initialized by tuning the antiferromagnetic interface into a nonequilibrium state incommensurate with the underlying bulk. Interpretation of these hitherto unreported effects contributes to new understanding in electrically controlled magnetism.

  3. Dipole-induced exchange bias.

    Science.gov (United States)

    Torres, Felipe; Morales, Rafael; Schuller, Ivan K; Kiwi, Miguel

    2017-11-09

    The discovery of dipole-induced exchange bias (EB), switching from negative to positive sign, is reported in systems where the antiferromagnet and the ferromagnet are separated by a paramagnetic spacer (AFM-PM-FM). The magnitude and sign of the EB is determined by the cooling field strength and the PM thickness. The same cooling field yields negative EB for thin spacers, and positive EB for thicker ones. The EB decay profile as a function of the spacer thickness, and the change of sign, are attributed to long-ranged dipole coupling. Our model, which accounts quantitatively for the experimental results, ignores the short range interfacial exchange interactions of the usual EB theories. Instead, it retains solely the long range dipole field that allows for the coupling of the FM and AFM across the PM spacer. The experiments allow for novel switching capabilities of long range EB systems, while the theory allows description of the structures where the FM and AFM are not in atomic contact. The results provide a new approach to design novel interacting heterostructures.

  4. Tunneling Planar Hall Effect in Topological Insulators: Spin Valves and Amplifiers

    Science.gov (United States)

    Scharf, Benedikt; Matos-Abiague, Alex; Han, Jong E.; Hankiewicz, Ewelina M.; Žutić, Igor

    2016-10-01

    We investigate tunneling across a single ferromagnetic barrier on the surface of a three-dimensional topological insulator. In the presence of a magnetization component along the bias direction, a tunneling planar Hall conductance (TPHC), transverse to the applied bias, develops. Electrostatic control of the barrier enables a giant Hall angle, with the TPHC exceeding the longitudinal tunneling conductance. By changing the in-plane magnetization direction, it is possible to change the sign of both the longitudinal and transverse differential conductance without opening a gap in the topological surface state. The transport in a topological-insulator-ferromagnet junction can, thus, be drastically altered from a simple spin valve to an amplifier.

  5. Anisotropy engineering using exchange bias on antidot templates

    Directory of Open Access Journals (Sweden)

    F. J. T. Goncalves

    2015-06-01

    Full Text Available We explore an emerging device concept based on exchange bias used in conjunction with an antidot geometry to fine tune ferromagnetic resonances. Planar cavity ferromagnetic resonance is used to study the microwave response of NiO/NiFe bilayers with antidot structuring. A large frequency asymmetry with respect to an applied magnetic field is found across a broad field range whose underlying cause is linked to the distribution of magnetic poles at the antidot surfaces. This distribution is found to be particularly sensitive to the effects of exchange bias, and robust in regards to the quality of the antidot geometry. The template based antidot geometry we study offers advantages for practical device construction, and we show that it is suitable for broadband absorption and filtering applications, allowing tunable anisotropies via interface engineering.

  6. Chiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetals

    Science.gov (United States)

    Nandy, S.; Sharma, Girish; Taraphder, A.; Tewari, Sumanta

    2017-10-01

    In condensed matter physics, the term "chiral anomaly" implies the violation of the separate number conservation laws of Weyl fermions of different chiralities in the presence of parallel electric and magnetic fields. One effect of the chiral anomaly in the recently discovered Dirac and Weyl semimetals is a positive longitudinal magnetoconductance. Here we show that chiral anomaly and nontrivial Berry curvature effects engender another striking effect in Weyl semimetals, the planar Hall effect (PHE). Remarkably, the PHE manifests itself when the applied current, magnetic field, and the induced transverse "Hall" voltage all lie in the same plane, precisely in a configuration in which the conventional Hall effect vanishes. In this work we treat the PHE quasiclassically, and predict specific experimental signatures for type-I and type-II Weyl semimetals that can be directly checked in experiments.

  7. Pseudo exchange bias due to rotational anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Ehrmann, A., E-mail: andrea.ehrmann@fh-bielefeld.de [Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld (Germany); Komraus, S.; Blachowicz, T.; Domino, K. [Institute of Physics – Center for Science and Education, Silesian University of Technology, 44-100 Gliwice (Poland); Nees, M.K.; Jakobs, P.J.; Leiste, H. [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Mathes, M.; Schaarschmidt, M. [ACCESS e. V., 57072 Aachen (Germany)

    2016-08-15

    Ferromagnetic nanostructure arrays with particle dimensions between 160 nm and 400 nm were created by electron-beam lithography. The permalloy structures consist of rectangular-shaped walls around a square open space. While measuring their magnetic properties using the Magneto-Optical Kerr Effect (MOKE), in some angular regions an exchange bias (EB) seemed to appear. This paper gives an overview of possible reasons for this “pseudo exchange bias” and shows experimentally and by means of micromagnetic simulations that this effect can be attributed to unintentionally measuring minor loops. - Highlights: • Pseudo exchange bias can be found in square Py nanorings of different dimensions. • Pseudo exchange bias stems from unintentionally measuring minor loops. • New approach in explaining “real” exchange bias effect in coupled FM/AFM systems. • Theoretical base to explain other measurements of a rotational anisotropy.

  8. Change in planar hall effect ratio of Ni–Co films produced by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Karpuz, Ali, E-mail: alikarpuz@kmu.edu.tr [Physics Department, Science and Literature Faculty, Balikesir University, 10145 Balikesir (Turkey); Kockar, Hakan [Physics Department, Science and Literature Faculty, Balikesir University, 10145 Balikesir (Turkey); Alper, Mursel [Physics Department, Science and Literature Faculty, Uludag University, 16059 Bursa (Turkey)

    2015-01-01

    Ni–Co films were produced by the electrodeposition technique and their magnetotransport properties were studied. The anisotropic magnetoresistance (AMR) and the planar Hall effect (PHE) ratios were found using the van der Pauw setup at room temperature. It was observed that the PHE ratios were larger than the obtained AMR ratios. While the maximum changes in longitudinal and transversal magnetoresistance ratios were 6.8% and 11.0%, respectively, the change in PHE values was up to 500%. In the PHE measurements, the magnetoresistance orientation depends on the electrical resistance values which occur in branches of the films.

  9. Growth of oxide exchange bias layers

    Science.gov (United States)

    Chaiken, A.; Michel, R.P.

    1998-07-21

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bias layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200 C, the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 {angstrom}/sec. The resulting NiO film was amorphous. 4 figs.

  10. Planar Hall effect based characterization of spin orbital torques in Ta/CoFeB/MgO structures

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, Mahdi; Zhao, Zhengyang; Zhang, Delin; Smith, Angeline K.; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); DC, Mahendra [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Li, Hongshi [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2016-04-07

    The spin orbital torques in Ta/CoFeB/MgO structures are experimentally investigated utilizing the planar Hall effect and magnetoresistance measurement. By angular field characterization of the planar Hall resistance at ±current, the differential resistance which is directly related to the spin orbital torques is derived. Upon curve fitting of the analytical formulas over the experimental results, it is found that the anti-damping torque, also known as spin Hall effect, is sizable while a negligible field-like torque is observed. A spin Hall angle of about 18 ± 0.6% is obtained for the Ta layer. Temperature dependent study of the spin orbital torques is also performed. It is found that temperature does not significantly modify the spin Hall angle. By cooling down the sample down to 100 K, the obtained spin Hall angle has a maximum value of about 20.5 ± 0.43%.

  11. Comment on “Planar Hall resistance ring sensor based on NiFe/Cu/IrMn trilayer structure” [J. Appl. Phys. 113, 063903 (2013)

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Henriksen, Anders Dahl; Rizzi, Giovanni

    2013-01-01

    In a recent paper, Sinha et al. compared sensitivities of planar Hall effect sensors with different geometries that are all based on the anisotropic magnetoresistance of permalloy. They write that the sensitivity of a planar Hall effect sensor with a ring geometry is a factor of √2 larger than...... the sensitivity of the so-called planar Hall effect bridge (PHEB) sensor of equal size. Osterberg et al do not agree on the signal calculation for a ring sensor derived by Sinha et al. and claim that this adversely affects the results....

  12. Non-volatile logic gates based on planar Hall effect in magnetic films with two in-plane easy axes.

    Science.gov (United States)

    Lee, Sangyeop; Bac, Seul-Ki; Choi, Seonghoon; Lee, Hakjoon; Yoo, Taehee; Lee, Sanghoon; Liu, Xinyu; Dobrowolska, M; Furdyna, Jacek K

    2017-04-25

    We discuss the use of planar Hall effect (PHE) in a ferromagnetic GaMnAs film with two in-plane easy axes as a means for achieving novel logic functionalities. We show that the switching of magnetization between the easy axes in a GaMnAs film depends strongly on the magnitude of the current flowing through the film due to thermal effects that modify its magnetic anisotropy. Planar Hall resistance in a GaMnAs film with two in-plane easy axes shows well-defined maxima and minima that can serve as two binary logic states. By choosing appropriate magnitudes of the input current for the GaMnAs Hall device, magnetic logic functions can then be achieved. Specifically, non-volatile logic functionalities such as AND, OR, NAND, and NOR gates can be obtained in such a device by selecting appropriate initial conditions. These results, involving a simple PHE device, hold promise for realizing programmable logic elements in magnetic electronics.

  13. Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Dalslet, Bjarke Thomas; Snakenborg, Detlef

    2010-01-01

    We present a simple 'click-on' fluidic system with integrated electrical contacts, which is suited for electrical measurements on chips in microfluidic systems. We show that microscopic magnetic field sensors based on the planar Hall effect can be used for detecting the complex magnetic response...... using only the self-field arising from the bias current applied to the sensors as excitation field. We present measurements on a suspension of magnetic beads with a nominal diameter of 250 nm vs. temperature and find that the observations are consistent with the Cole-Cole model for Brownian relaxation...... biosensor based on the detection of the dynamic response of magnetic beads....

  14. Magnetization reversal in circularly exchange-biased ferromagnetic disks.

    Energy Technology Data Exchange (ETDEWEB)

    Tanase, M.; Petford-Long, A. K.; Heinonen, O.; Buchanan, K.; Sort, J.; Nogues, J.; Seagate Tech.; Univ. Autonoma de Barcelona; Colorado State Univ.

    2009-01-01

    We investigate the reversal behavior of circularly exchange-biased micron-sized bilayer disks of Permalloy (Py)/IrMn and CoFe/IrMn. A circular exchange bias is induced by imprinting the vortex configuration of the ferromagnetic layer into the IrMn when the disks are cooled in zero external field through the blocking temperature of IrMn. The resulting circular exchange bias has a profound effect on the reversal behavior of the ferromagnetic magnetization. In Py/IrMn disks the reversal takes place via vortex motion only, and the behavior is controlled by the exchange bias; it is reversible over a range of small fields and the vortex maintains a single chirality throughout reversal, determined by the chirality of the exchange bias. In CoFe/IrMn disks the non-negligible magnetocrystalline anisotropy causes a reversal via both vortices and domain walls resulting in a finite coercivity, and the behavior is controlled by microstructure. We verify that circular exchange bias does not give rise to a hysteresis loop shift. It lowers coercivity with respect to the field-cooled case, and in Py/IrMn disks it even causes completely reversible magnetic behavior. In both Py/IrMn and CoFe/IrMn disks, circular exchange bias removes the randomness (i.e., stochastic processes due to thermal activation) inherent in single-layer ferromagnetic disks and causes the magnetic behavior to be reproducible over time.

  15. Using permalloy based planar hall effect sensors to capture and detect superparamagnetic beads for lab on a chip applications

    Energy Technology Data Exchange (ETDEWEB)

    Volmer, Marius, E-mail: volmerm@unitbv.ro [Transilvania University of Brasov, Electrical Engineering and Applied Physics Department. Eroilor 29, Brasov 500036 (Romania); Avram, Marioara [National Institute for Research and Development in Microtechnologies, Str. Erou Iancu Nicolae 32B, 72996 Bucharest (Romania)

    2015-05-01

    Experimental studies have been carried out on planar Hall effect (PHE) sensors used to detect magnetic nanoparticles employed as labels for biodetection applications. Disk shaped sensors, 1 mm diameter, were structured on Permalloy film, 20 nm thick. To control the sensor magnetisation state and thus the field sensitivity and linearity, a DC biasing field has been applied parallel to the driving current. Maghemite nanoparticles (10 nm) functionalised with Polyethylene glycol (PEG) 6000 were immobilised over the sensor surface using particular magnetisation state and applied magnetic fields. In order to obtain a higher response from the magnetic nanoparticles, it was used a detection setup which allows the application of magnetic fields larger than 100 Oe but avoiding saturation of the PHE signal. Based on this setup, two field scanning methods are presented in this paper. During our experiments, low magnetic moments, of about 1.87×10{sup −5} emu, have been easily detected. This value corresponds to a mass of 9.35 µg of maghemite nanoparticles functionalised with PEG 6000. The results suggest that this type of structure is feasible for building low cost micrometer sized PHE sensors to be used for high-resolution bio sensing applications. - Highlights: • Disk-shaped Permalloy planar Hall effect sensors have been obtained and tested. • Two field scanning methods have been proposed. • The magnetic nanoparticles can be trapped on the sensor surface. • High detection sensitivity has been obtained.

  16. Controllable positive exchange bias via redox-driven oxygen migration

    National Research Council Canada - National Science Library

    Gilbert, Dustin A; Olamit, Justin; Dumas, Randy K; Kirby, B J; Grutter, Alexander J; Maranville, Brian B; Arenholz, Elke; Borchers, Julie A; Liu, Kai

    2016-01-01

    .... Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias...

  17. Exchange bias training effect in coupled all ferromagnetic bilayer structures.

    Science.gov (United States)

    Binek, Ch; Polisetty, S; He, Xi; Berger, A

    2006-02-17

    Exchange coupled bilayers of soft and hard ferromagnetic thin films show remarkable analogies to conventional antiferromagnetic/ferromagnetic exchange bias heterostructures. Not only do all these ferromagnetic bilayers exhibit a tunable exchange bias effect, they also show a distinct training behavior upon cycling the soft layer through consecutive hysteresis loops. In contrast with conventional exchange bias systems, such all ferromagnetic bilayer structures allow the observation of training induced changes in the bias-setting hardmagnetic layer by means of simple magnetometry. Our experiments show unambiguously that the exchange bias training effect is driven by deviations from equilibrium in the pinning layer. A comparison of our experimental data with predictions from a theory based upon triggered relaxation phenomena shows excellent agreement.

  18. Role of the antiferromagnetic bulk spins in exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Center for Advanced Nanoscience and Physics Department, University of California San Diego, La Jolla, CA 92093 (United States); Morales, Rafael, E-mail: rafael.morales@ehu.es [Department of Chemical-Physics & BCMaterials, University of the Basque Country UPV/EHU (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Batlle, Xavier [Departament Física Fonamental and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, c/ Martí i Franqués s/n, 08028 Barcelona, Catalonia (Spain); Nowak, Ulrich [Department of Physics, University of Konstanz, 78464 Konstanz (Germany); Güntherodt, Gernot [Physics Institute (IIA), RWTH Aachen University, Campus RWTH-Melaten, 52074 Aachen (Germany)

    2016-10-15

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  19. Exchange bias of mu-metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, H.F.; Eggers, T.M.; Jayathilaka, P.B.; Campbell, S.M. [Department of Physics, Center for Integrated Functional Materials, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States); Miller, Casey W., E-mail: cmilleratphysics@gmail.com [Department of Physics, Center for Integrated Functional Materials, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)

    2012-12-15

    The exchange bias of the soft ferromagnet mu-metal, Ni{sub 77}Fe{sub 14}Cu{sub 5}Mo{sub 4}, with the metallic antiferromagnet Fe{sub 50}Mn{sub 50} has been studied as a function of ferromagnet thickness and buffer layer material. Mu-metal exhibits classic exchange bias behavior: the exchange bias (H{sub EB}) and coercive fields scale inversely with the ferromagnet's thickness, with H{sub EB} varying as the cosine of the in-plane applied field angle. Ta buffers, rather than Cu, allow the mu-metal to retain more of its soft magnetic character while exhibiting exchange bias. The ability to preserve soft ferromagnetic behavior in an exchange biased heterostructure may be useful for low field sensing and other device applications. - Highlights: Black-Right-Pointing-Pointer Mu-metal/FeMn bilayers exhibit classic exchange bias behavior. Black-Right-Pointing-Pointer Mu-metal's soft magnetic properties are retained most effectively with Ta buffers. Black-Right-Pointing-Pointer Differences in interfacial exchange energy are structural in origin.

  20. Tailoring the magnetization reversal of elliptical dots using exchange bias.

    Energy Technology Data Exchange (ETDEWEB)

    Sort, J.; Buchanan, K. S.; Pearson, J. E.; Hoffmann, A.; Menendez, E.; Salazar-Alvarez, G.; Baro, M. D.; Miron, M.; Rodamcq, B.; Dieny, B.; ICREA; Univ. Autonoma of Barcelona; Insti. Catala de Nanotecnologia; SPINTEC

    2008-01-01

    Exchange bias effects have been studied in elliptical dots composed of ferromagnetic Ni{sub 80}Fe{sub 20}-antiferromagnetic Ir{sub 20}Mn{sub 80} bilayers. The magnetization reversal mechanisms and magnetic configurations have been investigated by magneto-optic Kerr effect and magnetic force microscopy. Although the obtained bias fields in these dots are relatively small, the magnetization reversal is found to be influenced by the ferromagnetic-antiferromagnetic coupling. Namely, for some off-axis angles of measurement, the magnetization reversal mechanism of the Ni{sub 80}Fe{sub 20}-Ir{sub 20}Mn{sub 80} ellipses depends on whether exchange bias is induced along the minor or major axis of the ellipses. Hence, exchange bias is shown to be an effective means for tailoring the magnetization reversal of elliptical dots after sample fabrication.

  1. Interfacial spin cluster effects in exchange bias systems

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R., E-mail: rc548@york.ac.uk; Vallejo-Fernandez, G.; O' Grady, K. [Department of Physics, The University of York, York YO10 5DD (United Kingdom)

    2014-05-07

    In this work, the effect of exchange bias on the hysteresis loop of CoFe is observed. The evolution of the coercivities and the shift of the hysteresis loop during the annealing process has been measured for films deposited on NiCr and Cu seed layers. Through comparison of the as deposited and field annealed loops, it is clear that for an exchange biased material, the two coercivities are due to different reversal processes. This behaviour is attributed to spin clusters at the ferromagnet/antiferromagnet interface, which behave in a similar manner to a fine particle system.

  2. Magnetoelectricity coupled exchange bias in BaMnF4

    National Research Council Canada - National Science Library

    Zhou, Shuang; Wang, Ji; Chang, Xiaofeng; Wang, Shuangbao; Qian, Bin; Han, Zhida; Xu, Qingyu; Du, Jun; Wang, Peng; Dong, Shuai

    2015-01-01

    .... The blocking temperature of 65 K for exchange bias coincides well with the peak at 65 K in the zero-field cooled temperature-dependent magnetization curve, which has been assigned to the onset temperature of two-dimensional antiferromagnetism...

  3. Magnetization reversal process in Fe/Si (001) single-crystalline film investigated by planar Hall effect

    Science.gov (United States)

    Ye, Jun; He, Wei; Hu, Bo; Tang, Jin; Zhang, Yong-Sheng; Zhang, Xiang-Qun; Chen, Zi-Yu; Cheng, Zhao-Hua

    2015-02-01

    A planar Hall effect (PHE) is introduced to investigate the magnetization reversal process in single-crystalline iron film grown on a Si (001) substrate. Owing to the domain structure of iron film and the characteristics of PHE, the magnetization switches sharply in an angular range of the external field for two steps of 90° domain wall displacement and one step of 180° domain wall displacement near the easy axis, respectively. However, the magnetization reversal process near the hard axis is completed by only one step of 90° domain wall displacement and then rotates coherently. The magnetization reversal process mechanism near the hard axis seems to be a combination of coherent rotation and domain wall displacement. Furthermore, the domain wall pinning energy and uniaxial magnetic anisotropy energy can also be derived from the PHE measurement. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921801 and 2012CB933102), the National Natural Science Foundation of China (Grant Nos. 11374350, 11034004, 11274361, 11274033, 11474015, and 61227902), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20131102130005).

  4. Role of the antiferromagnetic bulk spins in exchange bias

    Science.gov (United States)

    Schuller, Ivan K.; Morales, Rafael; Batlle, Xavier; Nowak, Ulrich; Güntherodt, Gernot

    2016-10-01

    This "Critical Focused Issue" presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice.

  5. Exchange bias of patterned systems: Model and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Griselda [Facultad de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 7820436 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Kiwi, Miguel, E-mail: mkiwi@puc.c [Facultad de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 7820436 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Mejia-Lopez, Jose; Ramirez, Ricardo [Facultad de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 7820436 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Avda. Ecuador 3493, Santiago (Chile)

    2010-11-15

    The magnitude of the exchange bias field of patterned systems exhibits a notable increase in relation to the usual bilayer systems, where a continuous ferromagnetic film is deposited on an antiferromagnet insulator. Here we develop a model, and implement a Monte Carlo calculation, to interpret the experimental observations which is consistent with experimental results, on the basis of assuming a small fraction of spins pinned ferromagnetically in the antiferromagnetic interface layer.

  6. Fundamentals for magnetic patterning by ion bombardment of exchange bias layer systems

    Science.gov (United States)

    Ehresmann, A.; Engel, D.; Weis, T.; Schindler, A.; Junk, D.; Schmalhorst, J.; Höink, V.; Sacher, M. D.; Reiss, G.

    2006-01-01

    In the present paper we investigate whether the ion bombardment induced magnetic modifications in exchange biased bilayers are stable in time, whether the direction of the exchange bias can be set to any arbitrary (in-plane) direction by the ion bombardment and whether the exchange bias field can be changed in successive bombardment steps. These three fundamental characteristics are prerequisites for ion bombardment used for an efficient, practical, and stable magnetic patterning of exchange biased layer systems.

  7. Robust isothermal electric control of exchange bias at room temperature

    Science.gov (United States)

    Binek, Christian

    2011-03-01

    Voltage-controlled spintronics is of particular importance to continue progress in information technology through reduced power consumption, enhanced processing speed, integration density, and functionality in comparison with present day CMOS electronics. Almost all existing and prototypical solid-state spintronic devices rely on tailored interface magnetism, enabling spin-selective transmission or scattering of electrons. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is a key challenge to better spintronics. Currently, most attempts to electrically control magnetism focus on potentially large magnetoelectric effects of multiferroics. We report on our interest in magnetoelectric Cr 2 O3 (chromia). Robust isothermal electric control of exchange bias is achieved at room temperature in perpendicular anisotropic Cr 2 O3 (0001)/CoPd exchange bias heterostructures. This discovery promises significant implications for potential spintronics. From the perspective of basic science, our finding serves as macroscopic evidence for roughness-insensitive and electrically controllable equilibrium boundary magnetization in magnetoelectric antiferromagnets. The latter evolves at chromia (0001) surfaces and interfaces when chromia is in one of its two degenerate antiferromagnetic single domain states selected via magnetoelectric annealing. Theoretical insight into the boundary magnetization and its role in electrically controlled exchange bias is gained from first-principles calculations and general symmetry arguments. Measurements of spin-resolved ultraviolet photoemission, magnetometry at Cr 2 O3 (0001) surfaces, and detailed investigations of the unique exchange bias properties of Cr 2 O3 (0001)/CoPd including its electric controllability provide macroscopically averaged information about the boundary magnetization of chromia. Laterally resolved X-ray PEEM and temperature dependent MFM reveal detailed microscopic information of the chromia

  8. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    Science.gov (United States)

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; Lampen-Kelley, Paula; Chandra, Sayan; Stojak Repa, Kristen; Nemati, Zohreh; Das, Raja; Iglesias, Óscar; Srikanth, Hariharan

    2016-01-01

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications. PMID:28335349

  9. Fundamentals for magnetic patterning by ion bombardment of exchange bias layer systems

    Energy Technology Data Exchange (ETDEWEB)

    Ehresmann, A.; Engel, D.; Weis, T. [Institute of Physics and Centre for Interdisciplinary Nanostructure Science and Technology (CINSaT), Kassel University, Heinrich-Plett-Str. 40, 34132 Kassel (Germany); Schindler, A. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Junk, D. [Technische Physik, Universitaet des Saarlandes, P.O. Box 151150, 66041 Saarbruecken (Germany); Schmalhorst, J.; Hoeink, V.; Sacher, M.D.; Reiss, G. [Faculty of Physics, Bielefeld University, P.O. Box 100131, 33501 Bielefeld (Germany)

    2006-01-01

    In the present paper we investigate whether the ion bombardment induced magnetic modifications in exchange biased bilayers are stable in time, whether the direction of the exchange bias can be set to any arbitrary (in-plane) direction by the ion bombardment and whether the exchange bias field can be changed in successive bombardment steps. These three fundamental characteristics are prerequisites for ion bombardment used for an efficient, practical, and stable magnetic patterning of exchange biased layer systems. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications.

    Science.gov (United States)

    Ehresmann, Arno; Koch, Iris; Holzinger, Dennis

    2015-11-13

    A technology platform based on a remotely controlled and stepwise transport of an array arrangement of superparamagnetic beads (SPB) for efficient molecular uptake, delivery and accumulation in the context of highly specific and sensitive analyte molecule detection for the application in lab-on-a-chip devices is presented. The near-surface transport of SPBs is realized via the dynamic transformation of the SPBs' magnetic potential energy landscape above a magnetically stripe patterned Exchange-Bias (EB) thin film layer systems due to the application of sub-mT external magnetic field pulses. In this concept, the SPB velocity is dramatically influenced by the magnitude and gradient of the magnetic field landscape (MFL) above the magnetically stripe patterned EB substrate, the SPB to substrate distance, the magnetic properties of both the SPBs and the EB layer system, respectively, as well as by the properties of the external magnetic field pulses and the surrounding fluid. The focus of this review is laid on the specific MFL design in EB layer systems via light-ion bombardment induced magnetic patterning (IBMP). A numerical approach is introduced for the theoretical description of the MFL in comparison to experimental characterization via scanning Hall probe microscopy. The SPB transport mechanism will be outlined in terms of the dynamic interplay between the EB substrate's MFL and the pulse scheme of the external magnetic field.

  11. Induced ferro-ferromagnetic exchange bias in nanocrystalline systems

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-García, J.C.; Rivas, M.; García, J.A.

    2015-03-01

    An unusual magnetic hysteresis consisting of horizontally shifted and distorted loops appears in some Co-based nanocrystalline systems in which soft and hard ferromagnetic phases coexist. The bias field can be tuned at room temperature by premagnetising treatments. Several works attributed the origin of this effect to the dipolar interaction, while little attention has been paid to the exchange interaction contribution due to its short-range nature. In this paper the relative importance of the dipolar and exchange interactions is investigated by means of micromagnetic simulations. It is demonstrated that the exchange coupling, though a nearest-neighbour interaction, has far-reaching repercussions in the magnetic configuration, and substantially prevails over the magnetostatic interaction as the cause of the asymmetrical magnetisation reversal. The straightforward conclusion is that we are dealing with a ferro-ferromagnetic exchange bias effect. - Highlights: • Magnetic biphase nanocrystalline systems with biased hysteresis loops are presented. • Computational calculations including magnetostatic and exchange interactions have been made. • Exchange interaction largely prevails as the cause of the biasing effect. • The biasing of HL is due to exchange coupling of both ferromagnetic phases. • Assuming monodomain behaviour for the crystals allows simulating the experimental HL.

  12. Perspectives of voltage control for magnetic exchange bias in multiferroic heterostructures

    Science.gov (United States)

    Yang, Q.; Zhou, Z.; Sun, N. X.; Liu, M.

    2017-04-01

    Exchange bias, as an internal magnetic bias induced by a ferromagnetic-antiferromagnetic exchange coupling, is extremely important in many magnetic applications such as memories, sensors and other devices. Voltage control of exchange bias in multiferroics provides an energy-efficient way to achieve a rapidly 180° deterministic switching of magnetization, which has been considered as a key challenge in realizing next generation of fast, compact and ultra-low power magnetoelectric memories and sensors. Additionally, exchange bias can enhance dynamic magnetoelectric coupling strength in an external-field-free manner. In this paper, we provide a perspective on voltage control of exchange bias in different multiferroic heterostructures. Brief mechanization and related experiments are discussed as well as future trend and challenges that can be overcome by electrically tuning of exchange bias in state-of-the-art magnetoelectric devices.

  13. Enhanced exchange bias fields for CoO/Co bilayers: influence of antiferromagnetic grains and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Hsun-Tony; Chang, Shin-Chen [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Tsay, Jyh-Shen, E-mail: jstsay@phy.ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Yao, Yeong-Der [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)

    2017-05-31

    Highlights: • An antiferromagnetic grain model on exchange bias phenomena is proposed. • Grain size and grain density are considered. • For smaller grain size, the dependence of t{sub CoO} on T{sub B} showed a less pronounced variation. • An increased grain density is responsible for the enhancement in the exchange bias fields. - Abstract: The emergence and optimization of devices that can be applied to spintronics have attracted considerable interest, and both experimental and theoretical approaches have been used in studies of exchange bias phenomena. A survey of the literature indicates that great efforts have been devoted to improving exchange bias fields, while only limited attempts have been made to control the temperature dependence of exchange bias. In this study, the influence of antiferromagnetic grains on exchange bias phenomena in CoO/Co bilayers on a semiconductor surface was investigated. Based on an antiferromagnetic grain model, a correlation between grain size, grain density, blocking temperature, and the exchange bias field was established. For crystallites with a smaller median diameter, the dependence of the thickness of the CoO layer on blocking temperature showed a less pronounced variation. This is due to the larger thermal agitation of the atomic spin moments in the grain, which causes a weaker exchange coupling between atomic spin moments. The enhanced density of antiferromagnetic/ferromagnetic pinning sites resulting from an increased grain density is responsible for the enhancement in the exchange bias fields. The results reported herein provide insights into our knowledge related to controlling the temperature dependence of exchange bias and related mechanisms.

  14. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    Directory of Open Access Journals (Sweden)

    Anna Behler

    2013-12-01

    Full Text Available A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni50Mn32Sn18 thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  15. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Anna [IFW Dresden, Institute for Complex Materials, P.O. Box 27 01 16, 01171 Dresden (Germany); Department of Physics, Institute for Solid State Physics, Dresden University of Technology, 01062 Dresden (Germany); Teichert, Niclas; Auge, Alexander; Hütten, Andreas [Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, 33501 Bielefeld (Germany); Dutta, Biswanath; Hickel, Tilmann [Max-Planck Institut für Eisenforschung, 40237 Düsseldorf (Germany); Waske, Anja [IFW Dresden, Institute for Complex Materials, P.O. Box 27 01 16, 01171 Dresden (Germany); Eckert, Jürgen [IFW Dresden, Institute for Complex Materials, P.O. Box 27 01 16, 01171 Dresden (Germany); Institute of Materials Science, Dresden University of Technology, 01062 Dresden (Germany)

    2013-12-15

    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni{sub 50}Mn{sub 32}Sn{sub 18} thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  16. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    Science.gov (United States)

    Behler, Anna; Teichert, Niclas; Dutta, Biswanath; Waske, Anja; Hickel, Tilmann; Auge, Alexander; Hütten, Andreas; Eckert, Jürgen

    2013-12-01

    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni50Mn32Sn18 thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  17. Postannealing of magnetic tunnel junctions with ion-bombardment-modified exchange bias

    Science.gov (United States)

    Höink, V.; Sacher, M. D.; Schmalhorst, J.; Reiss, G.; Engel, D.; Junk, D.; Ehresmann, A.

    2005-04-01

    The influence of a postannealing procedure on the transport properties of magnetic tunnel junctions with ion-bombardment-manipulated exchange bias is investigated. The controlled manipulation of the direction of the exchange bias field in magnetic tunnel junctions by He ion bombardment usually is accompanied by a reduction of the tunneling magnetoresistance and an increase in the resistance. Here, we demonstrate that it is possible to reduce these negative effects of the ion bombardment considerably by postannealing without a magnetic field. For optimized combinations of ion dose and postannealing temperature, the tunneling magnetoresistance recovers completely (>50% resistance change) while the exchange bias direction set by the ion bombardement is preserved.

  18. Fourfold symmetric planar Hall effect in epitaxial La{sub 1−x}Sr{sub x}CoO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W. Y.; Li, P.; Bai, H. L., E-mail: baihaili@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072 (China)

    2015-04-07

    The effect of Sr concentration on the planar Hall effect (PHE) in epitaxial magnetic phase separated La{sub 1−x}Sr{sub x}CoO{sub 3} (0.07 ≤ x ≤ 0.60) thin films was studied systematically. It was found that crystalline anisotropy and spin-orbital coupling are the main contributions to the unexpected fourfold symmetric PHE. The uniaxial anisotropy field was given by H{sub uni} = 70 Oe and cubic anisotropic field H{sub cub} = 143 Oe, respectively. The magnetic anisotropy was weakened by Sr doping, which corresponds with the disappearance of the fourfold symmetry in PHE with the increasing Sr concentration. The first principle calculations proved that the contribution of Co-d orbitals to the magnetic anisotropy strongly depends on the Sr concentration. e{sub g}−d{sub x{sup 2}−y{sup 2}} and e{sub g}−d{sub 3z{sup 2}−r{sup 2}} orbitals play a dominant role in the magnetic anisotropy of the samples with x = 0.125, 0.25, while the t{sub 2g}−d{sub xy}, d{sub yz}, d{sub xz} orbitals contribute mainly to the magnetic anisotropy of the samples with x = 0.375, 0.5, 0.625.

  19. Determining the sign of exchange coupling in a chromia based perpendicular exchange bias heterostructure

    Science.gov (United States)

    Singh, Uday; Street, Mike; Echtenkamp, Will; Binek, Christian; Adenwalla, Shireen

    Exchange bias arises from the coupling at the AFM/FM interface and, has been observed and studied in a wide range of systems. A key property of exchange bias systems is the sign of the coupling between the ferromagnet spins and the interfacial antiferromagnet spins, which may be aligned either ferromagnetically (parallel) or antiferromagnetically (antiparallel). Antiferromagnetic exchange coupling is known to be the generic cause of positive exchange bias. Determining the sign of exchange coupling is straight forward in system where the coupling is weak and can be overcome by Zeeman energy on field -cooling. It is, however, a challenging task when the available magnetic field is low or the magnitude of the exchange coupling is high. Here, we present a technique to determine the sign of the exchange coupling using low fields. We measure the exchange bias field as a function of ferromagnet magnetization during field cooling and the resultant behavior of the exchange bias vs. the magnetization uniquely determines the sign of the coupling. We use this to measure the sign of the exchange coupling in a Cr2O3(300 nm)/Pd(0.5 nm)/[Co(0.3 nm)/Pd(1 nm)]3 heterostructure thin film system and verify our results with the conventional high field method. This work was supported by the National Science Foundation (NSF) through Grant No. DMR-1409622 and the Nebraska Materials Research Science and Engineering Center (MRSEC) (Grant No. DMR-1420645).

  20. Exchange bias in Co/CoO/Co{sub 3}O{sub 4} nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadvand, Hossein, E-mail: ahmadvand@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Safdari, Sayed Reza [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Nozad Golikand, Ahmad [Material Research Center, Isfahan 81465-1589 (Iran, Islamic Republic of); Dasgupta, Papri; Poddar, Asok [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Salamati, Hadi [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2015-03-01

    Nanostructures of Co/CoO/Co{sub 3}O{sub 4} were synthesized by a chemical method at different temperatures between 300 and 600 °C. The samples were characterized by TG, XRD, TEM and SQUID magnetometry. The lower temperature sample (300 °C) is composed of Co, CoO and Co{sub 3}O{sub 4}, while the higher temperature sample only contains Co{sub 3}O{sub 4}. All the samples exhibit exchange bias effect. The exchange bias is observed below 205 K (below the CoO blocking temperature) for the sample prepared at lower temperature (300 °C), while for other samples (350–600 °C), the effect is observed below 35 K (below the Néel temperature of Co{sub 3}O{sub 4}, T{sub N}=40 K). The roles of CoO and Co{sub 3}O{sub 4} on the magnetic properties and the mechanisms governing exchange bias effect have been discussed. - Highlights: • Synthesis of Co/CoO/Co{sub 3}O{sub 4} nanostructure by a simple method. • Study of exchange bias in a cobalt/cobalt-oxide nanostructure containing both cobalt oxides. • Discussion on the role of CoO and Co3O4 on the exchange bias properties of the nanostructure.

  1. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    R, Lisha; P, Geetha; B, Aravind P.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Cochin University of Science and Technology, Cochin-682022 (India); T, Hysen [Christian College, Chengannur, Kerala-689121 (India); Ojha, S.; Avasthi, D. K. [Inter University Accelerator Centre, Vasant Kunj, New Delhi-110067 (India); Ramanujan, R. V. [School of Materials Science and Engineering, Nanyang Technological University (Singapore)

    2015-06-24

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  2. Exchange bias effect in Ti doped nanocrystalline SrFeO3-δ

    Directory of Open Access Journals (Sweden)

    A. Sendil Kumar

    2014-08-01

    Full Text Available Materials of Ti doped nanocrystalline SrFeO3-δ were synthesized through solid state reaction. Detailed magnetization measurements were carried out in zero field cooled (ZFC and field cooled (FC conditions. Compounds of SrFe1-xTixO3-δ (x = 0.1 to 0.3 are found to be spin glass and parent compound is a helical antiferromagnet. Non magnetic Ti4+ reduces the strength of exchange interactions and the curvature of hysteresis is changed towards concave nature. Exchange bias is observed below the peak temperature (irreversibility in magnetization (TIrr in ZFC-FC of SrFe1-xTixO3-δ (x = 0 to 0.3. The coercivity and exchange bias field values are found to be decreases with increase in temperature. Observed exchange bias effect is attributed to competition between antiferromagnetic superexchange and ferromagnetic double exchange interactions.

  3. Manipulating exchange bias using all-optical helicity-dependent switching

    Science.gov (United States)

    Vallobra, P.; Fache, T.; Xu, Y.; Zhang, L.; Malinowski, G.; Hehn, M.; Rojas-Sánchez, J.-C.; Fullerton, E. E.; Mangin, S.

    2017-10-01

    Deterministic all-optical control of magnetization without an applied magnetic field has been reported for various materials such as ferrimagnetic and ferromagnetic thin films, as well as granular recording media. Here we demonstrate optical control of the magnetic configuration of an antiferromagnetic layer through the exchange bias interaction using the helicity of a femtosecond pulsed laser on IrMn /[Co/Pt ] xN antiferromagnetic/ferromagnetic heterostructures. We show that the magnitude and the sign of the exchange bias field can be deterministically controlled without any applied magnetic field, only by changing the helicity of the light, the laser fluence, or the number of light pulses. We also present the combined effects of laser pulses with an applied magnetic field. This study lays the foundation for the development of new applications based on spintronic devices where the exchange bias phenomenon is routinely used to pin the magnetization orientation of a magnetic layer in one direction.

  4. Nanometer-size magnetic domains and coherent magnetization reversal in a giant exchange-bias system

    DEFF Research Database (Denmark)

    Dufour, C.; Fitzsimmons, M. R.; Borchers, J. A.

    2011-01-01

    The role of magnetic domains and domain walls in exchange bias has stimulated much contemporary deliberation. Here we present compelling evidence obtained with small-angle scattering of unpolarized- and polarized-neutron beams that magnetization reversal occurs via formation of 10-100s nm......-sized magnetic domains in an exchange-biased DyFe2/YFe2 superlattice. The reversal mechanism is observed to involve rotation of magnetization in and out of the sample plane. Remarkably, the domains are arranged in a quasiperiodic manner in the plane of the sample. The length scale of domain formation is similar...

  5. Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface.

    Science.gov (United States)

    Valev, V K; Gruyters, M; Kirilyuk, A; Rasing, Th

    2006-02-17

    Magnetization-induced optical second harmonic generation (MSHG) from the exchange-biased CoO/Cu-(X)/Fe multilayer shows the presence of pinned uncompensated spins at the CoO/Cu interface. For increasing Cu spacer thickness, the exchange bias measured via the hysteresis loop shift diminishes and disappears at X = 3.5 nm, while the MSHG signal still shows a strong magnetic contribution from the CoO interface. This indicates that the magnetic interaction between Fe and CoO layers is sufficiently strong to induce order in the antiferromagnetic layer even at a spacer thickness for which there is no observable hysteresis loop shift.

  6. Antiferromagnetic exchange spring as the reason of exchange bias training effect

    Science.gov (United States)

    Dobrynin, A. N.; Maccherozzi, F.; Dhesi, S. S.; Fan, R.; Bencok, P.; Steadman, P.

    2014-07-01

    We observe recovery of the exchange bias training effect in a Co/CoO bilayer after warming the sample up to the blocking temperature and cooling it back to a low measuring temperature in zero magnetic field. Variation of the magnitude of X-ray magnetic linear dichroism in the sample for the system in the high unidirectional anisotropy state (after field cooling) and in the low unidirectional anisotropy state (after training) suggests rearrangement of antiferromagnetic structure during the initial field cycling in exchange biased state. Our results suggest formation of an antiferromagnetic exchange spring at the frustrated ferromagnetic-antiferromagnetic interface being the reason of the training effect.

  7. Tunable magnetic anisotropy of antiferromagnetic superlattice and resultant exchange bias of ferromagnetic layer on it

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, Masakiyo [Department of Electonic Engineering, Tohoku University, Aobayama 6-6-05, Sendai 980-8579 (Japan)]. E-mail: tsunoda@ecei.tohoku.ac.jp; Naka, Mamiko [Department of Electonic Engineering, Tohoku University, Aobayama 6-6-05, Sendai 980-8579 (Japan); Kim, Dong Young [Department of Electonic Engineering, Tohoku University, Aobayama 6-6-05, Sendai 980-8579 (Japan); Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Takahashi, Migaku [Department of Electonic Engineering, Tohoku University, Aobayama 6-6-05, Sendai 980-8579 (Japan); New Industry Creation Hatchery Center, Tohoku University, Aobayama 6-6-10, Sendai 980-8579 (Japan)

    2006-09-15

    Exchange biasing of ferromagnetic layer deposited on the antiferromagnetic superlattice was investigated in (Co{sub 70}Fe{sub 30}/Ru){sub 29.5}/Ru/Co{sub 90}Fe{sub 10} multilayers. Uniaxial magnetic anisotropy (K {sub AF}) was induced and tuned in the antiferromagentic superlattice by uniaxial substrate bending method through the inverse effect of magnetostriction. The exchange bias increased and tended to be saturated with increasing the K {sub AF}, while it was not observed at K {sub AF}=0.

  8. Magnetic charge distribution and stray field landscape of asymmetric néel walls in a magnetically patterned exchange bias layer system

    Science.gov (United States)

    Zingsem, Norbert; Ahrend, Florian; Vock, Silvia; Gottlob, Daniel; Krug, Ingo; Doganay, Hatice; Holzinger, Dennis; Neu, Volker; Ehresmann, Arno

    2017-12-01

    The 3D stray field landscape above an exchange bias layer system with engineered domain walls has been fully characterized by quantitative magnetic force microscopy (qMFM) measurements. This method is based on a complete quantification of the MFM tip’s imaging properties and the subtraction of its contribution from the measured MFM data by deconvolution in Fourier space. The magnetically patterned Ir17Mn83/Co70Fe30-exchange-bias-multilayers have been designed to contain asymmetric head-to-head (hh)/tail-to-tail (tt) Néel walls between domains of different magnetic anisotropies for potential use in guided particle transport. In the current application, qMFM reveals the effective magnetic charge profile on the surface of the sample—with high spatial resolution and in an absolute quantitative manner. These data enable to calculate the magnetostatic potential and the full stray field landscape above the sample surface. It has been successfully tested against: (i) micromagnetic simulations of the magnetization structure of a comparable exchange-bias layer system, (ii) measurements of the magnetization profile across the domain boundary with x-ray photoemission electron microscopy, and (iii) direct stray field measurements obtained by scanning Hall probe microscopy at elevated scan heights. This approach results in a quantitative determination of the stray field landscape at close distances to the sample surface, which will be of importance for remote magnetic particle transport applications in lab-on-a-chip devices. Furthermore, the highly resolving and quantitative MFM approach reveals details of the domain transition across the artificially structured phase boundary, which have to be attributed to a continuous change in the materials parameters across this boundary, rather than an abrupt one.

  9. Antiferromagnetic exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal

    Energy Technology Data Exchange (ETDEWEB)

    Olejnik, K.; Wadley, P.; Haigh, J.; Edmonds, K. W.; Campion, R. P.; Rushforth, A. W.; Gallagher, B. L.; Foxon, C. T.; Jungwirth, T.; Wunderlich, J.; Dhesi, S. S.; Cavill, S.; van der Laan, G.; Arenholz, E.

    2009-11-05

    We demonstrate an exchange bias in (Ga,Mn)As induced by antiferromagnetic coupling to a thin overlayer of Fe. Bias fields of up to 240 Oe are observed. Using element-specific x-ray magnetic circular dichroism measurements, we distinguish an interface layer that is strongly pinned antiferromagnetically to the Fe. The interface layer remains polarized at room temperature.

  10. Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces

    NARCIS (Netherlands)

    Huijben, Mark; Yu, P.; Martin, L.W.; Molegraaf, Hajo; Chu, Y.H.; Holcomb, M.B.; Balke, N.; Rijnders, Augustinus J.H.M.; Ramesh, R.

    2013-01-01

    Exchange bias coupling at the multiferroic- ferromagnetic interface in BiFeO3/La0.7Sr0.3MnO3 heterostructures exhibits a critical thickness for ultrathin BiFeO3 layers of 5 unit cells (2 nm). Linear dichroism measurements demonstrate the dependence on the BiFeO3 layer thickness with a strong

  11. Nanoscale Control of Exchange Bias with BiFeO3 Thin Films

    NARCIS (Netherlands)

    Martin, Lane W.; Chu, Ying-Hao; Holcomb, Mikel B.; Huijben, Mark; Yu, Pu; Han, Shu-Jen; Lee, Donkoun; Wang, Shan X.; Ramesh, R.

    2008-01-01

    We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions − an enhancement of the coercive field (exchange enhancement) and an enhancement of the coercive field

  12. Exchange bias and magnetic behaviour of iron nanoclusters prepared by the gas aggregation technique

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Marcos, J., E-mail: sanchej@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Laguna-Marco, M.A.; Martinez-Morillas, R. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Jimenez-Villacorta, F. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); SpLine Spanish CRG Beamline at the European Synchrotron Radiation Facilities, ESRF-BP 220-38043 Grenoble Cedex (France); Cespedes, E. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Menendez, N. [Dep. Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Prieto, C. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Gas aggregation phase technique allows obtaining {alpha}-Fe{sub 2}O{sub 3} nanoparticles. Black-Right-Pointing-Pointer We have reported exchange bias up to 3250 Oe at 2 K. Black-Right-Pointing-Pointer Exchange bias may be tuned by different stoichiometry of {alpha}-Fe{sub 2}O{sub 3} nanoparticles. - Abstract: Iron nanoclusters have been deposited by the gas-phase aggregation technique to form multilayered structures with outstanding exchange-bias (H{sub E}) values up to H{sub E} = 3300 Oe at low temperatures. In order to explain the observed magnetic properties, composition and crystallographic phase have been determined by X-ray absorption spectroscopy. A metal-oxide core-shell arrangement has to be discarded to explain the large obtained values of H{sub E} since structural results show nanoclusters formed by the antiferromagnetic {alpha}-Fe{sub 2}O{sub 3} oxide. Moreover, nanoparticles of few nanometers formed by substoichiometric {alpha}-Fe{sub 2}O{sub 3} explain the observed weak ferromagnetism and let to understand the origin of large exchange bias by the interaction between different spin sublattice configurations provided by the low iron coordination at surface.

  13. Disclosure of double exchange bias effect in chromium (III) oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Rinaldi-Montes, N.; Gorria, P.; Fuertes, A.B.; Martinez-Blanco, D.; Olivi, L.; Puente-Orench, I.; Alonso, J.M.; Phan, M.-H.; Skrikanth, H.; Martí, Xavier; Blanco, J.A.

    2017-01-01

    Roč. 53, č. 1 (2017), s. 1-4, č. článku 2300204. ISSN 0018-9464 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : antiferromagnetism * exchange bias (EB) * magnetic nanoparticles * magnetoelectric effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.243, year: 2016

  14. Exchange bias effect in spin glass CoCr{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Changming; Tian, Zhaoming; Wang, Liguang; Yuan, Songliu, E-mail: yuansl@hust.edu.cn

    2015-11-01

    CoCr{sub 2}O{sub 4} nanoparticles are about 5.4 nm in diameter synthesized by a hydrothermal technique. Magnetization measurements reveal that the nanoparticles exhibit a spin glass behavior below glass transition temperature. Signature of memory effect is clear in reheating curve where the step-like shape increasing with the increase of temperature is recovered after cooling process. Magnetic relaxation is performed to prove memory effect. Ageing effect is also detected in CoCr{sub 2}O{sub 4} nanoparticles to verify the spin glass behavior. As temperature decreases to 5 K, which is far below the glass transition temperature, exchange bias effect can be observed clearly accompanied with a shift in field-cooled hysteresis loop. As particle size decreases to 5.4 nm, spin glass behavior appears due to the increased spin disorder effect. The spin glass phase providing a pinning force from some frozen spins to the rotatable spins gives the key to explain the exchange bias effects. - Highlights: • Existence of spin glass phase is verified in CoCr{sub 2}O{sub 4} nanoparticles. • Exchange bias effect with a shift in field-cooled loop is observed at 5 K. • It is proved that exchange bias effect is originated from the spin glass phase.

  15. Observation of magnetization rotation during the reversal in Co/CoO exchange-bias multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gierlings, M.; Fritzsche, H.; Gruyters, M.; Riegel, D. [Hahn-Meitner Institut Berlin, Glienicker Strasse 100, 14109 Berlin (Germany); Prandolini, M.J. [Institut fuer Experimentalphysik (WE1), Freie Universitaet Berlin, 14195 Berlin (Germany)

    2002-07-01

    The magnetization-reversal processes of ferromagnetic Co in [Co/CoO/Au]{sub 20} exchange-bias multilayers are studied with polarized neutron reflectometry. The investigations were performed at 300 K, i.e. above the Neel temperature of CoO. We measured the non-spin-flip as well as the spin-flip intensities. Thus, we are able to distinguish between a magnetization rotation and a domain-wall movement. This is essential, in order to compare the obtained results to measurements performed below T{sub N} of CoO, when the sample is in the exchange-bias state (i.e. after field cooling). (orig.)

  16. Observation of an atomic exchange bias effect in DyCo4 film

    OpenAIRE

    Chen, Kai; Lott, Dieter; Radu, Florin; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe

    2015-01-01

    The fundamental important and technologically widely employed exchange bias effect occurs in general in bilayers of magnetic thin films consisting of antiferromagnetic and ferromagnetic layers where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the magnetization curve of a soft ferromagnetic film. The minimization of the single magnetic grain size to increase the storage density and the subsequent demand for magnetic materials with very high magnetic anis...

  17. Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces

    Science.gov (United States)

    2013-07-12

    stabilizers in recording heads based on anisotropic magnetoresistance . [ 11 ] Exchange bias heterostructures based on multiferroic materials...epitaxial layers of LSMO and BFO, which were strained in-plane to the STO (001) substrate. Figure 1 c shows the presence of Kiessig fringes...drastically. This is generally interpreted by considering a strain -induced distortion of MnO 6 octahedra based on the Jahn-Teller distortion theory. [ 39

  18. Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi-Montes, Natalia, E-mail: nataliarin@gmail.com [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain); Gorria, Pedro [Departamento de Física & IUTA, EPI, Universidad de Oviedo, E-33203 Gijón (Spain); Martínez-Blanco, David [Servicios Científico-Técnicos, Universidad de Oviedo, E-33006 Oviedo (Spain); Fuertes, Antonio B. [Instituto Nacional del Carbón, CSIC, E-33080 Oviedo (Spain); Fernández Barquín, Luis [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, E-39005 Santander (Spain); Puente-Orench, Inés [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Blanco, Jesús A. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-02-15

    Among all bi-magnetic core(transition metal)@shell(transition metal oxide) nanoparticles (NPs), Ni@NiO ones show an onset temperature for the exchange bias (EB) effect far below the Néel temperature of bulk antiferromagnetic NiO. In this framework, the role played by the magnetism of NiO at the nanoscale is investigated by comparing the microstructure and magnetic properties of NiO and Ni@NiO NPs. With the aim of bridging the two systems, the diameter of the NiO NPs (~4 nm) is chosen to be comparable to the shell thickness of Ni@NiO ones (~2 nm). The EB effect in Ni@NiO NPs is attributed to the exchange coupling between the core and the shell, with an interfacial exchange energy of ΔE~0.06 erg cm{sup −2}, thus comparable to previous reports on Ni/NiO interfaces both in thin film and NP morphologies. In contrast, the EB detected in NiO NPs is explained in a picture where uncompensated spins located on a magnetically disordered surface shell are exchange coupled to the antiferromagnetic core. In all the studied NPs, the variation of the EB field as a function of temperature is described according to a negative exponential law with a similar decay constant, yielding a vanishing EB effect around T~40–50 K. In addition, the onset temperature for the EB effect in both NiO and Ni@NiO NPs seems to follow a universal dependence with the NiO crystallite size. - Highlights: • Comparison of the exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. • Universal temperature dependence of the exchange bias effect. • Suggested similar physical origin of the effect in both systems. • Size and crystallinity of the NiO shell hold the key for exchange bias properties.

  19. Temperature evolution of nickel sulphide phases from thiourea complex and their exchange bias effect

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nitesh [Chemistry and Physics of Materials Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560 064 (India); Raman, N. [Department of Chemistry, VHNSN College, Virudhunagar-626 001 (India); Sundaresan, A., E-mail: sundaresan@jncasr.ac.in [Chemistry and Physics of Materials Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560 064 (India)

    2013-12-15

    Considering the very complex phase diagram of nickel sulphide, it is quite challenging to stabilize pure phases from a single precursor. Here, we obtain nanoparticles of various phases of nickel sulphide by decomposing nickel–thiourea complex at different temperatures. The first phase in the evolution is the one with the maximum sulphur content, namely, NiS{sub 2} nanoparticles obtained at 400 °C. As the temperature is increased, nanoparticles of phases with lesser sulphur content, NiS (600 °C) and Ni{sub 3}S{sub 2} (800 °C) are formed. NiS{sub 2} nanoparticles exhibit weak ferromagnetic transition at 30 K and show a large exchange bias at 2 K. NiS nanoparticles are antiferromagnetic and show relatively smaller exchange bias effect. On the other hand, Ni{sub 3}S{sub 2} nanoparticles exhibit very weak temperature dependent magnetization. Electrical measurements show that both NiS{sub 2} and NiS are semiconductors whereas Ni{sub 3}S{sub 2} is a metal. - Graphical abstract: Pure phases of NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} have been obtained by thermal decomposition of nickel–thiourea complex wherein, NiS{sub 2} nanoparticles exhibit remarkable exchange bias effect at 2 K. - Highlights: • NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} nanoparticles are obtained by thermal decomposition of nickel–thiourea complex at different temperatures. • As the temperature is increased, nickel sulphide phase with lesser sulphur content is obtained. • NiS{sub 2} nanoparticles show good exchange bias property which can be explained by antiferromagnetic core and ferromagnetic shell model. • NiS{sub 2} and NiS are semiconducting while Ni{sub 3}S{sub 2} shows metallic behavior.

  20. Observation of an atomic exchange bias effect in DyCo4 film

    Science.gov (United States)

    Chen, Kai; Lott, Dieter; Radu, Florin; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe

    2015-12-01

    The fundamental important and technologically widely employed exchange bias effect occurs in general in bilayers of magnetic thin films consisting of antiferromagnetic and ferromagnetic layers where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the magnetization curve of a soft ferromagnetic film. The minimization of the single magnetic grain size to increase the storage density and the subsequent demand for magnetic materials with very high magnetic anisotropy requires a system with high HEB. Here we report an extremely high HEB of 4 Tesla observed in a single amorphous DyCo4 film close to room temperature. The origin of the exchange bias can be associated with the variation of the magnetic behavior from the surface towards the bulk part of the film revealed by X-ray absorption spectroscopy and X-ray magnetic circular dichroism techniques utilizing the bulk sensitive transmission and the surface sensitive total electron yield modes. The competition between the atomic exchange coupling in the single film and the Zeeman interaction lead to an intrinsic exchanged coupled system and the so far highest exchange bias effect HEB = 4 Tesla reported in a single film, which is accommodated by a partial domain wall formation.

  1. Magnetic stability in exchange-spring and exchange bias systems after multiple switching cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J. S.; Inomata, A.; You, C.-Y.; Pearson, J. E.; Bader, S. D.

    2001-06-01

    We have studied the magnetic stability in exchange bias and exchange spring systems prepared via epitaxial sputter deposition. The two interfacial exchange coupled systems, Fe/Cr(211) double superlattices consisting of a ferromagnetic and an antiferromagnetic Fe/Cr superlattice that are exchange coupled through a Cr spacer, and Sin-Co/Fe exchange-spring bilayer structures with ferromagnetically coupled hard Sin-Co layer and soft Fe layer, were epitaxially grown on suitably prepared Cr buffer layers to give rise to different microstructure and magnetic anisotropy. The magnetic stability was investigated using the magneto-optic Kerr effect during repeated reversal of the soft layer magnetization by field cycling up to 10{sup 7} times. For uniaxial Fe/Cr exchange biased double superlattices and exchange spring bilayers with uniaxial Sin-Co, small but rapid initial decay in the exchange bias field HE and in the remanent magnetization is observed. However, the exchange spring bilayers with biaxial and random in-plane anisotropy in the Sin-Co layer shows gradual decay in H{sub E} and without large reduction of the magnetization. The different decay behaviors are attributed to the different microstructure and spin configuration of the pinning layers.

  2. Thermal stability of magnetic nanostructures in ion-bombardment-modified exchange-bias systems

    Science.gov (United States)

    Höink, V.; Sacher, M. D.; Schmalhorst, J.; Reiss, G.; Engel, D.; Weis, T.; Ehresmann, A.

    2006-06-01

    In magnetic bilayer systems consisting of a ferromagnet and an antiferromagnet the strength and direction of the exchange bias coupling can be set by ion bombardment in an external magnetic field. Magnetic nanostructures with a laterally varying exchange bias direction can be produced by local ion bombardment (ion bombardment induced magnetic patterning). We have investigated the thermal stability of these magnetic nanostructures by in situ x-ray photoemission electron microscopy while heating the samples above their blocking temperature. The investigations have been done at a 10.4μm×10.4μm large checkered pattern with a minimum size of the magnetic patterns of 800nm×800nm on a field cooled MnIr/CoFe stack and a pattern with 1.6μm wide lines with a periodicity of 5μm on an as-prepared MnIr/Co stack. The temperature dependence of the magnetization pattern can be explained by the temperature dependence of the exchange bias interaction, the exchange interaction energy, and the stray field energy. No substantial change of the thermal stability of magnetic patterns in remanence by the ion bombardment was found.

  3. Magnetically tunable bipolar switching of the exchange-bias field in Co2TiO4

    Science.gov (United States)

    Wei, A.; Tao, S.; Fang, Y.; Han, Z. D.; Qian, B.; Jiang, X. F.; Zhou, H.; Tang, R. J.; Wang, D. H.

    2017-11-01

    Coupling at the interfaces between antiferromagnetic and ferromagnetic constituents is known to be responsible for the exchange-bias effect, where external stimulus like temperature, electric or magnetic fields are supposed to influence the associated phenomenology. In this paper, we prepare the polycrystalline Co2TiO4 and investigate its temperature- and field-dependent magnetization, from which an unusual exchange-bias effect associated with magnetic reversals is extracted. At low temperature, a continuous crossover from negative to positive exchange-bias fields can be obtained with increment of the cooling magnetic field, showing a magnetically tunable effect. The bipolar switching of exchange-bias field in this compound depends on the relative orientation between Co2+ and [Co3+Ti3+] magnetic moments.

  4. The effects of exchange bias on Fe-Co/MgO magnetic nanoparticles with core/shell morphology

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Boubeta, C; Balcells, Ll; MartInez, B [Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); Monty, C, E-mail: ben.martinez@icmab.e [CNRS/Procedes, Materiaux et Energie Solaire (PROMES), 66120 Font Romeu (France)

    2010-01-20

    The effects of exchange bias on core/shell structured nanoparticles are analyzed. Nanoparticles are integrated with high moment Fe-Co crystallites covered epitaxially with MgO shells. It is observed that the coercive field H{sub C}(FeCo)>H{sub C}(Co)>H{sub C}(Fe); however, the exchange bias field H{sub E} of the Co sample is higher than that of the FeCo one, while H{sub E} = 0 for the Fe sample. It is suggested that the exchange bias is induced by the formation of a (Co, Mg)O solid solution. In fact, we show that it is possible to modify the exchange bias properties by manipulating the level of Mg dusting at the interface, as recently reported for thin films.

  5. Reversal magnetization, spin reorientation, and exchange bias in YCr O3 doped with praseodymium

    Science.gov (United States)

    Durán, A.; Escamilla, R.; Escudero, R.; Morales, F.; Verdín, E.

    2018-01-01

    Crystal structure, thermal properties, and magnetic properties were studied systematically in Y1 -xP rxCr O3 with 0.0 ≤x ≤0.3 compositions. Magnetic susceptibility and specific-heat measurements show an increase in the antiferromagnetic transition temperature (TN) as Pr is substituted in the Y sites and notable magnetic features are observed below TN. Strong coupling between magnetic and crystalline parameters is observed in a small range of Pr compositions. A small perturbation in the lattice parameters by a Pr ion is sufficient to induce a spin-reorientation transition followed by magnetization reversal to finally induce the exchange-bias effect. The spin-reorientation temperature (TSR) is increased from 35 to 149 K for 0.025 ≤x ≤0.1 compositions. It is found that the Cr spin sublattice rotates continuously from TSR to a new spin configuration at lower temperature. In addition, magnetization reversal is observed at T*˜35 K for x =0.05 up to T*˜63 K for x =0.20 composition. The M -H curves show a negative exchange-bias effect induced by Pr ions, which are observed below 100 K and are more intense at 5 K. At 10 K, the magnetic contribution of the specific heat as well as the ZFC magnetization show the rise of a peak with increasing Pr content. The magnetic anomaly could be associated with the freezing of the Pr magnetic moment randomly distributed at the 4 c crystallographic site. A clear correspondence between spin reorientation, magnetization reversal, and exchange-bias anisotropy with the tilting and octahedral distortion is also discussed.

  6. Suppression of exchange bias effect in maghemite nanoparticles functionalized with H{sub 2}Y

    Energy Technology Data Exchange (ETDEWEB)

    Guivar, Juan A. Ramos, E-mail: juan.ramos5@unmsm.edu.pe [Faculty of Physical Sciences, National University of San Marcos, P. O. Box 14-0149, Lima, 14 Peru (Peru); Morales, M.A. [Departamento de Física Teórica e Experimental, UFRN, Natal, RN, 59078-970 Brazil (Brazil); Litterst, F. Jochen [Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, Braunschweig, 38110 Germany (Germany)

    2016-12-15

    The structural, vibrational, morphological and magnetic properties of maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles functionalized with polar molecules EDTA(or H{sub 4}Y) and H{sub 2}Y are reported. The samples were functionalized before and after total synthesis of γ-Fe{sub 2}O{sub 3} nanoparticles. The molecules are anchored on the monodentate mode on the nanoparticles surface. Transmission electron microscopy (TEM) revealed the formation of maghemite nanoparticles with small diameter of 4 nm for the sample functionalized upon synthesis and 7.6 and 6.9 nm for the samples functionalized with EDTA and H{sub 2}Y after the formation of nanoparticles. Exchange bias phenomena were observed in some of the samples functionalized with EDTA at temperatures below 70 K. The presence of the bias effect was discussed in terms of the formation of a thin layer of a secondary phase like lepidocrocite, and the absence of this effect was explained in terms of the chemisorption of carboxylic groups from EDTA which suppressed the canting. Studies of Mössbauer spectroscopy as a function of temperature showed slow relaxation effects and allowed discussion of the secondary phase. In the M–T curves a maximum around 116 K was associated with this secondary phase also in agreement with the Mössbauer studies. The dynamic properties were studied by AC susceptibility, the out of phase signal revealed a spin glass like regime below 36.5 K. - Highlights: • Coprecipitation in alkaline medium was used for the synthesis of EDTA functionalized small maghemite nanoparticles. • Exchange bias effect was observed due to a thin layer of lepidocrocite like second phase. • The sample coprecipitated in a weak base did not show exchange bias effect. • The bias effect is discussed in terms of suppression of canting due to chemisorption of carboxylic groups from EDTA.

  7. Phase transformation and exchange bias effects in mechanically alloyed Fe/magnetite powders

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, O., E-mail: ocrisan@yahoo.com [National Institute for Materials Physics, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Crisan, A.D. [National Institute for Materials Physics, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania)

    2011-06-09

    Highlights: > Phase evolution in Fe/Fe{sub 3}O{sub 4} nanopowder monitored by synchrotron X-ray diffraction. > Fe/Fe{sub 3}O{sub 4} nanopowder undergo an incomplete redox reaction with formation of FeO. > FeO decomposes gradually into initial constituents at T up to 500 deg. C. > At higher T the redox reaction is reversible, at 900 deg. C only FeO is observed. > For the first time a strong exchange bias effect, related to FeO content, is observed. - Abstract: Nanostructured powders processed by ball milling of a mixture of Fe and Fe{sub 3}O{sub 4} at room temperature are shown to undergo an incomplete redox reaction with formation of FeO during the milling process. This reaction is favored by the high energy introduced during the mechano-alloying process. Concurrent effects of milling such as grain refinement down to the nanometre scale lead at the end of the milling processes to a mixed multiphase powder of nanograins, with Fe and Fe oxide grains inter-dispersed. We show that in the as-milled Fe/Fe{sub 3}O{sub 4} powder, during milling process, wuestite (FeO) is formed as a consequence of the redox reaction. Moreover, with increasing temperature, the system undergoes an inverse phase transformation towards the initial Fe and Fe{sub 3}O{sub 4} phases until about 450 deg. C. Above this temperature the reduction reaction Fe + Fe{sub 3}O{sub 4} = 4FeO is reinitiated, resulting in sharp decrease of Fe and Fe{sub 3}O{sub 4} content from about 550 deg. C and almost complete disappearance of these phases at about 900 deg. C. This transformation was investigated via an energy-dispersive in situ X-ray diffraction experiment using the synchrotron radiation. This study allows direct collection of X-ray patterns after few minutes exposure, at selected temperatures, ranging between 20 deg. C and 1000 deg. C. The structural and magnetic characterizations of the nanograin powders, as-milled and annealed at several temperatures, are studied using XRD, SEM and magnetic measurements

  8. Electrical control of exchange bias via oxygen migration across CoO-ZnO nanocomposite barrier

    Science.gov (United States)

    Li, Q.; Yan, S. S.; Xu, J.; Li, S. D.; Zhao, G. X.; Long, Y. Z.; Shen, T. T.; Zhang, K.; Zhang, J.

    2016-12-01

    We proposed a nanocomposite barrier CoO-ZnO for magnetism manipulation in Co/CoO-ZnO/Ag heterojunctions. Both electrical control of magnetism and resistive switching were realized in this junction. An electrical tunable exchange bias of CoO1-v (v denotes O vacancies) on Co films was realized using voltages below 1 volt. The magnetism modulation associated with resistive switching can be attributed to the oxygen ions migration between the insulating CoO1-v layer and the semiconductive ZnO1-v layer, which can cause both ferromagnetic phase and resistance switching of CoO1-v layer.

  9. Modification of the saturation magnetization of exchange bias thin film systems upon light-ion bombardment.

    Science.gov (United States)

    Huckfeldt, Henning; Gaul, Alexander; David Müglich, Nicolas; Holzinger, Dennis; Nissen, Dennis; Albrecht, Manfred; Emmrich, Daniel; Beyer, André; Gölzhäuser, Armin; Ehresmann, Arno

    2017-03-29

    The magnetic modification of exchange bias materials by 'ion bombardment induced magnetic patterning' has been established more than a decade ago. To understand these experimental findings several theoretical models were introduced. Few investigations, however, did focus on magnetic property modifications caused by effects of ion bombardment in the ferromagnetic layer. In the present study, the structural changes occurring under ion bombardment were investigated by Monte-Carlo simulations and in experiments. A strong reduction of the saturation magnetization scaling linearly with increasing ion doses is observed and our findings suggest that it is correlated to the swelling of the layer material based on helium implantation and vacancy creation.

  10. Electronic control of interface ferromagnetic order and exchange-bias in paramagnetic-antiferromagnetic epitaxial bilayers.

    Science.gov (United States)

    Pandey, Parul; Das, Tanmay; Rana, Rakesh; Parmar, Jayesh B; Bhattacharyya, Somnath; Rana, Dhanvir Singh

    2015-02-21

    The hetero-epitaxially engineered magnetic phases, formed due to entanglement of the spin, charge and lattice degrees of freedom, at the atomically sharp interfaces of complex oxide heterostructures are indispensable for devising multifunctional devices. In the quest for novel and superior spintronics functionalities, we have explored the interface magnetism in the epitaxial bilayer of atypical magnetic and electronic states, i.e., of paramagnetic metallic and antiferromagnetic (AFM) insulating phases. In this framework, we observe an unusually strong ferromagnetic order and large exchange-bias fields generated at the interface of the bilayers of metallic CaRuO3 and AFM insulating manganite. The magnetic moment of the interface ferromagnetic order increases linearly with increasing thickness (7-90 nm) of the metallic CaRuO3 layer. This linear scaling signifying an electronic (non-magnetic) control of the interface magnetism and a non-monotonic dependence of the exchange-bias on metallic layers evolve as novel spintronics attributes in atypical bilayers.

  11. Charge ordering and exchange bias behaviors in Co3O4 porous nanoplatelets and nanorings

    Science.gov (United States)

    Debnath, J. C.; Wang, Jianli; Zeng, R.

    2017-01-01

    We present the synthesis of α-Co3O4 porous nanoplatelets and hexagonal nanorings using microwave-assisted hydrothermal and conventional chemical reaction methods. The x-ray diffraction (XRD) and refinement analyses indicate the α-Co3O4 crystal structure, and the x-ray photoelectron spectrum (XPS) indicates the high purity of the samples. The M-T (including 1/χ-T) curves indicate an antiferromagnetic transition at about 35 K in both kind of samples but the interesting finding was made that a charge-ordered (CO) state appears at 250 K for the nanoplatelets sample whereas it is inattentive for the nanorings. The antiferromagnetic transition temperature TN is lower than that of the bulk α-Co3O4 single crystal due to the nanosized structures. We observed quite significant exchange bias for nanorings. The exchange bias behavior of the α-Co3O4 hexagonal nanorings is consistent with an antiferromagnetic (AFM) Co3O4 core and spin-glass like shell.

  12. Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles.

    Science.gov (United States)

    Sun, Xiaolian; Huls, Natalie Frey; Sigdel, Aruna; Sun, Shouheng

    2012-01-11

    Monodisperse 35 nm FeO nanoparticles (NPs) were synthesized and oxidized in a dry air atmosphere into core/shell FeO/Fe(3)O(4) NPs with both FeO core and Fe(3)O(4) shell dimensions controlled by reaction temperature and time. Temperature-dependent magnetic properties were studied on FeO/Fe(3)O(4) NPs obtained from the FeO NPs oxidized at 60 and 100 °C for 30 min. A large exchange bias (shift in the hysteresis loop) was observed in these core/shell NPs. The relative dimensions of the core and shell determine not only the coercivity and exchange field but also the dominant reversal mechanism of the ferrimagnetic Fe(3)O(4) component. This is the first time demonstration of tuning exchange bias and of controlling asymmetric magnetization reversal in FeO/Fe(3)O(4) NPs with antiferromagnetic core and ferrimagnetic shell. © 2011 American Chemical Society

  13. NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure

    Science.gov (United States)

    Młyńczak, E.; Luches, P.; Valeri, S.; Korecki, J.

    2013-06-01

    The magnetic and structural properties of NiO/Fe epitaxial bilayers grown on MgO(001) were studied using magnetooptic Kerr effect (MOKE) and conversion electron Mössbauer spectroscopy (CEMS). The bilayers were prepared under ultra high vacuum conditions using molecular beam epitaxy with oblique deposition. Two systems were compared: one showing the exchange bias (100ML-NiO/24ML-Fe), ML stands for a monolayer, and another where the exchange bias was not observed (50ML-NiO/50ML-Fe). For both, the magnetic anisotropy was found to be complex, yet dominated by the growth-induced uniaxial anisotropy. The training effect was observed for the 100ML-NiO/24ML-Fe system and quantitatively described using the spin glass model. The composition and magnetic state of the interfacial Fe layers were studied using 57Fe-CEMS. An iron oxide phase (Fe3+4Fe2+1O7), as thick as 31 Å, was identified at the NiO/Fe interface in the as-deposited samples. The ferrimagnetic nature of the interfacial iron oxide film explains the complex magnetic anisotropy observed in the samples.

  14. Cyanide single-molecule magnets exhibiting solvent dependent reversible "on" and "off" exchange bias behavior

    DEFF Research Database (Denmark)

    Pinkowicz, Dawid; Southerland, Heather I.; Avendaño, Carolina

    2015-01-01

    Co/Os analogue (PPN){[Mn(III)(salphen)(MeOH)]2[Co(III)0.92Os(III)0.08(CN)6]}·7MeOH were undertaken. It was found that all compounds exhibit switchable single-molecule magnet (SMM) and exchange-bias behavior depending on the interstitial methanol content. The pristine (PPN){[Mn(salphen)(MeOH)]2[Os......(CN)6]}·7MeOH (Mn2Os·7MeOH) behaves as an SMM with an effective barrier for the magnetization reversal, (Ueff/kB), of 17.1 K. Upon desolvation, Mn2Os exhibits an increase of Ueff/kB to 42.0 K and an opening of the hysteresis loop observable at 1.8 K. Mn2Os·7MeOH shows also exchange-bias behavior...... with magnetic hysteresis loops exhibiting a shift in the quantum tunneling to 0.25 T from zero-field. The Fe(III) and Ru(III) analogues were prepared as reference compounds for assessing the effect of the 5d versus 4d and 3d metal ions on the SMM properties. These compounds are also SMMs and exhibit similar...

  15. Exchange bias coupling in NiO/Ni bilayer tubular nanostructures synthetized by electrodeposition and thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T., E-mail: work_tian@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhang, Z.W.; Xu, Y.H. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Liu, Y. [Analytical & Testing Center, Sichuan University, Chengdu 610064 (China); Li, W.J. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Nie, Y.; Zhang, X. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Xiang, G., E-mail: gxiang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-05-01

    In this paper, we reported the synthesis of NiO/Ni bilayer nanotubes by electrodeposition and thermal oxidation using anodic aluminum oxide templates. The morphology, structure, chemical composition and magnetic properties, especially magnetic exchange bias induced by subsequent magnetic field cooling, in this one-dimensional antiferromagnetic/ferromagnetic hybrid system were investigated. It was found that the effect of the annealing temperature, which mainly dominated the thickness of the NiO layer, and the annealing time, which mainly dominated the grain size of the NiO, on the exchange bias field showed competitive relationship. The optimized exchange bias field was achieved by the combination of the shorter annealing time and higher annealing temperature. - Highlights: • NiO-Ni bilayer tubular nanotubes were fabricated by electrodeposition and thermal oxidation. • The exchange bias effect in NiO-Ni nanotubes was induced by magnetic field cooling. • The competitive effect of annealing temperature and annealing time on the exchange bias coupling was analyzed.

  16. Direct observation of rotatable uncompensated spins in the exchange bias system Co/CoO-MgO.

    Science.gov (United States)

    Ge, Chuannan; Wan, Xiangang; Pellegrin, Eric; Hu, Zhiwei; Manuel Valvidares, S; Barla, Alessandro; Liang, Wen-I; Chu, Ying-Hao; Zou, Wenqin; Du, Youwei

    2013-11-07

    We have observed a large exchange bias field HE ≈ 2460 Oe and a large coercive field HC ≈ 6200 Oe at T = 2 K for Co/CoO core-shell nanoparticles (~4 nm diameter Co metal core and CoO shell with ~1 nm thickness) embedded in a non-magnetic MgO matrix. Our results are in sharp contrast to the small exchange bias and coercive field in the case of a non-magnetic Al2O3 or C matrix materials reported in previous studies. Using soft X-ray magnetic circular dichroism at the Co-L2,3 edge, we have observed a ferromagnetic signal originating from the antiferromagnetic CoO shell. This gives direct evidence for the existence of rotatable interfacial uncompensated Co spins in the nominally antiferromagnetic CoO shell, thus supporting the uncompensated spin model as a microscopic description of the exchange bias mechanism.

  17. Manipulation of perpendicular exchange bias effect in [Co/Ni]N/(Cu, Ta/TbCo multilayer structures

    Directory of Open Access Journals (Sweden)

    Minghong Tang

    2015-08-01

    Full Text Available With the demand for increasing storage density in spintronic applications, extensive work has been devoted to searching for perpendicular magnetic material systems with strong exchange bias effect. In this study we have investigated the exchange bias effect in perpendicular magnetized heterostructures of [Co/Ni]N/(Cu, Ta/TbCo. An interlayer of 0.8 nm Cu is capable of achieving separate magnetization switching, showing a quite large exchange bias field over 2.9 kOe. With increasing the interlayer thickness, both the Co/Ni bias field and TbCo switching field decrease much more rapidly for the samples with a Ta interlayer as compared to the Cu case, due to the better coverage ability of the amorphous nature. The influence of layer thickness and composition of the FM and FI layers has also been investigated and the variation tendencies are well interpreted.

  18. Observation of enhanced exchange bias behaviour in NiCoMnSb Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Ajaya K; Suresh, K G [Magnetic Materials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Mumbai-400076 (India); Nigam, A K [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-400005 (India)], E-mail: suresh@phy.iitb.ac.in

    2009-06-07

    We report the observation of large exchange bias (EB) in Ni{sub 50-x}Co{sub x}Mn{sub 38}Sb{sub 12} Heusler alloys with x = 0, 2, 3, 4, 5, which is attributed to the coexistence of ferromagnetic (FM) and antiferromagnetic (AFM) phases in the martensitic phase. The phase coexistence is possibly due to the supercooling of the high temperature FM phase and the predominant AFM component in the martensitic phase. The presence of EB is well supported by the observation of the training effect. The EB field increases with Co concentration. The maximum value of 480 Oe at T = 3 K is observed in x = 5 after field cooling in 50 kOe, which is almost double the highest value reported so far in any Heusler alloy system. Increase in the AFM coupling after Co substitution is found to be responsible for the increase in the EB.

  19. Exchange Bias Tuning for Magnetoresistive Sensors by Inclusion of Non-Magnetic Impurities

    Directory of Open Access Journals (Sweden)

    Parikshit Pratim Sharma

    2016-07-01

    Full Text Available The fine control of the exchange coupling strength and blocking temperature ofexchange bias systems is an important requirement for the development of magnetoresistive sensors with two pinned electrodes. In this paper, we successfully tune these parameters in top- and bottom-pinned systems, comprising 5 nm thick Co40Fe40B20 and 6.5 nm thick Ir22Mn78 films. By inserting Ru impurities at different concentrations in the Ir22Mn78 layer, blocking temperatures ranging from 220 °C to 100 °C and exchange bias fields from 200 Oe to 60 Oe are obtained. This method is then applied to the fabrication of sensors based on magnetic tunneling junctions consisting of a pinned synthetic antiferromagnet reference layer and a top-pinned sensing layer. This work paves the way towards the development of new sensors with finely tuned magnetic anisotropies.

  20. Piezostrain tuning exchange bias mediated by electric field in composite heterostructure

    Science.gov (United States)

    Li, Pingping; Zhou, Cai; Wang, Wenqiang; Cao, Cuimei; Yao, Jinli; Jiang, Changjun

    2017-12-01

    The change of unidirectional anisotropy and uniaxial anisotropy field turned by piezostrain in an IrMn/Co/Ta/Pb(Mg1/3Nb2/3)O3–PbTiO3 heterostructure with an exchange bias was investigated by ferromagnetic resonance at room temperature. The curve of the magnetic resonance field versus the electric fields showed an asymmetric butterfly-like behavior, which was consistent with the result of strain versus electric field curves. This butterfly-like behavior can be attributed to the piezostrain effect. Specifically, the non-volatile uniaxial anisotropy field and unidirectional anisotropy field behavior under different electric fields induced by piezostrain effect were obtained. Our result is crucial for further application of future multiferroic devices.

  1. Effect of thermal cycle on the interfacial antiferromagnetic spin configuration and exchange bias in Ni-Mn-Sb alloy

    Directory of Open Access Journals (Sweden)

    R. L. Wang

    2012-09-01

    Full Text Available Effect of thermal cycle on the interfacial antiferromagnetic (AFM spin configuration and exchange bias in Ni50Mn36Sb14 alloy has been investigated. The results indicate thermal cycle can induce further martensitic transition from part of arrested FM phase to AFM phase, leading to the reconstruction of interfacial antiferromagnetic spin configuration. The shape of hysteresis loops at 5 K after cooling back can be tuned from a single-shifted loop to a nearly symmetric double-shifted loop gradually accompanied with exchange bias field increasing to peak value and then decreasing. The evolutions can be illustrated intuitively by a simple AFM bidomain model.

  2. Tuning the ferromagnetic-antiferromagnetic interfaces of granular Co-CoO exchange bias systems by annealing

    Energy Technology Data Exchange (ETDEWEB)

    Menéndez, E., E-mail: Enric.MenendezDalmau@fys.kuleuven.be; Modarresi, H.; Pereira, L. M. C.; Temst, K.; Vantomme, A. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, BE-3001 Leuven (Belgium); Dias, T. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, BE-3001 Leuven (Belgium); Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J. [Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)

    2014-04-07

    The low-temperature magnetic behavior of granular Co-CoO exchange bias systems, prepared by oxygen ion implantation in Co thin films and subsequent annealing, is addressed. The thermal activation effects lead to an O migration which results in virtually pure Co areas embedded in a structurally relaxed and nearly stoichiometric CoO phase. This yields decreased training and exchange bias shifts, while the blocking temperature significantly increases, coming close to the Néel temperature of bulk CoO for samples implanted to a fluence above 1 × 10{sup 17} ions/cm{sup 2} (15% O). The dependence of the exchange bias shift on the pristine O-implanted content is analogous to that of the antiferromagnetic thickness in most ferromagnetic/antiferromagnetic systems (i.e., an increase in the exchange bias shift up to a maximum followed by a decrease until a steady state is reached), suggesting that, after annealing, the enriched Co areas might be rather similar in size for samples implanted above 1 × 10{sup 17} ions/cm{sup 2}, whereas the corresponding CoO counterparts become enlarged with pristine O content (i.e., effect of the antiferromagnet size). This study demonstrates that the magnetic properties of granular Co-CoO systems can be tailored by controllably modifying the local microstructure through annealing treatments.

  3. Antisite disorder induced spin glass and exchange bias effect in Nd2NiMnO6 epitaxial thin film

    Science.gov (United States)

    Singh, Amit Kumar; Chauhan, Samta; Chandra, Ramesh

    2017-03-01

    We report the observation of the exchange bias effect and spin glass behaviour at low temperature in a ferromagnetic Nd2NiMnO6 epitaxial thin film. Along with the ferromagnetic transition at ˜194 K, an additional transition is observed at lower temperature (˜55 K) as seen from M-T curves of the sample. A shift in the ac susceptibility peak with frequency has been observed at low temperature, which is a signature of a glassy phase within the sample. The detailed investigation of the memory effect and time dependent magnetic relaxation measurements reveals the presence of a spin glass phase in the Nd2NiMnO6 thin film. The exchange bias effect observed at low temperature in the sample has been associated with an antisite disorder induced spin glass phase, which results in a ferromagnetic/spin glass interface at low temperature. The exchange bias behaviour has been further confirmed by performing cooling field and temperature dependence of exchange bias along with training effect measurements.

  4. Giant exchange bias and its angular dependence in Co/CoO core-shell nanowire assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Gandha, Kinjal; Chaudhary, Rakesh P.; Mohapatra, Jeotikanta; Koymen, Ali R.; Liu, J. Ping, E-mail: pliu@uta.edu

    2017-07-12

    The exchange-bias field (H{sub EB}) and its angular dependence are systematically investigated in Co/CoO core-shell nanowire assemblies (∼15 nm in diameter and ∼200 nm in length) consisting of single-crystalline Co core and polycrystalline CoO shell. Giant exchange-bias field (H{sub EB}) up to 2.4 kOe is observed below a blocking temperature (T{sub EB} ∼150 K) in the aligned Co/CoO nanowire assemblies. It is also found that there is an angular dependence between the H{sub EB} and the applied magnetization direction. The H{sub EB} showed a peak at 30° between the applied field and the nanowire aligned direction, which may be attributed to the noncollinear spin orientations at the interface between the ferromagnetic core and the antiferromagnetic shell. This behavior is quantitatively supported by an analytical calculation based on Stoner–Wohlfarth model. This study underlines the importance of the competing magnetic anisotropies at the interface of Co/CoO core-shell nanowires. - Highlights: • Giant exchange bias is observed in oriented Co/CoO core-shell nanowire assemblies. • Study of angular and temperature dependence of the exchange bias effect. • Competing magnetic anisotropies at the interface of Co/CoO core-shell nanowires. • Effect of misaligned spins in FM/AFM interface on angular dependence of exchange bias. • We explain the analytical model that accounts for experimental results.

  5. Multilevel Thermally Assisted Magnetoresistive Random-Access Memory Based on Exchange-Biased Vortex Configurations

    Science.gov (United States)

    de Araujo, C. I. L.; Alves, S. G.; Buda-Prejbeanu, L. D.; Dieny, B.

    2016-08-01

    A concept of multilevel thermally assisted magnetoresistive random-access memory is proposed and investigated by micromagnetic simulations. The storage cells are magnetic tunnel junctions in which the storage layer is exchange biased and in a vortex configuration. The reference layer is an unpinned soft magnetic layer. The stored information is encoded via the position of the vortex core in the storage layer. This position can be varied along two degrees of freedom: the radius and the in-plane angle. The information is read out from the amplitude and phase of the tunnel magnetoresistance signal obtained by applying a rotating field on the cell without heating the cell. Various configurations are compared in which the soft reference layer consists of either a simple ferromagnetic layer or a synthetic antiferromagnetic sandwich (SAF). Among those, the most practical one comprises a SAF reference layer in which the magnetostatic interaction between the SAF and storage layer is minimized. This type of cell should allow one to store at least 40 different states per cell representing more than five bits per cell.

  6. Microplasma Jet Synthesis of Ni-Fe Oxide Films for Magnetic Exchange Bias and Electrocatalytic Studies

    Science.gov (United States)

    Pebley, Andrew Christian

    Ni-Fe oxides have received significant interest from the scientific community because they have attractive magnetic and electrochemical properties for use in next generation data storage and energy conversion technologies. For example, the NiFe2O4/NiO nanogranular system exhibits the exchange bias effect, a magnetic phenomenon occurring at the interface of a ferro- or ferrimagnet (FM or FiM) and an antiferromagnet (AFM), where the AFM acts to increase the magnetic hardness of the corresponding FM or FiM. Additionally, doping of NiO with Fe has resulted in remarkably high catalytic activities for water splitting, a potential clean energy alternative to fossil fuels. A key challenge in implementing these Ni-Fe oxides for magnetic and electrocatalytic applications is the ability to control film morphology, crystallinity, composition, chemical phase, and doping during synthesis. Moreover, how these physiochemical properties effect magnetic and electrochemical behavior in the Ni-Fe oxide system is not fully understood. This dissertation focuses on the development and use of a novel synthesis technique, known as microplasma (MP) jet-based deposition, for the fabrication of biphasic NiFe2O4 (FiM)/NiO (AFM) and Fe-doped NiO nanostructured films for fundamental studies of exchange bias and electrocatalysis, respectively. The goal of this work was to understand how MP operation and deposition conditions (e.g., precursor composition, flux, substrate temperature, and post-deposition heat treatment) influence Ni-Fe oxide growth and film microstructure. Specifically, the role of composition, phase fraction, grain size, temperature, and interfacial density on exchange bias phenomena in NiFe 2O4/NiO nanogranular films was investigated. MP jets were also used to realize metastable Fe-doped NiO films with high surface area to assess how doping affects the electrochemical properties of NiO for the oxygen evolution reaction (OER). Biphasic NiFe2O4/NiO films of different composition

  7. Triggering of spin-flipping-modulated exchange bias in FeCo nanoparticles by electronic excitation

    Science.gov (United States)

    Sarker, Debalaya; Bhattacharya, Saswata; Srivastava, Pankaj; Ghosh, Santanu

    2016-12-01

    The exchange coupling between ferromagnetic (FM)-antiferromagnetic (AF) interfaces is a key element of modern spintronic devices. We here introduce a new way of triggering exchange bias (EB) in swift heavy ion (SHI) irradiated FeCo-SiO2 films, which is a manifestation of spin-flipping at high irradiation fluence. The elongation of FeCo nanoparticles (NPs) in SiO2 matrix gives rise to perpendicular magnetic anisotropy at intermediate fluence. However, a clear shift in hysteresis loop is evident at the highest fluence. This reveals the existence of an AF exchange pinning domain in the NPs, which is identified not to be oxide shell from XANES analysis. Thermal spike calculations along with first-principles based simulations under the framework of density functional theory (DFT) demonstrate that spin flipping of 3d valence electrons is responsible for formation of these AF domains inside the FM NPs. EXAFS experiments at Fe and Co K-edges further unravel that spin-flipping in highest fluence irradiated film results in reduced bond lengths. The results highlight the possibility of miniaturization of magnetic storage devices by using irradiated NPs instead of conventionally used FM-AF multilayers.

  8. Tunable giant exchange bias in the single-phase rare-earth-transition-metal intermetallics YM n12 -xF ex with highly homogenous intersublattice exchange coupling

    Science.gov (United States)

    Xia, Yuanhua; Wu, Rui; Zhang, Yinfeng; Liu, Shunquan; Du, Honglin; Han, Jingzhi; Wang, Changsheng; Chen, Xiping; Xie, Lei; Yang, Yingchang; Yang, Jinbo

    2017-08-01

    A tunable giant exchange bias effect is discovered in a family of bulk intermetallic compounds YM n12 -xF ex . Experimental data demonstrate that the exchange bias effect originates from global interactions among ferromagnetic and antiferromagnetic sublattices but not the interfacial exchange coupling or inhomogeneous magnetic clusters. A giant exchange bias with a loop shift of up to 6.1 kOe has been observed in YM n4.4F e7.6 compound. In a narrow temperature range, the exchange bias field shows a sudden switching-off whereas the coercivity shows a sudden switching-on with increasing temperature. This unique feature indicates that the intersublattice exchange coupling is highly homogenous. Our theoretical calculations reveal this switching feature, which agrees very well with the experiments and provides insights into the physical underpinnings of the observed exchange bias and coercivity.

  9. Observation of magnetization and exchange bias reversals in NdFe0.5Cr0.5O3

    Science.gov (United States)

    Sharannia, M. P.; De, Santanu; Singh, Ripandeep; Das, A.; Nirmala, R.; Santhosh, P. N.

    2017-05-01

    Polycrystalline NdFe0.5Cr0.5O3 has orthorhombic structure with Pnma space group and is magnetically ordered at room temperature as confirmed by neutron diffraction. The magnetic structure involves CxGyFz type ordering of Fe3+/Cr3+ ions. NdFe0.5Cr0.5O3 shows magnetization reversal and sign reversal of exchange bias at 16 K. Nd3+ moments that get induced by the internal field of |Fe+Cr| sublattice couple antiferromagnetically with the ferromagnetic component of |Fe+Cr| sublattice. Nd3+ moments overcome the |Fe+Cr| moments at 16 K below which the material shows negative magnetization and positive exchange bias.

  10. Temperature- and magnetic field-dependence of exchange bias in SrCoO2.29 ceramics

    Directory of Open Access Journals (Sweden)

    L. Xie

    2017-01-01

    Full Text Available A cation’s oxidation state in a transition metal oxide may significantly change its physical and chemical properties. In this work, magnetic properties of both cubic SrCoO2.29 and hexagonal SrCoO2.50 ceramics, annealed following a selected yet simple process, have been studied. The SrCoO2.50 ceramics annealed in air displays an unusual paramagnetic property, and the SrCoO2.29 quenched into water shows a short-range ferromagnetic coupling in the antiferromagnetic background. Exchange coupling at the ferromagnetic/antiferromagnetic interfaces brings out an obvious exchange bias effect in the SrCoO2.29 sample. Due to its complicated magnetic states, the exchange bias effect presents strong temperature and cooling field dependences.

  11. Magnetic compensation-induced sign reversal of exchange bias in a multi-glass perovskite SmFeO3

    Science.gov (United States)

    De, Chandan; Nayak, Ajaya K.; Nicklas, Michael; Sundaresan, A.

    2017-10-01

    We report an unusual sign reversal of exchange bias (EB) across a magnetic compensation point in an orthorhombic perovskite SmFeO3. A conventional negative EB with a positive vertical magnetization shift is observed below a cluster-glass freezing temperature (Tg ˜ 150 K). Upon further lowering of the temperature, the EB disappears at the magnetic compensation point before reversing its sign to a positive exchange bias below 4 K. The EB effect originates from an interfacial exchange interaction within a cluster glass phase, whereas its sign reversal arises from the reversal of the direction of the net magnetic moment as a result of dominance of Sm3+ over Fe3+ below the compensation temperature. The existence of a multi-glass state is demonstrated by ac-susceptibility and electrical permittivity measurements. A phenomenological model is presented to understand the EB effect and its sign reversal across the compensation point.

  12. Charge ordering and exchange bias behaviors in Co{sub 3}O{sub 4} porous nanoplatelets and nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, J.C., E-mail: jcd341@uowmail.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Wang, Jianli [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Zeng, R. [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); School of Materials Science and Engineering, Faculty of Science, UNSW, Sydney NSW 2052 (Australia)

    2017-01-01

    We present the synthesis of α-Co{sub 3}O{sub 4} porous nanoplatelets and hexagonal nanorings using microwave-assisted hydrothermal and conventional chemical reaction methods. The x-ray diffraction (XRD) and refinement analyses indicate the α-Co{sub 3}O{sub 4} crystal structure, and the x-ray photoelectron spectrum (XPS) indicates the high purity of the samples. The M–T (including 1/χ–T) curves indicate an antiferromagnetic transition at about 35 K in both kind of samples but the interesting finding was made that a charge-ordered (CO) state appears at 250 K for the nanoplatelets sample whereas it is inattentive for the nanorings. The antiferromagnetic transition temperature T{sub N} is lower than that of the bulk α-Co{sub 3}O{sub 4} single crystal due to the nanosized structures. We observed quite significant exchange bias for nanorings. The exchange bias behavior of the α-Co{sub 3}O{sub 4} hexagonal nanorings is consistent with an antiferromagnetic (AFM) Co{sub 3}O{sub 4} core and spin-glass like shell. - Highlights: ●Charge-ordered state appears for the Co{sub 3}O{sub 4} nanoplatelets but absent for the nanorings. ●Quite significant exchange bias is only observed for Co{sub 3}O{sub 4} nanorings. ●Exchange bias behavior of Co{sub 3}O{sub 4} nanorings is consistent with spin-glass like shell. ●Potential for ultrahigh-density magnetic recording and spin valve devices.

  13. Thermal simulation of magnetization reversals for size-distributed assemblies of core-shell exchange biased nanoparticles

    Science.gov (United States)

    Richy, J.; Jay, J.-Ph.; Pogossian, S. P.; Ben Youssef, J.; Sheppard, C. J.; Prinsloo, A. R. E.; Spenato, D.; Dekadjevi, D. T.

    2016-08-01

    A temperature dependent coherent magnetization reversal model is proposed for size-distributed assemblies of ferromagnetic nanoparticles and ferromagnetic-antiferromagnetic (AF) core-shell nanoparticles. The nanoparticles are assumed to be of uniaxial anisotropy and all aligned along their easy axis. The thermal dependence is included by considering thermal fluctuations, implemented via the Néel-Arrhenius theory. Thermal and angular dependence of magnetization reversal loops, coercive field, and exchange-bias field are obtained, showing that ferromagnetic-antiferromagnetic size-distributed exchange-coupled nanoparticles exhibit temperature-dependent asymmetric magnetization reversal. Also, non-monotonic evolutions of exchange-bias and coercive fields with temperature are demonstrated. The angular dependence of coercive field with temperature exhibits a complex behavior, with the presence of an apex, whose position and amplitude are strongly temperature-dependent. The angular dependence of exchange bias with temperature exhibits complex behaviors, which depends on the AF anisotropy and exchange coupling. The resulting angular behavior demonstrates the key role of the size distribution and temperature in the magnetic response of nanoparticles.

  14. Magnetometria por efeito Hall

    OpenAIRE

    Fernández Pinto, Janeth

    2010-01-01

    Construímos um magnetômetro utilizando dois sensores Hall de GaAs (Toshiba- THS118) operando em um modo diferencial. Cada sensor tem um circuito préamplificador associado a ele e a diferencia de voltagem entre eles é amplificada com um ganho variável de 30 - 7000. Os sensores Hall têm dimensões típicas de 1,5 x 1,7 x 0,6 mm3 e foram montados separados um do outro de 0,71 mm, em uma configuração espacial planar. O magnetômetro foi testado usando tanto correntes dc (Idc) quant...

  15. Exchange bias effect in martensitic epitaxial Ni-Mn-Sn thin films applied to pin CoFeB/MgO/CoFeB magnetic tunnel junctions

    Science.gov (United States)

    Teichert, N.; Boehnke, A.; Behler, A.; Weise, B.; Waske, A.; Hütten, A.

    2015-05-01

    The exchange bias effect is commonly used to shift the coercive field of a ferromagnet. This technique is crucial for the use of magnetic tunnel junctions as logic or memory devices. Therefore, an independent switching of the two ferromagnetic electrodes is necessary to guarantee a reliable readout. Here, we demonstrate that the intrinsic exchange bias effect of Ni-Mn-Sn can be used to apply a unidirectional anisotropy to magnetic tunnel junctions. For this, we use epitaxial Ni-Mn-Sn films as pinning layers for microfabricated CoFeB/MgO/CoFeB magnetic tunnel junctions. We compare the exchange bias field ( HEB ) measured after field cooling in -10 kOe external field by magnetization measurements with HEB obtained from tunnel magnetoresistance measurements. Consistent for both methods, we find an exchange bias of about HEB=130 Oe at 10 K, which decreases with increasing temperature and vanishes above 70 K.

  16. Planar Hall Sensor for Influenza Immunoassay

    DEFF Research Database (Denmark)

    Ejsing, Louise Wellendorph

    2006-01-01

    følsomt kan detektere magnetiske nanokugler. Indledende biodetektionsforsøg rettet mod detektion af influenza-virus blev udført i samarbejde med Statens Serum-Institut. Det blev demonstreret, at sensorerne har et stort potentiale til biodetektion men også at den uspecifikke binding af magnetiske kugler...

  17. Hall C

    Data.gov (United States)

    Federal Laboratory Consortium — Hall C's initial complement of equipment (shown in the figure), includes two general-purpose magnetic spectrometers. The High Momentum Spectrometer (HMS) has a large...

  18. Hall A

    Data.gov (United States)

    Federal Laboratory Consortium — The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electroand photo-induced reactions at very high luminosity...

  19. Training-induced inversion of spontaneous exchange bias field on La{sub 1.5}Ca{sub 0.5}CoMnO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Bufaiçal, L., E-mail: lbufaical@ufg.br [Instituto de Física, Universidade Federal de Goiás, 74001-970 Goiânia, GO (Brazil); Finkler, R.; Coutrim, L.T. [Instituto de Física, Universidade Federal de Goiás, 74001-970 Goiânia, GO (Brazil); Pagliuso, P.G. [Instituto de Física “Gleb Wataghin”, UNICAMP, 13083-859 Campinas, SP (Brazil); Grossi, C.; Stavale, F.; Baggio-Saitovitch, E.; Bittar, E.M. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Highlights: • La{sub 1.5}Ca{sub 0.5}CoMnO{sub 6} exhibits spontaneous exchange bias effect at low temperature. • For successive hysteresis cycles it inverts the shift sign from negative to positive. • For a field cooled hysteresis cycle, the exchange bias effect greatly enhances. • Our results are compared to those of the analogue compound La{sub 1.5}Sr{sub 0.5}CoMnO{sub 6}. - Abstract: In this work we report the synthesis and structural, electronic and magnetic properties of La{sub 1.5}Ca{sub 0.5}CoMnO{sub 6} double-perovskite. This is a re-entrant spin cluster material which exhibits a non-negligible negative exchange bias effect when it is cooled in zero magnetic field from an unmagnetized state down to low temperature. X-ray powder diffraction, X-ray photoelectron spectroscopy and magnetometry results indicate mixed valence state at Co site, leading to competing magnetic phases and uncompensated spins at the magnetic interfaces. We compare the results for this Ca-doped material with those reported for the resemblant compound La{sub 1.5}Sr{sub 0.5}CoMnO{sub 6}, and discuss the much smaller spontaneous exchange bias effect observed for the former in terms of its structural and magnetic particularities. For La{sub 1.5}Ca{sub 0.5}CoMnO{sub 6}, when successive magnetization loops are carried, the spontaneous exchange bias field inverts its sign from negative to positive from the first to the second measurement. We discuss this behavior based on the disorder at the magnetic interfaces, related to the presence of a glassy phase. This compound also exhibits a large conventional exchange bias, for which there is no sign inversion of the exchange bias field for consecutive cycles.

  20. 45○ sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers.

    Science.gov (United States)

    Hajiri, Tetsuya; Yoshida, Takuya; Filianina, Mariia; Jaiswal, Samridh; Borie, Benjamin; Asano, H; Zabel, Hartmut; Klaui, Mathias

    2017-11-20

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45$^\\circ$ period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co$_3$FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies. © 2017 IOP Publishing Ltd.

  1. Origins of the Exchange-Bias Phenomenology, Coercivity Enhancement, and Asymmetric Hysteretic Shearing in Core-Surface Smart Nanoparticles

    Directory of Open Access Journals (Sweden)

    Rıza Erdem

    2016-01-01

    Full Text Available We have used a spin-1 Ising model Hamiltonian with dipolar (bilinear, J, quadrupolar (biquadratic, K, and dipolar-quadrupolar (odd, L interactions in pair approximation to investigate the exchange-bias (EB, coercive field, and asymmetric hysteretic shearing properties peculiar to core/surface (C/S composite nanoparticles (NPs. Shifted hysteresis loops with an asymmetry and coercivity enhancement are observed only in the presence of the odd interaction term in the Hamiltonian expression and their magnitudes show strong dependence on the value of L. The observed coercivity and EB in C/S NPs originated from nonzero odd coupling energies and their dependence on temperature (T and particle size (R are also discussed in relation to experimental findings.

  2. Enhancing the blocking temperature of perpendicular-exchange biased Cr2O3 thin films using buffer layers

    Directory of Open Access Journals (Sweden)

    Naoki Shimomura

    2017-02-01

    Full Text Available In this study, we investigated the effect of buffer layers on the blocking temperature (TB of perpendicular exchange bias of thin Cr2O3/Co exchange coupled films with a Ru spacer and revealed a high TB of 260 K for 20-nm-thick Cr2O3 thin films. By comparing the TB values of the 20-nm-thick Cr2O3 films on Pt and α-Fe2O3 buffers, we investigated the lattice strain effect on the TB. We show that higher TB values can be obtained using an α-Fe2O3 buffer, which is likely because of the lattice strain-induced increase in Cr2O3 magnetocrystalline anisotropy.

  3. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Hierro-Rodriguez, A., E-mail: ahierro@fc.up.pt; Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M. [Departamento de Física, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain); Centro de Investigación en Nanomateriales y Nanotecnología—CINN (CSIC—Universidad de Oviedo—Principado de Asturias), Parque Tecnológico de Asturias, 33428 Llanera (Spain); Teixeira, J. M. [IN-IFIMUP, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto (Portugal); Vélez, M. [Departamento de Física, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain)

    2014-09-08

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo{sub 5} thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  4. Exchange bias effect in polycrystalline NiO/NiMn{sub 2}O{sub 4} composite

    Energy Technology Data Exchange (ETDEWEB)

    Freitas Cabral, A.J. [Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará (UFPA), Belém, PA (Brazil); Peña Serna, J.; Rache Salles, B.; Novak, M.A. [Instituto de Física, Universidade Federal do Rio de janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Pinto, A.L. [Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, RJ (Brazil); Rocha Remédios, C.M. [Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará (UFPA), Belém, PA (Brazil)

    2015-05-05

    Highlights: • Antiferromagnetic NiO/ferrimagnetic NiMn{sub 2}O{sub 4} oxide composites. • Grains are well faceted, indicating that the specimen was well crystallized. • The micrographs suggests that NiO and NiMn{sub 2}O{sub 4} may be stuck to each other. • EB effect in NiO/NiMn{sub 2}O{sub 4} oxide composites. • EB effect increases with the amount of NiO. - Abstract: Calcination of aqueous solutions formed by different molar ratios between the nickel and manganese chlorides led to the formation of antiferromagnetic NiO/ferrimagnetic NiMn{sub 2}O{sub 4} oxide composites, as determined by X-ray powder diffraction technique and Rietveld refinement. Low temperature zero field cooled and field cooled magnetic hysteresis cycles show an exchange bias effect, presumably due to interaction at the interfaces between the antiferromagnetic and ferrimagnetic materials.

  5. Exchange biased FeNi/FeMn bilayers with coercivity and switching field enhanced by FeMn surface oxidation

    Directory of Open Access Journals (Sweden)

    A. V. Svalov

    2013-09-01

    Full Text Available FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 °C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 °C.

  6. Methods for preparing polymer-decorated single exchange-biased magnetic nanoparticles for application in flexible polymer-based films

    Directory of Open Access Journals (Sweden)

    Laurence Ourry

    2017-02-01

    Full Text Available Background: Magnetic nanoparticles (NPs must not only be well-defined in composition, shape and size to exhibit the desired properties (e.g., exchange-bias for thermal stability of the magnetization but also judiciously functionalized to ensure their stability in air and their compatibility with a polymer matrix, in order to avoid aggregation which may seriously affect their physical properties. Dipolar interactions between NPs too close to each other favour a collective magnetic glass state with lower magnetization and coercivity because of inhomogeneous and frustrated macrospin cluster freezing. Consequently, tailoring chemically (through surface functionalization and magnetically stable NPs for technological applications is of primary importance.Results: In this work, well-characterized exchange-biased perfectly epitaxial CoxFe3−xO4@CoO core@shell NPs, which were isotropic in shape and of about 10 nm in diameter, were decorated by two different polymers, poly(methyl methacrylate (PMMA or polystyrene (PS, using radical-controlled polymerization under various processing conditions. We compared the influence of the synthesis parameters on the structural and microstructural properties of the resulting hybrid systems, with special emphasis on significantly reducing their mutual magnetic attraction. For this, we followed two routes: the first one consists of the direct grafting of bromopropionyl ester groups at the surface of the NPs, which were previously recovered and redispersed in a suitable solvent. The second route deals with an “all in solution” process, based on the decoration of NPs by oleic acid followed by ligand exchange with the desired bromopropionyl ester groups. We then built various assemblies of NPs directly on a substrate or suspended in PMMA.Conclusion: The alternative two-step strategy leads to better dispersed polymer-decorated magnetic particles, and the resulting nanohybrids can be considered as valuable building

  7. Defect induced enhancement of exchange bias by swift heavy ion irradiation in zinc ferrite–FeNiMoB alloy based bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Lisha, R. [Cochin University of Science and Technology, Cochin 682022, Kerala (India); Hysen, T. [Christian College, Chengannur 689122, Kerala (India); Geetha, P.; Aravind, P.B. [Cochin University of Science and Technology, Cochin 682022, Kerala (India); Shareef, M.; Shamlath, A. [Central University of Kerala, Kasargod 671316, Kerala (India); Ojha, Sunil [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Anantharaman, M.R., E-mail: mraiyer@yahoo.com [Cochin University of Science and Technology, Cochin 682022, Kerala (India)

    2015-10-01

    Highlights: • Bilayer films of FeNiMoB–zinc ferrite exhibiting exchange bias was prepared by RF sputtering. • The films were irradiated using 100 MeV Ag ions. • At a particular fluence of 1 × 10{sup 12} ions/cm{sup 2} high exchange field of 210 Oe obtained. • At higher fluences the exchange bias is decreased. - Abstract: Exchange biased systems consisting of ferromagnetic (FM)–antiferromagnetic (AFM) interfaces are increasingly being investigated because of their application potential in spin valves and tunnel junctions. In bilayer systems, ion irradiation is capable of modifying the interface and thereby offers unique opportunities to tailor exchange field. In the present study, irradiation with 100 MeV Ag{sup 8+} ions is utilized to alter the exchange bias field in zinc ferrite–FeNiMoB bilayer system. The thin films which were deposited by RF sputtering technique and annealed at 600 °C were irradiated at various fluences. Structural and magnetic studies were carried out by using Glancing X Ray Diffractometer (GXRD) and Superconducting Quantum Interference Device Vibrating Sample Magnetometer (SQUID VSM) respectively. It was observed that the as deposited films exhibited exchange bias and on ion irradiation, bias field could be enhanced at certain fluences. The enhancement in bias field is attributed to defects created in the antiferromagnet as a result of ion irradiation. The experimental result is fitted in accordance with the diluted antiferromagnet model. Coercivity was also found to vary with ion fluence. Ion fluence was thus effectively used to enhance bias field as well as coercivity in the bilayer consisting of zinc ferrite–FeNiMoB.

  8. Tunable exchange bias effect in magnetic Bi0.9Gd0.1Fe0.9Ti0.1O3 nanoparticles at temperatures up to 250K

    DEFF Research Database (Denmark)

    Basith, M. A.; Khan, F. A.; Ahmmad, Bashir

    2015-01-01

    The exchange bias (EB) effect has been observed in magnetic Bi0.9Gd0.1Fe0.9Ti0.1O3 nanoparticles.The influence of magnetic field cooling on the exchange bias effect has also been investigated. The magnitude of the exchange bias field (HEB) increases with the cooling magnetic field, showing...... that the strength of the exchange bias effect is tunable by the field cooling. The HEB values are also found to be dependent on the temperature. This magnetically tunable exchange bias obtained at temperatures up to 250K in Bi0.9Gd0.1Fe0.9Ti0.1O3 nanoparticles may be worthwhile for potential applications....

  9. Spin structure of exchange biased heterostructures. Fe/MnF{sub 2} and Fe/FeF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B.

    2006-12-18

    In this work, the {sup 57}Fe probe layer technique is used in order to investigate the depth- and temperature-dependent Fe-layer spin structure of exchange biased Fe/MnF{sub 2} and Fe/FeF{sub 2} (pseudo-twinned) antiferromagnetic (AFM) systems by conversion electron Moessbauer spectroscopy (CEMS) and nuclear resonant scattering (NRS) of synchrotron radiation. Two kinds of samples with a 10 A {sup 57}Fe probe layer directly at or 35 A away from the interface, labeled as interface and center sample, respectively, were studied in this work. The results obtained by CEMS for Fe/MnF{sub 2} suggests that, at 80 K, i.e., above T{sub N}=67 K of MnF{sub 2}, the remanent state Fe-layer spin structure of the two studied samples are slightly different due to their different microstructure. In the temperature range from 300 K to 80 K, the Fe-layer spin structure does not change just by zero-field cooling the sample in remanence. For Fe/FeF{sub 2}, a continuous non-monotonic change of the remanent-state Fe spin structure was observed by cooling from 300 K to 18 K. NRS of synchrotron radiation was used to investigate the temperature- and depth-dependent Fe-layer spin structure during magnetization reversal in pseudo-twinned Fe/MnF{sub 2}. A depthdependent Fe spin structure in an applied magnetic field (applied along the bisector of the twin domains) was observed at 10 K, where the Fe spins closer to the interface are not aligned along the field direction. The depth-dependence disappears at 150 K. (orig.)

  10. Magnetic stability under magnetic cycling of MgO-based magnetic tunneling junctions with an exchange-biased synthetic antiferromagnetic pinned layer

    Directory of Open Access Journals (Sweden)

    Qiang Hao

    2016-02-01

    Full Text Available We investigate the magnetic stability and endurance of MgO-based magnetic tunnel junctions (MTJs with an exchange-biased synthetic antiferromagnetic (SAF pinned layer. When a uniaxially cycling switching field is applied along the easy axis of the free magnetic layer, the magnetoresistance varies only by 1.7% logarithmically with the number of cycles, while no such change appears in the case of a rotating field. This observation is consistent with the effect of the formation and motion of domain walls in the free layer, which create significant stray fields within the pinned hard layer. Unlike in previous studies, the decay we observed only occurs during the first few starting cycles (<20, at which point there is no further variance in all performance parameters up to 107 cycles. Exchange-biased SAF structure is ideally suited for solid-state magnetic sensors and magnetic memory devices.

  11. The influence of oxidation process on exchange bias in egg-shaped FeO/Fe3O4 core/shell nanoparticles

    Science.gov (United States)

    Leszczyński, Błażej; Hadjipanayis, George C.; El-Gendy, Ahmed A.; Załęski, Karol; Śniadecki, Zbigniew; Musiał, Andrzej; Jarek, Marcin; Jurga, Stefan; Skumiel, Andrzej

    2016-10-01

    Egg-shaped nanoparticles with a core-shell morphology were synthesized by thermal decomposition of an iron oleate complex. XRD and M(T) magnetic measurements confirmed the presence of FeO (wustite) and Fe3O4 (magnetite) phases in the nanoparticles. Oxidation of FeO to Fe3O4 was found to be the mechanism for the shell formation. As-made nanoparticles exhibited high values of exchange bias at 2 K. Oxidation led to decrease of exchange field from 2880 Oe (in as-made sample) to 330 Oe (in oxidized sample). At temperatures higher than the Néel temperature of FeO (200 K) there was no exchange bias. An interesting observation was made showing the exchange field to be higher than the coercive field at temperatures close to magnetite's Verwey transition.

  12. Exchange bias behavior in Ni{sub 50.0}Mn{sub 35.5} In{sub 14.5} ribbons annealed at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, T. [Dept. de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Sato Turtelli, R.; Groessinger, R. [Institut fur Festkoerperphysik, Technische Universitaet Wien, Wiedner Hauptstr. 8-10, 1040 Vienna (Austria); Sanchez, M.L.; Santos, J.D.; Rosa, W.O.; Prida, V.M. [Dept. de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Escoda, Ll.; Sunol, J.J. [Campus de Montilivi, Universidad de Girona, edifici PII, Lluis Santalo s/n. 17003 Girona (Spain); Koledov, V. [Kotelnikov Institute of Radio Engineering and Electronics, RAS, Moscow 125009 (Russian Federation); Hernando, B., E-mail: grande@uniovi.es [Dept. de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2012-10-15

    Heusler alloy Ni{sub 50.0}Mn{sub 35.5}In{sub 14.5} ribbons were prepared by melt-spinning technique. Several short time annealings were carried out in order to enhance the exchange bias effect in this alloy ribbon. The magnetic transition temperature increases with the annealing, compared to the as-spun sample, however no significant differences in respective Curie temperatures were observed for austenite and martensite phases in such annealed samples. Exchange bias effect is observed at low temperatures for all samples and practically vanishes at 60 K for the as-spun sample, whereas for the annealed ribbons it vanishes at 100 K.

  13. Exchange bias in a ferromagnetic semiconductor induced by a ferromagnetic metal: Fe/(Ga,Mn)As bilayer films studied by XMCD measurements and SQUID magnetometry

    Science.gov (United States)

    Olejnik, K.; Wadley, P.; Haigh, J. A.; Edmonds, K. W.; Campion, R. P.; Rushforth, A. W.; Gallagher, B. L.; Foxon, C. T.; Jungwirth, T.; Wunderlich, J.; Dhesi, S. S.; Cavill, S. A.; van der Laan, G.; Arenholz, E.

    2010-03-01

    We demonstrate an exchange bias in (Ga,Mn)As induced by antiferromagnetic coupling to a thin overlayer of Fe. Bias fields of up to 240 Oe are observed. Using element-specific x-ray magnetic circular dichroism measurements, we distinguish a strongly exchange-coupled (Ga,Mn)As interface layer in addition to the biased bulk of the (Ga,Mn)As film. The interface layer remains polarized at room temperature.

  14. The origin of exchange bias, observation of pinned orbital moments at iron L2,3 in FeMn/Co

    Energy Technology Data Exchange (ETDEWEB)

    Audehm, Patrick; Schuetz, G.; Goering, Eberhard [Max Planck Institute for Metals Research, Stuttgart (Germany); Brueck, Sebastian [University of Wuerzburg, Physikalisches Institut, Wuerzburg (Germany)

    2010-07-01

    The exchange anisotropy was discovered by Meiklejohn and Bean in 1956. Since then there have been many attempts to model the behavior of a system with exchange bias effect. Exchange bias (EB) results in a shift of the hysteresis loop and secondly in an increase of the coercive field. We investigated a widely studied EB-system, consisting of polycrystalline iron (Fe)-manganese (Mn) as an antiferromagnet and cobalt as a ferromagnet. We used X-ray magnetic circular dichroism (XMCD) and X-ray resonant magnetic reflectivity (XRMR) at the Fe L2,3 and Mn L2,3 edges, simultaneously performed in surface sensitive total electron yield (TEY) and bulk sensitive total fluorescence yield (TFY) at room and low temperatures. For the first time, we measured pinned magnetic Fe moments in iron-manganese. Mn shows nearly no XMCD effect, while the Fe provides a sizeable signal from the rotatable moments and a very small (about 0.7 per mill of the total signal) signal from the pinned uncompensated moments. According to the well established sum rules of XMCD the non-rotatable Fe L2,3 edge spectra reveal nearly pure orbital character. These results suggest a different view on the origin of exchange bias, based on locally loaded spin-orbit-coupling, and new possibilities understanding the origin of EB.

  15. Observation of magnetization and exchange bias reversals in NdFe{sub 0.5}Cr{sub 0.5}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sharannia, M.P.; De, Santanu [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Singh, Ripandeep; Das, A. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Nirmala, R. [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Santhosh, P.N., E-mail: santhosh@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2017-05-15

    Polycrystalline NdFe{sub 0.5}Cr{sub 0.5}O{sub 3} has orthorhombic structure with Pnma space group and is magnetically ordered at room temperature as confirmed by neutron diffraction. The magnetic structure involves C{sub x}G{sub y}F{sub z} type ordering of Fe{sup 3+}/Cr{sup 3+} ions. NdFe{sub 0.5}Cr{sub 0.5}O{sub 3} shows magnetization reversal and sign reversal of exchange bias at ~16 K. Nd{sup 3+} moments that get induced by the internal field of |Fe+Cr| sublattice couple antiferromagnetically with the ferromagnetic component of |Fe+Cr| sublattice. Nd{sup 3+} moments overcome the |Fe+Cr| moments at ~16 K below which the material shows negative magnetization and positive exchange bias. - Highlights: • Neutron diffraction confirms magnetic ordering at 300 K in NdFe{sub 0.5}Cr{sub 0.5}O{sub 3}. • Magnetic structure involves C{sub x}G{sub y}F{sub z} type ordering of Fe{sup 3+}/Cr{sup 3+} ions. • Nd{sup 3+} moments couple antiferromagnetically with |Fe+Cr| ferromagnetic moments. • Shows magnetization reversal and exchange bias reversal.

  16. Negative magnetization and zero-field cooled exchange bias effect in Eu0.9Pr0.1CrO3 ceramics

    Science.gov (United States)

    Huang, Ping; Deng, Dongmei; Zheng, Jiashun; Li, Qing; Feng, Zhenjie; Kang, Baojuan; Ren, Wei; Jing, Chao; Zhang, Jincang; Cao, Shixun

    2018-02-01

    Interesting magnetic behaviors, including negative magnetization, zero field fooled and field cooled exchange bias effects, have been observed in Eu0.9Pr0.1CrO3. The negative magnetization at low temperature results from the antiparallel coupling between the Pr3+ moment and the canted moment of Cr3+ sublattice. Left shift of zero field cooled M-H loops, and right shift of field cooled M-H loops have been observed, due to the growth and competition of two types of magnetic structures with GxFz (EuCrO3) and GzFx (PrCrO3) orderings under magnetic field. When the cooling field is high enough, the Pr3+ moment is frozen antiparallel with the applied field during the cooling process, giving rise to a positive exchange bias (right shift of M-H). However, when the cooling field is near zero, magnetic clusters with GxFz (EuCrO3) or GzFx (PrCrO3) orderings are formed and distribute randomly during the cooling process, and the net Pr3+ moment get aligned along the applied field during the initial magnetization process to lower the Zeeman energy, and then negative exchange bias (left shift of M-H) appears.

  17. The influence of oxidation process on exchange bias in egg-shaped FeO/Fe{sub 3}O{sub 4} core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Leszczyński, Błażej, E-mail: b.leszczynski@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Hadjipanayis, George C.; El-Gendy, Ahmed A. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Załęski, Karol [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Śniadecki, Zbigniew [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Musiał, Andrzej [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Jarek, Marcin [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Skumiel, Andrzej [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2016-10-15

    Egg-shaped nanoparticles with a core–shell morphology were synthesized by thermal decomposition of an iron oleate complex. XRD and M(T) magnetic measurements confirmed the presence of FeO (wustite) and Fe{sub 3}O{sub 4} (magnetite) phases in the nanoparticles. Oxidation of FeO to Fe{sub 3}O{sub 4} was found to be the mechanism for the shell formation. As-made nanoparticles exhibited high values of exchange bias at 2 K. Oxidation led to decrease of exchange field from 2880 Oe (in as-made sample) to 330 Oe (in oxidized sample). At temperatures higher than the Néel temperature of FeO (200 K) there was no exchange bias. An interesting observation was made showing the exchange field to be higher than the coercive field at temperatures close to magnetite's Verwey transition. - Highlights: • Synthesis of monodispersed FeO nanoparticles is shown. • As-made FeO nanoparticle is antiferromagnetically ordered, when it is oxidized to Fe{sub 3}O{sub 4}, the FeO core becomes small and disordered. • Exchange bias in well-ordered and disordered core is different.

  18. Magnetization reversal and tunable exchange bias in GdCr{sub 1−x}Mn{sub x}O{sub 3} (x=0−0.50)

    Energy Technology Data Exchange (ETDEWEB)

    Dash, Bibhuti B.; Ravi, S., E-mail: sravi@iitg.ernet.in

    2017-05-01

    Single phase samples of GdCr{sub 1-x}Mn{sub x}O{sub 3} (x=0−0.50) were prepared and their magnetic properties were studied by measuring temperature and field variations of magnetization. The Neel temperature, T{sub N} is found to decrease from T{sub N}=174 K for x=0 to 91 K for x=0.50. The magnetization reversal persists upto 5 at% of Mn substitution with a magnetic compensation temperature, T{sub comp} of 136 K and 139 K for x=0 and 0.05 respectively. However, spin reorientation induced magnetization reversal emerges for x=0.40 and 0.50 samples around 30 K. Tunable positive and negative exchange bias fields in the range of −1.0 kOe to +1.6 kOe have been observed. The origin of magnetization reversal and exchange bias field is explained in terms of antiparallel alignment of canted ferromagnetic component of Cr{sup 3+} ions and the paramagnetic moments of Gd{sup 3+} and Mn{sup 3+} ions under the influence of negative internal field due to antiferromagnetically ordered Cr{sup 3+} ions. - Highlights: • Magnetization reversal and bipolar switching in Mn substituted GdCrO{sub 3} • Tunable exchange bias field in the range of −1.0 kOe to +1.6 kOe. • Low temperature spin reorientation transition is observed.

  19. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.

    Science.gov (United States)

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-09-14

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.

  20. Entanglement of lock-in transition and exchange bias in Co(Cr{sub 0.9}Co{sub 0.1}){sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Padam, R.; Ravi, S.; Pal, D., E-mail: dpal@iitg.ernet.in

    2014-09-01

    We report here the structural, magnetic and exchange bias in a well characterized single phase sample of Co(Cr{sub 0.9}Co{sub 0.1}){sub 2}O{sub 4}. A pronounced signature of thermal hysteresis in temperature dependent magnetic susceptibility curves is obtained across the lock-in transition T{sub L}≃10K. Concomitantly, exchange bias is observed only below the lock-in transition (T{sub L}≃10K). This indicates a possible coupling of exchange bias to the lock-in transition in this system.

  1. Inertial-Hall effect: the influence of rotation on the Hall conductivity

    Directory of Open Access Journals (Sweden)

    Julio E. Brandão

    2015-01-01

    Full Text Available Inertial effects play an important role in classical mechanics but have been largely overlooked in quantum mechanics. Nevertheless, the analogy between inertial forces on mass particles and electromagnetic forces on charged particles is not new. In this paper, we consider a rotating non-interacting planar two-dimensional electron gas with a perpendicular uniform magnetic field and investigate the effects of the rotation in the Hall conductivity. The rotation introduces a shift and a split in the Landau levels. As a consequence of the break of the degeneracy, the counting of the states fully occupied below the Fermi energy increases, tuning the Hall quantization steps. The rotation also changes the quantum Hall plateau widths. Additionally, we find the Hall quantization steps as a function of rotation at a fixed value of the magnetic field.

  2. Exchange bias properties of 140 nm-sized dipolarly interacting circular dots with ultrafine IrMn and NiFe layers

    Energy Technology Data Exchange (ETDEWEB)

    Spizzo, F., E-mail: spizzo@fe.infn.it [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia and CNISM, Università di Perugia, I-06123 Perugia (Italy); Chinni, F.; Bonfiglioli, E. [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy); Gerardino, A. [Istituto di Fotonica e Nanotecnologie, CNR, I-00156 Roma (Italy); Barucca, G. [Dipartimento SIMAU, Università Politecnica delle Marche, I-60131 Ancona (Italy); Bisero, D.; Fin, S.; Del Bianco, L. [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy)

    2016-02-15

    We studied the exchange bias effect in an array of IrMn(3 nm)/NiFe(3 nm) circular dots (size ~140 nm and center-to-center distance ~200 nm, as revealed by microscopy analyses), prepared on a large area (3×3 mm{sup 2}) by electron beam lithography and lift-off, using dc sputtering deposition. Hysteresis loops were measured by SQUID magnetometer at increasing values of temperature T (in the 5–300 K range) after cooling from 300 K down to 5 K in zero field (ZFC mode) and in a saturating magnetic field (FC mode). The exchange bias effect disappears above T~200 K and, at each temperature, the exchange field H{sub EX} measured in ZFC is substantially lower than the FC one. Micromagnetic calculations indicate that, at room temperature, each dot is in high-remanence ground state, but magnetic dipolar interactions establish a low-remanence configuration of the array as a whole. Hence, at low temperature, following the ZFC procedure, the exchange anisotropy in the dot array is averaged out, tending to zero. However, even the FC values of H{sub EX} and of the coercivity H{sub C} are definitely smaller compared to those measured in a reference continuous film with the same stack configuration (at T=5 K, H{sub EX}~90 Oe and H{sub C}~180 Oe in the dots and H{sub EX}~1270 Oe and H{sub C}~860 Oe in the film). Our explanation is based on the proven glassy magnetic nature of the ultrathin IrMn layer, implying the existence of magnetic correlations among the spins, culminating in a collective freezing below T~100 K. We propose, also by the light of micromagnetic simulations, that the small dot size imposes a spatial constraint on the magnetic correlation length among the IrMn spins so that, even at the lowest temperature, their thermal stability, especially at the dot border, is compromised. - Highlights: • Exchange bias in 140 nm-sized IrMn(3 nm)/NiFe(3 nm) dots much weaker than in a film. • Glassy magnetic nature of the IrMn phase and collective spin freezing at T<100 K

  3. Signal conditioning and processing for metallic Hall sensors.

    Czech Academy of Sciences Publication Activity Database

    Entler, Slavomír; Ďuran, Ivan; Sládek, P.; Vayakis, G.; Kočan, M.

    2017-01-01

    Roč. 123, November (2017), s. 783-786 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] R&D Projects: GA MŠk LG14002 Institutional support: RVO:61389021 Keywords : Hall sensor * Lock-in * Synchronous detection * Current spinning * Hall effect * Planar hall effect suppression Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379617305070

  4. Magnetism and associated exchange bias in Ni{sub 2−x}Co{sub x}Mn{sub 1.4}Ga{sub 0.6}

    Energy Technology Data Exchange (ETDEWEB)

    Chapai, Ramakanta; Khan, Mahmud, E-mail: khanm2@miamioh.edu

    2016-04-01

    A series of Ni{sub 2−x}Co{sub x}Mn{sub 1.4}Ga{sub 0.6} Heusler alloys have been systematically investigated by x-ray diffraction, dc magnetization, and ac susceptibility measurements. For all Co concentration, the alloys exhibit the L1{sub 0} martensitic structure at room temperature. Interestingly, Co doping simultaneously causes a reduction in the ferromagnetic exchange interaction and enhancement of magnetic anisotropy in Ni{sub 2−x}Co{sub x}Mn{sub 1.4}Ga{sub 0.6}. Exchange bias effects under both zero field cooled and field cooled condition have been observed in all alloys for x<0.3. The ac susceptibility data show frequency dependence that changes with increasing Co concentration, indicating a change of ground state from spin glass to super spin glass. The experimental results are explained considering the atomic radii of Ni and Co and the fundamental magnetic interactions in Heusler alloys. - Highlights: • The magnetic properties and associated exchange bias of Ni2-xCoxMn1.4Ga0.6 have been investigated. • Ferromagnetic and antiferromagnetic interactions co-exist in the alloys. • The competing interactions results in interesting magnetic properties. • AC susceptibility data shows the existence of spin glass and super spin glass interactions.

  5. Electric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates.

    Science.gov (United States)

    Xue, Xu; Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Zhang, Yijun; Ren, Wei; Ren, Tao; Yang, Xi; Nan, Tianxiang; Sun, Nian X; Liu, Ming

    2015-11-18

    E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shifted by up to |∆Hex|/Hex = 8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |∆Hex|/Hc = 67.5 ~ 125% in NiFe/FeMn/glass/PZN-PT and 30 ~ 38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies.

  6. Separation of inverse spin Hall effect and anomalous Nernst effect in ferromagnetic metals

    Science.gov (United States)

    Wu, H.; Wang, X.; Huang, L.; Qin, J. Y.; Fang, C.; Zhang, X.; Wan, C. H.; Han, X. F.

    2017-11-01

    Inverse spin Hall effect (ISHE) in ferromagnetic metals (FM) can also be used to detect the spin current generated by longitudinal spin Seebeck effect in a ferromagnetic insulator YIG. However, anomalous Nernst effect (ANE) in FM itself always mixes in the thermal voltage. In this work, the exchange bias structure (NiFe/IrMn) is employed to separate these two effects. The exchange bias structure provides a shift field to NiFe, which can separate the magnetization of NiFe from that of YIG in M-H loops. As a result, the ISHE related to magnetization of YIG and the ANE related to the magnetization of NiFe can be separated as well. By comparison with Pt, a relative spin Hall angle of NiFe (0.87) is obtained, which results from the partially filled 3d orbits and the ferromagnetic order. This work puts forward a practical method to use the ISHE in ferromagnetic metals towards future spintronic applications.

  7. Exotic galilean symmetry, non-commutativity & the Hall effect

    OpenAIRE

    Horvathy, P.

    2005-01-01

    The ``exotic'' particle model associated with the two-parameter central extension of the planar Galilei group can be used to derive the ground states of the Fractional Quantum Hall Effect. Similar equations arise for a semiclassical Bloch electron. Exotic Galilean symmetry is also be shared by Chern-Simons field theory of the Moyal type.

  8. Skyrmions and Hall viscosity

    OpenAIRE

    Kim, Bom Soo

    2017-01-01

    We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physica...

  9. Quantum Spin Hall Effect

    Energy Technology Data Exchange (ETDEWEB)

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  10. Establishing exchange bias below T-N with polycrystalline Ni0.52Co0.48O/Co bilayers

    DEFF Research Database (Denmark)

    Berkowitz, A.E.; Hansen, Mikkel Fougt; Tang, Y.J.

    2005-01-01

    Exchange-coupled bilayers of polycrystalline ferromagnetic (FM) Co on antiferromagnetic (AFM) Ni0.52Co0.48O were investigated with emphasis on the issue of establishing an exchange-bias field, H-E, below the AFM ordering temperature, T-N. It was found that field-cooling the bilayers through T......-N provided very little, if any, increase in H-E over that produced by deposition of the Co at temperatures far below T-N. Further significant aspects of this issue were also examined. The biasing field, H-B, needed to be applied only during the deposition of a small fraction (1 nm) of the FM film below T...

  11. Exchange Bias and Inverse Magnetocaloric Effect in Co and Mn Co-Doped Ni2MnGa Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2013-01-01

    Full Text Available Exchange bias effect observed in the Ni1.68Co0.32Mn1.20Ga0.80 alloy confirms the coexistence of antiferromagnetic and ferromagnetic phases in the martensite phase. A large inverse magnetocaloric effect has been observed within the martensitic transformation temperature range, which is originated from modified magnetic order through magnetic-field-induced phase transformation from partially antiferromagnetic martensite to ferromagnetic austenite. The magnetic entropy change is 16.2 J kg−1 K−1 at 232 K under ΔH = 60 kOe, with the net refrigerant capacity of 68 J kg−1. These properties indicate Co and Mn co-doped Ni2MnGa alloy is a multifunctional material potentially suitable for magnetic refrigeration and spintronics applications.

  12. Observation of giant exchange bias in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jyoti; Suresh, K. G., E-mail: suresh@iitb.ac.in [Magnetic Materials Laboratory, Department of Physics, Indian institute of Technology Bombay, Mumbai, Maharashtra 400076 (India)

    2015-02-16

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (T{sub f}) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.

  13. Magnetic properties of NiMn{sub 2}O{sub 4−δ} (nickel manganite): Multiple magnetic phase transitions and exchange bias effect

    Energy Technology Data Exchange (ETDEWEB)

    Tadic, Marin, E-mail: marint@vinca.rs [Condensed Matter Physics Laboratory, Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade (Serbia); Savic, S.M. [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Jaglicic, Z. [University of Ljubljana, Faculty of Civil Engineering and Geodesy and Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana (Slovenia); Vojisavljevic, K.; Radojkovic, A.; Prsic, S. [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, Dobrica [Department of Physics, University of Belgrade Faculty of Mining and Geology, Belgrade (Serbia)

    2014-03-05

    Highlights: • We have successfully synthesized NiMn{sub 2}O{sub 4−δ} sample by complex polymerization synthesis. • Magnetic measurements reveal complex properties and triple magnetic phase transitions. • Magnetic measurements of M(H) show hysteretic behavior below 120 K. • Hysteresis properties after cooling of the sample in magnetic field show exchange bias effect. -- Abstract: We present magnetic properties of NiMn{sub 2}O{sub 4−δ} (nickel manganite) which was synthesized by complex polymerization synthesis method followed by successive heat treatment and final calcinations in air at 1200 °C. The sample was characterized by using X-ray powder diffractometer (XRPD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM) and superconducting quantum interference device (SQUID) magnetometer. The XRPD and FE-SEM studies revealed NiMn{sub 2}O{sub 4−δ} phase and good crystallinity of particles. No other impurities have been observed by XRPD. The magnetic properties of the sample have been studied by measuring the temperature and field dependence of magnetization. Magnetic measurements of M(T) reveal rather complex magnetic properties and multiple magnetic phase transitions. We show three magnetic phase transitions with transition temperatures at T{sub M1} = 35 K (long-range antiferromagnetic transition), T{sub M2} = 101 K (antiferromagnetic-type transition) and T{sub M3} = 120 K (ferromagnetic-like transition). We found that the T{sub M1} transition is strongly dependent on the strength of the applied magnetic field (T{sub M1} decreases with increasing applied field) whereas the T{sub M3} is field independent. Otherwise, the T{sub M2} maximum almost disappears in higher applied magnetic fields (H = 1 kOe and 10 kOe). Magnetic measurements of M(H) show hysteretic behavior below T{sub M3}. Moreover, hysteresis properties measured after cooling of the sample in magnetic field of 10 kOe show exchange bias effect with an

  14. Exchange bias properties of 140 nm-sized dipolarly interacting circular dots with ultrafine IrMn and NiFe layers

    Science.gov (United States)

    Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; Gerardino, A.; Barucca, G.; Bisero, D.; Fin, S.; Del Bianco, L.

    2016-02-01

    We studied the exchange bias effect in an array of IrMn(3 nm)/NiFe(3 nm) circular dots (size 140 nm and center-to-center distance 200 nm, as revealed by microscopy analyses), prepared on a large area (3×3 mm2) by electron beam lithography and lift-off, using dc sputtering deposition. Hysteresis loops were measured by SQUID magnetometer at increasing values of temperature T (in the 5-300 K range) after cooling from 300 K down to 5 K in zero field (ZFC mode) and in a saturating magnetic field (FC mode). The exchange bias effect disappears above T 200 K and, at each temperature, the exchange field HEX measured in ZFC is substantially lower than the FC one. Micromagnetic calculations indicate that, at room temperature, each dot is in high-remanence ground state, but magnetic dipolar interactions establish a low-remanence configuration of the array as a whole. Hence, at low temperature, following the ZFC procedure, the exchange anisotropy in the dot array is averaged out, tending to zero. However, even the FC values of HEX and of the coercivity HC are definitely smaller compared to those measured in a reference continuous film with the same stack configuration (at T=5 K, HEX 90 Oe and HC 180 Oe in the dots and HEX 1270 Oe and HC 860 Oe in the film). Our explanation is based on the proven glassy magnetic nature of the ultrathin IrMn layer, implying the existence of magnetic correlations among the spins, culminating in a collective freezing below T 100 K. We propose, also by the light of micromagnetic simulations, that the small dot size imposes a spatial constraint on the magnetic correlation length among the IrMn spins so that, even at the lowest temperature, their thermal stability, especially at the dot border, is compromised.

  15. Investigating Exchange Bias and Coercivity in Fe3O4–γ-Fe2O3 Core–Shell Nanoparticles of Fixed Core Diameter and Variable Shell Thicknesses

    Directory of Open Access Journals (Sweden)

    Ihab M. Obaidat

    2017-11-01

    Full Text Available We have carried out extensive measurements on novel Fe3O4–γ-Fe2O3 core–shell nanoparticles of nearly similar core diameter (8 nm and of various shell thicknesses of 1 nm (sample S1, 3 nm (sample S2, and 5 nm (sample S3. The structure and morphology of the samples were studied using X-ray diffraction (XRD, transmission electron microscopy (TEM, and selected area electron diffraction (SAED. The direct current (DC magnetic measurements were carried out using a superconducting quantum interference device (SQUID. Exchange bias and coercivity were investigated at several temperatures where the applied field was varied between 3 and −3 T. Several key results are obtained, such as: (a the complete absence of exchange bias effect in sample S3; (b the occurrence of nonconventional exchange bias effect in samples S2 and S1; (c the sign-change of exchange bias field in sample S2; (d the monotonic increase of coercivity with temperature above 100 K in all samples; (e the existence of a critical temperature (100 K at which the coercivity is minimum; (f the surprising suppression of coercivity upon field-cooling; and (g the observation of coercivity at all temperatures, even at 300 K. The results are discussed and attributed to the existence of spin glass clusters at the core–shell interface.

  16. Halls Lake 1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salt marsh habitats along the shoreline of Halls Lake are threatened by wave erosion, but the reconstruction of barrier islands to reduce this erosion will modify or...

  17. General footage ISOLDE experimental hall

    CERN Multimedia

    2016-01-01

    Overview of the ISOLDE experimental hall. Equipment and experiments. Taken from the WITCH / EBIS platform: ISOLDE hall infrastructure, GHM line, LA1, LA2, LA0, central beamline, COLLAPS experiment, CRIS experiment, ISOLTRAP experiment, laser guidance from building 508 into the hall for laser spectroscopy COLLAPS and CRIS. Taken from the HIE ISOLDE shielding tunnel roof: ISOLDE hall infrastructure, WITCH experiment, VITO line, TAS experiment. General footage: High Tension room entrance and EBIS platform, staircases and passages in the experimental hall.

  18. Orange peel coupling in multilayers with perpendicular magnetic anisotropy: Application to (Co/Pt)-based exchange-biased spin-valves

    Science.gov (United States)

    Moritz, J.; Garcia, F.; Toussaint, J. C.; Dieny, B.; Nozières, J. P.

    2004-01-01

    Néel's theory of magnetostatic coupling between two magnetic layers with in-plane magnetization separated by a non-magnetic spacer has been extended to the case of multilayers with perpendicular anisotropy. It is shown that the presence of a correlated roughness between the successive interfaces induces an interlayer coupling through the spacer analogous to the well-known orange peel coupling. However, depending on the parameters describing the interfacial roughness, the magnetic anisotropy and the exchange stiffness constant, this coupling can favor either parallel or an antiparallel alignment of the magnetization in the two ferromagnetic layers. This model was used to quantitatively interpret the variation of interlayer coupling vs. thickness of Pt spacer layer in out-of-plane magnetized exchange-biased spin-valves comprising (Pt/Co) multilayers as free and pinned layers. It is shown that the net coupling can be interpreted by the coexistence of perpendicular orange peel and oscillatory RKKY couplings. Interestingly, since these two couplings have different thickness dependence, in certain range of Pt thickness, the coupling changes sign during growth, being antiferromagnetic at the early stage of the growth of the top (Co/Pt) multilayer but ferromagnetic once the growth is completed.

  19. The role of magnetic interactions in exchange bias properties of MnFe2O4@γ-Fe2O3 core/shell nanoparticles

    Science.gov (United States)

    Silva, F. G.; Aquino, R.; Tourinho, F. A.; Stepanov, V. I.; Raikher, Yu L.; Perzynski, R.; Depeyrot, J.

    2013-07-01

    Low-temperature magnetic properties of assemblies of 3.3 nm sized nanoparticles (NPs) based on a MnFe2O4 core protected by a maghemite shell are investigated. These NPs are obtained by a chemical core/shell method developed for the synthesis of the electrostatically stabilized ferrofluid colloidal dispersions that we probe here. They are model systems where the interparticle interaction is tuned by the NP volume fractions, ranging here between 0.4% and 13.9%. It has been shown that these NPs consist of a well-ordered ferrimagnetic core surrounded by a disordered spin glass-like surface layer and that they display uniaxial magnetic anisotropy. We compare the magnetic hysteresis loops of non-textured frozen dispersions (with magnetic anisotropy axis of NPs distributed at random) with those of a powder based on the same NPs. After cooling under field the hysteresis loops shift along the H axis, expressing the coupling between the spin-ordered cores and the disordered surface layers. The negative H-shift provides an evaluation for the exchange bias (EB) field. The EB field is optimum for a cooling field of the order of the anisotropy field. A comparison between frozen dispersions and disordered powder allows us to distinguish the influence of intra- and interparticle interactions on the EB. Interparticle collective effects dominate in the powder while an intraparticle EB, eventually hindered by dipolar interactions at large volume fraction, is observed in frozen dispersions.

  20. Extraordinary hall balance

    Science.gov (United States)

    Zhang, S. L.; Liu, Y.; Collins-McIntyre, L. J.; Hesjedal, T.; Zhang, J. Y.; Wang, S. G.; Yu, G. H.

    2013-01-01

    Magnetoresistance (MR) effects are at the heart of modern information technology. However, future progress of giant and tunnelling MR based storage and logic devices is limited by the usable MR ratios of currently about 200% at room-temperature. Colossal MR structures, on the other hand, achieve their high MR ratios of up to 106% only at low temperatures and high magnetic fields. We introduce the extraordinary Hall balance (EHB) and demonstrate room-temperature MR ratios in excess of 31,000%. The new device concept exploits the extraordinary Hall effect in two separated ferromagnetic layers with perpendicular anisotropy in which the Hall voltages can be configured to be carefully balanced or tipped out of balance. Reprogrammable logic and memory is realised using a single EHB element. PACS numbers: 85.75.Nn,85.70.Kh,72.15.Gd,75.60.Ej. PMID:23804036

  1. HEDSA Town Hall Meeting

    Science.gov (United States)

    Afeyan, Bedros

    2017-10-01

    HEDSA will hold its Town Hall meeting on Wednesday October 25 at 12:30pm in the Wisconsin Center. The new steering committee members and HEDSA leadership will be announced. A report will be given on 2017 HEDSA activities. Program Managers from Federal Funding Agencies such as OFES, NNSA, AFOSR and NSF will provide updates on the state of sponsored research in HED plasmas, and to engage the community in an open dialogue. The HEDSA Town Hall is a ``bring your own lunch'' meeting. Current members of HEDSA and all graduate students are strongly encouraged to attend. To join HEDSA please visit HEDSA.org

  2. Temperature and magnetic field-assisted switching of magnetization and observation of exchange bias in YbCrO3 nanocrystals.

    Science.gov (United States)

    Gupta, Preeti; Poddar, Pankaj

    2015-10-05

    In this paper, we demonstrate an interesting feature in YbCrO3 (YCO) nanocrystals, in which the material shows temperature and external magnetic field-assisted switching (a complete sign reversal) of zero field cooled magnetization (MZFC) and observation of exchange bias (EB) as a result of competing spin interaction at low temperature. This feature can be applied in nonvolatile memories, where, simply by changing the magnitude of the Hext and T, the polarity of the magnetization can be switched between negative and positive. We also observed negative magnetization in YCO. Our results showed that, below its Nèel temperature (TN ≈ 119 K), the MZFC crosses over to negative sign for H < 1000 Oe. At 60 K, YCO showed a significant negative MZFC ≈ -0.05 emu/g (at 100 Oe) due to the competing effects of Yb(3+), Cr(3+) spins, thermal activation energy, and Hext. At further lower temperatures, the MZFC showed a crossover to positive values, and the crossover temperature showed the dependence on Hext (∼19 K for 100 Oe curve). The YCO also showed Hext and T-dependent HEB, which changed its sign with T. The observed T-dependent sign reversal in the EB was closely associated with the sign reversal of MZFC. The symmetric shift in field-cooled isothermal hysteresis curves confirmed that the observed EB was not due to the unsaturated minor loop. The training cycle further confirmed that the HEB value decreased to ∼2% of the initial value of observed EB, which was very small compared to the observed HEB in YCO, which indicated stable spin configuration at the locally formed ferromagnetic/antiferromagnetic interface.

  3. Laurance David Hall.

    Science.gov (United States)

    Coxon, Bruce

    2011-01-01

    An account is given of the life, scientific contributions, and passing of Laurance David Hall (1938-2009), including his early history and education at the University of Bristol, UK, and the synthesis and NMR spectroscopy of carbohydrates and other natural products during ∼20 years of research and teaching at the University of British Columbia in Vancouver, Canada. Lists of graduate students, post-doctoral fellows, and sabbatical visitors are provided for this period. Following a generous endowment by Dr. Herchel Smith, Professor Hall built a new Department of Medicinal Chemistry at Cambridge University, UK, and greatly expanded his researches into the technology and applications of magnetic resonance imaging (MRI) and zero quantum NMR. MRI technology was applied both to medical problems such as the characterization of cartilage degeneration in knee joints, the measurement of ventricular function, lipid localization in animal models of atherosclerosis, paramagnetic metal complexes of polysaccharides as contrast agents, and studies of many other anatomical features, but also to several aspects of materials analysis, including food analyses, process control, and the elucidation of such physical phenomena as the flow of liquids through porous media, defects in concrete, and the visualization of fungal damage to wood. Professor Hall's many publications, patents, lectures, and honors and awards are described, and also his successful effort to keep the Asilomar facility in Pacific Grove, California as the alternating venue for the annual Experimental NMR Conference. Two memorial services for Professor Hall are remembered. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The Monty Hall Dilemma

    NARCIS (Netherlands)

    Barteld Kooi, [No Value

    2006-01-01

    Samenvatting: In het begin van de jaren negentig brak een wereldwijde discussie los over een probleem dat in het Engels 'The Monty Hall Dilemma' wordt genoemd. Marilyn vos Savant, die in het Guinness Book of World Records wordt genoemd als degene met het

  5. Halle, Prof. Thore Gustaf.

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1947 Honorary. Halle, Prof. Thore Gustaf. Date of birth: 25 September 1884. Date of death: 12 May 1964. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the Three Science Academies of India on ...

  6. Hall Sweet Home

    Science.gov (United States)

    Oguntoyinbo, Lekan

    2011-01-01

    Many urban and commuter universities have their sights set on students who are unlikely to connect with the college and likely to fail unless the right strategies are put in place to help them graduate. In efforts to improve retention rates, commuter colleges are looking to an unusual suspect: residence halls. The author discusses how these…

  7. Exchange bias and strain effect co-modulated magnetic symmetry in La0.6Sr0.4MnO3/orthorhombic-YMnO3 multiferroic heterostructures

    Science.gov (United States)

    Zheng, Dongxing; Gong, Junlu; Jin, Chao; Li, Peng; Feng, Liefeng; Bai, Haili

    2017-06-01

    The exchange bias and strain effect co-modulated magnetic symmetry in all oxide La0.6Sr0.4MnO3 (LSMO) and orthorhombic YMnO3 (YMO) multiferroic heterostructures were studied. Because of the lattice mismatch between the LSMO and YMO layers, the LSMO layer exhibits a 90° rotation growth on the YMO layer. The strain induced growth not only leads to a 90° phase shift in the anisotropic magnetoresistance (AMR) curves, but also brings a two-fold symmetric magnetoelastic coupling energy along the LSMO [1 1 0] direction. With the incorporation of magnetoelastic coupling energy and exchange coupling energy, the exchange bias induced torque shows a phase shift and causes the asymmetry of the peak position and value in the AMR curves. This work illustrates a modulated magnetic symmetry in ferromagnetic/multiferroic systems by interfacial exchange coupling and strain effect, which will benefit the design of magnetoelectric devices.

  8. Exchange bias and strain effect co-modulated magnetic symmetry in La0.6Sr0.4MnO3/orthorhombic-YMnO3 multiferroic heterostructures

    KAUST Repository

    Zheng, Dongxing

    2017-05-03

    The exchange bias and strain effect co-modulated magnetic symmetry in all oxide La0.6Sr0.4MnO3 (LSMO) and orthorhombic YMnO3 (YMO) multiferroic heterostructures were studied. Because of the lattice mismatch between the LSMO and YMO layers, the LSMO layer exhibits a 90° rotation growth on the YMO layer. The strain induced growth not only leads to a 90° phase shift in the anisotropic magnetoresistance (AMR) curves, but also brings a two-fold symmetric magnetoelastic coupling energy along the LSMO $[1\\\\,1\\\\,0]$ direction. With the incorporation of magnetoelastic coupling energy and exchange coupling energy, the exchange bias induced torque shows a phase shift and causes the asymmetry of the peak position and value in the AMR curves. This work illustrates a modulated magnetic symmetry in ferromagnetic/multiferroic systems by interfacial exchange coupling and strain effect, which will benefit the design of magnetoelectric devices.

  9. Method I : Planar reduction

    NARCIS (Netherlands)

    Broer, H.; Hoveijn, I.; Lunter, G.; Vegter, G.

    2003-01-01

    We apply the planar reduction method to a general two degree of freedom system with optional symmetry, near equilibrium and close to resonance. As a leading example the spring-pendulum close to 1:2 resonance is used. The resulting planar model is computed explicitly, and the bifurcation curves

  10. Exchange bias training effect in phase separated polycrystalline Sm{sub 0.1}Ca{sub 0.7}Sr{sub 0.2}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Markovich, V., E-mail: markoviv@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negev, 84105, Beer-Sheva (Israel); Fita, I.; Wisniewski, A.; Puzniak, R. [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668, Warsaw (Poland); Martin, C. [Laboratoire CRISMAT, UMR 6508, ISMRA, 14050, Caen Cedex (France); Jung, G. [Department of Physics, Ben-Gurion University of the Negev, 84105, Beer-Sheva (Israel); Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668, Warsaw (Poland); Gorodetsky, G. [Department of Physics, Ben-Gurion University of the Negev, 84105, Beer-Sheva (Israel)

    2016-12-01

    Magnetic properties of antiferromagnetic (AFM) electron doped manganite Sm{sub 0.1}Ca{sub 0.7}Sr{sub 0.2}MnO{sub 3} have been investigated, focusing mainly on the exchange bias (EB) effect and associated training effect. The studied compound exhibits the ground state with heterogeneous spin configuration, consisting of the C-type antiferromagnetic phase with the Néel temperature T{sub N-C} ≈ 120 K, the G-AFM phase with the Néel temperature T{sub N-G} ≈ 60 K, and ferromagnetic-like phase with a very weak spontaneous magnetic moment. Measurements of hysteresis loops have shown that the exchange bias field monotonously decreases with increasing temperature and vanishes above 40 K, while the coercivity disappears only above 70 K. The temperature variation of the exchange bias field has been successfully described by an exponential decay form. The stability of EB has been evaluated in the studies of the training effect, which has been discussed in the frame of the spin relaxation model, elucidating the important role of the AFM domain rearrangement at the interface. The complex phase separation and possible contributions from different interfaces between coexisting magnetic phases to the EB effect have also been discussed. - Highlights: • Sm{sub 0.1}Ca{sub 0.7}Sr{sub 0.2}MnO{sub 3} exhibits exchange bias (EB) effect at low temperatures T < 40 K. • The EB effect is associated with the phase separation and the presence of FM clusters as well as the G- and C-type AFM phases. • The training effect (TE) has been discussed in the frame of the spin relaxation model. • The TE is relatively small, indicating that AFM moment configuration is almost frozen during the magnetization reversal.

  11. Robust Interfacial Exchange Bias and Metal-Insulator Transition Influenced by the LaNiO3 Layer Thickness in La0.7Sr0.3MnO3/LaNiO3 Superlattices.

    Science.gov (United States)

    Zhou, Guowei; Song, Cheng; Bai, Yuhao; Quan, Zhiyong; Jiang, Fengxian; Liu, Wenqing; Xu, Yongbing; Dhesi, Sarnjeet S; Xu, Xiaohong

    2017-01-25

    Artificial heterostructures based on LaNiO3 (LNO) have been widely investigated with the aim to realize the insulating antiferromagnetic state of LNO. In this work, we grew [(La0.7Sr0.3MnO3)5-(LaNiO3)n]12 superlattices on (001)-oriented SrTiO3 substrates by pulsed laser deposition and observed an unexpected exchange bias effect in field-cooled hysteresis loops. Through X-ray absorption spectroscopy and magnetic circular dichroism experiments, we found that the charge transfer at the interfacial Mn and Ni ions can induce a localized magnetic moment. A remarkable increase of exchange bias field and a transition from metal to insulator were simultaneously observed upon decreasing the thickness of the LNO layer, indicating the antiferromagnetic insulator state in 2 unit cells LNO ultrathin layers. The robust exchange bias of 745 Oe in the superlattice is caused by an interfacial localized magnetic moment and an antiferromagnetic state in the ultrathin LNO layer, pinning the ferromagnetic La0.7Sr0.3MnO3 layers together. Our results demonstrate that artificial interface engineering is a useful method to realize novel magnetic and transport properties.

  12. Annealing effect on the crystal structure and exchange bias in Heusler Ni{sub 45.5}Mn{sub 43.0}In{sub 11.5} alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    González-Legarreta, L. [Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Rosa, W.O. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 Urca., 22290-180 Rio de Janeiro, RJ (Brazil); García, J. [Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Ipatov, M.; Nazmunnahar, M. [Department of Materials Physics, Faculty of Chemistry, University of the Basque Country, 20018 San Sebastian (Spain); Escoda, L.; Suñol, J.J. [Department of Physics, Campus Montilivi s/n, University of Girona, 17071 Girona (Spain); Prida, V.M. [Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Sommer, R.L. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 Urca., 22290-180 Rio de Janeiro, RJ (Brazil); González, J. [Department of Materials Physics, Faculty of Chemistry, University of the Basque Country, 20018 San Sebastian (Spain); Leoni, M. [Department of Material Engineering and Industrial Technologies, University of Trento, Via Mesiano 77, I-38123 Trento (Italy); Hernando, B., E-mail: grande@uniovi.es [Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2014-01-05

    Highlights: • Preparation of Ni–Mn–In Heusler alloys by melt spinning technique in ribbon shape. • Short annealing effects on the crystal structure, microstructure and magnetic properties. • Influence of annealing on the martensitic transformation. • Enhancement of the exchange bias effect. -- Abstract: A Heusler Ni{sub 45.5}Mn{sub 43.0}In{sub 11.5} alloy has been prepared by arc melting and produced in a ribbon shape by rapid solidification using melt spinning technique. Structural properties have been investigated, at different temperatures, by using X-ray diffraction. Austenite is the stable phase at room temperature with a L2{sub 1} cubic crystal structure. Exchange bias effect was observed after field cooling by means of hysteresis loop measurements. At 5 K, hysteresis loop shifts along the axis of the applied magnetic field and that shift magnitude decreases significantly with increasing temperature. A piece of ribbon was annealed at 973 K during 10 min in order to investigate the influence of annealing on crystal structure and magnetic properties. After annealing, a martensitic phase with a monoclinic 10M structure at room temperature is observed. The onset of the martensitic phase transformation shifts to 365 K, temperatures associated with both martensitic and reverse transitions do not change noticeably under an applied magnetic field up to 30 kOe, and a drastic decrease on magnetization is observed in comparison with the as-quenched ribbon meanwhile the exchange bias effect is enhanced.

  13. Relativistic Hall effect.

    Science.gov (United States)

    Bliokh, Konstantin Y; Nori, Franco

    2012-03-23

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin-Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices and mechanical flywheels and also discuss various fundamental aspects of this phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales, from elementary spinning particles, through classical light, to rotating black holes.

  14. Exchange bias in Ba0.4Sr0.6TiO3/La0.7Sr0.3MnO3 heterostructures

    Science.gov (United States)

    Singamaneni, Srinivasa Rao; Prater, John T.; Narayan, Jagdish

    2017-05-01

    This work relates to the integration of the two-layer stack of the proposed multiferroic structure onto silicon substrates. Ba1-xSrxTiO3 is an excellent material for room-temperature voltage-tunable dielectric applications due to its high (ɛ=6000) dielectric constant. In this study we choose a composition of Ba0.4Sr0.6TiO3 (BST), which is cubic and paraelectric at 300K, and transforms to a ferroelectric tetragonal phase upon cooling through the Curie temperature (TC) at 200K. The main focus of the present work is to study what happens when BST is placed in contact with a room temperature ferromagnetic layer such as La0.7Sr0.3MnO3 (LSMO). In this study, the magnetic properties of a BST (200nm)/LSMO (63nm) heterostructure was compared to that of a single LSMO layer (63nm). Both films were deposited onto MgO/TiN buffered Si (100) using pulsed laser deposition (PLD) and a domain matching epitaxy (DME) paradigm. X-ray diffraction (XRD) measurements showed that these films were of single phase and epitaxial in nature, with an unrelaxed lattice strain of ˜0.2% that was predominately composed of thermal and defect-induced strain. The magnetic measurements showed that the Curie temperature (TC) of LSMO remained unchanged at 350K when the BST was in contact with the LSMO layer. Interestingly, at 4K both the coercive field (Hc) and the exchange bias (HEB) of the BST/LSMO heterostructure as compared to the lone LSMO film increased significantly from 400 to 800 Oe and from 155 to 305 Oe, respectively. These differences were found to disappear above 200 K, the ferroelectric TC of the BST over-layer. This strongly suggests that the observed changes in the magnetic behavior of the heterostructure was the result of stress and/or charge redistributions that resulted when the BST layer transformed from the cubic (paraelectric) to tetragonal (ferroelectric) phase at low temperature.

  15. Quantum critical Hall exponents

    CERN Document Server

    Lütken, C A

    2014-01-01

    We investigate a finite size "double scaling" hypothesis using data from an experiment on a quantum Hall system with short range disorder [1-3]. For Hall bars of width w at temperature T the scaling form is w(-mu)T(-kappa), where the critical exponent mu approximate to 0.23 we extract from the data is comparable to the multi-fractal exponent alpha(0) - 2 obtained from the Chalker-Coddington (CC) model [4]. We also use the data to find the approximate location (in the resistivity plane) of seven quantum critical points, all of which closely agree with the predictions derived long ago from the modular symmetry of a toroidal sigma-model with m matter fields [5]. The value nu(8) = 2.60513 ... of the localisation exponent obtained from the m = 8 model is in excellent agreement with the best available numerical value nu(num) = 2.607 +/- 0.004 derived from the CC-model [6]. Existing experimental data appear to favour the m = 9 model, suggesting that the quantum Hall system is not in the same universality class as th...

  16. Planar Soap Bubbles

    OpenAIRE

    Vaughn, Rick

    1998-01-01

    The generalized soap bubble problem seeks the least perimeter way to enclose and separate n given volumes in R^m. We study the possible configurations for perimeter minimizing bubble complexes enclosing more than two regions. We prove that perimeter minimizing planar bubble complexes with equal pressure regions and without empty chambers must have connected regions. As a consequence, we show that the least perimeter planar graph that...

  17. Learning planar ising models

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jason K [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory; Netrapalli, Praneeth [STUDENT UT AUSTIN

    2010-11-12

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.

  18. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  19. Hall Potential Distribution in Anti-Hall bar Geometry

    Science.gov (United States)

    Tarquini, Vinicio; Knighton, Talbot; Wu, Zhe; Huang, Jian; Pfeiffer, Loren; West, Ken

    A high quality system has been fabricated in an Anti-Hall bar geometry, by opening a 1.4 x 2.0 mm rectangular window using wet etching in the middle of a 2.4 x 3.0 mm two-dimensional high-mobility (μ = 2 . 6 × 106 cm2/(V .s)) hole system confined in a 20 nm wide (100) GaAs quantum well. Topologically this system is equivalent to a normal Hall bar even though there is an extra set of edges in the center. This configuration allows us to probe the Hall potential distribution in relation to the formation of edge channels. The Quantum Hall measurements at 30 mK show a standard behavior of the outer edges. At each Hall plateau the inner edge becomes an equipotential and the Hall voltage between the inner and outer edges exhibits a drastic asymmetry for the upper and lower arms of the sample. At various integer fillings, depending on the chirality, the voltage drop across one of the arms measures 0 while the drop across the other one is equal to the Hall voltage. This behavior will be explained in terms of the dynamical process of forming the edge channels which also will account for the more irregular behavior of the Hall potential in more disordered systems. NSF DMR-1410302.

  20. Quantum Hall Electron Nematics

    Science.gov (United States)

    MacDonald, Allan

    In 2D electron systems hosted by crystals with hexagonal symmetry, electron nematic phases with spontaneously broken C3 symmetry are expected to occur in the quantum Hall regime when triplets of Landau levels associated with three different Fermi surface pockets are partially filled. The broken symmetry state is driven by intravalley Coulombic exchange interactions that favor spontaneously polarized valley occupations. I will discuss three different examples of 2D electron systems in which this type of broken symmetry state is expected to occur: i) the SnTe (111) surface, ii) the Bi (111) surface. and iii) unbalanced bilayer graphene. This type of quantum Hall electron nematic state has so far been confirmed only in the Bi (111) case, in which the anisotropic quasiparticle wavefunctions of the broken symmetry state were directly imaged. In the SnTe case the nematic state phase boundary is controlled by a competition between intravalley Coulomb interactions and intervalley scattering processes that increase in relative strength with magnetic field. An in-plane Zeeman field alters the phase diagram by lifting the three-fold Landau level degeneracy, yielding a ground state energy with 2 π/3 periodicity as a function of Zeeman-field orientation angle. I will comment on the possibility of observing similar states in the absence of a magnetic field. Supported by DOE Division of Materials Sciences and Engineering Grant DE-FG03-02ER45958.

  1. The ISOLDE hall

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Since 1992, after its move from the 600 MeV SC, ISOLDE is a customer of the Booster (then 1 GeV, now 1.4 GeV). The intense Booster beam (some 3E13 protons per pulse) is directed onto a target, from which a mixture of isotopes emanates. After ionization and electrostatic acceleration to 60 keV, they enter one of the 2 spectrometers (General Purpose Separator: GPS, and High Resolution Separator: HRS) from which the selected ions are directed to the experiments. The photos show: the REX-ISOLDE post accelerator; the mini-ball experiment; an overview of the ISOLDE hall. In the picture (_12) of the hall, the separators are behind the wall. From either of them, beams can be directed into any of the many beamlines towards the experiments, some of which are visible in the foreground. The elevated cubicle at the left is EBIS (Electron Beam Ion Source), which acts as a charge-state multiplier for the REX facility. The ions are further mass analzyzed and passed on to the linac which accelerates them to higher energies. T...

  2. Cosmopolitanism - Conversation with Stuart Hall

    OpenAIRE

    Hall, Stuart

    2006-01-01

    Forty minute conversation between Stuart Hall and Pnina Werbner, filmed and edited by Haim Bresheeth. Synopsis by Sarah Harrison. Conversation between Stuart Hall and Pnina Werbner on the theme of Cosmopolitanism (to be shown at the Association of Social Anthropologists Silver Jubilee conference in 2006), in March 2006

  3. Farm Hall: The Play

    Science.gov (United States)

    Cassidy, David C.

    2013-03-01

    It's July 1945. Germany is in defeat and the atomic bombs are on their way to Japan. Under the direction of Samuel Goudsmit, the Allies are holding some of the top German nuclear scientists-among them Heisenberg, Hahn, and Gerlach-captive in Farm Hall, an English country manor near Cambridge, England. As secret microphones record their conversations, the scientists are unaware of why they are being held or for how long. Thinking themselves far ahead of the Allies, how will they react to the news of the atomic bombs? How will these famous scientists explain to themselves and to the world their failure to achieve even a chain reaction? How will they come to terms with the horror of the Third Reich, their work for such a regime, and their behavior during that period? This one-act play is based upon the transcripts of their conversations as well as the author's historical work on the subject.

  4. Annular Planar Monopole Antennas

    OpenAIRE

    Chen, Z. N.; Ammann, Max; Chia, W.Y. W.; See, T. S.P.

    2002-01-01

    A type of annular planar monopole antenna is presented. The impedance and radiation characteristics of the monopole with different holes and feed gaps are experimentally examined. The measured results demonstrate that the proposed antenna is capable of providing significantly broad impedance bandwidth with acceptable radiation performance.

  5. Dynamic Planar Convex Hull

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølfting; Jacob, Rico

    2002-01-01

    In this paper we determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the d...

  6. Effect of ball milling and thermal treatment on exchange bias and magnetocaloric properties of Ni{sub 48}Mn{sub 39.5}Sn{sub 10.5}Al{sub 2} ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, P., E-mail: p.czaja@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków (Poland); Przewoźnik, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Department of Solid State Physics, Al. Mickiewicza 30, 30-059 Krakow (Poland); Fitta, M.; Bałanda, M. [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego Str., 31-342 Krakow (Poland); Chrobak, A. [A. Chelkowski Institute of Physics, University of Silesia, 4 Uniwersytecka Str., Katowice 40-007 (Poland); Kania, B. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków (Poland); Zackiewicz, P. [Institute of Non Ferrous Metals, 5 Sowinskiego Str., Gliwice 44-100 (Poland); Wójcik, A.; Szlezynger, M.; Maziarz, W. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków (Poland)

    2016-03-01

    The combined effect of ball milling and subsequent heat treatment on microstructure, magnetic, magnetocaloric and exchange bias properties of Ni{sub 48}Mn{sub 39.5}Sn{sub 10.5}Al{sub 2} ribbons is reported. The annealing treatment results in the increase of the critical martensitic transformation temperature. The magnetic entropy change ΔS{sub M} of the order of 7.9 and −2.3 J kg K{sup −1} for the annealed 50–32 µm powder fraction is determined. This is less than in the as melt spun ribbon but appears at a considerably higher temperature. At the same time EB is decreased due to annealing treatment. This decrease is attributed to the strengthened ferromagnetic exchange coupling due heat induced stress and structural relaxation. - Highlights: • Milling and annealing of Ni–Mn–Sn–Al ribbons increases the MT temperature. • ΔS{sub M} equal to 7.9 and −2.3 J kg K{sup −1} for the annealed 50–32 µm powder fraction. • Exchange Bias decreases due to annealing treatment. • Milling and annealing are useful for tuning of properties of Ni–Mn–Sn–Al alloys.

  7. Exchange bias of MnFe2O4@γFe2O3 and CoFe2O4@γFe2O3 core/shell nanoparticles

    Science.gov (United States)

    Cabreira-Gomes, R.; G. Silva, F.; Aquino, R.; Bonville, P.; Tourinho, F. A.; Perzynski, R.; Depeyrot, J.

    2014-11-01

    We compare here exchange bias (EB) properties of chemically synthesized core-shell nanoparticles (NPs), based either on a core of soft ferrite (MnFe2O4) or hard ferrite (CoFe2O4) protected by a maghemite shell (γ-Fe2O3). These NPs dispersed in acidic solutions are electrostatically stabilized, yielding to stable colloidal dispersions with a strong interparticle repulsion and negligible dipolar interactions in the probed range of temperatures. Field cooled (FC) magnetic hysteresis loops of non-textured frozen dispersions (with magnetic anisotropy axis of NPs distributed at random) and those of a powder based on the same NPs present a shift along the H-axis, expressing the coupling between the spin-ordered cores and the disordered surface layer of the NPs. The bias field is found to present a maximum, larger for NPs based on harder ferrite core. It is obtained for a cooling field of the order of one half of the anisotropy field, which is much larger for the CoFe2O4 cores than for MnFe2O4 ones. In powders, particles are in contact leading to an interparticle exchange which is not present in the dilute solutions where exchange bias properties are only due to an intraparticle exchange between core and surface. The thermal dependence of the bias field is well described by a reduced exponential behavior with a characteristic freezing temperature of about 8 K.

  8. Enhancement of exchange bias and training effect in ion-beam sputtered Fe{sub 46}Mn{sub 54}/Ni{sub 81}Fe{sub 19} bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fulara, Himanshu; Chaudhary, Sujeet, E-mail: sujeetc@physics.iitd.ac.in; Kashyap, Subhash C. [Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Granville, Simon [Callaghan Innovation, PO Box 31310, Lower Hutt 5040 (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, Lower Hutt (New Zealand)

    2014-01-28

    We present a remarkable enhancement by 300% of the exchange-bias field at room temperature, without affecting the coercivity value, via optimum magnetic annealing (250 °C/3 kOe) in ion-beam sputtered FeMn(30 nm)/NiFe(10 nm) bilayers. This specific behavior has been attributed to a higher degree of γ-FeMn(111) orientation that offers more interfacial FeMn moments to get pinned with the moments of the adjacent NiFe layer. Unlike the absence of training effect at room temperature, a pronounced training effect and an accompanying magnetization reversal asymmetry are evidenced upon field cooling below 50 K due to the presence of biaxial exchange induced anisotropy across the interdiffused FeMn/NiFe interface. The present findings not only have technological significance but also are of relevance to the understanding of interfacial spin disorder and frustration in these exchange-biased systems.

  9. Thickness and bilayer number dependence on exchange bias in ferromagnetic/antiferromagnetic multilayers based on La{sub 1−x}Ca{sub x}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Departamento de Física y Química, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Agudelo-Giraldo, J.D. [Departamento de Física y Química, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Grupo de Investigación y Desarrollo en Informática y Telecomunicaciones, Universidad de Manizales, Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulación, Instituto de Física, Universidad de Antioquia, A.A. 1226 Medellín (Colombia)

    2014-05-01

    In this work, simulations of ferromagnetic/antiferromagnetic multilayers of La{sub 1−x}Ca{sub x}MnO{sub 3} have been carried out by using the Monte Carlo method combined with the Metropolis algorithm and the classical Heisenberg model. In the Hamiltonian we have considered three contributions: nearest neighbor exchange interaction, magnetocrystalline anisotropy and Zeeman interaction. Samples were built by including three types of Mn ions depending on their valence state and type of ionic orbital. Both the number of layers and the antiferromagnetic layer thickness influence on the exchange bias phenomenon are analyzed. Hysteresis loops results exhibit not only a shift as evidence of exchange bias but also the formation of plateaus or steps caused by the presence of more than one interface and the low layers thickness. Each layer presents a strong magnetic behavior because the magneto static energy favors formation of multi-domains in contrast with the single-domains of a single layer FM producing one sub-Loop of each domain (each layer). On the other hand, as the number of layers (n) increases, the sub-cycles tend to disappear. As the plateaus disappear, the system is more effective, increasing the coercive and bias fields. Moreover, domain sizes (layers thickness) also affect the shape of the hysteresis loop. On increasing the thickness of the AFM layer, a decrease in the plateaus produced by the uncoupling is generated.

  10. Exchange-bias effect at La0.75Sr0.25MnO3/LaNiO3 interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Sánchez, J. C. [Centro Atomico Bariloche-CNEA, Rio Negro (Argentina); National Scientific and Technical Research Council, Buenos Aires (Argentina); Nelson-Cheeseman, B. [Univ. of California, Berkeley, CA (United States); Granada, M. [Centro Atomico Bariloche-CNEA, Rio Negro (Argentina); National Scientific and Technical Research Council, Buenos Aires (Argentina); Arenholz, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Steren, L. B. [National Scientific and Technical Research Council, Buenos Aires (Argentina); Centro Atomico Constituyentes-CNEA, San Martin (Argentina)

    2012-03-26

    In this paper, we show that ferromagnetic/paramagnetic La0.75Sr0.25MnO3/LaNiO3 multilayers present an unexpected magnetic exchange-bias effect (EBE), observed in field-cooled magnetization loops. The exchange-bias field and the enhancement of the coercivity vanish around 50 K. We demonstrate that the oxidation state of the Ni and Mn cations changes from Mn3+-Ni3+ to Mn4+-Ni2+ in the layers close to the interface probed by x-ray absorption spectroscopy measurements. The variation of the valence states is accompanied by a change in the magnetic behavior of the cations at the La0.75Sr0.25MnO3/LaNiO3 interface, possibly giving rise to the formation of magnetic or magnetically frustrated regions that may pin the ferromagnetic a0.75Sr0.25MnO3 layers and explain the EBE.

  11. Hall Effect Gyrators and Circulators

    Directory of Open Access Journals (Sweden)

    Giovanni Viola

    2014-05-01

    Full Text Available The electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.

  12. Topological Hall and spin Hall effects in disordered skyrmionic textures

    KAUST Repository

    Ndiaye, Papa Birame

    2017-02-24

    We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.

  13. Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures

    Science.gov (United States)

    Ndiaye, Papa Birame; Akosa, Collins; Manchon, Aurelien; Spintronics Theory Group Team

    We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic approximation still holds for large skyrmions as well as for few atomic size-nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that topological Hall effect is highly sensitive to momentum scattering. This work was supported by the King Abdullah University of Science and Technology (KAUST) through the Award No OSR-CRG URF/1/1693-01 from the Office of Sponsored Research (OSR).

  14. Planar metasurface retroreflector

    Science.gov (United States)

    Arbabi, Amir; Arbabi, Ehsan; Horie, Yu; Kamali, Seyedeh Mahsa; Faraon, Andrei

    2017-07-01

    Metasurfaces are two-dimensional arrangements of subwavelength scatterers that control the propagation of optical waves. Here, we show that cascaded metasurfaces, each performing a predefined mathematical transformation, provide a new optical design framework that enables new functionalities not yet demonstrated with single metasurfaces. Specifically, we demonstrate that retroreflection can be achieved with two vertically stacked planar metasurfaces, the first performing a spatial Fourier transform and its inverse, and the second imparting a spatially varying momentum to the Fourier transform of the incident light. Using this concept, we fabricate and test a planar monolithic near-infrared retroreflector composed of two layers of silicon nanoposts, which reflects light along its incident direction with a normal incidence efficiency of 78% and a large half-power field of view of 60°. The metasurface retroreflector demonstrates the potential of cascaded metasurfaces for implementing novel high-performance components, and enables low-power and low-weight passive optical transmitters.

  15. Dielectric Covered Planar Antennas

    Science.gov (United States)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  16. "Hall mees" Linnateatris / Triin Sinissaar

    Index Scriptorium Estoniae

    Sinissaar, Triin

    1999-01-01

    Tallinn Linnateatri ja Raadioteatri ühislavastus "Hall mees" Gill Adamsi näidendi järgi, lavastaja Eero Spriit, osades Helene Vannari ja Väino Laes, kunstnik Kustav - Agu Püüman. Esietendus 22. okt

  17. Herstructurering Stageprocessen Van Hall Larenstein

    NARCIS (Netherlands)

    Schelvis-Smit, A.A.M.

    2009-01-01

    Verslag van de herstructurering van het stageproces bij het Onderwijsbureau van Hogelschool VanHall Larenstein. Uitgangspunt hierbij was het onderling uitwisselbaar worden van personeel bij het uitvoeren van werkzaamheden met betrekking tot stages.

  18. Shared Magnetics Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed Phase II program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...

  19. A game generalizing Hall's theorem

    OpenAIRE

    Rabern, Landon

    2012-01-01

    We characterize the initial positions from which the first player has a winning strategy in a certain two-player game. This provides a generalization of Hall's theorem. Vizing's edge coloring theorem follows from a special case.

  20. Shared Magnetics Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed Phase I program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...

  1. Sheldon-Hall syndrome

    Directory of Open Access Journals (Sweden)

    Bamshad Michael J

    2009-03-01

    Full Text Available Abstract Sheldon-Hall syndrome (SHS is a rare multiple congenital contracture syndrome characterized by contractures of the distal joints of the limbs, triangular face, downslanting palpebral fissures, small mouth, and high arched palate. Epidemiological data for the prevalence of SHS are not available, but less than 100 cases have been reported in the literature. Other common clinical features of SHS include prominent nasolabial folds, high arched palate, attached earlobes, mild cervical webbing, short stature, severe camptodactyly, ulnar deviation, and vertical talus and/or talipes equinovarus. Typically, the contractures are most severe at birth and non-progressive. SHS is inherited in an autosomal dominant pattern but about half the cases are sporadic. Mutations in either MYH3, TNNI2, or TNNT3 have been found in about 50% of cases. These genes encode proteins of the contractile apparatus of fast twitch skeletal muscle fibers. The diagnosis of SHS is based on clinical criteria. Mutation analysis is useful to distinguish SHS from arthrogryposis syndromes with similar features (e.g. distal arthrogryposis 1 and Freeman-Sheldon syndrome. Prenatal diagnosis by ultrasonography is feasible at 18–24 weeks of gestation. If the family history is positive and the mutation is known in the family, prenatal molecular genetic diagnosis is possible. There is no specific therapy for SHS. However, patients benefit from early intervention with occupational and physical therapy, serial casting, and/or surgery. Life expectancy and cognitive abilities are normal.

  2. Transport Signatures of the Hall Viscosity.

    Science.gov (United States)

    Delacrétaz, Luca V; Gromov, Andrey

    2017-12-01

    Hall viscosity is a nondissipative response function describing momentum transport in two-dimensional systems with broken parity. It is quantized in the quantum Hall regime, and contains information about the topological order of the quantum Hall state. Hall viscosity can distinguish different quantum Hall states with identical Hall conductances, but different topological order. To date, an experimentally accessible signature of Hall viscosity is lacking. We exploit the fact that Hall viscosity contributes to charge transport at finite wavelengths, and can therefore be extracted from nonlocal resistance measurements in inhomogeneous charge flows. We explain how to determine the Hall viscosity from such a transport experiment. In particular, we show that the profile of the electrochemical potential close to contacts where current is injected is sensitive to the value of the Hall viscosity.

  3. Antisite-disorder driven large exchange bias effect in phase separated La{sub 1.5}Ca{sub 0.5}CoMnO{sub 6} double perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, R.C.; Paladhi, D. [Department of Physics, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Dasgupta, Papri; Poddar, A. [Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, West Bengal (India); Singh, Ripandeep; Das, A. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Nath, T.K., E-mail: tnath@phy.iitkgp.ernet.in [Department of Physics, Indian Institute of Technology Kharagpur, West Bengal 721302 (India)

    2017-04-15

    Investigations of structural and magnetic properties of polycrystalline hole doped double perovskite La{sub 1.5}Ca{sub 0.5}CoMnO{sub 6} has clearly revealed the existence of structural antisite-disorder (either, Co–O–Co or Mn–O–Mn) in the system. The ordering of Co{sup 2+} and Mn{sup 4+} gives rise to a ferromagnetic transition around 157 K. A spin-canted antiferromagnetic transition is found in this material at T{sub CAFM} ~9 K. The effect of antisite-disorder in the double perovskite structure is most likely the prime reason for antiferromagnetic interaction. The temperature dependent inverse susceptibility exhibits Curie-Weiss like behaviour and it yields an effective paramagnetic moment of 6.49 μ{sub B}. At very low temperature (Texchange bias (EB) field of H{sub EB} ~5.5 kOe and can be tuned by the cooling field. The presence of zero-field cooled spontaneous EB effect (P-type and N-type) is confirmed to be not an experimental artefact - an inherent property of this double perovskite material. A phenomenological model has been proposed to explain the exchange coupling between the ferromagnetic and canted-antiferromagnetic interfaces of antisite-disordered La{sub 1.5}Ca{sub 0.5}CoMnO{sub 6} mainly on the basis of uncompensated interface spins. - Highlights: • Large exchange bias (EB) effect has been observed in 25% Ca doped La{sub 2}CoMnO{sub 6} antisite-disordered system. • Neutron powder diffraction analysis clearly suggested canted antiferromagnetic spin ordering at low temperature in our phase separated system. • A phenomenological model has been proposed for experimental results. • The results may be useful to acquire enough information about exchange biased interfaces for various magnetic device applications.

  4. General footage ISOLDE experimental hall HD

    CERN Multimedia

    2016-01-01

    Overview of the ISOLDE experimental hall. Equipment and experiments. Taken from the WITCH / EBIS platform: ISOLDE hall infrastructure, GHM line, LA1, LA2, LA0, central beamline, COLLAPS experiment, CRIS experiment, ISOLTRAP experiment, laser guidance from building 508 into the hall for laser spectroscopy COLLAPS and CRIS. Taken from the HIE ISOLDE shielding tunnel roof: ISOLDE hall infrastructure, WITCH experiment, VITO line, TAS experiment. General footage: High Tension room entrance and EBIS platform, staircases and passages in the experimental hall.

  5. Iodine Hall Thruster

    Science.gov (United States)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  6. Evidence of spin-glass like ordering and exchange bias effect in antisite-disordered nanometric La1.5Ca0.5CoMnO6 double perovskite

    Science.gov (United States)

    Sahoo, R. C.; Paladhi, D.; Nath, T. K.

    2017-08-01

    Single-phase polycrystalline La1.5Ca0.5CoMnO6 double perovskite nanoparticles (∼25 nm) have been synthesized by chemical sol-gel method. We report here the structural, magnetic and transport properties using X-ray diffraction, dc magnetization, ac susceptibility, exchange bias and dc resistivity measurements. The Rietveld refinement of X-ray diffraction pattern reveals that the La1.5Ca0.5CoMnO6 (LCCMO) system crystallizes in orthorhombic structure with pbnm space group. Mn and Co ions are not completely ordered on the B sites due to the presence of about 30% antisite-disorder in the system. The ordering of Co2+ and Mn4+ gives rise to the ferromagnetism below 145 K. A spin glass like ground state has also been observed near 37.6(4) K, arising mainly due to the presence of competing magnetic interactions and antisite-disorder in the LCCMO nanoparticles. The frequency dependence peak shift of the Ac-susceptibility peak in the glassy state follows the critical slowing down model. The observed memory effect in ac susceptibility data reveals the existence of interacting clusters in a competing magnetic interactions state. The presence of noticeable exchange bias effect can be best explained on the basis of uncompensated interface (ferromagnetic/spin-glass) spins of antisite-disordered LCCMO system. This anti-site disordered nanocompound exhibits semiconducting behavior with variable range hopping kind of electronic conduction mechanism in the temperature range of 200-300 K. We have also observed large negative magnetoresistance (-30% at 100 K and 60 kOe) mainly due to the spin-polarized transport across the grain boundaries.

  7. Ventilation systems for high halls

    Energy Technology Data Exchange (ETDEWEB)

    Sodec, F.; Veldboer, W.

    1982-02-01

    A ventilation system for high halls is described which meets the demands of steady air flow in spite of inverse thermal currents, intensive ventilation of working areas during heating and cooling and ventilation free of draught. The main element of the ventilation system is the air outlet in the ceiling, with variable beam direction. The horizontal, rotated beams are superimposed by a vertical beam whose strength may be varied. This way, the beam direction can be adapted to the thermal load of the hall and the height of blowout. The blowout angle is large for heating and small for cooling. Studies have shown that halls are ventilated thoroughly and free of draught by this system. The variable, rotary outlet presented in the article is best suited for heights of 4.00 to 12.00 m. The outlet, with a rated diameter of 400 mm, has been in use for two years now in fields as varied as diecasting works, halls at fairs, sports halls, etc. The air volume flow rate is 1000 to 3000 m/sup 3//h per outlet. A bigger version is now being developed; it will have a rated diameter of 710 mm and an air volume flow rate of 3000 to 9000 m/sup 3//h.

  8. Design of special planar linkages

    CERN Document Server

    Zhao, Jing-Shan; Ma, Ning; Chu, Fulei

    2013-01-01

    Planar linkages play a very important role in mechanical engineering. As the simplest closed chain mechanisms, planar four-bar linkages are widely used in mechanical engineering, civil engineering and aerospace engineering.Design of Special Planar Linkages proposes a uniform design theory for planar four-bar linkages. The merit of the method proposed in this book is that it allows engineers to directly obtain accurate results when there are such solutions for the specified n precise positions; otherwise, the best approximate solutions will be found. This book discusses the kinematics and reach

  9. Planar Para Algebras, Reflection Positivity

    Science.gov (United States)

    Jaffe, Arthur; Liu, Zhengwei

    2017-05-01

    We define a planar para algebra, which arises naturally from combining planar algebras with the idea of ZN para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects that are invariant under para isotopy. For each ZN, we construct a family of subfactor planar para algebras that play the role of Temperley-Lieb-Jones planar algebras. The first example in this family is the parafermion planar para algebra (PAPPA). Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras, which one can use in the study of quantum information. An important ingredient in planar para algebra theory is the string Fourier transform (SFT), which we use on the matrix algebra generated by the Pauli matrices. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita-Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivity by relating the two reflections through the string Fourier transform.

  10. Novel concepts in Hall sensors

    Science.gov (United States)

    Mani, R. G.

    1996-03-01

    Hall effect devices are widely used as position sensors and contactless switches in applications ranging from electric motors to soft drink machines and automobiles. Such devices typically operate in an adverse environment where offset voltages originating from various physical effects limit the effective sensitivity of the sensor to the weak magnetic field (B device that automatically reduces such spurious offsets is desirable because improved 'signal to offset' would relax manufacturing tolerances and other constraints within the sensor system. Here, we examine some techniques and sensor configurations (R. G. Mani, K. von Klitzing, F. Jost, K. Marx, S. Lindenkreuz, and H. P. Trah, Appl. Phys. Lett. 67, 2223, 1995.) based on the so called 'anti Hall bar' geometry that promise the possibility of a Silicon based Hall sensor with a field equivalent offset well below 1 mT.

  11. Exotic Galilean symmetry in the non-commutative plane and the Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Duval, C. [Centre de Physique Theorique, CNRS, Luminy, Marseille (France); Horvathy, P.A. [Laboratoire de Mathematiques et de Physique Theorique, Universite de Tours, Tours (France)

    2001-11-30

    Quantum mechanics in the non-commutative plane is shown to admit the 'exotic' symmetry of the doubly centrally extended Galilei group. When coupled to a planar magnetic field whose strength is the inverse of the non-commutative parameter, the system becomes singular, and 'Faddeev-Jackiw' reduction yields the 'Chern-Simons' mechanics of Dunne et al. The reduced system moves according to the Hall law. (author)

  12. Topological Hubbard model and its high-temperature quantum Hall effect.

    Science.gov (United States)

    Neupert, Titus; Santos, Luiz; Ryu, Shinsei; Chamon, Claudio; Mudry, Christopher

    2012-01-27

    The quintessential two-dimensional lattice model that describes the competition between the kinetic energy of electrons and their short-range repulsive interactions is the repulsive Hubbard model. We study a time-reversal symmetric variant of the repulsive Hubbard model defined on a planar lattice: Whereas the interaction is unchanged, any fully occupied band supports a quantized spin Hall effect. We show that at 1/2 filling of this band, the ground state develops spontaneously and simultaneously Ising ferromagnetic long-range order and a quantized charge Hall effect when the interaction is sufficiently strong. We ponder on the possible practical applications, beyond metrology, that the quantized charge Hall effect might have if it could be realized at high temperatures and without external magnetic fields in strongly correlated materials.

  13. Simplifying massive planar subdivisions

    DEFF Research Database (Denmark)

    Arge, Lars; Truelsen, Jakob; Yang, Jungwoo

    2014-01-01

    (SORT(N)) I/Os, where N is the size of the decomposition and SORT(N) is the number of I/Os need to sort in the standard external-memory model of computation. Previously, such an algorithm was only known for the special case of contour map simplification. Our algorithm is simple enough to be of practical......We present the first I/O- and practically-efficient algorithm for simplifying a planar subdivision, such that no point is moved more than a given distance εxy and such that neighbor relations between faces (homotopy) are preserved. Under some practically realistic assumptions, our algorithm uses...... interest. In fact, although more general, it is significantly simpler than the previous contour map simplification algorithm. We have implemented our algorithm and present results of experimenting with it on massive real-life data. The experiments confirm that the algorithm is efficient in practice...

  14. Dynamic Planar Convex Hull

    DEFF Research Database (Denmark)

    Jacob, Riko

    We determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the data structure...... is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects the convex hull......, and the tangent queries to determine whether a given point is inside the convex hull. The space usage of the data structure is O(n). We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure....

  15. Improved Dynamic Planar Point Location

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Arge, Lars; Georgiadis, Loukas

    2006-01-01

    We develop the first linear-space data structures for dynamic planar point location in general subdivisions that achieve logarithmic query time and poly-logarithmic update time.......We develop the first linear-space data structures for dynamic planar point location in general subdivisions that achieve logarithmic query time and poly-logarithmic update time....

  16. ATLAS Assembly Hall Open Day

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    To mark the 50th Anniversary of the founding of CERN, a day of tours, displays and presentations was held in October 2004. The assembly halls for the experiments that were waiting to be installed on the LHC, such as ATLAS shown here, were transformed into display areas and cafés.

  17. Interface-induced spontaneous positive and conventional negative exchange bias effects in bilayer La^sub 0.7^Sr^sub 0.3^MnO3/Eu^sub 0.45^Sr^sub 0.55^MnO3 heterostructures

    National Research Council Canada - National Science Library

    J Krishna Murthy; P S Anil Kumar

    2017-01-01

    (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We report zero-field-cooled spontaneous-positive and field-cooled conventional-negative exchange bias effects in epitaxial bilayer composed of La0.7Sr0.3MnO3 (LSMO...

  18. Exchange bias in (1 1 0)-orientated Bi{sub 0.9}La{sub 0.1}FeO{sub 3}/La{sub 0.5}Ca{sub 0.5}MnO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.L.; Gao, R.L.; Gao, W.W.; Shen, B.G. [Beijing National Laboratory for Condensed Matter Physics and the Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, J.R., E-mail: jrsun@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and the Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    We performed a systematic study on the exchange bias in (1 1 0)-orientated Bi{sub 0.9}La{sub 0.1}FeO{sub 3}/La{sub 0.5}Ca{sub 0.5}MnO{sub 3} (BLFO/LCMO) heterostructure with a fixed BLFO film thickness of 600 nm and different LCMO layers ranging from t=0 to 30 nm. The LCMO is found to be weakly ferromagnetic, with the Curie temperature descending from {approx}225 K to 0 as the layer thickness decreases from 30 nm to 3 nm. The main magnetic contributions come from the BLFO film, and the areal magnetization ratio is 1:0.07 for t=5 nm and 1:0.82 for t=30 nm for BLFO to LCMO at the temperature of 5 K. Further experiments show the presence of significant exchange bias, and it is, at the temperature of 10 K, {approx}40 Oe for t=0 and {approx}260 Oe for t=30 nm. The exchange bias reduces dramatically upon warming and disappears above the blocking temperature of the spin-glasslike behavior observed in the samples. The possible origin for exchange bias is discussed.

  19. Probing the antiferromagnetism of Ni{sub x}Mn{sub 100-X} with ferromagnetic Ni in exchange-biased bilayers and trilayers on Cu{sub 3}Au(001)

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Muhammad Yaqoob

    2012-07-11

    In this thesis the antiferromagnetism of Ni{sub x}Mn{sub 100-x} thin films in contact with ferromagnetic Ni film(s) in exchange-biased bilayers and trilayers on Cu{sub 3}Au(001) is investigated by means of magneto-optical Kerr effect (MOKE). Ni{sub x}Mn{sub 100-x} ultrathin films (10{<=}x{<=}77) grow in layer-by-layer mode on Cu{sub 3}Au(001) with face-centered tetragonal structure similar to its bulk form. Ni{sub x}Mn{sub 100-x} can couple to out-of-plane (OoP) as well as in-plane (IP) magnetized Ni films, the latter stabilized by Co under-layer deposition. The antiferromagnetic (AFM) ordering temperature (T{sub AFM}) of Ni{sub x}Mn{sub 100-x} films coupled to IP magnetized Ni increases significantly with decreasing x from {approx} 50 to {approx} 20%, whereas only a slight change in T{sub AFM} is observed for bilayers with OoP magnetized Ni as a function of x. The blocking temperature (T{sub b}) is always higher for the IP case than for the OoP except for Ni{sub 50}Mn{sub 50}, where the reverse is true. The critical thickness of Ni{sub x}Mn{sub 100-x} for the onset of exchange bias (EB) decreases significantly for both coupling directions when decreasing x. These results suggest that for decreasing x, the non-collinear 3Q-like spin structure of Ni{sub x}Mn{sub 100-x} deviates, driven by composition-dependent strain, from a more-OoP to a more-IP configuration with an associated increase in magnetic anisotropic energy to establish EB at smaller Ni{sub x}Mn{sub 100-x} thicknesses. Trilayers of Ni/Ni{sub x}Mn{sub 100-x}/Ni (17{>=}x{>=}25) on Cu{sub 3}Au(001) are studied in detail, while manipulating the easy axis of magnetization of one or both of the FM Ni layers by the deposition of an adjacent Co layer. For the trilayers the exchange bias field H{sub eb} is found to be always smaller than in the corresponding bilayers at similar temperatures. This difference of Heb increases as the thickness of the Ni{sub x}Mn{sub 100-x} layer decreases. At reduced thickness (27 ML

  20. Evidence of spin-glass like ordering and exchange bias effect in antisite-disordered nanometric La{sub 1.5}Ca{sub 0.5}CoMnO{sub 6} double perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, R.C.; Paladhi, D.; Nath, T.K., E-mail: tnath@phy.iitkgp.ernet.in

    2017-08-15

    Highlights: • SG has been observed due to antisite disorder and different magnetic interactions. • The observed EB can be best explained on the basis of uncompensated interface spins. • −30% MR has been observed due to the spin-polarized transport at grain boundaries. - Abstract: Single-phase polycrystalline La{sub 1.5}Ca{sub 0.5}CoMnO{sub 6} double perovskite nanoparticles (∼25 nm) have been synthesized by chemical sol-gel method. We report here the structural, magnetic and transport properties using X-ray diffraction, dc magnetization, ac susceptibility, exchange bias and dc resistivity measurements. The Rietveld refinement of X-ray diffraction pattern reveals that the La{sub 1.5}Ca{sub 0.5}CoMnO{sub 6} (LCCMO) system crystallizes in orthorhombic structure with pbnm space group. Mn and Co ions are not completely ordered on the B sites due to the presence of about 30% antisite-disorder in the system. The ordering of Co{sup 2+} and Mn{sup 4+} gives rise to the ferromagnetism below 145 K. A spin glass like ground state has also been observed near 37.6(4) K, arising mainly due to the presence of competing magnetic interactions and antisite-disorder in the LCCMO nanoparticles. The frequency dependence peak shift of the Ac-susceptibility peak in the glassy state follows the critical slowing down model. The observed memory effect in ac susceptibility data reveals the existence of interacting clusters in a competing magnetic interactions state. The presence of noticeable exchange bias effect can be best explained on the basis of uncompensated interface (ferromagnetic/spin-glass) spins of antisite-disordered LCCMO system. This anti-site disordered nanocompound exhibits semiconducting behavior with variable range hopping kind of electronic conduction mechanism in the temperature range of 200–300 K. We have also observed large negative magnetoresistance (−30% at 100 K and 60 kOe) mainly due to the spin-polarized transport across the grain boundaries.

  1. Room temperature magnetic ordering, enhanced magnetization and exchange bias of GdMnO3 nanoparticles in (GdMnO3)0.70(CoFe2O4)0.30

    Science.gov (United States)

    Mitra, A.; Mahapatra, A. S.; Mallick, A.; Chakrabarti, P. K.

    2017-02-01

    Nanoparticles of GdMnO3 (GMO) are prepared by sol-gel method. To enhance the magnetic property and also to obtain the magnetic ordering at room temperature (RT), nanoparticles of GMO are incorporated in the matrix of CoFe2O4 (CFO). Desired crystallographic phases of CFO, GMO and GMO-CFO are confirmed by analyzing X-ray diffractrograms (XRD) using Rietveld method. The average size of nanoparticles and their distribution, crystallographic phase, nanocrystallinity etc. are studied by high-resolution transmission electron microscope (HRTEM). Magnetic hysteresis loops (M-H) of GMO-CFO under zero field cooled (ZFC) and field cooled (FC) conditions are observed at different temperatures down to 5 K. Magnetization vs. temperature (M-T) under ZFC and FC conditions are also recorded. Interestingly, exchange bias (EB) is found at low temperature which suggests the encapsulation of the ferromagnetic (FM) nanoparticles of GMO by the ferrimagnetic nanoparticles of CFO below 100 K. Enhanced magnetization, EB effect and RT magnetic ordering of GMO-CFO would be interesting for both theoretical and experimental investigations.

  2. City Hall and Territorial Development

    Directory of Open Access Journals (Sweden)

    Carlos Borrás Querol

    1999-10-01

    Full Text Available The current economic conditions impose a new role upon the local administration, a new one added to its traditional role as administrators of public services and managers of the local territory. City Halls are increasingly widening their action area to include spheres of interest that were previously not dealt with: fundamentally – jobs promotion and encouraging economic development. With respect to this, the article describes the important experience of the City Hall of Alcalá la Real (Jaén, whose trajectory of enacting strategies for local development are alternatives to the model of speculative development, strategies whose objective is to direct the potential for local community development by matching the interests of the citizens and the system of productivity in a balanced and sustainable manner, thereby contributing not only to the creation of new businesses and favoring the creation of jobs, but the advancement of territorial balance and social cohesion.

  3. Hall Sensors for Extreme Temperatures

    Directory of Open Access Journals (Sweden)

    Maciej Oszwaldowski

    2011-01-01

    Full Text Available We report on the preparation of the first complete extreme temperature Hall sensor. This means that the extreme-temperature magnetic sensitive semiconductor structure is built-in an extreme-temperature package especially designed for that purpose. The working temperature range of the sensor extends from −270 °C to +300 °C. The extreme-temperature Hall-sensor active element is a heavily n-doped InSb layer epitaxially grown on GaAs. The magnetic sensitivity of the sensor is ca. 100 mV/T and its temperature coefficient is less than 0.04 %/K. This sensor may find applications in the car, aircraft, spacecraft, military and oil and gas industries.

  4. Symmetric functions and Hall polynomials

    CERN Document Server

    MacDonald, Ian Grant

    1998-01-01

    This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and...

  5. Photovoltaic Hall effect in graphene

    Science.gov (United States)

    Oka, Takashi; Aoki, Hideo

    2009-02-01

    Response of electronic systems in intense lights (ac electric fields) to dc source-drain fields is formulated with the Floquet method. We have then applied the formalism to graphene, for which we show that a nonlinear effect of a circularly polarized light can open a gap in the Dirac cone, which is predicted to lead to a photoinduced dc Hall current. This is numerically confirmed for a graphene ribbon attached to electrodes with the Keldysh Green’s function.

  6. Library rooms or Library halls

    OpenAIRE

    Alfredo Serrai

    2013-01-01

    Library Halls, understood as Renaissance and Baroque architectural creations, along with the furnishings and decorations, accomplish a cognitive task and serve to transmit knowledge. The design of these spaces based on the idea that they should reflect the merits and content of the collections housed within them, in order to prepare the mind of the reader to respect and admire the volumes. In accordance with this principle, in the fifteenth century library rooms had a basilican shape, with tw...

  7. Planar graphs theory and algorithms

    CERN Document Server

    Nishizeki, T

    1988-01-01

    Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.

  8. Contracting a planar graph efficiently

    DEFF Research Database (Denmark)

    Holm, Jacob; Italiano, Giuseppe F.; Karczmarz, Adam

    2017-01-01

    We present a data structure that can maintain a simple planar graph under edge contractions in linear total time. The data structure supports adjacency queries and provides access to neighbor lists in O(1) time. Moreover, it can report all the arising self-loops and parallel edges. By applying...... the data structure, we can achieve optimal running times for decremental bridge detection, 2-edge connectivity, maximal 3-edge connected components, and the problem of finding a unique perfect matching for a static planar graph. Furthermore, we improve the running times of algorithms for several planar...... graph problems, including decremental 2-vertex and 3- edge connectivity, and we show that using our data structure in a black-box manner, one obtains conceptually simple optimal algorithms for computing MST and 5-coloring in planar graphs....

  9. Topological morphing of planar graphs

    National Research Council Canada - National Science Library

    Angelini, Patrizio; Cortese, Pier Francesco; Di Battista, Giuseppe; Patrignani, Maurizio

    2013-01-01

    .... We show that the Topological Morphing problem is NP-hard for biconnected planar graphs, we give polynomial-time algorithms for some restricted versions of the problem, and, based on such polynomial...

  10. Planar algebra of the subgroup-subfactor

    Indian Academy of Sciences (India)

    G in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra sub- factor RG ⊂ RH and the G-invariant planar subalgebra of the planar algebra of the 'flip' of ⋆n. Keywords. Planar algebras; subfactors; standard invariant. 1. Introduction. For every pair H ⊂ G of finite groups, ...

  11. Conducting wall Hall thrusters in magnetic shielding and standard configurations

    Science.gov (United States)

    Grimaud, Lou; Mazouffre, Stéphane

    2017-07-01

    Traditional Hall thrusters are fitted with boron nitride dielectric discharge channels that confine the plasma discharge. Wall properties have significant effects on the performances and stability of the thrusters. In magnetically shielded thrusters, interactions between the plasma and the walls are greatly reduced, and the potential drop responsible for ion acceleration is situated outside the channel. This opens the way to the utilization of alternative materials for the discharge channel. In this work, graphite walls are compared to BN-SiO2 walls in the 200 W magnetically shielded ISCT200-MS and the unshielded ISCT200-US Hall thrusters. The magnetically shielded thruster shows no significant change in the discharge current mean value and oscillations, while the unshielded thruster's discharge current increases by 25% and becomes noticeably less stable. The electric field profile is also investigated through laser spectroscopy, and no significant difference is recorded between the ceramic and graphite cases for the shielded thruster. The unshielded thruster, on the other hand, has its acceleration region shifted 15% of the channel length downstream. Lastly, the plume profile is measured with planar probes fitted with guard rings. Once again the material wall has little influence on the plume characteristics in the shielded thruster, while the unshielded one is significantly affected.

  12. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun

    2015-01-08

    The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  13. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yang; Feng, Xiao; Ou, Yunbo; Wang, Jing; Liu, Chang; Zhang, Liguo; Zhao, Dongyang; Jiang, Gaoyuan; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2015-09-16

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to a quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.

  14. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  15. Library rooms or Library halls

    Directory of Open Access Journals (Sweden)

    Alfredo Serrai

    2013-12-01

    Full Text Available Library Halls, understood as Renaissance and Baroque architectural creations, along with the furnishings and decorations, accomplish a cognitive task and serve to transmit knowledge. The design of these spaces based on the idea that they should reflect the merits and content of the collections housed within them, in order to prepare the mind of the reader to respect and admire the volumes. In accordance with this principle, in the fifteenth century library rooms had a basilican shape, with two or three naves, like churches, reflecting thus the spiritual value of the books contained there. Next to that inspiring function, library rooms had also the task of representing the entire logical and conceptual universe of human knowledge in a figurative way, including for this purpose also the and Kunst- und Wunderkammern, namely the collections of natural, artficial objects, and works of art. The importance of library rooms and their function was understood already in the early decades of the seventeenth century, as underlined in the treatise, Musei sive Bibliothecae tam privatae quam publicae Extructio, Instructio, Cura, Usus, written by the Jesuit Claude Clément and published in 1635. Almost the entire volume is dedicated to the decoration and ornamentation of the Saloni, and the function of the library is identified exclusively with the preservation and decoration of the collection, neglecting more specifically bibliographic aspects or those connected to library science. The architectural structure of the Saloni was destined to change in relation to two factors, namely the form of books, and the sources of light. As a consequence, from the end of the sixteenth century – or perhaps even before if one considers the fragments of the Library of Urbino belonging to Federico da Montefeltro – shelves and cabinets have been placed no longer in the center of the room, but were set against the walls. This new disposition of the furniture, surmounted by

  16. Electron Interference in Hall Effect Measurements on GaAs/InAs Core/Shell Nanowires.

    Science.gov (United States)

    Haas, Fabian; Zellekens, Patrick; Lepsa, Mihail; Rieger, Torsten; Grützmacher, Detlev; Lüth, Hans; Schäpers, Thomas

    2017-01-11

    We present low-temperature magnetotransport measurements on GaAs/InAs core/shell nanowires contacted by regular source-drain leads as well as laterally attached Hall contacts, which only touch parts of the nanowire sidewalls. Low-temperature measurements between source and drain contacts show typical phase coherent effects, such as universal conductance fluctuations in a magnetic field aligned perpendicularly to the nanowire axis as well as Aharonov-Bohm-type oscillations in a parallel aligned magnetic field. However, the signal between the Hall contacts shows a Hall voltage buildup, when the magnetic field is turned perpendicular to the nanowire axis while current is driven through the wire using the source-drain contacts. At low temperatures, the phase coherent effects measured between source and drain leads are superimposed on the Hall voltage, which can be explained by nonlocal probing of large segments of the nanowire. In addition, the Aharonov-Bohm-type oscillations are also observed in the magnetoconductance at magnetic fields aligned parallel to the nanowire axis, using the laterally contacted leads. This measurement geometry hereby directly corresponds to classical Aharonov-Bohm experiments using planar quantum rings. In addition, the Hall voltage is used to characterize the nanowires in terms of charge carrier concentration and mobility, using temperature- and gate-dependent measurements as well as measurements in tilted magnetic fields. The GaAs/InAs core/shell nanowire used in combination with laterally attached contacts is therefore the ideal system to three-dimensionally combine quantum ring experiments using the cross-sectional plane and Hall experiments using the axial nanowire plane.

  17. The Duesseldorf fairground. New building of hall 6; Messe Duesseldorf. Neubau der Halle 6

    Energy Technology Data Exchange (ETDEWEB)

    Gampfer, W.; Wendt, W.; Paar, A.; Schwarz, A.; Klemp, P.; Ambaum, P.; Joppen, H.; Hesse, D.; Hauser, K. [Messe Duesseldorf GmbH (Germany)

    2001-07-01

    The Duesseldorf fairground is highly successful and is constantly growing. With the inauguration of the new Hall 6 in May 2000, the former twelve halls have now become 17. The new Hall 6 will also be used for sports events, concerts, meetings etc. [German] Der Erfolg der Messe Duesseldorf laesst sich am stetigen Wachstum der Ausstellungsbereiche ablesen. So wurden aus den ehemals zwoelf Hallen bis heute mit der Einweihung der Neuen Halle 6 im Mai 2000 17 Hallen. Die zuletzt hinzugekommene Halle 6 wird neben der ueberwiegenden Nutzung als Messehalle auch als tagesbelichtete Mehrzweckhalle fuer Veranstaltungen, wie z.B. Sportveranstaltungen, Grosskonzerte, Versammlungen etc., genutzt. (orig.)

  18. Mesoscopic effects in the quantum Hall regime

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2 ... Mesoscopic effects; quantum Hall transitions; finite-size scaling. ... When band mixing between multiple Landau levels is present, mesoscopic effects cause a crossover from a sequence of quantum Hall transitions for weak disorder to classical behavior ...

  19. Kelvin's Canonical Circulation Theorem in Hall Magnetohydrodynamics

    CERN Document Server

    Shivamoggi, B K

    2016-01-01

    The purpose of this paper is to show that, thanks to the restoration of the legitimate connection between the current density and the plasma flow velocity in Hall magnetohydrodynamics (MHD), Kelvin's Circulation Theorem becomes valid in Hall MHD. The ion-flow velocity in the usual circulation integral is now replaced by the canonical ion-flow velocity.

  20. Mesoscopic effects in the quantum Hall regime

    Indian Academy of Sciences (India)

    may be of relevance to experimentally observed transitions between quantum Hall states and the insulating phase ... In this paper, we discuss the mesoscopic effects in the quantum Hall regime, in particu- lar the effects of ...... finite sizes, due to the presence of long length scales, quantum interference effects can be cut-off at ...

  1. Novel optical probe for quantum Hall system

    Indian Academy of Sciences (India)

    Surface photovoltage spectroscopy; quantum Hall effect; Landau levels; edge states. Abstract. Surface photovoltage (SPV) spectroscopy has been used for the first time to explore Landau levels of a two-dimensional electron gas (2DEG) in modulation doped InP/InGaAs/InP QW in the quantum Hall regime. The technique ...

  2. Hall devices improve electric motor efficiency

    Science.gov (United States)

    Haeussermann, W.

    1979-01-01

    Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.

  3. Silica aerogel threshold Cherenkov counters for the JLab Hall A spectrometers: improvements and proposed modifications

    CERN Document Server

    Lagamba, L; Colilli, S; Crateri, R; De Leo, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Leone, A; Lucentini, M; Mostarda, A; Nappi, E; Perrino, R; Pierangeli, L; Santavenere, F; Urciuoli, G M

    2001-01-01

    Recently approved experiments at Jefferson Lab Hall A require a clean kaon identification in a large electron, pion, and proton background environment. To this end, improved performance is required of the silica aerogel threshold Cherenkov counters installed in the focal plane of the two Hall A spectrometers. In this paper we propose two strategies to improve the performance of the Cherenkov counters which presently use a hydrophilic aerogel radiator, and convey Cherenkov photons towards the photomultipliers by means of mirrors with a parabolic shape in one direction and flat in the other. The first strategy is aerogel baking. In the second strategy we propose a modification of the counter geometry by replacing the mirrors with a planar diffusing surface and by displacing in a different way the photomultipliers. Tests at CERN with a 5 GeV/c multiparticle beam revealed that both the strategies are able to increase significantly the number of the detected Cherenkov photons and, therefore, the detector performan...

  4. Casimir stress inside planar materials

    Science.gov (United States)

    Griniasty, Itay; Leonhardt, Ulf

    2017-09-01

    The Casimir force between macroscopic bodies is well understood, but not the Casimir force inside bodies. Guided by a physically intuitive picture, we develop the macroscopic theory of the renormalized Casimir stress inside planar materials (where the electromagnetic properties vary in one direction). Our theory may be applied in predicting how inhomogeneous fluids respond to Casimir forces.

  5. Neutron resonances in planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, S. V., E-mail: kozhevn@nf.jinr.ru, E-mail: kzh-sv@mail.ru; Ignatovich, V. K.; Petrenko, A. V. [Joint Institute for Nuclear Research, Neutron Physics Laboratory (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen und Energie (Germany)

    2016-12-15

    We report on the results of the experimental investigation of the spectral width of neutron resonances in planar waveguides using the time-of-flight method and recording the microbeam emerging from the waveguide end. Experimental data are compared with the results of theoretical calculations.

  6. The quantum Hall impedance standard

    Science.gov (United States)

    Schurr, J.; Kučera, J.; Pierz, K.; Kibble, B. P.

    2011-02-01

    Alternating current measurements of double-shielded quantum Hall devices have revealed a fascinating property of which only a quantum effect is capable: it can detect its own frequency dependence and convert it to a current dependence which can be used to eliminate both of them. According to an experimentally verified model, the residual frequency dependence is smaller than the measuring uncertainty of 1.3 × 10-9 kHz-1. In this way, a highly precise quantum standard of impedance can be established, without having to correct for any calculated frequency dependence and without the need for any artefact with a calculated frequency dependence. Nothing else like that is known to us and we hope that our results encourage other national metrology institutes to also apply it to impedance metrology and further explore its beautiful properties.

  7. Modelling and design of planar Hall effect bridge sensors for low-frequency applications

    DEFF Research Database (Denmark)

    Persson, Åsa; Bejhed, R.S.; Østerberg, Frederik Westergaard

    2013-01-01

    process for optimizing a PHEB to a particular set of requirements on the bandwidth, detectivity, compliance voltage and amplified signal-to-noise ratio. By applying this design process, the size, sensitivity, resistance, bias current and power consumption of the PHEB can be estimated. The model indicates...... and moderate noise figure. In this work, the applicability of such PHEB sensors to different areas is investigated. An analytical model is constructed to estimate the performance of an arbitrary PHEB sensor geometry in terms of, e.g., sensitivity and detectivity. The model is valid for an ideal case, e...

  8. The quantum Hall effects: Philosophical approach

    Science.gov (United States)

    Lederer, P.

    2015-05-01

    The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.

  9. Manufacturing of planar ceramic interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  10. Compact planar microwave blocking filters

    Science.gov (United States)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  11. Bound values for Hall conductivity of heterogeneous medium under ...

    Indian Academy of Sciences (India)

    Bound values for Hall conductivity under quantum Hall effect (QHE) conditions in inhomogeneous medium has been studied. It is shown that bound values for Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect conditions.

  12. Iodine Hall Thruster for Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high power (high thrust) electric propulsion system featuring an iodine fueled Hall Effect Thruster (HET). The system to be...

  13. Iodine Hall Thruster for Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I program, Busek Co. Inc. tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high flow iodine feed system,...

  14. AA under construction in its hall

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The Antiproton Accumulator was installed in a specially built hall. Here we see it at an "early" stage of installation, just a few magnets on the floor, no vacuum chamber at all, but: 3 months later there was circulating beam !

  15. Success of Hall technique crowns questioned.

    Science.gov (United States)

    Nainar, S M Hashim

    2012-01-01

    Hall technique is a method of providing stainless steel crowns for primary molars without tooth preparation and requires no local anesthesia. Literature review showed inconclusive evidence and therefore this technique should not be used in clinical practice.

  16. Dual Mode Low Power Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample and return missions desire and missions like Saturn Observer require a low power Hall thruster that can operate at high thrust to power as well as high...

  17. Light Metal Propellant Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop light metal Hall Effect thrusters that will help reduce the travel time, mass, and cost of SMD spacecraft. Busek has identified three...

  18. Two LHC dipole magnets in assembly hall

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The final LHC components are completed in the assembly hall, prior to installation in the tunnel. These pictures show two 15-m long LHC cryogenic magnets, both before and after insertion into their blue vacuum vessel.

  19. Giant thermal Hall effect in multiferroics

    Science.gov (United States)

    Ideue, T.; Kurumaji, T.; Ishiwata, S.; Tokura, Y.

    2017-08-01

    Multiferroics, in which dielectric and magnetic orders coexist and couple with each other, attract renewed interest for their cross-correlated phenomena, offering a fundamental platform for novel functionalities. Elementary excitations in such systems are strongly affected by the lattice-spin interaction, as exemplified by the electromagnons and the magneto-thermal transport. Here we report an unprecedented coupling between magnetism and phonons in multiferroics, namely, the giant thermal Hall effect. The thermal transport of insulating polar magnets (ZnxFe1-x)2Mo3O8 is dominated by phonons, yet extremely sensitive to the magnetic structure. In particular, large thermal Hall conductivities are observed in the ferrimagnetic phase, indicating unconventional lattice-spin interactions and a new mechanism for the Hall effect in insulators. Our results show that the thermal Hall effect in multiferroic materials can be an effective probe for strong lattice-spin interactions and provide a new tool for magnetic control of thermal currents.

  20. NAS Decadal Review Town Hall

    Science.gov (United States)

    The National Academies of Sciences, Engineering and Medicine is seeking community input for a study on the future of materials research (MR). Frontiers of Materials Research: A Decadal Survey will look at defining the frontiers of materials research ranging from traditional materials science and engineering to condensed matter physics. Please join members of the study committee for a town hall to discuss future directions for materials research in the United States in the context of worldwide efforts. In particular, input on the following topics will be of great value: progress, achievements, and principal changes in the R&D landscape over the past decade; identification of key MR areas that have major scientific gaps or offer promising investment opportunities from 2020-2030; and the challenges that MR may face over the next decade and how those challenges might be addressed. This study was requested by the Department of Energy and the National Science Foundation. The National Academies will issue a report in 2018 that will offer guidance to federal agencies that support materials research, science policymakers, and researchers in materials research and other adjoining fields. Learn more about the study at http://nas.edu/materials.

  1. The fluctuation Hall conductivity and the Hall angle in type-II superconductor under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tinh, Bui Duc, E-mail: tinhbd@hnue.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Hoc, Nguyen Quang; Thu, Le Minh [Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)

    2016-02-15

    Highlights: • The time-dependent Ginzburg–Landau was used to calculate fluctuation Hall conductivity and Hall angle in type-II superconductor in 2D and 3D. • We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. • The results were compared to the experimental data on YBCO. - Abstract: The fluctuation Hall conductivity and the Hall angle, describing the Hall effect, are calculated for arbitrary value of the imaginary part of the relaxation time in the frame of the time-dependent Ginzburg–Landau theory in type II-superconductor with thermal noise describing strong thermal fluctuations. The self-consistent Gaussian approximation is used to treat the nonlinear interaction term in dynamics. We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. The results are compared with experimental data on high-T{sub c} superconductor.

  2. Generic Superweak Chaos Induced by Hall Effect

    OpenAIRE

    Ben-Harush, Moti; Dana, Itzhack

    2016-01-01

    We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic ($\\mathbf{B}$) and electric ($\\mathbf{E}$) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of $B$ and $E$ and in the weak-chaos regime of sufficiently small nonintegrability parameter $\\kappa$ (the kicking strength), there exists a \\emph{generic} family of periodic kicking potentials for which the Hall...

  3. Turbulence Measurements in a Tropical Zoo Hall

    Science.gov (United States)

    Eugster, Werner; Denzler, Basil; Bogdal, Christian

    2017-04-01

    The Masoala rainforest hall of the Zurich Zoo, Switzerland, covers a ground surface area of 10,856 m2 and reaches 30 m in height. With its transparent ETFE foiled roof it provides a tropical climate for a large diversity of plants and animals. In combination with an effort to estimate dry deposition of elemental mercury, we made an attempt to measure turbulent transfer velocity with an ultrasonic anemometer inside the hall. Not surprising, the largest turbulence elements were on the order of the hall dimension. Although the dimensions of the hall seem to be small (200,000 m3) for eddy covariance flux measurements and the air circulation inside the hall was extremely weak, the spectra of wind velocity components and virtual (sonic) temperature obeyed the general statistical description expected under unconstrained outdoor measurement conditions. We will present results from a two-week measurement campaign in the Masoala rainforest hall and make a suggestion for the deposition velocity to be used to estimate dry deposition of atmospheric components to the tropical vegetation surface.

  4. Longitudinal optical and spin Hall conductivities of Rashba conducting strips coupled to ferromagnetic and antiferromagnetic layers

    Science.gov (United States)

    Riera, José A.

    2017-01-01

    A system composed of a conducting planar strip with Rashba spin-orbit coupling (RSOC), magnetically coupled to a layer of localized magnetic moments, at equilibrium, is studied within a microscopic Hamiltonian with numerical techniques at zero temperature in the clean limit. In particular, transport properties for the cases of ferromagnetic (FM) and antiferromagnetic (AFM) coupled layers are computed in linear response on strips of varying width. Some behaviors observed for these properties are consistent with the ones observed for the corresponding Rashba helical currents. The case of uncoupled Rashba strips is also studied for comparison. In the case of Rashba strips coupled to an AFM localized order, results for the longitudinal dc conductivity, for small strip widths, suggest the proximity to a metal-insulator transition. More interesting, in the proximity of this transition, and in general at intermediate values of the RSOC, a large spin Hall conductivity is observed that is two orders of magnitude larger than the one for the FM order for the same values of the RSOC and strip widths. There are clearly two different regimes for small and for large RSOC, which is also present in the behavior of Rashba helical currents. Different contributions to the optical and the spin Hall conductivities, according to a new classification of inter- or intraband origin proposed for planar strips in the clean limit, or coming from the hopping or spin-orbit terms of the Hamiltonian, are examined. Finally, the effects of different orientation of the coupled magnetic moments will be also studied.

  5. New planar trace humidity sensor

    OpenAIRE

    Tiebe, Carlo; Hübert, Thomas; Lorek, Andreas; Wernecke, Roland

    2012-01-01

    A new planar sensor element for continuous coulometric trace humidity measurements in industrial gases has been developed. In order to ensure precise measurements a calibration facility including a precision dew point hygrometer as a reference device was developed. The sensor can measure the humidity in the frost point temperature range of -20 °C to -80 °C and has an expanded uncertainty of 2 K, a fast reaction time and a settling time of the entire system from 15 to 30 min.

  6. Non-planar ABJ Theory and Parity

    DEFF Research Database (Denmark)

    Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos

    2009-01-01

    While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this letter...... we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance....... For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account....

  7. Improved optical planar waveguides for lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate efficacy of a novel growth technique for planar waveguides (PWG) Enable PWG laser technology with improved performance, efficiency and manufacturability....

  8. Helical axis stellarator with noninterlocking planar coils

    Science.gov (United States)

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  9. Tutorial: Physics and modeling of Hall thrusters

    Science.gov (United States)

    Boeuf, Jean-Pierre

    2017-01-01

    Hall thrusters are very efficient and competitive electric propulsion devices for satellites and are currently in use in a number of telecommunications and government spacecraft. Their power spans from 100 W to 20 kW, with thrust between a few mN and 1 N and specific impulse values between 1000 and 3000 s. The basic idea of Hall thrusters consists in generating a large local electric field in a plasma by using a transverse magnetic field to reduce the electron conductivity. This electric field can extract positive ions from the plasma and accelerate them to high velocity without extracting grids, providing the thrust. These principles are simple in appearance but the physics of Hall thrusters is very intricate and non-linear because of the complex electron transport across the magnetic field and its coupling with the electric field and the neutral atom density. This paper describes the basic physics of Hall thrusters and gives a (non-exhaustive) summary of the research efforts that have been devoted to the modelling and understanding of these devices in the last 20 years. Although the predictive capabilities of the models are still not sufficient for a full computer aided design of Hall thrusters, significant progress has been made in the qualitative and quantitative understanding of these devices.

  10. Air temperature gradient in large industrial hall

    Science.gov (United States)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  11. Approach to Exchange Bias Effect in La2/3Ca1/3MnO3/BiFeO3 and BiFeO3/ La2/3Ca1/3MnO3 Bilayers

    Science.gov (United States)

    Dominguez, Claribel; Ordonez, John; Diez, Sandra; Gomez, Maria; Guénon, Stefan; Schuller, Ivan

    2013-03-01

    We have grown bilayers of ferromagnetic La2/3Ca1/3MnO3 (LCMO) and multiferroic BiFeO3 (BFO) on (100) SrTiO3 (STO) substrates, by DC- and magnetron RF -sputtering technique, respectively, at high-oxygen pressures. We maintain constant the thickness of the layers (tBFO=72nm; tLCMO=80nm). Temperature dependence of the resistivity indicates that the MI-transition temperature of the manganite in the BFO/LCMO/STO is affected by the presence of the BFO layer in comparison with TMI for the single LCMO layer. Furthermore, temperature dependence of magnetization shows that the BFO/LCMO/STO bilayer has higher Curie temperature than that for LCMO/BFO/STO, indicating a strong structural dependence of the LCMO layer with magnetic response. The dependence of the magnetic moment with magnetic field after field cooling gives indication of the existence of Exchange Bias effect in the LCMO/BFO/STO bilayer. Isothermal loops also display dependence of the Exchange Bias magnitude with field cooling. This work has been supported by UNIVALLE Research Project CI 7864, and ``El Patrimonio Autónomo Fondo Nacional de Financiamiento para CT&I FJC,'' Contract RC - No. 275-2011, COLCIENCIAS-CENM, Colombia

  12. Acoustics in rock and pop music halls

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of rhythmic music, including rock and pop. Objective measurements were made of the acoustics of twenty rock music venues...... in Denmark and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers. Correlations between the objective and subjective results lead, among others, to a recommendation for reverberation time as a function of hall volume. Since the bass...

  13. Prototype dining hall energy efficiency study

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucchi, R.P.; Bailey, S.A.; Zimmerman, P.W.

    1988-06-01

    The energy consumption of food service facilities is among the highest of any commercial building type, owing to the special requirements for food preparation, sanitation, and ventilation. Consequently, the US Air Force Engineering and Services Center (AFESC) contracted with Pacific Northwest Laboratory (PNL) to collect and analyze end-use energy consumption data for a prototypical dining hall and make specific recommendations on cost-effective energy conservation options. This information will be used to establish or update criteria for dining hall designs and retrofits as appropriate. 6 refs., 21 figs., 23 tabs.

  14. EL CROWN HALL. CONTEXTO Y PROYECTO

    Directory of Open Access Journals (Sweden)

    Laura Lizondo Sevilla

    2010-05-01

    Full Text Available RESUMEN El artículo enmarca el edificio del Crown Hall en el contexto docente y arquitectónico de Mies van der Rohe. Revisa sus inicios en la Bauhaus con su primera intervención en un espacio docente para la Bauhaus de Berlín en 1932, así como su marcha a Estados Unidos, los planteamientos arquitectónicos del campus del IIT y el proyecto del Crown Hall. El texto incide en el estudio del proceso proyectual del Crown Hall analizando la evolución de su concepción arquitectónica a través de las diferentes versiones del proyecto. Se constata la transición desde los primeros planteamientos arquitectónicos de los edificios del campus del IIT proyectados por Mies hacia el planteamiento del gran espacio unitario del Crown Hall. Este proyecto se puede entender desde la creciente importancia de la estructura, la claridad constructiva y el manejo del acero y vidrio como únicos materiales de la imagen del edificio y el carácter flexible y unitario del espacio. Finalmente se hace referencia al concepto del "espacio universal" en la arquitectura de Mies, como un concepto abstracto que supera los de flexibilidad de uso o unidad espacial, insinuando, a modo de reflexión, las principales variables que definirían el espacio universal miesiano.SUMMARY The article showcases the Crown Hall building in the educational and architectural context of Mies van der Rohe. It reviews his beginnings in the Bauhaus with his first intervention in an educational space for the Bauhaus of Berlin in 1932, as well as his sojourn to the United States, and the architectural approaches to the IIT campus and the Crown Hall project. The text touches on the study of the planning process for the Crown Hall, analysing the evolution of its architectural conception, through the different versions of the project. The article covers the transition from the first architectural approaches for the IIT campus buildings, planned by Mies, to the approach of the large unitary space of

  15. Planar Lenses at Visible Wavelengths

    CERN Document Server

    Khorasaninejad, Mohammadreza; Devlin, Robert C; Oh, Jaewon; Zhu, Alexander Y; Capasso, Federico

    2016-01-01

    Sub-wavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as meta-lenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405 nm, 532 nm, and 660 nm with corresponding efficiencies of 86%, 73%, and 66%. The meta-lenses can resolve nanoscale features separated by sub-wavelength distances and provide magnification as high as 170x with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that meta-lenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy.

  16. Generators for finite depth subfactor planar algebras

    Indian Academy of Sciences (India)

    [2] Jones V F R, Planar algebras I, New Zealand J. Math., to appear, e-print arXiv: math.QA/9909027. [3] Kodiyalam V and Tupurani S, Universal skein theory for finite depth subfactor planar algebras, (English) Zbl 1252.46064, Quantum Topol. 2(2) (2011) 157–172. COMMUNICATING EDITOR: B V Rajarama Bhat.

  17. Planar algebra of the subgroup-subfactor

    Indian Academy of Sciences (India)

    The crucial step in this identification is an exhibition of a model for the basic construction tower, and thereafter of the standard invariant of R ⋊ H ⊂ R ⋊ G in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra subfactor R G ⊂ R H and the -invariant planar subalgebra ...

  18. Piecewise planar Möbius bands

    DEFF Research Database (Denmark)

    Gravesen, Jens

    2005-01-01

    t is shown that a closed polygon with an odd number of vertices is the median of exactly one piecewise planar cylinder and one piecewise planar Möbius band, intersecting each other orthogonally. A closed polygon with an even number of vertices is in the generic case neither the median...

  19. Reversed planar elongation of soft polymeric networks

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Rasmussen, Henrik K.; Skov, Anne Ladegaard

    2011-01-01

    The newly developed planar elongation fixture, designed as an add-on to the filament stretch rheometer, is used to measure reversible large amplitude planar elongation on soft elastomers. The concept of this new fixture is to elongate an annulus, by keeping the perimeter constant. The deformation...

  20. The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    This report documents the implementation of several related 1D heat flow problems in the verification package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow is presented, whose main results have been implemented in the class Rod1D. All planar sandwich classes are derived from the parent class Rod1D.

  1. Quantized Anomalous Hall Effect in Magnetic Topological Insulators

    National Research Council Canada - National Science Library

    Rui Yu; Wei Zhang; Hai-Jun Zhang; Shou-Cheng Zhang; Xi Dai; Zhong Fang

    2010-01-01

    .... In a quantum anomalous Hall insulator, spontaneous magnetic moments and spin-orbit coupling combine to give rise to a topologically nontrivial electronic structure, leading to the quantized Hall...

  2. Bound values for Hall conductivity of heterogeneous medium under ...

    Indian Academy of Sciences (India)

    - ditions in inhomogeneous medium has been studied. It is shown that bound values for. Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect ...

  3. Topological spin Hall effect resulting from magnetic skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Gen; Liu, Yizhou; Barlas, Yafis; Zang, Jiadong; Lake, Roger K.

    2015-07-01

    The intrinsic spin Hall effect originates from the topology of the Bloch bands in momentum space. The duality between real space and momentum space calls for a spin Hall effect induced from a real space topology in analogy to the topological Hall effect of skyrmions. We theoretically demonstrate the topological spin Hall effect in which a pure transverse spin current is generated from a skyrmion spin texture.

  4. Nonexponential sound decay in concert halls

    Science.gov (United States)

    Kanev, N. G.

    2016-01-01

    The paper presents acoustic measurement results for two concert halls in which nonexponential sound decay is observed. Quantitative estimates are given for how the obtained decay laws differ from exponential. Problems are discussed that arise when using reverberation time to assess the quality of room acoustics with nonexponential sound decay.

  5. Concept of Operating Indoor Skiing Halls with

    DEFF Research Database (Denmark)

    Paul, Joachim

    2003-01-01

    Indoor skiing halls are conventionally operated at low temperatures and with either crushed ice as snow substitute or snow made from freezing water in cold air. Both systems have a high energy demand for air cooling, floor freezing and consequently snow harvest. At the same time the snow at the top...

  6. View of CMS in the assembly hall

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The CMS detector is stored in the assembly hall at Cessy, France. Once the detector has been fully assembled on the surface, it will be lowered into its cathedral-like cavern. A large range of physics will be studied in this experiment, including the possibility of extra dimensions and the search for the Higgs Boson.

  7. Room acoustic properties of concert halls

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1996-01-01

    A large database of values of various room acoustic parameters has provided the basis for statistical analyses of how and how much the acoustic properties of concert halls are influenced by their size, shape, and absorption area (as deduced from measured reverberation time). The data have been...

  8. Supersymmetry in the Fractional Quantum Hall Regime

    CERN Document Server

    Sagi, Eran

    2016-01-01

    Supersymmetry (SUSY) is a symmetry transforming bosons to fermions and vice versa. Indications of its existence have been extensively sought after in high-energy experiments. However, signatures of SUSY have yet to be detected. In this manuscript we propose a condensed matter realization of SUSY on the edge of a Read-Rezayi quantum Hall state, given by filling factors of the form $\

  9. Massive Skyrmions in quantum Hall ferromagnets

    NARCIS (Netherlands)

    Abolfath, M.; Mullen, K.; Stoof, H.T.C.

    2001-01-01

    We apply the theory of elasticity to study the effects of Skyrmion mass on lattice dynamics in quantum Hall systems. We find that massive Skyrme lattices behave like a Wigner crystal in the presence of a uniform perpendicular magnetic field. We make a comparison with the microscopic Hartree-Fock

  10. Hall Thruster With an External Acceleration Zone

    National Research Council Canada - National Science Library

    Gascon, Nicolas; Corey, Ronald L; Cappelli, Mark A; Hargus, William

    2005-01-01

    ... of wall material, or magnetic field intensity. When operated with a low background pressure, the particular Hall discharge studied here creates an ion accelerating electrostatic field mainly outside of the channel, in a narrow zone located 5-20 mm away from the exit plane.

  11. Large Spin Hall Angle in Vanadium Film

    Science.gov (United States)

    Wang, Tao; Fan, Xin; Wang, Wenrui; Xie, Yunsong; Warsi, Muhammad A.; Wu, Jun; Chen, Yunpeng; Lorenz, Virginia O.; Xiao, John Q.

    We report the large spin Hall angle observed in Vanadium film with small grain size and distorted lattice parameter. The spin Hall angle is quantified by measuring current-induced spin-orbit torque in V/CoFeB bilayer using optical spin torque magnetometer based on polar magneto-optical Kerr effect (MOKE). The spin Hall angle as large as θSH = -0.071 has been observed in V/CoFeB bilayer Structural analysis, using X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), confirms films grown at room temperature have very small grain size and enlarged lattice parameter. The Vanadium films with distorted crystal structure also have high resistivity (>200 μΩ cm) and long spin diffusion length (~16.3 nm) measured via spin pumping experiment. This finding of spin Hall effect enhancement in more disordered structure will provide insights for understanding and exploiting materials with strong spin orbit interaction, especially in light 3d transition metals which promise long spin diffusion length.

  12. Development and applications of mesoscopic hall microprobes

    NARCIS (Netherlands)

    Novoselov, Konstantin S.

    2004-01-01

    This thesis is devoted to the further development of the local Hall magnetometery technique, and its application for studying ferromagnetic domain wall propagation on the sub-atomic scale. First the ballistic electron transport in a strong, non-uniform magnetic field is discussed. Than a possible

  13. Individualization in a Lecture Hall Setting.

    Science.gov (United States)

    Halyard, Rebecca A.

    A two-quarter Human Anatomy and Physiology course for health-science students has been developed which incorporates the principles of individualization while maintaining the lecture hall setting. The lecture method contributes the following components to the course: (1) no special equipment or supplies; (2) personal interaction between instructor…

  14. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    Science.gov (United States)

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  15. Dust exposure in indoor climbing halls.

    Science.gov (United States)

    Weinbruch, Stephan; Dirsch, Thomas; Ebert, Martin; Hofmann, Heiko; Kandler, Konrad

    2008-05-01

    The use of hydrated magnesium carbonate hydroxide (magnesia alba) for drying the hands is a strong source for particulate matter in indoor climbing halls. Particle mass concentrations (PM10, PM2.5 and PM1) were measured with an optical particle counter in 9 indoor climbing halls and in 5 sports halls. Mean values for PM10 in indoor climbing halls are generally on the order of 200-500 microg m(-3). For periods of high activity, which last for several hours, PM10 values between 1000 and 4000 microg m(-3) were observed. PM(2.5) is on the order of 30-100 microg m(-3) and reaches values up to 500 microg m(-3), if many users are present. In sports halls, the mass concentrations are usually much lower (PM10 indoor climbing were observed. The size distribution and the total particle number concentration (3.7 nm-10 microm electrical mobility diameter) were determined in one climbing hall by an electrical aerosol spectrometer. The highest number concentrations were between 8000 and 12 000 cm(-3), indicating that the use of magnesia alba is no strong source for ultrafine particles. Scanning electron microscopy and energy-dispersive X-ray microanalysis revealed that virtually all particles are hydrated magnesium carbonate hydroxide. In-situ experiments in an environmental scanning electron microscope showed that the particles do not dissolve at relative humidities up to 100%. Thus, it is concluded that solid particles of magnesia alba are airborne and have the potential to deposit in the human respiratory tract. The particle mass concentrations in indoor climbing halls are much higher than those reported for schools and reach, in many cases, levels which are observed for industrial occupations. The observed dust concentrations are below the current occupational exposure limits in Germany of 3 and 10 mg m(-3) for respirable and inhalable dust. However, the dust concentrations exceed the German guide lines for work places without use of hazardous substances. In addition

  16. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  17. Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations

    Energy Technology Data Exchange (ETDEWEB)

    Owerre, S. A., E-mail: solomon@aims.ac.za [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, Cape Town 7945, South Africa and Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5 (Canada)

    2016-07-28

    Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κ{sup xy} changes sign as a function of magnetic field or temperature on the kagome lattice, and κ{sup xy} changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κ{sup xy} has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T{sup 2} law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.

  18. Dynamic Planar Range Maxima Queries

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Tsakalidis, Konstantinos

    2011-01-01

    We consider the dynamic two-dimensional maxima query problem. Let P be a set of n points in the plane. A point is maximal if it is not dominated by any other point in P. We describe two data structures that support the reporting of the t maximal points that dominate a given query point, and allow...... for insertions and deletions of points in P. In the pointer machine model we present a linear space data structure with O(logn + t) worst case query time and O(logn) worst case update time. This is the first dynamic data structure for the planar maxima dominance query problem that achieves these bounds...... update time, using O(nlogn) space, where t is the size of the output. This improves the worst case deletion time of the dynamic rectangular visibility query problem from O(log^3 n) to O(log^2 n). We adapt the data structure to the RAM model with word size w, where the coordinates of the points...

  19. Diagnostics Systems for Permanent Hall Thrusters Development

    Science.gov (United States)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  20. Accurate micro Hall effect measurements on scribe line pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Petersen, Dirch Hjorth; Wang, Fei

    2009-01-01

    Hall mobility and sheet carrier density are important parameters to monitor in advanced semiconductor production. If micro Hall effect measurements are done on small pads in scribe lines, these parameters may be measured without using valuable test wafers. We report how Hall mobility can...... be extracted from micro four-point measurements performed on a rectangular pad. The dimension of the investigated pad is 400 × 430 ¿m2, and the probe pitches range from 20 ¿m to 50 ¿m. The Monte Carlo method is used to find the optimal way to perform the Hall measurement and extract Hall mobility most...

  1. Identifying concert halls from source presence vs room presence.

    Science.gov (United States)

    Haapaniemi, Aki; Lokki, Tapio

    2014-06-01

    Identification of concert halls was studied to uncover whether the early or late part of the acoustic response is more salient in a hall's fingerprint. A listening test was conducted with auralizations of measured halls using full, hybrid, and truncated impulse responses convolved with anechoic symphonic music. Subjects identified halls more reliably based on differences in early responses rather than late responses, although varying the late response had more effect on acoustic parameters. The results suggest that in a typical situation with running symphonic music, the early response determines the perceptual fingerprint of a hall more than the late response.

  2. Planar Elongation Measurements on Soft Elastomers

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Skov, Anne Ladegaard; Rasmussen, Henrik K.

    2009-01-01

    A new fixture to the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks. To validate this new technique, soft polymeric networks of poly(propyleneoxide) (PPO) were investigated during deformation....

  3. Development of high reliability planar chip inductors

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, H.W. Jr.

    1994-08-01

    A process for fabrication of multilayer planar chip inductors on ceramic wafers has been developed. This paper will summarize the progress made in the use of step-and-repeat print processes to fabricate a family of high reliability planar chip inductors for surface mount RF applications. Experimental data on thick-film gold and plated-copper windings are presented. In addition, the development of an automated RF probe station and waferized calibration standards are discussed.

  4. Strong Coupling Optimization With Planar Spiral Resonators

    CERN Document Server

    Klein, Avraham; 10.1016/j.cap.2011.02.017

    2011-01-01

    Planar spirals offer a highly scalable geometry appropriate for wireless power transfer via strongly coupled inductive resonators. We numerically derive a set of geometric scale and material independent coupling terms, and analyze a simple model to identify design considerations for a variety of different materials. We use our model to fabricate integrated planar resonators of handheld sizes, and optimize them to achieve high Q factors, comparable to much larger systems, and strong coupling over significant distances with approximately constant efficiency.

  5. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    DEFF Research Database (Denmark)

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core...... region. The invention also relates to optical devices comprising planar optical waveguides and methods of making waveguides and optical devices....

  6. Music hall Markneukirchen; Musikhalle in Markneukirchen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-01-01

    The article presents the new building of the music hall Markneukirchen. From the planned use of the building result very high demands on the ventilation system in order to keep to a sound power level of less than 30 dB(A) in the hall. The building services are dealt with using numerous flowsheets and diagrams: Heat supply, ventilation system, sanitary system, building management, instrumentation and control, electric and lighting systems. (BWI) [Deutsch] Der vorliegende Beitrag stellt den Neubau der Musikhalle Markneukirchen vor. Durch das Nutzungskonzept ergeben sich fuer die Einhaltung eines Schalleistungspegels von weniger als 30 dB(A) im Saalbereich an die Lueftungsanlage sehr hohe Ansprueche. Es werden die raumlufttechnischen Anlagen anhand zahlreicher Flussbilder und Abbildungen vorgestellt: Waermeversorgung, Lueftungstechnik, Sanitaertechnik, Gebaeudeleit- und MSR-Technik, Elektro- und Lichttechnik. (BWI)

  7. Stuart Hall and Cultural Studies, circa 1983

    Directory of Open Access Journals (Sweden)

    Ann Curthoys

    2017-11-01

    Full Text Available Stuart Hall sought to internationalise theoretical debates and to create Cultural Studies as interdisciplinary. We chart his theoretical journey through a detailed examination of a series of lectures delivered in 1983 and now published for the first time. In these lectures, he discusses theorists such as E.P. Thompson, Raymond Williams, Louis Althusser, Levi Strauss and Antonio Gramsci, and explores the relationship between ideas and social structure, the specificities of class and race, and the legacies of slavery. We note his turn towards metaphors of divergence and dispersal and highlight how autobiographical and deeply personal Hall is in these lectures, especially in his ego histoire moment of traumatic memory recovery.

  8. Three halls for music performance in Chile

    Science.gov (United States)

    Delannoy, Jaime; Heuffemann, Carolina; Ramirez, Daniel; Galvez, Fernando

    2002-11-01

    The primary purpose of this work was to investigate about the present acoustic conditions of used architectonic spaces in Santiago of Chile for orchestras of classic music performance. The studied halls were three: Aula Magna Universidad de Santiago, Teatro Municipal de Nunoa, and Teatro Baquedano. The used methodology was based on studies made by L. Beranek, M. Barron, among others, in concert halls worldwide. As it guides, for the measurement procedure, physical parameters RT, EDT, C50, C80, LF, BR, G, U50 were evaluated according to norm ISO 3382. On the other hand, it has been defined, to proposal way, a questionnaire of subjective valuation directed to musicians, specialized conductors, and listeners.

  9. Anyons in Integer Quantum Hall Magnets

    Directory of Open Access Journals (Sweden)

    Armin Rahmani

    2013-08-01

    Full Text Available Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in polyacetylene. Here, we demonstrate that electronic fractionalization combining features of both these mechanisms occurs in noncoplanar itinerant magnetic systems, where integer quantum Hall physics arises from the coupling of electrons to the magnetic background. The topologically stable magnetic vortices in such systems carry fractional (in general, irrational electronic quantum numbers and exhibit Abelian anyonic statistics. We analyze the properties of these topological defects by mapping the distortions of the magnetic texture onto effective non-Abelian vector potentials. We support our analytical results with extensive numerical calculations.

  10. Planarity certification of ATLAS Micromegas detector panels

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Ralph; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Loesel, Philipp; Herrmann, Maximilian [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)

    2016-07-01

    During the second long LHC shutdown, 2019/20, the precision tracking detectors of the ATLAS muon spectrometer in the inner end caps will be replaced using Micromegas, a planar gas-detector technology. Modules of 2 m{sup 2} area are built in quadruplets from five precisely planar sandwich panels that define the anodes and the cathodes of the four active detector planes. A panel is composed of three consecutive layers FR4 - aluminum honeycomb - FR4. Single plane spatial particle resolution below 100 μm is achievable when the deviations from planarity of the strip-anodes do not exceed 80 μm RMS over the whole active area and the parallelism of the readout strips is within 30 μm. In order to measure the dimensional accuracy of each panel, laser distance sensors combined with a coordinate measurement system have been investigated. The sensor requirements to measure the planarity of the panels are a resolution of 0.3 μm and a beam spot diameter of ∼20 μm, well below 100 μ m the size of the smallest structures. We report on achieved planarities of the panels and the performance of the laser sensor system. A panel with an RMS better than 30 μm was build and the evolution of its planarity due to humidity and temperature effects is shown.

  11. Conjunctures, crises, and cultures: Valuing Stuart Hall

    OpenAIRE

    Clarke, John

    2014-01-01

    This article explores the significance of the work of Stuart Hall for social and political anthropology. It identifies the concern with concrete conjunctural analysis, the continuing attention to the problem of hegemony, and the centrality of a politics of articulation in theory and practice as core features of Hall’s work. The article also touches on his complex relationship with theory and theorising while grounding his work in a series of political and ethical commitments within and beyond...

  12. Homotopy arguments for quantized Hall conductivity

    CERN Document Server

    Richter, T

    2002-01-01

    Using the strong localization bounds obtained by the Aizenman-Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling parameter vary in a region of strong localization of the corresponding two-dimensional phase diagram.

  13. SERVIR Town Hall - Connecting Space to Village

    Science.gov (United States)

    Limaye, Ashutosh S.; Searby, Nancy D.; Irwin, Daniel; Albers, Cerese

    2013-01-01

    SERVIR, a joint NASA-USAID project, strives to improve environmental decision making through the use of Earth observations, models, and geospatial technology innovations. SERVIR connects these assets with the needs of end users in Mesoamerica, East Africa, and Hindu Kush-Himalaya regions. This Town Hall meeting will engage the AGU community by exploring examples of connecting Space to Village with SERVIR science applications.

  14. Quantum spin Hall phase in multilayer graphene

    OpenAIRE

    García-Martínez, N. A.; Lado, Jose L.; Fernández Rossier, Joaquín

    2015-01-01

    The so-called quantum spin Hall phase is a topologically nontrivial insulating phase that is predicted to appear in graphene and graphenelike systems. In this paper we address the question of whether this topological property persists in multilayered systems. We consider two situations: purely multilayer graphene and heterostructures where graphene is encapsulated by trivial insulators with a strong spin-orbit coupling. We use a four-orbital tight-binding model that includes full atomic spin-...

  15. SPS beam to the West Hall

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    One of the two target stations feeding the West Hall (see Annual Report 1976). After the proton beam was split into three branches, the outer two were directed on to targets in the cast iron shielding box, the centre one passing through the box to another target station downstream. Five different targets could be put in each beam, controlled by the mechanism seen on top.

  16. Views of the ATLAS experimental hall

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The shell of the ATLAS detector is seen from many angles within its cavernous underground hall. All of the eight huge toroid magnets have been installed and fixed in place. The core of the detector, the largest of its type in the world, will soon be filled with many different detector-elements to observe the results of proton-proton collisions at the LHC when it is turned on in 2008.

  17. Multipole expansion in the quantum hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy)

    2016-03-15

    The effective action for low-energy excitations of Laughlin’s states is obtained by systematic expansion in inverse powers of the magnetic field. It is based on the W-infinity symmetry of quantum incompressible fluids and the associated higher-spin fields. Besides reproducing the Wen and Wen-Zee actions and the Hall viscosity, this approach further indicates that the low-energy excitations are extended objects with dipolar and multipolar moments.

  18. Acoustics in rock and pop music halls

    DEFF Research Database (Denmark)

    Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of rhythmic music, including rock and pop. Objective measurements were made of the acoustics of twenty rock music venues...... frequency sounds are typically highly amplified, they play an important role in the subjective ratings and the 63-Hz-band must be included in objective measurements and recommendations....

  19. Double Hall sensor structure reducing voltage offset

    Science.gov (United States)

    Oszwaldowski, M.; El-Ahmar, S.

    2017-07-01

    In this paper, we report on the double Hall sensor structure (DHSS) in which the voltage offset can be effectively reduced. The DHSS is composed of two standard Hall sensors that are activated with two currents from electrically independent current sources. The operation principle of the DHSS is explained in detail, and the concluded properties of the DHSS are confirmed in the experimental part of the paper. The measurements are performed on DHSSs based on InSb thin films. The offset is reduced by about three orders of magnitude. The minimum value of the reduced offset obtained is 10 μV. It appears that the minimum reduced offset is limited by the electric noise. The advantage of DHSS is that it can be manufactured with the standard thin film technology enabling effective miniaturization of the system. The DHSS can effectively be used for the measurements of the Hall effect in ultra-thin layers containing the two dimensional electron gas, such as the epitaxial graphene.

  20. Antiferromagnetic skyrmion crystals: Generation, topological Hall, and topological spin Hall effect

    Science.gov (United States)

    Göbel, Börge; Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2017-08-01

    Skyrmions are topologically nontrivial, magnetic quasiparticles that are characterized by a topological charge. A regular array of skyrmions, a skyrmion crystal (SkX), features the topological Hall effect (THE) of electrons, which, in turn, gives rise to the Hall effect of the skyrmions themselves. It is commonly believed that antiferromagnetic skyrmion crystals (AFM-SkXs) lack both effects. In this Rapid Communication, we present a generally applicable method to create stable AFM-SkXs by growing a two-sublattice SkX onto a collinear antiferromagnet. As an example we show that both types of skyrmion crystals, conventional and antiferromagnetic, exist in honeycomb lattices. While AFM-SkXs with equivalent lattice sites do not show a THE, they exhibit a topological spin Hall effect. On top of this, AFM-SkXs on inequivalent sublattices exhibit a nonzero THE, which may be utilized in spintronics devices. Our theoretical findings call for experimental realization.

  1. Hall viscosity: A link between quantum Hall systems, plasmas and liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi, E-mail: manasvi@physics.utexas.edu

    2015-07-17

    In this Letter, the assumption of two simple postulates is shown to give rise to a Hall viscosity term via an action principle formulation. The rationale behind the two postulates is clearly delineated, and the connections to an intrinsic angular momentum are emphasized. By employing this methodology, it is shown that Hall viscosity appears in a wide range of fields, and the interconnectedness of quantum Hall systems, plasmas and nematic liquid crystals is hypothesized. Potential avenues for experimental and theoretical work arising from this cross-fertilization are also indicated. - Highlights: • Connections between simple 2D fluid models in different fields of physics presented. • Structure emerges via varied physical mechanisms driven by internal angular momentum. • Properties of these models such as Casimirs, equilibria and stability are analyzed.

  2. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  3. Inkjet-based adaptive planarization (Conference Presentation)

    Science.gov (United States)

    Singhal, Shrawan; Grigas, Michelle M.; Khusnatdinov, Niyaz; Sreenivasan, Srinivasan V.

    2017-03-01

    Planarization is a critical unit step in the lithography process because it enables patterning of surfaces with versatile pattern density without compromising on the stringent planarity and depth-of-focus requirements. In addition to nanoscale pattern density variation, parasitics such as pre-existing wafer topography, can corrupt the desired process output after planarization. The topography of any surface can be classified in three broad categories, depending upon the amplitude and spatial wavelength of the same [1], [2]: (i) nominal shape, (ii) nanotopography and (iii) roughness. The nominal shape is given by the largest spatial wavelengths, typically corrupts the final film thickness profile. Hence, it becomes extremely difficult to eliminate this signature to a desirable extent without introducing other parasitic signatures. An example of this is shown in Figure 1. In this paper, a novel adaptive planarization process has been presented that potentially addresses the problems associated with planarization of varying pattern density, even in the presence of pre-existing substrate topography [9]. This process is called Inkjet-enabled Adaptive Planarization (IAP). The IAP process uses an inverse optimization scheme, built around a validated fluid mechanics-based forward model [10], that takes the pre-existing substrate topography and pattern layout as inputs. It then generates an inkjet drop pattern with a material distribution that is correlated with the desired planarization film profile. This allows a contiguous film to be formed with the desired thickness variation to cater to the topography and any parasitic signatures caused by the pattern layout. This film is formed by the coercing action of a compliant superstrate, which forces the drops to spread and merge and eliminates any bubble trapping. Then, the film is cured using blanket UV exposure and the superstrate separated to reveal the desired planarized film. The use of an inverse optimization algorithm

  4. Conductivity tensor in a holographic quantum Hall ferromagnet

    Directory of Open Access Journals (Sweden)

    Joel Hutchinson

    2014-11-01

    Full Text Available The Hall and longitudinal conductivities of a recently studied holographic model of a quantum Hall ferromagnet are computed using the Karch–O'Bannon technique. In addition, the low temperature entropy of the model is determined. The holographic model has a phase transition as the Landau level filling fraction is increased from zero to one. We argue that this phase transition allows the longitudinal conductivity to have features qualitatively similar to those of two dimensional electron gases in the integer quantum Hall regime. The argument also applies to the low temperature limit of the entropy. The Hall conductivity is found to have an interesting structure. Even though it does not exhibit Hall plateaux, it has a flattened dependence on the filling fraction with a jump, analogous to the interpolation between Hall plateaux, at the phase transition.

  5. Commemorative Symposium on the Hall Effect and its Applications

    CERN Document Server

    Westgate, C

    1980-01-01

    In 1879, while a graduate student under Henry Rowland at the Physics Department of The Johns Hopkins University, Edwin Herbert Hall discovered what is now universally known as the Hall effect. A symposium was held at The Johns Hopkins University on November 13, 1979 to commemorate the lOOth anniversary of the discovery. Over 170 participants attended the symposium which included eleven in­ vited lectures and three speeches during the luncheon. During the past one hundred years, we have witnessed ever ex­ panding activities in the field of the Hall effect. The Hall effect is now an indispensable tool in the studies of many branches of condensed matter physics, especially in metals, semiconductors, and magnetic solids. Various components (over 200 million!) that utilize the Hall effect have been successfully incorporated into such devices as keyboards, automobile ignitions, gaussmeters, and satellites. This volume attempts to capture the important aspects of the Hall effect and its applications. It includes t...

  6. Basic Instrumentation for Hall A at Jefferson Jab

    Energy Technology Data Exchange (ETDEWEB)

    The Jefferson Lab Hall A Collaboration

    2003-07-01

    The instrumentation in Hall A at the JLab was designed to study electro- and photo-induced reactions at very high luminosity and good momentum and angular resolution for at least one of the reaction products. A collaboration of approximately 50 institutions from all over the world has actively contributed and participated in the design, construction and commissioning of the Hall A instrumentation. The basic Hall A equipment is described herein.

  7. Precision of single-engage micro Hall effect measurements

    DEFF Research Database (Denmark)

    Henrichsen, Henrik Hartmann; Hansen, Ole; Kjær, Daniel

    2014-01-01

    Recently a novel microscale Hall effect measurement technique has been developed to extract sheet resistance (RS), Hall sheet carrier density (NHS) and Hall mobility (μH) from collinear micro 4-point probe measurements in the vicinity of an insulating boundary [1]. The technique measures in less......]. In this study we calculate the measurement error on RS, NHS and μH resulting from electrode position errors, probe placement, sample size and Hall signal magnitude. We show the relationship between measurement precision and electrode pitch, which is important when down-scaling the micro 4-point probe to fit...

  8. Hall Sensor Output Signal Fault-Detection & Safety Implementation Logic

    Directory of Open Access Journals (Sweden)

    Lee SangHun

    2016-01-01

    Full Text Available Recently BLDC motors have been popular in various industrial applications and electric mobility. Recently BLDC motors have been popular in various industrial applications and electric mobility. In most brushless direct current (BLDC motor drives, there are three hall sensors as a position reference. Low resolution hall effect sensor is popularly used to estimate the rotor position because of its good comprehensive performance such as low cost, high reliability and sufficient precision. Various possible faults may happen in a hall effect sensor. This paper presents a fault-tolerant operation method that allows the control of a BLDC motor with one faulty hall sensor and presents the hall sensor output fault-tolerant control strategy. The situations considered are when the output from a hall sensor stays continuously at low or high levels, or a short-time pulse appears on a hall sensor signal. For fault detection, identification of a faulty signal and generating a substitute signal, this method only needs the information from the hall sensors. There are a few research work on hall effect sensor failure of BLDC motor. The conventional fault diagnosis methods are signal analysis, model based analysis and knowledge based analysis. The proposed method is signal based analysis using a compensation signal for reconfiguration and therefore fault diagnosis can be fast. The proposed method is validated to execute the simulation using PSIM.

  9. High Efficiency Hall Thruster Discharge Power Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek leveraged previous, internally sponsored, high power, Hall thruster discharge converter development which allowed it to design, build, and test new printed...

  10. Quantum Hall effect in multi-terminal suspended graphene devices

    Science.gov (United States)

    Ghahari, Fereshte; Zhao, Yue; Bolotin, Kirill; Kim, Philip

    2010-03-01

    The integer and fractional quantum hall effects have been already observed in two terminal suspended graphene devices. However in this two probe device geometry, mixing between magnetoresistance ρxx and Hall resistance ρxy for incompletely developed quantum Hall states leads to substantial deviation of conductance plateaus values. In this talk, we present the experimental results from four terminal suspended graphene devices. The quality of quantum Hall effect will be discussed in muti-terminal device geometry in conjunction with the current-induced annealing process to improve the quality of graphene samples.

  11. Neutronic design of MYRRHA reactor hall shielding

    Science.gov (United States)

    Celik, Yurdunaz; Stankovskiy, Alexey; Eynde, Gert Van den

    2017-09-01

    The lateral shielding of a 600 MeV proton linear accelerator beam line in the MYRRHA reactor hall has been assessed using neutronic calculations by the MCNPX code complemented with analytical predictions. Continuous beam losses were considered to define the required shielding thickness that meets the requirements for the dose rate limits. Required shielding thicknesses were investigated from the viewpoint of accidental full beam loss as well as beam loss on collimator. The results confirm that the required shielding thicknesses are highly sensitive to the spatial shape of the beam and strongly divergent beam losses. Therefore shielding barrier should be designed according to the more conservative assumptions.

  12. DESIGN OF SUBSOIL IMPROVEMENT BELOW HALL FLOORS

    Directory of Open Access Journals (Sweden)

    Peter Turček

    2017-10-01

    Full Text Available The construction of an industrial park is now being prepared near the town of Nitra. The investor fixed very strict conditions for the bearing capacity and, above all, the settlement of halls and their floors. The geological conditions at the construction site are difficult: there are soft clay soils with high compressibility and low bearing capacity. A detailed analysis of soil improvement was made. Stone columns were prepared to be fitted into an approximately 5 m thick layer of soft clay. The paper shows the main steps used in the design of the stone columns.

  13. Current correlations in quantum spin Hall insulators.

    Science.gov (United States)

    Schmidt, Thomas L

    2011-08-26

    We consider a four-terminal setup of a two-dimensional topological insulator (quantum spin Hall insulator) with local tunneling between the upper and lower edges. The edge modes are modeled as helical Luttinger liquids and the electron-electron interactions are taken into account exactly. Using perturbation theory in the tunneling, we derive the cumulant generating function for the interedge current. We show that different possible transport channels give rise to different signatures in the current noise and current cross correlations, which could be exploited in experiments to elucidate the interplay between electron-electron interactions and the helical nature of the edge states. © 2011 American Physical Society

  14. Planar Tri-Band Antenna Design

    Directory of Open Access Journals (Sweden)

    M. Pokorny

    2008-04-01

    Full Text Available The paper briefly uncovers techniques used for a design of compact planar antennas in order to achieve the wideband and the multi-band capability. The main topic is aimed to the multi-objective optimization using genetic algorithms. A quarter-wavelength planar inverted-F antenna (PIFA using a slot and shorted parasitic patches is chosen to cover GSM900, GSM1800 and ISM2400 bands. A global multi-objective optimization uses a binary genetic algorithm with a composite objective function to tune this antenna. The impedance match and the direction of maximum gain are desired parameters to improve.

  15. Planar dynamical systems selected classical problems

    CERN Document Server

    Liu, Yirong; Huang, Wentao

    2014-01-01

    This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona

  16. Bimetric Theory of Fractional Quantum Hall States

    Science.gov (United States)

    Gromov, Andrey; Son, Dam Thanh

    2017-10-01

    We present a bimetric low-energy effective theory of fractional quantum Hall (FQH) states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP) mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k6 order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH) transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.

  17. Hypernuclear Spectroscopy at JLab Hall C

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Osamu; Doi, Daisuke; Fujii, Yu; Toshiyuki, Gogami; Kanda, Hiroki; Kaneta, M; Kawama, Daisuke; Maeda, Kazushige; Maruta, Tomofumi; Matsumura, Akihiko; Nagao, Sho; Nakamura, Satoshi; Shichijo, Ayako; Tamura, Hirokazu; Taniya, Naotaka; Yamamoto, Taku; Yokota, Kosuke; Kato, S; Sato, Yoshinori; Takahashi, Toshiyuki; Noumi, Hiroyuki; Motoba, T; Hiyama, E; Albayrak, Ibrahim; Ates, Ozgur; Chen, Chunhua; Christy, Michael; Keppel, Cynthia; Kohl, Karl; Li, Ya; Liyanage, Anusha Habarakada; Tang, Liguang; Walton, T; Ye, Zhihong; Yuan, Lulin; Zhu, Lingyan; Baturin, Pavlo; Boeglin, Werner; Dhamija, Seema; Markowitz, Pete; Raue, Brian; Reinhold, Joerg; Hungerford, Ed; Ent, Rolf; Fenker, Howard; Gaskell, David; Horn, Tanja; Jones, Mark; Smith, Gregory; Vulcan, William; Wood, Stephen; Johnston, C; Simicevic, Neven; Wells, Stephen; Samantha, Chhanda; Hu, Bitao; Shen, Ji; Wang, W; Zhang, Xiaozhuo; Zhang, Yi; Feng, Jing; Fu, Y; Zhou, Jian; Zhou, S; Jiang, Yi; Lu, H; Yan, Xinhu; Ye, Yunxiu; Gan, Liping; Ahmidouch, Abdellah; Danagoulian, Samuel; Gasparian, Ashot; Elaasar, Mostafa; Wesselmann, Frank; Asaturyan, Arshak; Margaryan, Amur; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Tadevosyan, Vardan; Androic, Darko; Furic, Miroslav; Petkovic, Tomislav; Seva, Tomislav; Niculescu, Gabriel; Niculescu, Maria-Ioana; Rodriguez, Victor; Cisbani, Evaristo; Cusanno, Francesco; Garibaldi, Franco; Urciuoli, Guido; De Leo, Raffaele; Maronne, S; Achenbach, Carsten

    2010-03-01

    Since the 1st generation experiment, E89-009, which was successfully carried out as a pilot experiment of (e,e'K+) hypernuclear spectroscopy at JLab Hall C in 2000, precision hypernuclear spectroscopy by the (e,e'K+) reactions made considerable progress. It has evolved to the 2nd generation experiment, E01-011, in which a newly constructed high resolution kaon spectrometer (HKS) was installed and the “Tilt method” was adopted in order to suppress large electromagnetic background and to run with high luminosity. Preliminary high-resolution spectra of 7ΛHe and 28ΛAl together with that of 12ΛB that achieved resolution better than 500 keV(FWHM) were obtained. The third generation experiment, E05-115, has completed data taking with an experimental setup combining a new splitter magnet, high resolution electron spectrometer (HES) and the HKS used in the 2nd generation experiment. The data were accumulated with targets of 7Li, 9Be, 10B, 12C and 52Cr as well as with those of CH2 and H2O for calibration. The analysis is under way with particular emphasis of determining precision absolute hypernuclear masses. In this article, hypernuclear spectroscopy program in the wide mass range at JLab Hall C that has undergone three generation is described.

  18. Quantum spin Hall phase in multilayer graphene

    Science.gov (United States)

    García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.

    2015-06-01

    The so-called quantum spin Hall phase is a topologically nontrivial insulating phase that is predicted to appear in graphene and graphenelike systems. In this paper we address the question of whether this topological property persists in multilayered systems. We consider two situations: purely multilayer graphene and heterostructures where graphene is encapsulated by trivial insulators with a strong spin-orbit coupling. We use a four-orbital tight-binding model that includes full atomic spin-orbit coupling and we calculate the Z2 topological invariant of the bulk states as well as the edge states of semi-infinite crystals with armchair termination. For homogeneous multilayers we find that even when the spin-orbit interaction opens a gap for all possible stackings, only those with an odd number of layers host gapless edge states while those with an even number of layers are trivial insulators. For heterostructures where graphene is encapsulated by trivial insulators, it turns out that interlayer coupling is able to induce a topological gap whose size is controlled by the spin-orbit coupling of the encapsulating materials, indicating that the quantum spin Hall phase can be induced by proximity to trivial insulators.

  19. Bimetric Theory of Fractional Quantum Hall States

    Directory of Open Access Journals (Sweden)

    Andrey Gromov

    2017-11-01

    Full Text Available We present a bimetric low-energy effective theory of fractional quantum Hall (FQH states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k^{6} order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.

  20. Constant Width Planar Computation Characterizes ACC0

    DEFF Research Database (Denmark)

    Hansen, K.A.

    2004-01-01

    We obtain a characterization of ACC 0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...

  1. Modified planar functions and their components

    DEFF Research Database (Denmark)

    Anbar Meidl, Nurdagül; Meidl, Wilfried Meidl

    2017-01-01

    Zhou ([20]) introduced modified planar functions in order to describe (2n; 2n; 2n; 1) relative difference sets R as a graph of a function on the finite field F2n, and pointed out that projections of R are difference sets that can be described by negabent or bent4 functions, which are Boolean func...

  2. Planar chromatography coupled with spectroscopic techniques.

    NARCIS (Netherlands)

    Somsen, G.W.; Wilson, I.D.; Morden, W.

    1995-01-01

    Recent progress in the combination of planar, or thin-layer chromatography (TLC) with a variety of modern spectroscopic techniques is reviewed. The utility of TLC for separation followed by mass spectrometry, with a variety of ionisation techniques, is illustrated with reference to a wide range of

  3. Multiband echo-shifted echo planar imaging

    NARCIS (Netherlands)

    Boyacioǧlu, R.; Schulz, J.; Norris, David Gordon

    2016-01-01

    Purpose To propose the technique multiband echo-shifted (MESH) echo planar imaging (EPI), which combines the principles of echo-shifted acquisition for two-dimensional multislice EPI, with both in-plane and multiband acceleration by means of partial parallel imaging techniques. Methods MESH EPI is

  4. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  5. The first vineyard concert hall in North America

    Science.gov (United States)

    Jaffe, Christopher; Rivera, Carlos

    2002-11-01

    The first vineyard or surround concert hall designed and built in the Western Hemisphere is the Sala Nezahualcoyotl in Mexico City. The Hall was completed in 1976 and is part of the Cultural Center at the Universidad Nacional Autonoma de Mexico. The hall was named after a Toltec poet, architect, and musician who lived in the 15th century and was the Renaissance man of his day. In order to provide the familiar traditional sound of the rectangular (shoebox) European Hall, the acoustic designers set the criteria for reverberation times through the frequency spectrum and the Initial Time Delay Gap at every seat in the house to match the measurements taken at the Grosser Musik vereinssaal in Vienna and Boston Symphony Hall. In this paper we discuss the techniques used to create the traditional sound in a vineyard hall and the reaction of musicians and audiences to the completed facility. The Sala was the model for Suntory Hall in Japan which in turn spawned a number of vineyard halls in Japan. Most recently, the vineyard style seems to be appealing to more and more symphonic organizations in Europe and North America.

  6. Magnetoresistance in quantum Hall metals due to Pancharatnam ...

    Indian Academy of Sciences (India)

    electron flow is independent of these spacings (require small changes to the phase factor, or negligible changes to the group momentum of a wavefunction). Here, we shall further elaborate on these two processes, and use them to derive and discuss the Hall resistance in quantum Hall metals for both fractional and integer ...

  7. Cultural Composition: Stuart Hall on Ethnicity and the Discursive Turn.

    Science.gov (United States)

    Drew, Julie

    1998-01-01

    Interviews Stuart Hall, a black public intellectual and an activist of the New Left. Discusses the growing disillusionment with cultural studies now that it is no longer in its ascendancy; the proliferation of pedagogical practices given a cultural studies tag; Hall's approval of the use of popular culture in the composition classroom; and the…

  8. Whose Big Prize? A Response to Hall and Gunter

    Science.gov (United States)

    Furlong, John

    2009-01-01

    This article presents the author's response to Hall and Gunter who accuse the author of trying to mount "a stout defence" of New Labour's reforms of the teaching profession. Hall and Gunter go further and accuse the author of "triumphalism" in his use of the title "Tony Blair's big prize". Their second and more…

  9. Spatial sensitivity mapping of Hall crosses using patterned magnetic nanostructures

    NARCIS (Netherlands)

    Alexandrou, M.; Nutter, P.W.; Delalande, M.Y.; de Vries, Jeroen; Hill, E.W.; Schedin, F.; Abelmann, Leon; Thomson, T.

    2010-01-01

    Obtaining an accurate profile of the spatial sensitivity of Hall cross structures is crucial if such devices are to be used to analyze the switching behavior of magnetic nanostructures and determine the switching field distribution of bit patterned media. Here, we have used the anomalous Hall effect

  10. Acoustic investigations of concert halls for rock music

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    Objective measurement data and subjective evaluations have been collected from 20 small-/medium-sized halls in Denmark used for amplified rhythmic music concerts (pop, rock, jazz). The purpose of the study was to obtain knowledge about optimum acoustic conditions for this type of hall. The study...

  11. Acoustic Requirements for a Multi-Purpose Hall.

    Science.gov (United States)

    Schulte, W. Allen

    2002-01-01

    This case study examines the proposed design of a new lecture/recital hall in Centennial Hall at Lynchburg College that will be used for lectures, public events, a film studies course, and musical recitals. It explores the audio-visual challenges presented by the differing acoustical requirements for the building. (EV)

  12. The Impact of Coed Residence Halls on Self-Actualization

    Science.gov (United States)

    Schroeder, Charles C.; LeMay, Morris L.

    1973-01-01

    The purpose of the present study was to determine if there were initial differences on selected scales of the Personal Orientation Inventory (POI) between students who chose to live in coed residence halls and those who chose to live in traditional single-sex residence halls, and also if residing in coed living units affected the further…

  13. Mary E. Hall: Dawn of the Professional School Librarian

    Science.gov (United States)

    Alto, Teresa

    2012-01-01

    A century ago, a woman named Mary E. Hall convinced school leaders of the need for the professional school librarian--a librarian who cultivated a love of reading, academic achievement, and independent learning skills. After graduating from New York City's Pratt Institute Library School in 1895, Hall developed her vision for the high school…

  14. A Residential Paradox?: Residence Hall Attributes and College Student Outcomes

    Science.gov (United States)

    Bronkema, Ryan; Bowman, Nicholas A.

    2017-01-01

    The researchers of this brief observed that few environments have the potential to shape the outcomes of college students as much as residence halls. As a result, residence halls have the capacity to foster a strong sense of community as well as other important outcomes such as college satisfaction and academic achievement. However, given the high…

  15. G. Stanley Hall's Adolescence: A centennial reappraisal introduction.

    Science.gov (United States)

    Arnett, Jeffrey Jensen; Cravens, Hamilton

    2006-08-01

    This article is an overview of the special issue "G. Stanley Hall's Adolescence: A Centennial Reappraisal." First, a brief biography of Hall is presented. Then each of the six articles in the special issue is summarized. Three of the articles are by historians and three are by psychologists, but all six articles integrate history and psychology.

  16. Stuart Hall on Racism and the Importance of Diasporic Thinking

    Science.gov (United States)

    Rizvi, Fazal

    2015-01-01

    In this article, I want to show how my initial encounter with the work of Stuart Hall was grounded in my reading of the later philosophy of Ludwig Wittgenstein, and was shaped by my interest in understanding the nature of racism across the three countries in which I had lived. Over the years, Hall's various writings have helped me to make sense of…

  17. Unconventional quantum Hall effect in Floquet topological insulators

    KAUST Repository

    Tahir, M.

    2016-07-27

    We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the lights polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity αyx = 0 at zero Fermi energy, to a Hall insulator state with αyx = e2/2h. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at (±1/2,±3/2,±5/2, ...)e2/h. © 2016 IOP Publishing Ltd Printed in the UK.

  18. Formulation of the relativistic quantum Hall effect and parity anomaly

    Science.gov (United States)

    Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu

    2016-06-01

    We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.

  19. Asymmetric nonlinear response of the quantized Hall effect

    Science.gov (United States)

    Siddiki, A.; Horas, J.; Kupidura, D.; Wegscheider, W.; Ludwig, S.

    2010-11-01

    An asymmetric breakdown of the integer quantized Hall effect (IQHE) is investigated. This rectification effect is observed as a function of the current value and its direction in conjunction with an asymmetric lateral confinement potential defining the Hall bar. Our electrostatic definition of the Hall bar via Schottky gates allows a systematic control of the steepness of the confinement potential at the edges of the Hall bar. A softer edge (flatter confinement potential) results in more stable Hall plateaus, i.e. a breakdown at a larger current density. For one soft and one hard edge, the breakdown current depends on its direction, resembling rectification. This nonlinear magneto-transport effect confirms the predictions of an emerging screening theory of the IQHE.

  20. Construction and Operation of a Differential Hall Element Magnetometer

    Science.gov (United States)

    Calkins, Matthew W.; Javernick, Philip D.; Quintero, Pedro A.; Calm, Yitzi M.; Meisel, Mark W.

    2012-02-01

    A Differential Hall Element Magnetometer (DHEM) was constructed to measure the magnetic saturation and coercive fields of small samples consisting of magnetic nanoparticles that may have biomedical applications. The device consists of two matched Hall elements that can be moved through the room temperature bore of a 9 Tesla superconducting magnet. The Hall elements are wired in opposition such that a null response, to within a small offset, is measured in the absence of a sample that may be located on top of one unit. A LabVIEW program controls the current through the Hall elements and measures the net Hall voltage while simultaneously moving the probe through the magnetic field by regulating a linear stepper motor. Ultimately, the system will be tested to obtain a figure of merit using successively smaller samples. Details of the apparatus will be provided along with preliminary data.

  1. Suitable reverberation time for halls for rock and pop music

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2010-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of popular music, including rock and pop. Objective measurements were made of the acoustics of 20 rock music venues in Denmark...... and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers as expert listeners. Correlations between the measurements show that clarity, including bass frequencies down to 63 Hz, is important for the general impression of the acoustics of the hall....... The best-rated halls in the study have reverberation times that are approximately frequency independent from 0.6 to 1.2 s for hall volumes from 1000 to 6000 m3. The worst rated halls in the study had significantly higher reverberation times in the 63 and 125 Hz bands. Since most audiences at rock concerts...

  2. Fractional quantum Hall states of bosons on cones

    Science.gov (United States)

    Wu, Ying-Hai; Tu, Hong-Hao; Sreejith, G. J.

    2017-09-01

    Motivated by a recent experiment, which synthesizes Landau levels for photons on cones [Schine et al., Nature (London) 534, 671 (2016), 10.1038/nature17943], and more generally the interest in understanding gravitational responses of quantum Hall states, we study fractional quantum Hall states of bosons on cones. A variety of trial wave functions for conical systems are constructed and compared with exact diagonalization results. The tip of a cone is a localized geometrical defect with singular curvature, which can modify the density profiles of quantum Hall states. The density profiles on cones can be used to extract some universal information about quantum Hall states. The values of certain quantities are computed numerically using the density profiles of some quantum Hall states and they agree with analytical predictions.

  3. Planarization Of Multilevel Metalization Processes: A Critical Review

    Science.gov (United States)

    Kuo, Yue

    1987-04-01

    This paper presents a critical review of conventional and novel planarization processes such as Glass Flow, Etchback with or without a sacrificial layer, SOG, BSQ, Polyimide, Substrate-biased PECVD, and Pillars. Key issues in a planarization process, e.g., surface morphology, process simplicity and reliability, material characteristics, and etch control are discussed. A comparison of various planarization processes is tabulated. The future trend of the planarization technology is examined according to the above principles.

  4. Enhanced magnetic behavior, exchange bias effect, and dielectric property of BiFeO{sub 3} incorporated in (BiFeO{sub 3}){sub 0.50} (Co{sub 0.4}Zn{sub 0.4}Cu{sub 0.2} Fe{sub 2}O{sub 4}){sub 0.5} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, K.; Mahapatra, A. S.; Sutradhar, S.; Chakrabarti, P. K., E-mail: pabitra-c@hotmail.com [Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan-713104, West Bengal (India)

    2014-03-15

    Nanoparticles of BiFeO{sub 3} (BFO) are incorporated in the nanocomposite of (BiFeO{sub 3}){sub 0.50} (Co{sub 0.4}Zn{sub 0.4}Cu{sub 0.2} Fe{sub 2}O{sub 4}){sub 0.5}, (BFO-CZCF) and these are prepared by chemical route. The formation of pure crystallographic phase of each component (BFO and CZCF) in the nanocomposite of BFO-CZCF has been confirmed by Rietveld analysis of the X-ray diffractograms using FULLPROF program. Morphology, average particle size and its distribution, crystallographic phase etc. are obtained from the high-resolution transmission electron microscopy of BFO-CZCF. Magnetic measurements of BFO-CZCF have been carried out to explore the modulation of magnetic behavior of BFO in BFO-CZCF. Interestingly, magnetization of BFO-CZCF has been drastically enhanced compared to that of the pristine BFO. An exchange bias effect is also observed in the M vs. H loops of BFO-CZCF recorded in field cooled and zero field cooled conditions, which suggest that nanoparticles of BFO (AFM) are encapsulated by nanoparticles of CZCF (FM) in BFO-CZCF. Thermal variation of dielectric constant of BFO-CZCF is recorded in the range of 300 to 1073 K and a ferroelectric to paraelectric transition is observed at ∼728 K. Enhanced magnetic property of BFO would quite interesting for this important multiferroic.

  5. Enhanced magnetic behavior, exchange bias effect, and dielectric property of BiFeO3 incorporated in (BiFeO3)0.50 (Co0.4Zn0.4Cu0.2 Fe2O4)0.5 nanocomposite

    Science.gov (United States)

    Mukhopadhyay, K.; Mahapatra, A. S.; Sutradhar, S.; Chakrabarti, P. K.

    2014-03-01

    Nanoparticles of BiFeO3 (BFO) are incorporated in the nanocomposite of (BiFeO3)0.50 (Co0.4Zn0.4Cu0.2 Fe2O4)0.5, (BFO-CZCF) and these are prepared by chemical route. The formation of pure crystallographic phase of each component (BFO and CZCF) in the nanocomposite of BFO-CZCF has been confirmed by Rietveld analysis of the X-ray diffractograms using FULLPROF program. Morphology, average particle size and its distribution, crystallographic phase etc. are obtained from the high-resolution transmission electron microscopy of BFO-CZCF. Magnetic measurements of BFO-CZCF have been carried out to explore the modulation of magnetic behavior of BFO in BFO-CZCF. Interestingly, magnetization of BFO-CZCF has been drastically enhanced compared to that of the pristine BFO. An exchange bias effect is also observed in the M vs. H loops of BFO-CZCF recorded in field cooled and zero field cooled conditions, which suggest that nanoparticles of BFO (AFM) are encapsulated by nanoparticles of CZCF (FM) in BFO-CZCF. Thermal variation of dielectric constant of BFO-CZCF is recorded in the range of 300 to 1073 K and a ferroelectric to paraelectric transition is observed at ˜728 K. Enhanced magnetic property of BFO would quite interesting for this important multiferroic.

  6. Enhanced magnetic behavior, exchange bias effect, and dielectric property of BiFeO3 incorporated in (BiFeO30.50 (Co0.4Zn0.4Cu0.2 Fe2O40.5 nanocomposite

    Directory of Open Access Journals (Sweden)

    K. Mukhopadhyay

    2014-03-01

    Full Text Available Nanoparticles of BiFeO3 (BFO are incorporated in the nanocomposite of (BiFeO30.50 (Co0.4Zn0.4Cu0.2 Fe2O40.5, (BFO-CZCF and these are prepared by chemical route. The formation of pure crystallographic phase of each component (BFO and CZCF in the nanocomposite of BFO-CZCF has been confirmed by Rietveld analysis of the X-ray diffractograms using FULLPROF program. Morphology, average particle size and its distribution, crystallographic phase etc. are obtained from the high-resolution transmission electron microscopy of BFO-CZCF. Magnetic measurements of BFO-CZCF have been carried out to explore the modulation of magnetic behavior of BFO in BFO-CZCF. Interestingly, magnetization of BFO-CZCF has been drastically enhanced compared to that of the pristine BFO. An exchange bias effect is also observed in the M vs. H loops of BFO-CZCF recorded in field cooled and zero field cooled conditions, which suggest that nanoparticles of BFO (AFM are encapsulated by nanoparticles of CZCF (FM in BFO-CZCF. Thermal variation of dielectric constant of BFO-CZCF is recorded in the range of 300 to 1073 K and a ferroelectric to paraelectric transition is observed at ∼728 K. Enhanced magnetic property of BFO would quite interesting for this important multiferroic.

  7. On-Chip Microwave Quantum Hall Circulator

    Directory of Open Access Journals (Sweden)

    A. C. Mahoney

    2017-01-01

    Full Text Available Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, “slow-light” response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330  μm diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  8. Layered quantum Hall insulators with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, A. [ICFO-Institut de Ciencies Fotoniques, Av. Carl Friedrich Gauss 3, E-08860 Castelldefels (Barcelona) (Spain); Szirmai, G. [ICFO-Institut de Ciencies Fotoniques, Av. Carl Friedrich Gauss 3, E-08860 Castelldefels (Barcelona) (Spain); Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest (Hungary); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Av. Carl Friedrich Gauss 3, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, Passeig Lluis Companys 23, E-08010 Barcelona (Spain)

    2011-11-15

    We consider a generalization of the two-dimensional (2D) quantum Hall insulator to a noncompact, non-Abelian gauge group, the Heisenberg-Weyl group. We show that this kind of insulator is actually a layered three-dimensional (3D) insulator with nontrivial topology. We further show that nontrivial combinations of quantized transverse conductivities can be engineered with the help of a staggered potential. We investigate the robustness and topological nature of this conductivity and connect it to the surface modes of the system. We also propose a simple experimental realization with ultracold atoms in 3D confined to a 2D square lattice with the third dimension being mapped to a gauge coordinate.

  9. Magnetic circuit for hall effect plasma accelerator

    Science.gov (United States)

    Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Jankovsky, Robert S. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor)

    2009-01-01

    A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.

  10. Quantum Hall Effect in Hydrogenated Graphene

    Science.gov (United States)

    Guillemette, J.; Sabri, S. S.; Wu, Binxin; Bennaceur, K.; Gaskell, P. E.; Savard, M.; Lévesque, P. L.; Mahvash, F.; Guermoune, A.; Siaj, M.; Martel, R.; Szkopek, T.; Gervais, G.

    2013-04-01

    The quantum Hall effect is observed in a two-dimensional electron gas formed in millimeter-scale hydrogenated graphene, with a mobility less than 10cm2/V·s and corresponding Ioffe-Regel disorder parameter (kFλ)-1≫1. In a zero magnetic field and low temperatures, the hydrogenated graphene is insulating with a two-point resistance of the order of 250h/e2. The application of a strong magnetic field generates a negative colossal magnetoresistance, with the two-point resistance saturating within 0.5% of h/2e2 at 45 T. Our observations are consistent with the opening of an impurity-induced gap in the density of states of graphene. The interplay between electron localization by defect scattering and magnetic confinement in two-dimensional atomic crystals is discussed.

  11. Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors

    KAUST Repository

    Hanna, Amir

    2016-11-01

    This dissertation presents a unique concept for a device architecture named the nanotube (NT) architecture, which is capable of higher drive current compared to the Gate-All-Around Nanowire architecture when applied to heterostructure Tunnel Field Effect Transistors. Through the use of inner/outer core-shell gates, heterostructure NT TFET leverages physically larger tunneling area thus achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. We discuss the physics of p-type (Silicon/Indium Arsenide) and n-type (Silicon/Germanium hetero-structure) based TFETs. Numerical TCAD simulations have shown that NT TFETs have 5x and 1.6 x higher normalized ION when compared to GAA NW TFET for p and n-type TFETs, respectively. This is due to the availability of larger tunneling junction cross sectional area, and lower Shockley-Reed-Hall recombination, while achieving sub 60 mV/dec performance for more than 5 orders of magnitude of drain current, thus enabling scaling down of Vdd to 0.5 V. This dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving rise to up to 50% larger device width, without occupying extra chip area. The novel architecture shows 2x higher output drive current per unit chip area when compared to conventional planar architecture. The current increase is attributed to both the extra device width and 50% enhancement in field effect mobility due to electrostatic gating effects. Digital circuits are fabricated to demonstrate the potential of integrating WC TFT based circuits. WC inverters have shown 2× the peak-to-peak output voltage for the same input, and ~2× the operation frequency of the planar inverters for the same peak-to-peak output voltage. WC NAND circuits have shown 2× higher peak-to-peak output voltage, and 3× lower high-to-low propagation

  12. Effect on Two-Step Polishing Process of Electrochemical Mechanical Planarization and Chemical-Mechanical Planarization on Planarization

    Science.gov (United States)

    Jeong, Sukhoon; Joo, Sukbae; Kim, Hyoungjae; Kim, Sungryul; Jeong, Haedo

    2009-06-01

    Chemical-mechanical planarization (CMP) is a technique used for planarizing an overburden film in the fabrication of semiconductor devices by chemical treatment and mechanical abrasion. However, a variety of defects such as dishing of metal interconnects, erosion, delamination, and metal layer peeling are generated by a high down force in CMP. A high down force is required to generate a high material removal rate (MRR), which results in greater defects. To minimize these defects, a new planarization process is used, known as electrochemical mechanical planarization (ECMP), which requires electrochemical and mechanical energies. ECMP first involves using an electrochemical reaction to change the surface on the target material into a passivation film. Then, the passivation film is worn down using a polishing pad or abrasives on the contacted areas of the metal film with the polishing pad under a low down force. The electrochemical energy dissolves the copper solid into copper ions in an aqueous electrolyte on the contacted areas of the metal film and the polishing pad. Therefore, the low-down-force ECMP reduces the defects such as dishing, erosion, delamination and metal layer peeling to a greater degree than a conventional high-down-force CMP. Also, the MRR of the ECMP process is higher than that of the low-down-force CMP process because the MRR of the ECMP process is proportional to current density. However, some residual metal between the dielectric material was generated through the use of a nonconductive polishing pad in the ECMP process. Therefore, the CMP process is required for the final process to remove residual metals. In this research, we investigated a two-step polishing method that consists of ECMP with a nonconductive polishing pad and a conventional CMP process to planarize a micro-patterned wafer for microelectromechanical systems (MEMS). First, the ECMP process using a nonconductive polishing pad removed several tens of micrometers (µm) of bulk

  13. The Hall Technique 10 years on: Questions and answers.

    Science.gov (United States)

    Innes, N P T; Evans, D J P; Bonifacio, C C; Geneser, M; Hesse, D; Heimer, M; Kanellis, M; Machiulskiene, V; Narbutaité, J; Olegário, I C; Owais, A; Araujo, M P; Raggio, D P; Splieth, C; van Amerongen, E; Weber-Gasparoni, K; Santamaria, R M

    2017-03-24

    It is ten years since the first paper on the Hall Technique was published in the British Dental Journal and almost 20 years since the technique first came to notice. Dr Norna Hall a (now retired) general dental practitioner from the north of Scotland had, for many years, been managing carious primary molar teeth by cementing preformed metal crowns over them, with no local anaesthesia, tooth preparation or carious tissue removal. This first report, a retrospective analysis of Dr Hall's treatments, caused controversy. How could simply sealing a carious lesion, with all the associated bacteria and decayed tissues, possibly be clinically successful? Since then, growing understanding that caries is essentially a biofilm driven disease rather than an infectious disease, explains why the Hall Technique, and other 'sealing in' carious lesion techniques, are successful. The intervening ten years has seen robust evidence from several randomised control trials that are either completed or underway. These have found the Hall Technique superior to comparator treatments, with success rates (no pain or infection) of 99% (UK study) and 100% (Germany) at one year, 98% and 93% over two years (UK and Germany) and 97% over five years (UK). The Hall Technique is now regarded as one of several biological management options for carious lesions in primary molars. This paper covers commonly asked questions about the Hall Technique and speculates on what lies ahead.

  14. Feasibility of ultra-sensitive 2D layered Hall elements

    Science.gov (United States)

    Joo, Min-Kyu; Kim, Joonggyu; Lee, Gwanmu; Kim, Hyun; Lee, Young Hee; Suh, Dongseok

    2017-06-01

    A Hall effect sensor is an analog transducer that detects a magnetic flux. The general requirements for its high magnetic sensitivity in conventional semiconductors are high carrier mobility and ultra-thin conduction channel in the material’s and the device’s point of view. Recently, graphene Hall elements (GHEs) that satisfy those conditions have been demonstrated with a current-normalized magnetic sensitivity (S I) superior to that of Si-based Hall sensors. Nevertheless, the feasibility of Hall elements based on an atomically thin monolayer transition metal dichalcogenide (TMD) system has not been studied thus far, although such a system would further enable a largely suppressed 2D carrier density. Herein, we show the strategy how to achieve the highest possible S I in a TMD-based Hall element in terms of the device structure as well as the operating bias condition. A monolayer molybdenum disulfide Hall element (MHE) on a hexagonal boron nitride (h-BN) thin film was fabricated, and the best bias conditions were selected based on the analytical model for zero-field transconductance data. Finally, the maximum S I of MHE/h-BN was found to be ~3000 V/AT. This work sheds light on the feasibility of TMD-based Hall element systems.

  15. Orientifold Planar Equivalence: The Chiral Condensate

    DEFF Research Database (Denmark)

    Armoni, Adi; Lucini, Biagio; Patella, Agostino

    2008-01-01

    in SU($N$) Yang-Mills in the large $N$ limit. Then, we compute numerically those quenched condensates for $N$ up to 8. After separating the even from the odd corrections in $1/N$, we are able to show that our data support the equivalence; however, unlike other quenched observables, subleading terms......The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric......) representation and $N_f$ flavours of Majorana fermions in the adjoint representation have the same large $N$ value for any value of the mass of the (degenerate) fermions. Assuming the invariance of the theory under charge conjugation, we prove this statement on the lattice for staggered quenched condensates...

  16. Superconductivity in the Planar Hubbard Model

    Science.gov (United States)

    Jarrell, Mark; Hess, Daryl; Maier, Thomas

    2001-03-01

    We use the Dynamical Cluster Approximation (DCA)( M. H. Hettler et al.), Phys. Rev. B 58, 7475 (1998) to study the phase diagram of the planar Hubbard model. The DCA is fully causal. It systematically incorporates non-local corrections to the Dynamical Mean Field Approximation (DMFA), while retaining the full translational and point group symmetry of the system. The DCA maps the lattice problem onto a self-consistently embedded cluster problem which is solved with a parallel Quantum Monte Carlo algorithm. The planar model is composed of an infinite number of weakly coupled two-dimensional Hubbard sheets. The coupling between the sheets is treated with the DMFA, whereas the fluctuations within each sheet are treated using the DCA. The interplanar coupling serves to stabilize the antiferromagnetic and superconducting phases as the cluster size increases. We compare our results with those obtained from other techniques.

  17. Orientifold Planar Equivalence: The Quenched Meson Spectrum

    CERN Document Server

    Lucini, Biagio; Patella, Agostino; Rago, Antonio

    2010-01-01

    A numerical study of Orientifold Planar Equivalence is performed in SU(N) Yang-Mills theories for N=2,3,4,6. Quenched meson masses are extracted in the antisymmetric, symmetric and adjoint representations for the pseudoscalar and vector channels. An extrapolation of the vector mass as a function of the pseudoscalar mass to the large-N limit shows that the numerical results agree within errors for the three theories, as predicted by Orientifold Planar Equivalence. As a byproduct of the extrapolation, the size of the corrections up to O(1/N^3) are evaluated. A crucial prerequisite for the extrapolation is the determination of an analytical relationship between the corrections in the symmetric and in the antisymmetric representations, order by order in a 1/N expansion.

  18. Advances in Planar and Integrated Magnetics

    DEFF Research Database (Denmark)

    Ouyang, Ziwei

    The trend toward high power density, high operating frequency, and low profile in power converters has exposed a number of limitations in the use of conventional wirewound magnetic component structures. Transformers made of the planar principle eliminate virtually some shortcomings of old...... and experimentally verified. • E‐I‐E core structure with integrated transformers and inductors is applied into the two recent developed dc‐dc topologies. • A new method to integrate the current balancing transformer with common input inductor for the primary‐parallel dc‐dc converter is proposed. • A low profile...... capacitance. Accordingly, a clear cognition for the intrinsic properties of planar magnetics has been given. Trade‐offs is unavoidable in the magnetics design, and thus an analysis of tradeoffs is necessary for an optimum design in a high quality dc‐dc converter. In addition, an improved interwinding...

  19. Planar graphical models which are easy

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory; Chernyak, Vladimir [WAYNE STATE UNIV

    2009-01-01

    We describe a rich family of binary variables statistical mechanics models on planar graphs which are equivalent to Gaussian Grassmann Graphical models (free fermions). Calculation of partition function (weighted counting) in the models is easy (of polynomial complexity) as reduced to evaluation of determinants of matrixes linear in the number of variables. In particular, this family of models covers Holographic Algorithms of Valiant and extends on the Gauge Transformations discussed in our previous works.

  20. Constructing and drawing regular planar split networks.

    Science.gov (United States)

    Spillner, Andreas; Nguyen, Binh T; Moulton, Vincent

    2012-01-01

    Split networks are commonly used to visualize collections of bipartitions, also called splits, of a finite set. Such collections arise, for example, in evolutionary studies. Split networks can be viewed as a generalization of phylogenetic trees and may be generated using the SplitsTree package. Recently, the NeighborNet method for generating split networks has become rather popular, in part because it is guaranteed to always generate a circular split system, which can always be displayed by a planar split network. Even so, labels must be placed on the “outside” of the network, which might be problematic in some applications. To help circumvent this problem, it can be helpful to consider so-called flat split systems, which can be displayed by planar split networks where labels are allowed on the inside of the network too. Here, we present a new algorithm that is guaranteed to compute a minimal planar split network displaying a flat split system in polynomial time, provided the split system is given in a certain format. We will also briefly discuss two heuristics that could be useful for analyzing phylogeographic data and that allow the computation of flat split systems in this format in polynomial time.

  1. From the Planar Limit to M Theory

    Science.gov (United States)

    Azeyanagi, Tatsuo; Fujita, Mitsutoshi; Hanada, Masanori

    2013-03-01

    The large-N limit of gauge theories has been playing a crucial role in theoretical physics over the decades. Despite its importance, little is known outside the planar limit where the ’t Hooft couplingλ=gYM2N is fixed. In this Letter we consider more general large-N limit—λ grows with N, e.g., gYM2 is fixed. Such a limit is important particularly in recent attempts to find the nonpertubative formulation of M theory. Based on various supporting evidence, we propose this limit is essentially identical to the planar limit, in the sense the order of the large-N limit and the strong coupling limit commute. For a wide class of large-N gauge theories, these two limits are smoothly connected, and the analytic continuation from the planar limit is justified. As simple examples, we reproduce a few properties of the six-dimensional N=(2,0) theory on S1 from the five-dimensional maximal super Yang-Mills theory, supporting the recent conjecture by Douglas and Lambert et al. that these two theories are identical.

  2. Sensitivity of resistive and Hall measurements to local inhomogeneities

    DEFF Research Database (Denmark)

    Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth

    2014-01-01

    We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We...... express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance...

  3. Effective Field Theory of Fractional Quantized Hall Nematics

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, Michael; /MIT, LNS; Nayak, Chetan; /Station Q, UCSB; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC

    2012-06-06

    We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.

  4. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.

    2010-04-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  5. TCC2, the target hall of the SPS North Area

    CERN Multimedia

    1978-01-01

    In the foreground can be seen the three proton beam branches leading to the targets enclosed in an assembly of iron blocks with the positioning mechanism on top. In the background, the six secondary beams lead off towards the experimental areas, H2/P2, H4/E4/P4 (from T2 via TT81) and H6, H8 (from T4 via TT82) towards the hall EHN1, M2 from T6 via TT83 towards the hall EHN2. The development proton beam line P0 leads off from T4 via TT83 towards TCC8 and hall ECN3 (NAHIF).

  6. Hall effect in CNT doped YBCO high temperature superconductor

    Directory of Open Access Journals (Sweden)

    S Dadras

    2010-09-01

    Full Text Available In order to study Hall effect in pure and CNT doped YBCO polycrystalline samples, we have measured longitudinal and transverse voltages at the different magnetic field (0-9T in the vortex state. We found a sign reversal for pure sample near 3T and double sign reversal of the Hall coefficient for CNT doped sample near 3 and 5T. It can be deduced that CNT doping caused strong flux pinning and Hall double sign reversal in this compound.

  7. Projectivity of planar zeros in field and string theory amplitudes

    Science.gov (United States)

    Jiménez, Diego Medrano; Vera, Agustín Sabio; Vázquez-Mozo, Miguel Á.

    2017-05-01

    We study the projective properties of planar zeros of tree-level scattering amplitudes in various theories. Whereas for pure scalar field theories we find that the planar zeros of the five-point amplitude do not enjoy projective invariance, coupling scalars to gauge fields gives rise to tree-level amplitudes whose planar zeros are determined by homogeneous polynomials in the stereographic coordinates labelling the direction of flight of the outgoing particles. In the case of pure gauge theories, this projective structure is generically destroyed if string corrections are taken into account. Scattering amplitudes of two scalars with graviton emission vanish exactly in the planar limit, whereas planar graviton amplitudes are zero for helicity violating configurations. These results are corrected by string effects, computed using the single-valued projection, which render the planar amplitude nonzero. Finally, we discuss how the structure of planar zeros can be derived from the soft limit behavior of the scattering amplitudes.

  8. Switching behaviour of coupled antiferro- and ferromagnetic systems: exchange bias

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    2009-01-01

    The switching behaviour, under reversal of an external field, of a simple, ideal magnetic nanoparticle is studied and the interplay between antiferromagnets and ferromagnets elucidated. It is found that the switching between various multi- q ordering in fcc antiferromagnets (as found theoretically...

  9. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state.

    Science.gov (United States)

    Young, A F; Sanchez-Yamagishi, J D; Hunt, B; Choi, S H; Watanabe, K; Taniguchi, T; Ashoori, R C; Jarillo-Herrero, P

    2014-01-23

    Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires and graphene. Recently, a new method has emerged with the recognition that symmetry-protected topological (SPT) phases, which occur in systems with an energy gap to quasiparticle excitations (such as insulators or superconductors), can host robust surface states that remain gapless as long as the relevant global symmetry remains unbroken. The nature of the charge carriers in SPT surface states is intimately tied to the symmetry of the bulk, resulting in one- and two-dimensional electronic systems with novel properties. For example, time reversal symmetry endows the massless charge carriers on the surface of a three-dimensional topological insulator with helicity, fixing the orientation of their spin relative to their momentum. Weakly breaking this symmetry generates a gap on the surface, resulting in charge carriers with finite effective mass and exotic spin textures. Analogous manipulations have yet to be demonstrated in two-dimensional topological insulators, where the primary example of a SPT phase is the quantum spin Hall state. Here we demonstrate experimentally that charge-neutral monolayer graphene has a quantum spin Hall state when it is subjected to a very large magnetic field angled with respect to the graphene plane. In contrast to time-reversal-symmetric systems, this state is protected by a symmetry of planar spin rotations that emerges as electron spins in a half-filled Landau level are polarized by the large magnetic field. The properties of the resulting helical edge states can be modulated by balancing the applied field against an intrinsic antiferromagnetic instability, which tends to spontaneously break the spin-rotation symmetry. In the resulting canted antiferromagnetic state, we observe transport signatures of gapped edge states

  10. From University Heights to Cooperstown: Halls of Fame and American Memory

    Science.gov (United States)

    Friss, Evan J.

    2005-01-01

    This article examines the development and function of American halls of fame as cultural memory institutions. By comparing the Hall of Fame for Great Americans with the National Baseball Hall of Fame, the author posits that halls of fame illuminate the ways in which cultural memory institutions can, through an archival process, preserve, instill,…

  11. Magnesium Hall Thruster for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation being developed in this program is a Mg Hall Effect Thruster system that would open the door for In-Situ Resource Utilization based solar system...

  12. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek is developing a high throughput nominal 100-W Hall Effect Thruster. This device is well sized for spacecraft ranging in size from several tens of kilograms to...

  13. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high throughput, nominal 100 W Hall Effect Thruster (HET). This HET will be sized for small spacecraft (< 180 kg), including...

  14. Pragmatic data fusion uncertainty concerns: Tribute to Dave L. Hall

    CSIR Research Space (South Africa)

    Blasch, E

    2016-07-01

    Full Text Available Over the course of Dave Hall's career, he highlighted various concerns associated with the implementation of data fusion methods. Many of the issues included the role of uncertainty in data fusion, practical implementation of sensor fusion systems...

  15. High Input Voltage Hall Thruster Discharge Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall scope of this Phase I/II effort is the development of a high efficiency 15kW (nominal) Hall thruster discharge converter. In Phase I, Busek Co. Inc. will...

  16. Recent concert halls and opera house in Japan

    Science.gov (United States)

    Hidaka, Takayuki

    2004-05-01

    Since we invited Dr. Beranek to Japan for the first time in 1989, we had been working together with him for a period of 13 years, until 2001, on seven hall projects as acoustic design consultants. All of these halls are of premium importance to Japan. Dr. Beranek always came up with innovative concepts and helped create halls endowed with high acoustic originality. These halls are now loved by music-related people and music fanciers and regarded as the pride of Japan. The reviews and studies achieved through these projects were published as seven J. Acoust Soc. Am papers to disclose the outcome in an objective way to the public. A brief outline of the history of our collaboration and its background are presented.

  17. Quantum Theory of Conducting Matter Superconductivity and Quantum Hall Effect

    CERN Document Server

    Fujita, Shigeji; Godoy, Salvador

    2009-01-01

    Explains major superconducting properties including zero resistance, Meissner effect, sharp phase change, flux quantization, excitation energy gap, and Josephson effects using quantum statistical mechanical calculations. This book covers the 2D superconductivity and the quantum Hall effects

  18. Investigating Anisotropic Quantum Hall States with Bimetric Geometry

    Science.gov (United States)

    Gromov, Andrey; Geraedts, Scott D.; Bradlyn, Barry

    2017-10-01

    We construct a low energy effective theory of anisotropic fractional quantum Hall (FQH) states. We develop a formalism similar to that used in the bimetric approach to massive gravity, and apply it to describe Abelian anisotropic FQH states in the presence of external electromagnetic and geometric backgrounds. We derive a relationship between the shift, the Hall viscosity, and a new quantized coupling to anisotropy, which we term anisospin. We verify this relationship by numerically computing the Hall viscosity for a variety of anisotropic quantum Hall states using the density matrix renormalization group. Finally, we apply these techniques to the problem of nematic order and clarify certain disagreements that exist in the literature about the meaning of the coefficient of the Berry phase term in the nematic effective action.

  19. A High Performance Cathode Heater for Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High current hollow cathodes are the baseline electron source for next generation high power Hall thrusters. Currently for electron sources providing current levels...

  20. Quantized anomalous Hall effect in magnetic topological insulators.

    Science.gov (United States)

    Yu, Rui; Zhang, Wei; Zhang, Hai-Jun; Zhang, Shou-Cheng; Dai, Xi; Fang, Zhong

    2010-07-02

    The anomalous Hall effect is a fundamental transport process in solids arising from the spin-orbit coupling. In a quantum anomalous Hall insulator, spontaneous magnetic moments and spin-orbit coupling combine to give rise to a topologically nontrivial electronic structure, leading to the quantized Hall effect without an external magnetic field. Based on first-principles calculations, we predict that the tetradymite semiconductors Bi2Te3, Bi2Se3, and Sb2Te3 form magnetically ordered insulators when doped with transition metal elements (Cr or Fe), in contrast to conventional dilute magnetic semiconductors where free carriers are necessary to mediate the magnetic coupling. In two-dimensional thin films, this magnetic order gives rise to a topological electronic structure characterized by a finite Chern number, with the Hall conductance quantized in units of e2/h (where e is the charge of an electron and h is Planck's constant).

  1. Magnesium Hall Thruster for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to prove the feasibility of a Mg Hall effect thruster system that would open the door for In-Situ Resource Utilization (ISRU) based solar system...

  2. Positive operator valued measures and the quantum Monty Hall problem

    Directory of Open Access Journals (Sweden)

    Claudia Zander

    2006-09-01

    Full Text Available A quantum version of the Monty Hall problem, based upon the Positive Operator Valued Measures (POVM formalism, is proposed. It is shown that basic normalization and symmetry arguments lead univocally to the associated POVM elements, and that the classical probabilities associated with the Monty Hall scenario are recovered for a natural choice of the measurement operators.Uma visão quântica do problema Monty Hall é proposta baseada no formalismo das Medidas Avaliadas do Operador Positivo (POVM. Demonstra-se que os argumentos de normalização básica e simetria levam de maneira inequívoca para elementos associados a POVM e que as probabilidades clássicas associadas ao cenário Monty Hall são recuperadas para uma escolha natural de medidas operadoras.

  3. Survey of the Fermilab D0 detector collision hall

    Energy Technology Data Exchange (ETDEWEB)

    Babatunde O' Sheg Oshinowo

    2001-07-20

    The Fermilab D0 detector was used for the discovery of the top quark during Run I in 1996. It had been upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II. The upgrade of the D0 detector was fully commissioned on March 1, 2001, and thus marked the official start of the Run II experiment. The detector which weighs about 5500 tons, was assembled in the Assembly Hall. Prior to moving the detector into the Collision Hall, the existing survey monuments were densified in the Collision Hall with new monuments. This paper discusses the survey of the Collision Hall using a combination of the Laser Tracker, BETS, V-Stars, and other Optical systems to within the specified accuracy of {+-}0.5mm.

  4. Hall Mobility of Amorphous Ge2Sb2Te5

    National Research Council Canada - National Science Library

    Baily, S. A; Emin, David; Li, Heng

    2006-01-01

    The electrical conductivity, Seebeck coefficient, and Hall coefficient of 3 micron thick films of amorphous Ge2Sb2Te5 have been measured as functions of temperature from room temperature down to as low as 200 K...

  5. Acoustics in Halls for Speech and Music

    Science.gov (United States)

    Gade, Anders C.

    This chapter deals specifically with concepts, tools, and architectural variables of importance when designing auditoria for speech and music. The focus will be on cultivating the useful components of the sound in the room rather than on avoiding noise from outside or from installations, which is dealt with in Chap. 11. The chapter starts by presenting the subjective aspects of the room acoustic experience according to consensus at the time of writing. Then follows a description of their objective counterparts, the objective room acoustic parameters, among which the classical reverberation time measure is only one of many, but still of fundamental value. After explanations on how these parameters can be measured and predicted during the design phase, the remainder of the chapter deals with how the acoustic properties can be controlled by the architectural design of auditoria. This is done by presenting the influence of individual design elements as well as brief descriptions of halls designed for specific purposes, such as drama, opera, and symphonic concerts. Finally, some important aspects of loudspeaker installations in auditoria are briefly touched upon.

  6. Quantum Spin Hall phase in multilayer graphene

    Science.gov (United States)

    Garcia, Noel; Lado, Jose Luis; Fernandez-Rossier, Joaquin; Theory of Nanostructures Team

    2015-03-01

    We address the question of whether multilayer graphene systems are Quantum Spin Hall (QSH) insulators. Since interlayer coupling coples pz orbitals to s orbitals of different layers and Spin-Orbit (SO) couples pz orbitals with px and py of opposite spins, new spins mixing channels appear in the multilayer scenario that were not present in the monolayer. These new spin-mixing channels cast a doubt on the validity of the spin-conserving Kane-Mele model for multilayers and motivates our choice of a four orbital tight-binding model in the Slater-Koster approximation with intrinsic Spin-Orbit interaction. To completely determine if the QSH phase is present we calculate for different number of layers both the Z2 invariant for different stackings (only for inversion symmetric systems), and the density of states at the edge of semi-infinite graphene ribbon with armchair termination. We find that systems with even number of layers are normal insulators while systems with odd number of layers are QSH insulators, regardless of the stacking. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH.

  7. The integer quantum hall effect revisited

    Energy Technology Data Exchange (ETDEWEB)

    Michalakis, Spyridon [Los Alamos National Laboratory; Hastings, Matthew [Q STATION, CALIFORNIA

    2009-01-01

    For T - L x L a finite subset of Z{sup 2}, let H{sub o} denote a Hamiltonian on T with periodic boundary conditions and finite range, finite strength intetactions and a unique ground state with a nonvanishing spectral gap. For S {element_of} T, let q{sub s} denote the charge at site s and assume that the total charge Q = {Sigma}{sub s {element_of} T} q{sub s} is conserved. Using the local charge operators q{sub s}, we introduce a boundary magnetic flux in the horizontal and vertical direction and allow the ground state to evolve quasiadiabatically around a square of size one magnetic flux, in flux space. At the end of the evolution we obtain a trivial Berry phase, which we compare, via a method reminiscent of Stokes Theorem. to the Berry phase obtained from an evolution around an exponentially small loop near the origin. As a result, we show, without any averaging assumption, that the Hall conductance is quantized in integer multiples of e{sup 2}/h up to exponentially small corrections of order e{sup -L/{zeta}}, where {zeta}, is a correlation length that depends only on the gap and the range and strength of the interactions.

  8. Brand new hall in the main building

    CERN Multimedia

    Corinne Pralavorio

    2014-01-01

    The renovation of the UNIQA and post office premises is getting under way, with their reopening scheduled for the spring.   The renovation of the large hall in the main building (Building 500) has finally reached the home straight. As of this week, building contractors will get to work on the last part – the offices of UNIQA and La Poste. In the last week of November, the two concessions moved their offices across Route Scherrer to the same part of Building 510 where UBS was temporarily housed during the bank’s refurbishment. Their services were therefore unavailable for one day. The renovation work will last until the spring, with the new offices expected to open in May 2015. Between now and then, the windows and insulation will be completely refitted, with a view to reducing heat loss considerably, and, above all, the premises will be modernised to improve customer reception and service. For example, UNIQA’s new premises will feature a confidential area, guarantee...

  9. Supersymmetry in the fractional quantum Hall regime

    Science.gov (United States)

    Sagi, Eran; Santos, Raul A.

    2017-05-01

    Supersymmetry (SUSY) is a symmetry transforming bosons to fermions and vice versa. Indications of its existence have been extensively sought after in high-energy experiments. However, signatures of SUSY have yet to be detected. In this paper we study a condensed matter realization of SUSY on the edge of a Read-Rezayi quantum Hall state, given by filling factors of the form ν =k/k +2 , where k is an integer. As we show explicitly, this strongly interacting state exhibits an N =2 SUSY. This allows us to use a topological invariant—the Witten index—defined specifically for supersymmetric theories, to count the difference between the number of bosonic and fermionic zero modes in a circular edge. In this system, we argue that the edge hosts k +1 protected zero modes. We further discuss the stability of SUSY with respect to generic perturbations and find that much of the above results remain unchanged. In particular, these results directly apply to the well-established ν =1 /3 Laughlin state, in which case SUSY is a robust property of the edge theory. These results unveil a hidden topological structure on the long-studied Read-Rezayi states.

  10. Low-Cost, High-Performance Hall Thruster Support System

    Science.gov (United States)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  11. What is the Hallé? | Smith | Philosophical Papers

    African Journals Online (AJOL)

    I address what I call 'the number issue', which is raised by our ordinary talk and beliefs about certain social groups and institutions, and I take the Hallé orchestra as my example. The number issue is that of whether the Hallé is one individual or several individuals. I observe that if one holds that it is one individual, one faces ...

  12. Pseudospectral Model for Hybrid PIC Hall-effect Thruster Simulation

    Science.gov (United States)

    2015-07-01

    Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Pseudospectral model for hybrid PIC Hall-effect thruster simulationect...of a pseudospectral azimuthal-axial hybrid- PIC HET code which is designed to explicitly resolve and filter azimuthal fluctuations in the...661-275-5908 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Pseudospectral model for hybrid PIC Hall-effect thruster simulation IEPC

  13. High-performance LED luminaire for sports hall

    Science.gov (United States)

    Lee, Xuan-Hao; Yang, Jin-Tsung; Chien, Wei-Ting; Chang, Jung-Hsuan; Lo, Yi-Chien; Lin, Che-Chu; Sun, Ching-Cherng

    2015-09-01

    In this paper, we present a luminaire design with anti-glare and energy-saving effects for sports hall. Compared with traditional lamps using in a badminton court, the average illuminance on the ground of the proposed LED luminaire is enhanced about 300%. Besides, the uniformity is obviously enhanced and improved. The switch-on speed of lighting in sports hall is greatly reduced from 5-10 minutes to 1 second. The simulation analysis and the corresponding experiment results are demonstrated.

  14. Quantum Hall Mach-Zehnder interferometer at fractional filling factors

    OpenAIRE

    Deviatov, E. V.; Egorov, S. V.; Biasiol, G.; Sorba, L.

    2012-01-01

    We use a Mach-Zehnder quantum Hall interferometer of a novel design to investigate the interference effects at fractional filling factors. Our device brings together the advantages of usual Mach-Zehnder and Fabry-Perot quantum Hall interferometers. It realizes the simplest-for-analysis Mach-Zehnder interference scheme, free from Coulomb blockade effects. By contrast to the standard Mach-Zehnder realization, our device does not contain an etched region inside the interference loop. For the fir...

  15. Hall effect in amorphous calcium-aluminum alloys

    Science.gov (United States)

    Mayeya, F. M.; Howson, M. A.

    1994-02-01

    We present results of the Hall effect measurements in CaAl(Au) amorphous alloys. The Hall coefficients have been found to be negative and independent of temperature. Their magnitudes deviate significantly from the nearly-free-electron calculations, and are reduced by gold doping. These deviations have been accounted for from considerations of the unusual electronic structure of CaAl, and the effects of both s-d hybridization and side-jump mechanism on the conduction electrons.

  16. Stainless Steel Crown Placement Utilizing the Hall Technique

    Science.gov (United States)

    2017-03-23

    Utilizing the Hall Technique 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Stainless Steel Crown Placement Utilizing the Hall Technique 7. FUNDING...40-401 IP. AND 59 MDWI 41-108. I HAVE READ THE FINAL VERSION OF THE ATTACHED MATERIAL AND CERTIFY THAT IT IS AN ACCURATE MANUS-CRIPT FOR PUBLICATION...DEPARTMENT OF THE AIR FORCE 59TH MEDICAL WING (AETC) JOINT BASE SAN ANTONIO - LACKLAND TEXAS MEMORANDUM FOR SGDTG ATIN: LCDR DANIEL J. FUHRMANN

  17. Planar elongation of soft polymeric networks

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Hassager, Ole; Rasmussen, Henrik K.

    2010-01-01

    an appropriate choice of initial sample height, perimeter, and thickness, the planar stretch ratio will follow lambda(t) = h(t)/h(0) = exp((epsilon)overdot t), with h(t) being the height at time t and (epsilon)overdot the imposed constant strain rate. The perimeter would decrease by a few percent only, which...... difference deviated more from the classical prediction due to the dynamic structures in the material. A modified Lodge model using characteristic parameters from linear viscoelastic measurements gave very good stress predictions at all Deborah numbers used in the quasi-linear regime....

  18. Optical planar waveguide for cell counting

    Science.gov (United States)

    LeBlanc, John; Mueller, Andrew J.; Prinz, Adrian; Butte, Manish J.

    2012-01-01

    Low cost counting of cells has medical applications in screening, military medicine, disaster medicine, and rural healthcare. In this report, we present a shallow, buried, planar waveguide fabricated by potassium ion exchange in glass that enables low-cost and rapid counting of metal-tagged objects that lie in the evanescent field of the waveguide. Laser light transmitted through the waveguide was attenuated proportionately to the presence of metal-coated microstructures fabricated from photoresist. This technology enables the low-cost enumeration of cells from blood, urine, or other biofluids.

  19. Planar domain walls in black hole spacetimes

    Science.gov (United States)

    Ficek, Filip; Mach, Patryk

    2018-02-01

    We investigate the behavior of low-mass, planar domain walls in the so-called ϕ4 model of the scalar field on the Schwarzschild and Kerr backgrounds. We focus on a transit of a domain wall through a black hole and solve numerically the equations of motion for a range of parameters of the domain wall and the black hole. We observe a behavior resembling an occurrence of ringing modes. Perturbations of domain walls vanish during latter evolution, suggesting their stability against a passage through the black hole. The results obtained for Kerr and Reissner-Nordström black holes are also compared.

  20. The Hamiltonian dynamics of planar magnetic confinement

    Science.gov (United States)

    Martins, Gabriel

    2017-12-01

    Inspired by a question of Colin de Verdière and Truc we study the dynamics of a classical charged particle moving in a bounded planar domain Ω under the influence of a magnetic field {B} which blows up at the boundary of the domain. We prove that under appropriate blow-up conditions the particle will never reach the boundary. As a corollary we obtain completeness of the magnetic flow. Our blow-up condition is that {B} should not be integrable along normal rays to the boundary, while its tangential derivative should be integrable along those same rays.

  1. Planar Silicon Optical Waveguide Light Modulators

    DEFF Research Database (Denmark)

    Leistiko, Otto; Bak, H.

    1994-01-01

    The results of an experimental investigation of a new type of optical waveguide based on planar technology in which the liglht guiding and modulation are achieved by exploiting free carrier effects in silicon are presented. Light is guided between the n+ substrate and two p+ regions, which also...... that values in the nanosecond region should be possible, however, the measured values are high, 20 microseconds, due to the large area of the injector junctions, 1× 10¿2 cm2, and the limitations imposed by the detection circuit. The modulating properties of these devices are impressive, measurements...

  2. Theoretical analysis of planar pulse microwiggler

    Energy Technology Data Exchange (ETDEWEB)

    Qing-Xiang Liu [Institute of Applied Electronics, Sichuan (China)]|[Southwest Jiaotong Univ., Sichuan (China); Yong Xu [Southwest Jiatong Univ., Sichuan (China)

    1995-12-31

    The Magnetic field distributions of a planar pulse microwiggler are studied analytically and numerically. Exact solutions of two-dimensional magnetic fields are derived, which show that along the electron axis the fields have a variation close enough to a sine wave. We also investigate wiggler field errors due to machining tolerance and effects of the field errors on trajectories of electron with the help numerical simulations. The results are critical for successful operation of CAEP compact free-electron laser experiment under preparation.

  3. Broadband Planar 5:1 Impedence Transformer

    Science.gov (United States)

    Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.

    2015-01-01

    This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.

  4. Dynamic planar embeddings of dynamic graphs

    DEFF Research Database (Denmark)

    Holm, Jacob; Rotenberg, Eva

    2017-01-01

    We present an algorithm to support the dynamic embedding in the plane of a dynamic graph. An edge can be inserted across a face between two vertices on the face boundary (we call such a vertex pair linkable), and edges can be deleted. The planar embedding can also be changed locally by flipping...... query, one-flip- linkable(u,v) providing a suggestion for a flip that will make them linkable if one exists. We support all updates and queries in O(log 2 n) time. Our time bounds match those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm is simpler...

  5. Dynamic planar embeddings of dynamic graphs

    DEFF Research Database (Denmark)

    Holm, Jacob; Rotenberg, Eva

    2015-01-01

    We present an algorithm to support the dynamic embedding in the plane of a dynamic graph. An edge can be inserted across a face between two vertices on the boundary (we call such a vertex pair linkable), and edges can be deleted. The planar embedding can also be changed locally by flipping......-flip-linkable(u, v) providing a suggestion for a flip that will make them linkable if one exists. We will support all updates and queries in O(log2 n) time. Our time bounds match those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm is simpler, exploiting...

  6. Preparation and characterization of planar deuterium cryotargets.

    Science.gov (United States)

    Lei, Haile; Li, Jun; Tang, Yongjian; Liu, Yuanqiong

    2009-03-01

    Using a planar-cryotarget system with the cooling power provided by a Gifford-McMahon cryocooler, the deuterium vapor is condensed to form liquid in a cylinder target cell. The liquefaction processes of deuterium are examined by the Mach-Zehnder interference and infrared spectra. The infrared-absorption spectra of deuterium show a strong absorption peak around 3040 nm at 19 K. The thickness distribution of the condensed deuterium in the target cell is determined from Mach-Zehnder interference images by developing a new mathematical treatment method in combination with the digital-image processing technique.

  7. Exact formation of hairy planar black holes

    OpenAIRE

    Fan, Zhong-Ying; Chen, Bin

    2015-01-01

    We consider Einstein gravity minimally coupled to a scalar field with a given potential in general dimensions. We obtain large classes of static hairy planar black holes which are asymptotic to AdS space-times. In particular, for a special case $\\mu=(n-2)/2$, we obtain new classes of exact dynamical solutions describing black holes formation. We find there are two classes of collapse solutions. The first class solutions describe the evolution start from AdS space-time with a naked singularity...

  8. Optimal External-Memory Planar Point Enclosure

    DEFF Research Database (Denmark)

    Arge, Lars; Samoladas, Vasilis; Yi, Ke

    2007-01-01

    In this paper we study the external memory planar point enclosure problem: Given N axis-parallel rectangles in the plane, construct a data structure on disk (an index) such that all K rectangles containing a query point can be reported I/O-efficiently. This problem has important applications in e...... term O(K/B) is desired. To show this we prove a general lower bound on the tradeoff between the size of the data structure and its query cost. We also develop a family of structures with matching space and query bounds....

  9. Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2008-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.

  10. Mode Transitions in Hall Effect Thrusters

    Science.gov (United States)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Mode transitions have been commonly observed in Hall Effect Thruster (HET) operation where a small change in a thruster operating parameter such as discharge voltage, magnetic field or mass flow rate causes the thruster discharge current mean value and oscillation amplitude to increase significantly. Mode transitions in a 6-kW-class HET called the H6 are induced by varying the magnetic field intensity while holding all other operating parameters constant and measurements are acquired with ion saturation probes and ultra-fast imaging. Global and local oscillation modes are identified. In the global mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are either absent or negligible. Downstream azimuthally spaced probes show no signal delay between each other and are very well correlated to the discharge current signal. In the local mode, signals from the azimuthally spaced probes exhibit a clear delay indicating the passage of "spokes" and are not well correlated to the discharge current. These spokes are localized oscillations propagating in the ExB direction that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be 100% of the mean value. The transition between global and local modes occurs at higher relative magnetic field strengths for higher mass flow rates or higher discharge voltages. The thrust is constant through mode transition but the thrust-to-power decreased by 25% due to increasing discharge current. The plume shows significant differences between modes with the global mode significantly brighter in the channel and the near-field plasma plume as well as exhibiting a luminous spike on thruster centerline. Mode transitions provide valuable insight to thruster operation and suggest improved methods for thruster performance characterization.

  11. Analysis and design of planar and non-planar wings for induced drag minimization

    Science.gov (United States)

    Mortara, Karl W.; Straussfogel, Dennis M.; Maughmer, Mark D.

    1992-01-01

    The goal of the work reported herein is to develop and validate computational tools to be used for the design of planar and non-planar wing geometries for minimum induced drag. Because of the iterative nature of the design problem, it is important that, in addition to being sufficiently accurate for the problem at hand, these tools need to be reasonably fast and computationally efficient. Toward this end, a method of predicting induced drag in the presence of a free wake has been coupled with a panel method. The induced drag prediction technique is based on the application of the Kutta-Joukowski law at the trailing edge. Until now, the use of this method has not been fully explored and pressure integration and Trefftz-plane calculations favored. As is shown in this report, however, the Kutta-Joukowski method is able to give better results for a given amount of effort than the more commonly used techniques, particularly when relaxed wakes and non-planar wing geometries are considered. Using these methods, it is demonstrated that a reduction in induced drag can be achieved through non-planar wing geometries. It remains to determine what overall drag reductions are possible when the induced drag reduction is traded-off against increased wetted area. With the design methodology that is described herein, such trade studies can be performed in which the non-linear effects of the free wake are taken into account.

  12. Stress reduction in planar waveguide using polymer top layer

    Science.gov (United States)

    Sharma, Neha; Sharma, V. K.; Tripathi, K. N.

    2008-07-01

    Planar optical waveguides consisting of layers from different materials created at elevated temperatures usually exhibit substantial stresses. By controlling the layer thickness of polymeric top layer on planar waveguide structures, it is possible to use very thin layers for stress compensation, significantly reducing required deposition times. It is possible to reduce birefringence within planar device by controlling top polymer layer thickness with thermal expansion coefficient greater than silica or PMMA.

  13. An algorithm of graph planarity testing and cross minimization

    Directory of Open Access Journals (Sweden)

    Vitalie Cotelea

    2007-11-01

    Full Text Available This paper presents an overview on one compartment from the graph theory, called graph planarity testing. It covers the fundamental concepts and important work in this area. Also a new approach is presented, which tests if a graph is planar in linear time O(n and it can be used to determine the minimum crosses in a graph if it isn't planar.

  14. Some remarks on non-planar Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-12-15

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  15. Optical magnetism in planar metamaterial heterostructures.

    Science.gov (United States)

    Papadakis, Georgia T; Fleischman, Dagny; Davoyan, Artur; Yeh, Pochi; Atwater, Harry A

    2018-01-18

    Harnessing artificial optical magnetism has previously required complex two- and three-dimensional structures, such as nanoparticle arrays and split-ring metamaterials. By contrast, planar structures, and in particular dielectric/metal multilayer metamaterials, have been generally considered non-magnetic. Although the hyperbolic and plasmonic properties of these systems have been extensively investigated, their assumed non-magnetic response limits their performance to transverse magnetic (TM) polarization. We propose and experimentally validate a mechanism for artificial magnetism in planar multilayer metamaterials. We also demonstrate that the magnetic properties of high-index dielectric/metal hyperbolic metamaterials can be anisotropic, leading to magnetic hyperbolic dispersion in certain frequency regimes. We show that such systems can support transverse electric polarized interface-bound waves, analogous to their TM counterparts, surface plasmon polaritons. Our results open a route for tailoring optical artificial magnetism in lithography-free layered systems and enable us to generalize the plasmonic and hyperbolic properties to encompass both linear polarizations.

  16. Fungal melanins differ in planar stacking distances.

    Directory of Open Access Journals (Sweden)

    Arturo Casadevall

    Full Text Available Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments.

  17. Fungal melanins differ in planar stacking distances.

    Science.gov (United States)

    Casadevall, Arturo; Nakouzi, Antonio; Crippa, Pier R; Eisner, Melvin

    2012-01-01

    Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments.

  18. Multistability in planar liquid crystal wells

    KAUST Repository

    Luo, Chong

    2012-06-08

    A planar bistable liquid crystal device, reported in Tsakonas, is modeled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micrometer-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W≥0, while rotated solutions only exist for W≥W c>0, where W c is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal-to-rotated and rotated-to-diagonal switching by allowing for variable anchoring strength across the domain boundary. © 2012 American Physical Society.

  19. General lossless planar coupler design algorithms.

    Science.gov (United States)

    Vance, Rod

    2015-08-01

    This paper reviews and extends two classes of algorithms for the design of planar couplers with any unitary transfer matrix as design goals. Such couplers find use in optical sensing for fading free interferometry, coherent optical network demodulation, and also for quantum state preparation in quantum optical experiments and technology. The two classes are (1) "atomic coupler algorithms" decomposing a unitary transfer matrix into a planar network of 2×2 couplers, and (2) "Lie theoretic algorithms" concatenating unit cell devices with variable phase delay sets that form canonical coordinates for neighborhoods in the Lie group U(N), so that the concatenations realize any transfer matrix in U(N). As well as review, this paper gives (1) a Lie theoretic proof existence proof showing that both classes of algorithms work and (2) direct proofs of the efficacy of the "atomic coupler" algorithms. The Lie theoretic proof strengthens former results. 5×5 couplers designed by both methods are compared by Monte Carlo analysis, which would seem to imply atomic rather than Lie theoretic methods yield designs more resilient to manufacturing imperfections.

  20. Simple method for any planar wiggler field simulation

    Directory of Open Access Journals (Sweden)

    M. N. Smolyakov

    2001-04-01

    Full Text Available This paper deals with a nonstandard method for calculating the magnetic field of planar wigglers and undulators consisting of pure permanent magnets. This method of calculation is based on certain properties of the Fourier transform. It allows the analytical expression of the Fourier transform for the planar magnetic fields through the wiggler's geometry and magnetization of its blocks. The upper theoretical limit for the amplitude of the magnetic field is derived and matched with the field amplitude of planar wigglers with standard designs. The property of universality for planar wigglers is also taken into consideration as it may greatly simplify the analysis of magnetic fields for wigglers with different designs.

  1. Seville City Hall Chapter Room ceiling decoration

    Directory of Open Access Journals (Sweden)

    Robador, M. D.

    2010-02-01

    Full Text Available The present article describes a chemical and physical study of the colour, chemical composition and mineral phases of the decorative materials in the Seville City Hall Chapter House ceiling. The findings showed that the inner most layer of material, calcite, was covered with white lead, in turn concealed under a layer of gilded bole. The ceiling underwent re-gilding, also over bole, due in all likelihood to wear on the original gold leaf. In the nineteenth century, the entire ceiling with the exception of the inscriptions was whitewashed with calcite and white lead. Silver was employed on King John I’s sword (coffer 27. Gold leaf was used to adorn the royal attributes: crowns, belts, sceptres, swords and rosary beads. The high reliefs were likewise gilded. The pigments identified on the ceiling adornments included azurite, malachite, vermilion and gas black. A lime and ground dolomite mortar was used throughout.

    El objetivo de este trabajo es el estudio de diferentes aspectos, como el color, la composición química y las fases mineralógicas presentes en los diferentes materiales que forman la ornamentación del techo de la Sala Capitular del Ayuntamiento de Sevilla, mediante métodos físicos y químicos. Nuestros resultados muestran que el dorado fue realizado sobre una capa de bol previamente depositada sobre una lámina de blanco de plomo que cubría un estrato de calcita. Posteriormente, y probablemente debido a alteraciones en el dorado original, el techo fue de nuevo dorado usando una técnica similar. En el siglo XIX, casi todo el techo, excepto las zonas con inscripciones, fue blanqueado usando una mezcla de calcita y blanco de plomo. Se empleó plata para cubrir la espada del rey Juan I (casetón 27. Finísimas láminas de oro se usaron para decorar los atributos reales: coronas, cinturones, cetros, espadas y rosarios. En diferentes partes de la decoración fueron detectados pigmentos como azurita, malaquita, bermellón y

  2. Concert hall acoustics assessment with individually elicited attributes.

    Science.gov (United States)

    Lokki, Tapio; Patynen, Jukka; Kuusinen, Antti; Vertanen, Heikki; Tervo, Sakari

    2011-08-01

    Concert hall acoustics was evaluated with a descriptive sensory analysis method by employing an individual vocabulary development technique. The goal was to obtain sensory profiles of three concert halls by eliciting perceptual attributes for evaluation and comparison of the halls. The stimuli were gathered by playing back anechoic symphony music from 34 loudspeakers on stage in each concert hall and recording the sound field with a microphone array. Four musical programs were processed for multichannel 3D sound reproduction in the actual listening test. Twenty screened assessors developed their individual set of attributes and performed a comparative evaluation of nine seats, three in each hall. The results contain the distinctive groups of elicited attributes and show good agreement within assessors, even though they applied individual attributes when rating the samples. It was also found that loudness and distance gave the strongest perceptual direction to the principal component basis. In addition, the study revealed that the perception of reverberance is related to the size of the space or to the enveloping reverberance, depending on the assessor.

  3. Perception of music dynamics in concert hall acoustics.

    Science.gov (United States)

    Pätynen, Jukka; Lokki, Tapio

    2016-11-01

    Dynamics is one of the principal means of expressivity in Western classical music. Still, preceding research on room acoustics has mostly neglected the contribution of music dynamics to the acoustic perception. This study investigates how the different concert hall acoustics influence the perception of varying music dynamics. An anechoic orchestra signal, containing a step in music dynamics, was rendered in the measured acoustics of six concert halls at three seats in each. Spatial sound was reproduced through a loudspeaker array. By paired comparison, naive subjects selected the stimuli that they considered to change more during the music. Furthermore, the subjects described their foremost perceptual criteria for each selection. The most distinct perceptual factors differentiating the rendering of music dynamics between halls include the dynamic range, and varying width of sound and reverberance. The results confirm the hypothesis that the concert halls render the performed music dynamics differently, and with various perceptual aspects. The analysis against objective room acoustic parameters suggests that the perceived dynamic contrasts are pronounced by acoustics that provide stronger sound and more binaural incoherence by a lateral sound field. Concert halls that enhance the dynamics have been found earlier to elicit high subjective preference.

  4. G. Stanley Hall, Child Study, and the American Public.

    Science.gov (United States)

    Young, Jacy L

    2016-01-01

    In the final decades of the 19th century psychologist Granville Stanley Hall was among the most prominent pedagogical experts in the nation. The author explores Hall's carefully crafted persona as an educational expert, and his engagements with the American public, from 1880 to 1900, arguably the height of his influence. Drawing from accounts of Hall's lecture circuit in the popular press, a map of his talks across the nation is constructed to assess the geographic scope of his influence. These talks to educators on the psychology underlying childhood and pedagogy, and his views and research on child life more generally, were regularly discussed in newspapers and popular periodicals. The venues in which Hall's ideas were disseminated, discussed, and in some cases, dismissed are described. His efforts to mobilize popular support for, and assistance with, his research endeavors in child study are also discussed. Such efforts were controversial both within the burgeoning field of psychology and among the public. Through his various involvements in pedagogy, and concerted efforts to engage with the American public, Hall helped establish psychology's relevance to parenting and educational practices.

  5. Optical detection of spin Hall effect in metals

    Science.gov (United States)

    van T Erve, Olaf; Hanbicki, Aubrey; Li, Connie; Jonker, Berend

    Spin Hall effects in metals have been successfully measured using electrical methods such as nonlocal spin valve transport, ferromagnetic resonance or spin torque transfer experiments. These methods require complex processing techniques and measuring setups. Here we present room temperature measurements of the spin Hall effect in non-magnetic metals such as Pt and β-W using a standard bench top magneto-optic Kerr effect (MOKE) system. With this system, one can readily determine the angular dependence of the induced polarization on the bias current direction. When a bias current is applied, the spin Hall effect causes electrons of opposite spin to be scattered in opposite directions, resulting in a spin accumulation at the surface of the film. The MOKE signal tracks the applied square wave bias current with an amplitude and phase directly related to the spin Hall angle. Using this technique, we show that the spin-Hall angle of β-W is opposite in sign and significantly larger than that of Pt. In addition, we use this technique to detect spin diffusion from β-W into Al thin films, as well as spin diffusion from the topological surface states of Bi2Se3 into Al. We will also show direct modulation of the reflected light up to 100 kHz, using Bi doped Cu samples. This work was supported by internal programs at NRL.

  6. Suitable reverberation times for halls for rock and pop music.

    Science.gov (United States)

    Adelman-Larsen, Niels Werner; Thompson, Eric R; Gade, Anders C

    2010-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of popular music, including rock and pop. Objective measurements were made of the acoustics of 20 rock music venues in Denmark and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers as expert listeners. Correlations between the measurements show that clarity, including bass frequencies down to 63 Hz, is important for the general impression of the acoustics of the hall. The best-rated halls in the study have reverberation times that are approximately frequency independent from 0.6 to 1.2 s for hall volumes from 1000 to 6000 m(3). The worst rated halls in the study had significantly higher reverberation times in the 63 and 125 Hz bands. Since most audiences at rock concerts are standing, absorption coefficients were measured with a standing audience from 63 Hz to 4 kHz. These measurements showed that a standing audience absorbs about five times as much energy in mid-/high-frequency bands as in low-frequency bands.

  7. Higher (odd) dimensional quantum Hall effect and extended dimensional hierarchy

    Science.gov (United States)

    Hasebe, Kazuki

    2017-07-01

    We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S 2 k - 1 in the SO (2 k - 1) monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S 2 k - 1 to the one-dimension higher SO (2 k) gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah-Patodi-Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  8. Dynamics of a Planar Magnetron Discharge.

    Science.gov (United States)

    Wendt, Amy Eileen

    In planar magnetron sputter deposition, metal atoms are sputtered from a source by a magnetically confined plasma. The sputtered atoms come to rest on substrates placed in the vacuum chamber, coating them with a thin metal film. The operation of the planar magnetron depends on gas pressure, voltage V, current I, magnetic field strength B and other parameters in a manner not yet completely understood. This work employs modelling and experimental techniques to investigate the physical mechanisms which govern the operation of a planar magnetron discharge. The primary investigation centers on distribution of discharge current at the cathode. The cylindrically symmetric experimental system consists of a 12-inch diameter aluminum vacuum chamber with movable 9-inch diameter copper electrodes. The DC discharge is operated in argon, and a variable magnetic field is provided by an iron core electromagnet. The radial distribution of current at the cathode has been measured with a radially staggered array of 1-mm diameter current probes embedded in the cathode plate. The distribution is peaked at the radius at which the magnetic field is tangent to the cathode, and the width of the distribution, w is a function of the discharge parameters. Energy gained in the cathode sheath by secondary electrons emitted from the cathode goes into the ionization necessary for discharge maintenance. By examining the range of motion of these electrons in the magnetic field, the location of the plasma and thus the distribution of current at the cathode can be calculated. Such a calculation was carried out for the following scenarios: (1) the sheath is thin compared to the range of the electrons and electron motion is hamiltonian, (2) the sheath is thin and electron motion is dominated by diffusion, and (3) the sheath is thick compared to the range of the electrons and electron motion is hamiltonian. Only the latter, thick sheath model, gives good agreement with experimentally observed scaling

  9. Recognition of Planar Objects Using Multiresolution Analysis

    Directory of Open Access Journals (Sweden)

    Ayşın Ertüzün

    2007-01-01

    Full Text Available By using affine-invariant shape descriptors, it is possible to recognize an unknown planar object from an image taken from an arbitrary view when standard view images of candidate objects exist in a database. In a previous study, an affine-invariant function calculated from the wavelet coefficients of the object boundary has been proposed. In this work, the invariant is constructed from the multiwavelet and (multiscaling function coefficients of the boundary. Multiwavelets are known to have superior performance compared to scalar wavelets in many areas of signal processing due to their simultaneous orthogonality, symmetry, and short support properties. Going from scalar wavelets to multiwavelets is challenging due to the increased dimensionality of multiwavelets. This increased dimensionality is exploited to construct invariants with better performance when the multiwavelet “detail” coefficients are available. However, with (multiscaling function coefficients, which are more stable in the presence of noise, scalar wavelets cannot be defeated.

  10. Recognition of Planar Objects Using Multiresolution Analysis

    Directory of Open Access Journals (Sweden)

    Güney Nazlı

    2007-01-01

    Full Text Available By using affine-invariant shape descriptors, it is possible to recognize an unknown planar object from an image taken from an arbitrary view when standard view images of candidate objects exist in a database. In a previous study, an affine-invariant function calculated from the wavelet coefficients of the object boundary has been proposed. In this work, the invariant is constructed from the multiwavelet and (multiscaling function coefficients of the boundary. Multiwavelets are known to have superior performance compared to scalar wavelets in many areas of signal processing due to their simultaneous orthogonality, symmetry, and short support properties. Going from scalar wavelets to multiwavelets is challenging due to the increased dimensionality of multiwavelets. This increased dimensionality is exploited to construct invariants with better performance when the multiwavelet "detail" coefficients are available. However, with (multiscaling function coefficients, which are more stable in the presence of noise, scalar wavelets cannot be defeated.

  11. Energy landscapes of planar colloidal clusters

    Science.gov (United States)

    Morgan, John W. R.; Wales, David J.

    2014-08-01

    A short-ranged pairwise Morse potential is used to model colloidal clusters with planar morphologies. Potential and free energy global minima as well as rearrangement paths, obtained by basin-hopping global optimisation and discrete path sampling, are characterised. The potential and free energy landscapes are visualised using disconnectivity graphs. The short-ranged potential is found to favour close-packed structures, with the potential energy primarily controlled by the number of nearest neighbour contacts. In the case of quasi-degeneracy the free energy global minimum may differ from the potential energy global minimum. This difference is due to symmetry effects, which result in a higher entropy for structures with lower symmetry.

  12. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions...... a essentially determined by the SRR, while by varying the dipole arm length the input resistance is changed in a wide range, thus matching the antenna to a feed line and compensating for simulation and manufacturing inaccuracies. No additional matching network is required. Theoretically, there is no limit...... on how small this antenna can be. In practice, the lower bound is set by losses in utilized materials and manufacturing inaccuracies. As an example, an antenna of ka=0.09 was designed, fabricated and tested. Although the initially fabricated antenna prototype had the input impedance of 43 ohms...

  13. Development of Osaka gas type planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Iha, M.; Shiratori, A.; Chikagawa, O. [Murata Mfg. Co., Ltd., Shiga (Japan)] [and others

    1996-12-31

    Osaka Gas Co. has been developing a planar type SOFC (OG type SOFC) which has a suitable structure for stacking. Murata Mfg. Co. has begun to develop the OG type SOFC stack through joint program since 1993. Figure 1 shows OG type cell structure. Because each cell is sustained by cell holders acting air manifold, the load of upper cell is not put on the lower cells. Single cell is composed of 3-layered membrane and LaCrO{sub 3} separator. 5 single cells are mounted on the cell holder, connected with Ni felt electrically, and bonded by glassy material sealant. We call the 5-cell stack a unit. Stacking 13 units, we succeeded 870 W generation in 1993. But the power density was low, 0.11 Wcm{sup -2} because of crack in the electrolyte and gas leakage at some cells.

  14. Poling of planar silica-based waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Leistiko, Otto

    2000-01-01

    Planar silica-based waveguides were electrically poled at elevated temperatures and cooled with the field still applied. This procedure induced second-order nonlinear effects in the waveguides. Systematic studies of the dependence of the induced linear electro-optic effect on polilng temperature...... and the poling voltage were performed using a negative voltage on the top electrode. It was found that the optimum poling temperature is -430 C. A linear dependence of the induced linear electro-optic effect on the voltage was observed. The largest measured linear electro-optic coefficient was 0.07 pm/V. A model...... recorded with spatially resolved second-harmonic generation. Very large second-harmonic signals were obtained when poling with a positive voltage on a painted-on top electrode. Calibration of the signals to GaAs showed that the second-order nonlinear susceptibility of the poled glass corresponds to -48 pm...

  15. Planar electrostatic gradiometer for airborne geodesy

    Science.gov (United States)

    Foulon, B.; Christophe, B.; Lebat, V.; Boulanger, D.

    2011-12-01

    The knowledge of the gravity field of the Earth has been considerably improved for the last decades, thanks to satellites, in particular, both for gravity measurements and positioning. Gravity, and especially gravity gradiometry data are then of great interest to the study of the structure of the continental margins. Space gravity measurements, in particular with the GOCE satellite in orbit since 2009, provide an absolute gravity reference and should contribute to estimate the systematic effects that would affect the surface datasets. But the spatial resolution of those data essentially addresses the large and medium wavelengths of the field (down to a resolution of 90km) and it is therefore essential to complete them at the shorter wavelengths in particular in the littoral area. To this aim, gravity gradiometry systems may be particularly suitable by covering the land/sea transition zone with a uniform precision, and a spatial resolution higher than from gravimetry. The GREMLIT instrument is taking advantage of technologies, formerly developed by ONERA for the GRACE and GOCE space missions, by adapting them to an airborne environment, using a planar configuration for the gradiometer and designing and building a dedicated stabilized platform controlled by the common mode outputs of the instrument itself similarly to the drag free control of the GOCE satellite. The mains interests of the planar configuration are: - its definition, optimized for levitation in the Earth's gravity field ; - its intrinsic linearity, which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth ; - its compactness, ensuring an excellent dimensional stability, a better thermal homogeneity and making the realization of the decoupling platform easier. The performance objective is 0.1 Eötvös. This lowered performance level with respect to a one hundred times better GOCE-type instrument, takes into account the difficulty of measurements

  16. Morphing Planar Graph Drawings with a Polynomial Number of Steps

    DEFF Research Database (Denmark)

    Alamdari, Soroush; Angelini, Patrizio; Chan, Timothy M.

    2013-01-01

    In 1944, Cairns proved the following theorem: given any two straight-line planar drawings of a triangulation with the same outer face, there exists a morph (i.e., a continuous transformation) between the two drawings so that the drawing remains straight-line planar at all times. Cairns’s original...

  17. Column planarity and partially-simultaneous geometric embedding

    Czech Academy of Sciences Publication Activity Database

    Barba, L.; Evans, W.; Hoffmann, M.; Kusters, V.; Saumell, Maria; Speckmann, B.

    2017-01-01

    Roč. 21, č. 6 (2017), s. 983-1002 ISSN 1526-1719 Grant - others:GA MŠk(CZ) LO1506; GA MŠk(CZ) EE2.3.30.0038 Institutional support: RVO:67985807 Keywords : column planarity * unlabeled level planarity * simultaneous geometric embedding Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics

  18. Adaptive silicone-membrane lenses: planar vs. shaped membrane

    CSIR Research Space (South Africa)

    Schneider, F

    2009-08-01

    Full Text Available -section. The lens systems incorporate a piezo actuator which is operated in a regime of ±40 V. The shaped membrane lenses show lower wave front errors than the planar ones, down to 24 nm. However, the system with a planar membrane achieves a larger refractive power...

  19. Optically amplifying planar glass waveguides: Laser on a chip

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas

    The objective of this work was to devlop optically amplifying planar wavguides, using erbium-doped germano-silicate glass films deposited by PECVD (Plasma Enhanced Chemical Vapour Deposition). The waveguides should exhibit enough gain to be useful as optical amplifiers in integrated planar lightw...

  20. The square of a planar cubic graph is 7-colorable

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2017-01-01

    We prove the conjecture made by G. Wegner in 1977 that the square of every planar, cubic graph is 7-colorable. Here, 7 cannot be replaced by 6.......We prove the conjecture made by G. Wegner in 1977 that the square of every planar, cubic graph is 7-colorable. Here, 7 cannot be replaced by 6....

  1. Reversible large amplitude planar extension of soft elastomers

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Skov, Anne Ladegaard; Rasmussen, Henrik K.

    The newly developed planar elongation fixture, designed as an add-on to the filament stretch rheometer, is used to measure reversible large amplitude planar elongation on soft elastomers. The concept of the new fixture is to elongate an annulus by keeping the perimeter constant. The deformation...

  2. Mobilities and dislocation energies of planar faults in an ordered ...

    Indian Academy of Sciences (India)

    Present work describes the stability of possible planar faults of the A3B (D019) phase with an axial ratio less than the ideal. Mobilities and dislocation energies of various planar faults viz. antiphase boundaries (APBs), superlattice intrinsic stacking faults (SISFs) and complex stacking faults (CSFs) have been computed using ...

  3. Array of planar waveguide lasers with 50 GHz frequency spacing

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Laurent-Lund, Christian; Sckerl, Mads W.

    1999-01-01

    Waveguide laser arrays are demonstrated using planar silica-on-silicon technology. Excellent control over frequency separation is obtained with a single phase mask.......Waveguide laser arrays are demonstrated using planar silica-on-silicon technology. Excellent control over frequency separation is obtained with a single phase mask....

  4. The planar algebra of a semisimple and cosemisimple Hopf algebra

    Indian Academy of Sciences (India)

    To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection ...

  5. Exponentially many 5-list-colorings of planar graphs

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2007-01-01

    We prove that every planar graph with n vertices has at least 2n/9 distinct list-colorings provided every vertex has at least five available colors.......We prove that every planar graph with n vertices has at least 2n/9 distinct list-colorings provided every vertex has at least five available colors....

  6. Diaphragm Effect of Steel Space Roof Systems in Hall Structures

    Directory of Open Access Journals (Sweden)

    Mehmet FENKLİ

    2015-09-01

    Full Text Available Hall structures have been used widely for different purposes. They have are reinforced concrete frames and shear wall with steel space roof systems. Earthquake response of hall structures is different from building type structures. One of the most critical nodes is diaphragm effect of steel space roof on earthquake response of hall structures. Diaphragm effect is depending on lateral stiffness capacity of steel space roof system. Lateral stiffness of steel space roof system is related to modulation geometry, support conditions, selected sections and system geometry. In current paper, three representative models which are commonly used in Turkey were taken in to account for investigation. Results of numerical tests were present comparatively

  7. Nonlinear analysis of magnetization dynamics excited by spin Hall effect

    Science.gov (United States)

    Taniguchi, Tomohiro

    2015-03-01

    We investigate the possibility of exciting self-oscillation in a perpendicular ferromagnet by the spin Hall effect on the basis of a nonlinear analysis of the Landau-Lifshitz-Gilbert (LLG) equation. In the self-oscillation state, the energy supplied by the spin torque during a precession on a constant energy curve should equal the dissipation due to damping. Also, the current to balance the spin torque and the damping torque in the self-oscillation state should be larger than the critical current to destabilize the initial state. We find that these conditions in the spin Hall system are not satisfied by deriving analytical solutions of the energy supplied by the spin transfer effect and the dissipation due to the damping from the nonlinear LLG equation. This indicates that the self-oscillation of a perpendicular ferromagnet cannot be excited solely by the spin Hall torque.

  8. Stability of fractional quantum Hall states in disordered photonic systems

    Science.gov (United States)

    DeGottardi, Wade; Hafezi, Mohammad

    2017-11-01

    The possibility of realizing fractional quantum Hall liquids in photonic systems has attracted a great deal of interest of late. Unlike electronic systems, interactions in photonic systems must be engineered from nonlinear elements and are thus subject to positional disorder. The stability of the topological liquid relies on repulsive interactions. In this paper we investigate the stability of fractional quantum Hall liquids to impurities which host attractive interactions. Employing the Bose–Hubbard model with a magnetic field, we find that for sufficiently strong attractive interactions these impurities can destroy the topological liquid. However, we find that the liquid is quite robust to these defects, a fact which bodes well for the realization of topological quantum Hall liquids in photonic systems.

  9. Quantum Hall effect in graphene with superconducting electrodes.

    Science.gov (United States)

    Rickhaus, Peter; Weiss, Markus; Marot, Laurent; Schönenberger, Christian

    2012-04-11

    We have realized an integer quantum Hall system with superconducting contacts by connecting graphene to niobium electrodes. Below their upper critical field of 4 T, an integer quantum Hall effect coexists with superconductivity in the leads but with a plateau conductance that is larger than in the normal state. We ascribe this enhanced quantum Hall plateau conductance to Andreev processes at the graphene-superconductor interface leading to the formation of so-called Andreev edge-states. The enhancement depends strongly on the filling-factor and is less pronounced on the first plateau due to the special nature of the zero energy Landau level in monolayer graphene. © 2012 American Chemical Society

  10. Crossover between spin swapping and Hall effect in disordered systems

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2015-07-16

    We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.

  11. Metal-to-insulator switching in quantum anomalous Hall states

    Science.gov (United States)

    Pan, Lei; Kou, Xufeng; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Shao, Qiming; Zhang, Shou Cheng; Wang, Kang Lung

    Quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films as a form of dissipationless transport without external magnetic field. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2 Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. The universal QAHE phase diagram is further confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different.

  12. Topological Phase Transitions in the Photonic Spin Hall Effect

    Science.gov (United States)

    Kort-Kamp, W. J. M.

    2017-10-01

    The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study optical spin-orbit interactions in semiconducting Dirac-like systems. We unveil topological phase transitions in the photonic spin Hall effect in the graphene family materials. It is shown that an external static electric field and a high frequency circularly polarized laser allow for active on-demand manipulation of electromagnetic beam shifts. The spin Hall effect of light presents a rich dependence with radiation degrees of freedom, and material properties, and features nontrivial topological properties. We discover that photonic Hall shifts are sensitive to spin and valley properties of the charge carriers, providing an unprecedented pathway to investigate spintronics and valleytronics in staggered 2D semiconductors.

  13. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, C. [Departamento de Física, Universidad Militar Nueva Granada, Carrera 11 101-80 Bogotá D.C. (Colombia); Consejo, C.; Chaubet, C., E-mail: christophe.chaubet@univ-montp2.fr [Université Montpellier 2, Laboratoire Charles Coulomb UMR5221, F-34095 Montpellier, France and CNRS, Laboratoire Charles Coulomb UMR5221, F-34095 Montpellier (France); Degiovanni, P. [Université de Lyon, Fédération de Physique Andrée Marie Ampère, CNRS, Laboratoire de Physique de l' Ecole Normale Supérieure de Lyon, 46 allée d' Italie, 69364 Lyon Cedex 07 (France)

    2014-03-28

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.

  14. Maximizing utilization of sport halls during peak hours

    DEFF Research Database (Denmark)

    Iversen, Evald Bundgård; Forsberg, Peter

    BACKGROUNDDuring peak hours (4.30pm-8pm) demand for timeslots in sport halls in Denmark are high and there are few timeslots available. Further, focus on how public resources are spent most efficient is increasing (Iversen, 2013). This makes it interesting to analyse how utilization could...... be increased during peak hours. DATA AND METHODOLOGYData is collected by observation of activities during two weeks on for example whether halls are used or not; the amount of playing field used; and number of participants (Iversen, 2012). Data on 1.331 activities in 36 sport halls across 4 municipalities have...... been collected. RESULTS The number of participants per activity is higher during peak hours, which is expected when demand is high. However, the usage of sport floor only differs slightly between peak and low hours. Both during peak and low hours on average 80-100 per cent of floor space is used...

  15. Carl Gustav Jung and Granville Stanley Hall on Religious Experience.

    Science.gov (United States)

    Kim, Chae Young

    2016-08-01

    Granville Stanley Hall (1844-1924) with William James (1842-1910) is the key founder of psychology of religion movement and the first American experimental or genetic psychologist, and Carl Gustav Jung (1875-1961) is the founder of the analytical psychology concerned sympathetically about the religious dimension rooted in the human subject. Their fundamental works are mutually connected. Among other things, both Hall and Jung were deeply interested in how the study of religious experience is indispensable for the depth understanding of human subject. Nevertheless, except for the slight indication, this common interest between them has not yet been examined in academic research paper. So this paper aims to articulate preliminary evidence of affinities focusing on the locus and its function of the inner deep psychic dimension as the religious in the work of Hall and Jung.

  16. Nanopatterning planar and non-planar mold surfaces for a polymer replication

    DEFF Research Database (Denmark)

    Cech, Jiri; Pranov, Henrik; Kofod, Guggi

    2013-01-01

    We present a novel process to create nanopatterns on planar and non-planar polymer replication tools, such as metallic molds for an injection molding. Such tools with nanopatterned cavities then allow affordable mass production of nanopatterned polymer parts with inherent advanced functionalities...... such as low reflectivity or color effects, self cleaning, superhydrofobicity, antifouling, etc, all created in a single injection molding cycle. Presented process is based on the classic cleanroom microfabrication of micro/nano patterns, nickel electroplating and template removal to form a flexible......, freestanding nickel foil with a reversed pattern. This foil is then used either as a direct master for polymer replication or as a master for an extremely high pressure embossing of such master onto a metallic injection mold cavity surface coated with special coating, which, when cured, forms robust and hard...

  17. A topological Dirac insulator in a quantum spin Hall phase.

    Science.gov (United States)

    Hsieh, D; Qian, D; Wray, L; Xia, Y; Hor, Y S; Cava, R J; Hasan, M Z

    2008-04-24

    When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic fields. Bulk Bi(1-x)Sb(x) single crystals are predicted to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher-dimensional analogues of the edge states that characterize a quantum spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi(1-x)Sb(x) is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest following the new findings in two-dimensional graphene and charge quantum Hall fractionalization observed in pure bismuth. However, despite numerous transport and magnetic measurements on the Bi(1-x)Sb(x) family since the 1960s, no direct evidence of either topological Hall states or bulk Dirac particles has been found. Here, using incident-photon-energy-modulated angle-resolved photoemission spectroscopy (IPEM-ARPES), we report the direct observation of massive Dirac particles in the bulk of Bi(0.9)Sb(0.1), locate the Kramers points at the sample's boundary and provide a comprehensive mapping of the Dirac insulator's gapless surface electron bands. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the 'topological metal'. They also suggest that this material has potential application in developing next-generation quantum computing devices that may

  18. Electromagnetic, flow and thermal study of a miniature planar spiral transformer with planar, spiral windings

    Directory of Open Access Journals (Sweden)

    J. B. DUMITRU

    2014-04-01

    Full Text Available This paper presents mathematical modeling and numerical simulation results for a miniature, planar, spiral transformer (MPST fabricated in micro-electromechanical MEMS technology. When the MPST is magnetic nanofluid cored, magnetization body forces occur, entraining it into a complex flow. This particular MPST design is then compared with other competing solutions concerning the lumped (circuit parameters. Finally, the heat transfer problem is solved for different electromagnetic working conditions to assess the thermal loads inside the MPST.

  19. On Longest Cycles in Essentially 4-Connected Planar Graphs

    Directory of Open Access Journals (Sweden)

    Fabrici Igor

    2016-08-01

    Full Text Available A planar 3-connected graph G is essentially 4-connected if, for any 3-separator S of G, one component of the graph obtained from G by removing S is a single vertex. Jackson and Wormald proved that an essentially 4-connected planar graph on n vertices contains a cycle C such that . For a cubic essentially 4-connected planar graph G, Grünbaum with Malkevitch, and Zhang showed that G has a cycle on at least ¾ n vertices. In the present paper the result of Jackson and Wormald is improved. Moreover, new lower bounds on the length of a longest cycle of G are presented if G is an essentially 4-connected planar graph of maximum degree 4 or G is an essentially 4-connected maximal planar graph.

  20. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg

    2001-01-01

    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...... fabricated using plasma enhanced chemical vapor deposition (PECVD) and reactive ion etching (RIE). These processes and the control of the film composition is discussed. Ytterbium doped planar waveguides are demonstrated, and it is shown that codoping with aluminium has a positive influence...... on the fluorescence intensity of the ytterbium ions. Based on this result ytterbium doped planar waveguides with a net gain of 0.36 dB/cm are made. The glass is sensitive to ultra violet (UV) light, and using UV-writing Bragg gratings are photoimprinted in the waveguides, and a laser is made in a distributed Bragg...

  1. Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, H., E-mail: sih@zurich.ibm.com; Borg, M.; Moselund, K.; Cutaia, D.; Riel, H. [IBM Research – Zurich, 8803 Rüschlikon (Switzerland); Gignac, L.; Breslin, C. M.; Bruley, J. [IBM Research – T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2015-06-08

    III–V nanoscale devices were monolithically integrated on silicon-on-insulator (SOI) substrates by template-assisted selective epitaxy (TASE) using metal organic chemical vapor deposition. Single crystal III–V (InAs, InGaAs, GaAs) nanostructures, such as nanowires, nanostructures containing constrictions, and cross junctions, as well as 3D stacked nanowires were directly obtained by epitaxial filling of lithographically defined oxide templates. The benefit of TASE is exemplified by the straightforward fabrication of nanoscale Hall structures as well as multiple gate field effect transistors (MuG-FETs) grown co-planar to the SOI layer. Hall measurements on InAs nanowire cross junctions revealed an electron mobility of 5400 cm{sup 2}/V s, while the alongside fabricated InAs MuG-FETs with ten 55 nm wide, 23 nm thick, and 390 nm long channels exhibit an on current of 660 μA/μm and a peak transconductance of 1.0 mS/μm at V{sub DS} = 0.5 V. These results demonstrate TASE as a promising fabrication approach for heterogeneous material integration on Si.

  2. Hall effect on tearing mode instabilities in tokamak

    Science.gov (United States)

    Zhang, W.; Ma, Z. W.; Wang, S.

    2017-10-01

    The tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulting from the decoupling of electron and ion motions, can cause fast development and rotation of the perturbation structure of the tearing mode. A high-accuracy nonlinear magnetohydrodynamics code is developed to study Hall effects on the evolution of tearing modes in the Tokamak geometry. It is found that the linear growth rate increases with the increase in the ion skin depth and the self-consistently generated rotation can greatly alter the dynamic behavior of the double tearing mode.

  3. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  4. Disorder Effect of Quantum Anomalous Hall effect in Graphene

    Science.gov (United States)

    Qiao, Zhenhua; Yang, Shengyuan A.; Tse, Wang-Kong; Yao, Yugui; Wang, Jian; Niu, Qian

    2011-03-01

    We investigate the possibility of realizing quantum anomalous Hall effect in graphene. We show that a bulk energy gap can be opened in the presence of both Rashba spin-orbit coupling and an exchange field. We calculate the Berry curvature distribution and find a nonzero Chern number for the valence bands and demonstrate the existence of gapless edge states. Inspired by this finding, we also study, by first-principles method, a concrete example of graphene with Fe atoms adsorbed on top, obtaining the same result. We further study the disorder effect of this quantum anomalous Hall effect and show how this state is localized in the presence of strong disorders.

  5. Porting a Hall MHD Code to a Graphic Processing Unit

    Science.gov (United States)

    Dorelli, John C.

    2011-01-01

    We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.

  6. Inverse spin Hall effect in a closed loop circuit

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Y.; Auvray, F.; Wakamura, T.; Niimi, Y., E-mail: niimi@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); Fert, A. [Unité Mixte de Physique CNRS/Thales, 91767 Palaiseau France associée à l' Université de Paris-Sud, 91405 Orsay (France); Otani, Y. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-06-16

    We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.

  7. Impact of external conditions on energy consumption in industrial halls

    Science.gov (United States)

    Żabnieńśka-Góra, Alina

    2017-11-01

    The energy demand for heating the halls buildings is high. The impact on this may have the technology of production, building construction and technology requirements (HVAC systems). The isolation of the external partitions, the location of the object in relation to the surrounding buildings and the degree of the interior insolation (windows and skylights) are important in the context of energy consumption. The article discusses the impact of external conditions, wind and sunlight on energy demand in the industrial hall. The building model was prepared in IDA ICE 4.0 simulation software. Model validation was done based on measurements taken in the analyzed building.

  8. Skyrmion-induced anomalous Hall conductivity on topological insulator surfaces

    Science.gov (United States)

    Araki, Yasufumi; Nomura, Kentaro

    2017-10-01

    Electron-spin momentum locking together with background magnetic textures can significantly alter the electron transport properties. We investigate theoretically the electron transport at the interface between a topological insulator and a magnetic insulator with magnetic skyrmions on the top. In contrast to the conventional topological Hall effect in normal metals, the skyrmions yield an additional contribution to the anomalous Hall conductivity even in the absence of in-plane magnetic texture, arising from the phase factor characteristic of Dirac electrons acquired at the skyrmion boundary.

  9. Wind tunnel tests of tent halls of different shape

    Directory of Open Access Journals (Sweden)

    Porowska Agnieszka

    2017-01-01

    Full Text Available Aerodynamic investigations of wind pressure distribution on the surfaces of models of tent halls were carried out in the boundary layer wind tunnel at the Cracow University of Technology. Four types of objects of different shapes and construction were tested. Although tent halls are significantly vulnerable with respect to the wind action, there is no information about pressure distribution on objects of such type in standards, codes and normalization documents. Obtained results indicate that it is necessary to take into account different configurations of wind action while designing of the analysed structures.

  10. Quantum inferring acausal structures and the Monty Hall problem

    Science.gov (United States)

    Kurzyk, Dariusz; Glos, Adam

    2016-12-01

    This paper presents a quantum version of the Monty Hall problem based upon the quantum inferring acausal structures, which can be identified with generalization of Bayesian networks. Considered structures are expressed in formalism of quantum information theory, where density operators are identified with quantum generalization of probability distributions. Conditional relations between quantum counterpart of random variables are described by quantum conditional operators. Presented quantum inferring structures are used to construct a model inspired by scenario of well-known Monty Hall game, where we show the differences between classical and quantum Bayesian reasoning.

  11. Spin-Hall nano-oscillator: A micromagnetic study

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, A.; Azzerboni, B.; Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Carpentieri, M. [Department of Electrical and Information Engineering, Politecnico of Bari, via E. Orabona 4, I-70125 Bari (Italy); Laudani, A. [Department of Engineering, University of Roma Tre, via V. Volterra 62, I-00146 Roma (Italy); Gubbiotti, G. [Istituto Officina dei Materiali del CNR (CNR-IOM), Unità di Perugia c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, 06123 Perugia (Italy)

    2014-07-28

    This Letter studies the dynamical behavior of spin-Hall nanoscillators from a micromagnetic point of view. The model parameters have been identified by reproducing recent experimental data quantitatively. Our results indicate that a strongly localized mode is observed for in-plane bias fields such as in the experiments, while predict the excitation of an asymmetric propagating mode for large enough out-of plane bias field similarly to what observed in spin-torque nanocontact oscillators. Our findings show that spin-Hall nanoscillators can find application as spin-wave emitters for magnonic applications where spin waves are used for transmission and processing information on nanoscale.

  12. Fractional Quantum Hall Plateau Transitions and Composite Fermi Liquids

    Science.gov (United States)

    Cho, Gil Young; Moon, Eun-Gook; Fradkin, Eduardo

    We will investigate relationship between the fractional quantum Hall plateau transition from Laughlin state at ν =1/2 n + 1 to a trivial insulator, and composite Fermi liquid at ν =1/2 (2 n + 1) . We use the recently-developed quantum field theoretic technique, 3d dualities, in combinations with the coupled-wire descriptions for quantum Hall states. We will show that we can also access various other phases, including non-abelian paired states at ν =1/2 (2 n + 1) , from the plateau transition. This work is supported by the Brain Korea 21 PLUS Project of Korea Government and KAIST start-up funding (GYC & EGM).

  13. The cadherin Fat2 is required for planar cell polarity in the Drosophila ovary

    National Research Council Canada - National Science Library

    Ivana ViktorinovÃ; Tina König; Karin Schlichting; Christian Dahmann

    2009-01-01

    Planar cell polarity is an important characteristic of many epithelia. In the Drosophila wing, eye and abdomen, establishment of planar cell polarity requires the core planar cell polarity genes and two cadherins, Fat and Dachsous...

  14. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a flight version of a high power Hall Effect thruster. While numerous high power Hall Effect thrusters have been demonstrated in the...

  15. Measured Early Lateral Energy Fractions in Concert Halls and Opera Houses

    Science.gov (United States)

    BARRON, M.

    2000-04-01

    In the 30 years since early lateral reflections were first suggested as important for concert halls, spatial impression and source broadening have become almost universally accepted as essential characteristics of halls with good acoustics. Two objective measures of source broadening have been proposed. Measured values of the best defined of these measures, the early lateral energy fraction (LF), are considered here. Results from two independent measurement surveys are discussed. Comparisons of LF values by hall show a significant link between hall mean LF and hall width. There is however considerable overlap between measured LF values in different halls so the relevance of describing halls by their mean early lateral energy fraction values is questionable. The behaviour of LF values within auditoria is discussed for different concert hall plan forms and within opera houses. A measure of source broadening including sound level is proposed and results considered in the context of auditorium design.

  16. Inviscid instabilities of non-planar transversely sheared flows governed by the generalized Rayleigh pressure equation

    Science.gov (United States)

    Afsar, Mohammed; Sescu, Adrian

    2014-11-01

    Transition in boundary layer flow over flat/curved surfaces and at moderate to high freestream disturbances or under the influence of various surface roughness elements often involves inviscid secondary instability. This stage in transition can be pictured as being a parametric resonance-type phenomena where a unstable primary flow saturates to a more-or-less steady-state, susceptible to infinitesimal three-dimensional wave-like instability modes that grow much faster than the primary. In decades of research on boundary layers, experimenters have relied upon an inflection point in the wall normal y and/or spanwise directions z of the primary as a pre-cursor to transition. This assertion, based on Rayleigh's theorem, does not however apply in transversely sheared flows. In this talk, we show that an alternative local criterion for inviscid secondary instability - sharing similarities to the original one-dimensional Rayleigh criterion - exists for a class of non-planar transversely sheared flows at long streamwise wavelength. Our general stability criterion is, remarkably, given by necessity of the surface U y , z possessing at least one saddle point in the plane. We analyze this saddle-point criterion numerically show its relevance to secondary instabilities. M.Z.A. would like to anknowledge financial support from Laminar Flow Control (LFC-UK) Research Program at Imperial College London and would like to thank Professor Philip Hall for motivating his interest in this problem.

  17. Finite-temperature effective boundary theory of the quantized thermal Hall effect

    OpenAIRE

    Nakai, Ryota; Ryu, Shinsei; Nomura, Kentaro

    2015-01-01

    A finite-temperature effective free energy of the boundary of a quantized thermal Hall system is derived microscopically from the bulk two-dimensional Dirac fermion coupled with a gravitational field. In two spatial dimensions, the thermal Hall conductivity of fully gapped insulators and superconductors is quantized and given by the bulk Chern number, in analogy to the quantized electric Hall conductivity in quantum Hall systems. From the perspective of effective action functionals, two disti...

  18. Assessment of flatness of assumed planar surfaces for ultrasound investigation of elastic surfaces

    DEFF Research Database (Denmark)

    González, Alejandro González; Hemmsen, Martin Christian; Wilhjelm, Jens E.

    2015-01-01

    Assessment of flatness of assumed planar surfaces for ultrasound investigation of elastic surfaces......Assessment of flatness of assumed planar surfaces for ultrasound investigation of elastic surfaces...

  19. Computational Study on a PTAS for Planar Dominating Set Problem

    Directory of Open Access Journals (Sweden)

    Qian-Ping Gu

    2013-01-01

    Full Text Available The dominating set problem is a core NP-hard problem in combinatorial optimization and graph theory, and has many important applications. Baker [JACM 41,1994] introduces a k-outer planar graph decomposition-based framework for designing polynomial time approximation scheme (PTAS for a class of NP-hard problems in planar graphs. It is mentioned that the framework can be applied to obtain an O(2ckn time, c is a constant, (1+1/k-approximation algorithm for the planar dominating set problem. We show that the approximation ratio achieved by the mentioned application of the framework is not bounded by any constant for the planar dominating set problem. We modify the application of the framework to give a PTAS for the planar dominating set problem. With k-outer planar graph decompositions, the modified PTAS has an approximation ratio (1 + 2/k. Using 2k-outer planar graph decompositions, the modified PTAS achieves the approximation ratio (1+1/k in O(22ckn time. We report a computational study on the modified PTAS. Our results show that the modified PTAS is practical.

  20. Stuart Hall and the Theory and Practice of Articulation

    Science.gov (United States)

    Clarke, John

    2015-01-01

    In this article, I argue that the idea of articulation links three different dimensions of Stuart Hall's work: it is central to the work of cultural politics, to the work of hegemony and to his practice of embodied pedagogy. I claim that his approach to pedagogy entails the art of listening combined with the practice of theorising in the service…