WorldWideScience

Sample records for exchange properties part

  1. Properties of Foreign Exchange Risk Premiums

    DEFF Research Database (Denmark)

    Sarno, Lucio; Schneider, Paul; Wagner, Christian

    2012-01-01

    We study the properties of foreign exchange risk premiums that can explain the forward bias puzzle, defined as the tendency of high-interest rate currencies to appreciate rather than depreciate. These risk premiums arise endogenously from the no-arbitrage condition relating the term structure...... of interest rates and exchange rates. Estimating affine (multi-currency) term structure models reveals a noticeable tradeoff between matching depreciation rates and accuracy in pricing bonds. Risk premiums implied by our global affine model generate unbiased predictions for currency excess returns...

  2. Ion Exchange Properties of Georgian Natural Zeolites

    Directory of Open Access Journals (Sweden)

    Vladimer Tsitsishvili

    2017-06-01

    Full Text Available Ion-exchange properties of natural zeolites of Georgia with a relatively low Si/Al ratio have been studied: analcimes are characterized by selectivity series: Na+>K+>Ag+>NH4+>Ca+2>Sr+2>Li+; for phillipsites selectivity sequences are different for calcium- and potassium forms; selectivity sequence for scolecite is: Sr+2>Ba+2>Rb+>Ca+2>Cs+>K+>NH4+>Na+>Mg+2>Li+>Cd+2>Cu+2> Mn+2> Zn+2>Co+2>Ni+2.

  3. Ion exchange properties of humus acids

    Science.gov (United States)

    Shoba, V. N.; Chudnenko, K. V.

    2014-08-01

    Ion exchange equilibriums in a complex of brown humic acids (HAs) and related fulvic acids (FAs) with cations (H+, K+, Na+, Ca2+, Mg2+, Zn2+, Mn2+, Cu2+, Fe3+, and Al3+) have been studied, and the activity coefficients of the acid monoionic forms have been determined. The composition of the stoichiometric cell in the system of black and brown HAs and related FAs in a leached chernozem of the Ob' region has been calculated with consideration for the earlier studies of the ion exchange properties of black HAs and related FAs. It has been shown that hydrogen, calcium, magnesium, aluminum, and iron are the major components in the exchange complex of humus acids in the leached chernozem with the other cations being of subordinate importance. In spite of some differences between the analytical and calculated compositions of the humus acids, the results of the calculations can be considered satisfactory. They indicate that calculations are feasible for such complex objects as soils, and their accuracy will improve with the expansion of the experimental studies. The physicochemical simulation of the transformation of the humus acid composition under different acid-base conditions shows that the contents of most cations decrease under alkalization, and hydroxides or carbonates become the most stable forms of these cations. Under the acidification of solutions, the binding of alkaline and alkaline-earth elements by humus acids decreases and the adsorption of iron and aluminum by humus acids increases.

  4. The Mechanism of Graviton Exchange between Bodies, Part II

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2016-01-01

    Gravitational Law by space-time curvature. Quantum gravity is a part of quantum mechanics which is expected to combine these two theories, and it describes gravity force according to the principles of quantum mechanics which has not got the desired result, yet. In CPH theory, after reconsidering and analyzing...... the behavior of photon in the gravitational field, a new definition of graviton based on carrying the gravity force is given. By using this definition, graviton exchange mechanism between bodies/objects is described. As the purpose of quantum gravity is describing the force of gravity by using the principles...... given in which the relation between gravity (graviton) and electromagnetic (photon) have been described. In this part, the graviton exchange mechanism in the beneath of layer have studied and analyzed and it finally has been tried to generalize and extend the graviton exchange mechanism from between...

  5. Synthesis, characterization and ion exchange properties of ...

    Indian Academy of Sciences (India)

    The material has been characterized on the basis of chemical composition, pH titration, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis. The effect on the exchange capacity of drying the exchanger at different temperatures has been studied. The analytical importance of the material has been ...

  6. Synthesis, characterization and ion exchange properties of ...

    Indian Academy of Sciences (India)

    zirconium(IV) oxychloride. Its ion exchange capacity for Na+ and K+ was found to be 2⋅20 and 2⋅35 meq g–1 dry exchanger, respectively. The material has been characterized on the basis of chemical composition, pH titration, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis. The effect on the.

  7. 75 FR 24820 - Federal Management Regulation; Replacement of Personal Property Pursuant to the Exchange/Sale...

    Science.gov (United States)

    2010-05-06

    ...] RIN 3090-AI92 Federal Management Regulation; Replacement of Personal Property Pursuant to the Exchange... management and personnel. List of Subjects in 41 CFR Part 102-39 Government property management and personal...: Final rule. SUMMARY: The General Services Administration (GSA) is amending the Federal Management...

  8. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    Science.gov (United States)

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  9. Ion exchange properties of Japanese natural zeolites in seawater.

    Science.gov (United States)

    Wajima, Takaaki

    2013-01-01

    Ion exchange properties of five different Japanese natural zeolites in seawater were examined. Sodium ions could be reduced by all zeolites, although anions, Cl(-) and SO(4)(2-), in seawater showed barely changes. Natural zeolite desalination treatment mainly depends on the ion exchange between Na(+), K(+) and Mg(2+) in seawater and Ca(2+) in natural zeolite. This study found that mordenite is superior to clinoptilolite for use in Na(+) reduction. Mordenite with high cation exchange capacity containing Ca(2+) resulted in the highest Na(+) reduction from seawater.

  10. The Representation and Exchange of Material and Other Engineering Properties

    Directory of Open Access Journals (Sweden)

    Norman Swindells

    2009-09-01

    Full Text Available The representation of information and its exchange in a communication requires the use of a common information model to define the semantics and syntax of the representation and a common dictionary to define the meaning of the data items. These fundamental concepts are the basis of the new standard ISO 10303-235: 'Engineering properties for product design and verification' for the computer representation and exchange of material and any other engineering properties of a product and to provide an audit trail for the derivation of the property value. A related dictionary conforming to ISO 13584 can define testing methods and their properties and enable the information model to be used for any property of any product.

  11. 78 FR 49484 - Exchange of Air Force Real Property for Non-Air Force Real Property

    Science.gov (United States)

    2013-08-14

    ... Department of Air Force Exchange of Air Force Real Property for Non-Air Force Real Property SUMMARY: Notice identifies excess Federal real property under administrative jurisdiction of the United States Air Force it... under the administrative jurisdiction of the Air Force. FOR FURTHER INFORMATION CONTACT: Mr. Arthur...

  12. Students seeking technical internships as part of an exchange program

    OpenAIRE

    Nystrom, Lynn A.

    2004-01-01

    Virginia Tech students are seeking the support of research centers, academic departments, and area businesses to provide opportunities for technical internships through the International Association for the Exchange of Students for Technical Experience (IAESTE).

  13. Properties of Alloy 617 for Heat Exchanger Design

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Richard Neil [Idaho National Laboratory; Carroll, Laura Jill [Idaho National Laboratory; Benz, Julian Karl [Idaho National Laboratory; Wright, Julie Knibloe [Idaho National Laboratory; Lillo, Thomas Martin [Idaho National Laboratory; Lybeck, Nancy Jean [Idaho National Laboratory

    2014-10-01

    Abstract – Alloy 617 is among the primary candidates for very high temperature reactor heat exchangers anticipated for use up to 950ºC. Elevated temperature properties of this alloy and the mechanisms responsible for the observed tensile, creep and creep-fatigue behavior have been characterized over a wide range of test temperatures up to 1000ºC. Properties from the current experimental program have been combined with archival information from previous VHTR research to provide large data sets for many heats of material, product forms, and weldments. The combined data have been analyzed to determine conservative values of yield and tensile strength, strain rate sensitivity, creep-rupture behavior, fatigue and creep- fatigue properties that can be used for engineering design of reactor components. Phenomenological models have been developed to bound the regions over which the engineering properties are well known or can be confidently extrapolated for use in design.

  14. The Mechanism of Graviton Exchange between Bodies, Part 1

    DEFF Research Database (Denmark)

    javadi, Hossein; Forouzbakhsh, Farshid

    2016-01-01

    In spite of publishing many articles about graviton, but it has not been done any considerable work about mechanism of graviton exchange between bodies/particles. The reason is that the old graviton definition (in modern physics) is unable to describe this mechanism and also it is impossible to get...... the theory of the quantum gravity. In this article with re-considering physical phenomena, a new definition of graviton is given which by its using; the mechanism of graviton exchange between bodies/particle is described and surveyed....

  15. Intrachanges as part of complex chromosome-type exchange aberrations

    NARCIS (Netherlands)

    Boei, JJWA; Vermeulen, S; Moser, J; Mullenders, LHF; Natarajan, AT

    2002-01-01

    The chromosome-type exchange aberrations induced by ionizing radiation during the G(0)/G(1) phase of the cell cycle are believed to be the result of illegitimate rejoining of chromosome breaks. From numerous studies using chromosome painting, it has emerged that even after a moderate dose of

  16. Structure Property Studies for Additively Manufactured Parts

    Energy Technology Data Exchange (ETDEWEB)

    Milenski, Helen M [Univ. of Mexico, Los Alamos, NM (United States); Schmalzer, Andrew Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelly, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-17

    Since the invention of modern Additive Manufacturing (AM) processes engineers and designers have worked hard to capitalize on the unique building capabilities that AM allows. By being able to customize the interior fill of parts it is now possible to design components with a controlled density and customized internal structure. The creation of new polymers and polymer composites allow for even greater control over the mechanical properties of AM parts. One of the key reasons to explore AM, is to bring about a new paradigm in part design, where materials can be strategically optimized in a way that conventional subtractive methods cannot achieve. The two processes investigated in my research were the Fused Deposition Modeling (FDM) process and the Direct Ink Write (DIW) process. The objectives of the research were to determine the impact of in-fill density and morphology on the mechanical properties of FDM parts, and to determine if DIW printed samples could be produced where the filament diameter was varied while the overall density remained constant.

  17. DERIVATIVE MARKET: AN INTEGRAL PART OF THE ZIMBABWE STOCK EXCHANGE

    Directory of Open Access Journals (Sweden)

    KOSMAS NJANIKE

    2010-01-01

    Full Text Available The study assesses the need for a derivative market as an integral of Zimbabwe Stock Exchange. It also aims to evaluate the feasibility of establishing a derivative market as an essential element of Zimbabwe Stock Exchange. The research identifies factors that need to be addressed to facilitate such a market. Views of various fund managers, financial analysts and dealers drawn from asset management firms were used. Changes in market trends are influenced by hyper inflation and acute financial policies increase the level of unpredictability in fund growth and return. Asset managers need to be in a market where they are able to actively manage and devise mechanisms that promote fund growth and managing the risks they are exposed to. The study revealed that there are many institutional arrangements lacking to facilitate this financial innovation. A thorough analysis of the research findings was made and it concluded that there is need for a derivative market as it can be an efficient vehicle for improving investment performance.

  18. Air conditioning - window model. Part 2. Thermal exchange processes; Klimatechnik - Fenstermodell. Teil 2. Thermische Austauschvorgaenge

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, J. [Georg-Simon-Ohm-Fachhochschule, Nuernberg (Germany)

    2005-07-01

    Modern external walls and windows require detailed calculations which cannot be based on out-of-date information. While the first part of this contribution discussed short-wave solar radiation, this sequel goes into thermal exchange processes. (orig.)

  19. A thermoelectric power generating heat exchanger: Part II – Numerical modeling and optimization

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Bjørk, Rasmus; Lindeburg, N.

    2016-01-01

    In Part I of this study, the performance of an experimental integrated thermoelectric generator (TEG)-heat exchanger was presented. In the current study, Part II, the obtained experimental results are compared with those predicted by a finite element (FE) model. In the simulation of the integrated...... TEG-heat exchanger, the thermal contact resistance between the TEG and the heat exchanger is modeled assuming either an ideal thermal contact or using a combined Cooper–Mikic–Yovanovich (CMY) and parallel plate gap formulation, which takes into account the contact pressure, roughness and hardness...

  20. 76 FR 67371 - Federal Management Regulation; Prohibited List for Exchange/Sale of Personal Property

    Science.gov (United States)

    2011-11-01

    ... 3090-AJ20 Federal Management Regulation; Prohibited List for Exchange/Sale of Personal Property AGENCY... intent of the property management legislation at 40 U.S.C. 501 et seq. to require that property-holding... property management and Personal property. Dated: August 7, 2011. Martha Johnson, Administrator of General...

  1. New bifunctional anion-exchange resins for nuclear waste treatment: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F.; Jarvinen, G.D.; Barr, M.E. [Los Alamos National Lab., NM (United States); Bartsch, R.A. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemistry and Biochemistry

    1997-06-01

    Additional bifunctional anion-exchange resins have been designed, synthesized and evaluated for their ability to take up Pu(IV) from nitric acid solutions. Bifunctionality is achieved by adding a second anion-exchange site to the pyridine nitrogen (also an anion-exchange site) of the base poly(4-vinylpyridine) resin. Previous work focused on the effect of varying the chemical properties of the added site along with the length of an alkylene spacer between the two sites. Here the authors examine four new 3- and 4-picolyl derivatives which maintain more rigidly defined geometries between the two nitrogen cationic sites. These materials, which have the two anion-exchange sites separated by three and four carbons, respectively, exhibit lower overall Pu(IV) distribution coefficients than the corresponding N-alkylenepyridium derivatives with more flexible spacers. Methylation of the second pyridium site results in a ca. 20% increase in the Pu(IV) distribution coefficients.

  2. 41 CFR 102-39.55 - When should I offer property I am exchanging or selling under the exchange/sale authority to...

    Science.gov (United States)

    2010-07-01

    ... Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false When should I offer property I am exchanging or selling under the exchange/sale authority to other Federal agencies or State...

  3. Ion-exchange properties of strontium hydroxyapatite under acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Shigeru; Nishioka, Hitoshi; Moriga, Toshihiro; Hayashi, Hiromu [Univ. of Tokushima, Minamijosanjima (Japan). Dept. of Chemical Science and Technology; Moffat, J.B. [Univ. of Waterloo, Ontario (Canada)

    1998-09-01

    The ion exchange of strontium hydroxyapatite (SrHAp) with Pb{sup 2+} has been investigated under acidic conditions at 293 K. The addition of various acids to the exchanging solution enhanced the exchange capacity in the order HCl > HBr > HF > HNO{sub 3} > no acid, corresponding to the formation of halogen apatites with the former three acids or hydrogen phosphate with HNO{sub 3}. Since the ion-exchange capacity of SrHAp under nonacidic conditions is higher than that of chlorapatite, the aforementioned observations can be attributed to the participation of the protons introduced by the acids.z

  4. Aluminum toxicity in tomato. Part 2.Leaf gas exchange, chlorophyll content, and invertase activity

    Science.gov (United States)

    L. Simon; M. Kieger; Shi-Jean S. Sung; T.J. Smalley

    1994-01-01

    The effect of aluminum (Al) toxicity on leaf gas exchange, leaf chlorophyll content, and sucrose metabolizing enzyme activity of two tomato cultivars (Lycopersicon esculentum Mill. 'Mountain Pride' and 'Floramerica') was studied to determine the mechanism of growth reduction observed in a related study (Simon et al., 1994, Part 1).Plants were grown...

  5. Antibacterial properties of Ag-exchanged Philippine natural zeolite-chitosan composites

    Science.gov (United States)

    Taaca, Kathrina Lois M.; Olegario, Eleanor M.; Vasquez, Magdaleno R.

    2017-12-01

    Zeolites are microporous minerals composed of silicon, aluminum and oxygen. These aluminosilicates consist of tetrahedral units which produce open framework structures to generate a system of pores and cavities of molecular dimensions. Zeolites are naturally abundant and can be mined in most parts of the world. In this study, natural zeolites (NaZ) which are locally-sourced here in the Philippines were investigated to determine its properties. An ion-exchange process was utilized, using the zeolite to silver (Ag) solution ratio of 1:20 (w/v), to incorporate Ag into the zeolite framework. Characterizations such as XRD, AAS, and Agar diffusion assay were used to evaluate the properties of the synthesized Ag-exchanged zeolites (AgZ). X-ray diffraction revealed that both NaZ and AgZ have peaks mostly corresponding to the clinoptilolite structure, with some trace peaks of the mordenite and quartz. Absorption spectroscopy revealed that the ion exchange process added about 0.61188g of silver into the zeolite structure. This Ag content was seen to be enough to make the AgZ sample exhibit an antibacterial effect where clearing zones against E. coli and S. aureus were observed in the agar diffusion assay, respectively. The AgZ sample was also tested as ceramic filler to a polymer matrix-chitosan. The diffusion assay revealed presence of antibacterial activity to the polymer composite with AgZ fillers. These results indicate that the Philippine natural zeolite, incorporated with metals such as Ag, can be used as an antibacterial agent and can be developed as a ceramic filler to improve the antibacterial property of composite materials for biomedical application.

  6. Processing-property relationship in ion-exchanged ESP (engineered stress profile) glasses

    Science.gov (United States)

    Shen, Junwu

    2003-06-01

    A novel two-step ion exchange process was recently proposed to produce Engineered Stress Profile (ESP) glass. Important characteristics of ESP glass include high strength, relatively low strength variability and high surface damage resistance. It has been found that the mechanical reliability of ESP glass is mainly dependent on the processing conditions. Therefore, the primary objective of the current thesis is to quantitatively study the relationship between the mechanical properties of ESP glasses and the ion exchange processing conditions. Based on this relationship, processing conditions can be determined for any particular requirement of mechanical behavior for ion exchanged glass. To establish a property-processing relationship in ESP glasses, it is necessary to predict the stress profile in ion exchanged glass from the processing conditions. Since the residual stress profile in ion exchanged glass is mainly caused by the K/Na ion exchange and the stress relaxation, the diffusion process and the stress relaxation behavior of glass were studied. The K2O concentration profiles in singe-step and two-step ion exchanged soda lime silicate (SLS) glasses were calculated and found to be in a good agreement with the measured concentration profiles. The uniaxial compressive stress relaxation behavior of the SLS glass in the current thesis at typical ion exchange temperatures was studied. Since the surface composition in ion exchanged glass is significantly different from the composition of untreated glass, this composition difference could cause significant difference in glass properties including viscosity and stress relaxation. Therefore, properties of glasses with different K/Na ratios were studied, and empirical equations were obtained to estimate glass properties from the glass composition. Given the diffusion coefficient, surface concentration, composition-dependent dilation coefficient and stress relaxation data, residual stress profiles in ion-exchanged glasses

  7. Achievement of the charge exchange work diminishing of an internal combustion engine in part load

    Directory of Open Access Journals (Sweden)

    Stefan POSTRZEDNIK

    2012-01-01

    Full Text Available Internal combustion engines, used for driving of different cars, occurs not only at full load, but mostly at the part load. The relative load exchange work at the full (nominal engine load is significantly low. At the part load of the IC engine its energy efficiency ηe is significantly lower than in the optimal (nominal field range of the performance parameters. One of the numerous reasons of this effect is regular growing of the relative load exchange work of the IC engine. It is directly connected with the quantitative regulation method commonly used in the IC engines. From the thermodynamic point of view - the main reason of this effect is the throttling process (causing exergy losses occurring in the inlet and outlet channels. The known proposals for solving of this problem are based on applying of the fully electronic control of the motion of inlet, outlet valves and new reference cycles.The idea presented in the paper leads to diminishing the charge exchange work of the IC engines. The problem can be solved using presented in the paper a new concept of the reference cycle (called as eco-cycle of IC engine. The work of the engine basing on the eco-cycle occurs in two 3-stroke stages; the fresh air is delivered only once for both stages, but in range of each stage a new portion of fuel is burned. Normally the charge exchange occurs once during each engine cycle realized. Elaborated proposition bases on the elimination of chosen charge exchange processes and through this the dropping of the charge exchange work can be achieved.

  8. Statistical properties of the energy exchanged between two heat baths coupled by thermal fluctuations

    DEFF Research Database (Denmark)

    Ciliberto, S.; Imparato, A.; Naert, A.

    2013-01-01

    We study both experimentally and theoretically the statistical properties of the energy exchanged between two electrical conductors, kept at different temperatures by two different heat reservoirs, and coupled by the electrical thermal noise. Such a system is ruled by the same equations as two...... Brownian particles kept at different temperatures and coupled by an elastic force. We measure the heat flowing between the two reservoirs and the thermodynamic work done by one part of the system on the other. We show that these quantities exhibit a long-time fluctuation theorem. Furthermore, we evaluate...... the fluctuating entropy, which satisfies a conservation law. These experimental results are fully justified by the theoretical analysis. Our results give more insight into the energy transfer in the famous Feynman ratchet, widely studied theoretically but never in an experiment....

  9. Standards, Data Exchange and Intellectual Property Rights in Systems Biology

    DEFF Research Database (Denmark)

    van Zimmeren, Esther; Rutz, Berthold; Minssen, Timo

    2016-01-01

    assets to be formatted and described in standard ways to enable exchange and reuse of high quality data. This allows a more effective utilisation of the enormous potential that rests in “big data” analysis. Finally, SysBio is often closely linked to or provides the foundation for Synthetic Biology (Syn...... we provided a number of recommendations for a variety of stakeholders. The current article offers some deeper reflections about the interface between IPRs, standards and data exchange in Systems Biology resulting from an Expert Meeting funded by another ERA-Net, ERASysAPP. The meeting brought...... and qualitative data on biological processes and activities in much greater volumes, velocity, variety and veracity. The skilful integration of multiple heterogeneous data sets allows scientists to model and predict biological processes. SysBio’s interdisciplinary nature requires data, models and other research...

  10. ION-EXCHANGE PROPERTIES OF IONITES WITH VARIOUS FUNCTIONAL GROUPS

    Directory of Open Access Journals (Sweden)

    Manhur Jafarli

    2016-12-01

    Full Text Available Sorption regularities of Zn2+ and Pb2+ ions from water solutions by ion exchangers of Diaion CR 11, Amberlite IRC 748 with iminodiacetic acid functional group and Dowex M 4195 with bis-picolilamine functional group are investigated, sorption isotherms are plotted, isotherms are analyzed on the basis of known models, thermodynamic parameters are calculated on the basis of kinetic data, thermodynamic factor controlling processes is determined.

  11. Modified ion exchange resins - synthesis and properties. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Doescher, F.; Klein, J.; Pohl, F.; Widdecke, H.

    1982-01-22

    Sulfomethylated resins are prepared by polymer analogous reactions, starting from macroporous poly(styrene-co-divinylbenzene) matrices. Different reaction paths are discussed and used in the synthesis. Sulfomethylation can be achieved by reaction of a chloromethylated resin with dimethyl sulfide and sodium sulfonate or alternatively by oxidation of polymer-bound thiol groups. Both methods give high conversions as shown by IR spectra and titration of the sulfonic acid groups. Poly(1-(4-hydroxysulfomethylphenyl)ethylene) (3) is obtained by reaction of poly(1-(4-hydroxyphenyl)ethylene) (2) resin with formaldehyde/sodium sulfonate. The thermal stability, catalytic activity, and ion exchange equilibria of the sulfomethylated resin are investigated.

  12. Properties of the Carboxylate ion exchange resins; Karboxylatjonbytarmassans egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Bert; Dario, Maarten [Oerebro Univ. (Sweden); Boren, Hans [Linkoepings Univ. (Sweden); Torstenfelt, Boerje [Swedpower, Stockholm (Sweden); Puigdomenech, Ignasi; Johansson, Claes [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  13. Structural Breaks and Long Memory Property in Korean Won Exchange Rates: Adaptive FIGARCH Model

    Directory of Open Access Journals (Sweden)

    Young Wook Han

    2011-06-01

    Full Text Available This paper explores the issue of structural breaks and long memory property in the conditional variance process of the Korean exchange rates. To analyze the above in detail, this paper examines the dynamics of the structural breaks and the long memory in the conditional variance process of the Korean exchange returns by using the daily KRW-USD and KRW-JPY exchange rates for the period from 2000 through 2007. In particular, this paper employs the Adaptive FIGARCH model of Baillie and Morana (2009 which account for the structural breaks and the long memory property together. This paper also finds that the new Adaptive FIGARCH model outperforms the usual FIGARCH model of Baillie et al. (1996 when the structural breaks are present and that the long memory property in the conditional variance process of the Korean exchange returns is significantly reduced after the structural breaks are accounted for. Thus, these results suggest that the upward biased long memory property observed in the conditional variance process of the Korean exchange returns could partially have been imparted as a result of neglecting the structural breaks.

  14. LUMINESCENT PROPERTIES OF SILVER CLUSTERS FORMED BY ION EXCHANGE METHOD IN PHOTO-THERMO-REFRACTIVE GLASS

    Directory of Open Access Journals (Sweden)

    Yevgeniy M. Sgibnev

    2016-11-01

    Full Text Available Subject of Study.The paper deals with novel research of ion exchange duration influence on spectral-luminescent properties of silver clusters formed in photo-thermo-refractive glass. Method. Photo-thermo-refractive matrix glass based on Na2O–Al2O3–ZnO–SiO2–F (% mol. system doped with 0,002% mol. of Sb2O3 was synthesized for further research. Silver ions were introduced with low temperature ion exchange method. The glass samples were immersed in the mixture of sodium and silver nitrates 5AgNO3/95NaNO3 (% mol. at the temperature of 320 °C. Ion exchange duration varied from 5 minutes to 21 hours. Luminescent silver clusters were formed in surface layers of photo-thermo-refractive glass by subsequent heat treatment at the temperature of 450 °C. Main Results. Embedding of silver ions in photo-thermo-refractive glass with ion exchange method led to long-wavelength shift of the UV edge of strong absorption. Location of the UV edge of strong absorption and emission peak of silver clusters depends on ion exchange duration and shifts to the greater wavelengthswith increasing the ion exchange process time. Quantum yield of luminescence decreases significantly according to Stern-Volmer equation with the rising of ion exchange duration. Practical Relevance. Research results can be used for developing white LEDs and down-convertors of solar radiation.

  15. Electrochemically Controlled Ion-exchange Property of Carbon Nanotubes/Polypyrrole Nanocomposite in Various Electrolyte Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Daiwon [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Lin, Yuehe [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States

    2016-09-15

    The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structure of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).

  16. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Science.gov (United States)

    2010-01-01

    ... (exchange rate half-time of less than 10 seconds) and are capable of operating at a temperature in the range... between the isotopes of uranium causes small changes in chemical reaction equilibria that can be used as a..., immiscible liquid phases (aqueous and organic) are countercurrently contacted to give the cascading effect of...

  17. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  18. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    Science.gov (United States)

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-08-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  19. The Chemistry of Atmosphere-Forest Exchange (CAFE) Model - Part 2: Application to BEARPEX-2007 observations

    National Research Council Canada - National Science Library

    G. M. Wolfe; J. A. Thornton; N. C. Bouvier-Brown; A. H. Goldstein; J.-H. Park; M. McKay; D. M. Matross; J. Mao; W. H. Brune; B. W. LaFranchi; E. C. Browne; K.-E. Min; P. J. Wooldridge; R. C. Cohen; J. D. Crounse; I. C. Faloona; J. B. Gilman; W. C. Kuster; J. A. de Gouw; A. Huisman; F. N. Keutsch

    2011-01-01

    In a companion paper, we introduced the Chemistry of Atmosphere-Forest Exchange (CAFE) model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange...

  20. Chelation Ion Exchange Properties of 2, 4-Dihydroxyacetophenone-Biuret-Formaldehyde Terpolymer Resin

    OpenAIRE

    Sanjiokumar S. Rahangdale; Anil B. Zade; Wasudeo B. Gurnule

    2009-01-01

    The terpolymer resin 2, 4-HABF has been synthesized by the condensation of 2, 4-dihydroxyacetophenone (2, 4-HA) and biuret (B) with formaldehyde (F) in 1:1:2 molar ratios in presence of 2 M hydrochloric acid as catalyst. UV-Visible, IR and proton NMR spectral studies have been carried out to elucidate the structure of the resin. A terpolymer (2, 4-HABF) proved to be a selective chelating ion exchange polymer for certain metals. Chelating ion-exchange properties of this polymer were studied fo...

  1. LUMINESCENT PROPERTIES OF SILVER CLUSTERS FORMED BY ION EXCHANGE METHOD IN PHOTO-THERMO-REFRACTIVE GLASS

    OpenAIRE

    Yevgeniy M. Sgibnev; Nikolay V. Nikonorov; Alexander I. Ignatiev; Dmitry S. Starodubov

    2016-01-01

    Subject of Study.The paper deals with novel research of ion exchange duration influence on spectral-luminescent properties of silver clusters formed in photo-thermo-refractive glass. Method. Photo-thermo-refractive matrix glass based on Na2O–Al2O3–ZnO–SiO2–F (% mol.) system doped with 0,002% mol. of Sb2O3 was synthesized for further research. Silver ions were introduced with low temperature ion exchange method. The glass samples were immersed in the mixture of sodium and silver nitrates 5AgNO...

  2. Dual transport properties of anion exchanger 1: the same transmembrane segment is involved in anion exchange and in a cation leak.

    Science.gov (United States)

    Barneaud-Rocca, Damien; Borgese, Franck; Guizouarn, Hélène

    2011-03-18

    Previous results suggested that specific point mutations in human anion exchanger 1 (AE1) convert the electroneutral anion exchanger into a monovalent cation conductance. In the present study, the transport site for anion exchange and for the cation leak has been studied by cysteine scanning mutagenesis and sulfhydryl reagent chemistry. Moreover, the role of some highly conserved amino acids within members of the SLC4 family to which AE1 belongs has been assessed in AE1 transport properties. The results suggest that the same transport site within the AE1 spanning domain is involved in anion exchange or in cation transport. A functioning mechanism for this transport site is proposed according to transport properties of the different studied point mutations of AE1.

  3. Refrigerant Performance Evaluation Including Effects of Transport Properties and Optimized Heat Exchangers.

    Science.gov (United States)

    Brignoli, Riccardo; Brown, J Steven; Skye, H; Domanski, Piotr A

    2017-08-01

    Preliminary refrigerant screenings typically rely on using cycle simulation models involving thermodynamic properties alone. This approach has two shortcomings. First, it neglects transport properties, whose influence on system performance is particularly strong through their impact on the performance of the heat exchangers. Second, the refrigerant temperatures in the evaporator and condenser are specified as input, while real-life equipment operates at imposed heat sink and heat source temperatures; the temperatures in the evaporator and condensers are established based on overall heat transfer resistances of these heat exchangers and the balance of the system. The paper discusses a simulation methodology and model that addresses the above shortcomings. This model simulates the thermodynamic cycle operating at specified heat sink and heat source temperature profiles, and includes the ability to account for the effects of thermophysical properties and refrigerant mass flux on refrigerant heat transfer and pressure drop in the air-to-refrigerant evaporator and condenser. Additionally, the model can optimize the refrigerant mass flux in the heat exchangers to maximize the Coefficient of Performance. The new model is validated with experimental data and its predictions are contrasted to those of a model based on thermodynamic properties alone.

  4. 41 CFR 102-39.60 - What restrictions and prohibitions apply to the exchange/sale of personal property?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What restrictions and prohibitions apply to the exchange/sale of personal property? 102-39.60 Section 102-39.60 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT...

  5. Synthesis and adsorption properties of the cation exchange forms of OFF-type zeolite

    Science.gov (United States)

    Gorshunova, K. K.; Travkina, O. S.; Kustov, L. M.; Kutepov, B. I.

    2016-03-01

    The possibility of the ion-exchange of Na+ and K+ cations contained in OFF-type zeolite for H+, Ni2+, Cu2+, Co2+, and La3+ cations is investigated. Chemical and phase compositions, the morphology of crystals, and the adsorption properties of synthesized samples are studied via X-ray fluorescence and X-ray diffraction analysis, IR spectroscopy, scanning electron microscopy, and adsorption measurements.

  6. Properties of ionic liquids on Au surfaces: non-conventional anion exchange reactions with carbonate.

    Science.gov (United States)

    Ratel, Mathieu; Branca, Mathieu; Breault-Turcot, Julien; Zhao, Sandy Shuo; Chaurand, Pierre; Schmitzer, Andreea R; Masson, Jean-Francois

    2011-10-14

    A simple anion metathesis in diluted aqueous carbonate at room temperature affords 1-(12-mercaptododecyl)-3-methyl-imidazolium carbonate (MDMI-HCO(3)) from MDMI salts self-assembled on gold films and nanoparticles. The properties of MDMI-SAM differ from MDMI in solution, for which the anion exchange reaction does not proceed. This journal is © The Royal Society of Chemistry 2011

  7. Intellectual property rights and detached human body parts.

    Science.gov (United States)

    Pila, Justine

    2014-01-01

    This paper responds to an invitation by the editors to consider whether the intellectual property (IP) regime suggests an appropriate model for protecting interests in detached human body parts. It begins by outlining the extent of existing IP protection for body parts in Europe, and the relevant strengths and weaknesses of the patent system in that regard. It then considers two further species of IP right of less obvious relevance. The first are the statutory rights of ownership conferred by domestic UK law in respect of employee inventions, and the second are the economic and moral rights recognised by European and international law in respect of authorial works. In the argument made, both of these species of IP right may suggest more appropriate models of sui generis protection for detached human body parts than patent rights because of their capacity better to accommodate the relevant public and private interests in respect of the same.

  8. Models for the estimation of thermodynamic properties of layered double hydroxides: application to the study of their anion exchange characteristics

    Directory of Open Access Journals (Sweden)

    Bravo-Suárez Juan J.

    2004-01-01

    Full Text Available Several models for the estimation of thermodynamic properties of layered double hydroxides (LDHs are presented. The predicted thermodynamic quantities calculated by the proposed models agree with experimental thermodynamic data. A thermodynamic study of the anion exchange process on LDHs is also made using the described models. Tables for the prediction of monovalent anion exchange selectivities on LDHs are provided. Reasonable agreement is found between the predicted and the experimental monovalent anion exchange selectivities.

  9. The effect of the correlation and exchange interactions on the electronic and magnetic properties of the hexagonal NiS using the onsite exact exchange/hybrid functionals

    Science.gov (United States)

    Reggad, A.; Lardjani, R.; Baghdad, R.; Bouhafs, B.

    2017-12-01

    We have performed ab initio calculations using the onsite exact exchange/hybrid functionals within the density functional theory to study the effect of the correlation and exchange interactions on the structural, electronic and magnetic properties of the hexagonal nickel sulphide (NiS) by varying the Fock exchange parameter value. The Perdew- Burke- Ernzerhof (PBE) calculation shows that the non magnetic state is the most stable, but the application of the onsite exact exchange/hybrid functionals for the correlated d electrons leads to get the anti-ferromagnetic AFM I state the most stable which is consistent with the experimental results. To get the semiconductor state we should use a α parameter value more than 0.05 which represents 5% of the Fock exchange. The α parameter has a big effect on the unit cell volume but there is a little effect on the c/a ratio. The magnetic moment and band gap are widely influenced by the exchange and correlation interactions. We have also investigated the effect of the lattice parameters on the magnetic and electronic properties.

  10. Growth and properties of CoO/Fe perpendicular exchange coupled ultra-thin films

    Science.gov (United States)

    Lamirand, A. D.; Grenier, S.; Ramos, A. Y.; De Santis, M.; Bailly, A.; Mossang, E.; Tonnerre, J. M.; Testemale, D.; Tolentino, H. C. N.; Jaouen, N.; Soares, M. M.; Jamet, M.; Proux, O.

    2017-12-01

    We investigated the molecular beam epitaxy growth, the structure and the magnetic properties of the exchange coupled CoO/Fe bilayers on Ag(0 0 1). In situ X-ray scattering shows that Fe grows in registry with Ag(0 0 1) with an out-of-plane lattice parameter that varies with the Fe layer total thickness. The growth of CoO to build an exchange coupled CoO/Fe system impacts the Fe layer even at room temperature. Two different bilayers grown under close conditions are studied. They differ by the ratio of the oxidized Fe layers over the 7 initial Fe monolayers (30% and 40% respectively). Low temperature exchange magnetic coupling with a blocking temperature TB of about 180 K-150 K and similar thermal behavior are observed for the two samples. We studied one sample with synchrotron X-ray resonant magnetic scattering confirming that the magnetization was perpendicular to the surface below TB . Noteworthy, we found that the magnetic easy axis was lying in-plane at room temperature, above TB . These results point to another example of perpendicular ferromagnetism in an ultra-thin film due to an exchange mechanism with an antiferromagnetic layer that rotates the magnetic easy axis from in-plane to perpendicular below TB .

  11. Investigation of Electrochemical and Morphological Properties of Mixed Matrix Polysulfone-Silica Anion Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Khoiruddin

    2016-02-01

    Full Text Available Mixed matrix anion exchange membranes (AEMs were synthesized using dry-wet phase inversion. The casting solutions were prepared by dispersing finely ground anion-exchange resin particles in N,N-dimethylacetamide (DMAc solutions of polysulfone (PSf. Subsequently, nanosilica particles were introduced into the membranes. The results show that evaporation time (tev and solution composition contributed to membrane properties formation. A longer tev produces membranes with reduced void fraction inside the membranes, thus the amount of water adsorbed and membrane conductivity are reduced. Meanwhile, the permselectivity was improved by increasing tev, since a longer tev produces membranes with a narrower channel for ion migration and more effective Donnan exclusion. The incorporation of 0.5 %-wt nanosilica particles into the polymer matrix led to conductivity improvement (from 2.27 to 3.41 mS.cm-1. This may be associated with additional pathway formation by hydroxyl groups on the silica surface that entraps water and assists ion migration. However, at further silica loading (1.0 and 1.5 %-wt, these properties decreased (to 1.9 and 1.4 mS.cm-1 respectively, which attributed to inaccessibility of ion-exchange functional groups due to membrane compactness. It was found from the results that nanosilica contributes to membrane formation (increases casting solution viscosity then reduces void fraction and membrane functional group addition (provides hydroxyl groups.

  12. Magnetic properties of the molecular nanomagnet Cr7Cd: single ion and exchange anisotropy effects.

    Science.gov (United States)

    Kozłowski, P; Kamieniarz, G

    2011-10-01

    In order to verify two microscopic models of the molecular nanomagnet Cr7Cd we analyze a number of thermodynamic quantities calculated for two sets of parameters. The first model, with only single ion anisotropy, was established on the basis of the thermodynamic properties (by fitting susceptibility and magnetization) whereas the second, with single ion and bond-dependent exchange anisotropies, was based on the inelastic neutron scattering and EPR spectra. The calculations are performed by means of non-perturbative, numerically exact quantum transfer matrix technique on large scale parallel computers. We demonstrate that the predictions of the models are consistent in the region of small magnetic fields which do not exceed 10 T and differ significantly in higher fields. Comparison with the experiment leads to a conclusion that better modeling of magnetic torque requires more complex microscopic model with single ion and bond-dependent exchange anisotropies.

  13. Electronic properties of antiferromagnetic UBi2 metal by exact exchange for correlated electrons method

    Directory of Open Access Journals (Sweden)

    E Ghasemikhah

    2012-03-01

    Full Text Available This study investigated the electronic properties of antiferromagnetic UBi2 metal by using ab initio calculations based on the density functional theory (DFT, employing the augmented plane waves plus local orbital method. We used the exact exchange for correlated electrons (EECE method to calculate the exchange-correlation energy under a variety of hybrid functionals. Electric field gradients (EFGs at the uranium site in UBi2 compound were calculated and compared with the experiment. The EFGs were predicted experimentally at the U site to be very small in this compound. The EFG calculated by the EECE functional are in agreement with the experiment. The densities of states (DOSs show that 5f U orbital is hybrided with the other orbitals. The plotted Fermi surfaces show that there are two kinds of charges on Fermi surface of this compound.

  14. Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane

    Science.gov (United States)

    Ariono, D.; Khoiruddin; Subagjo; Wenten, I. G.

    2017-02-01

    Generally, commercially available ion-exchange membrane (IEM) can be classified into homogeneous and heterogeneous membranes. The classification is based on degree of heterogeneity in membrane structure. It is well known that the heterogeneity greatly affects the properties of IEM, such as conductivity, permselectivity, chemical and mechanical stability. The heterogeneity also influences ionic and electrical current transfer behavior of IEM-based processes during their operation. Therefore, understanding the role of heterogeneity in IEM properties is important to provide preliminary information on their operability and applicability. In this paper, the heterogeneity and its effect on IEM properties are reviewed. Some models for describing the heterogeneity of IEM and methods for characterizing the degree of heterogeneity are discussed. In addition, the influence of heterogeneity on the performance of IEM-based processes and their electrochemical behavior are described.

  15. Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.E.; Brown, N.E.

    1997-04-01

    Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A&M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV{reg_sign} IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV{reg_sign} IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies.

  16. Estimating Soil Cation Exchange Capacity from Soil Physical and Chemical Properties

    Science.gov (United States)

    Bateni, S. M.; Emamgholizadeh, S.; Shahsavani, D.

    2014-12-01

    The soil Cation Exchange Capacity (CEC) is an important soil characteristic that has many applications in soil science and environmental studies. For example, CEC influences soil fertility by controlling the exchange of ions in the soil. Measurement of CEC is costly and difficult. Consequently, several studies attempted to obtain CEC from readily measurable soil physical and chemical properties such as soil pH, organic matter, soil texture, bulk density, and particle size distribution. These studies have often used multiple regression or artificial neural network models. Regression-based models cannot capture the intricate relationship between CEC and soil physical and chemical attributes and provide inaccurate CEC estimates. Although neural network models perform better than regression methods, they act like a black-box and cannot generate an explicit expression for retrieval of CEC from soil properties. In a departure with regression and neural network models, this study uses Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) to estimate CEC from easily measurable soil variables such as clay, pH, and OM. CEC estimates from GEP and MARS are compared with measurements at two field sites in Iran. Results show that GEP and MARS can estimate CEC accurately. Also, the MARS model performs slightly better than GEP. Finally, a sensitivity test indicates that organic matter and pH have respectively the least and the most significant impact on CEC.

  17. A thermoelectric power generating heat exchanger: Part I – Experimental realization

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Sarhadi, Ali; Pryds, Nini

    2016-01-01

    An experimental realization of a heat exchanger with commercial thermoelectric generators (TEGs) is presented. The power producing capabilities as a function of flow rate and temperature span are characterized for two different commercial heat transfer fluids and for three different thermal...

  18. 41 CFR 102-39.65 - What conditions apply to the exchange/sale of personal property?

    Science.gov (United States)

    2010-07-01

    ... allowance or sales proceeds from the disposition of that property may only be used to offset the cost of the replacement property, not services; and (e) Except for transactions involving books and periodicals in your libraries, you document the basic facts associated with each exchange/sale transaction. At a minimum, the...

  19. Double tube heat exchanger with novel enhancement: part II—single phase convective heat transfer

    Science.gov (United States)

    Tiruselvam, R.; Chin, W. M.; Raghavan, Vijay R.

    2012-08-01

    The study is conducted to evaluate the heat transfer characteristics of two new and versatile enhancement configurations in a double tube heat exchanger annulus. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Heat transfer coefficients are determined by the Wilson Plot technique in laminar and turbulent flow and correlations are proposed for Nusselt numbers. Comparisons are then made between heat transfer and flow friction.

  20. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-01-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. CAFE utilizes the Master Chemical Mechanism (MCM and is the first model of its kind to incorporate a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  1. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. I. Structural properties.

    Science.gov (United States)

    Bhambure, Rahul; Gillespie, Christopher M; Phillips, Michael; Graalfs, Heiner; Lenhoff, Abraham M

    2016-09-09

    The ligand density critically affects the performance of ion-exchange resins in such measures as the adsorption capacity and transport characteristics. However, for tentacular and other polymer-modified exchangers, the mechanistic basis of the effect of ligand density on performance is not yet fully understood. In this study we map the ionic strength-dependent structural changes in tentacular cation exchangers with variable ligand densities as the basis for subsequent investigation of effects on functional properties. Inverse size-exclusion chromatography (ISEC), scanning electron microscopy (SEM) and small-angle x-ray scattering (SAXS) were used to assess the effect of ionic strength on the pore size and intraparticle architecture of resin variants with different ligand densities. Comparison of ISEC and cryo-SEM results shows a considerable reduction in average pore size with increasing ligand density; these methods also confirm an increase of average pore size at higher ionic strengths. SAXS analysis of ionic strength-dependent conformational changes in the grafted polyelectrolyte layer shows a characteristic ionomer peak at values of the scattering vector q (0.1-0.2Å(-1)) that depend on the ligand density and the ionic strength of the solution. This peak attribution reflects nanoscale changes in the structure of the grafted polyelectrolyte chains that can in turn be responsible for observed pore-size changes in the resins. Finally, salt breakthrough experiments confirm a stronger Donnan exclusion effect on pore accessibility for small ions in the high ligand density variant. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Chelation Ion Exchange Properties of 2, 4-Dihydroxyacetophenone-Biuret-Formaldehyde Terpolymer Resin

    Directory of Open Access Journals (Sweden)

    Sanjiokumar S. Rahangdale

    2009-01-01

    Full Text Available The terpolymer resin 2, 4-HABF has been synthesized by the condensation of 2, 4-dihydroxyacetophenone (2, 4-HA and biuret (B with formaldehyde (F in 1:1:2 molar ratios in presence of 2 M hydrochloric acid as catalyst. UV-Visible, IR and proton NMR spectral studies have been carried out to elucidate the structure of the resin. A terpolymer (2, 4-HABF proved to be a selective chelating ion exchange polymer for certain metals. Chelating ion-exchange properties of this polymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+ and Pb2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurement of the distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The polymer showed highest selectivity for Fe3+, Cu2+ ions than for Ni2+, Co2+, Zn2+, Cd2+, and Pb2+ ions. Study of distribution ratio as a formation of pH indicates that the amount of metal ion taken by resin is increases with the increasing pH of the medium.

  3. Modeling cation exchange capacity and soil water holding capacity from basic soil properties

    Directory of Open Access Journals (Sweden)

    Idowu Olorunfemi

    2016-10-01

    Full Text Available Cation exchange capacity (CEC is a good indicator of soil productivity and is useful for making recommendations of phosphorus, potassium, and magnesium for soils of different textures. Soil water holding capacity (SWHC defines the ability of a soil to hold water at a particular time of the season. This research predicted CEC and SWHC of soils using pedotransfer models developed (using Minitab 17 statistical software from basic soil properties (Sand(S, Clay(C, soil pH, soil organic carbon (SOC and verify the model by comparing the relationship between measured and estimated (obtained by PTFs CEC and SWHC in the Forest Vegetative Zone of Nigeria. For this study, a total of 105 sampling points in 35 different locations were sampled in the study areas. Three sampling points were randomly selected per location and three undisturbed samples were collected at each sampling point. The results showed success in predicting CEC and SWHC from basic soil properties. In this study, five linear regression models for predicting soil CEC and seven linear regression models for predicting SWHC from some soil physical and chemical properties were suggested. Model 5 [CEC = -13.93+2.645 pH +0.0446 C (%+2.267 SOC (%] was best for predicting CEC while model 12 [SWHC (%=36.0- 0.215 S (%+0.113 C (%+10.36 SOC (%] is the most acceptable model for predicting SWHC.

  4. An Assessment of Transport Property Estimation Methods for Ammonia–Water Mixtures and Their Influence on Heat Exchanger Size

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær

    2015-01-01

    Transport properties of fluids are indispensable for heat exchanger design. The methods for estimating the transport properties of ammonia–water mixtures are not well established in the literature. The few existent methods are developed from none or limited, sometimes inconsistent experimental...... of ammonia–water mixtures. Firstly, the different methods are introduced and compared at various temperatures and pressures. Secondly, their individual influence on the required heat exchanger size (surface area) is investigated. For this purpose, two case studies related to the use of the Kalina cycle...... the interpolative methods in contrast to the corresponding state methods. Nevertheless, all possible mixture transport property combinations used herein resulted in a heat exchanger size within 4.3 % difference for the flue-gas heat recovery boiler, and within 12.3 % difference for the oil-based boiler....

  5. Synthesis, characterization, and ion-exchange properties of colloidal zeolite nanocrystals

    Science.gov (United States)

    Jawor, Anna; Jeong, Byeong-Heon; Hoek, Eric M. V.

    2009-10-01

    Here, we present physical-chemical properties of Linde type A (LTA) zeolite crystals synthesized via conventional hydrothermal and microwave heating methods. Both heating methods produced LTA crystals that were sub-micron in size, highly negatively charged, super-hydrophilic, and stable when dispersed in water. However, microwave heating produced relatively narrow crystal size distributions, required much shorter heating times, and did not significantly change composition, crystallinity, or surface chemistry. Moreover, microwave heating allowed systematic variation of crystal size by varying heating temperature and time during the crystallization reaction, thus producing a continuous gradient of crystal sizes ranging from about 90 to 300 nm. In ion-exchange studies, colloidal zeolites exhibited excellent sorption kinetics and capacity for divalent metal ions, suggesting their potential for use in water softening, scale inhibition, and scavenging of toxic metal ions from water.

  6. A Method of Heat Exchange Structure Optimization of the Cricoid Plastic Parts

    Directory of Open Access Journals (Sweden)

    Dongpo Yang

    2014-01-01

    Full Text Available This paper research on the effect of heat transfer performance of ring wall structure change of ship water heater top cricoid hood. A method of equivalent conversion is applied on simplify the structure of finned tube heat exchanger, it distinct reduce the computational grid, and improve the simulation speed and accuracy. This method can be used to calculate the ventilation and heat transfer of that compact configuration type structure in the complex component. Changing the ring wall structure can improve heat transfer performance, based on the method of equivalent transformation, a new heat transfer structure is established.

  7. Preparation of anion exchanger by amination of acrylic acid grafted polypropylene nonwoven fiber and its ion-exchange property.

    Science.gov (United States)

    Park, Hyun-Ju; Na, Choon-Ki

    2006-09-01

    To develop the polymeric adsorbent that possess anionic exchangeable function, PP-g-AA-Am fibers were prepared by photoinduced grafting of acrylic acid (AA) onto polypropylene (PP) nonwoven fibers and subsequent conversion of carboxyl group in grafted AA to an amine (Am) group by reaction with diethylene triamine (DETA). The amination of grafted AA increased with increase in the degree of grafting, the reaction time and temperature of the chemical modification process. Catalytic effect of metal chlorides such as AlCl(3) and FeCl(3) on the amination of grafted AA was significant but not essential to lead the amination. FT-IR and solid (13)C NMR data indicate that amine group was introduced into PP-g-AA fiber through amide linkage between grafted AA and DETA. The anion exchange capacity of PP-g-AA-Am fiber increased with increase in the degree of amination, but reached maximum value at about 60% amination of 150% grafted AA. PP-g-AA-Am fiber showed much higher maximum capacity for PO(4)-P and a similar capacity for NO(3)-N compared to commercial anion resins. Furthermore, the PP-g-AA-Am fiber also has adsorption ability for cations because of unaminated residual carboxyl group.

  8. Performance evaluation of cryogenic counter-flow heat exchangers with longitudinal conduction, heat in-leak and property variations

    Science.gov (United States)

    Jiang, Q. F.; Zhuang, M.; Zhu, Z. G.; Y Zhang, Q.; Sheng, L. H.

    2017-12-01

    Counter-flow plate-fin heat exchangers are commonly utilized in cryogenic applications due to their high effectiveness and compact size. For cryogenic heat exchangers in helium liquefaction/refrigeration systems, conventional design theory is no longer applicable and they are usually sensitive to longitudinal heat conduction, heat in-leak from surroundings and variable fluid properties. Governing equations based on distributed parameter method are developed to evaluate performance deterioration caused by these effects. The numerical model could also be applied in many other recuperators with different structures and, hence, available experimental data are used to validate it. For a specific case of the multi-stream heat exchanger in the EAST helium refrigerator, quantitative effects of these heat losses are further discussed, in comparison with design results obtained by the common commercial software. The numerical model could be useful to evaluate and rate the heat exchanger performance under the actual cryogenic environment.

  9. Synthesis of ultrasmall Li-Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties.

    Science.gov (United States)

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-10-12

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li-Mn spinel oxides by tuning the hydration of Li(+) ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m(2) g(-1). They exhibited unique properties such as unusual topotactic Li(+)/H(+) ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li-Mn spinel oxides obtained by conventional solid-state methods.

  10. General and specific statistical properties of foreign exchange markets during a financial crash

    Science.gov (United States)

    Li, Wei-Shen; Tsai, Yun-Jie; Shen, Yu-Hsien; Liaw, Sy-Sang

    2016-06-01

    We investigate minute-by-minute foreign exchange rate (FX) data of 14 currencies with different exchange-rate regimes during a financial crash, and divide these data into several stages according to their respective tendencies: depreciation stage (stage 1), fluctuating stage (stage 2), and appreciation stage (stage 3). The tail distribution of FX rate returns satisfies a power-law structure for different types of currencies. We find the absolute value of the power-law exponent is smaller in emerging markets than in developed markets, especially during the stage 1, and is greatest in pegged currencies. We also find that the correlation properties of the FX rate return series have quite disparate results among the various types of currencies. Currencies in developed markets respectively have weak persistence and anti-persistence in short and long timescales; whereas the pegged currencies and currencies in emerging markets show different degrees of anti-persistence in various timescales. Further analyses on the data in divided stages indicate that emerging markets and pegged currencies have more prominent dual fractal structures after the depreciation stage, while the developed markets do not. Hurst exponent analyses on the sign series yield similar results to that on the original return series for most currencies. The magnitude series of the returns provide some unique results during a crash. The developed market currencies have strong persistence and exhibit a weaker correlation in the depreciation and appreciation stages. In contrast, the currencies of emerging markets as well as pegged currencies fail to show such a transformation, but rather show a constant-correlation behavior in the corresponding stages of a crash. These results indicate that external shocks exert different degrees of influence during different stages of the crash in various markets.

  11. Leaching and antimicrobial properties of silver nanoparticles loaded onto natural zeolite clinoptilolite by ion exchange and wet impregnation

    CSIR Research Space (South Africa)

    Missengue, RNM

    2015-11-01

    Full Text Available This study aimed to compare the leaching and antimicrobial properties of silver that was loaded onto the natural zeolite clinoptilolite by ion exchange and wet impregnation. Silver ions were reduced using sodium borohydride (NaBH(sub4...

  12. Monte Carlo Simulation Of The Portfolio-Balance Model Of Exchange Rates: Finite Sample Properties Of The GMM Estimator

    OpenAIRE

    Hong-Ghi Min

    2011-01-01

    Using Monte Carlo simulation of the Portfolio-balance model of the exchange rates, we report finite sample properties of the GMM estimator for testing over-identifying restrictions in the simultaneous equations model. F-form of Sargans statistic performs better than its chi-squared form while Hansens GMM statistic has the smallest bias.

  13. CERAMIC PROPERTIES OF PUGU KAOLIN CLAYS. PART 2 ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Ceremic properties, Kaolin clay, Flexural strength, Mullitisation, Bulk density,. Modulus of Rupture, Microstructure. INTRODUCTION. Porcelain is one of the most researched materials in the whole family of ceramics. Researchers working in this field have established factors controlling the various properties of ...

  14. Standards for plant synthetic biology: a common syntax for exchange of DNA parts.

    Science.gov (United States)

    Patron, Nicola J; Orzaez, Diego; Marillonnet, Sylvestre; Warzecha, Heribert; Matthewman, Colette; Youles, Mark; Raitskin, Oleg; Leveau, Aymeric; Farré, Gemma; Rogers, Christian; Smith, Alison; Hibberd, Julian; Webb, Alex A R; Locke, James; Schornack, Sebastian; Ajioka, Jim; Baulcombe, David C; Zipfel, Cyril; Kamoun, Sophien; Jones, Jonathan D G; Kuhn, Hannah; Robatzek, Silke; Van Esse, H Peter; Sanders, Dale; Oldroyd, Giles; Martin, Cathie; Field, Rob; O'Connor, Sarah; Fox, Samantha; Wulff, Brande; Miller, Ben; Breakspear, Andy; Radhakrishnan, Guru; Delaux, Pierre-Marc; Loqué, Dominique; Granell, Antonio; Tissier, Alain; Shih, Patrick; Brutnell, Thomas P; Quick, W Paul; Rischer, Heiko; Fraser, Paul D; Aharoni, Asaph; Raines, Christine; South, Paul F; Ané, Jean-Michel; Hamberger, Björn R; Langdale, Jane; Stougaard, Jens; Bouwmeester, Harro; Udvardi, Michael; Murray, James A H; Ntoukakis, Vardis; Schäfer, Patrick; Denby, Katherine; Edwards, Keith J; Osbourn, Anne; Haseloff, Jim

    2015-10-01

    Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Impact of Intellectual Property Laws on Part-Time Faculty. The Effective Voice for You.

    Science.gov (United States)

    Duby, James R., Jr.

    This guide explains some of the intellectual property rights of part-time college faculty members and the circumstances under which faculty can defend intellectual property rights. The term "intellectual property" refers to proprietary information, materials, or products, the owner of which may possess intellectual property rights under trademark,…

  16. Development of ion-exchange properties of bamboo charcoal modified with concentrated nitric acid

    Science.gov (United States)

    Khandaker, S.; Kuba, T.; Toyohara, Y.; Kamida, S.; Uchikawa, Y.

    2017-08-01

    The surface chemistry and the structural properties of activated carbon can be altered by the acidic modification. The objective of this study is to investigate the changes occurring in bamboo charcoal (BC) during activation with concentrated nitric acid. Low temperature (500°C) carbonized BC has been prepared and oxidized with 70% concentrated boiling nitric acid (BC-AC). The porous properties of the BC are analyzed with nitrogen adsorption isotherm at 77 K. The surface structure is observed by Field emission scanning electronic microscope (FESEM) and the surface functional groups are examined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and the pH of the point of zero charge (pHPZC). The results reveal that severe oxidation with HNO3 considerably decreases the surface area of BC with enhanced pore widening and FESEM observation demonstrates the erosive effect of oxidation. The FTIR analysis detects that some absorption bands are assigned for carboxyl, aldehyde and ketone groups on BC-AC. The XPS analysis also clearly shows that the ratio of oxygen and acidic functional groups has been enriched significantly on the BC-AC. The low pHPZC value of BC-AC confirms that the surface is highly acidic for the fixation of acidic functional groups on surface. In general, the existence of the abundant amount of acidic functional groups on adsorbents enhances the sorption of heavy metals ions in aqueous solution. Therefore, it is strongly expected that the modified BC, activated under the proposed conditions would be a promising ion exchanger in aqueous solution and can be applied for the adsorption of different heavy metal ions and radioactive materials from effluent.

  17. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    Science.gov (United States)

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. © IMechE 2015.

  18. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. II. Functional properties.

    Science.gov (United States)

    Bhambure, Rahul; Angelo, James M; Gillespie, Christopher M; Phillips, Michael; Graalfs, Heiner; Lenhoff, Abraham M

    2017-07-14

    The effect of ligand density was studied on protein adsorption and transport behavior in tentacular cation-exchange sorbents at different ionic strengths. Results were obtained for lysozyme, lactoferrin and a monoclonal antibody (mAb) in order to examine the effects of protein size and charge. The combination of ligand density and ionic strength results in extensive variability of the static and dynamic binding capacities, transport rate and binding affinity of the proteins. Uptake and elution experiments were performed to quantify the transport behavior of selected proteins, specifically to estimate intraparticle protein diffusivities. The observed trend of decreasing uptake diffusivities with an increase in ligand density was correlated to structural properties of the ligand-density variants, particularly the accessible porosity. Increasing the ionic strength of the equilibration buffer led to enhanced mass transfer during uptake, independent of the transport model used, and specifically for larger proteins like lactoferrin and mAb, the most significant effects were evident in the sorbent of the highest ligand density. For lysozyme, higher ligand density leads to higher static and dynamic binding capacities whereas for lactoferrin and the mAb, the binding capacity is a complex function of accessible porosity due to ionic strength-dependent changes. Ligand density has a less pronounced effect on the elution rate, presumably due to ionic strength-dependent changes in the pore architecture of the sorbents. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. High Temperature Magnetic Properties of Indirect Exchange Spring FePt/M(Cu,C/Fe Trilayer Thin Films

    Directory of Open Access Journals (Sweden)

    Anabil Gayen

    2013-01-01

    Full Text Available We report the investigation of temperature dependent magnetic properties of FePt and FePt(30/M(Cu,C/Fe(5 trilayer thin films prepared by using magnetron sputtering technique at ambient temperature and postannealed at different temperatures. L10 ordering, hard magnetic properties, and thermal stability of FePt films are improved with increasing postannealing temperature. In FePt/M/Fe trilayer, the formation of interlayer exchange coupling between magnetic layers depends on interlayer materials and interface morphology. In FePt/C/Fe trilayer, when the C interlayer thickness was about 0.5 nm, a strong interlayer exchange coupling between hard and soft layers was achieved, and saturation magnetization was enhanced considerably after using interlayer exchange coupling with Fe. In addition, incoherent magnetization reversal process observed in FePt/Fe films changes into coherent switching process in FePt/C/Fe films giving rise to a single hysteresis loop. High temperature magnetic studies up to 573 K reveal that the effective reduction in the coercivity decreases largely from 34 Oe/K for FePt/Fe film to 13 Oe/K for FePt/C(0.5/Fe film demonstrating that the interlayer exchange coupling seems to be a promising approach to improve the stability of hard magnetic properties at high temperatures, which is suitable for high-performance magnets and thermally assisted magnetic recording media.

  20. Synthesis and Structure-Property Relationships of Poly(sulfone)s for Anion Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, JL; Moore, HD; Hibbs, MR; Hickner, MA

    2013-10-05

    Membranes based on cationic polymers that conduct anions are important for enabling alkaline membrane fuel cells and other solid-state electrochemical devices that operate at high pH. Anion exchange membranes with poly(arylene ether sulfone) backbones are demonstrated by two routes: chloromethylation of commercially available poly(sulfone)s or radical bromination of benzylmethyl moieties in poly(sulfone)s containing tetramethylbisphenol A monomer residues. Polymers with tethered trimethylbenzyl ammonium moieties resulted from conversion of the halomethyl groups by quaternization with trimethyl amine. The water uptake of the chloromethylated polymers was dependent on the type of poly(sulfone) backbone for a given IEC. Bisphenol A-based Udel (R) poly(sulfone) membranes swelled in water to a large extent while membranes from biphenol-based Radel (R) poly(sulfone), a stiffer backbone than Udel, only showed moderate water uptake. The water uptake of cationic poly(sulfone)s was further reduced by synthesizing tetramethylbisphenol A and 4,4-biphenol-containing poly(sulfone) copolymers where the ionic groups were clustered on the tetramethylbisphenol A residues. The conductivity of all samples scaled with the bulk water uptake. The hydration number of the membranes could be increased by casting membranes from the ionic form polymers versus converting the halomethyl form cast polymers to ionic form in the solid state. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1790-1798, 2013

  1. Applying hot wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell - Part 1

    DEFF Research Database (Denmark)

    Berning, Torsten; Al Shakhshir, Saher

    2015-01-01

    In order to accurately determine the water balance of a proton exchange membrane fuel cell it has recently been suggested to employ constant temperature anemometry (CTA), a frequently used method to measure the velocity of a fluid stream. CTA relies on convective heat transfer around a heated wire...... the equations required to calculate the heat transfer coefficient and the resulting voltage signal as function of the fuel cell water balance. The most critical and least understood part is the determination of the Nusselt number to calculate the heat transfer between the wire and the gas stream. Different...... for all current densities. Therefore, only one curve-fit equation will be required. The voltage curve E0 is an arbitrary calibration curve, and this can be conveniently chosen to be the voltage signal for a dry hydrogen stream at a given temperature and various flow rates which can be easily measured....

  2. Failure analysis of leakage on titanium tubes within heat exchangers in a nuclear power plant. Part II: Mechanical degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.; Yang, Z.G. [Department of Materials Science, Fudan University, Shanghai (China); Yuan, J.Z. [Third Qinshan Nuclear Power Co. Ltd., Haiyan, Zhejiang Province (China)

    2012-01-15

    Serious failure incidents like clogging, quick thinning, and leakage frequently occurred on lots of titanium tubes of heat exchangers in a nuclear power plant in China. In the Part I of the whole failure analysis study with totally two parts, factors mainly involving three kinds of electrochemical corrosions were investigated, including galvanic corrosion, crevice corrosion, and hydrogen-assisted corrosion. In the current Part II, through microscopically analyzing the ruptures on the leaked tubes by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS), another four causes dominantly lying in the aspect of mechanical degradation were determined - clogging, erosion, mechanical damaging, and fretting. Among them, the erosion effect was the primary one, thus the stresses it exerted on the tube wall were also supplementarily evaluated by finite element method (FEM). Based on the analysis results, the different degradation extents and morphologies by erosion on the tubes when they were clogged by different substances such as seashell, rubber debris, and sediments were compared, and relevant mechanisms were discussed. Finally, countermeasures were put forward as well. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Exchanging spare parts or becoming a new person? People's attitudes toward receiving and donating organs.

    Science.gov (United States)

    Sanner, M A

    2001-05-01

    The present study explored the public's feelings and ideas about receiving organs, and how this influenced their attitudes toward accepting a transplant themselves. Also the willingness to donate was examined in order to provide a complementary perspective. The main aim was to identify consistent attitude patterns that would include attitudes toward both receiving and donating organs and the motives behind this. Sixty-nine individuals with varying socio-demographic background, selected from samples who had responded to a questionnaire on receiving and donating organs and tissues, were interviewed in-depth. The approach to analyse the interviews was hermeneutic. Seven typical attitude patterns emerged. By an 'attitude pattern' was meant a specific set of attitudes and motives, that formed a consistent picture that was logical and psychologically meaningful. In the discussion, two different conceptions of the body were focused. One of them meant that the body was easily objectified and conceived as machine-like, and did not represent the self. This machine model paved the way for the understanding that body parts needed to be replaced by spare parts. The other conception meant that a new organ would transfer the donor's qualities, i.e. influence the identity of the recipient with regard to behaviour, appearance, and personality. This belief may be explained by 'analogy thinking' based on our everday experience of how mixed entities take on the qualities of all components. Another explanation would be a kind of magical thinking and 'the law of contagion', which is often connected to oral incorporation. The consequences of these conceptions when patients are confronted with the factual situation of a transplantation, were discussed.

  4. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    Science.gov (United States)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton

  5. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  6. IMPACT OF MARBLE MINING ON SOIL PROPERTIES IN A PART ...

    African Journals Online (AJOL)

    Dr Osondu

    The effects of marble mining activities on the properties of soils of Igbeti marble area, Oke-Ogun,. Southwestern Nigeria were investigated. Sample plots of 10 x 10 m2 were established at 150 m intervals from the factory site up to a distance of 600 m and with a sample plot at 10 km to serve as control in four cardinal ...

  7. Hygrothermal characterization of the viscoelastic properties of Gore-Select® 57 proton exchange membrane

    Science.gov (United States)

    Patankar, Kshitish A.; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Budinski, Michael K.; Gittleman, Craig S.

    2008-09-01

    When a proton exchange membrane (PEM) based fuel cell is placed in service, hygrothermal stresses develop within the membrane and vary widely with internal operating environment. These hygrothermal stresses associated with hygral contraction and expansion at the operating conditions are believed to be critical in membrane mechanical integrity and durability. Understanding and accurately modeling the viscoelastic constitutive properties of a PEM is important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. The tensile stress relaxation moduli of a commercially available PEM, Gore-Select® 57, were obtained over a range of humidities and temperatures. These tests were performed using TA Instruments 2980 and Q800 dynamic mechanical analyzers (DMA), which are capable of applying specified tensile loading conditions on small membrane samples at a given temperature. A special humidity chamber was built in the form of a cup that encloses tension clamps of the DMA. The chamber was inserted in the heating furnace of the DMA and connected to a gas humidification unit by means of plastic tubing through a slot in the chamber. Stress relaxation data over a temperature range of 40 90°C and relative humidity range of 30 90% were obtained. Thermal and hygral master curves were constructed using thermal and hygral shift factors and were used to form a hygrothermal master curve using the time temperature moisture superposition principle. The master curve was also constructed independently using just one shift factor. The hygrothermal master curve was fitted with a 10-term Prony series for use in finite element software. The hygrothermal master curve was then validated using longer term tests. The relaxation modulus from longer term data matches well with the hygrothermal master curve. The long term test showed a plateau at longer times, suggesting an equilibrium modulus.

  8. Defining Allowable Physical Property Variations for High Accurate Measurements on Polymer Parts

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Sonne, Mads Rostgaard; Madruga, Daniel González

    2015-01-01

    Measurement conditions and material properties have a significant impact on the dimensions of a part, especially for polymers parts. Temperature variation causes part deformations that increase the uncertainty of the measurement process. Current industrial tolerances of a few micrometres demand h....... In this paper, we investigated how big the variation in material and physical properties are allowed in order to reach the 5 μm target on the uncertainty....

  9. Ion-exchange properties of cell walls of Spinacia oleracea L. roots under different environmental salt conditions.

    Science.gov (United States)

    Meychik, N R; Nikolaeva, Yu I; Yermakov, I P

    2006-07-01

    Ion-exchange properties of the polymeric matrix of cell walls isolated from roots of 55-day-old Spinacia oleracea L. (Matador cv.) plants grown in nutrient solution in the presence of 0.5, 150, and 250 mM NaCl and from roots of Suaeda altissima L. Pall plants of the same age grown in the presence of 0.5 and 250 mM NaCl were studied. The ion-exchange capacity of the spinach cell walls was determined at pH values from 2 to 12 and different ionic strength of the solution (10 and 250 mM NaCl). In the structure of the root cell walls, four types of ionogenic groups were found: amine, two types of carboxyl (the first being galacturonic acid residue), and phenolic groups. The content of each type of group and their ionization constants were evaluated. The ion-exchange properties of spinach and the halophyte Suaeda altissima L. Pall were compared, and the qualitative composition of the ion-exchange groups in the cell walls of roots of these plants appeared to be the same and not depend on conditions of the root nutrition. The content of carboxyl groups of polygalacturonic acid changed in the cell walls of the glycophyte and halophyte depending on the salt concentration in the medium. These changes in the composition of functional groups of the cell wall polymers seemed to be a response of these plants to salt and were more pronounced in the halophyte. A sharp increase in the NaCl concentration in the medium caused a decrease in pH in the extracellular water space as a result of exchange reactions between sodium ions entering from the external solution and protons of carboxyl groups of the cell walls. The findings are discussed from the standpoint of involvement of root cell walls of different plant species in response to salinity.

  10. Determination of baghouse performance from coal and ash properties: part

    Energy Technology Data Exchange (ETDEWEB)

    Bush, P.V.; Snyder, T.R.; Chang, R.L.

    1989-02-01

    Baghouse performance at utility coal-fired power plants is determined by baghouse design, operating procedures, and the characteristics of the ash that is collected as a dustcake on the fabric filter. The Electric Power Research Institute has conducted laboratory research to identify the fundamental properties of dustcake ash that influence baghouse performance. A database was assembled including measured characteristics of dustcake ash and data describing operating parameters and performance of full-scale and pilot-scale baghouses. Semi-empirical models were developed that describe the effects of particle morphology, particle size, ash cohesivity and ash chemistry on filtering pressure drop and particulate emissions. Cohesivity was identified as the primary ash characteristic affecting baghouse performance. Predictions of performance can be based on physical or chemical characterizations of the ash to be filtered.

  11. Influence of water and membrane microstructure on the transport properties of proton exchange membrane fuel cells

    Science.gov (United States)

    Siu, Ana Rosa

    Proton transport in proton exchange membranes (PEMs) depends on interaction between water and acid groups covalently bound to the polymer. Although the presence of water is important in maintaining the PEM's functions, a thorough understanding of this topic is still lacking. The objective of this work is to provide a better understanding of how the nature water, confined to ionic domains of the polymer, influences the membrane's ability to transport protons, methanol and water. Understanding this topic will facilitate development of new materials with favorable transport properties for fuel cells use. Five classes of polymer membranes were used in this work: polyacrylonitrile-graft-poly(styrenesulfonic) acid (PAN-g-macPSSA); poly(vinylidene difluoride) irradiation-graft-poly(styrenesulfonic) acid (PVDF-g-PSSA); poly(ethylenetetrafluoroethylene) irradiation-graft-poly(styrenesulfonic) acid (ETFE-gPSSA); PVDF-g-PSSA with hydroxyethylmethacrylate (HEMA); and perfluorosulfonic acid membrane (Nafion). The nature of water within the polymers (freezable versus non-freezable states) was measured by systematically freezing samples, and observing the temperature at which water freezes and the amount of heat released in the process. Freezing water-swollen membranes resulted in a 4-fold decrease in the proton conductivity of the PEM. Activation energies of proton transport before and after freezing were ˜ 0.15 eV and 0.5 eV, consistent with proton transport through liquid water and bound water, respectively. Reducing the content of water in membrane samples decreased the amount of freezable and non-freezable water. Calorimetric measurements of membranes in various degrees of hydration showed that water molecules became non-freezable when lambda, (water molecules per sulfonic acid group) was less than ˜14. Proton conduction through membranes containing only non-freezable water was demonstrated to be feasible. Diffusion experiments showed that the permeability of methanol

  12. New ion-exchanged zeolite derivatives: antifungal and antimycotoxin properties against Aspergillus flavus and aflatoxin B1

    Science.gov (United States)

    Savi, Geovana D.; Cardoso, Willian A.; Furtado, Bianca G.; Bortolotto, Tiago; Da Agostin, Luciana O. V.; Nones, Janaína; Torres Zanoni, Elton; Montedo, Oscar R. K.; Angioletto, Elidio

    2017-08-01

    Zeolites are microporous crystalline hydrated aluminosilicates with absorbent and catalytic properties. This material can be used in many applications in stored-pest management such as: pesticide and fertilizer carriers, animal feed additives, mycotoxin binders and food packaging materials. Herein, four 4A zeolite forms were prepared by ion-exchange and their antifungal effect against Aspergillus flavus was highlighted. Additionally, the antimycotoxin activity and the aflatoxin B1 (AFB1) adsorption capacity of these zeolites as well as their toxic effects on Artemia sp. were investigated. The ion-exchanged zeolites with Li+ and Cu2+ showed the best antifungal activity against A. flavus, including effects on conidia germination and hyphae morphological alterations. Regarding to antimycotoxin activity, all zeolite samples efficiently inhibited the AFB1 production by A. flavus. However, the ion-exchanged zeolites exhibited better results than the 4A zeolite. On the other hand, the AFB1 adsorption capacity was only observed by the 4A zeolite and zeolite-Li+. Lastly, our data showed that all zeolites samples used at effective concentrations for antifungal and antimycotoxin assays (2 mg ml-1) showed no toxic effects towards Artemia sp. Results suggest that some these ion-exchanged zeolites have great potential as an effective fungicide and antimycotoxin agent for agricultural and food safety applications.

  13. Can Properties of Labor-Exchange Networks Explain the Resilience of Swidden Agriculture?

    Directory of Open Access Journals (Sweden)

    Sean S. Downey

    2010-12-01

    Full Text Available Despite the fact that swidden agriculture has been the subject of decades of research, questions remain about the extent to which it is constrained by demographic growth and if it can adapt to environmental limits. Here, social network analysis is used to analyze farmer labor-exchange networks within a chronosequence of five Q'eqchi' Maya villages where swidden agriculture is used. Results suggest that changes in land-use patterns, network structure, reciprocity rates, and levels of network hierarchy may increase the resilience of these villages to changes in the forest's agricultural productivity caused by ongoing agricultural activity. I analyze the suitability of subsistence- versus market-oriented agricultural labor for reciprocal labor exchange and develop a novel interpretation of labor reciprocity that highlights how unreciprocated exchanges, when they occur within the context of a network, may limit overexploitation of the forest. The variability observed in labor-exchange network structure across villages suggests that Q'eqchi' swidden can maintain its identity under changing conditions. This important characteristic of resilient systems is explored by analyzing a village case study where a serious demographic exodus dramatically impacted their labor network. The resulting picture of Q'eqchi' swidden agriculture is one of resilience rather than homeostasis. Reorganization of labor-exchange networks helps to maintain a village's cohesion, and ultimately this limits pioneer settlements and may slow overall rates of deforestation.

  14. The exchange interaction effects on magnetic properties of the nanostructured CoPt particles

    Energy Technology Data Exchange (ETDEWEB)

    Komogortsev, S.V., E-mail: komogor@iph.krasn.ru [Kirensky Institute of Physics, SB RAS, 660036 Krasnoyarsk (Russian Federation); Iskhakov, R.S. [Kirensky Institute of Physics, SB RAS, 660036 Krasnoyarsk (Russian Federation); Zimin, A.A. [Siberian Federal University, 660041 Krasnoyarsk (Russian Federation); Filatov, E.Yu.; Korenev, S.V.; Shubin, Yu.V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Chizhik, N.A. [Siberian Federal University, 660041 Krasnoyarsk (Russian Federation); Yurkin, G.Yu.; Eremin, E.V. [Kirensky Institute of Physics, SB RAS, 660036 Krasnoyarsk (Russian Federation)

    2016-03-01

    Various manifestations of the exchange interaction effects in magnetization curves of the CoPt nanostructured particles are demonstrated and discussed. The inter-grain exchange constant A in the sponge-like agglomerates of crystallites is estimated as A=(7±1) pJ/m from the approach magnetization to saturation curves that is in good agreement with A=(6.6±0.5) pJ/m obtained from Bloch T {sup 3/2} law. The fractal dimensionality of the exchange coupled crystallite system in the porous media of the disordered CoPt alloy d=(2.60±0.18) was estimated from the approach magnetization to saturation curve. Coercive force decreases with temperature as H{sub c}~T {sup 3/2} which is assumed to be a consequence of the magnetic anisotropy energy reduction due to the thermal spin wave excitations in the investigated CoPt particles. - Highlights: • Nanostructured CoPt particles were synthesized and then annealed in He atmosphere. • The structure of the material and magnetization curves were studied. • The maximum on reduced coercivity vs grain size dependence was observed. • The dimensionality d of exchange coupled crystallite system was estimated. • Exchange stiffness constant A was estimated.

  15. Surface oxygen exchange properties of bismuth oxide-based solid electrolytes and electrode materials

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Vinke, I.C.; de Vries, K.J.; Burggraaf, A.J.

    1989-01-01

    The surface oxygen exchange coefficient, ks, has been measured for the solid solution (Bi2O3)0.75(Er2O3)0.25 and (Bi2O3)0.6(Tb2O3)0.4 (abbreviated BE25 and BT40), using gas-phase 18O exchange techniques. The activation enth alpy of ks amounts to ΔE=110 kJ/molforBT40 andΔE=130 kJ/molforBE25. The

  16. Career Development of College Students through Part-Time Work: The Role of Leader-Member Exchange and Taking Charge Behavior

    OpenAIRE

    Tomoki Sekiguchi

    2010-01-01

    This study examines the potential benefit of college students' part-time work on their career development by focusing on leader-member exchange (LMX) and taking charge behavior in the workplace. Using a sample of Japanese college students, results from this study indicate that taking charge behavior in part-time work mediates the relationship between LMX quality with supervisors and career development (focus of career exploration, self-efficacy toward postcollege employment and proactive care...

  17. The role of hydrogeological conditions and thermophysical properties on the evaluation of geothermal exchange potential in Central Italy

    Science.gov (United States)

    Chicco, Jessica; Verdoya, Massimo; Verda, Vittorio; Invernizzi, Chiara

    2016-04-01

    Within the framework of the EU strategy for sustainable development, the exploitation of the shallow subsurface geothermal resources is of great relevance. In this regard, a multidisciplinary investigation aimed at optimising the performance of borehole heat exchangers is in progress in the Marche region (Central Italy). In particular, an improvement of the present-day knowledge about thermo-physical parameters of the sedimentary deposits forming the Umbria-Marche succession, as well as the hydrogeological setting and geological structures, is fundamental in order to obtain a better picture of the regional geothermal exchange potential. Therefore, we carried out accurate laboratory measurements of thermal conductivity, volume heat capacity, thermal diffusivity, porosity, and density of both core and outcrop samples of the main geological formations of Marche, Moreover, the mineralogical content was defined through XRD diffraction. Because climatic variations can influence the moisture content of the shallower portions of the subsoil, the groundwater physical properties (temperature and electrical conductivity above all), have been continuously monitored for several years. Based on the collected data, a detailed thermo-fluid dynamic modelling was carried out under different, hydrogeological and geo-structural conditions to calculate the effect of groundwater velocity on the heat exchange between the boreholes and the ground. A relation, based on well-known non-dimensional parameters, was obtained in order to correct the purely conductive heat transfer on the basis of groundwater velocity. The preliminary results show that groundwater plays an important role, giving rise to higher heat exchange coefficients. This improves the present-day knowledge of the geothermal exchange potential in the region and overtakes previous analyses that only considered heat conduction.

  18. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  19. Properties and degradation of the gasket component of a proton exchange membrane fuel cell--a review.

    Science.gov (United States)

    Basuli, Utpal; Jose, Jobin; Lee, Ran Hee; Yoo, Yong Hwan; Jeong, Kwang-Un; Ahn, Jou-Hyeon; Nah, Changwoon

    2012-10-01

    Proton exchange membrane (PEM) fuel cell stack requires gaskets and seals in each cell to keep the reactant gases within their respective regions. Gasket performance is integral to the successful long-term operation of a fuel cell stack. This review focuses on properties, performance and degradation mechanisms of the different polymer gasket materials used in PEM fuel cell under normal operating conditions. The different degradation mechanisms and their corresponding representative mitigation strategies are also presented here. Summary of various properties of elastomers and their advantages and disadvantages in fuel cell'environment are presented. By considering the level of chemical degradation, mechanical properties and cost effectiveness, it can be proposed that EPDM is one of the best choices for gasket material in PEM fuel cell. Finally, the challenges that remain in using rubber component as in PEM fuel cell, as well as the prospects for exploiting them in the future are discussed.

  20. Magnetic properties of the spin S = 1/2 Heisenberg chain with hexamer modulation of exchange.

    Science.gov (United States)

    Naseri, M Shahri; Japaridze, G I; Mahdavifar, S; Shayesteh, S Farjami

    2012-03-21

    We consider the spin-1/2 Heisenberg chain with alternating spin exchange in the presence of additional modulation of exchange on odd bonds with period 3. We study the ground state magnetic phase diagram of this hexamer spin chain in the limit of very strong antiferromagnetic (AF) exchange on odd bonds using the numerical Lanczos method and bosonization approach. In the limit of strong magnetic field commensurate with the dominating AF exchange, the model is mapped onto an effective XXZ Heisenberg chain in the presence of uniform and spatially modulated fields, which is studied using the standard continuum-limit bosonization approach. In the absence of additional hexamer modulation, the model undergoes a quantum phase transition from a gapped phase into the only one gapless Lüttinger liquid (LL) phase by increasing the magnetic field. In the presence of hexamer modulation, two new gapped phases are identified in the ground state at magnetization equal to [Formula: see text] and [Formula: see text] of the saturation value. These phases reveal themselves also in the magnetization curve as plateaus at corresponding values of magnetization. As a result, the magnetic phase diagram of the hexamer chain shows seven different quantum phases, four gapped and three gapless, and the system is characterized by six critical fields which mark quantum phase transitions between the ordered gapped and the LL gapless phases. © 2012 IOP Publishing Ltd

  1. The Effects of Sulfonated Poly(ether ether ketone Ion Exchange Preparation Conditions on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Rebecca S. L. Yee

    2013-08-01

    Full Text Available A low cost cation exchange membrane to be used in a specific bioelectrochemical system has been developed using poly(ether ether ketone (PEEK. This material is presented as an alternative to current commercial ion exchange membranes that have been primarily designed for fuel cell applications. To increase the hydrophilicity and ion transport of the PEEK material, charged groups are introduced through sulfonation. The effect of sulfonation and casting conditions on membrane performance has been systematically determined by producing a series of membranes synthesized over an array of reaction and casting conditions. Optimal reaction and casting conditions for producing SPEEK ion exchange membranes with appropriate performance characteristics have been established by this uniquely systematic experimental series. Membrane materials were characterized by ion exchange capacity, water uptake, swelling, potential difference and NMR analysis. Testing this extensive membranes series established that the most appropriate sulfonation conditions were 60 °C for 6 h. For mechanical stability and ease of handling, SPEEK membranes cast from solvent casting concentrations of 15%–25% with a resulting thickness of 30–50 µm were also found to be most suitable from the series of tested casting conditions. Drying conditions did not have any apparent impact on the measured parameters in this study. The conductivity of SPEEK membranes was found to be in the range of 10−3 S cm−1, which is suitable for use as a low cost membrane in the intended bioelectrochemical systems.

  2. Electromagnetic properties of the deuteron in a relativistic one-boson exchange model

    NARCIS (Netherlands)

    Tjon, J.A.; Zuilhof, M.J.

    1979-01-01

    The deuteron electric electromagnetic form factors are studied in a quasi-potential framework, where relativistic and meson-exchange contributions are treated consistently. At moderate momentum transfer the corrections to the static approximation are found to be significantly less than estimates

  3. Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion

    Science.gov (United States)

    Fontananova, E.; Messana, D.; Tufa, R. A.; Nicotera, I.; Kosma, V.; Curcio, E.; van Baak, W.; Drioli, E.; Di Profio, G.

    2017-02-01

    The electrochemical properties of ion exchange membranes (IEMs) applied for salinity-gradient power (SGP) harvesting, are usually measured using diluited NaCl aqueous solutions because of the prevalence of its constituents ions in natural solutions (e.g. seawater). However, in real applications, the IEMs come in contact with other ionic species than Na+ and Cl- that can have a relevant effect on their properties. As a consequence, the obtained results in many cases are not really representative. The aim of the present study was to investigate the effect of solution concentration and compositions on permselectivity, membrane and interface resistance, for both anion and cation exchange membranes (AEMs and CEMs). Special attention was paid to the influence of the most common multivalent ions in seawater (Mg2+, Ca2+ and SO42-) on the electrochemical properties of the AEM and the CEM. It was possible to discriminate the impact on the AEM from that on the CEM. The results highlighted a strong negative effect of Mg2+ on the CEM (relevant increase of ionic resistance and permselectivity) and, at minor extent, on the AEM (moderate reduction of permselectivity).

  4. Swelling and electro-osmotic properties of cation-exchange membranes with different structures in methanol-water media

    Science.gov (United States)

    Barragán, V. M.; Villaluenga, J. P. G.; Godino, M. P.; Izquierdo-Gil, M. A.; Ruiz-Bauzá, C.; Seoane, B.

    Electro-osmosis experiments through three cation-exchange membranes with different morphology and similar electric properties have been performed using methanol-water solutions under different experimental conditions. The influence on the electro-osmotic transport of the percentage of methanol on solvent with two different electrolytes, NaCl and LiCl, has been studied. The experimental results show that the presence of methanol in the solutions affects strongly the electro-osmotic flow, and this influence is different depending on the membrane morphology. Correlations among electro-osmotic permeability, swelling behavior, and cell resistance are studied for these membrane systems at different percentages of methanol in solvent.

  5. PERFORMANCE EVALUATION OF PROPERTY AND REAL ESTATE COMPANIES LISTED ON INDONESIA STOCK EXCHANGE USING DATA ENVELOPMENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tessa V. Soetanto

    2014-01-01

    Full Text Available   This paper aimed to evaluate perfomance of property and real estate companies listed in Indonesia Stock Exchange using the DEA method. Samples were 23 companies listed from 2009–2012. Results showed that some companies are relatively efficient each year. However, only one company consistently had technical efficiency equal to 1. The main cause of inefficiency from 2009–2011 was scale inefficiency while inefficiency happened in 2012 was pure technical inefficiency. Overall the companies operate efficiently un-der constant returns to scale is showing an increase from 17.39%–39.13%.

  6. Effects of glass fibers on the properties of micro molded plastic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Gasparin, Stefania

    2011-01-01

    Glass fibers are used to reinforce plastics and to improve their mechanical properties. But plastic filled with glass fibers is a concern for molding of micro scale plastic parts. The aim of this paper is to investigate the effects of glass fiber on the replication quality and mechanical properties...... of polymeric thin ribs. It investigates the effect of feature size and gate location on distribution of glass fibers inside the molded parts. The results from this work indicate that glass filled plastic materials have poor replication quality and nonhomogeneous mechanical properties due to the nonuniform...... distribution and orientation of glass fibers....

  7. Polysulfide chalcogels with ion-exchange properties and highly efficient mercury vapor sorption.

    Science.gov (United States)

    Oh, Youngtak; Morris, Collin D; Kanatzidis, Mercouri G

    2012-09-05

    We report the synthesis of metal-chalcogenide aerogels from Pt(2+) and polysulfide clusters ([S(x)](2-), x = 3-6). The cross-linking reaction of these ionic building blocks in formamide solution results in spontaneous gelation and eventually forms a monolithic dark brown gel. The wet gel is transformed into a highly porous aerogel by solvent exchanging and subsequent supercritical drying with CO(2). The resulting platinum polysulfide aerogels possess a highly porous and amorphous structure with an intact polysulfide backbone. These chalcogels feature an anionic network that is charged balanced with potassium cations, and hosts highly accessible S-S bonding sites, which allows for reversible cation exchange and mercury vapor capture that is superior to any known material.

  8. Preparation and Cation Exchange Properties of Zeolitic Adsorbents Using Fused Coal Fly Ash and Seawater

    Science.gov (United States)

    Hirai, Takashi; Wajima, Takaaki; Yoshizuka, Kazuharu

    For the development of functional material using coal fly ash discharged from thermal power plants, we have prepared zeolitic adsorbents derived from alkaline fused coal fly ash in several aqueous saline media to obtain the optimized preparation condition. The NH4+ exchange capacity of the product prepared at 80°C for 12 hours in diluted seawater using the precursor fused at 500°C was 4.6 mmol⁄g which is equivalent that of product prepared in deionized water. Zeolite-X and zeolite-A were produced in all aqueous media, in addition hydroxysodalite was produced over 12 hours. It was suggested that zeolite-A transform into hydroxysodalite in the products. The zeolitic adsorbents having high ion exchange capacity could be prepared in twice diluted seawater at 6-12 hours in 80°C using a precursor fused at 500°C.

  9. Nuclear macroscopic properties and pionic exchange currents in (e,e/sup '/) processes

    Energy Technology Data Exchange (ETDEWEB)

    Lallena, A.M.; Dehesa, J.S.; Krewald, S.

    1986-07-01

    Using the effective pion propagator approximation, the two-body pion exchange current contributions to the form factor of the inelastic electron scattering from closed-shell nuclei are explicitly calculated in terms of nuclear densities (nucleon density, kinetic energy density, . . .). The electroexcitation of some high-spin magnetic stretched states in /sup 16/O and /sup 208/Pb is studied to illustrate our approach, and the goodness of the agreement with the exact results is discussed.

  10. Environmental properties of long chain alcohols. Part 1: Physicochemical, environmental fate and acute aquatic toxicity properties

    DEFF Research Database (Denmark)

    Fisk, Peter; Sanderson, Hans; Wildey, Ross

    2009-01-01

    This paper summarises the physicochemical, biodegradation and acute aquatic ecotoxicity properties of long chain aliphatic alcohols. Properties of pure compounds are shown to follow somewhat predictable trends, which are amenable to estimation by quantitative structure-activity relationships ((Q...... possible bioaccumulation potential, available data suggest that these substances are not as bioaccumulative as estimations would predict. For acute aquatic toxicity, solubility limits the possibility of effects being appropriately observed and become increasingly challenging above C12. Further, a model has...

  11. An eco-friendly synthesis, characterization, morphology and ion exchange properties of terpolymer resin derived from p-hydroxybenzaldehyde

    Directory of Open Access Journals (Sweden)

    Deepti B. Patle

    2016-09-01

    Full Text Available A novel chelating terpolymer resin has been synthesized through the terpolymerization of p-hydroxybenzaldehyde and biuret with formaldehyde (p-HBBF in 1:1:2 mol ratio using hydrochloric acid as a reaction medium by condensation technique. The synthesized terpolymer resin was characterized by elemental analysis, FTIR, 1H NMR and 13C NMR spectroscopy. On basis of the spectral studies, the structure of the terpolymer resin was proposed. The physico-chemical parameters have been evaluated for the terpolymer resin. Non-aqueous conductometric titration was used to determine the average molecular weight and polydispersity of the p-HBBF terpolymer resin and the intrinsic viscosity was also determined. The semicrystalline nature of the synthesized terpolymer was established by scanning electron microscopy (SEM. Terpolymer (p-HBBF synthesized is proved to be selective chelating ion exchange terpolymer resin for certain metals. Chelating ion exchange properties of this polymer was studied for Fe3+, Cu2+, Cd2+, Zn2+, Ni2+ and Pb2+ ions. A batch equilibrium method was employed in the study of the selectivity of the distribution of a given metal ions between the polymer sample and a solution containing the metal ion. The morphology of the terpolymers was studied by scanning electron microscopy, showing amorphous nature of the resins therefore can be used as a selective ion-exchanger for certain metal ions.

  12. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators.

    Science.gov (United States)

    Aoyagi, Wataru; Omiya, Masaki

    2016-06-15

    An ionic polymer-metal composite (IPMC) actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators.

  13. Correlation of Process Parameters with Mechanical Properties of Laser Sintered PA12 Parts

    Directory of Open Access Journals (Sweden)

    Eva C. Hofland

    2017-01-01

    Full Text Available Selective laser sintering (SLS is an additive manufacturing technique that enables the production of customized, complex products. SLS has proven itself a viable prototyping tool and production method for noncritical products. The industry has picked up on the potential of SLS, which raised the question whether it is possible to produce functional products with reproducible mechanical properties for application in critical sectors. Properties of SLS parts highly depend on the applied process settings. Hence, present work examined the influence of key process parameters (preheating temperature, laser power, scan spacing, scan speed, layer thickness, and part build orientation on the properties (tensile strength, tensile modulus, elongation at break, and part density of SLS produced parts. A design of experiments (DoE approach was used to plan the experiments. Test samples according to DIN EN ISO 527-2 were produced on a sintering system (EOSINT P395 using polyamide 12 powder (EOS PA2200. Regression models that describe the relation between the process settings and resulting part properties were developed. Sensitivity analysis showed that mechanical properties of sintered parts were highly affected by layer thickness and scan spacing variations.

  14. Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.

    2005-09-15

    Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.

  15. Physical properties of sand parts produced using a Voxeljet VX1000 three-dimensional printer

    Directory of Open Access Journals (Sweden)

    Nyembwe, Kasongo

    2016-11-01

    Full Text Available Successful case studies of metal casting applications using sand moulds and cores produced by additive manufacturing (AM processes have been widely reported in the literature. The layered- based manufacturing process has revolutionised traditional sand moulding methods. This is essentially due to the numerous advantages of AM, including the reduction of design lead time and the ability to manufacture objects with complex geometry in a rapid turnaround time. Locally-available AM processes that are capable of producing sand moulds and cores include laser sintering (LS and three-dimensional printing (3DP, with the latter AM process growing in dominance over the former. However, a better understanding of the properties of parts produced by AM processes is required in order for the processes to be fully adopted by the foundry industry. Crucial characteristics of 3DP sand parts related to strength, dimensional accuracy, and hardness are not well- known in terms of their magnitude and in comparison with conventionally-moulded sand parts. In this investigation, the physical properties of test specimens produced under standard manufacturing conditions, using a Voxeljet VX1000 machine, were assessed for bend and tensile strength, hardness, friability, and surface finish. The physical properties of the 3DP test specimens were then compared with the properties of laboratory hand- rammed test specimens. The results of the investigation suggest that the properties of AM-fabricated sand parts are inferior to sand parts produced by conventional moulding processes.

  16. Templated synthesis, postsynthetic metal exchange, and properties of a porphyrin-encapsulating metal-organic material

    KAUST Repository

    Zhang, ZhenJie

    2012-01-18

    Reaction of biphenyl-3,4′,5-tricarboxylate (H 3BPT) and CdCl 2 in the presence of meso-tetra(N-methyl-4-pyridyl)porphine tetratosylate (TMPyP) afforded porph@MOM-10, a microporous metal-organic material containing CdTMPyP cations encapsulated in an anionic Cd(II) carboxylate framework, [Cd 6(BPT) 4Cl 4(H 2O) 4]. Porph@MOM-10 is a versatile platform that undergoes exchange to serve as the parent of a series of porph@MOMs that exhibit permanent porosity and heterogeneous catalytic activity. © 2011 American Chemical Society.

  17. Fabrication of gadolinium hydroxide nanoparticles using ion-exchange resin and their MRI property

    Directory of Open Access Journals (Sweden)

    Y. Kobayashi

    2016-03-01

    Full Text Available This paper describes a method to fabricate gadolinium hydroxide (Gd(OH3 nanoparticles. An opaque solution was prepared by adding basic anion exchange resin (BAER to a Gd(NO33 aqueous solution at room temperature and aging the solution for 12–24 h; the solution became basic because of the exchange of H2O with OH−. The particles in the opaque solution have a needle structure, and their crystal structure was hexagonal Gd(OH3. Their longitudinal and lateral average particle sizes tend to increase in the ranges of 175.0–222.1 and 33.9–52.3 nm when the aging time increases from 12 to 24 h, respectively. The relaxivity value for T1-weighted imaging was 0.79 mM−1 s−1 for the solution that was prepared at the aging time of 18 h, which was ca. 20% of that for a commercial Gd complex contrast agent.

  18. Influence of Joule Dissipation on Heat Exchange and Magnetic Hydrodynamics of Liquid in a Spherical Layer. Part I

    Science.gov (United States)

    Solov'ev, S. V.

    2017-09-01

    Results of numerical simulation of the convective heat exchange in the electrically conducting liquid flowing between two concentric isothermal spheres are presented. The influence of Joule heating of this liquid and the thickness of the spherical liquid layer on the structure of the liquid flow, the temperature and magnetic-induction fields, and the distribution of Nusselt numbers in it was investigated. Equations for simulation of the heat exchange in the spherical liquid layer in the case where the gravitational acceleration is directed to its center were derived.

  19. Soybean Protein Fibres Part 2: Soybean Fibres Properties and Application Areas

    Directory of Open Access Journals (Sweden)

    Fatma Filiz Yıldırım

    2015-01-01

    Full Text Available Soybean protein fibres (SPF, which is a protein based botanic fibre, has various beneficialproperties such as softness, brightness, smoothness, drape, UV and bacterial resistance. These fibers areused in production of various yarn blends, woven, knit and nonwoven fabrics to manufature apperal andhome textiles such as t-shirts, bedding, sweater and baby dress due to these superior properties. This review,about SPF, is divided into two sections. In the first part; structure and production stages of SPF and itsenviromental effects had been described. In the second part of this review, properties and application areasof SPF have been described.

  20. Preparation and properties of high performance nanocomposite proton exchange membrane for fuel cell

    Science.gov (United States)

    Lin, Yu-Feng; Yen, Chuan-Yu; Ma, Chen-Chi M.; Liao, Shu-Hang; Hung, Chih-Hung; Hsiao, Yi-Hsiu

    Various spatially enlarged organoclays were prepared by using poly(oxyproplene)-backboned quaternary ammonium salts of various molecular weights M w 230, 400 and 2000 as the intercalating agents for Na +-montmorillonite. The modified MMT was utilized to improve the compatibility with Nafion ®. Sufficient interaction of the modified MMT with Nafion ® was studied by using X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS). The performance of the Nafion ®/ m-MMT composite membranes for direct methanol fuel cell (DMFCs) was evaluated in terms of water uptake, ion exchange capacity (IEC), methanol permeability, proton conductivity, and cell performance. The methanol permeability of the composite membrane decreased with the increasing of m-MMT content. The proton conductivity of the membrane was lowered slightly from that of pristine Nafion ® membrane. These results led to an essential improvement in the single-cell performance of DMFCs.

  1. CO2 adsorption properties of ion-exchanged zeolite Y prepared from natural clays

    Science.gov (United States)

    Djeffal, Nadjiba; Benbouzid, Mohammed; Boukoussa, Bouhadjar; Sekkiou, Housseyn; Bengueddach, Abdelkader

    2017-03-01

    Ordered microporous Y zeolite was successfully synthesized by hydrothermal treatment using metakaolin and Ludox (40% SiO2) as an aluminum and silica source respectively. The metakaolin was obtained by thermal treatment of Algerian kaolin. The obtained Y zeolite was exchanged by different cations such as Cu2+, Ni2+, Ca2+, Na+ and used for the CO2 adsorption at 0 °C. The structural features of the materials were determined by various physico-chemical techniques such as x-ray diffraction, nitrogen sorption at 77 K, Fourier transform infrared spectroscopy and scanning electronic microscopy. The CO2 adsorption at 0 °C was carried using a volumetric method. The adsorption isotherms of CO2 exhibit nonlinear concave curves and showed a high adsorption capacity for CO2 from the M-Y zeolites. The equilibrium CO2 adsorption capacity increase in the following order of Cu2+  zeolite.

  2. Material Exchange Property of Organo Lead Halide Perovskite with Hole-Transporting Materials

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2015-10-01

    Full Text Available Using X-ray diffraction (XRD, it was confirmed that the deposition of hole-transporting materials (HTM on a CH3NH3PbI3 perovskite layer changed the CH3NH3PbI3 perovskite crystal, which was due to the material exchanging phenomena between the CH3NH3PbI3 perovskite and HTM layers. The solvent for HTM also changed the perovskite crystal. In order to suppress the crystal change, doping by chloride ion, bromide ion and 5-aminovaleric acid was attempted. However, the doping was unable to stabilize the perovskite crystal against HTM deposition. It can be concluded that the CH3NH3PbI3 perovskite crystal is too soft and flexible to stabilize against HTM deposition.

  3. Physical properties of the formation of water exchange between Atlantic and Arctic Ocean

    Science.gov (United States)

    Moshonkin, S. N.; Bagno, A. V.; Gusev, A. V.; Filyushkin, B. N.; Zalesny, V. B.

    2017-03-01

    Physical regularities of water exchange between the North Atlantic (NA) and Arctic Ocean (AO) in 1958-2009 are analyzed on the basis of numerical experiments with an eddy-permitting model of ocean circulation. Variations in the heat and salt fluxes in the Greenland Sea near the Fram Strait caused by atmospheric forcing generate baroclinic modes of ocean currents in the 0-300 m layer, which stabilize the response of the ocean to atmospheric forcing. This facilitates the conservation of water exchange between the NA and AO at a specific climatic level. A quick response of dense water outflow into the deep layers of the NA through the Denmark Strait to the variations in the North Atlantic Oscillation (NAO) index was revealed on the monthly scale. A response on a time scale of 39 months was also revealed. The quick response on the NAO index variation was interrupted in 1969-1978, which was related to the Great Salinity Anomaly. It was shown that transverse oscillations of the Norwegian Atlantic Current significantly influence the formation of intermediate dense waters in the Greenland and Norwegian seas (GNS). The dense water outflow by bottom current (BC) to the deep layers of the NA through the Faroe Channels with a time lag of 1 year correlates with the transversal oscillations of the Norwegian Current front. The mass transport of the BC outflow from the Faroe Channels to the NA can serve as an integral indicator of the formation and sink of new portions of dense waters formed as a result of mixing of warm saline Atlantic waters and cold freshened Arctic waters in the GNS.

  4. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 2: Application to BEARPEX-2007 observations

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-02-01

    Full Text Available In a companion paper, we introduced the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. Here, we apply CAFE to noontime observations from the 2007 Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX-2007. In this work we evaluate the CAFE modeling approach, demonstrate the significance of in-canopy chemistry for forest-atmosphere exchange and identify key shortcomings in the current understanding of intra-canopy processes.

    CAFE generally reproduces BEARPEX-2007 observations but requires an enhanced radical recycling mechanism to overcome a factor of 6 underestimate of hydroxyl (OH concentrations observed during a warm (~29 °C period. Modeled fluxes of acyl peroxy nitrates (APN are quite sensitive to gradients in chemical production and loss, demonstrating that chemistry may perturb forest-atmosphere exchange even when the chemical timescale is long relative to the canopy mixing timescale. The model underestimates peroxy acetyl nitrate (PAN fluxes by 50% and the exchange velocity by nearly a factor of three under warmer conditions, suggesting that near-surface APN sinks are underestimated relative to the sources. Nitric acid typically dominates gross dry N deposition at this site, though other reactive nitrogen (NOy species can comprise up to 28% of the N deposition budget under cooler conditions. Upward NO2 fluxes cause the net above-canopy NOy flux to be ~30% lower than the gross depositional flux. CAFE under-predicts ozone fluxes and exchange velocities by ~20%. Large uncertainty in the parameterization of cuticular and ground deposition precludes conclusive attribution of non-stomatal fluxes to chemistry or surface uptake. Model-measurement comparisons of vertical concentration gradients for several emitted species suggests that the lower canopy airspace may be

  5. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Science.gov (United States)

    Perry, Nicola H.; Ishihara, Tatsumi

    2016-01-01

    Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic), and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS) with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance. PMID:28773978

  6. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  7. On the Structure-Property Relationships of Cation-Exchanged ZK-5 Zeolites for CO2 Adsorption.

    Science.gov (United States)

    Pham, Trong D; Hudson, Matthew R; Brown, Craig M; Lobo, Raul F

    2017-03-09

    The CO2 adsorption properties of cation-exchanged Li-, Na-, K-, and Mg-ZK-5 zeolites were correlated to the molecular structures determined by Rietveld refinements of synchrotron powder X-ray diffraction patterns. Li-, K-, and Na-ZK-5 all exhibited high isosteric heats of adsorption (Qst ) at low CO2 coverage, with Na-ZK-5 having the highest Qst (ca. 49 kJ mol(-1) ). Mg(2+) was located at the center of the zeolite hexagonal prism with the cation inaccessible to CO2 , leading to a much lower Qst (ca. 30 kJ mol(-1) ) and lower overall uptake capacity. Multiple CO2 adsorption sites were identified at a given CO2 loading amount for all four cation-exchanged ZK-5 adsorbents. Site A at the flat eight-membered ring windows and site B/B* in the γ-cages were the primary adsorption sites in Li- and Na-ZK-5 zeolites. Relatively strong dual-cation adsorption sites contributed significantly to an enhanced electrostatic interaction for CO2 in all ZK-5 samples. This interaction gives rise to a migration of Li(+) and Mg(2+) cations from their original locations at the center of the hexagonal prisms toward the α-cages, in which they interact more strongly with the adsorbed CO2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High ion-exchange properties of hybrid materials from X-type zeolite and ground glass powder

    Science.gov (United States)

    Taira, Nobuyuki; Yoshida, Kohei

    2017-10-01

    Zeolites are crystalline aluminosilicates with a homogeneous distribution of micropores with a superior cation-exchange capacity. Because they have especially excellent selective exchange properties, a considerable number of studies have been conducted on treating water containing radioisotopes using the zeolites. When using artificial zeolites, they have inferior sinterability; in addition, it is quite hard for them to remove from polluted liquid since these artificial zeolites are principally synthesized as a form of powder, which is a disadvantage. In this study, hybrid materials were prepared from X-type zeolite and waste glass powder. Their ion-removal effect and mechanical strength were investigated. The zeolite and waste glass were ground in an agate mortar in several ratios. 0.5 g of the mixture was pressure-molded into pellets having a diameter of 7 mm. These pellets were slowly heated at the speed of 240°C/h to 700°C and maintained at 700°C for 2 h. The removal rate of Sr2+ ions increased as the amount of X-type zeolite in the hybrid materials increased; the former increased up to 100% when the content of latter exceeded 50%. The mechanical strength increased by increasing the amount of glass in the hybrid materials. This is attributed to the fact that the glass powder acts as a binder that improves the densification and consequently the mechanical strength of the hybrid materials.

  9. Formation and properties of proton-exchanged and annealed $LiNbO_{3}$ waveguides for surface acoustic wave

    CERN Document Server

    Chien Chuan Cheng; Ying Chung Chen

    2001-01-01

    The proton-exchanged (PE) and annealed PE (APE) z-cut LiNbO/sub 3/ waveguides were fabricated using H/sub 4/P/sub 2/O/sub 7/. The positive strain, c-axis lattice constant change ( Delta c/c), was calculated to be about +0.43%, which was almost independent of the exchanged conditions. The penetration depth of H measured by secondary ion mass spectrometry (SIMS) exhibited a step-like profile, which was assumed to be equal to the waveguide depth (d). The surface acoustic wave (SAW) properties of PE and APE z-cut LiNbO/sub 3/ samples were investigated. The phase velocity (V/sub p/) and electromechanical coupling coefficient (K/sup 2/) of PE samples were significantly decreased by the increase of kd, where k was the wavenumber (2 pi / lambda ). The insertion loss (IL) of PE samples was increased by the increase of kd and became nearly constant at kd >0.064. The temperature coefficient of frequency (TCF) of PE samples allowed an apparent increase with kd, reaching a maximum at kd=0.292, then slightly decreased at h...

  10. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils.

    Science.gov (United States)

    Gruba, Piotr; Mulder, Jan

    2015-04-01

    Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oakvalue in the acid pH range was smallest for hornbeam and oak, and largest for spruce and pine soils. This was supported by the apparent dissociation constant (pKapp) values of SOM, which were largest in soils under oak. The maximum values of Al saturation were similar between the stands. However, maximum Al bonding to SOM occurred at higher pH values in soils under pine and spruce than under oak. Therefore, at any value in the acid pH range, the SOM in pine soil has less Al complexed and more adsorbed H+ than SOM from oak soils. Such differences in Al and H bonding are not only important for pH buffering and metal solubility controls, but also for stabilization of SOM via saturation of functional groups by Al and H. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Technique for characterization of the wettability properties of gas diffusion media for proton exchange membrane fuel cells.

    Science.gov (United States)

    Gurau, Vladimir; Mann, J Adin

    2010-10-15

    In this paper, a measurement technique based on the capillary penetration method is presented for use in estimating the wettability properties of gas diffusion media (GDM), a component for proton exchange membrane fuel cells (PEMFCs). The present method solves several critical issues, including the formation of an external meniscus and the evaporation of imbibed solvent, both of which greatly affect the apparent rate of solvent imbibition. Solvent evaporation is prevented by inserting a GDM sample between two thin stainless steel plates to form a tri-layer structure having non-porous evaporation covers on each side of the porous GDM sample. The presence of stainless steel plates in contact with the GDM sample was demonstrated to have a negligible impact on the evaluation of the Washburn material constant. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Heat and moisture exchangers and breathing system filters: their use in anaesthesia and intensive care. Part 2 - practical use, including problems, and their use with paediatric patients.

    Science.gov (United States)

    Wilkes, A R

    2011-01-01

    Heat and moisture exchangers and breathing system filters are intended to replace the normal warming, humidifying and filtering functions of the upper airways. The first part of this review considered the history, principles of operation and efficiency of these devices. The aim of this part of the review is to summarise recent guidelines on the use of these devices and outline the problems that can occur. In particular, the effect of these devices on gas analysis, dead space, resistance to gas flow and blockage of the breathing system is considered. In children, it is important to consider the addition of dead space and resistance to gas flow. A body weight of 2.5 kg is probably the lower weight limit for use with heat and moisture exchangers, and 3 kg for filters. The resistance to gas flow of a heat- and moisture-exchanging filter added to a Mapleson F breathing system can cause a delay in the induction of anaesthesia. © 2010 The Author. Anaesthesia © 2010 The Association of Anaesthetists of Great Britain and Ireland.

  13. Adsorption Properties of Ni(II by D301R Anion Exchange Resin

    Directory of Open Access Journals (Sweden)

    Song Xiuling

    2014-01-01

    Full Text Available The adsorption of Ni(II with D301R resin was investigated in this paper. The results showed that the saturated extent of adsorption Ni(II by the resin was 84.3 mg/g. The equilibrium data of Ni(II sorption was better described by Langmuir isotherm model (r2=0.994 while that of Ni(II sorption also fitted in Freundlich isotherm model within the experimental concentration range. The amount of the constant (q0 of Ni(II under 298 K in Langmuir model was 76.92 mg/g, which was close to the experimental results. The constant n was within 2–10 in Freundlich model; it was shown that adsorption of Ni(II by the resin was easy to take place. The uptake kinetics followed the Lagergren pseudo-first-order rate equation (r2=0.9813. The particle diffusion controlled the adsorption process of Ni(II. The coefficient of the intraparticle diffusion increased with the increase of the pH values and the concentration of Ni(II in aqueous solution. There was a drop of 20.1 cm−1 for the bending vibration frequency of N–H bond. Results showed that the adsorption of Ni(II by D301R anion exchange resin was the surface complexation through the infrared spectrum analysis.

  14. Mechanical properties test and microstructure analysis of polyoxymethylene (POM) micro injection moulded standard parts

    DEFF Research Database (Denmark)

    Tosello, Guido; Lucchetta, Giovanni; Hansen, Hans Nørgaard

    2009-01-01

    The tensile mechanical properties and the micro structure of micro injection moulded polyoxymethylene (POM) test parts were investigated in this paper. The effects of different injection moulding processing conditions on ultimate tensile stress and strain at break were analyzed. Additionally......, the effects of miniaturization on the mechanical properties were investigated by executing injection moulding with both a standard tool designed according to ISO 527-2 and a miniaturized test part obtained from the standard design by a downscaling factor 10. The experiments have been performed according...... to factorial plans, in which the factors of interest were mould temperature, melt temperature and dimensional range of the specimen (i.e. macro and micro parts). Micro structure analysis was performed by means of plastography techniques and revealed that high mould and melt temperatures resulted on a thin skin...

  15. Material Property Measurement of Metallic Parts using the INEEL Laser Ultrasonic Camera

    Energy Technology Data Exchange (ETDEWEB)

    K. L. Telschow; R. S. Schley; S. M. Watson; V. A. Deason

    1999-08-22

    Ultrasonic waves form a useful nondestructive evaluation (NDE) probe for determining physical, microstructural, and mechanical properties of materials and parts. Noncontacting laser ultrasonic methods are desired for remote measurements and on-line manufacture process monitoring. Researchers at the Idaho National Engineering & Environmental Laboratory (INEEL) have developed a versatile new method for detection of ultrasonic motion at surfaces. This method directly images, without the need for scanning, the surface distribution of subnanometer ultrasonic motion. By eliminating the need for scanning over large areas or complex parts, the inspection process can be greatly speeded up. Examples include measurements on parts with complex geometries through resonant ultrasound spectroscopy and of the properties of sheet materials determined through anisotropic elastic Lamb wave propagation. The operation and capabilities of the INEEL Laser Ultrasonic Camera are described along with measurement results.

  16. Material Property Measurement of Metallic Parts using the INEEL Laser Ultrasonic Camera

    Energy Technology Data Exchange (ETDEWEB)

    Telschow, Kenneth Louis; Deason, Vance Albert; Schley, Robert Scott; Watson, Scott Marshall

    1999-08-01

    Ultrasonic waves form a useful nondestructive evaluation (NDE) probe for determining physical, microstructural, and mechanical properties of materials and parts. Noncontacting laser ultrasonic methods are desired for remote measurements and on-line manufacture process monitoring. Researchers at the Idaho National Engineering & Environmental Laboratory (INEEL) have developed a versatile new method for detection of ultrasonic motion at surfaces. This method directly images, without the need for scanning, the surface distribution of subnanometer ultrasonic motion. By eliminating the need for scanning over large areas or complex parts, the inspection process can be greatly speeded up. Examples include measurements on parts with complex geometries through resonant ultrasound spectroscopy and of the properties of sheet materials determined through anisotropic elastic Lamb wave propagation. The operation and capabilities of the INEEL Laser Ultrasonic Camera are described along with measurement results.

  17. Characterizations and ion-exchange properties of zeolite NaA synthesized in a continuous process

    Science.gov (United States)

    Viet, Thieu Quang Quoc; Nhung, Tran Dinh; Long, Nguyen Quang

    2017-09-01

    Synthesis of zeolite through hydrothermal process has been commonly used for decades. However, slow crystallization kinetics and a limited thermo-dynamical stability of the target crystal phase are characteristic to zeolite formation, representing some of the key obstructions for fast zeolite synthesis. In this paper, the possibility of accelerating Zeolite NaA synthesis in a continuous flow reactor (CFR) was designed and installed. The CFR reduces the thermal lag by improving the crystallization rates of Zeolite NaA and decreasing the zeolite synthesis time. The optimal conditions for the synthesis of Zeolite NaA in the CFR were determined as a gel composition of Na2O:SiO2:Al2O3:H2O = 3.17 : 2 : 1 : 128, aging the gel mixture in 48 hours at ambient temperature. The synthesized powders were characterized by XRD, SEM. The results showed that the complete crystallization of typical cubic synthesized by the CFR was achieved at a synthesis temperature of 120°C during 5.5 mins with about 1 wt.% zeolite NaA seed, much faster than conventional hydrothermal synthesis (about 24 hours). The final zeolite powder with the addition of other additives (bentonite, Polyethylene glycol - PEG) and moisture was manufactured into cylindrical pellet by the methods of cold press and sintered pellets. The size of the pellet was 5mm in length and 2mm in diameter. The synthesized pellet was proved to show an equivalent cation exchange capacity (CEC) to commercial Zeolite NaA.

  18. Specifiers Properties Information Exchange (SPie): Minimum Building Information Model (BIM) Object Definitions

    Science.gov (United States)

    2013-03-01

    MAY 2012 13 17 43 HYDROTHERAPY EQUIPMENT 02/11 ERDC/CERL CR-13-1 120 Attribute Source Unit Value OCCS Table 23 Properties OCCS MAY 2012 23...25 29 11 11 11 Hydrotherapy Bath Name COBie Guide n/a Type XX Space#-01 Type COBie Guide n/a Type XX Location COBie Guide n/a space name...Treatment - Leg Treatment - Sitting - Burn Treatment - Hydrotherapy Temperature Range UFGS 2.3.6 degrees C 21 and 43 Flow Rate UFGS 2.1 l/minute 38 UFGS

  19. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    Science.gov (United States)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  20. Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III-V arsenides

    KAUST Repository

    Anua, N. Najwa

    2013-08-20

    Exchange correlation (XC) energy functionals play a vital role in the efficiency of density functional theory (DFT) calculations, more soundly in the calculation of fundamental electronic energy bandgap. In the present DFT study of III-arsenides, we investigate the implications of XC-energy functional and corresponding potential on the structural, electronic and optical properties of XAs (X = B, Al, Ga, In). Firstly we report and discuss the optimized structural lattice parameters and the band gap calculations performed within different non-local XC functionals as implemented in the DFT-packages: WIEN2k, CASTEP and SIESTA. These packages are representative of the available code in ab initio studies. We employed the LDA, GGA-PBE, GGA-WC and mBJ-LDA using WIEN2k. In CASTEP, we employed the hybrid functional, sX-LDA. Furthermore LDA, GGA-PBE and meta-GGA were employed using SIESTA code. Our results point to GGA-WC as a more appropriate approximation for the calculations of structural parameters. However our electronic bandstructure calculations at the level of mBJ-LDA potential show considerable improvements over the other XC functionals, even the sX-LDA hybrid functional. We report also the optical properties within mBJ potential, which show a nice agreement with the experimental measurements in addition to other theoretical results. © 2013 IOP Publishing Ltd.

  1. Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell Quantum Dots by Ligand Exchange

    Directory of Open Access Journals (Sweden)

    Huaping Zhu

    2014-01-01

    Full Text Available The colloidal photoluminescent quantum dots (QDs of CdSe (core and CdSe/ZnS (core/shell were synthesized at different temperatures with different growth periods. Optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra of the resulting QDs were investigated. The shell-protected CdSe/ZnS QDs exhibited higher photoluminescent (PL efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO and trioctylphosphine (TOP, and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules in this study included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, biphenyl-4,4′-dithiol, 11-mercapto-1-undecanol, and 1,8-octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to cross-linked assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Furthermore, effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed.

  2. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl-/SO42- separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl-/SO42- permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  3. On the Structure-Property Relationships of Cation-Exchanged ZK-5 Zeolites for CO 2 Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Trong D. [Department of Chemical and Biomolecular Engineering, University of Delaware, Newark Delaware 19716 USA; Hudson, Matthew R. [Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg Maryland 20899 USA; Brown, Craig M. [Department of Chemical and Biomolecular Engineering, University of Delaware, Newark Delaware 19716 USA; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg Maryland 20899 USA; Lobo, Raul F. [Department of Chemical and Biomolecular Engineering, University of Delaware, Newark Delaware 19716 USA

    2017-02-16

    The CO2 adsorption properties of cation-exchanged Li-, Na-, K-, and Mg-ZK-5 zeolites were correlated to the molecular structures determined by Rietveld refinements of synchrotron powder X-ray diffraction patterns. Li-, K-, and Na-ZK-5 all exhibited high isosteric heats of adsorption (Qst) at low CO2 coverage, with Na-ZK-5 having the highest Qst (ca. 49 kJ mol-1). Mg2+ was located at the center of the zeolite hexagonal prism with the cation inaccessible to CO2, leading to a much lower Qst (ca. 30 kJ mol-1) and lower overall uptake capacity. Multiple CO2 adsorption sites were identified at a given CO2 loading amount for all four cation-exchanged ZK-5 adsorbents. Site A at the flat eight-membered ring windows and site B/B* in the γ-cages were the primary adsorption sites in Li- and Na-ZK-5 zeolites. Relatively strong dual-cation adsorption sites contributed significantly to an enhanced electrostatic interaction for CO2 in all ZK-5 samples. This interaction gives rise to a migration of Li+ and Mg2+ cations from their original locations at the center of the hexagonal prisms toward the α-cages, in which they interact more strongly with the adsorbed CO2.

  4. 26 CFR 1.468B-6 - Escrow accounts, trusts, and other funds used during deferred exchanges of like-kind property...

    Science.gov (United States)

    2010-04-01

    ... T is secured by cash equal to the fair market value of the relinquished property, which R will... interest at the stated rate established by B. During the period May 1 to September 1, 2008, B invests T's... of T. Under paragraph (c)(2)(ii)(A) of this section, the $40,000 B earns from investing T's exchange...

  5. Electrochemical properties of proton exchange membranes: the role of composition and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Beattie, P.D.; Basura, V.I.; Schmeisser, J.; Chuy, C.; Orfino, F.; Ding, J. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    2001-06-01

    To measure electrochemical and proton conduction properties of a large variety of different polyelectrolyte membranes that possess a wide array of equivalent weights and water contents, a number of analytical techniques were employed and the results presented in this paper. At the electrocatalyst/polymer electrolyte interface, kinetic and mass transport parameters play an important role in fuel cell operation, the authors used microelectrodes to study the effects of temperature and pressure on the electrochemical reduction of oxygen at platinum/solid polymer electrolyte interfaces in solid polymer electrolytes under controlled humidity. Under conditions of controlled humidity and temperature, proton conductivity was measured transverse and normal to the membrane surface using an alternate current (a.c.) impedance spectroscopy. A wide array of membranes were investigated, including those based on sulfonated polystyrene-block-hydrogenated butadiene, polystyrenesulfonic acid grafted onto ethylenetetrafluoroethylene, sulfonated trifluorostyrene-copolymers, and a novel series of membranes where the internal biphasic morphology is controlled to yield materials with low water and high conductivity and prepared in house. Transmission electron microscopy and small angle X-ray scattering was used for the analysis of the microstructure of selected membranes. Modelling the scattered intensities was used to quantify aspects of the microstructure.

  6. The effect of build orientation and surface modification on mechanical properties of high speed sintered parts

    Science.gov (United States)

    Ellis, Adam; Brown, Ryan; Hopkinson, Neil

    2015-09-01

    High speed sintering is a novel additive manufacturing technology that uses inkjet printing and infra-red energy to selectively sinter polymeric powder. The research presented here investigates the effect of build orientation on dimensional accuracy, density, mechanical properties and surface roughness of high speed sintered parts. Tensile specimens were built through seven different angles between and including the XY (horizontal) and ZY (vertical) planes and analysed. The effect of the PUSh™ process was also investigated across this range of build orientations. The results show that build orientation does infuence the properties of the parts. A number of mechanical properties showed a relationship with build orientation. Density was seen to decrease as the angle increased from XY towards ZY. This increase in angle was shown to increase surface roughness while ultimate tensile strength and elongation at break decreased. At all build orientations, the PUSh™ process significantly reduces surface roughness, mildly increases part density and had a small effect on ultimate tensile strength whilst showing a small but consistent increase in elongation at break.

  7. Choosing the 'best' plan in a health insurance exchange: actuarial value tells only part of the story.

    Science.gov (United States)

    Lore, Ryan; Gabel, Jon R; McDevitt, Roland; Slover, Michael

    2012-08-01

    In the health insurance exchanges that will come online in 2014, consumers will be able to compare health plans with respect to actuarial value, or the percentage of health care costs that a plan would pay for a standard population. This analysis illustrates the out-of-pocket costs that might result from plans with various plan designs and actuarial values. We find that average out-of-pocket expense declines as actuarial values rise, but two plans with similar actuarial values can produce very different outcomes for a given person. The overall affordability of a plan also will be influenced by age rating, income-related premium subsidies, and out-of-pocket subsidies. Actuarial value is a useful starting point for selecting a plan, but it does not pinpoint which plan will produce the best overall value for a particular person.

  8. Mechanical performance of carbon-epoxy laminates. Part II: quasi-static and fatigue tensile properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part II of this work, quasi-static tensile properties of four aeronautical grade carbon-epoxy composite laminates, in both the as-received and pre-fatigued states, have been determined and compared. Quasi-static mechanical properties assessed were tensile strength and stiffness, tenacity (toughness at the maximum load and for a 50% load drop-off. In general, as-molded unidirectional cross-ply carbon fiber (tape reinforcements impregnated with either standard or rubber-toughened epoxy resin exhibited the maximum performance. The materials also displayed a significant tenacification (toughening after exposed to cyclic loading, resulting from the increased stress (the so-called wear-in phenomenon and/or strain at the maximum load capacity of the specimens. With no exceptions, two-dimensional woven textile (fabric pre-forms fractured catastrophically under identical cyclic loading conditions imposed to the fiber tape architecture, thus preventing their residual properties from being determined.

  9. Raman spectroscopy and WAXS method as a tool for analysing ion-exchange properties of alginate hydrogels.

    Science.gov (United States)

    Pielesz, A; Bak, M Klimczak K

    2008-12-01

    Hydrogels are cross-linked three-dimensional macromolecular networks that contain a large fraction of water within their structure. One of the most important properties of alginate hydrogels, leading to their broad versatility, is their ability for controlled uptake, release and retention of molecules. This ability, in turn, is due to specific interactions of the macromolecular network with the diffusing or retained molecule. Raman spectroscopy has been employed to characterize the diffusion properties of solutes in hydrogels. Besides their application in the food sector, they are used in many biomedical, pharmaceutical and technical areas; for example, as a natural tissue or drug carriers. In the latter case, controlled release of drugs from a wound dressing is of particular interest-or ion exchange between the drug and the structure of the dressing. Raman active vibrations were used to show the areas responsible for the penetration of the model azo-dyes (based on non-genotoxic benzidine analogs) within Ca-alginate/carboxymethylcellulose Medisorb A wound dressing. In this case, the intensity of the stretching bands was used to obtain the concentration profiles of the model dye in alginate/carboxymethylcellulose gel (Medisorb A). The characteristic band at 1511 cm(-1) indicates that new band positions were observed following dye adsorption on wound dressing. The Raman spectra of alginate immersed for different times in Ringer's solution reveal peak shifts. Differences in peak shapes and the appearance of new bands are observed as the sodium content increased. Raman spectra give direct information on the exchange process. There are also new peaks appearing at 1034-1016 and 850 cm(-1) regions in the spectra after the release studies. This could, therefore, correspond to a partial bonding between sodium and oxygen atoms (the guluronic units originate a band at approximately 1025 cm(-1)). The aim of the examination in this paper also was to investigate the

  10. Electromagnetic NDT to characterize usage properties of flat steel products - Part 3

    Energy Technology Data Exchange (ETDEWEB)

    Altpeter, I.; Dobmann, G.; Szielasko, K., E-mail: iab.altlau@t-online.de, E-mail: gerd.dobmann@t-online.de, E-mail: klaus.szielasko@izfp.fraunhofer.de [Fraunhofer Inst. - IZFP, Saarbruecken (Germany)

    2015-11-15

    The Fraunhofer Institute for Nondestructive Testing (IZFP) in Saarbruecken, Germany, started its activities in materials characterization of flat steel products in the eighties of the last century in the basic program of the European Community of Coal and Steel (ECCS). Throughout the years, continuous research and development were performed. The objective of the work, presented within this three-part series of reports, is to discuss the history of an innovation that began in 1988 with R&D in the area of texture characterization in steel sheets produced for car-body manufacturing (Part 1). In the following years the activities were to automate online property determination in terms of yield strength, tensile strength, planar- and vertical-anisotropy factors. Again, steel sheets were the focus of the developments and first NDT systems came into industrial application. Parallel research was performed to characterize the mechanical properties and hardness on heavy steel plates, mainly produced for pipeline manufacturing and offshore applications (Part 2). The final report in the series (Part 3) discusses steel sheet characterization and presents the successful development of a combination transducer that combines ultrasonics with electromagnetic NDT. (author)

  11. Assessment of the uncertainties in air mass and pollutants transboundary exchange over the continental part of the EANET region

    Science.gov (United States)

    Gromov, Sergey S.; Trifonova-Yakovleva, Alisa; Gromov, Sergey A.

    2017-04-01

    In this study, we attempt to quantify the uncertainties in air mass exchange in the lower troposphere across two regions of the Russian border in Eastern Siberia and the Russian Far East in 2000-2015. We use meteorological data from long-term air sound data (ASD) on mean layer winds [1] and from the ERA INTERIM re-analysis (EIR) project [2]. Using a transboundary exchange model, we estimate the total and net amounts of air crossing the boundary segments around Irkutsk (IR) and Vladivostok (VL) aerological stations. We compare transport terms derived (i) from the long-term wind statistics based on both ASD and EIR data, and (ii) from integrating 6h meteorological winds from EIR directly over the border segments cells. We find similar wind direction statistics in both meteorological datasets, however EIR favours stronger westerly winds at VL in summer, which results in more often air export from China to Russia in the Far East. There is less agreement on the wind strengths than wind directions between the datasets, with EIR often providing slower wind speeds. The resulting climatic (ASD) and directly (from EIR 6h terms) calculated non-equilibrium (net) transport terms are comparable in orders (tens of million km3/month), however may differ substantially in temporal evolution or/and magnitude. Thus, EIR net transport over the IR segment has similar annual dynamics but is higher by a factor of ˜ 4 (maxima of 3.6 vs. 12 of 106 km3/month in December, respectively). An opposite ratio is derived for the VL segment (average ˜ 6 vs. 13 of 106 km3/month), with a distinct seasonality in the ASD but not in the EIR data. We attribute this discrepancy to the variations in wind direction with altitude, which cannot be resolved in the model fed with the ASD data. Calculated transport in the boundary layer (BL, provided by the EIR) supports this inference. Thus, the BL net transport temporal dynamics differ substantially from that within the 3 km layer, owing to the BL diurnal

  12. Determination of orthotropic mechanical properties of 3D printed parts for structural health monitoring

    Science.gov (United States)

    Poissenot-Arrigoni, Bastien; Scheyer, Austin; Anton, Steven R.

    2017-04-01

    The evolution of additive manufacturing has allowed engineers to use 3D printing for many purposes. As a natural consequence of the 3D printing process, the printed object is anisotropic. As part of an ongoing project to embed piezoelectric devices in 3D printed structures for structural health monitoring (SHM), this study aims to find the mechanical properties of the 3D printed material and the influence of different external factors on those properties. The orthotropic mechanical properties of a 3D printed structure are dependent on the printing parameters used to create the structure. In order to develop an orthotropic material model, mechanical properties will be found experimentally from additively manufactured samples created from polylactic acid (PLA) using a consumer-level fused deposition modeling (FDM) printer; the Lulzbot TAZ 6. Nine mechanical constants including three Young's moduli, three Poisson's ratios, and three shear moduli are needed to fully describe the 3D elastic behavior of the material. Printed specimens with different raster orientations and print orientations allow calculation of the different material constants. In this work, seven of the nine mechanical constants were found. Two shear moduli were unable to be measured due to difficulties in printing two of the sample orientations. These mechanical properties are needed in order to develop orthotropic material models of systems employing 3D printed PLA. The results from this paper will be used to create a model of a piezoelectric transducer embedded in a 3D printed structure for structural health monitoring.

  13. Mechanical and transport properties of layer-by-layer electrospun composite proton exchange membranes for fuel cell applications.

    Science.gov (United States)

    Mannarino, Matthew M; Liu, David S; Hammond, Paula T; Rutledge, Gregory C

    2013-08-28

    Composite membranes composed of highly conductive and selective layer-by-layer (LbL) films and electrospun fiber mats were fabricated and characterized for mechanical strength and electrochemical selectivity. The LbL component consists of a proton-conducting, methanol-blocking poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) fibers in a nonwoven mat of 60-90% porosity. The bare mats were annealed to improve their mechanical properties, which improvements are shown to be retained in the composite membranes. Spray LbL assembly was used as a means for the rapid formation of proton-conducting films that fill the void space throughout the porous electrospun matrix and create a fuel-blocking layer. Coated mats as thin as 15 μm were fabricated, and viable composite membranes with methanol permeabilities 20 times lower than Nafion and through-plane proton selectivity five and a half times greater than Nafion are demonstrated. The mechanical properties of the spray coated electrospun mats are shown to be superior to the LbL-only system and possess intrinsically greater dimensional stability and lower mechanical hysteresis than Nafion under hydrated conditions. The composite proton exchange membranes fabricated here were tested in an operational direct methanol fuel cell. The results show the potential for higher open circuit voltages (OCV) and comparable cell resistances when compared to fuel cells based on Nafion.

  14. Water and proton transport properties of hexafluorinated sulfonated poly(arylenethioethersulfone) copolymers for applications to proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Khalfan, Amish N.; Sanchez, Luz M.; Kodiweera, Chandana; Greenbaum, Steve G. [Hunter College of the City University of New York, Physics Department, 695 Park Avenue, New York, NY 10021 (United States); Bai, Zongwu [University of Dayton Research Institute, University of Dayton, 300 College Park Drive, Dayton, OH 45469 (United States); Dang, Thuy D. [Air Force Research Laboratory/MLBP, Material and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433 (United States)

    2007-11-15

    In the present study, we examine the water and proton transport properties of hexafluorinated sulfonated poly(arylenethioethersulfone) (6F-SPTES) copolymer membranes for applications to proton exchange membrane fuel cells (PEMFCs). The 6F-SPTES copolymer membranes build upon the structures of previously studied sulfonated poly(arylenethioethersulfone) (SPTES) copolymer membranes to include CF{sub 3} functional groups in efforts to strengthen water retention and extend membrane performance at elevated temperatures (above 120 C). The 6F-SPTES copolymer membranes sustain higher water self-diffusion and greater proton conductivities than the commercial Nafion {sup registered} membrane. Water diffusion studies of the 6F-SPTES copolymer membranes using the pulsed-field gradient spin-echo NMR technique reveal, however, the fluorinated membranes to be somewhat unfavorable over their non-fluorinated counterparts as high temperature membranes. In addition, proton conductivity measurements of the fluorinated membranes up to 85 C show comparable results with the non-fluorinated SPTES membranes. (author)

  15. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling.

    Science.gov (United States)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Donohoe, Gregory C; Valentine, Stephen J

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H](2-) ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H](3-) ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H](2-) ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H](3-) ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  16. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake.

    Science.gov (United States)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Donohoe, Gregory C; Valentine, Stephen J

    2016-03-01

    Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H](3-) and [M - 5H](5-) insulin ions produced a single conformer type with respective collision cross sections of 528 ± 5 Å(2) and 808 ± 2 Å(2). [M - 4H](4-) ions were comprised of more compact (Ω = 676 ± 3 Å(2)) and diffuse (i.e., more elongated, Ω = 779 ± 3 Å(2)) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H](4-) and [M - 5H](5-) ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis.

  17. 41 CFR 302-15.3 - Am I eligible for payment for property management services under this part?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Am I eligible for payment for property management services under this part? 302-15.3 Section 302-15.3 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RESIDENCE TRANSACTION ALLOWANCES...

  18. Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2013-02-01

    Full Text Available In the entrained-flow gasifiers used in integrated gasification combined cycle (IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter is entrained (as fly ash with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. To improve gasification availability through better design and operation of the gasification process, a better understanding of slag behavior and the characteristics of the slagging process is needed. Char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio all affect slagging behavior. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. In Part I, we review the main types and the operating conditions of entrained-flow gasifiers and coal properties used in IGCC plants; we identify and discuss the key coal ash properties and the operating conditions impacting slag behavior; finally, we summarize the coal quality criteria and the operating conditions in entrained-flow gasifiers. In Part II, we discuss the constitutive modeling related to the rheological studies of slag flow.

  19. Parts-based stereoscopic image assessment by learning binocular manifold color visual properties

    Science.gov (United States)

    Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi

    2016-11-01

    Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.

  20. Magnetic properties and anisotropic magnetoresistance of antiperovskite nitride Mn{sub 3}GaN/Co{sub 3}FeN exchange-coupled bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, H., E-mail: sakakibara.hideki@a.mbox.nagoya-u.ac.jp; Ando, H.; Kuroki, Y.; Kawai, S.; Ueda, K.; Asano, H. [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-05-07

    Epitaxial bilayers of antiferromagnetic Mn{sub 3}GaN/ferromagnetic Co{sub 3}FeN with an antiperovskite structure were grown by reactive magnetron sputtering, and their structural, magnetic, and electrical properties were investigated. Exchange coupling with an exchange field H{sub ex} of 0.4 kOe at 4 K was observed for Mn{sub 3}GaN (20 nm)/Co{sub 3}FeN (5 nm) bilayers. Negative anisotropic magnetoresistance (AMR) effect in Co{sub 3}FeN was observed and utilized to detect magnetization reversal in exchange-coupled Mn{sub 3}GaN/Co{sub 3}FeN bilayers. The AMR results showed evidence for current-induced spin transfer torque in antiferromagnetic Mn{sub 3}GaN.

  1. Magnetic properties and anisotropic magnetoresistance of antiperovskite nitride Mn3GaN/Co3FeN exchange-coupled bilayers

    Science.gov (United States)

    Sakakibara, H.; Ando, H.; Kuroki, Y.; Kawai, S.; Ueda, K.; Asano, H.

    2015-05-01

    Epitaxial bilayers of antiferromagnetic Mn3GaN/ferromagnetic Co3FeN with an antiperovskite structure were grown by reactive magnetron sputtering, and their structural, magnetic, and electrical properties were investigated. Exchange coupling with an exchange field Hex of 0.4 kOe at 4 K was observed for Mn3GaN (20 nm)/Co3FeN (5 nm) bilayers. Negative anisotropic magnetoresistance (AMR) effect in Co3FeN was observed and utilized to detect magnetization reversal in exchange-coupled Mn3GaN/Co3FeN bilayers. The AMR results showed evidence for current-induced spin transfer torque in antiferromagnetic Mn3GaN.

  2. Study on Modification of NaX Zeolites: The Cobalt (II-Exchange Kinetics and Surface Property Changes under Thermal Treatment

    Directory of Open Access Journals (Sweden)

    Hoai-Lam Tran

    2016-01-01

    Full Text Available The cobalt (II ion-exchange process followed the Freundlich and Langmuir adsorption models as well as the pseudo-second-order kinetic model. The cobalt-exchanged contents increased when the initial Co(NO32 solution concentration increased up to 0.14 mol L−1 at the optimal pH of 6.05. The N2 adsorption isotherms are mixed types I/II isotherms and H3 type hysteresis. Both the micropore and mesopore adsorptions occurred during the adsorption process. The modification, which is both the cobalt (II exchange and thermal treatment, significantly improved the surface properties of NaX zeolites. Accordingly, the optimal temperature range is 500 to 600°C for a thermal treatment. This is consistent with the results of XRD analysis.

  3. Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators. Part II. Chemical composition and structure of tube surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Homonnay, Z. [Department of Nuclear Chemistry, Faculty of Science, Eoetvoes University, H-1518 Budapest, P.O. Box 32 (Hungary)]. E-mail: homonnay@ludens.elte.hu; Kuzmann, E. [Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Varga, K. [Department of Radiochemistry, University of Veszprem, H-8201 Veszprem, PO Box: 158 (Hungary)]. E-mail: vargakl@almos.vein.hu; Nemeth, Z. [Department of Radiochemistry, University of Veszprem, H-8201 Veszprem, PO Box: 158 (Hungary); Szabo, A. [Department of Radiochemistry, University of Veszprem, H-8201 Veszprem, PO Box: 158 (Hungary); Rado, K. [Department of Radiochemistry, University of Veszprem, H-8201 Veszprem, PO Box: 158 (Hungary); Mako, K.E. [Department of Silicate and Materials Engineering, University of Veszprem, Veszprem (Hungary); Koever, L. [Section of Electron Spectroscopy, Institute of Nuclear Research, H-4001 Debrecen (Hungary); Cserny, I. [Section of Electron Spectroscopy, Institute of Nuclear Research, H-4001 Debrecen (Hungary); Varga, D. [Section of Electron Spectroscopy, Institute of Nuclear Research, H-4001 Debrecen (Hungary); Toth, J. [Section of Electron Spectroscopy, Institute of Nuclear Research, H-4001 Debrecen (Hungary); Schunk, J. [Paks NPP, Paks (Hungary); Tilky, P. [Paks NPP, Paks (Hungary); Patek, G. [Paks NPP, Paks (Hungary)

    2006-01-01

    In the frame of a project dealing with the comprehensive study of the corrosion state of the steam generators of the Paks Nuclear Power Plant, Hungary, surface properties (chemical and phase compositions) of the heat exchanger tubes supplied by the power plant were studied by Moessbauer spectroscopy (CEMS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. The work presented in this series provides evidence that chemical decontamination of the steam generators by the AP-CITROX technology does exert a detrimental effect on the chemical composition and structure of the protective oxide film grown-on the inner surfaces of heat exchanger piping. As an undesired consequence of the decontamination technology, a 'hybrid' structure of the amorphous and crystalline phases is formed in the outermost surface region (within a range of 11 {mu}m). The constituents of this 'hybrid' structure exhibit great mobility into the primary coolant under normal operation of the VVER type reactor.

  4. Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts

    Directory of Open Access Journals (Sweden)

    Kenny Álvarez

    2016-09-01

    Full Text Available 3D printing is a manufacturing process that is usually used for modeling and prototyping. One of the most popular printing techniques is fused deposition modeling (FDM, which is based on adding melted material layer by layer. Although FDM has several advantages with respect to other manufacturing materials, there are several problems that have to be faced. When setting the printing options, several parameters have to be taken into account, such as temperature, speed, infill percentage, etc. Selecting these parameters is often a great challenge for the user, and is generally solved by experience without considering the influence of variations in the parameters on the mechanical properties of the printed parts.This article analyzes the influence of the infill percentage on the mechanical properties of ABS (Acrylonitrile Butadiene Styrene printed parts. In order to characterize this influence, test specimens for tensile strength and Charpy tests were printed with a Makerbot Replicator 2X printer, in which the infill percentage was varied but the rest of the printing parameters were kept constant. Three different results were analyzed for these tests: tensile strength, impact resistance, and effective printing time. Results showed that the maximum tensile force (1438N and tensile stress (34,57MPa were obtained by using 100% infill. The maximum impact resistance, 1,55J, was also obtained with 100% infill. In terms of effective printing time, results showed that printing with an infill range between 50% and 98% is not recommended, since the effective printing time is higher than with a 100% infill and the tensile strength and impact resistance are smaller. In addition, in comparing the results of our analysis with results from other authors, it can be concluded that the printer type and plastic roll significantly influence the mechanical properties of ABS parts.

  5. Color stability and colorant effect on maxillofacial elastomers. Part I: colorant effect on physical properties.

    Science.gov (United States)

    Haug, S P; Andres, C J; Moore, B K

    1999-04-01

    The average clinical life span of a maxillofacial prosthesis is approximately 6 months, at which point it needs to be refabricated, mainly because of degradation of the color and physical properties of the prosthesis. This first part of a 3-part study evaluated the effect of coloring agents on the physical properties of maxillofacial elastomers. Five dumbbell-shaped and 5 trouser-shaped specimens were fabricated for each of the combinations of the 3 elastomers (Silastic medical adhesive type A, Silastic 4-4210, and Silicone A-2186) and 6 colorants (dry earth pigments, rayon fiber flocking, artist's oil paints, kaolin, liquid cosmetics, and no-colorants), for a total of 180 specimens. Evaluations of hardness and tear strength were made with the trouser-shaped specimens. Evaluations of the ultimate tensile strength and the percentage elongation were made with the dumbbell-shaped specimens. A within elastomer analysis compared the 6 colorants using a 1-way analysis of variance for each of the 4 physical properties. When significant differences were observed, the Student-Newman-Keuls multiple range test was used to identify differences between groups at a significance level of.05. Physical properties of maxillofacial elastomers were changed by the incorporation of coloring agents. Dry earth pigments, kaolin, and rayon flocking acted as a solid filler without bonding to the Silicone, and artists' oils and liquid cosmetics acted as a liquid phase without bonding to the silicone matrix. No clearly superior colorant-elastomer combination was demonstrated in all the tests in this study.

  6. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2005-01-01

    Full Text Available Because of its wide coverage over much of the globe, biomass burning has been widely studied in the context of direct radiative forcing. Such study is warranted as smoke particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and impacts is based on remote sensing measurements, the optical properties of smoke particles have far reaching effects into numerous aspects of biomass burning studies. Global estimates of direct forcing have been widely varying, ranging from near zero to −1 W m-2. A significant part of this difference can be traced to varying assumptions on the optical properties of smoke. This manuscript is the third part of four examining biomass-burning emissions. Here we review and discuss the literature concerning measurement and modeling of optical properties of biomass-burning particles. These include available data from published sensitivity studies, field campaigns, and inversions from the Aerosol Robotic Network (AERONET of Sun photometer sites. As a whole, optical properties reported in the literature are varied, reflecting both the dynamic nature of fires, variations in smoke aging processes and differences in measurement technique. We find that forward modeling or ''internal closure'' studies ultimately are of little help in resolving outstanding measurement issues due to the high degree of degeneracy in solutions when using ''reasonable'' input parameters. This is particularly notable with respect to index of refraction and the treatment of black carbon. Consequently, previous claims of column closure may in fact be more ambiguous. Differences between in situ and retrieved ωo values have implications for estimates of mass scattering and mass absorption efficiencies. In this manuscript we review and discuss this community dataset. Strengths and lapses are pointed out, future research topics are prioritized, and best estimates and uncertainties of key

  7. Structure and properties of parts produced by electron-beam additive manufacturing

    Science.gov (United States)

    Klimenov, Vasilii; Klopotov, Anatolii; Fedorov, Vasilii; Abzaev, Yurii; Batranin, Andrey; Kurgan, Kirill; Kairalapov, Daniyar

    2017-12-01

    The paper deals with the study of structure, microstructure, composition and microhardness of a tube processed by electron-beam additive manufacturing using optical and scanning electron microscopy. The structure and macrodefects of a tube made of Grade2 titanium alloy is studied using the X-ray computed tomography. The principles of layer-by-layer assembly and boundaries after powder sintering are set out in this paper. It is found that the titanium alloy has two phases. Future work will involve methods to improve properties of created parts.

  8. Study on adsorption properties of QCS/PS-G8-2-8 anion exchange membrane for Rhodamine B

    Science.gov (United States)

    Zhang, Yang; Wang, Jilin; Wang, Lulu; Feng, Ruijiang; Zhang, Fan

    2015-06-01

    A series of novel anion exchange composite membrane (QCS/PS-G8-2-8) were synthesized based on the quaternized chitosan (QCS, DQ = 89.20 (±3.50)%) blended with block polymer of polystyrene (PS) and G8-2-8 (maleic acid diethyl brace base pairs [octyl dimethyl chloride/ammonium bromide]). Then the QCS was cross-linked by glutaraldehyde (GA). The parameters including adsorption time (t), pH, and initial concentration of Rhodamine B (C0), temperature (T), the mass fraction of G8-2-8 and GA (WGA) on the adsorption were investigated to determine the optimum condition for the removal of RB. The kinetic and thermodynamic properties of the adsorption process were also discussed. The optimum adsorption condition was that the adsorption time was 100 min, pH was 4, the initial concentration of RB was 100 mg L-1, the mass fraction of G8-2-8 was 5.0 wt%, the mass fraction of GA was 2.0 wt%, the temperature was 40 °C. Thus, RB optimum adsorption capacity (q) of the composite membrane QCS/PS-G8-2-8 (5.0%) (G8-2-8 mass content (wt.%) was 5.0%) was 17.04 mg g-1. The adsorption isotherm of the RB on the composite membrane can be well fitted with the Temkin equation. The adsorption kinetics can be well described by the pseudo-second-order kinetics model. The values of ΔG, ΔH and ΔS indicated that the adsorption of RB onto QCS/PS-G8-2-8 was spontaneous and exothermic.

  9. Structure-property relationships in non-epitaxial chalcogenide heterostructures: the role of interface density on charge exchange

    Science.gov (United States)

    Bauers, S. R.; Ditto, J.; Moore, D. B.; Johnson, D. C.

    2016-07-01

    A homologous series of quasi-2D ([PbSe]1+δ)m(TiSe2)m nanolayered heterostructures are prepared via self-assembly of designed precursors with 1 rock salt structured PbSe layers alternating with TiSe2 layers, and that grain size increases with m. The compounds are all metallic with upturns in resistivity at low temperature suggesting electron localization, with room temperature resistivity of 1-3 10-5 Ω m, negative Hall coefficients and Seebeck coefficients between -50 and -100 μV K-1. A decrease in the mobile carrier concentration with temperature is observed for all m and the rate increases with increasing low-dimensionality. Decreasing the interface density also decreases the average carrier concentration while increasing the electron mobility. The Seebeck coefficients systematically increase in magnitude as m is increased, but the net effect to the power factor is small due to a compensating increase in resistivity. The observed transport behavior is not described by the simple rigid band models with charge transfer between constituents used previously. Charge exchange between constituents stabilizes the intergrowth, but also introduces mobile carriers and interfacial band bending that must play a role in the transport behavior of the heterostructures. As chemical potentials equilibrate in high m heterostructures there is a decrease in total coulombic stabilization as there are fewer interfaces, so m = 1 is likely to be most stable. This rationalizes why the structurally similar misfit layer compounds with m = 1 are often the only intergrowths that can be prepared. Charge transfer and band bending at interfaces should occur in other heterostructures with similar type II broken-gap band alignments and are important considerations regarding both their stability and transport properties.

  10. Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators. Part I. General corrosion state and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Varga, K. [Department of Radiochemistry, University of Veszprem, P.O. Box 158, H-8201 Veszprem (Hungary)]. E-mail: vargakl@almos.vein.hu; Nemeth, Z. [Department of Radiochemistry, University of Veszprem, P.O. Box 158, H-8201 Veszprem (Hungary); Szabo, A. [Department of Radiochemistry, University of Veszprem, P.O. Box 158, H-8201 Veszprem (Hungary); Rado, K. [Department of Radiochemistry, University of Veszprem, P.O. Box 158, H-8201 Veszprem (Hungary); Oravetz, D. [Department of Silicate and Materials Engineering, University of Veszprem, P.O. Box 158, H-8201 Veszprem (Hungary); Homonnay, Z. [Department of Nuclear Chemistry, Eoetvoes University, P.O. Box 32, H-1518 Budapest (Hungary); Schunk, J. [Paks NPP Ltd., P.O. Box 71, H-7031 Paks (Hungary); Tilky, P. [Paks NPP Ltd., P.O. Box 71, H-7031 Paks (Hungary); Koroesi, F. [Department of Physics and Process Control, Szent Istvan University, Pater Str. 1, H-2100 Goedoello (Hungary)

    2006-01-01

    The present work, constituting the first part of a series of two, deals with a systematic investigation of the general corrosion state of 22 heat exchanger tubes originating from different steam generators of the Paks NPP (Hungary). While the passivity of the inner surface of the stainless steel tube specimens was studied by voltammetry, the morphology and chemical composition of the oxide layer formed on the surfaces were analyzed by SEM-EDX method. Based on the measured corrosion characteristics (corrosion rate, thickness and chemical composition of the protective oxide layer) a strong dependence of these parameters on the decontamination history of the steam generators was revealed. It is well documented that the chemical decontamination carried out by a non-regenerative version of the AP-CITROX procedure does exert, on the long run, a detrimental effect on the corrosion resistance of steel surfaces. Therefore, process restrictions and modifications to minimize corrosion damages have be defined.

  11. Analysis of Water Barrier, Mechanical and Thermal Properties of Nanocoposites Based on Cassava Starch and Natural Clay or Modified by Anionic Exchange

    OpenAIRE

    Monteiro,Mayra Kerolly Sales; Oliveira,Victor Rafael Leal de; Santos,Francisco Klebson Gomes dos; Leite,Ricardo Henrique de Lima; Aroucha,Edna Maria Mendes; Silva,Rayane Ricardo da; Silva,Karyn Nathallye de Oliveira

    2017-01-01

    Biopolymer films have several industrial applications because they are environmentally sustainable. Cassava starch is a biopolymer that is easily available, but has limitations: it is hydrophilic, poorly resistant and degradable. The improvement of these properties was proposed in this research from the use of bentonite clay (BT) as a filling material. The compatibilization of this in the polymer matrix was obtained by ion exchange with an organic anionic surfactant. The formation of intercal...

  12. Color stability and colorant effect on maxillofacial elastomers. Part II: weathering effect on physical properties.

    Science.gov (United States)

    Haug, S P; Moore, B K; Andres, C J

    1999-04-01

    The clinical life of a maxillofacial prosthesis averages about 6 months, before it needs to be refabricated. Degradation of the color and physical properties of the prosthesis are the principle reasons for replacement. This second part of a 3-part in vitro investigation evaluated the change in physical properties of popular colorant-elastomer combinations as a result of weather exposure. Fifteen dumbbell-shaped and 15 trouser-shaped specimens were fabricated for each of the 3 elastomers (Silastic medical adhesive type A, Silastic 4-4210, and Silicone A-2186) and 6 colorant combinations (dry earth pigments, rayon fiber flocking, artist's oil paints, kaolin, liquid cosmetics, and no-colorants) for a total of 540 specimens. The 15 dumbbell-shaped and trouser-shaped specimens of each elastomer colorant combination were separated into 5 of each shape among 3 test condition groups (control, time passage, and natural weathering). Control specimens were evaluated within 1 month of fabrication. The time passage group was sealed in glass containers and kept in the dark for 6 months before testing. The natural-weathering groups were placed on the roof of the dental school for 6 months and exposed to sunlight and weathering. Evaluations of hardness and tear strength were made on trouser-shaped specimens, and evaluations of the ultimate tensile strength and percentage elongation on dumbbell-shaped specimens. Physical property data for each elastomer-colorant combination were subjected to a 1-way analysis of variance to examine effects among the test conditions. When significant differences were observed, the Student-Newman-Keuls multiple range test was performed to identify differences in elastomer-colorant combinations among each test condition at a significance level of .05. Exposure to weathering and time changes of the physical properties of many colorant-elastomer combinations indicated that properties of a clinical prosthesis can change with time. The addition of

  13. Toward TiO2 Nanofluids—Part 1: Preparation and Properties

    Science.gov (United States)

    Yang, Liu; Hu, Yuhan

    2017-06-01

    As a new generation of working fluid, nanofluid has long been regarded as a hot research topic in the past three decades. Many review papers have provided comprehensive and systematic summaries on the development and state-of-the-art of nanofluids. As of today, it is becoming increasingly difficult to provide a comprehensive review of all kinds of nanofluids owing to the huge amounts of the related literatures. And many controversies and inconsistencies in the reported arguments have been observed in various nanofluids. Meanwhile, the systematic or comprehensive reviews on a certain kind of nanofluid are insufficient. Therefore, this review focuses on the research about one of the hottest kinds viz. TiO2 nanofluid, which has captured scientists' great attention because of its interesting and comprehensive properties such as sensational dispersivity, chemical stability, and non-toxicity. Due to the preparation of nanofluids is the prerequisite and physical properties are critical factors for further applications, this first part of the review summarizes recent research on preparation, stability, and physical properties of TiO2 nanofluids.

  14. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    Science.gov (United States)

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  15. Using Material Processing Simulation Software To Predict A Part ``In Use'' Properties

    Science.gov (United States)

    Ducloux, R.; Lasne, P.; Wey, E.

    2004-06-01

    Today, material processing simulation software is commonly used in the metal and polymer transformation industry for forging, casting and injection mold filling. In addition, classical FEM packages are also used to compute the behaviour of the final formed part under different loading conditions. Until now, there were very few bridges between these two types of computations, even though it is common knowledge that the stress analysis of a mechanical part in use could be more precisely computed using as input for the material characteristics the results derived from the forming process. In this paper, we give some examples where the results of the material process simulation are used to define more precisely the part "in use" properties. These examples cover hot and cold forming of metals, glass forming and quenching with FORGE2® and FORGE3®, casting with THERCAST® and polymer injection mold filling with REM3D®, studying the effects of the real shape deviation, of the residual stresses and damage and of the metallurgy resulting from the forming process.

  16. Spin polarization and exchange-correlation effects in transport properties of two-dimensional electron systems in silicon

    Science.gov (United States)

    Dolgopolov, V. T.; Shashkin, A. A.; Kravchenko, S. V.

    2017-08-01

    We show that the parallel magnetic field-induced increase in the critical electron density for the Anderson transition in a strongly interacting two-dimensional electron system is caused by the effects of exchange and correlations. If the transition occurs when electron spins are only partially polarized, additional increase in the magnetic field is necessary to achieve the full spin polarization in the insulating state due to the exchange effects.

  17. Magnetic hybride layers. Magnetic properties of locally exchange-coupled NiFe/IrMn layers; Magnetische Hybridschichten. Magnetische Eigenschaften lokal austauschgekoppelter NiFe/IrMn-Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Christine

    2010-10-06

    By the lateral modification of the magnetic properties of exchange-coupled NiFe/IrMn layers soft-magnetic layers were produced, which show both new static and dynamic properties. As lateral structuration methods hereby the localoxidation as well as ion implantation were applied. By means of thes procedures it has been succeeded to mould specific magnetic domain configurations with strp structure into the layers. In dependence of the structure orientation as well as strip period the remagnetization behavior as well as the magnetic-resonance frequency and damping of the layers could directly be modified. The new dynamical properties are hereby discussed in the framework of the coupling via dynamical charges and the direct affection of the effective field of the artificially inserted domain state. The presented results prove by this the large potential of the lateral magneto-structuration for the tuning of specifical static as well as dynamic properties of magnetically thin layers.

  18. Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode - Part II: Aging mitigation strategies based on water management and nitrogen crossover

    Science.gov (United States)

    Abbou, S.; Dillet, J.; Maranzana, G.; Didierjean, S.; Lottin, O.

    2017-02-01

    Proton exchange membrane (PEM) fuel cells operate with dead-ended anode in order to reduce system cost and complexity when compared with hydrogen re-circulation systems. In the first part of this work, we showed that localized fuel starvation events may occur, because of water and nitrogen accumulation in the anode side, which could be particularly damaging to the cell performance. To prevent these degradations, the anode compartment must be purged which may lead to an overall system efficiency decrease because of significant hydrogen waste. In the second part, we present several purge strategies in order to minimize both hydrogen waste and membrane-electrode assembly degradations during dead-ended anode operation. A linear segmented cell with reference electrodes was used to monitor simultaneously the current density distribution along the gas channel and the time evolution of local anode and cathode potentials. To asses MEA damages, Platinum ElectroChemical Surface Area (ECSA) and cell performance were periodically measured. The results showed that dead-end mode operation with an anode plate maintained at a temperature 5 °C hotter than the cathode plate limits water accumulation in the anode side, reducing significantly purge frequency (and thus hydrogen losses) as well as MEA damages. As nitrogen contribution to hydrogen starvation is predominant in this thermal configuration, we also tested a microleakage solution to discharge continuously most the nitrogen accumulating in the anode side while ensuring low hydrogen losses and minimum ECSA losses provided the right microleakage flow rate is chosen.

  19. Injectable and Self-Healing Dynamic Hydrogels Based on Metal(I)-Thiolate/Disulfide Exchange as Biomaterials with Tunable Mechanical Properties.

    Science.gov (United States)

    Casuso, Pablo; Odriozola, Ibon; Pérez-San Vicente, Adrián; Loinaz, Iraida; Cabañero, Germán; Grande, Hans-Jürgen; Dupin, Damien

    2015-11-09

    Despite numerous strategies involving dynamic covalent bonds to produce self-healing hydrogels with similar frequency-dependent stiffness to native tissues, it remains challenging to use biologically relevant thiol/disulfide exchange to confer such properties to polymeric networks. Herein, we report a new method based on Metal(I) [Au(I) or Ag(I)] capping to protect thiolates from aerial oxidation without preventing thiolate/disulfide exchange. Dynamic hydrogels were readily prepared by injecting simultaneously aqueous solutions of commercially available HAuCl4 and 4-arm thiol-terminated polyethylene glycol [(PEGSH)4], resulting in a network containing a mixture of Au(I)-thiolate (Au-S) and disulfide bonds (SS). While the dynamic properties of the hydrogel were closely dependent on the pH, the mechanical properties could be easily tuned by adjusting (PEGSH)4 concentration and amount of Au-S, as judged by dynamic rheology studies. Permanent Au-S/SS exchange at physiological pH conferred self-healing behavior and frequency-dependent stiffness to the hydrogel. In addition, in vitro studies confirmed that Au-based dynamic material was not cytotoxic to human dermal fibroblasts, demonstrating its potential use as a medical device. Dynamic hydrogels obtained using Ag(I) ions demonstrated that the exchange reaction was not affected by the nature of the Metal(I) capping. Finally, this efficient thiolate capping strategy offers a simple way to produce injectable and self-healing dynamic hydrogels from virtually any thiol-containing polymers.

  20. Apparent optical properties of the Canadian Beaufort Sea - Part 1: Observational overview and water column relationships

    Science.gov (United States)

    Antoine, D.; Hooker, S. B.; Bélanger, S.; Matsuoka, A.; Babin, M.

    2013-07-01

    A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (Malina project) is analyzed in order to describe apparent optical properties (AOPs) in this sea, which has been subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean color sensor. The data set includes offshore clear waters of the Beaufort Basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by colored dissolved organic matter (CDOM) is responsible for these high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This questions the role of ocean color remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g., the red) should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth.

  1. Exchange bias properties of 140 nm-sized dipolarly interacting circular dots with ultrafine IrMn and NiFe layers

    Energy Technology Data Exchange (ETDEWEB)

    Spizzo, F., E-mail: spizzo@fe.infn.it [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia and CNISM, Università di Perugia, I-06123 Perugia (Italy); Chinni, F.; Bonfiglioli, E. [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy); Gerardino, A. [Istituto di Fotonica e Nanotecnologie, CNR, I-00156 Roma (Italy); Barucca, G. [Dipartimento SIMAU, Università Politecnica delle Marche, I-60131 Ancona (Italy); Bisero, D.; Fin, S.; Del Bianco, L. [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy)

    2016-02-15

    Confinement of IrMn magnetic correlation length affecting dots' exchange coupling. • Study of the effects of interdot dipolar interaction on the exchange bias properties. • Micromagnetic model to relate dots' exchange field to IrMn phase pinning strength.

  2. Mechanical performance of carbon-epoxy laminates. Part I: quasi-static and impact bending properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part I of this study, quasi-static and impact bending properties of four aeronautical grade carbon-epoxy laminates have been determined and compared. Materials tested were unidirectional cross-ply (tape and bidirectional woven textile (fabric carbon fiber lay-up architectures, impregnated with standard and rubber-toughened resins, respectively, giving rise to 1.5 mm-thick laminates. Quasi-static mechanical properties assessed in transversal mode loading were modulus of elasticity, flexural strength and tenacity at the maximum load, whereas the net absorbed energy was determined under translaminar impact conditions. Two-dimensional woven carbon fiber reinforcements embedded in a rubber-toughened matrix presented the best mechanical performance under static loading. Under dynamic loading conditions, woven fiber fabric pre-forms were favorably sensitive to increasing impact energies regardless the nature of the employed epoxy resin. However, it was concluded that great care should be taken with this material within the low energy impact regimen.

  3. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    Science.gov (United States)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  4. Studies on physicochemical and nutritional properties of aerial parts of Cassia occidentalis L.

    Directory of Open Access Journals (Sweden)

    Sambasivam Manikandaselvi

    2016-07-01

    Full Text Available In the present, work chemical composition and nutritional value of aerial parts of Cassia occidentalis L. was studied. The aerial parts of C. occidentalis possess favorable physicochemical properties with good nutritional value, such as high energy value, crude fibers, and vitamin levels. The X-ray fluorescence spectrophotometry data revealed that the sample is rich in minerals, especially in Fe, Ca, K, and Mn. Further, minerals such as Mg, Zn, Cu, Na, P, and S are present in good amount and depicted the nutritional value of the selected material. The plant sample is rich in phytochemicals such as flavonoids, alkaloids, lignin, tannins, and phenols. The presence of phytochemical constituents was confirmed by gas chromatography–mass spectrometry profile and high-performance thin layer chromatography fingerprinting techniques. The findings stimulate the on-farm cultivation of C. occidentalis on a large scale to relieve the iron deficiency in local community, and it can be used as a dietary supplement to treat anemia.

  5. Preparation of bead-shaped starch ion exchangers and their properties; Kyujo denpun ion kokantai no chosei to seishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K. [Ariake National College of Tech., Fukuoka (Japan); Hirayama, T.; Motozato, Y. [Kumamoto Univ. (Japan)

    1998-10-10

    Ion exchangers were prepared using crosslinked bead-shaped starch as a substrate. Diethyl-aminoethyl starch, 2-hydroxy-3-trienthylpropylammonio starch and 2-hydroxy-3-(2-[bis(2-hydroxyethyl)amino]ethoxy)propyl starch were respectively prepared by reaction of the substrate with 2-chloroethyl(diethyl)amine hydrochloride, (3-chloro-2-hydroxypropyl)trimethylammonium chloride and a mixture of epichlorohydrin and triethanolamine. In addition, carboxymethyl (CM) starch, sulfomethyl starch and phospho starch were respectively prepared by reaction of the substrate with chloroacetic acid, sodium chloromethanesulfonate and phosphoryl chloride. The CM starch ion exchange beads were shown to be useable for separation of protein in the same way as the CM-cellulose bead-shaped ion exchangers. 22 refs., 8 figs., 3 tabs.

  6. Effect of Zeolite Modification via Cationic Exchange Method on Mechanical, Thermal, and Morphological Properties of Ethylene Vinyl Acetate/Zeolite Composites

    Directory of Open Access Journals (Sweden)

    N. D. Zaharri

    2013-01-01

    Full Text Available In this research, organozeolite filled ethylene vinyl acetate (EVA composites were prepared in a melt-mixing process and followed by compression molding using hot press machine according to standard test specimen. Prior to mixing process, zeolite was modified via cationic exchange of alkylammonium ions. The effect of zeolite or organozeolite loading from 5 up to 25 volume percentages on the properties of EVA/zeolite composites was evaluated. A combination of Fourier Transform Infrared Radiation (FTIR and scanning electron microscopy (SEM coupled with energy dispersive X-ray (EDX analysis were done to characterize the resultant organoclay. Tensile test was performed in order to study the mechanical properties of the composites. EVA filled with organozeolite showed better tensile properties compared to EVA filled with unmodified zeolite, which might be an indication of enhanced dispersion of organophilic clay in the composites. Meanwhile, morphological study using SEM revealed the fibrillation effect of organozeolite. Besides, thermal properties of the composites were also characterized by using thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The results showed that the application of the cation exchange treatment increases both decomposition and melting temperature of EVA/zeolite composites.

  7. Characterization of exchange rate regimes based on scaling and correlation properties of volatility for ASEAN-5 countries

    Science.gov (United States)

    Muniandy, Sithi V.; Uning, Rosemary

    2006-11-01

    Foreign currency exchange rate policies of ASEAN member countries have undergone tremendous changes following the 1997 Asian financial crisis. In this paper, we study the fractal and long-memory characteristics in the volatility of five ASEAN founding members’ exchange rates with respect to US dollar. The impact of exchange rate policies implemented by the ASEAN-5 countries on the currency fluctuations during pre-, mid- and post-crisis are briefly discussed. The time series considered are daily price returns, absolute returns and aggregated absolute returns, each partitioned into three segments based on the crisis regimes. These time series are then modeled using fractional Gaussian noise, fractionally integrated ARFIMA (0,d,0) and generalized Cauchy process. The first two stationary models provide the description of long-range dependence through Hurst and fractional differencing parameter, respectively. Meanwhile, the generalized Cauchy process offers independent estimation of fractal dimension and long memory exponent. In comparison, among the three models we found that the generalized Cauchy process showed greater sensitivity to transition of exchange rate regimes that were implemented by ASEAN-5 countries.

  8. The contribution of mosses to the carbon and water exchange of artic ecosystems: quantification and relationships with system properties

    NARCIS (Netherlands)

    Douma, J.C.; Wijk, van M.T.; Lang, S.I.; Shaver, G.R.

    2007-01-01

    Water vapour and CO2 exchange were measured in moss-dominated vegetation using a gas analyser and a 0.3 × 0.3 m chamber at 17 sites near Abisko, Northern Sweden and 21 sites near Longyearbyen, Svalbard, to quantify the contribution of mosses to ecosystem level fluxes. With the help of a simple

  9. Heat and moisture exchangers and breathing system filters: their use in anaesthesia and intensive care. Part 1 - history, principles and efficiency.

    Science.gov (United States)

    Wilkes, A R

    2011-01-01

    Heat and moisture exchangers and breathing system filters are intended to replace the normal warming, humidifying and filtering functions of the upper airways when these structures are bypassed during anaesthesia and intensive care. Guidance on their use continues to evolve. The aim of this part of the review is to describe the principles of their action and efficiency and to summarise the findings from clinical and laboratory studies. Based on previous studies, an appropriate minimum target for moisture output is 30 and 20 g.m⁻³ for long-duration use in intensive care and short-duration use in anaesthesia, respectively. The practice of reusing a breathing system in anaesthesia, provided it is protected by a filter, assumes that the filter is effective. However, there is wide variation in the gas-borne filtration performance, and contaminated condensate can potentially pass through some filters under typical pressures encountered during mechanical ventilation. © 2010 The Author. Anaesthesia © 2010 The Association of Anaesthetists of Great Britain and Ireland.

  10. Engineering Properties of Volcanic Tuff from the Western Part of Yemen

    Directory of Open Access Journals (Sweden)

    Adnan A. Barahim

    2018-01-01

    Full Text Available This paper deals with a study of the physical and mechanical characteristics of volcanic tuff and ignimbrite from six quarries located at different areas in the western part of Yemen (Manakha, Jahran, Bakhran, Dar Al-Hanash, Abaser and Soraifa. In the region, volcanic tuffs and ignimbrite are locally known by their location names and have been used as solid masonry and cladding stones. All the investigated pyroclastic rocks belong to the Tertiary volcanic. The standard physical and mechanical tests (void ratio, porosity, density, specific gravity, water absorption, uniaxial compressive strength and tensile strength were carried out on the tuff and ignimbrite samples collected from different parts of the region. Laboratory tests revealed that the void ratio average values range between 0.12 and 0.37, the porosity ranges between 10.57 and 27.12%, the dry density ranges between 1.66 and 2.25 gm/cm3, specific gravity ranges from 1.45 to 1.94, and water absorption ranges from 4.69 to 16.39%. The measured uniaxial compressive strength values range from 24 to 68 MPa, and the tensile strength values range between 4 and 10 MPa. These tuffs and ignimbrites generally are light green, gray, beige, or yellowish in color. With these colors they are favoured for building, coating and decorative stone. This paper concludes that the studied stones have acceptable to good properties as dimension stone. Jahrani and Manakhi tuffs are the best quality, whereas Hanashi ignimbrite is of poorer quality.

  11. ALTERNATIVE BINDERS TO BENTONITE FOR IRON ORE PELLETIZING : PART II : EFFECTS ON METALLURGICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Osman Sivrikaya

    2014-07-01

    Full Text Available This study was started to find alternative binders to bentonite and to recover the low preheated and fired pellet mechanical strengths of organic binders-bonded pellets. Bentonite is considered as a chemical impurity for pellet chemistry due to acid constituents (SiO2 and Al2O3. Especially addition of silica-alumina bearing binders is detrimental for iron ore concentrate with high acidic content. Organic binders are the most studied binders since they are free in silica. Although they yield pellets with good wet strength; they have found limited application in industry since they fail to give sufficient physical and mechanical strength to preheated and fired pellets. It is investigated that how insufficient preheated and fired pellet strengths can be improved when organic binders are used as binder. The addition of a slag bonding/strength increasing constituent (free in acidic contents into pellet feed to provide pellet strength with the use of organic binders was proposed. Addition of boron compounds such as colemanite, tincal, borax pentahydrate, boric acid together with organic binders such as CMC, starch, dextrin and some organic based binders, into magnetite and hematite pellet mixture was tested. After determining the addition of boron compounds is beneficial to recover the low pellet physical and mechanical qualities in the first part of this study, in this second part, metallurgical and chemical properties (reducibility - swelling index – microstructure – mineralogy - chemical content of pellets produced with combined binders (an organic binder plus a boron compound were presented. The metallurgical and chemical tests results showed that good quality product pellets can be produced with combined binders when compared with the bentonite-bonded pellets. Hence, the suggested combined binders can be used as binder in place of bentonite in iron ore pelletizing without compromising the pellet chemistry.

  12. Preliminary Comparison of Properties between Ni-electroplated Stainless Steel Parts Fabricated with Laser Additive Manufacturing and Conventional Machining

    Science.gov (United States)

    Mäkinen, Mika; Jauhiainen, Eeva; Matilainen, Ville-Pekka; Riihimäki, Jaakko; Ritvanen, Jussi; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing (LAM) is a fabrication technology, which enables production of complex parts from metallic materials with mechanical properties comparable to those of conventionally machined parts. These LAM parts are manufactured via melting metallic powder layer by layer with laser beam. Aim of this study is to define preliminarily the possibilities of using electroplating to supreme surface properties. Electrodeposited nickel and chromium as well as electroless (autocatalytic) deposited nickel was used to enhance laser additive manufactured and machined parts properties, like corrosion resistance, friction and wearing. All test pieces in this study were manufactured with a modified research AM equipment, equal to commercial EOS M series. The laser system used for tests was IPG 200 W CW fiber laser. The material used in this study for additive manufacturing was commercial stainless steel powder grade named SS316L. This SS316L is not equal to AISI 316L grade, but commercial name of this kind of powder is widely known in additive manufacturing as SS316L. Material used for fabrication of comparison test pieces (i.e. conventionally manufactured) was AISI 316L stainless steel bar. Electroplating was done in matrix cell and electroless was done in plastic sink properties of plated parts were tested within acetic acid salt spray corrosion chamber (AASS, SFS-EN-ISO 9227 standard). Adhesion of coating, friction and wearing properties were tested with Pin-On-Rod machine. Results show that in these preliminary tests, LAM parts and machined parts have certain differences due to manufacturing route and surface conditions. These have an effect on electroplated and electroless parts features on adhesion, corrosion, wearing and friction. However, further and more detailed studies are needed to fully understand these phenomena.

  13. A 13 kA current lead, measuring 1.5 m in length. The lower part consists of a high-temperature superconductor (Bi-2223), operating at between 50 K and 4.5 K, while the heat-exchanger upper part allows the current to be brought from room temperature to 50 K.

    CERN Multimedia

    2004-01-01

    A 13 kA current lead, measuring 1.5 m in length. The lower part consists of a high-temperature superconductor (Bi-2223), operating at between 50 K and 4.5 K, while the heat-exchanger upper part allows the current to be brought from room temperature to 50 K.

  14. Effect of water on the transport properties of protic and aprotic imidazolium ionic liquids - an analysis of self-diffusivity, conductivity, and proton exchange mechanism.

    Science.gov (United States)

    Yaghini, N; Nordstierna, L; Martinelli, A

    2014-05-28

    In this paper we report on the transport properties of protic and aprotic ionic liquids of the imidazolium cation (C2C1Im(+) or C2HIm(+)) and the TFSI(-) or TfO(-) anion as a function of added water. We observe that the self-diffusion coefficient of the ionic species increases upon addition of water, and that the cation diffuses faster than the anion in the entire water concentration range investigated. We also observe that the overall increase of anionic and cationic diffusion coefficients is significant for C2HImTfO while it is rather weak for C2C1ImTFSI, the former being more hydrophilic. Moreover, the difference between cationic and anionic self-diffusivity specifically depends on the structure of the ionic liquid's ions. The degree of ion-ion association has been investigated by comparing the molar conductivity obtained by impedance measurements with the molar conductivity calculated from NMR data using the Nernst-Einstein equation. Our data indicate that the ions are partly dissociated (Λimp/ΛNMR in the range 0.45-0.75) but also that the degree of association decreases in the order C2HImTfO > C2HImTFSI ≈ C2C1ImTfO > C2C1ImTFSI. From these results, it seems that water finds different sites of interaction in the protic and aprotic ionic liquids, with a strong preference for hydrogen bonding to the -NH group (when available) and a stronger affinity to the TfO anion as compared to the TFSI. For the protic ionic liquids, the analysis of (1)H NMR chemical shifts (upon addition of H2O and D2O, respectively) indicates a water-cation interaction of hydrogen bonding nature. In addition, we could probe proton exchange between the -NH group and deuterated water for the protic cation, which occurs at a significantly faster rate if associated with the TfO anion as compared to the TFSI.

  15. Comparative Analysis of Nutritional and Bioactive Properties of Aerial Parts of Snake Gourd (Trichosanthes cucumerina Linn.

    Directory of Open Access Journals (Sweden)

    Ruvini Liyanage

    2016-01-01

    Full Text Available The present investigation was carried out to determine the nutritional and functional properties of T. cucumerina. Water extracts of freeze dried flowers, fruits, and leaves of T. cucumerina were evaluated for their total phenolic content (TPC, total flavonoid content (TFC, antioxidant activity, α-amylase inhibitory activity, and fiber and mineral contents. Antioxidant activity, TPC, and TFC were significantly higher (P≤0.05 in leaves than in flowers and fruits. A significant linear correlation was observed between the TPC, TFC, and antioxidant activities of plant extracts. Although, leaves and flower samples showed a significantly higher (P≤0.05 amylase inhibitory activity than the fruit samples, the overall amylase inhibition was low in all three parts of T. cucumerina. Soluble and insoluble dietary fiber contents were significantly higher (P≤0.05 in fruits than in flowers and leaves. Ca and K contents were significantly higher (P≤0.05 in leaf followed by fruit and flower and Mg, Fe, and Zn contents were significantly higher (P≤0.05 in leaves followed by flowers and fruits. In conclusion, T. cucumerina can be considered as a nourishing food commodity which possesses high nutritional and functional benefits for human health.

  16. Atmospheric amines - Part II. Thermodynamic properties and gas/particle partitioning

    Science.gov (United States)

    Ge, Xinlei; Wexler, Anthony S.; Clegg, Simon L.

    2011-01-01

    Amines enter the atmosphere from a wide range of sources, but relatively little is known about their atmospheric behavior, especially their role in gas/particle partitioning. In Part I of this work ( Ge et al., 2011) a total of 154 amines, 32 amino acids and urea were identified as occurring in the atmosphere, based upon a survey of the literature. In this work we compile data for the thermodynamic properties of the amines which control gas/particle partitioning (Henry's Law constant, liquid vapor pressure, acid dissociation constant, activity coefficient and solubility in water), and also estimate the solid/gas dissociation constants of their nitrate and chloride salts. Prediction methods for boiling point, liquid vapor pressure, acid dissociation constant and the solubility of the amines in water are evaluated, and used to estimate values of the equilibrium constants where experimental data are lacking. Partitioning of amines into aqueous aerosols is strongly dependent upon pH and is greatest for acidic aerosols. For several common amines the tendency to partition to the particle phase is similar to or greater than that of ammonia. Our results are presented as tables of values of thermodynamic equilibrium constants, which are also incorporated into the Extended Aerosol Inorganics Model ( E-AIM, http://www.aim.env.uea.ac.uk/aim/aim.php) to enable gas/aerosol partitioning and other calculations to be carried out.

  17. Manufacturing Error Effects on Mechanical Properties and Dynamic Characteristics of Rotor Parts under High Acceleration

    Science.gov (United States)

    Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin

    2017-07-01

    Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.

  18. Electrical properties of lightning over northern part of Japan by using ELF and LLP observations

    Science.gov (United States)

    Hobara, Yasuhide; Yamashita, Junpei; Narita, Tomomi; Mitsuzuka, Hiroaki

    2016-04-01

    Cloud-to-ground strokes with a large charge transfer are known to often generate the fascinating Transient Luminous Events (TLEs) in the mesosphere, while those intensive strokes damage the overhead ground wire in various locations in Japan. Despite requirement to identify promptly the possible damages after lightning strokes, remote estimation of the charge amount lowers to the ground is technically difficult in general. In this study electrical properties of Cloud to Ground Flashes (CGFs) such as Charge Moment Change (CMC) as well as peak current (Ip) and polarity information over northern part of mainland Japan are studied. Lightning geolocations are obtained from the conventional lightning detection system LLP operated by TEPCO, while corresponding lightning CMCs are calculated by using ELF transients observed in Moshiri, Japan. Based on the statistical results for two years, spatial distributions of CGFs with their CMCs and peak currents with different polarities were obtained in detail first time. Significant differences in the spatial distributions of CGFs are seen between CMC and Ip. Negative CGs with a large CMC are superior to those for +CGs and are predominantly distributed over inland. Negative CGFs with a large Ip are distributed more over the coastal waters. Seasonal dependence of CMCs clearly indicates the characteristics of a famous winter thunderstorm activity in Hokuriku region with many large CMC events with a positive polarity around the northern costal region of Japan.

  19. Maytenus salicifolia Reissek, Celastraceae: triterpenes isolated from stems and antioxidant property of extracts from aerial parts

    Directory of Open Access Journals (Sweden)

    Cássia G. Magalhães

    2011-06-01

    Full Text Available Six pentacyclic triterpenes were isolated from hexane extract of stems of Maytenus salicifolia Reissek, Celastraceae: 30-hydroxyfriedelan-3-one (1, 3,16-dioxofriedelane (2, friedeline (3, lupeol (4, betuline (5 and lup-20(29-en-3,30-diol (6. The structure each one was established on the basis of detailed ¹H and 13C NMR spectral investigation and by comparison with the respective literature values. For compound 1, the complete 2D NMR (HMBC, HMQC and NOESY spectral data were herein reported for the first time. Compounds 1, 2, 5 and 6 were isolated for the first time from this plant. Antioxidant activity is described for some extracts from species of the Celastraceae family, then, the extracts from aerial parts of M. salicifolia were evaluated in relation to antioxidant potential using the DPPH method. Compared to quecertin, the AcEt extract (EAF from leaves, AcEt (EAPF and MeOH (EMPF from pulp fruit and AcEt (EAT and MeOH (EMT from stems showed significant antioxidant property.

  20. In vivo anti-inflammatory properties of aerial parts of Nasturtium officinale.

    Science.gov (United States)

    Sadeghi, Heibatollah; Mostafazadeh, Mostafa; Sadeghi, Hossein; Naderian, Moslem; Barmak, Mehrzad Jafari; Talebianpoor, Mohammad Sharif; Mehraban, Fouad

    2014-02-01

    Nasturtium officinale R. Br. (watercress) has long been used in Iranian folk medicine to treat hypertension, hyperglycemia, and renal colic. Moreover, anticancer, antioxidant, and hepatoprotective properties of N. officinale have been reported. In this study, anti-inflammatory activity of the hydro-alcoholic extract from aerial parts of N. officinale was investigated. Oral administration of the hydro-alcoholic extract of N. officinale (250, 500 and 750 mg kg(-1)) was investigated on two well-characterized animal models of inflammation, including carrageenan- or formalin-induced paw edema in rats. Then, the topical anti-inflammatory effect of N. officinale (2 and 5 mg/ear) was studied on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema. Finally, biopsy of the paw or ear was performed for pathological evaluation. Acute toxicity tests of N. officinale in rats established an oral LD50 of >5 g kg(-1). The extract of watercress (250, 500 and 750 mg kg(-1)) significantly inhibited carrageenan-induced paw edema 1, 2, 3 and 4 h after carrageenan challenge (p officinale (5 mg/ear) reduced TPA-induced ear edema (p officinale in systemic and topical application and propose its potential as an anti-inflammatory agent for treatment of inflammatory conditions.

  1. The Role of Compositional Tuning of the Distributed Exchange on Magnetocaloric Properties of High-Entropy Alloys

    Science.gov (United States)

    Perrin, Alice; Sorescu, Monica; Burton, Mari-Therese; Laughlin, David E.; McHenry, Michael

    2017-11-01

    This paper explores the FeCoNiCuMn high-entropy alloy system, where small departures from equiatomic composition have yielded technologically interesting 300-K Curie temperatures (Tc), making them promising for magnetocaloric applications. We also demonstrate that the small deviations from equiatomic compositions do not affect the structural stability of our single-phase fcc-based solid solutions. Room-temperature Mössbauer spectroscopy measurements provide evidence for the distributed exchange interactions (J_{ex}) occurring between the magnetic elements, which contribute to a broadened magnetocaloric effect observed for these alloys. The average hyperfine field observed in the Mössbauer spectra decreases as the Tc of the alloys decrease, confirming direct current magnetic measurements. Multiple peaks in the hyperfine field distribution are interpreted considering pairwise ferromagnetic or antiferromagnetic J_{ex} between all elements except the Cu diluent as contributing to overall magnetic exchange in the alloy.

  2. Crystal growth, structure, magnetic properties and theoretical exchange interaction calculations of Cu2MnBO5

    Science.gov (United States)

    Sofronova, S.; Moshkina, E.; Nazarenko, I.; Seryotkin, Yu.; Nepijko, S. A.; Ksenofontov, V.; Medjanik, K.; Veligzhanin, A.; Bezmaternykh, L.

    2016-12-01

    Single crystals of ludwigite Cu2MnBO5 were synthesized by flux growth technique. The detailed structural and magnetic characterizations of the synthesized samples have been carried out. The cations composition of the studied crystal was determined using X-ray diffraction and EXAFS technique, the resulting composition differ from the content of the initial Mn2O3-CuO components of the flux. Magnetic susceptibility measurements and the calculations of the exchange integrals in frameworks of indirect coupling model revealed that monoclinic distortions strongly affect exchange interactions and appearance of magnetic ordering phase at the temperature T=93 K. The hypothesis of the existence of several magnetic subsystems was supposed.

  3. Barter exchanges

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    Although barter is often perceived as something that proceeded money, barter is still used. The focus of the paper is on barter exchanges. Barter exchanges are used both in developing countries as well as in developed countries (including the U.S.). They are used by both organizations...... and individuals. They usually allow to exchange good but some include also services. Some exchanges allow only for bi-directional barter, i.e. when only two parties are involved in the exchange. But probably most of the barter exchanges use barter money; this makes it easier to exchange goods and services...

  4. Reduced Flavin: NMR investigation of N(5-H exchange mechanism, estimation of ionisation constants and assessment of properties as biological catalyst

    Directory of Open Access Journals (Sweden)

    Rüterjans Heinz

    2005-11-01

    Full Text Available Abstract Background The flavin in its FMN and FAD forms is a versatile cofactor that is involved in catalysis of most disparate types of biological reactions. These include redox reactions such as dehydrogenations, activation of dioxygen, electron transfer, bioluminescence, blue light reception, photobiochemistry (as in photolyases, redox signaling etc. Recently, hitherto unrecognized types of biological reactions have been uncovered that do not involve redox shuffles, and might involve the reduced form of the flavin as a catalyst. The present work addresses properties of reduced flavin relevant in this context. Results N(5-H exchange reactions of the flavin reduced form and its pH dependence were studied using the 15N-NMR-signals of 15N-enriched, reduced flavin in the pH range from 5 to 12. The chemical shifts of the N(3 and N(5 resonances are not affected to a relevant extent in this pH range. This contrasts with the multiplicity of the N(5-resonance, which strongly depends on pH. It is a doublet between pH 8.45 and 10.25 that coalesces into a singlet at lower and higher pH values. From the line width of the 15N(5 signal the pH-dependent rate of hydrogen exchange was deduced. The multiplicity of the 15N(5 signal and the proton exchange rates are little dependent on the buffer system used. Conclusion The exchange rates allow an estimation of the pKa value of N(5-H deprotonation in reduced flavin to be ≥ 20. This value imposes specific constraints for mechanisms of flavoprotein catalysis based on this process. On the other hand the pK ≈ 4 for N(5-H protonation (to form N(5+-H2 would be consistent with a role of N(5-H as a base.

  5. Ligands Exchange, Studying the Stability and Optical Properties of CdSe/CdS/ZnS Quantum Dots with Liquid Crystal

    Science.gov (United States)

    Al-Alwani, A. J.; Chumakov, A. S.; Albermani, M. S.; Shinkarenko, O. A.; Begletsova, N. N.; Vostrikova, A. M.; Gorbachev, I. A.; Venig, S. B.; Glukhovskoy, E. G.

    2017-11-01

    Liquid crystal (LC) ligands have the ability to control the dispersion and the homogeneity of quantum dots (QDs) in solution. LC phase transition can be used as a tool to control the assembly of dispersed QDs. Comparing the results before and after the ligands exchange (oleic acid to liquid crystal) highlights some important differences in optical and morphology properties of QDs. We have studied changes in optical properties and a shift in the spectral wavelength band of QDs with LC ligands. Application of LC ligands leads to quenching of the emission and excitation spectra intensity of CdSe/CdS/ZnS QDs. Such hybrid materials have interesting potential for usage in a variety of applications such as photonic materials or (bio) chemical sensors.

  6. Magnetic properties of NiMn{sub 2}O{sub 4−δ} (nickel manganite): Multiple magnetic phase transitions and exchange bias effect

    Energy Technology Data Exchange (ETDEWEB)

    Tadic, Marin, E-mail: marint@vinca.rs [Condensed Matter Physics Laboratory, Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade (Serbia); Savic, S.M. [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Jaglicic, Z. [University of Ljubljana, Faculty of Civil Engineering and Geodesy and Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana (Slovenia); Vojisavljevic, K.; Radojkovic, A.; Prsic, S. [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, Dobrica [Department of Physics, University of Belgrade Faculty of Mining and Geology, Belgrade (Serbia)

    2014-03-05

    Highlights: • We have successfully synthesized NiMn{sub 2}O{sub 4−δ} sample by complex polymerization synthesis. • Magnetic measurements reveal complex properties and triple magnetic phase transitions. • Magnetic measurements of M(H) show hysteretic behavior below 120 K. • Hysteresis properties after cooling of the sample in magnetic field show exchange bias effect. -- Abstract: We present magnetic properties of NiMn{sub 2}O{sub 4−δ} (nickel manganite) which was synthesized by complex polymerization synthesis method followed by successive heat treatment and final calcinations in air at 1200 °C. The sample was characterized by using X-ray powder diffractometer (XRPD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM) and superconducting quantum interference device (SQUID) magnetometer. The XRPD and FE-SEM studies revealed NiMn{sub 2}O{sub 4−δ} phase and good crystallinity of particles. No other impurities have been observed by XRPD. The magnetic properties of the sample have been studied by measuring the temperature and field dependence of magnetization. Magnetic measurements of M(T) reveal rather complex magnetic properties and multiple magnetic phase transitions. We show three magnetic phase transitions with transition temperatures at T{sub M1} = 35 K (long-range antiferromagnetic transition), T{sub M2} = 101 K (antiferromagnetic-type transition) and T{sub M3} = 120 K (ferromagnetic-like transition). We found that the T{sub M1} transition is strongly dependent on the strength of the applied magnetic field (T{sub M1} decreases with increasing applied field) whereas the T{sub M3} is field independent. Otherwise, the T{sub M2} maximum almost disappears in higher applied magnetic fields (H = 1 kOe and 10 kOe). Magnetic measurements of M(H) show hysteretic behavior below T{sub M3}. Moreover, hysteresis properties measured after cooling of the sample in magnetic field of 10 kOe show exchange bias effect with an

  7. Synthesis, Characterization and Transport Properties of Novel Ion-exchange Nanocomposite Membrane Containing In-situ Formed ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    F. Heidary

    2015-10-01

    Full Text Available A  new  type  of  cation-exchange  nanocomposite  membranes  was prepared  by  in-situ  formation  of  ZnO  nanoparticles  in  a  blend containing  sulfonated  poly  (2,6-dimethyl-1,4-phenylene  oxide  and sulfonated polyvinylchloride  via  a  simple  one-step  chemical method.  As-synthesized  nanocomposite  membranes were characterized  using  Fourier  transform  infrared  spectroscopy, scanning  electron  microscopy  and X-ray  diffraction.  The  SEM images  showed  that  ZnO  nanoparticles  were  uniformly  dispersed throughout the polymeric matrices. The effect of additive loading on physicochemical and electrochemical properties of prepared cation-exchange  nanocomposite  membranes  was  studied.  Various characterizations revealed that  the  incorporation  of  different amounts  of  ZnO  nanoparticles  into  the  basic  membrane  structure had a significant influence on the membrane performance and could improve the electrochemical properties.

  8. Analytical applications of ion exchangers

    CERN Document Server

    Inczédy, J

    1966-01-01

    Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th

  9. ALTERNATIVE BINDERS TO BENTONITE FOR IRON ORE PELLETIZING: PART I: EFFECTS ON PHYSICAL AND MECHANICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Osman Sivrikaya

    2014-07-01

    Full Text Available The use of conventional bentonite binder is favorable in terms of mechanical and metallurgical pellet properties, however, because of its acid constituents bentonite is considered as impurity especially for iron ores with high acidic content. Therefore, alternative binders to bentonite have been tested. Organic binders are the most studied binders and they yield pellets with good wet strength; they fail in terms of preheated and fired pellet strengths. This study was conducted to investigate how insufficient pellet strengths can be improved when organic binders are used as binder. The addition of a low-melting temperature and slag bonding/strength increasing constituent (free in acidic contents into pellet feed was proposed. Addition of boron compounds such as colemanite, tincal, borax pentahydrate, boric acid together with organic binders such as CMC, starch, dextrin and some organic based binders, into iron oxide pellet was tested. Wet and thermally treated pellet physical-mechanical qualities (balling - moisture content - size - shape - drop number - compressive strengths - porosity - dustiness were determined. The results showed that good quality wet, dry, preheated and fired pellets can be produced with combined binders (an organic binder plus a boron compound when compared with bentonite-bonded pellets. While organic binders provided sufficient wet and dry pellet strengths, the boron compounds provided the required preheated and fired pellet strengths at even lower firing temperature. Especially, the contribution of boron compound addition is most pronounced for hematite pellets which do not have strengthening mechanism through oxidation like magnetite pellets during firing. Therefore, addition of boron compound is beneficial to recover the low physical-mechanical qualities of pellets produced with organic binders through slag bonding mechanism. Furthermore, lowering the firing temperature thanks to low-melting boron compounds will be cost

  10. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    Science.gov (United States)

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems.

  11. Three-dimensional lanthanide anionic metal-organic frameworks with tunable luminescent properties induced by cation exchange.

    Science.gov (United States)

    Lu, Wen-Guan; Jiang, Long; Feng, Xiao-Long; Lu, Tong-Bu

    2009-08-03

    Three 3D lanthanide anionic metal-organic frameworks {K(5)[Ln(5)(IDC)(4)(ox)(4)]}(n) x (20H(2)O)(n) with 1D channels were synthesized under hydrothermal conditions [Ln = Gd (1), Tb (2), and Dy (3)]. The K(+) ions within the 1D channel are easily exchanged with various cations. The emission intensities of Tb(III) in 2 increased significantly upon the addition of Ca(2+) ions, while the introduction of other metal ions caused the intensities to be either unchanged or weakened.

  12. Final Bioventing Pilot Test Work Plan for Base Exchange Service Station Underground Storage Tank Area, Vandenberg Air Force Base, California. Part I

    National Research Council Canada - National Science Library

    1992-01-01

    This pilot test work plan presents the scope of an in situ enhanced biological degradation, or "bioventing", pilot test for treatment of gasoline- contaminated soils at the Base Exchange Service Station (BXSS...

  13. Modelling the light absorption properties of particulate matter forming organic particles suspended in sea water. Part 3. Practical applications

    Directory of Open Access Journals (Sweden)

    Roman Majchrowski

    2006-12-01

    Full Text Available This paper brings to a close our cycle of articles on modelling the light absorption properties of particulate organic matter (POM in the sea. In the first two parts of this cycle (Woźniaket al. 2005a,b we discussed these properties with reference to various model chemical classes and physical types of POM. We have put these results into practice in the present third part. As a result of the appropriate theoretical speculations, logically underpinned by empirical knowledge, we selected 25 morphological variants of marine organic detritus, to which we ascribed definite chemical compositions and physical types. On this basis and using known spectra of the mass-specific coefficients of light absorption by various naturally occurring organic substances (systematised in Parts 1 and 2, we determined the absorption properties of these 25 morphological groups of particles, that is, the spectra of the imaginary part of the refractive index n'p(λ (in the 200-700 nm range of the particulate matter. They can be applied, with the aid of Mie's or some other similar theory, to calculate the bulk optical properties (absorbing and scattering of such sets of particles in the sea.

  14. 78 FR 70901 - Debt That Is a Position in Personal Property That Is Part of a Straddle; Hearing Cancellation

    Science.gov (United States)

    2013-11-27

    ... straddle rules to a debt instrument. DATES: The public hearing originally scheduled for January 15, 2014 at... Internal Revenue Service 26 CFR Part 1 RIN 1545-BL24 Debt That Is a Position in Personal Property That Is...: Cancellation of a notice of public hearing on proposed rulemaking by cross-reference to temporary regulations...

  15. Amphoteric Ion-Exchange Membranes with Significantly Improved Vanadium Barrier Properties for All-Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Nibel, Olga; Rojek, Tomasz; Schmidt, Thomas J; Gubler, Lorenz

    2017-07-10

    All-vanadium redox flow batteries (VRBs) have attracted considerable interest as promising energy-storage devices that can allow the efficient utilization of renewable energy sources. The membrane, which separates the porous electrodes in a redox flow cell, is one of the key components in VRBs. High rates of crossover of vanadium ions and water through the membrane impair the efficiency and capacity of a VRB. Thus, membranes with low permeation rate of vanadium species and water are required, also characterized by low resistance and stability in the VRB environment. Here, we present a new design concept for amphoteric ion-exchange membranes, based on radiation-induced grafting of vinylpyridine into an ethylene tetrafluoroethylene base film and a two-step functionalization to introduce cationic and anionic exchange sites, respectively. During long-term cycling, redox flow cells containing these membranes showed higher efficiency, less pronounced electrolyte imbalance, and significantly reduced capacity decay compared to the cells with the benchmark material Nafion 117. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes

    Science.gov (United States)

    Zhang, Boping; Ni, Jiangpeng; Xiang, Xiongzhi; Wang, Lei; Chen, Yongming

    2017-01-01

    Cross-linked sulfonated polyimides are one of the most promising materials for proton exchange membrane (PEM) applications. However, these cross-linked membranes are difficult to reprocess because they are insoluble. In this study, a series of cross-linkable sulfonated polyimides with flexible pendant alkyl side chains containing trimethoxysilyl groups is successfully synthesized. The cross-linkable polymers are highly soluble in common solvents and can be used to prepare tough and smooth films. Before the cross-linking reaction is complete, the membranes can be reprocessed, and the recovery rate of the prepared films falls within an acceptable range. The cross-linked membranes are obtained rapidly when the cross-linkable membranes are immersed in an acid solution, yielding a cross-linking density of the gel fraction of greater than 90%. The cross-linked membranes exhibit high proton conductivities and tensile strengths under hydrous conditions. Compared with those of pristine membranes, the oxidative and hydrolytic stabilities of the cross-linked membranes are significantly higher. The CSPI-70 membrane shows considerable power density in a direct methanol fuel cell (DMFC) test. All of these results suggest that the prepared cross-linked membranes have great potential for applications in proton exchange membrane fuel cells.

  17. Crystal growth, structure, magnetic properties and theoretical exchange interaction calculations of Cu{sub 2}MnBO{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Sofronova, S. [L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk (Russian Federation); Moshkina, E. [L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk (Russian Federation); M V Reshetnev Siberian State Aerospace University, 660014 Krasnoyarsk (Russian Federation); Nazarenko, I. [L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk (Russian Federation); Seryotkin, Yu. [V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Nepijko, S.A. [Institute of Physics, University of Mainz, 55099 Mainz (Germany); Ksenofontov, V. [Institute of Inorganic and Analytical Chemistry, University of Mainz, 55099 Mainz (Germany); Medjanik, K. [Lund University, MAX IV Laboratory, 22100 Lund (Sweden); Veligzhanin, A. [National Research Centre “Kurchatov Institute”, 123182 Moscow (Russian Federation); Bezmaternykh, L. [L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk (Russian Federation)

    2016-12-15

    Single crystals of ludwigite Cu{sub 2}MnBO{sub 5} were synthesized by flux growth technique. The detailed structural and magnetic characterizations of the synthesized samples have been carried out. The cations composition of the studied crystal was determined using X-ray diffraction and EXAFS technique, the resulting composition differ from the content of the initial Mn{sub 2}O{sub 3}–CuO components of the flux. Magnetic susceptibility measurements and the calculations of the exchange integrals in frameworks of indirect coupling model revealed that monoclinic distortions strongly affect exchange interactions and appearance of magnetic ordering phase at the temperature T=93 K. The hypothesis of the existence of several magnetic subsystems was supposed. - Highlights: • Single crystals of ludwigite Cu{sub 2}MnBO{sub 5} were synthesized. • Structural characterization was carried out by the X-ray diffraction and EXAFS technique. • Cations composition was determined by X-ray diffraction and EXAFS technique. • Cu{sub 2}MnBO{sub 5} magnetic behavior was analyzed in frameworks of indirect coupling model.

  18. Biological materials: (Part A): Temperature-responsive polymers and drug delivery, and, (Part B): Polymer modification of fish scale and their nano-mechanical properties

    Science.gov (United States)

    Xiang, Xu

    This research has three parts. Two parts deal with novel nanoparticle assemblies for drug delivery, and are described in Part A, while the third part looks at properties of fish scales, an abundant and little-used waste resource, that can be modified to have value in medical and other areas. Part A describes fundamental research into the affects of block sequence of amphiphilic block copolymers prepared from on a new and versatile class of monomers, oligo(ethylene glycol) methyl ether acrylate (OEGA) and the more hydrophobic di(ethylene glycol) methyl ether methacrylate (DEGMA). Polymers from these monomers are biologically safe and give polymers with thermoresponsive properties that can be manipulated over a broader temperature range than the more researched N-isopropylacrylamide polymers. Using RAFT polymerization and different Chain Transfer Agents (CTAs) amphiphilic block copolymers were prepared to study the effect of block sequence (hydrophilic OEGA and more hydrophobic DEGMA) on their thermo-responsive properties. Pairing hydrophilic chain ends to a hydrophobic DEGMA block and hydrophobic chain ends to hydrophilic blocks ("mis-matched polarity") significantly affected thermoresponsive properties for linear and star diblock copolymers, but little affected symmetric triblock copolymers. Specifically matching polarity in diblock copolymers yielded nanoparticles with higher cloud points (CP), narrow temperature ranges for coil collapse above CP, and smaller hydrodynamic diameter than mis-matched polarity. Using this knowledge two linear OEGA/DEGMA diblock copolymers were prepared with thiol end groups and assembled into hybrid nanoparticles with a gold nanoparticle core (GNP-polymer hybrids). This design was made using the hypothesis that a hybrid polymer drug carrier with a high CP (50-60 °C) and a diblock structure could be designed with low levels of drug release below 37 °C (body temperature) allowing the drug carrier to reach a target (tumor) site with

  19. Mechanical properties of concrete with SAP. Part II: Modulus of elasticity

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    of air voids. Second, SAP addition may at the same time lead to increased compressive strength (as shown in [5]) and reduced E-modulus. A prediction based solely on compressive strength therefore overrates the modulus of elasticity, so the empirical models are unsafe to use for concrete with SAP......, and air with volume fractions of the three phases as well as elastic properties of paste and aggregates as input parameters. Addition of SAP changes the E-modulus, because it both has an influence on properties of the cement paste and on the volume of air voids. Here, the E-modulus is an example...... of a mechanical property, and the same methodology can probably be applied to other mechanical properties. It is often assumed that a range of mechanical properties of concrete can be derived if the compressive strength is known. The link between the compressive strength and other mechanical properties is often...

  20. Analysis of data for hypercharge-exchange reactions

    CERN Document Server

    Irving, A C; Martin, A D

    1973-01-01

    The properties of the experimental data on the hypercharge- exchange reactions pi N to K Sigma , K Lambda and KN to pi Sigma , pi Lambda in the region (4/16)GeV/c are surveyed, with attention to line-reversal inequalities, reaction energy dependences in terms of effective trajectories, phase-energy properties, and SU/sub 3/ for exchanges. The s-channel helicity nonflip amplitudes at 4 and 14 GeV/c are determined, assuming an exchange degenerate K/sub V/*-K/sub T/* Regge- pole approximation for the flip amplitudes. In the impact-parameter representation only the imaginary parts of the pi N to KY nonflip amplitudes (or in terms of exchanges Im K/sub V/*) are found to be peripheral. All other nonflip amplitude components are central. An SU /sub 3/ comparison is made with K/sup -/p to eta Lambda , eta ' Lambda data. (28 refs).

  1. Layered assemblies of a dialuminum-substituted silicotungstate trimer and the reversible interlayer cation-exchange properties.

    Science.gov (United States)

    Kikukawa, Yuji; Yamaguchi, Kazuya; Hibino, Mitsuhiro; Mizuno, Noritaka

    2011-12-19

    Two polyoxometalate assemblies, TBA(9)[{γ-H(2)SiW(10)O(36)Al(2)(μ-OH)(2)(μ-OH)}(3)] (1; TBA = tetra-n-butylammonium) and TBA(6)Li(3)[{γ-H(2)SiW(10)O(36)Al(2)(μ-OH)(2)(μ-OH)}(3)]·18H(2)O (2), were synthesized by trimerization of a dialuminum-substituted silicotungstate monomer. Both 1 and 2 possessed a layered structure composed of a basal sheet unit [TBA(3){γ-H(2)SiW(10)O(36)Al(2)(μ-OH)(2)(μ-OH)}(3)](6-) and interlayer cations. The interconversion between 1 and 2 reversibly took place through interlayer cation exchange. © 2011 American Chemical Society

  2. A comparison of the properties of natural clinoptilolites and their ion-exchange capacities for silver removal

    Energy Technology Data Exchange (ETDEWEB)

    Coruh, Semra, E-mail: semcoruh@omu.edu.tr [Department of Environmental Engineering, Ondokuz Mayis University, 55139 Samsun (Turkey); Senel, Gaye; Ergun, Osman Nuri [Department of Environmental Engineering, Ondokuz Mayis University, 55139 Samsun (Turkey)

    2010-08-15

    The aim of the present study is to investigate the removal of silver ions from aqueous solutions using natural clinoptilolites collected from Cankiri-Corum and Manisa-Goerdes regions of Turkey. The optimum conditions for adsorption/ion exchange by using a batch method were evaluated by changing various parameters such as particle size, contact time, initial pH of the solution, adsorbent amount, initial metal concentration and acidic treatment. The Langmuir, Freundlich and Temkin adsorption isotherm equations were derived form the basic empirical equations, and used for calculation of adsorption parameters. The equilibrium data fit well the Freundlich and Langmuir isotherm. The adsorption capacities of Cankiri-Corum and Manisa-Goerdes clinoptilolites as obtained from Langmuir isotherm were found to be 31.44 and 22.57 mg/g. The adsorption kinetic rates and metal recoveries were estimated by pseudo-first order, second order and intra-particle models.

  3. 41 CFR Appendix to Part 102 - 74-Rules and Regulations Governing Conduct on Federal Property

    Science.gov (United States)

    2010-07-01

    ...) Stealing property; (d) Creating any hazard on property to persons or things; and (e) Throwing articles of..., cultural, educational, or recreational use under the Public Buildings Cooperative Use Act of 1976 (40 U.S.C... on-site child care centers. Posting and Distributing Materials (41 CFR 102-74.415). All persons...

  4. Development of separation technology for the removal of radium-223 from targeted thorium conjugate formulations. Part II: purification of targeted thorium conjugates on cation exchange columns.

    Science.gov (United States)

    Frenvik, Janne Olsen; Dyrstad, Knut; Kristensen, Solveig; Ryan, Olav B

    2017-09-01

    Tumor targeting pharmaceuticals will play a crucial role in future pharma pipelines. The targeted thorium conjugate (TTC) therapeutic platform could provide real benefit to patients, whereby targeting moieties like monoclonal antibodies are radiolabelled with the alpha-emitting radionuclide thorium-227 ((227)Th, t1/2 = 18.7 days). A potential problem could be the accumulation of the long-lived daughter nuclide radium-223 ((223)Ra, t1/2 = 11.4 days) in the drug product during manufacturing and distribution. Therefore, the level of (223)Ra must be standardized before administration to the patient. The focus in this study has been the removal of (223)Ra, as the other progenies will have a very limited stay in the formulation. In this study, the purification of TTCs labeled with decayed (227)Th has been explored. Columns packed with a strong cation exchange resin have been used to sequester (223)Ra. The separation of TTC from (223)Ra has been evaluated as influenced by both formulation and process parameters with a design of experiments (DOE) study; including citrate or acetate buffer, pH, buffer concentration, presence or absence of pABA + EDTA, resin amount and sodium chloride concentration. The aim was to achieve a separation with high sorption of (223)Ra and accompanying low TTC sorption. The results were analyzed by multivariate analysis. Four regression models of TTC and (223)Ra sorption from citrate and acetate buffered formulations were developed. The predictive accuracy of sorption in the four statistical models was given by standard deviations and confidence intervals. The TTC sorption in citrate and acetate buffered formulations was affected by the identical variables and the variation in TTC sorption was comparable for the two models. However, the DOE variables had a significantly stronger impact on the (223)Ra sorption in citrate buffered formulations than the (223)Ra sorption in acetate buffer. An optimal separation with a TTC sorption

  5. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    Directory of Open Access Journals (Sweden)

    Almudena Díaz-García

    2017-01-01

    Full Text Available Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  6. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties.

    Science.gov (United States)

    Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa

    2017-01-25

    Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  7. Effects of holding pressure and process temperatures on the mechanical properties of moulded metallic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Esteves, N.M.

    2013-01-01

    on the moulded metallic parts. Stainless steel 316L is used in the investigation to produce the specimen by metal injection moulding (MIM) and multiple analyses were carried out on samples produced with different combinations of holding pressure, mould temperature and melt temperature. Finally, the parts were...

  8. Ion-exchange synthesis and improved Li insertion property of lithiated H2Ti12O25 as a negative electrode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Kunimitsu Kataoka

    2016-03-01

    Full Text Available We successfully prepared the lithiated H2Ti12O25 sample by the H+/Li+ ion exchange synthetic technique in the molten LiNO3 at 270 °C using H2Ti12O25 as a starting compound. Chemical composition of the obtained lithiated H2Ti12O25 sample was determined to be H1.05Li0.35Ti12O25-δ having δ = 0.3 by ICP-AES and DTA-TG analyses. The H+/Li+ ion exchange was also confirmed by powder XRD, 1H-MAS NMR, and 7Li-MAS NMR measurements. Electrochemical Li insertion and extraction measurements revealed that the initial coulombic efficiency was improved from 88% in H2Ti12O25 to 93% in the lithiated H2Ti12O25 sample. In addition, superior capacity retention properties for the charge and discharge cycling performance and good charge rate capability of the present lithiated H2Ti12O25 were confirmed in the electrochemical measurements. Accordingly, the lithiated H2Ti12O25 is suggested to be one of the promising high-voltage and high-capacity oxide negative electrodes in advanced lithium-ion batteries.

  9. Studies of the optical properties of solids. I. Two-photon electroabsorption. II. Electron-hole exchange coupling at L-II, L-III edges

    Energy Technology Data Exchange (ETDEWEB)

    Kolber, Michael Allen [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1978-01-01

    In Chapter I, it is shown that direct-gap covalent semiconductors, such as GaAs, should exhibit electric-field induced Franz-Keldysh-like structures in their two-photon absorption spectra. These structures are evaluated employing exciton theory; the resulting lineshapes are shown to be proportional to the lineshapes for one-photon ''forbidden'' transitions, a property which greatly facilitates computations of the two-photon absorption. In chapter two, exchange mixes the LII and LIII soft x-ray absorption edges of metallic Na, Mg, and Al, affecting the detailed absorption lineshape and the LIILIII intensity ratio. The Onodera theory of this mixing is generalized and the requirements of particle conservation and causality lead to significant modifications of the theoretical absorption lineshape. It is shown that under certain conditions an exchange-free lineshape can be extracted from experimental data for comparison with non-asymptotic theories of x-ray edges.

  10. Effect of Coulomb interactions and Hartree-Fock exchange on structural, elastic, optoelectronic and magnetic properties of Co{sub 2}MnSi Heusler: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Lantri, T. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bentata, S., E-mail: sam_bentata@yahoo.com [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bouadjemi, B.; Benstaali, W. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bouhafs, B. [Modelling and Simulation in Materials Science Laboratory, Djillali Liabès University of Sidi Bel-Abbès, 22000 Sidi Bel-Abbes (Algeria); Abbad, A. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Modelling and Simulation in Materials Science Laboratory, Djillali Liabès University of Sidi Bel-Abbès, 22000 Sidi Bel-Abbes (Algeria); Zitouni, A. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria)

    2016-12-01

    Using the first-principle calculations, we have investigated the structural, elastic, optoelectronic and magnetic properties of Co{sub 2}MnSi Heusler alloy. Based on the density functional theory (DFT) and hiring the full-potential linearized augmented plane wave (FP-LAPW) method, we have used five approaches: the Hybrid on-site exact exchange, the Local Spin Density Approximation (LSDA), the LSDA+U, the Generalized Gradient Approximation GGA and GGA+U; where the Hubbard on-site Coulomb interaction correction U is calculated by constraint local density approximation for Co and Mn atoms. Our results show that the highly-ordered Co{sub 2}MnSi alloy is a ductile, stiff and anisotropic material. It has a half-metallic ferromagnetic character with an integer magnetic moment of 5 µB which is in good agreement with the Slater-Pauling rule. - Highlights: • Each approach gives a half magnetic compound. • EECE gives the largest gap. • Elastic properties show a stiff, ductile and anisotropic material. • Electronic properties are similar for the five approaches. • Total magnetic moment is the same for the five approaches (5 µB).

  11. Effect of Carbon Nanofiber Heat Treatment on Physical Properties of Polymeric Nanocomposites—Part I

    Directory of Open Access Journals (Sweden)

    Khalid Lafdi

    2007-01-01

    Full Text Available The definition of a nanocomposite material has broadened significantly to encompass a large variety of systems made of dissimilar components and mixed at the nanometer scale. The properties of nanocomposite materials also depend on the morphology, crystallinity, and interfacial characteristics of the individual constituents. In the current work, vapor-grown carbon nanofibers were subjected to varying heat-treatment temperatures. The strength of adhesion between the nanofiber and an epoxy (thermoset matrix was characterized by the flexural strength and modulus. Heat treatment to 1800C∘ demonstrated maximum improvement in mechanical properties over that of the neat resin, while heat-treatment to higher temperatures demonstrated a slight decrease in mechanical properties likely due to the elimination of potential bonding sites caused by the elimination of the truncated edges of the graphene layers. Both the electrical and thermal properties of the resulting nanocomposites increased in conjunction with the increasing heat-treatment temperature.

  12. Effect of Temperature on Mechanical Properties of Nanoclay Reinforced Polymeric Nanocomposites. Part 1. Experimental Results

    Science.gov (United States)

    2012-04-23

    epoxy based nanoclay reinforced specimens Finally, epoxy ( EPON 828 ) specimens with 0%, 1%, 3%, 6% and 10% nanoclay reinforcement were subjected to...stress-strain curves of EPON 828 epoxy specimens with various nanoclay reinforcement percentages The average mechanical properties calculated from...the test results are also shown in Table 3. Table 3. Average material properties of EPON 828 epoxy specimens with 0%, 1%, 3%, 6% and 10% nanoclay

  13. Short-term effects of light quality on leaf gas exchange and hydraulic properties of silver birch (Betula pendula).

    Science.gov (United States)

    Niglas, Aigar; Papp, Kaisa; Sekiewicz, Maciej; Sellin, Arne

    2017-09-01

    Leaves have to acclimatize to heterogeneous radiation fields inside forest canopies in order to efficiently exploit diverse light conditions. Short-term effects of light quality on photosynthetic gas exchange, leaf water use and hydraulic traits were studied on Betula pendula Roth shoots cut from upper and lower thirds of the canopy of 39- to 35-year-old trees growing in natural forest stand, and illuminated with white, red or blue light in the laboratory. Photosynthetic machinery of the leaves developed in different spectral conditions acclimated differently with respect to incident light spectrum: the stimulating effect of complete visible spectrum (white light) on net photosynthesis is more pronounced in upper-canopy layers. Upper-canopy leaves exhibit less water saving behaviour, which may be beneficial for the fast-growing pioneer species on a daily basis. Lower-canopy leaves have lower stomatal conductance resulting in more efficient water use. Spectral gradients existing within natural forest stands represent signals for the fine-tuning of stomatal conductance and tree water relations to afford lavish water use in sun foliage and enhance leaf water-use efficiency in shade foliage sustaining greater hydraulic limitations. Higher sensitivity of hydraulic conductance of shade leaves to blue light probably contributes to the efficient use of short duration sunflecks by lower-canopy leaves. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Electrochemical Behavior and Hydrophobic Properties of CrN and CrNiN Coatings in Simulated Proton Exchange Membrane Fuel Cell Environment

    Directory of Open Access Journals (Sweden)

    JIN Jie

    2016-10-01

    Full Text Available The CrN and CrNiN coatings were prepared on the surface of 304 stainless steel by closed field unbalanced magnetron sputtering.X ray diffraction and field emission scanning electron microscopy were used to characterize the structure and morphology of the coatings.The electrochemical corrosion properties under the simulated proton exchange membrane fuel cell(PEMFC environment, interfacial contact resistance and hydrophobic properties of the two kinds of different coatings were investigated by electrochemical methods,contact resistance test and hydrophobic test,respectively.The results indicate that CrN coating mainly consists of CrN and Cr2N phase,CrN and Cr2N phases in the CrNiN coating are less compared to CrN film, and Ni exist as element in CrNiN coating; dynamic polarization tests show the coating is of better corrosion resistance,whereas the corrosion resistance of CrNiN coating is worse than that of CrN coating,constant potential polarization test shows the corrosion current density of CrN and CrNiN coatings are equivalent; CrN and CrNiN coatings significantly reduce the interfacial contact resistance of the 304 stainless steel,among which CrN coating has the smallest contact resistance; and CrNiN coating which has better hydrophobicity than that of CrN coating is more beneficial for the water management in proton exchange membrane fuel cell.

  15. Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 2: Hysteresis effect under cyclic compressive load

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, E. [Dept. Mechanical Eng., and Institute for Integrated Energy Systems, University of Victoria, P.O. Box 3055, Victoria, BC (Canada); Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC (Canada); Djilali, N. [Dept. Mechanical Eng., and Institute for Integrated Energy Systems, University of Victoria, P.O. Box 3055, Victoria, BC (Canada); Bahrami, M. [Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC (Canada)

    2010-12-15

    Heat transfer through the gas diffusion layer (GDL) is a key process in the design and operation of a PEM fuel cell. The analysis of this process requires the determination of the effective thermal conductivity as well as the thermal contact resistance between the GDL and adjacent surfaces/layers. The Part 1 companion paper describes an experimental procedure and a test bed devised to allow separation of the effective thermal conductivity and thermal contact resistance, and presents measurements under a range of static compressive loads. In practice, during operation of a fuel cell stack, the compressive load on the GDL changes. In the present study, experiments are performed on Toray carbon papers with 78% porosity and 5% PTFE under a cyclic compressive load. Results show a significant hysteresis in the loading and unloading cycle data for total thermal resistance, thermal contact resistance (TCR), effective thermal conductivity, thickness, and porosity. It is found that after 5 loading-unloading cycles, the geometrical, mechanical, and thermal parameters reach a ''steady-state'' condition and remain unchanged. A key finding of this study is that the TCR is the dominant component of the GDL total thermal resistance with a significant hysteresis resulting in up to a 34% difference between the loading and unloading cycle data. This work aims to clarify the impact of unsteady/cyclic compression on the thermal and structural properties of GDLs and provides new insights on the importance of TCR which is a critical interfacial transport phenomenon. (author)

  16. The Effect of Masterbatch Recipes on the Homogenization Properties of Injection Molded Parts

    Directory of Open Access Journals (Sweden)

    László Zsíros

    2017-01-01

    Full Text Available Appearance is a key factor in most injection molding applications. Unfortunately, there is no widespread method to objectively test visual appearance, such as color inhomogeneity of the parts or other surface defects. We developed an evaluation method to characterize the color inhomogeneity of injection molded parts. First, we examined manufacturing conditions and masterbatch recipes and then the individual effects of the components and their interactions on homogeneity.

  17. Micron-sized polymer particles from tanzanian cashew nut shell liquid. Part I: Preparation, functionalization with chloroacetic acid and utilization as cation exchange resin

    Directory of Open Access Journals (Sweden)

    O.O. Ilomo

    2004-06-01

    Full Text Available Micron-sized polymer particles (MSPP were prepared by formaldehyde condensation polymerization of cashew nut shell liquid (CNSL previously emulsified with sodium lauryl sulphate. The sizes of the MSPP were found to range from 0.1 to 4.4 μm. Increasing the emulsifier concentration had the effect of increasing the average particle size as well as the rate of polymerization. On the other hand, the polymerization rate decreased as the amount of the catalyst (sodium hydroxide increased. The MSPP were also found to be insoluble and stable in many organic solvents and in some inorganic reagents. The average number of surface OH groups was found to be 2.29 x 1018 per milligram of polymer particles. Micron-sized carboxylated cation exchange resins (MCCER were obtained by treating MSPP with monochloroacetic acid in an alkaline medium. The MCCER were found to exchange up to about 86 mg of calcium ion per gram of polymer at 30 ºC while the MSPP could exchange up to only about 6 mg of calcium ion per gram of polymer, at the same temperature. Compared to MSPP, the MCCER showed more than a thirteen-fold improvement in cation exchange capacity.

  18. Properties and Performance Attributes of Novel Co-Extruded Polyolefin Battery Separator Materials. Part 1; Mechanical Properties

    Science.gov (United States)

    Baldwin, Richard S.; Guzik, Monica; Skierski, Michael

    2011-01-01

    As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address future mission needs and technical requirements and to provide new mission-enabling technologies. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics are actively under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to prevent the occurrence of an internal short-circuit while enabling ionic transport. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material have been evaluated with respect to dynamic mechanical properties and safety-related performance attributes. This paper presents the results of these evaluations in comparison to a current state-ofthe-practice separator material. The results are discussed with respect to potential opportunities to enhance the inherent safety characteristics and reliability of future, advanced lithium-ion cell chemistries.

  19. Roll- and pitch-plane coupled hydro-pneumatic suspension. Part I Feasibility analysis and suspension properties

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2010-01-01

    Passive fluidically coupled suspensions have been considered to offer a promising alternative solution to the challenging design of a vehicle suspension system. A theoretical foundation, however, has not been established for fluidically coupled suspension to facilitate its broad applications to various vehicles. The first part of this study investigates the fundamental issues related to feasibility and properties of the passive, full-vehicle interconnected, hydro-pneumatic suspension configur...

  20. Calcium Phosphate Bone Cements Including Sugar Surfactants: Part Two—Injectability, Adhesive Properties and Biocompatibility

    Directory of Open Access Journals (Sweden)

    Fabienne Briand-Mesange

    2010-12-01

    Full Text Available Addition of sugar surfactants, sucrose fatty acid esters and alkylpolyglucosides to a calcium phosphate cement, designed for bone reconstruction, is described. Thanks to their adsorption at the surface of the calcium phosphate particles, the sugar surfactants allowed a full injectability and brought a very good workability. Injectability was measured by monitoring force-distance curves. With some of the selected sugar surfactants adhesive properties of the cement pastes were also observed, which were measured by tack tests. Finally, some properties related to biological applications are described, including gentamicine release and osteoblast viability experiments. The whole study demonstrates that addition of these mild surfactants improved several properties of the calcium phosphate cement, without impairing function.

  1. Calcium Phosphate Bone Cements Including Sugar Surfactants: Part Two-Injectability, Adhesive Properties and Biocompatibility.

    Science.gov (United States)

    Bercier, Ariane; Gonçalves, Stéphane; Autefage, Helène; Briand-Mesange, Fabienne; Lignon, Olivier; Fitremann, Juliette

    2010-12-02

    Addition of sugar surfactants, sucrose fatty acid esters and alkylpolyglucosides to a calcium phosphate cement, designed for bone reconstruction, is described. Thanks to their adsorption at the surface of the calcium phosphate particles, the sugar surfactants allowed a full injectability and brought a very good workability. Injectability was measured by monitoring force-distance curves. With some of the selected sugar surfactants adhesive properties of the cement pastes were also observed, which were measured by tack tests. Finally, some properties related to biological applications are described, including gentamicine release and osteoblast viability experiments. The whole study demonstrates that addition of these mild surfactants improved several properties of the calcium phosphate cement, without impairing function.

  2. Metal vapors in gas tungsten arcs: part ii. theoretical calculations of transport properties

    Science.gov (United States)

    Dunn, G. J.; Eagar, T. W.

    1986-10-01

    Theoretical calculations of gas tungsten arc transport properties have revealed that small amounts of low ionization potential elements such as aluminum or calcium do not have as great an effect on the electrical and thermal conductivities as has been previously reported, if the presence of other metal vapors such as iron or manganese is also considered. It is therefore concluded that the effects of minor elements on arc properties may be less important than has previously been believed in explaining the variable penetration often associated with minor element additions to the base metal, and that weld pool convection effects such as surface tension modifications are probably more important. However, the effects of vapors emitted by the tungsten electrode may have a great effect on arc properties, as the shielding gas is otherwise free of contaminants in the upper regions of the arc.

  3. Antioxidant property of aerial parts and root of Phyllanthus fraternus Webster, an important medicinal plant.

    Science.gov (United States)

    Upadhyay, Richa; Chaurasia, Jitendra Kumar; Tiwari, Kavindra Nath; Singh, Karuna

    2014-01-01

    In present study free radical scavenging potential of aerial parts and root of Phyllanthus fraternus was investigated. Extraction was done in water and ethanol. Total antioxidant capacity was measured by DPPH free radical scavenging method; ethanolic extract of aerial part was most potent in activity with 50% inhibition at 258 μg/mL concentration. Lipid peroxidation (LPO) was measured in terms of thiobarbituric acid-reactive substances (TBARS) by using egg-yolk homogenates as lipid-rich media with EC₅₀ of aerial part (ethanolic) 1522 μg/mL which was found to be most active. Superoxide (SO) radical scavenging activity was measured using riboflavin-light-nitroblue tetrazolium assay. Ethanolic and aqueous extract of both aerial part and root was almost similar in superoxide radical scavenging activity. Reducing power was determined on the basis of Fe³⁺-Fe⁺ transformation in the presence of extract. Total phenolic and flavonoid contents were also measured by spectroscopic method. Results showed that the ethanolic fraction of aerial part is most active towards antioxidant potential and this activity is related to its polyphenolic content and reducing potential. Thus, P. fraternus extract can be used as potent natural antioxidant.

  4. Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments

    Science.gov (United States)

    Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.

    2014-05-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length Moldflow Insight 2014 software has been used. In this software, a fiber breakage algorithm for the polymer flow inside the mold is available. Using well known micro mechanic formulas allow to combine the local fiber length with the local orientation into local mechanical properties. Different experiments were performed using a commercially available glass fiber filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.

  5. Jute fiber reinforced polypropylene produced by continuous extrusion compounding. Part 1. Processing and ageing properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Snijder, M.H.B.

    2008-01-01

    This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These

  6. Combustion gas properties. Part 3: Hydrogen gas fuel and dry air

    Science.gov (United States)

    Wear, J. D.; Jones, R. E.; Mcbride, B. J.; Beyerle, R. A.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for hydrogen gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only sample tables and figures are provided in this report.

  7. Probing the properties of quantum matter; an experimental study in three parts using ultracold atoms

    NARCIS (Netherlands)

    Bons, P.C.

    2015-01-01

    The three experiments described in this thesis investigate fundamental properties of ultracold atoms. Using laser cooling and evaporative cooling, a dilute gas of sodium atoms is cooled to ~100 nK. Under these circumstances a Bose-Einstein condensate (BEC) forms, where millions of atoms collapse

  8. Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part I: methodological review

    NARCIS (Netherlands)

    Yanez Rausell, L.; Schaepman, M.E.; Clevers, J.G.P.W.; Malenovsky, Z.

    2014-01-01

    Optical properties (OPs) of non-flat narrow plant leaves, i.e., coniferous needles, are extensively used by the remote sensing community, in particular for calibration and validation of radiative transfer models at leaf and canopy level. Optical measurements of such small living elements are,

  9. 36 CFR Appendix 1 to Part 801 - Identification of Properties: General

    Science.gov (United States)

    2010-07-01

    ... PRESERVATION HISTORIC PRESERVATION REQUIREMENTS OF THE URBAN DEVELOPMENT ACTION GRANT PROGRAM Pt. 801, App. 1... listing in many older city downtowns, this appendix is designed to serve as guidance for UDAG applicants..., the likelihood of historic properties being affected and the state of existing knowledge regarding...

  10. Large-deformation properties of wheat dough in uni- and biaxial extension. Part II. Gluten dough

    NARCIS (Netherlands)

    Sliwinski, E.L.; Hoef, van der M.; Kolster, P.; Vliet, van T.

    2004-01-01

    Glutens were isolated from flour of three European wheat cultivars which perform differently in cereal products. The rheological and fracture properties of gluten-water doughs were determined in uniaxial and biaxial extension at large deformations and small angle sinusoidal oscillation tests and

  11. Thermal Coatings Seminar Series Training Part 1: Properties of Thermal Coatings

    Science.gov (United States)

    Triolo, Jack

    2015-01-01

    This course will present an overview of a variety of thermal coatings-related topics, including: coating types and availability, thermal properties measurements, environmental testing (lab and in-flight), environmental impacts, contamination impacts, contamination liabilities, determination of BOLEOL values, and what does specularity mean to the thermal engineer.

  12. Imidazolium-based anion exchange membranes for alkaline anion fuel cells: (2) elucidation of the ionic structure and its impact on conducting properties.

    Science.gov (United States)

    Yoshimura, Kimio; Zhao, Yue; Hasegawa, Shin; Hiroki, Akihiro; Kishiyama, Yoshihiro; Shishitani, Hideyuki; Yamaguchi, Susumu; Tanaka, Hirohisa; Koizumi, Satoshi; Appavou, Marie-Sousai; Radulescu, Aurel; Richter, Dieter; Maekawa, Yasunari

    2017-11-22

    In our previous study (Soft Matter, 2016, 12, 1567), the relationship between the morphology and properties of graft-type imidazolium-based anion exchange membranes (AEMs) was revealed, in that the semi-crystalline features of the polymer matrix maintain its mechanical properties and the formation of interconnected hydrophilic domains promotes the membrane conductivity. Here, we report a novel ionic structure of the same graft-type AEMs with different grafting degrees, analyzed using a small-angle X-ray scattering method under different relative humidity (RH) conditions. The characteristic "ionomer peak" with a corresponding correlation distance of approximately 1.0 nm was observed at RH ionic clusters, but close to the Bjerrum length of water. Since the representative number of water molecules per cation, nw, was small, we proposed that dissociated ion-pairs are distributed in the hydrophilic domains (ion-channels). At RH < 80%, ion-channels are disconnected, however in liquid water, they are well-connected as evidenced by the sharp increase in nw. The disconnected ion-channels even under relatively high RH conditions should be a substantial factor for the low power generation efficiency of AEM-type fuel cells.

  13. 41 CFR 302-15.9 - Must I repay property management expenses my agency paid under this part if I elect to sell my...

    Science.gov (United States)

    2010-07-01

    ... management expenses my agency paid under this part if I elect to sell my former residence in the United... property management expenses my agency paid under this part if I elect to sell my former residence in the... property management expenses paid by your agency if you elect to sell your former residence in the United...

  14. Study of a Multi-Phase Hybrid Heat Exchanger-Reactor (HEX Reactor): Part 2 - Numerical Prediction of Thermal Performance (Postprint)

    Science.gov (United States)

    2014-01-01

    working fluids , and PHE configurations. 15. SUBJECT TERMS ammonium carbamate, HEX Reactor, thermal management, plate heat exchanger, reacting flow...energy in bulk AC salt. Schmidt [7] proposed forming reacting slur- ry by immersing small AC salt particles in a non -reactive heat transfer fluid (HTF) to...secondary flows characteristic of PHEs. Negligible conduction heat transfer in the axial direction. Fluids are Newtonian and incompressible. In accordance

  15. Propriedades termofísicas de soluções-modelo similares a sucos: parte II Thermophysical properties of model solutions similar to juice: part II

    Directory of Open Access Journals (Sweden)

    Sílvia Cristina Sobottka Rolim de Moura

    2005-09-01

    Full Text Available Propriedades termofísicas, densidade e viscosidade de soluções-modelo similares a sucos foram determinadas experimentalmente. Os resultados foram comparados aos preditos por modelos matemáticos (STATISTICA 6.0 e obtidos da literatura em função da sua composição química. Para definição das soluções-modelo, foi realizado um planejamento estrela, mantendo-se fixa a quanti-dade de ácido (1,5% e variando-se a água (82-98,5%, o carboidrato (0-15% e a gordura (0-1,5%. A densidade foi determinada em picnômetro. A viscosidade foi determinada em viscosímetro Brookfield modelo LVF. A condutividade térmica foi calculada com o conhecimento das propriedades difusividade térmica e calor específico (apresentados na Parte I deste trabalho MOURA [7] e da densidade. Os resultados de cada propriedade foram analisados através de superfícies de respostas. Foram encontrados resultados significativos para as propriedades, mostrando que os modelos encontrados representam as mudanças das propriedades térmicas e físicas dos sucos, com alterações na composição e na temperatura.Thermophysical properties, density and viscosity of model solutions similar to juices were experimentally determined. The results were compared to those predicted by mathematical models (STATISTIC 6.0 and to values mentioned in the literature, according to the chemical composition. A star planning was adopted to define model solutions composition; fixing the acid amount in 1.5% and varying water (82-98.5%, carbohydrate (0-15% and fat (0-1.5%. The density was determined by picnometer. The viscosity was determined by Brookfield LVF model viscosimeter. The thermal conductivity was calculated based on thermal diffusivity and specific heat values (presented at the 1st . Part of this paper - MOURA [7] and density. The results of each property were analyzed by the response surface method. The found results were significant, indicating that the models represent the changes of

  16. Comparative Analysis of Nutritional and Bioactive Properties of Aerial Parts of Snake Gourd (Trichosanthes cucumerina Linn.)

    OpenAIRE

    Ruvini Liyanage; Harshani Nadeeshani; Chathuni Jayathilake; Rizliya Visvanathan; Swarna Wimalasiri

    2016-01-01

    The present investigation was carried out to determine the nutritional and functional properties of T. cucumerina. Water extracts of freeze dried flowers, fruits, and leaves of T. cucumerina were evaluated for their total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity, α-amylase inhibitory activity, and fiber and mineral contents. Antioxidant activity, TPC, and TFC were significantly higher (P≤0.05) in leaves than in flowers and fruits. A significant linear correl...

  17. Comparative Analysis of Nutritional and Bioactive Properties of Aerial Parts of Snake Gourd (Trichosanthes cucumerina Linn.)

    OpenAIRE

    Liyanage, Ruvini; Nadeeshani, Harshani; Jayathilake, Chathuni; Visvanathan, Rizliya; Wimalasiri, Swarna

    2016-01-01

    The present investigation was carried out to determine the nutritional and functional properties of T. cucumerina. Water extracts of freeze dried flowers, fruits, and leaves of T. cucumerina were evaluated for their total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity, ?-amylase inhibitory activity, and fiber and mineral contents. Antioxidant activity, TPC, and TFC were significantly higher (P ? 0.05) in leaves than in flowers and fruits. A significant linear corr...

  18. Calcium Phosphate Bone Cements Including Sugar Surfactants: Part Two—Injectability, Adhesive Properties and Biocompatibility

    OpenAIRE

    Fabienne Briand-Mesange; Stéphane Gonçalves; Helène Autefage; Ariane Bercier; Olivier Lignon; Juliette Fitremann

    2010-01-01

    Addition of sugar surfactants, sucrose fatty acid esters and alkylpolyglucosides to a calcium phosphate cement, designed for bone reconstruction, is described. Thanks to their adsorption at the surface of the calcium phosphate particles, the sugar surfactants allowed a full injectability and brought a very good workability. Injectability was measured by monitoring force-distance curves. With some of the selected sugar surfactants adhesive properties of the cement pastes were also observed, wh...

  19. Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses.

    Science.gov (United States)

    Gharsallaoui, Adem; Oulahal, Nadia; Joly, Catherine; Degraeve, Pascal

    2016-06-10

    Nisin is a natural preservative for many food products. This bacteriocin is mainly used in dairy and meat products. Nisin inhibits pathogenic food borne bacteria such as Listeria monocytogenes and many other Gram-positive food spoilage microorganisms. Nisin can be used alone or in combination with other preservatives or also with several physical treatments. This paper reviews physicochemical and biological properties of nisin, the main factors affecting its antimicrobial effectiveness, and its food applications as an additive directly incorporated into food matrices.

  20. Microwave-assisted, grafting polymerization preparation of strong cation exchange nylon 6 capillary-channeled polymer fibers and their chromatographic properties.

    Science.gov (United States)

    Jiang, Liuwei; Marcus, R Kenneth

    2017-07-18

    Native nylon 6 C-CP fibers were modified with 2-acrylamido-2-methylpropanesulfonic acid (AMPS) via the microwave-assisted grafting polymerization to affect a strong cation exchange stationary phase. Various concentrations of AMPS and the initiator potassium persulfate (KPS) were used in the modifications. The resultant nylon-SO3H fibers were characterized by Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and acid-base titrations. The chromatographic properties, including column permeability, protein separation quality, and protein binding capacity, of the nylon-SO3H fiber columns were also studied. The cation exchange ligand densities on the modified fibers (SO3H) were determined to be 50-317 μmol g(-1), in comparison to the cation (COOH) density of 28 μmol g(-1) of native nylon 6 fibers. The modified fiber phase showed increased lysozyme dynamic loading capacities (up to ∼13 mg mL(-1) bed volume) at a linear velocity of ∼90 cm min(-1), while native nylon 6 showed only ∼1 mg mL(-1) lysozyme loading capacity. Fast (30 s-3 min) gradient separations of myoglobin, α-chymotrypsinogen A, and lysozyme were achieved on nylon-SO3H columns, with the separation resolution and peak capacity characterized. The efficiency of surface re-equilibration was probed with an eye toward using the phase as the second dimension in comprehensive two-dimensional liquid chromatography (2D-LC). The results indicate that this nylon-SO3H fiber phase has a good deal of potential for use in high-throughput analytical and preparative protein separations. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Aging of printing and writing paper upon exposure to light. Part 2, Mechanical and chemical properties

    Science.gov (United States)

    Chris Hunt; Xiaochun Yu; James Bond; Umesh Agarwal; Raj Atalla

    2003-01-01

    Data is presented on chemical and physical changes observed on a series of 15 specially made writing papers as part of the development of the new ASTM standard D6789-02. Papers were exposed to north window, fluorescent, and halogen illumination for several years. Furnish covered the span from stone groundwood to textile cotton, pH 5 to 8.1, with and without alkaline...

  2. Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process

    Directory of Open Access Journals (Sweden)

    Godfrey C. Onwubolu

    2014-01-01

    Full Text Available While fused deposition modelling (FDM is one of the most used additive manufacturing (AM techniques today due to its ability to manufacture very complex geometries, the major research issues have been to balance ability to produce aesthetically appealing looking products with functionality. In this study, five important process parameters such as layer thickness, part orientation, raster angle, raster width, and air gap have been considered to study their effects on tensile strength of test specimen, using design of experiment (DOE. Using group method of data handling (GMDH, mathematical models relating the response with the process parameters have been developed. Using differential evolution (DE, optimal process parameters have been found to achieve good strength simultaneously for the response. The optimization of the mathematical model realized results in maximized tensile strength. Consequently, the additive manufacturing part produced is improved by optimizing the process parameters. The predicted models obtained show good correlation with the measured values and can be used to generalize prediction for process conditions outside the current study. Results obtained are very promising and hence the approach presented in this paper has practical applications for design and manufacture of parts using additive manufacturing technologies.

  3. Process for production of high density/high performance binderless boards from whole coconut husk: Part 2: Coconut husk morphology, composition and properties

    NARCIS (Netherlands)

    Dam, van J.E.G.; Oever, van den M.J.A.; Keijsers, E.R.P.; Putten, van der J.C.; Anayron, C.; Josol, F.; Peralta, A.

    2006-01-01

    For production of compression moulded boards from whole coconut husk the auto-adhesive properties are derived from the intrinsic high lignin content. Since the properties of manufactured boards for a large part will depend on the input husk material these properties are studied here. Husks of

  4. 41 CFR 302-15.12 - If my agency is paying for property management services under this part and my service agreement...

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false If my agency is paying for property management services under this part and my service agreement expires, what must I do to ensure that payment for property management services continues? 302-15.12 Section 302-15.12 Public...

  5. Influence of cation substitution and activator site exchange on the photoluminescence properties of Eu3+-doped quaternary pyrochlore oxides.

    Science.gov (United States)

    Mahesh, S K; Rao, P Prabhakar; Thomas, Mariyam; Francis, T Linda; Koshy, Peter

    2013-12-02

    Stannate-based pyrochlore-type red phosphors CaGd(1-x)SnNbO7:xEu(3+), Ca(1-y)Sr(y)Gd(1-x)SnNbO7:xEu(3+), and Ca(0.8-x)Sr0.2GdSnNbO(7+δ): xEu(3+) were prepared via conventional solid-state method. Influence of cation substitution and activator site control on the photoluminescence properties of these phosphors are elucidated using powder X-ray diffraction, Rietveld analysis, Raman spectrum analysis, and photoluminescence excitation and emission spectra. The Eu(3+) luminescence in quaternary pyrochlore lattice exemplifies as a very good structural probe for the detection of short-range disorder in the lattice, which otherwise is not detected by normal powder X-ray diffraction technique. The Eu(3+) emission due to magnetic dipole transition ((5)D0-(7)F1 MD) is modified with the increase in europium concentration in the quaternary pyrochlore red phosphors. (5)D0-(7)F1 MD transition splitting is not observable for low Eu(3+) doping because of the short-range disorder in the pyrochlore lattice. Appearance of narrow peaks in Raman spectra confirms that short-range disorder in the crystal lattice disappears with progressive europium doping. By using Sr as a network modifier ion in place of Ca we were able to increase the f-f transition intensities and europium quenching concentration. The influence of effective positive charge of the central Eu(3+) ions when it replaces a metal ion having lower oxidation state such as Ca(2+) was also investigated. The relative intensities of A1g (∼500 cm(-1)) and F2g (∼330 cm(-1)) Raman vibrational modes get inverted when Eu(3+) ions replaces Ca(2+) ions instead of Gd(3+) as trivalent europium ions can attract the electron cloud of oxygen ions strongly in comparison with divalent calcium ions. The influence of positive charge effect of Eu(3+) in Ca0.7Sr0.2GdSnNbO7+δ:0.1Eu(3+) phosphor is greatly strengthened the charge transfer band and (7)F0-(5)L6 transition intensities than that of the Ca0.8Sr0.2Gd0.9SnNbO7:0.1Eu(3+) phosphor. Our

  6. The improvement of mechanical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling

    Directory of Open Access Journals (Sweden)

    T. N. A. T. Rahim

    2017-12-01

    Full Text Available This paper addresses the utilisation of fused deposition modelling (FDM technology using polyamide 12, incorporated with bioceramic fillers (i.e. zirconia and hydroxyapatite as a candidate for biomedical applications. The entire production process of printed PA12 is described, starting with compounding, filament wire fabrication and finally, FDM printing. The potential to process PA12 using this technique and mechanical, thermal and morphological properties were also examined. Commonly, a reduction of mechanical properties of printed parts would occur in comparison with injection moulded parts despite using the same material. Therefore, the mechanical properties of the samples prepared by injection moulding were also measured and applied as a benchmark to examine the effect of different processing methods. The results indicated that the addition of fillers improved or maintained the strength and stiffness of neat PA12, at the expense of reduced toughness and flexibility. Melting behaviours of PA12 were virtually insensitive to the processing techniques and were dependent on additional fillers and the cooling rate. Incorporation of fillers slightly lowered the melting temperature, however improved the thermal stability. In summary, PA12 composites were found to perform well with FDM technique and enabling the production of medical implants with acceptable mechanical performances for non-load bearing applications.

  7. Strain rate effects on mechanical properties of fiber composites, part 3

    Science.gov (United States)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to determine the strain rate effects in fiber composites. Unidirectional composite specimens of boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar/epoxy were tested to determine longitudinal, transverse and intralaminar (in-plane) shear properties. In the Longitudinal direction the Kevlar/epoxy shows a definite increase in both modulus and strength with strain rate. In the transverse direction, a general trend toward higher strength with strain rate is noticed. The intralaminar shear moduli and strengths of boron/epoxy and graphite/epoxy show a definite rise with strain rate.

  8. Replica exchange molecular dynamics simulations reveal the structural and molecular properties of levan-type fructo-oligosaccharides of various chain lengths.

    Science.gov (United States)

    Kanjanatanin, Pongsakorn; Pichyangkura, Rath; Chunsrivirot, Surasak

    2016-08-17

    Levan and levan-type fructo-oligosaccharides (LFOs) have various potential applications in pharmaceutical and food industries due to their beneficial properties such as their low intrinsic viscosity and high water solubility. Previous studies showed that they exhibited prebiotic effects, anti-inflammatory and anti-tumor activities against Sarcoma-180 tumor cells of human. Despite their various potential applications, the structural and molecular properties of LFOs of various chain lengths are not well understood. We employed the replica-exchange molecular dynamics simulations method (REMD) in AMBER14 to elucidate structural and molecular properties of LFOs with chain lengths of 5 (LFO5), 10 (LFO10) and 15 (LFO15) residues in two models of generalized Born implicit solvent (GBHCT and GBOBC1). For LFO10 and LFO15, four distinct conformations (helix-like, partial helix, zig-zag and random structures) were characterized by their upper-middle and lower-middle torsions. For LFO5, two distinct conformations (partial helix and random structures) were characterized by their middle torsion and molecular angle of residues 1, 3 and 5. To determine hydrogen bonds important for the formation of helix-like structures of LFO10 and LFO15, occurrence frequencies of hydrogen bonds were analyzed, and the O6(i)--H3O(i+1) hydrogen bond was found with the highest frequency, suggesting its importance in helix formation. Among three dihedral angles between two fructosyl units [ϕ (O5'-C2'-O6-C6), ψ (C2'-O6-C6-C5) and ω (O6-C6-C5-C4)], dihedral angle distributions showed that ω was the most flexible dihedral angle and probably responsible for conformational differences of LFOs. Our study provides important insights into the structural and molecular properties of LFOs, which tend to form helical structures as the chain length increases from 5 to 15 residues. This information could be beneficial for the selection of LFOs with appropriate lengths and properties for pharmaceutical and

  9. Evaluation of Nutritional and Physical Properties of Watermelon Juice during the Thermal Processing by Using Alumina Nano-fluid in a Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Farinaz Saremnejad Namini

    2015-09-01

    Full Text Available Background and Objectives: Thermal processing is an effective method in preventing microbial spoilage but high heat transfer in a long time process that leads to quality loss and increased energy consumption. Also it is important to consider sensitive nature of food products during the thermal processing. Due to the nano-fluids' unique thermo–physical properties compared with the conventional fluids (steam and hot water, their use in various industries to enhance the efficiency of equipment and energy optimization has increased. Materials and Methods: The effects of alumina–water nano-fluids (0, 2, and 4% concentrations on some nutritional properties (lycopene and vitamin C content, and some physical properties (color, pH and TSS of watermelon juice treated by high temperature–short time (75, 80, and 85°C for 15, 30, and 45 seconds in a shell and tube heat exchanger were evaluated. Results: In compared with water, process time reduced by 24.88% and 51.63% for 2% and 4% nano-fluids, respectively. It had a significant effect on improving the properties of watermelon juice (P<0.05. Under the treatment conditions (75°C and 15s, with 0, 2, and 4% nano-fluids, 81.15, 84.81, and 91.28% of lycopene and 61.11, 63.70 and 67.04% of vitamin C were maintained, respectively. &DeltaE* values for the fruit juices processed with 0, 2 and 4% nano-fluids were 3.26, 2.21 and 1.14, respectively. Also pH and TSS changed in the range of 5.58–5.82 and 9.00–9.40%, respectively. Conclusions: The results showed that qualitative and nutritional properties of watermelon juices processed with nano-fluids in terms of lycopene and vitamin C retention, and color were, respectively, 9.89, 6.18 and 50.38% better than the samples processed with water.

  10. Analytical mass formula and nuclear surface properties in the ETF approximation. Part I: symmetric nuclei

    Science.gov (United States)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.

  11. Roll- and pitch-plane coupled hydro-pneumatic suspension. Part 1: Feasibility analysis and suspension properties

    Science.gov (United States)

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2010-03-01

    Passive fluidically coupled suspensions have been considered to offer a promising alternative solution to the challenging design of a vehicle suspension system. A theoretical foundation, however, has not been established for fluidically coupled suspension to facilitate its broad applications to various vehicles. The first part of this study investigates the fundamental issues related to feasibility and properties of the passive, full-vehicle interconnected, hydro-pneumatic suspension configurations using both analytical and simulation techniques. Layouts of various interconnected suspension configurations are illustrated based on two novel hydro-pneumatic suspension strut designs, both of which provide a compact design with a considerably large effective working area. A simplified measure, vehicle property index, is proposed to permit a preliminary evaluation of different interconnected suspension configurations using qualitative scaling of the bounce-, roll-, pitch- and warp-mode stiffness properties. Analytical formulations for the properties of unconnected and three selected X-coupled suspension configurations are derived, and simulation results are obtained to illustrate their relative stiffness and damping properties in the bounce, roll, pitch and warp modes. The superior design flexibility feature of the interconnected hydro-pneumatic suspension is also discussed through sensitivity analysis of a design parameter, namely the annular piston area of the strut. The results demonstrate that a full-vehicle interconnected hydro-pneumatic suspension could provide enhanced roll- and pitch-mode stiffness and damping, while retaining the soft bounce- and warp-mode properties. Such an interconnected suspension thus offers considerable potential in realising enhanced decoupling among the different suspension modes.

  12. Bauxitas refratárias: composição química, fases e propriedades - Parte I Refractory bauxites: chemical composition, phases and properties - Part I

    Directory of Open Access Journals (Sweden)

    C. Pascoal

    2000-06-01

    Full Text Available A bauxita apresenta uma ampla faixa de aplicações industriais, de acordo com sua composição química e mineralógica. No setor de refratários, esta matéria-prima tem adquirido grande importância, uma vez que pode substituir parcial ou totalmente agregados de alumina eletrofundida em formados e monolíticos, devido a sua alta refratariedade e custo inferior. Entre os maiores produtores mundiais encontram-se a China, a Guiana e o Brasil. Embora seja um dos maiores produtores mundiais de bauxita refratária, no Brasil pouco se conhece de suas características químicas e mineralógicas, bem como suas propriedades em serviço a altas temperaturas. Esta seqüência de artigos apresenta uma revisão sobre as aplicações, fases cristalinas, características e propriedades a alta temperatura de bauxitas refratárias chinesas e sul-americanas. Nesta primeira parte serão consideradas as aplicações da matéria-prima, as transformações que ocorrem durante a calcinação das bauxitas e a formação de fases cristalinas.Bauxite shows a wide range of applications, according to its chemical and mineralogical composition. In the refractory industry, this raw material has partially or totally substituted fused alumina in bricks and castables, due to its high refractoriness and low cost. The major producers of refractory grade bauxite are, in this order, China, Guyana and Brazil. Although Brazil is one of the major suppliers of this raw material, very few studies have been carried out to understand its chemical, mineralogical and high-temperature properties. These papers present a review regarding the applications of South American and Chinese refractory grade bauxites, including the microchemistry of their crystalline phases and their hot properties. This first part will focus the applications of this raw material, the changes that occur during calcination of the crude mineral, and the formation of the crystalline phases.

  13. Preparation and Characterization of Chitosan/Agar Blended Films: Part 2. Thermal, Mechanical, and Surface Properties

    Directory of Open Access Journals (Sweden)

    Esam A. Elhefian

    2012-01-01

    Full Text Available Chitosan/agar (CS/AG films were prepared by blending different proportions of chitosan and agar (considering chitosan as the major component in solution forms. The thermal stability of the blended films was studied using thermal gravimetric analysis (TGA. It was revealed that chitosan and agar form a compatible blend. Studying the mechanical properties of the films showed a decrease in the tensile strength and elongation at break with increasing agar content. Blending of agar with chitosan at all proportions was found to form hydrogel films with enhanced swelling compared to the pure chitosan one. Static water contact angle measurements confirmed the increasing affinity of the blended films towards water suggesting that blending of agar with chitosan improves the wettability of the obtained films.

  14. Melting point of polymers under high pressure Part I: Influence of the polymer properties

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Andreas; Freitag, Detlef; Freidel, Frank; Luft, Gerhard

    2004-12-15

    The pressure dependence of the melting point of various polymers including homo- and copolymers (HDPE, LDPE, PP and ethylene vinyl acetate copolymers (EVA)) was investigated under nitrogen atmosphere up to 330 MPa within a high pressure differential thermal analysis cell designed by our group. The properties of the polymers (vinylacetate content, melt flow index, molecular weight, isotactic index, crystallinity, density, and frequency of branching) have been correlated with the change of the melting point under pressure (dT{sub m}/dp). It could be shown that the melting point always increases linearly with pressure up to 330 MPa. The pressure dependence was found to be in the range of 11-17 K/(100 MPa). From these results it is possible to approximate dT{sub m}/dp using the enthalpy of fusion of the polymers at ambient pressure.

  15. Possibilities for specific utilization of material properties for an optimal part design

    Science.gov (United States)

    Beier, T.; Gerlach, J.; Roettger, R.; Kuhn, P.

    2017-09-01

    High-strength, cold-formable steels offer great potential for meeting cost and safety requirements in the automotive industry. In view of strengths of up to 1200 MPa now attainable, certain aspects need to be analysed and evaluated in advance in the development process using these materials. In addition to early assessment of crash properties, it is also highly important to adapt the forming process to match the material potential. The steel making companies have widened their portfolios of cold-rolled dual-phase steels well beyond the conventional high-strength steels. There are added new grades which offer a customized selection of high energy absorption, deformation resistance or enhanced cold-forming properties. In this article the necessary components for material modelling for finite element simulation are discussed. Additionally the required tests for material model calibration are presented and the potentials of the thyssenkrupp Steel material data base are introduced. Besides classical tensile tests at different angles to rolling direction and the forming limit curve, the hydraulic bulge test is now available for a wide range of modern steel grades. Using the conventional DP-K®60/98 and the DP-K®700Y980T with higher yield strength the method for calibrating yield locus, hardening and formability is given. With reference to the examples of an A-pillar reinforcement and different crash tests the procedure is shown how the customer can evaluate an optimal steel grade for specific requirements. Although the investigated materials have different yield strengths, no large differences in the forming process between the two steel grades can be found. However some advantages of the high-yield grade can be detected in crash performance depending on the specific boundary and loading conditions.

  16. Correlation between strength properties in standard test specimens and molded phenolic parts

    Science.gov (United States)

    Turner, P S; Thomason, R H

    1946-01-01

    This report describes an investigation of the tensile, flexural, and impact properties of 10 selected types of phenolic molding materials. The materials were studied to see in what ways and to what extent their properties satisfy some assumptions on which the theory of strength of materials is based: namely, (a) isotropy, (b) linear stress-strain relationship for small strains, and (c) homogeneity. The effect of changing the dimensions of tensile and flexural specimens and the span-depth ratio in flexural tests were studied. The strengths of molded boxes and flexural specimens cut from the boxes were compared with results of tests on standard test specimens molded from the respective materials. The nonuniformity of a material, which is indicated by the coefficient of variation, affects the results of tests made with specimens of different sizes and tests with different methods of loading. The strength values were found to depend on the relationship between size and shape of the molded specimen and size and shape of the fillers. The most significant variations observed within a diversified group of materials were found to depend on the orientation of fibrous fillers. Of secondary importance was the dependence of the variability of test results on the pieces of filler incorporated into the molding powder as well as on the size of the piece. Static breaking strength tests on boxes molded from six representative phenolic materials correlated well with falling-ball impact tests on specimens cut from molded flat sheets. Good correlation was obtained with Izod impact tests on standard test specimens prepared from the molding materials. The static breaking strengths of the boxes do not correlate with the results of tensile or flexural tests on standard specimens.

  17. Ternary blended cement concrete. Part I: early age properties and mechanical strength

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2006-12-01

    Full Text Available While there is ample information in the literature on the mechanical performance and durability of concrete made with either limestone or granulated blast furnace slag,very little is known about the effect of the combined action of these two additions on concrete properties. The present paper evaluates the early stage properties and mechanical strength of binary and ternary cement concrete containing up to 18% limestone and 20% granulated blast furnace slag. The results show that the use of ternary cements has no substantial effect on concrete setting time, although it does reduce bleeding and enhance mechanical strength with respect to unadditioned Portland and/or binary cement concrete.En la bibliografía existe abundante información acerca del comportamiento mecánico y durable de hormigones elaborados con la incorporación individual de caliza y de escoria granulada de alto horno. Sin embargo, la modificación de las propiedades por la acción conjunta de las mismas es prácticamente desconocida. En este trabajo se evalúan las propiedades en estado fresco y el comportamiento mecánico de hormigones elaborados con cementos compuestos binarios y ternarios conteniendo hasta 18% de caliza y 20% de escoria granulada de alto horno. Los resultados indican que la utilización de cementos ternarios en hormigones no modifican sustancialmente el tiempo de fraguado, disminuyen la exudación y presentan un mejor comportamiento mecánico que los hormigones elaborados con cemento Portland sin adición y/o binarios.

  18. Moisture Content Impact on Mechanical Properties of Selected Cohesive Soils from the Wielkopolskie Voivodeship Southern Part

    Directory of Open Access Journals (Sweden)

    Pezowicz Piotr

    2015-12-01

    Full Text Available Results of investigations of shearing resistance and compressibility of fine-grained cohesive soil from the southern part of the wielkopolskie voivodeship in relation to the increasing moisture content are presented. The analysis of two series of samples, using soil paste for the consistency index of 0.9 and 0.4–0.3 was carried out. The results imply that the increasing moisture content causes a decrease in the angle of shearing resistance and cohesion and is also reflected in the higher compressibility of the soil. It was observed that regardless of the soil consistency, the angle of shearing resistance decreases and the cohesion value and the oedometric modulus of primary (consolidation and secondary compressibility grows with the increase in the clay fraction.

  19. Influence of stress on martensitic transformation and mechanical properties of hot stamped AHSS parts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.; Li, X.D. [School of Automotive Engineering, National Key Laboratory of Industrial Equipment Structural Analysis, Dalian University of Technology, Dalian 116024 (China); Zhao, K.M., E-mail: kmzhao@dlut.edu.cn [School of Automotive Engineering, National Key Laboratory of Industrial Equipment Structural Analysis, Dalian University of Technology, Dalian 116024 (China); Wang, C.Y. [Institute for Special Steels, Central Iron & Steel Research Institute, Beijing 100081 (China); Zheng, G.J.; Hu, P. [School of Automotive Engineering, National Key Laboratory of Industrial Equipment Structural Analysis, Dalian University of Technology, Dalian 116024 (China); Dong, H. [Institute for Special Steels, Central Iron & Steel Research Institute, Beijing 100081 (China)

    2015-04-01

    Non-isothermal tension and compression tests of 22MnB5 boron steel were carried out in this study. How different stress state influences the martensitic transformation of advanced high strength steel (AHSS) parts was analyzed. The analysis reveals that the martensitic transformation starting temperature (M{sub s}) changes with different stress states. Specifically, the M{sub s} temperature rises with increasing tensile stress, however, it rises first and then drops with increasing compressive stress. Moreover, a higher initial forming temperature leads to a higher M{sub s} temperature under the same stress. Simulation of an actual hot-formed AHSS B-pillar together with the microscopic metallography, hardness and martensitic content shows that in higher tensile stress dominated area, the martensitic content and hardness are usually higher than in other areas. Although the stress can promote the M{sub s} temperature, a lower cooling rate may lead to less martensite fraction.

  20. Application of cast nickel alloys for parts of electronics characterised by special magnetic properties

    Directory of Open Access Journals (Sweden)

    W. UhI

    2008-03-01

    Full Text Available Thc thcorctical part of the study highlights thc origin of thc idca 10 start investigations on alloys of high ~nngnctic pcrmcability.manufactured mainly by cornpanics in ~ h Uc S A and Japan.'Phc said materials arc applicd for various pans of ctcctronics uscd by thc military industry. c.g. sntctlitc antcnnas Tor globalcommunication with suhmarincs. and for rcscarch instmrncnts, c,g. fcrromagnctic corcs. Thcy arc chnr:~clcriscd by vcry high lnnpncticpcrrncability. resistivity and corrosion rcsistancc which makc thcm suitablc for opcrat ion undcr cxtrn-~ryingc onditions.Nickel alloys of high magnctic propcrtics arc usuall y manufactured as roZlcd products. The amhition of t hc authors or this srlldy is Inmanufacture !hem as cast prnducts.Thc pmgram of rcscarch incIudcd characteristic of nickcl alloys wirh ddi t i ons of molybdcnum slid iron sn~isryingt hc ahnvc mc~iito ncdrcquircmcnu. with attcn~ionf ocusscd on thcir application for magnctic parts of satcllitc antcnnns and fcrromngnctic corcs.Moulding and casting tcchnologics wcrc proposcd to bcst suit ~ h pcr occss OF maaufacturc of r hcsc clcmcnrs.Thc rangc of chcmicaI cornpostion was sclcctcd 20 cnsurc thc rcquircd magnctic. mcchnnicnl and anti-corrosive pmpcrtics.A scrics of melts was prcparcd and castings of thc abovc mcnlioncd clclncn1s wcrc mndc. Thc chclnicnl composi~ioii of IEIC alloys wasanalyscd along with thc stnlcturc cxarninations nnd quality asscssmcnt rnadc by ~ h cno n-dcsrructi vc rncthods, Casrings wcrc sitbjcctcd tothc finishing trcatmcnt, followed by tests and cxamina~ionsto cnablc thcir practical application.

  1. Exchange Network

    Science.gov (United States)

    The Environmental Information Exchange Network (EIEN) is an Internet-based system used by state, tribal and territorial partners to securely share environmental and health information with one another and EPA.

  2. Roles of Wind Shear at Different Vertical Levels, Part I: Cloud System Organization and Properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qian; Fan, Jiwen; Hagos, Samson M.; Gustafson, William I.; Berg, Larry K.

    2015-07-07

    Understanding of critical processes that contribute to the organization of mesoscale convective systems is important for accurate weather forecast and climate prediction. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of cloud systems using the Weather Research & Forecasting (WRF) model with a spectral-bin microphysical scheme. The sensitivity experiments are performed by increasing wind shear at the lower (0-5 km), middle (5-10 km), upper (> 10 km) and the entire troposphere, respectively, based on a control run for a mesoscale convective system (MCS) with weak wind shear. We find that increasing wind shear at the both lower and middle vertical levels reduces the domain-accumulated precipitation and the occurrence of heavy rain, while increasing wind shear at the upper levels changes little on precipitation. Although increasing wind shear at the lower-levels is favorable for a more organized quasi-line system which leads to enlarged updraft core area, and enhanced updraft velocities and vertical mass fluxes, the precipitation is still reduced by 18.6% compared with the control run due to stronger rain evaporation induced by the low-level wind shear. Strong wind shear in the middle levels only produces a strong super-cell over a narrow area, leading to 67.3% reduction of precipitation over the domain. By increasing wind shear at the upper levels only, the organization of the convection is not changed much, but the increased cloudiness at the upper-levels leads to stronger surface cooling and then stabilizes the atmosphere and weakens the convection. When strong wind shear exists over the entire vertical profile, a deep dry layer (2-9 km) is produced and convection is severely suppressed. There are fewer very-high (cloud top height (CTH) > 15 km) and very-deep (cloud thickness > 15 km) clouds, and the precipitation is only about 11.8% of the control run. The changes in cloud microphysical

  3. Ion Exchange Properties of the Erythrocyte Surface Protein Band 3 and its Role in the Process of Oxygenation during CMV Infection in the Third Trimester of Pregnancy

    Directory of Open Access Journals (Sweden)

    Michael T. Lucenko

    2016-12-01

    Full Text Available The aim of our study was to determine the nature of the ion exchange properties of EPB3 and its participation in the process of oxygenation with CMV infection (CMVI in the third trimester of pregnancy. Materias and Methods: The study included 105 pregnant women (the third trimester of gestation from 26 to 32 weeks: 35 CMV-seropositive pregnant women (the main group - Group 1 with CMVI exacerbation and anti-CMV IgG antibody titer of 1:1600, 35 CMV-seropositive pregnant women (the comparison group - Group 2 with latent CMVI and an anti-CMV IgG antibody titer of 1:800, and 35 CMV-seronegative pregnant women (the control group. The study of the protein spectrum of the erythrocyte membrane was carried out by analytical separation in the presence of 0.1% SDS on a one-dimensional 7.5%-10% gradient polyacrylamide gel. The oxyhemoglobin content was determined spectrophotometrically by the method of Malloy and Evelyn (1969; the total and bound-to-hemoglobin ATP and the total and inorganic phosphorus were determined by IS Luganov and MN Blinov (1975, the activity of ouabain-sensitive Na+/K+-ATPase by Kazennova's method (1986 and the levels of Na+ and K+ in plasma and RBCs by using "Vital Best" (Russia sets. Results: CMVI exacerbation in the third trimester of pregnancy is associated with a decrease in the content of EPB3 in RBC membranes due to increased proteolytic processes, which causes disturbances in its structural and functional properties. Thus, ion transport and association of the cytoplasmic domain of the protein with deoxyhemoglobin are changed and disrupt the processes of oxygenation.

  4. The role of magnetic interactions in exchange bias properties of MnFe2O4@γ-Fe2O3 core/shell nanoparticles

    Science.gov (United States)

    Silva, F. G.; Aquino, R.; Tourinho, F. A.; Stepanov, V. I.; Raikher, Yu L.; Perzynski, R.; Depeyrot, J.

    2013-07-01

    Low-temperature magnetic properties of assemblies of 3.3 nm sized nanoparticles (NPs) based on a MnFe2O4 core protected by a maghemite shell are investigated. These NPs are obtained by a chemical core/shell method developed for the synthesis of the electrostatically stabilized ferrofluid colloidal dispersions that we probe here. They are model systems where the interparticle interaction is tuned by the NP volume fractions, ranging here between 0.4% and 13.9%. It has been shown that these NPs consist of a well-ordered ferrimagnetic core surrounded by a disordered spin glass-like surface layer and that they display uniaxial magnetic anisotropy. We compare the magnetic hysteresis loops of non-textured frozen dispersions (with magnetic anisotropy axis of NPs distributed at random) with those of a powder based on the same NPs. After cooling under field the hysteresis loops shift along the H axis, expressing the coupling between the spin-ordered cores and the disordered surface layers. The negative H-shift provides an evaluation for the exchange bias (EB) field. The EB field is optimum for a cooling field of the order of the anisotropy field. A comparison between frozen dispersions and disordered powder allows us to distinguish the influence of intra- and interparticle interactions on the EB. Interparticle collective effects dominate in the powder while an intraparticle EB, eventually hindered by dipolar interactions at large volume fraction, is observed in frozen dispersions.

  5. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: ghani29000@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2013-02-25

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  6. Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties.

    Science.gov (United States)

    Dupont, David; Depuydt, Daphne; Binnemans, Koen

    2015-06-04

    Hydrophobic (water-immiscible) ionic liquids (ILs) are frequently used as organic phase in solvent extraction studies. These biphasic IL/water extraction systems often also contain metal salts or mineral acids, which can significantly affect the IL trough (un)wanted anion exchange and changes in the solubility of IL in the aqueous phase. In the case of thermomorphic systems, variations in the cloud point temperature are also observed. All these effects have important repercussions on the choice of IL, suitable for a certain extraction system. In this paper, a complete overview of the implications of metal salts on biphasic IL/water systems is given. Using the Hofmeister series as a starting point, a range of intuitive prediction models are introduced, supported by experimental evidence for several hydrophobic ILs, relevant to solvent extraction. Particular emphasis is placed on the IL betainium bis(trifluoromethylsulfonyl)imide [Hbet][Tf2N]. The aim of this work is to provide a comprehensive interpretation of the observed effects of metal salts, so that it can be used to predict the effect on any given biphasic IL/water system instead of relying on case-by-case reports. These prediction tools for the impact of metal salts can be useful to optimize IL synthesis procedures, extraction systems and thermomorphic properties. Some new insights are also provided for the rational design of ILs with UCST or LCST behavior based on the choice of IL anion.

  7. The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype-phenotype maps.

    Science.gov (United States)

    Greenbury, S F; Ahnert, S E

    2015-12-06

    Biological information is stored in DNA, RNA and protein sequences, which can be understood as genotypes that are translated into phenotypes. The properties of genotype-phenotype (GP) maps have been studied in great detail for RNA secondary structure. These include a highly biased distribution of genotypes per phenotype, negative correlation of genotypic robustness and evolvability, positive correlation of phenotypic robustness and evolvability, shape-space covering, and a roughly logarithmic scaling of phenotypic robustness with phenotypic frequency. More recently similar properties have been discovered in other GP maps, suggesting that they may be fundamental to biological GP maps, in general, rather than specific to the RNA secondary structure map. Here we propose that the above properties arise from the fundamental organization of biological information into 'constrained' and 'unconstrained' sequences, in the broadest possible sense. As 'constrained' we describe sequences that affect the phenotype more immediately, and are therefore more sensitive to mutations, such as, e.g. protein-coding DNA or the stems in RNA secondary structure. 'Unconstrained' sequences, on the other hand, can mutate more freely without affecting the phenotype, such as, e.g. intronic or intergenic DNA or the loops in RNA secondary structure. To test our hypothesis we consider a highly simplified GP map that has genotypes with 'coding' and 'non-coding' parts. We term this the Fibonacci GP map, as it is equivalent to the Fibonacci code in information theory. Despite its simplicity the Fibonacci GP map exhibits all the above properties of much more complex and biologically realistic GP maps. These properties are therefore likely to be fundamental to many biological GP maps. © 2015 The Authors.

  8. Investigation of Oxide Bifilms in Investment Cast Superalloy IN100: Part I. Mechanical Properties

    Science.gov (United States)

    Fuchs, Gerhard E.; Kaplan, Max A.

    2016-05-01

    Oxide bifilms are a proposed casting inclusion reported to have been observed in vacuum investment cast polycrystalline Ni-based superalloys. Ongoing research seeks to determine if current superalloy casting practices can result in the formation of oxide bifilms, and subsequently if it is possible to observe and characterize this phenomenon. The effects of casting atmosphere, turbulence, filtering, hot isostatic pressing (HIP), and heat treatment have been investigated to identify the critical parameters that have been reported to result in bifilm formation in Ni-based superalloys. Room temperature tensile and room temperature fatigue testing are used to identify the effects of each casting and processing parameter on casting defect formation and the resultant effects on mechanical properties. Characterization of mechanical test specimens seeks to identify the role of casting defects and microstructural features on the fracture mechanisms of the specimen conditions analyzed, and in particular, evidence of bifilm formation and the chemical composition(s) of oxide bifilms. Analyzed tensile and fatigue data did not indicate an influence of bifilms on the tensile or fatigue strength of vacuum processed IN100. Bifilms were not observed, via the characterization methods utilized, to be an active mechanism in tensile or fatigue fracture.

  9. One hundred years of helicene chemistry. Part 3: applications and properties of carbohelicenes.

    Science.gov (United States)

    Gingras, Marc

    2013-02-07

    Carbohelicenes are a class of fascinating chiral helical molecules which have a rich history in chemistry. Over a period of almost 100 years, chemists have developed many methods to prepare them in a racemic or in a non-racemic form. They also possess a series of interesting chiral, physical, electronic and optical properties. However, their utilization in chemistry or chemistry-related fields has rarely appeared in a detailed and comprehensive review. It is the purpose of this review to collect fundamental applications and functions involving carbohelicenes in various disciplines such as in materials science, in nanoscience, in biological chemistry and in supramolecular chemistry. From the numerous synthetic methodologies reported up to now, carbohelicenes and their derivatives can be tailor-made for a better involvement in several subfields. Among those domains are: nanosciences, chemosensing, liquid crystals, molecular switches, polymers, foldamers, supramolecular materials, molecular recognition, conductive and opto-electronic materials, nonlinear optics, chirality studies and asymmetric synthesis. Helicene chemistry is now at a developmental stage, where sufficient application data are now collected and are extremely useful. They provide many more ideas for setting up the basis for future innovative applications.

  10. Bio-composites of cassava starch-green coconut fiber: part II-Structure and properties.

    Science.gov (United States)

    Lomelí-Ramírez, María Guadalupe; Kestur, Satyanarayana G; Manríquez-González, Ricardo; Iwakiri, Setsuo; de Muniz, Graciela Bolzon; Flores-Sahagun, Thais Sydenstricker

    2014-02-15

    Development of any new material requires its complete characterization to find potential applications. In that direction, preparation of bio-composites of cassava starch containing up to 30 wt.% green coconut fibers from Brazil by thermal molding process was reported earlier. Their characterization regarding physical and tensile properties of both untreated and treated matrices and their composites were also reported. Structural studies through FTIR and XRD and thermal stability of the above mentioned composites are presented in this paper. FT-IR studies revealed decomposition of components in the matrix; the starch was neither chemically affected nor modified by either glycerol or the amount of fiber. XRD studies indicated increasing crystallinity of the composites with increasing amount of fiber content. Thermal studies through TGA/DTA showed improvement of thermal stability with increasing amount of fiber incorporation, while DMTA showed increasing storage modulus, higher glass transition temperature and lower damping with increasing fiber content. Improved interfacial bonding between the matrix and fibers could be the cause for the above results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    Science.gov (United States)

    Wang, Hsin; Porter, Wallace D.; Böttner, Harald; König, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolet, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Patricia; Sharp, Jeff W.; Lo, Jason; Kleinke, Holger; Kiss, Laszlo

    2013-04-01

    Recent research and development of high-temperature thermoelectric materials has demonstrated great potential for converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air-conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The dimensionless figure of merit, ZT, still needs to be improved from the current value of 1.0 to 1.5 to above 2.0 to be competitive with other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods, and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as a key component for improving energy efficiency. The International Energy Agency (IEA) group under the Implementing Agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main foci in part I are the measurement of two electronic transport properties: Seebeck coefficient and electrical resistivity.

  12. The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts

    Science.gov (United States)

    Ćwikła, G.; Grabowik, C.; Kalinowski, K.; Paprocka, I.; Ociepka, P.

    2017-08-01

    Rapid Prototyping technologies, especially 3D printing are becoming increasingly popular due to their usability and the constant decrease in price of printing equipment and materials. The article focuses on the study of selected mechanical strength properties of 3D-printed elements, which are not very important if the element is only a model for further manufacturing techniques, but which are important when 3D-printed elements will be a part of a functioning device, e.g. a part of unique scientific equipment. The research was carried out on a set of standardised samples, printed with low-cost standard materials (ABS), using a cheap 3D printer. The influence of parameters (such as the type of infill pattern, infill density, shell thickness, printing temperature, the type of material) on selected mechanical properties of the samples, were tested. The obtained results allows making conscious decisions on the printing of elements to be durable enough, either on a non-professional printer, or when to ordered by a professional manufacturer.

  13. Antioxidant Properties of Phenolic Compounds in Renewable Parts of Crataegus pinnatifida inferred from Seasonal Variations.

    Science.gov (United States)

    Luo, Meng; Yang, Xuan; Hu, Jiao-Yang; Jiao, Jiao; Mu, Fan-Song; Song, Zhuo-Yue; Gai, Qing-Yan; Qiao, Qi; Ruan, Xin; Fu, Yu-Jie

    2016-05-01

    In this study, the effect of seasonal variations on Crataegus pinnatifida, changes in antioxidant activity and active components in C. pinnatifida leaves, roots, twigs, and fruits from May to October were investigated. Through correlation analysis of climatic factors and 7 phenolic compounds yield, the phenolic compounds content was positively correlated with temperatures and daytime. The correlation coefficient of temperatures and daytime were 0.912 and 0.829, respectively. 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging and reducing power tests were employed to evaluate the antioxidant activity of the C. pinnatifida. C. pinnatifida leaves exhibited significant advantages in terms of higher phenolic contents and excellent antioxidant activities. Principal component analysis (PCA) revealed that 2 main PC characterize the C. pinnatifida phenolic composition (82.1% of all variance). C. pinnatifida leaves in September possessed remarkable antioxidant activity. The results elucidate that C. pinnatifida leaves, as renewable parts, are suitable for application as antioxidant ingredients. © 2016 Institute of Food Technologists®

  14. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    Energy Technology Data Exchange (ETDEWEB)

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  15. Determination of baghouse performance from coal and ash properties: part II

    Energy Technology Data Exchange (ETDEWEB)

    Vann Bush, P.; Snyder, T.R.; Chang, R.L.

    1989-03-01

    Baghouse performance at utility coal-fired power plants is determined by baghouse design, operating procedures, and the characteristics of the ash that is collected as a dustcake on the fabric filter. The Electric Power Research Institute has conducted laboratory research to identify the fundamental variables that influence baghouse performance. A database was assembled including measured characteristics of coal and dustcake ash, and data describing operating parameters and performance of full-scale and pilot-scale baghouses. Predictions of performance can be based on physical characteristics of the ash to be filtered (discussed in Part I of this article), as well as chemical characterizations of the ash, or empirical correlations with the alkali content of the source coal. The effects of design and operational variables can be included in these predictions. Baghouse performance can be optimized by exercising proper operating practices and by selecting a filtering fabric and cleaning method matched to the cohesivity of the ash to be collected. 13 refs., 13 figs., 2 tabs.

  16. Correlation between ion-exchange properties and swelling/shrinking processes in hexasulfonated calix[6]arene doped polypyrrole films: ac-electrogravimetry and electrochemical atomic force microscopy investigations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, L.T.T.; Gabrielli, C. [CNRS, UPR 15, LISE (case 133), 4 place Jussieu, F-75005, Paris (France); UPMC Univ. Paris 06, UPR 15, LISE (case 133), 4 place Jussieu, F-75005, Paris (France); Pailleret, A., E-mail: alain.pailleret@upmc.f [CNRS, UPR 15, LISE (case 133), 4 place Jussieu, F-75005, Paris (France); UPMC Univ. Paris 06, UPR 15, LISE (case 133), 4 place Jussieu, F-75005, Paris (France); Perrot, H. [CNRS, UPR 15, LISE (case 133), 4 place Jussieu, F-75005, Paris (France); UPMC Univ. Paris 06, UPR 15, LISE (case 133), 4 place Jussieu, F-75005, Paris (France)

    2011-04-01

    Electrogenerated polypyrrole films doped with hexasulfonated calix[6]arenes were subjected to ac-electrogravimetry and electrochemical atomic force microscopy (EC-AFM) studies in aqueous potassium nitrate solutions. The former technique reveals that these films are mainly cation exchangers although solvent molecules (H{sub 2}O) and anions (NO{sub 3}{sup -}) are also exchanged, in much lower amounts, in the course of the doping/undoping process. Unexpectedly, within the potential range encompassing this process, K{sup +} cations were found to be exchanged for more cathodic potentials whereas H{sub 3}O{sup +} are exchanged for more anodic potentials. EC-AFM investigations revealed substantial shrinking and swelling during the oxidation (doping) and reduction (undoping) processes respectively. An obvious correlation can easily be built between these observations: the oxidation of the polymer films provokes an expulsion of the cations, as expected from cation exchanger polymer films, and therefore a decrease of the volume (and thickness) of these films whereas their reduction causes an insertion of cations and an increase of their volume (and thickness). This electromechanical mechanism is amplified by the simultaneous exchange of free water molecules. Suggestions based on these observations, on structural characteristics of polypyrrole films, and on complexation ability of hexasulfonated calix[6]arenes incorporated in the films are discussed to explain (i) the change of the identity of the exchanged cations as a function of the potential, (ii) the exchange of free water molecules and, (iii) the exchange of small amounts of nitrate ions.

  17. Extreme heterogeneity of land surface in spring inducing highly complex micrometeorological flow features and heat exchange processes over partly snow covered areas

    Science.gov (United States)

    Mott, Rebecca; Schlögl, Sebastian; Dirks, Lisa; Lehning, Michael

    2017-04-01

    The melting mountain snow cover in spring typically changes from a continuous snow cover to a mosaic of patches of snow and bare ground inducing an extreme heterogeneity of the land surface. Energy balance models typically assume a continuous snow cover, neglecting the complex interaction between the atmospheric boundary layer and the strongly variable surface. We experimentally investigated the small-scale boundary layer dynamics over snow patches and their effect on the energy balance at the snow surface. A comprehensive measurement campaign, the Dischma Experiment, was conducted during three entire ablation periods in spring 2014, 2015 and 2016. The aim of this project is to investigate the boundary layer development and the energy exchange over a melting snow cover with a gradually decreasing snow cover fraction. For this purpose, two measurement towers equipped with five to six ultrasonic anemometers were installed over a long-lasting snow patch. Furthermore, temporally and spatially high resolution ablation rates and snow surface temperatures were determined with a terrestrial laser scanner and an Infrared camera. This data set allows us to relate the spatial patterns of ablation rates and snow surface temperatures to boundary layer dynamics and the changing snow cover fraction. Experimental data reveal that wind conditions, snow cover distribution, local wind fetch distance and topographical curvature control the near-surface boundary layer characteristics and heat exchange processes over snow. The strong heterogeneity of land surface induced by the patchy snow cover caused a high spatial and temporal variability of snow surface temperature and snow melt patterns. Small scale flow features, such as katabatic flows or wind sheltering can be shown to strongly affect the temporal evolution of snow surface patterns. Furthermore, turbulence data reveal a strong correlation of turbulent heat exchange over melting snow with the occurrence of internal thermal

  18. Profile Station Data Received from the British Hydrographic Office (November 1989 - December 1994) as Part of Data-Center-to-Data-Center Exchange (NODC Accession 9600017)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains Profile Station Data Received from the British Hydrographic Office collected between November 3, 1989 to December 26, 1994 as Part of...

  19. Measurements of the dielectric properties of simulated comet material as part of the KOSI 10 experiment

    Science.gov (United States)

    Ulamec, S.; Svedhem, H.; Kochan, H.

    1993-01-01

    The dielectric constant epsilon of the snow-mineral used for the comet simulation in the German KOSI 10 experiment was measured in the radio frequency range from 2 to 4 GHz. The traditional microwave bridge method was used, but instead of using a waveguide that contains the sample material small lambda/4 antennas were used as sensors. A change in the dielectric properties indicates a change in density and/or composition, respectively. The method is presented as an analytical tool for measuring such density or composition changes during alteration snow-dust materials. The KOSI (determined from the German: Kometen Simulation) experiments, performed in the Space simulator of the DLR/Institut for Raumsimulation, during the last years revealed many processes that presumably take place on comets. So far, modifications of the internal structure could be identified only during the post-experiment inspection via hardness tests. It was the aim of the KOSI 10 and KOSI 10a experiments to emphasize on a synoptic detection of events like particle emission or crust formation. The composition of the KOSI 10 sample material was an ice-mineral mixture with about 10 percent mineral (olivine) content. An excellent method to investigate the change of the density of the probe material during its exposure to the artificial sun in situ is to do it via the measurement of the dielectric constant. The traditional method to determine epsilon, by using a microwave-bridge to measure the transmission and the reflection factor of the sample material for electromagnetic waves in the radio frequency range, was modified, since the commonly used practice to fill the sample material into a waveguide was not compatible with the need for in situ measurements during the simulation experiment.

  20. Geohydrodynamic properties of hydrogeological units in parts of Niger Delta, southern Nigeria

    Science.gov (United States)

    George, Nyakno J.; Emah, Joseph B.; Ekong, Ufot N.

    2015-05-01

    We used geophysical and laboratory techniques to study the geohydraulic properties of the geological units in the Niger Delta of southern Nigeria. Our main objective was to investigate the distribution of the geohydrodynamic parameters and to establish the interrelationships among them in the study area for effective characterisation of hydrogeological units. Measurements on the core samples aided in the estimation of effective porosities. The hydrogeological units' bulk resistivities measured from 1-D resistivity data constrained by nearby boreholes and the formation pore-water resistivities measured in the laboratory were used in computing the hydrogeological unit formation factor resistivity. Integration of field and laboratory measurements in conjunction with regression analysis of the data led to the determination of the hydrodynamic coefficients of the hydrogeological units. The graphs and the contour maps generated from the data show the variations and the interrelationships among the parameters. A theoretical model for the porosity-resistivity formation factor relation which conforms to Dakhnov's formulation, obtained for similar sediment with different grain sizes in another geological province has been developed based on the measured data. A good approximation with error of the mean square of 2.48 and standard deviation of 1.5 was obtained between the experimental aquifer formation factor F and the predicted aquifer formation factor Fm. Generally, the results of our study reveal good correlations with similar studies carried out in literatures at different places. The juxtaposition of contour maps which show variations of geohydraulic parameters in a continuum is worthwhile. The changes in geohydraulic parameters are influenced by size of grains, magnitude of pore sizes and shapes, pore-water and formation conductivities, facies changes and anisotropy of aquifer sediments. Our results have not really shown any interaction between freshwater and saltwater

  1. A mixture of sparse coding models explaining properties of face neurons related to holistic and parts-based processing.

    Science.gov (United States)

    Hosoya, Haruo; Hyvärinen, Aapo

    2017-07-01

    Experimental studies have revealed evidence of both parts-based and holistic representations of objects and faces in the primate visual system. However, it is still a mystery how such seemingly contradictory types of processing can coexist within a single system. Here, we propose a novel theory called mixture of sparse coding models, inspired by the formation of category-specific subregions in the inferotemporal (IT) cortex. We developed a hierarchical network that constructed a mixture of two sparse coding submodels on top of a simple Gabor analysis. The submodels were each trained with face or non-face object images, which resulted in separate representations of facial parts and object parts. Importantly, evoked neural activities were modeled by Bayesian inference, which had a top-down explaining-away effect that enabled recognition of an individual part to depend strongly on the category of the whole input. We show that this explaining-away effect was indeed crucial for the units in the face submodel to exhibit significant selectivity to face images over object images in a similar way to actual face-selective neurons in the macaque IT cortex. Furthermore, the model explained, qualitatively and quantitatively, several tuning properties to facial features found in the middle patch of face processing in IT as documented by Freiwald, Tsao, and Livingstone (2009). These included, in particular, tuning to only a small number of facial features that were often related to geometrically large parts like face outline and hair, preference and anti-preference of extreme facial features (e.g., very large/small inter-eye distance), and reduction of the gain of feature tuning for partial face stimuli compared to whole face stimuli. Thus, we hypothesize that the coding principle of facial features in the middle patch of face processing in the macaque IT cortex may be closely related to mixture of sparse coding models.

  2. A mixture of sparse coding models explaining properties of face neurons related to holistic and parts-based processing.

    Directory of Open Access Journals (Sweden)

    Haruo Hosoya

    2017-07-01

    Full Text Available Experimental studies have revealed evidence of both parts-based and holistic representations of objects and faces in the primate visual system. However, it is still a mystery how such seemingly contradictory types of processing can coexist within a single system. Here, we propose a novel theory called mixture of sparse coding models, inspired by the formation of category-specific subregions in the inferotemporal (IT cortex. We developed a hierarchical network that constructed a mixture of two sparse coding submodels on top of a simple Gabor analysis. The submodels were each trained with face or non-face object images, which resulted in separate representations of facial parts and object parts. Importantly, evoked neural activities were modeled by Bayesian inference, which had a top-down explaining-away effect that enabled recognition of an individual part to depend strongly on the category of the whole input. We show that this explaining-away effect was indeed crucial for the units in the face submodel to exhibit significant selectivity to face images over object images in a similar way to actual face-selective neurons in the macaque IT cortex. Furthermore, the model explained, qualitatively and quantitatively, several tuning properties to facial features found in the middle patch of face processing in IT as documented by Freiwald, Tsao, and Livingstone (2009. These included, in particular, tuning to only a small number of facial features that were often related to geometrically large parts like face outline and hair, preference and anti-preference of extreme facial features (e.g., very large/small inter-eye distance, and reduction of the gain of feature tuning for partial face stimuli compared to whole face stimuli. Thus, we hypothesize that the coding principle of facial features in the middle patch of face processing in the macaque IT cortex may be closely related to mixture of sparse coding models.

  3. A Data Base of Crop Nutrient Use, Water Use, and Carbon Dioxide Exchange in a 20 Square Meter Growth Chamber. Part 1; Wheat as a Case Study

    Science.gov (United States)

    Wheeler, Raymond M.; Berry, Wade L.; Mackowiak, Cheryl; Corey, Kenneth A.; Sager, John C.; Heeb, Margaret M.; Knott, William M.

    1993-01-01

    A data set is given describing the daily nutrient uptake, gas exchange, environmental conditions, and carbon (C), and nutrient partitioning at harvest for the entire canopy and root system of a wheat crop (Triticum aestivum, cv. Yecora Rojo). The data were obtained from a 20 sq m stand of wheat plants grown from planting to maturity in a closed, controlled environment, and include daily nutrient uptake [macronutrients, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S); and micronutrients, iron (Fe), boron (B), manganese (Mn), zinc (Zn), copper (Cu), and molybdenum (Mo)], canopy carbon dioxide (CO2) exchange rates, and transpiration. Environmental factors such as relative humidity, air temperature, nutrient solution temperature, pH and electrical conductivity, and photoperiod were controlled in the chamber to specific set points. A detailed description of biomass yield for each of the 64 plant growth trays comprising the 20 sq m of growth area is also provided, and includes dry weights of grain, straw, chaff, and roots, along with the concentration of nutrients in different plant tissues and the percent carbohydrate, fat, and protein. To our knowledge, this information represents one of the most extensive data sets available for a canopy of wheat grown from seed to maturity under controlled environmental and nutritional conditions, and thus may provide useful information for model development and validation. A methods section is included to qualify any assumptions that might he required for the use of the data in plant growth models, along with a daily event calendar indicating when adjustments in set points and occasional equipment or sensor failures occurred.

  4. STUDY CONCERNING THE INFLUENCE OF CERTAIN HYDROPHILIC AUXILIARIES ON THE PROPERTIES OF THE PLASTICIZED POLYVINYL CHLORIDE POROUS FILMS Part II-HYGIENIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    BĂLĂU MÎNDRU Tudorel

    2015-05-01

    Full Text Available The purpose of this paper was to obtain certain PVC films with improved hygienic properties, with applications both in the artificial leather industry and in other domains. This was done by introducing certain hydrophilic auxiliaries with free chemical functions into the chemical structure of the PVC films, such as: collagen hydrolysates (CH, hydroxyl-terminated polydimethylsiloxane (HTPDMS and nonylphenol ethoxylate (NPE. The use of these hydrophilic auxiliaries combined with the action of the high frequency electric fields (H.F.E.F. allows the attainment of cellular structures where the walls of the cells obtained from the expanding process display an enhanced humidity absorption. The collagen hydrolysates used to obtain the plasticized PVC porous films was obtained by electrolytic hydrolysis starting from Chamois leather powder waste resulting from buffing operation, according to a methodology described in a previous paper. The first part of this study was concerned with the influence of the addition of hydrophilic agents upon the moisture sorption of the plasticized PVC porous films. In this paper, there was investigated the water vapour and air permeability as well as the water vapour absorption of the porous films expanded in the H.F.E.F. in correlation with the nature and the recipe variant of the hydrophilic auxiliaries. The results highlighted the fact that the use of certain combinations of hydrophilic agents led to obtaining materials with adequate hygienic properties.

  5. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  6. Magnetic properties of layered complexes [M(hfac){sub 2}]{sub 3}(R){sub 2}, M=Mn(II) and Cu(II), with trisnitroxide radicals having various metal-radical exchange interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Motoko; Hosokoshi, Yuko; Inoue, Katsuya [Applied Molecular Science, Institute for Molecular Science, Nishigonaka, Myodaiji, Okazaki (Japan); Markosyan, Ashot S. [Applied Molecular Science, Institute for Molecular Science, Nishigonaka, Myodaiji, Okazaki (Japan); Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)]. E-mail: marko@plms.phys.msu.su; Iwamura, Hizu [Department of General Science, University of Air. Wakaba, Mihama, Chiba (Japan)

    2001-08-20

    A series of new layered 2D-network complexes [M(hfac){sub 2}]{sub 3}(R{sub {delta}}){sub 2} of M=Mn(II) and Cu(II) with trisnitroxide radicals R{sub {delta}} has been prepared and the magnetic properties were studied. Each triradical R{sub {delta}} has a quartet ground state and contributes not only to the formation of extended structures but essentially to the overall magnetism. Several exchange interactions, between M and nitroxide and intraradical nitroxide-nitroxide interactions, are responsible for the development of the characteristic magnetic properties in these heterospin systems. Depending on the nature of the interlayer interactions, they show either ferro/ferrimagnetic or antiferromagnetic long range order. The hierarchy of the different exchange interactions is established and the Mn-nitroxide and Cu-nitroxide exchange integrals are evaluated from the analysis of the temperature dependence of the paramagnetic susceptibility. With increasing intraradical exchange interaction, the complexes exhibit more pronounced 2D behaviour. (author)

  7. The electronic structure and optical properties of XSi(X = Fe,Ru,Os): A first principles investigation within the modified Becke-Johnson exchange potential plus LDA

    Energy Technology Data Exchange (ETDEWEB)

    Li Jia, E-mail: jiali@hebut.edu.cn; Zhang Zhidong; Ji Qing; Zhang Hui; Luo Hongzhi

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Reproduce of band gap for XSi(X = Fe,Ru,Os) with gap of {approx}10{sup -1} eV. Black-Right-Pointing-Pointer Using the mBJ + LDA first principles in comparison with GGA and LDA. Black-Right-Pointing-Pointer Theoretical optical conductivity is in agreement with the measurement. - Abstract: The electronic structure, optical reflectivity spectra and optical conductivity of semiconducting transition-metal silicides FeSi, RuSi and OsSi have been investigated by using first principles calculation within the recent developed modified Becke-Johnson exchange potential plus local-density approximation (mBJ + LDA). The electronic structures produced by mBJ + LDA, generalized gradient approximation (GGA) and LDA are rather similar although the band gap has been enlarged more or less by the mBJ + LDA compared to the GGA and LDA for the three compounds. The mBJ + LDA, GGA and LDA all have overestimated the band gap for FeSi and OsSi compared to the experiment. For RuSi, the theoretical gap values are basically close to the experimental values and the improvement of gap by mBJ + LDA is only 0.04 eV in comparison with the GGA. The mBJ + LDA and GGA also produce similar results with respect to their optical properties including the reflectivity spectra and optical conductivity except that for the reflectivity spectra of FeSi, the GGA result is little better consistent with the experimental measurement than the mBJ + LDA result. The optical conductivity calculated by mBJ + LDA and GGA both exhibits the absorption edge, in well correspondence to the optical measurement.

  8. Evolution of an alumina-magnesia/self-forming spinel castable. Part II: physico-chemical and mechanical properties

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Campos D.

    1999-01-01

    Full Text Available This study was carried out in conjunction with the investigation, reported in Part I, on the microstructural characteristics of an alumina-spinel castable with several percentages of MgO content. Bulk density and cold crushing strength of samples were evaluated dried and at three fired states (1000, 1200, 1400 °C. Results indicate little influence of MgO additions on physico-chemical properties of the alumina-magnesia/self-forming spinel castable. Characteristics compared with those reported for conventional alumina-spinel castables did not show large difference in values. Therefore, the alumina-magnesia/self-forming spinel castable could be a possible material for substitution of the conventional alumina-spinel castable.

  9. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling

    KAUST Repository

    Han, Fei

    2014-01-01

    We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics; the second one is based on hybrid local/non-local continuum mechanics. The key computational issues, including the peculiar homogenization technique and treatment of periodical boundary conditions in the non-local continuum model, are clarified. Both models are implemented through a three-dimensional geometric representation of the carbon nanotubes network, which has been detailed in Part I. Numerical results are shown and compared for both models in order to test convergence and sensitivity toward input parameters. It is found that both approaches provide similar results in terms of homogenized quantities but locally can lead to very different microscopic fields. © 2013 Elsevier B.V. All rights reserved.

  10. Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater. Part 2. Modelling results

    Directory of Open Access Journals (Sweden)

    Bogdan Woźniak

    2005-12-01

    Full Text Available Model spectra of mass-specific absorption coefficients a*OM(λ were established for 26 naturally occurring organic substances or their possible mixtures, capable of forming particulate organic matter (POM in the sea. An algorithm was constructed, and the set of spectra of a*OM(λ was used to determine the spectra of the imaginary part of the complex refractive index n'p(λ characteristic of different physical types and chemical classes of POM commonly occurring in sea water. The variability in the spectra and absolute values of n'p for the various model classes and types of POM was shown to range over many orders of magnitude. This implies that modelling the optical properties of sea water requires a multi-component approach that takes account of the numerous living and non-living fractions of POM, each of which has a different value of n'p.

  11. Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire: Part I—Characterisation of Thermophysical Properties

    Directory of Open Access Journals (Sweden)

    Pauline Tranchard

    2017-05-01

    Full Text Available Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA, Simultaneous Thermal analysis (STA, Laser Flash analysis (LFA, and Fourier Transform Infrared (FTIR analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper. The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering.

  12. Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire: Part I-Characterisation of Thermophysical Properties.

    Science.gov (United States)

    Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge

    2017-05-04

    Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures) were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA), Simultaneous Thermal analysis (STA), Laser Flash analysis (LFA), and Fourier Transform Infrared (FTIR) analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D) model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper). The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering.

  13. Apparent optical properties of the Canadian Beaufort Sea – Part 1: Observational overview and water column relationships

    Directory of Open Access Journals (Sweden)

    D. Antoine

    2013-07-01

    Full Text Available A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic in August 2009 (Malina project is analyzed in order to describe apparent optical properties (AOPs in this sea, which has been subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean color sensor. The data set includes offshore clear waters of the Beaufort Basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by colored dissolved organic matter (CDOM is responsible for these high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This questions the role of ocean color remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g., the red should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth.

  14. Survey on the phase transitions and their effect on the ion-exchange and on the proton-conduction properties of a flexible and robust Zr phosphonate coordination polymer.

    Science.gov (United States)

    Costantino, Ferdinando; Donnadio, Anna; Casciola, Mario

    2012-06-18

    The flexible zirconium tetraphosphonate coordination polymer with formula Zr(O(3)PCH(2))(2)N-C(6)H(10)-N(O(3)CH(2)P)(2)X(2-x)H(2+x)·nH(2)O (X = H, Li, Na, K, 0 metals hydroxides. 1 is a very robust coordination polymer because it can be regenerated in H- form using strong acid solutions and ri-exchanged several times without hydrolysis and loss of crystallinity. The flexibility of 1 has been also studied by means of TDXD (temperature dependent X-ray diffraction) evidencing remarkable phase transformations that lead to a different disposition of the water molecules. These transformations also influence the accessibility of the cations on the P-OH groups placed inside the channels and thus the ion-exchange properties. The dependence of the proton conductivity properties on these phase transitions has been also investigated and discussed.

  15. Exchange Options

    NARCIS (Netherlands)

    Jamshidian, F.

    2007-01-01

    The contract is described and market examples given. Essential theoretical developments are introduced and cited chronologically. The principles and techniques of hedging and unique pricing are illustrated for the two simplest nontrivial examples: the classical Black-Scholes/Merton/Margrabe exchange

  16. 78 FR 38203 - Refunds and Exchanges

    Science.gov (United States)

    2013-06-26

    ... Service through the manager, Payment Technology, USPS Headquarters. Subsequently, as part of this final... from the manager, Payment Technology (see 608.8.1 for address). * * * * * 9.0 Exchanges and Refunds... Not Exchangeable The following postage items cannot be exchanged: a. Adhesive stamps, unless mistakes...

  17. Influence of forest management on the changes of organic soil properties in border part of Kragle Mokradlo Peatland (Stolowe Mountains National Park, Poland)

    Science.gov (United States)

    Bogacz, A.; Roszkowicz, M.

    2009-04-01

    SUMMARY The aim of this work was to determine the properties of organic soils modified by man, muddy and fluvial process. Peat horizons were analyzed and classified by types - and species of peat. Three profiles of shallow peat and peaty gley soils identified. Investigation showed that organic soil developed on a sandy weathered sandstone base according to oligotrophic type of sites. Organic horizons were mixed with sand and separated by sandy layers. Those soils were classified as Sapric Histosols Dystric or Sapric Gleysols Histic (WRB 2006). The throphism of organic soil in this object resulted from both natural factors and anthropo-pedogenesis. key words: peat deposit, organic soils, soil properties, muddy process, sandy layers INTRODUCTION The areas of Stolowe Mountains National Park were influenced by forestry management. Many peatlands in the Park area were drained for forestry before World War II. Several amelioration attempts were undertaken as early as in the nineteenth century. The system of forest roads were built on drained areas. The Kragle Mokradlo Peatland is located in the Skalniak plateau. The object is cut by a melioration ditch. This ditch has been recently blocked to rewet the objects. Several forest roads pass in the close neighbourhood of investigated areas. In a border part of Kragle Mokradlo Peatlands, we can observe artificial spruce habitat. Investigated object represents shallow peat soil developed on sandy basement. The early investigations showed that peaty soils were also covered by sandstone - related deposits, several dozen centimeter thick (BOGACZ 2000). Those layers was developed from sandstone weathered material transported by wind and water. The aim of presented works was to determine the stage of evolution of organic soils on the base on their morphological, physical and chemical properties. MATERIAL AND METHODS Peat soils in different locations (3 profiles, 18 samples) were selected for examination. Peat samples were collected

  18. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  19. Development of separation technology for the removal of radium-223 from targeted thorium conjugate formulations. Part I: purification of decayed thorium-227 on cation exchange columns.

    Science.gov (United States)

    Frenvik, Janne Olsen; Dyrstad, Knut; Kristensen, Solveig; Ryan, Olav B

    2017-02-01

    Targeted thorium conjugates (TTCs) are being explored as a potential future platform for specific tumor targeting pharmaceuticals. In TTCs, the alpha emitting radionuclide thorium-227 ((227)Th) with a half-life of 18.697 d is labeled to targeting moieties, such as monoclonal antibodies (mAbs). The amount of daughter nuclide radium-223 ((223)Ra, t1/2 = 11.435 d) will increase during manufacture and distribution, and so a technology for purification is required to assure an acceptable level of (223)Ra is administrated to the patient. Since (223)Ra is the only progeny of (227)Th with a long half-life (days), the progenies of (223)Ra will have a very limited stay in the formulation once (223)Ra is removed. The focus in this study has, therefore, been on the removal of (223)Ra. In this study, the sorption and separation of (223)Ra (radium(II)) and (227)Th (thorium(IV)) on cation exchange columns has been evaluated as a purification method of decayed (227)Th (i.e. prior to radiolabelling of a mAb and formation of TTC). The goal is to minimize the sorption of (227)Th and maximize the sorption of (223)Ra. Statistical experimental design with formulation and process parameters, including buffered formulations comprising citrate and acetate, at various concentrations and pH, presence of free radical scavenger and chelator, and resin amount have been evaluated for impact on the purification process. The studies have been interpreted by the aid of multivariate data analysis. The correlations between design of experimental variables and sorption are summarized by regression models. The predictive accuracy of radionuclide sorption was given by standard deviation and 95% confidence intervals originating from statistical cross validation. Experimental results and statistical models for citrate-buffered formulations verified reproducible and acceptable sorption levels of (223)Ra and (227)Th under selected conditions. For acetate-buffered formulations, prediction of (227)Th

  20. Effect of standardizing the lactose content of cheesemilk on the properties of low-moisture, part-skim Mozzarella cheese.

    Science.gov (United States)

    Moynihan, A C; Govindasamy-Lucey, S; Molitor, M; Jaeggi, J J; Johnson, M E; McSweeney, P L H; Lucey, J A

    2016-10-01

    The texture, functionality, and quality of Mozzarella cheese are affected by critical parameters such as pH and the rate of acidification. Acidification is typically controlled by the selection of starter culture and temperature used during cheesemaking, as well as techniques such as curd washing or whey dilution, to reduce the residual curd lactose content and decrease the potential for developed acidity. In this study, we explored an alternative approach: adjusting the initial lactose concentration in the milk before cheesemaking. We adjusted the concentration of substrate available to form lactic acid. We added water to decrease the lactose content of the milk, but this also decreased the protein content, so we used ultrafiltration to help maintain a constant protein concentration. We used 3 milks with different lactose-to-casein ratios: one at a high level, 1.8 (HLC, the normal level in milk); one at a medium level, 1.3 (MLC); and one at a low level, 1.0 (LLC). All milks had similar total casein (2.5%) and fat (2.5%) content. We investigated the composition, texture, and functional and sensory properties of low-moisture, part-skim Mozzarella manufactured from these milks when the cheeses were ripened at 4°C for 84d. All cheeses had similar pH values at draining and salting, resulting in cheeses with similar total calcium contents. Cheeses made with LLC milk had higher pH values than the other cheeses throughout ripening. Cheeses had similar moisture contents. The LLC and MLC cheeses had lower levels of lactose, galactose, lactic acid, and insoluble calcium compared with HLC cheese. The lactose-to-casein ratio had no effect on the levels of proteolysis. The LLC and MLC cheeses were harder than the HLC cheese during ripening. Maximum loss tangent (LT), an index of cheese meltability, was lower for the LLC cheese until 28d of ripening, but after 28d, all treatments exhibited similar maximum LT values. The temperature where LT=1 (crossover temperature), an index

  1. NMR and computational studies of the configurational properties of spirodioxyselenuranes. Are dynamic exchange processes or temperature-dependent chemical shifts involved?

    Science.gov (United States)

    Press, David J; McNeil, Nicole M R; Rauk, Arvi; Back, Thomas G

    2012-10-19

    Spirodioxyselenurane 4a and several substituted analogs revealed unexpected (1)H NMR behavior. The diastereotopic methylene hydrogens of 4a appeared as an AB quartet at low temperature that coalesced to a singlet upon warming to 267 K, suggesting a dynamic exchange process with a relatively low activation energy. However, DFT computational investigations indicated high activation energies for exchange via inversion through the selenium center and for various pseudorotation processes. Moreover, the NMR behavior was unaffected by the presence of water or acid catalysts, thereby ruling out reversible Se-O or benzylic C-O cleavage as possible stereomutation pathways. Remarkably, when 4a was heated beyond 342 K, the singlet was transformed into a new AB quartet. Further computations indicated that a temperature dependence of the chemical shifts of the diastereotopic protons results in convergence upon heating, followed by crossover and divergence at still higher temperatures. The NMR behavior is therefore not due to dynamic exchange processes, but rather to temperature dependence of the chemical shifts of the diastereotopic hydrogens, which are coincidentally equivalent at intermediate temperatures. These results suggest the general need for caution in ascribing the coalescence of variable-temperature NMR signals of diastereotopic protons to dynamic exchange processes that could instead be due to temperature-dependent chemical shifts and highlight the importance of corroborating postulated exchange processes through additional computations or experiments wherever possible.

  2. Geoacoustic provinces and physical properties of surface sediments in the southern part of the East Sea, Korea

    Science.gov (United States)

    Kim, Sora; Bahk, Jang-Jun; Kim, Daechoul; Lee, Gwang Soo; Kim, Seong-Pil

    2017-04-01

    A total of 288 piston and box core samples were collected and analyzed to characterize the physical properties and geoacoustic provinces of surficial sediments in the southern part of the East Sea. Based on in-situ condition sound velocity (converted laboratory sound velocity to in-situ condition sound velocity) and sediment properties (sediment textures and physical properties), the study area was divided into eight provinces (Province IA, IB, IC, II, III, IV, VA, and VB) : (1) Province IA : hemi-pelagic mud partially mixed with intermittent sandy sediments originating from the outer shelf due to slide/slump or mass flows (in-situ condition sound velocity: 1439 m/s, mean grain size: 8.5Φ, bulk density: 1.24 g/cm3,and porosity: 84%); (2) Province IB : Holocene muddy sediments are dominant, but in some area that is influenced by the surrounding land and coast (in-situ condition sound velocity: 1448 m/s, mean grain size: 8.3Φ, bulk density: 1.32 g/cm3, and porosity: 79%); (3) Province IC : muddy sediments that were deposited during the Holocene (in-situ condition sound velocity: 1457 m/s, mean grain size: 7.8Φ, bulk density: 1.36 g/cm3, and porosity: 78%); (4) Province II : mixed recent and relict sediments (in-situ condition sound velocity: 1493 m/s, mean grain size: 5.9Φ, bulk density: 1.53 g/cm3, and porosity: 68%); (5) Province III (Pohang) : there is a mixture of muddy sediments and sandy sediments and sediments from Hyeongsan River are mostly deposited (in-situ condition sound velocity: 1586 m/s, mean grain size: 4.1Φ, bulk density: 1.74 g/cm3, and porosity: 57%); (6) Province IV : coarse-grained relict sediments formed during the Pleistocene (in-situ condition sound velocity: 1572 m/s, mean grain size: 4.1Φ, bulk density: 1.76 g/cm3, and porosity: 55%); (7) Province VA : relict sand with some gravel, show marked differences from the area in which muddy sediments are deposited (in-situ condition sound velocity: 1662 m/s, mean grain size: 3.3Φ, bulk

  3. Effect of ball milling and thermal treatment on exchange bias and magnetocaloric properties of Ni{sub 48}Mn{sub 39.5}Sn{sub 10.5}Al{sub 2} ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, P., E-mail: p.czaja@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków (Poland); Przewoźnik, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Department of Solid State Physics, Al. Mickiewicza 30, 30-059 Krakow (Poland); Fitta, M.; Bałanda, M. [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego Str., 31-342 Krakow (Poland); Chrobak, A. [A. Chelkowski Institute of Physics, University of Silesia, 4 Uniwersytecka Str., Katowice 40-007 (Poland); Kania, B. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków (Poland); Zackiewicz, P. [Institute of Non Ferrous Metals, 5 Sowinskiego Str., Gliwice 44-100 (Poland); Wójcik, A.; Szlezynger, M.; Maziarz, W. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków (Poland)

    2016-03-01

    The combined effect of ball milling and subsequent heat treatment on microstructure, magnetic, magnetocaloric and exchange bias properties of Ni{sub 48}Mn{sub 39.5}Sn{sub 10.5}Al{sub 2} ribbons is reported. The annealing treatment results in the increase of the critical martensitic transformation temperature. The magnetic entropy change ΔS{sub M} of the order of 7.9 and −2.3 J kg K{sup −1} for the annealed 50–32 µm powder fraction is determined. This is less than in the as melt spun ribbon but appears at a considerably higher temperature. At the same time EB is decreased due to annealing treatment. This decrease is attributed to the strengthened ferromagnetic exchange coupling due heat induced stress and structural relaxation. - Highlights: • Milling and annealing of Ni–Mn–Sn–Al ribbons increases the MT temperature. • ΔS{sub M} equal to 7.9 and −2.3 J kg K{sup −1} for the annealed 50–32 µm powder fraction. • Exchange Bias decreases due to annealing treatment. • Milling and annealing are useful for tuning of properties of Ni–Mn–Sn–Al alloys.

  4. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 2: Mercury and its speciation

    Science.gov (United States)

    Toyota, K.; Dastoor, A. P.; Ryzhkov, A.

    2014-04-01

    Atmospheric mercury depletion events (AMDEs) refer to a recurring depletion of mercury occurring in the springtime Arctic (and Antarctic) boundary layer, in general, concurrently with ozone depletion events (ODEs). To close some of the knowledge gaps in the physical and chemical mechanisms of AMDEs and ODEs, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents throughout porous snowpack and in the overlying atmospheric boundary layer (ABL). This paper constitutes Part 2 of the study, describing the mercury component of the model and its application to the simulation of AMDEs. Building on model components reported in Part 1 ("In-snow bromine activation and its impact on ozone"), we have developed a chemical mechanism for the redox reactions of mercury in the gas and aqueous phases with temperature dependent reaction rates and equilibrium constants accounted for wherever possible. Thus the model allows us to study the chemical and physical processes taking place during ODEs and AMDEs within a single framework where two-way interactions between the snowpack and the atmosphere are simulated in a detailed, process-oriented manner. Model runs are conducted for meteorological and chemical conditions that represent the springtime Arctic ABL characterized by the presence of "haze" (sulfate aerosols) and the saline snowpack on sea ice. The oxidation of gaseous elemental mercury (GEM) is initiated via reaction with Br-atom to form HgBr, followed by competitions between its thermal decomposition and further reactions to give thermally stable Hg(II) products. To shed light on uncertain kinetics and mechanisms of this multi-step oxidation process, we have tested different combinations of their rate constants based on published laboratory and quantum mechanical studies. For some combinations of the rate constants, the model simulates roughly linear relationships between the gaseous mercury and ozone concentrations as

  5. Hidrólise parcial da superfície do polyethylene terephthalate (PET: transformando um rejeito em um material de troca catiônica para aplicação ambiental Partial hydrolysis of pet surface: transforming a plastic waste into a material with cationic exchange properties for environmental application

    Directory of Open Access Journals (Sweden)

    Marcelo G. Rosmaninho

    2009-01-01

    Full Text Available In this work it is proposed a simple and versatile undergraduate chemical experiment in polymer and environmental technology based on the process of polyethylene terephthalate (PET hydrolysis. Polyethylene terephthalate from post-consume bottles is submitted to a controlled partial hydrolysis which allows the students to follow the reaction by a simple procedure. The students can explore the reaction kinetics, the effect of catalysts and the exposed polyethylene terephthalate surface area on the hydrolysis reaction. The second and innovative part of this experiment is the technological and environmental application of the hydrolyzed polyethylene terephthalate as a material with cation exchange properties. The surface hydrolyzed polyethylene terephthalate can be used as adsorbent for cationic contaminants.

  6. Simulation of Ni-Based Super-Alloy and Optimizing of Its Mechanical Properties in a Near-Shaped Turbine Blade Part

    OpenAIRE

    Alizadeh, Mohammd Reza

    2015-01-01

    This paper presents simulation of a Ni-based super-alloy during filling of a near-shaped turbine blade part to optimize its mechanical properties. Since geometrical shape of the airfoil is so complicated, a simple near-shaped part was made by plexiglass to water modeling. Condition and parameters of water modeling were obtained from the Procast software simulation. The flow pattern of the transparent systems, recorded by a high speed video camera, was analyzed. Air bubble amounts were quantit...

  7. Formal Analysis of an Anonymous Fair Exchange E-Commerce Protocol

    OpenAIRE

    Kong, Weiqiang; Ogata, Kazuhiro; Xiang Jianwen; Futatsugi, Kokichi

    2004-01-01

    Fair exchange and anonymity are important requirements of e-commerce protocols. We have formally analyzed an e-commerce protocol, which is claimed to satisfy the two requirements. The protocol, together with the intruder, has been modeled as an OTS, a kind of transition system. Then the OTS has been written in CafeOBJ, an algebraic specification language. Although most part of the two requirements can be expressed as safety properties, liveness properties are needed to fully express them. We ...

  8. 36 CFR Appendix 2 to Part 801 - Special Procedures for Identification and Consideration of Archeological Properties in an Urban...

    Science.gov (United States)

    2010-07-01

    ..., indicate that a property of potential cultural value to the community or some segment of the community (e.g.... State and local historic property registers or inventories; d. Archeological survey reports; e. Historic...

  9. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties.

    Science.gov (United States)

    Salehi, Soheil; Shandiz, Seyed Ataollah Sadat; Ghanbar, Farinaz; Darvish, Mohammad Raouf; Ardestani, Mehdi Shafiee; Mirzaie, Amir; Jafari, Mohsen

    2016-01-01

    A rapid phytosynthesis of silver nanoparticles (AgNPs) using an extract from the aerial parts of Artemisia marschalliana Sprengel was investigated in this study. The synthesized AgNPs using A. marschalliana extract was analyzed by UV-visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy and further characterized by transmission electron microscopy, scanning electron microscopy, zeta potential, and energy-dispersive spectroscopy. Characteristic absorption bands of AgNPs were found near 430 nm in the UV-vis spectrum. Energy-dispersive spectroscopy analysis of AgNPs in the energy range 2-4 keV confirmed the silver signal due to surface plasmon resonance. Scanning electron microscopy and transmission electron microscopy results revealed that the AgNPs were mostly spherical with an average size ranging from 5 nm to 50 nm. The zeta potential value of -31 mV confirmed the stability of the AgNPs. AgNPs produced using the aqueous A. marschalliana extract might serve as a potent in vitro antioxidant, as revealed by 2,2-diphenyl-1-picryl hydrazyl assay. The present study demonstrates the anticancer properties of phytosynthesized AgNPs against human gastric carcinoma AGS cells. AgNPs exerted a dose-dependent inhibitory effect on the viability of cells. Real-time polymerase chain reaction was used for the investigation of Bax and Bcl-2 gene expression in cancer and normal cell lines. Our findings show that the mRNA levels of pro-apoptotic Bax gene expression were significantly upregulated, while the expression of anti-apoptotic Bcl-2 was declined in cells treated with AgNPs compared to normal cells. In addition, flow cytometric analysis showed that the number of early and late apoptotic AGS cells was significantly enhanced following treatment with AgNPs as compared to untreated cells. In addition, the AgNPs showed strong antibacterial properties against tested pathogenic bacteria such as Staphylococcus aureus, Bacillus cereus, Acinetobacter

  10. Measurement of activity limitations and participation restrictions: examination of ICF-linked content and scale properties of the FIM and PC-PART instruments.

    Science.gov (United States)

    Darzins, Susan W; Imms, Christine; Di Stefano, Marilyn

    2017-05-01

    To explore the operationalization of activity and participation-related measurement constructs through comparison of item phrasing, item response categories and scoring (scale properties) for two separate instruments targeting activities of daily living. Personal Care Participation Assessment and Resource Tool (PC-PART) item content was linked to ICF categories using established linking rules. Previously reported ICF-linked FIM content categories and ICF-linked PC-PART content categories were compared to identify common ICF categories between the instruments. Scale properties of both instruments were compared using a patient scenario to explore the instruments' separate measurement constructs. The PC-PART and FIM shared 15 of the 53 level two ICF-linked categories identified across both instruments. Examination of the instruments' scale properties for items with overlapping ICF content, and exploration through a patient scenario, provided supportive evidence that the instruments measure different constructs. While the PC-PART and FIM share common ICF-linked content, they measure separate constructs. Measurement construct was influenced by the instruments' scale properties. The FIM was observed to measure activity limitations and the PC-PART measured participation restrictions. Scrutiny of instruments' scale properties in addition to item content is critical in the operationalization of activity and participation-related measurement constructs. Implications for Rehabilitation When selecting outcome measures for use in rehabilitation it is necessary to examine both the content of the instruments' items and item phrasing, response categories and scoring, to clarify the construct being measured. Measurement of activity limitations as well as participation restrictions in activities of daily living required for community life provides a more comprehensive measurement of rehabilitation outcomes than measurement of either construct alone. To measure the effects of

  11. Distribution of Phenolic Contents, Antidiabetic Potentials, Antihypertensive Properties, and Antioxidative Effects of Soursop (Annona muricata L.) Fruit Parts In Vitro.

    Science.gov (United States)

    Adefegha, Stephen A; Oyeleye, Sunday I; Oboh, Ganiyu

    2015-01-01

    Soursop fruit has been used in folklore for the management of type-2 diabetes and hypertension with limited information on the scientific backing. This study investigated the effects of aqueous extracts (1 : 100 w/v) of Soursop fruit part (pericarp, pulp, and seed) on key enzymes linked to type-2 diabetes (α-amylase and α-glucosidase) and hypertension [angiotensin-I converting enzyme (ACE)]. Radicals scavenging and Fe(2+) chelation abilities and reducing property as well as phenolic contents of the extracts were also determined. Our data revealed that the extracts inhibited α-amylase and α-glucosidase and ACE activities dose-dependently. The effective concentration of the extract causing 50% antioxidant activity (EC50) revealed that pericarp extract had the highest α-amylase (0.46 mg/mL), α-glucosidase (0.37 mg/mL), and ACE (0.03 mg/mL) inhibitory activities while the seed extract had the least [α-amylase (0.76 mg/mL); α-glucosidase (0.73 mg/mL); and ACE (0.20 mg/mL)]. Furthermore, the extracts scavenged radicals, reduced Fe(3+) to Fe(2+), and chelated Fe(2+). The phenolic contents in the extracts ranged from 85.65 to 560.21 mg/100 g. The enzymes inhibitory and antioxidants potentials of the extracts could be attributed to their phenolic distributions which could be among the scientific basis for their use in the management of diabetes and hypertension. However, the pericarp appeared to be most promising.

  12. Chemical exchange program analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Waffelaert, Pascale

    2007-09-01

    As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This

  13. Exchanging information

    CERN Document Server

    Johnson, Christine

    1991-01-01

    This is part of a series of books, which gives training in key business communication skills. Emphasis is placed on building awareness of language appropriateness and fluency in typical business interactions. This new edition is in full colour.

  14. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  15. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  16. Exchange bias properties of 140 nm-sized dipolarly interacting circular dots with ultrafine IrMn and NiFe layers

    Science.gov (United States)

    Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; Gerardino, A.; Barucca, G.; Bisero, D.; Fin, S.; Del Bianco, L.

    2016-02-01

    We studied the exchange bias effect in an array of IrMn(3 nm)/NiFe(3 nm) circular dots (size 140 nm and center-to-center distance 200 nm, as revealed by microscopy analyses), prepared on a large area (3×3 mm2) by electron beam lithography and lift-off, using dc sputtering deposition. Hysteresis loops were measured by SQUID magnetometer at increasing values of temperature T (in the 5-300 K range) after cooling from 300 K down to 5 K in zero field (ZFC mode) and in a saturating magnetic field (FC mode). The exchange bias effect disappears above T 200 K and, at each temperature, the exchange field HEX measured in ZFC is substantially lower than the FC one. Micromagnetic calculations indicate that, at room temperature, each dot is in high-remanence ground state, but magnetic dipolar interactions establish a low-remanence configuration of the array as a whole. Hence, at low temperature, following the ZFC procedure, the exchange anisotropy in the dot array is averaged out, tending to zero. However, even the FC values of HEX and of the coercivity HC are definitely smaller compared to those measured in a reference continuous film with the same stack configuration (at T=5 K, HEX 90 Oe and HC 180 Oe in the dots and HEX 1270 Oe and HC 860 Oe in the film). Our explanation is based on the proven glassy magnetic nature of the ultrathin IrMn layer, implying the existence of magnetic correlations among the spins, culminating in a collective freezing below T 100 K. We propose, also by the light of micromagnetic simulations, that the small dot size imposes a spatial constraint on the magnetic correlation length among the IrMn spins so that, even at the lowest temperature, their thermal stability, especially at the dot border, is compromised.

  17. Ion Exchange and Antibiofouling Properties of Poly(ether sulfone) Membranes Prepared by the Surface Immobilization of Brønsted Acidic Ionic Liquids via Double-Click Reactions.

    Science.gov (United States)

    Yi, Zhuan; Liu, Cui-Jing; Zhu, Li-Ping; Xu, You-Yi

    2015-07-28

    Brønsted acidic ionic liquids (BAILs) are unique ionic liquids that display chemical structures similar to zwitterions, and they were typically used as solvents and catalysts. In this work, an imidazole-based BAIL monolayer was fabricated onto poly(ether sulfone) (PES) membranes via surface clicking reactions, and the multifunctionality, including ion exchange and biofouling resistance to proteins and bacteria, was demonstrated, which was believed to be one of few works in which BAIL had been considered to be a novel fouling resistance layer for porous membranes. The successful immobilization of the BAILs onto a membrane surface was confirmed by X-ray photoelectron spectroscopy analysis, contact angle measurement, and ζ potential determination. The results from Raman spectroscopy showed that, as a decisive step prior to zwitterion, the BAIL was deprotonated in aqueous solution, and biofouling resistance to proteins and bacteria was found. However, BAIL displayed ion exchange ability at lower pH, and surface hydrophilicity/hydrophobicity of membranes could be tuned on purpose. Our results have demonstrated that the BAIL grafted onto membranes will not only act as an antibiofouling barrier like zwitterions but also provide a platform for surface chemical tailoring by ion exchange, the property of which will become especially important in acidic solutions where the fouling resistance performances of zwitterions are greatly weakened.

  18. Anion-directed assemblies of cationic metal-organic frameworks based on 4,4'-bis(1,2,4-triazole): syntheses, structures, luminescent and anion exchange properties.

    Science.gov (United States)

    Li, Xinxiong; Gong, Yaqiong; Zhao, Huaixia; Wang, Ruihu

    2014-11-17

    Three cationic metal-organic frameworks (MOFs), Ag(btr)·PF6·0.5CH3CN (1), Ag2(btr)2(H2O)·2CF3SO3·H2O (2), and Ag2(btr)2(NO3)·NO3 (3), were prepared from reaction of 4,4'-bis(1,2,4-triazole) (btr) with silver salts containing different anions. Complex 1 is a three-dimensional (3-D) framework constructed from tetrahedral-shaped nanoscale coordination cages with PF6(-) as counteranions. 2 and 3 are 3-D architectures containing 1-D channels, in which charge-balancing CF3SO3(-) and NO3(-) are located in their respective channels. Luminescent emission of 1-3 shows an obvious red shift compared with the btr ligand. Anion exchange studies show that 1 is able to selectively exchange MnO4(-) in aqueous solution with a modest capacity of 0.56 mol mol(-1); the luminescent emission of 1 is quickly quenched upon MnO4(-) exchange.

  19. Propriedades termofísicas de soluções modelo similares a sucos - Parte I Thermophysical properties of model solutions similar to juice - Part I

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Sobottka Rolim de Moura

    2003-04-01

    Full Text Available Propriedades termofísicas, difusividade térmica e calor específico, de soluções modelo similares a sucos, foram determinadas experimentalmente e ajustadas a modelos matemáticos (STATISTICA 6.0, em função da sua composição química. Para definição das soluções modelo foi realizado um planejamento estrela mantendo-se fixa a quantidade de ácido (1,5% e variando-se a água (82-98,5%, o carboidrato (0-15% e a gordura (0-1,5%. A determinação do calor específico foi realizada através do método de Hwang & Hayakawa e a difusividade térmica com base no método de Dickerson. Os resultados de cada propriedade foram analisados através de superfícies de respostas. Foram encontrados resultados significativos para as propriedades, mostrando que os modelos encontrados representam significativamente as mudanças das propriedades térmicas dos sucos, com alterações na composição e na temperatura.Thermophysical properties, thermal diffusivity and specific heat of model solutions similar to juices were experimentally determined and the values obtained compared to those predicted by mathematical models (STATISTIC 6.0 and to values mentioned in the literature, according to the chemical composition. It was adopted a star planning to define the composition of the model solutions fixing the acid amount in 1.5% and varying water (82-98.5%, carboydrate (0-15% and fat (0-1.5%. The specific heat was determined by Hwang & Hayakawa method and the thermal diffusivity was determined by Dickerson method. The results of each property were analysed by the response surface method. The results were significative, indicating that the models represented considerably the changes of thermal properties of juices according to their composition and temperature variations.

  20. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.

    Science.gov (United States)

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E

    2017-09-14

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.

  1. A primer of statistical methods for correlating parameters and properties of electrospun poly( l -lactide) scaffolds for tissue engineering-PART 2: Regression

    KAUST Repository

    Seyedmahmoud, Rasoul

    2014-04-07

    This two-articles series presents an in-depth discussion of electrospun poly-l-lactide scaffolds for tissue engineering by means of statistical methodologies that can be used, in general, to gain a quantitative and systematic insight about effects and interactions between a handful of key scaffold properties (Ys) and a set of process parameters (Xs) in electrospinning. While Part-1 dealt with the DOE methods to unveil the interactions between Xs in determining the morphomechanical properties (ref. Y1-4), this Part-2 article continues and refocuses the discussion on the interdependence of scaffold properties investigated by standard regression methods. The discussion first explores the connection between mechanical properties (Y4) and morphological descriptors of the scaffolds (Y1-3) in 32 types of scaffolds, finding that the mean fiber diameter (Y1) plays a predominant role which is nonetheless and crucially modulated by the molecular weight (MW) of PLLA. The second part examines the biological performance (Y5) (i.e. the cell proliferation of seeded bone marrow-derived mesenchymal stromal cells) on a random subset of eight scaffolds vs. the mechanomorphological properties (Y1-4). In this case, the featured regression analysis on such an incomplete set was not conclusive, though, indirectly suggesting in quantitative terms that cell proliferation could not fully be explained as a function of considered mechanomorphological properties (Y1-4), but in the early stage seeding, and that a randomization effects occurs over time such that the differences in initial cell proliferation performance (at day 1) is smeared over time. The findings may be the cornerstone of a novel route to accrue sufficient understanding and establish design rules for scaffold biofunctional vs. architecture, mechanical properties, and process parameters.

  2. A primer of statistical methods for correlating parameters and properties of electrospun poly(L-lactide) scaffolds for tissue engineering--PART 2: regression.

    Science.gov (United States)

    Seyedmahmoud, Rasoul; Mozetic, Pamela; Rainer, Alberto; Giannitelli, Sara Maria; Basoli, Francesco; Trombetta, Marcella; Traversa, Enrico; Licoccia, Silvia; Rinaldi, Antonio

    2015-01-01

    This two-articles series presents an in-depth discussion of electrospun poly-L-lactide scaffolds for tissue engineering by means of statistical methodologies that can be used, in general, to gain a quantitative and systematic insight about effects and interactions between a handful of key scaffold properties (Ys) and a set of process parameters (Xs) in electrospinning. While Part-1 dealt with the DOE methods to unveil the interactions between Xs in determining the morphomechanical properties (ref. Y₁₋₄), this Part-2 article continues and refocuses the discussion on the interdependence of scaffold properties investigated by standard regression methods. The discussion first explores the connection between mechanical properties (Y₄) and morphological descriptors of the scaffolds (Y₁₋₃) in 32 types of scaffolds, finding that the mean fiber diameter (Y₁) plays a predominant role which is nonetheless and crucially modulated by the molecular weight (MW) of PLLA. The second part examines the biological performance (Y₅) (i.e. the cell proliferation of seeded bone marrow-derived mesenchymal stromal cells) on a random subset of eight scaffolds vs. the mechanomorphological properties (Y₁₋₄). In this case, the featured regression analysis on such an incomplete set was not conclusive, though, indirectly suggesting in quantitative terms that cell proliferation could not fully be explained as a function of considered mechanomorphological properties (Y₁₋₄), but in the early stage seeding, and that a randomization effects occurs over time such that the differences in initial cell proliferation performance (at day 1) is smeared over time. The findings may be the cornerstone of a novel route to accrue sufficient understanding and establish design rules for scaffold biofunctional vs. architecture, mechanical properties, and process parameters. © 2014 Wiley Periodicals, Inc.

  3. 76 FR 10498 - Exchange Visitor Program-Fees and Charges

    Science.gov (United States)

    2011-02-25

    ... finds that educational and cultural exchanges are both the cornerstone of U.S. public diplomacy and an... Cultural exchange program. Accordingly, 22 CFR part 62 is amended as follows: PART 62--EXCHANGE VISITOR..., 1977 Comp. p. 200; E.O. 12048 of March 27, 1978; 3 CFR, 1978 Comp. p. 168; the Illegal Immigration...

  4. The exchangeability of shape

    Directory of Open Access Journals (Sweden)

    Kaba Dramane

    2010-10-01

    Full Text Available Abstract Background Landmark based geometric morphometrics (GM allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes.

  5. Investigation of the structural, electronic and optical properties of the cubic RbMF{sub 3} perovskites (M = Be, Mg, Ca, Sr and Ba) using modified Becke-Johnson exchange potential

    Energy Technology Data Exchange (ETDEWEB)

    Sandeep, E-mail: sndp.chettri@gmail.com [Department of Physics, Mizoram University, Aizawl, 796004 (India); Rai, D.P. [Department of Physics, Pachhunga University College, Mizoram University, 796001 (India); Shankar, A. [Department of Physics, University of North Bengal, Darjeeling, 734013 (India); Ghimire, M.P. [Condensed Matter Physics Research Center, Butwal-13, Rupandehi, Lumbini (Nepal); IFW-Dresden, Helmholtzstraße 20, D-01069, Dresden (Germany); Khenata, R. [Laboratoire de Physique Quantique de la Mati´ere et de Modélisation Mathématique LPQ3M, Université de Mascara, Mascara, 29000 (Algeria); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 (Saudi Arabia); Syrotyuk, S.V. [Semiconductor Electronics Department, Lviv Polytechnic National University, Lviv, 79013 (Ukraine); Thapa, R.K. [Department of Physics, Mizoram University, Aizawl, 796004 (India)

    2017-05-01

    The structural, electronic and optical properties of the cubic RbMF{sub 3} perovskites (M = Be, Mg, Ca, Sr, Ba) have been investigated using the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange and correlation potential was applied using the generalized gradient approximation for calculating the structural properties In addition, the modified Becke-Johnson (TB-mBJ) potential was used for calculating the electronic and optical properties. It was found that the lattice constant increases while the bulk modulus decreases with the change of cation (M) in going from Be to Ba in the RbMF{sub 3} perovskites (M = Be, Mg, Ca, Sr, Ba). The reflectivity and absorption properties were also studied using the mBJ method to understand the inter-band transitions and their possible applications in absorption devices in the UV-region. - Highlights: • Closer estimate of the band-gaps of RbMF{sub 3} with experimental results using GGA and mBJ results predicting them to be absorption devices and substrates for thin film growth. • The RbMF{sub 3} were also found to be potential candidate for in absorption devices in UV-region which were correlated to their calculated optical properties. • The materials are transparent, so may be used as substrates for thin film growth, for the optoelectric applications.

  6. Electrically Switched Cesium Ion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  7. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.

    Science.gov (United States)

    Fox, Douglas M; Rodriguez, Rebeca S; Devilbiss, Mackenzie N; Woodcock, Jeremiah; Davis, Chelsea S; Sinko, Robert; Keten, Sinan; Gilman, Jeffrey W

    2016-10-12

    Cellulose nanocrystals (CNCs) have great potential as sustainable reinforcing materials for polymers, but there are a number of obstacles to commercialization that must first be overcome. High levels of water absorption, low thermal stabilities, poor miscibility with nonpolar polymers, and irreversible aggregation of the dried CNCs are among the greatest challenges to producing cellulose nanocrystal-polymer nanocomposites. A simple, scalable technique to modify sulfated cellulose nanocrystals (Na-CNCs) has been developed to address all of these issues. By using an ion exchange process to replace Na + with imidazolium or phosphonium cations, the surface energy is altered, the thermal stability is increased, and the miscibility of dried CNCs with a nonpolar polymer (epoxy and polystyrene) is enhanced. Characterization of the resulting ion exchanged CNCs (IE-CNCs) using potentiometry, inverse gas chromatography, dynamic vapor sorption, and laser scanning confocal microscopy reveals that the IE-CNCs have lower surface energies, adsorb less water, and have thermal stabilities of up to 100 °C higher than those of prepared protonated cellulose nanocrystals (H-CNCs) and 40 °C higher than that of neutralized Na-CNC. Methyl(triphenyl)phosphonium exchanged cellulose nanocrystals (MePh 3 P-CNC) adsorbed 30% less water than Na-CNC, retained less water during desorption, and were used to prepare well-dispersed epoxy composites without the aid of a solvent and well-dispersed polystyrene nanocomposites using a melt blending technique at 195 °C. Predictions of dispersion quality and glass transition temperatures from molecular modeling experiments match experimental observations. These fiber-reinforced polymers can be used as lightweight composites in transportation, infrastructure, and renewable energy applications.

  8. A primer of statistical methods for correlating parameters and properties of electrospun poly(L-lactide) scaffolds for tissue engineering--PART 1: design of experiments.

    Science.gov (United States)

    Seyedmahmoud, Rasoul; Rainer, Alberto; Mozetic, Pamela; Maria Giannitelli, Sara; Trombetta, Marcella; Traversa, Enrico; Licoccia, Silvia; Rinaldi, Antonio

    2015-01-01

    Tissue engineering scaffolds produced by electrospinning are of enormous interest, but still lack a true understanding about the fundamental connection between the outstanding functional properties, the architecture, the mechanical properties, and the process parameters. Fragmentary results from several parametric studies only render some partial insights that are hard to compare and generally miss the role of parameters interactions. To bridge this gap, this article (Part-1 of 2) features a case study on poly-L-lactide scaffolds to demonstrate how statistical methods such as design of experiments can quantitatively identify the correlations existing between key scaffold properties and control parameters, in a systematic, consistent, and comprehensive manner disentangling main effects from interactions. The morphological properties (i.e., fiber distribution and porosity) and mechanical properties (Young's modulus) are "charted" as a function of molecular weight (MW) and other electrospinning process parameters (the Xs), considering the single effect as well as interactions between Xs. For the first time, the major role of the MW emerges clearly in controlling all scaffold properties. The correlation between mechanical and morphological properties is also addressed. © 2014 Wiley Periodicals, Inc.

  9. A primer of statistical methods for correlating parameters and properties of electrospun poly(l -lactide) scaffolds for tissue engineering-PART 1: Design of experiments

    KAUST Repository

    Seyedmahmoud, Rasoul

    2014-03-20

    Tissue engineering scaffolds produced by electrospinning are of enormous interest, but still lack a true understanding about the fundamental connection between the outstanding functional properties, the architecture, the mechanical properties, and the process parameters. Fragmentary results from several parametric studies only render some partial insights that are hard to compare and generally miss the role of parameters interactions. To bridge this gap, this article (Part-1 of 2) features a case study on poly-l-lactide scaffolds to demonstrate how statistical methods such as design of experiments can quantitatively identify the correlations existing between key scaffold properties and control parameters, in a systematic, consistent, and comprehensive manner disentangling main effects from interactions. The morphological properties (i.e., fiber distribution and porosity) and mechanical properties (Young\\'s modulus) are "charted" as a function of molecular weight (MW) and other electrospinning process parameters (the Xs), considering the single effect as well as interactions between Xs. For the first time, the major role of the MW emerges clearly in controlling all scaffold properties. The correlation between mechanical and morphological properties is also addressed.

  10. Part I: Synthesis and study of nonacene derivatives; Part II: Optoelectronic properties of metal-semiconductor nanocomposites in strongly coupled regime

    Science.gov (United States)

    Khon, Dmitriy

    Acenes are polycyclic aromatic hydrocarbons (PAHs) consisting of linearly fused benzene rings. In the recent past, acenes have been of interest from fundamental and applied perspectives. Smaller acenes such as benzene, naphthalene, and anthracene are among the most studied organic compounds and their properties are well explored. Pentacene has received considerable attention as the most promising active semiconductor for use in organic thin film transistors (TFT) because of its high charge-carrier mobility; however, poor environmental stability is one of the problems limiting its practical application. As the number of rings increases, the members of the acene family become increasingly reactive. The successful synthesis of heptacene developed by Mondal et al. used the Strating-Zwanenberg photodecarbonylation reaction. The lesser stability of the tetracene moieties in the nonacene photoprecursor compared to the anthracene moieties of the heptacene process make its synthesis more challenging. The latter scheme requires 2,3-dibromoanthracene as one of the starting materials. Besides the poor solubility of 2,3-dibromoanthracene, failure was also due to insufficient formation of anthracyne upon treatment of 2,3-dibromoanthracene with n-BuLi. Although the initial idea didn't work we used the same scheme replacing 2,3-dibromoanthracene with 7,8-dibromo-1,4-dihydroanthracene. The reaction of the latter with 5,6,7,8-tetramethylenebicyclo[2.2.2]oct-2-ene gave 1,4,7,8,9,12,15,18,19,20-octadecahydro-8,19-diethenononacene albeit in low yield. Multiple attempts to dehydrogenate the non-aromatic rings using DDQ and other reagents under various conditions failed to produce the desired compound. Recently Miller reported the synthesis of relatively stable heptacene derivatives having a combination of arylthio and o-dialkylphenyl substituents. Miller's scheme used 1,2,4,5-tetrakis(bromomethyl)-3,6-bis(4'- t-butylthiophenyl)benzene as the core precursor. Another synthetic approach

  11. Fabrication, characterization and photocatalytic properties of Ag/AgI/BiOI heteronanostructures supported on rectorite via a cation-exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yunfang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Jianzhang, E-mail: fangjzh@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China); Lu, Shaoyou [Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Wu, Yan; Chen, Dazhi; Huang, Liyan [Institute of Engineering Technology of Guangdong Province, Key Laboratory of Water Environmental Pollution Control of Guangdong Province, Guangzhou 510440 (China); Xu, Weicheng; Zhu, Ximiao [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Zhanqiang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • Ag/AgI/BiOI-rectorite was prepared by twice cation-exchange process. • Ag/AgI/BiOI-rectorite photocatalyst possessed SPR and adsorption capacity. • Ag/AgI/BiOI-rectorite exhibited highly photocatalytic activity. • Trapped holes and ·O{sub 2}{sup −} were formed active species in the photocatalytic system. - Abstract: In this work, a new plasmonic photocatalyst Ag/AgI/BiOI-rectorite was prepared via a cation exchange process. The photocatalyst had been characterized by X-ray powder diffraction (XRD), Raman spectra, nitrogen sorption (BET), field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity, which was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation, was enhanced significantly by loading Ag/AgI/BiOI nanoparticles onto rectorite. The photogenerated holes and superoxide radical (·O{sub 2}{sup −}) were both formed as active species for the photocatalytic reactions under visible light irradiation. The existence of metallic Ag particles, which possess the surface plasmon resonance effect, acted as an indispensable role in the photocatalytic reaction.

  12. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS

    Directory of Open Access Journals (Sweden)

    Omar Ahmed Mohamed

    2016-11-01

    Full Text Available Fused deposition modeling (FDM additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM and multilayer feed-forward neural networks (MFNNs. The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM. Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.

  13. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS.

    Science.gov (United States)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-11-04

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.

  14. Brazilian gutta-percha points. Part II: thermal properties Cones nacionais de guta-percha. Parte II: propriedades térmicas

    Directory of Open Access Journals (Sweden)

    Cláudio Maniglia-Ferreira

    2007-03-01

    Full Text Available This study was undertaken to explore the effect of heating on gutta-percha, analyzing the occurrence of endothermic peaks corresponding to the transformation that occurs in the crystalline structure of the polymer during thermal manipulation. This study also seeked to determine the temperature at which these peaks occur, causing a transformation from the beta- to the alpha-form, and from the alpha- to the amorphous phase. Eight nonstandardized gutta-percha points commercially available in Brazil (Konne, Tanari, Endopoint, Odous, Dentsply 0.04, Dentsply 0.06, Dentsply TP, Dentsply FM and pure gutta-percha (control were analysed using differential scanning calorimetry (DSC and thermogravimetry analysis (TGA. The transition temperatures were determined and analysed. With the exception of Dentsply 0.04 and Dentsply 0.06, the majority of the products showed thermal behaviour typical of beta-gutta-percha, with two endothermic peaks, exhibiting two crystalline transformations upon heating from ambient temperature to 130°. Upon cooling and reheating, few samples presented two endothermic peaks. It was concluded that heating dental gutta-percha to 130°C causes changes to its chemical structure which permanently alter its physical properties.Este estudo teve como objetivo analisar, através da Calorimetria Diferencial de Varredura (DSC e Análise Termogravimétrica (TGA, os efeitos do aquecimento sobre o polímero guta-percha, bem como explorar a ocorrência de picos endotérmicos, os quais correspondem às transformações cristalinas do polímero guta-percha, o que é traduzido em transições de fases (fase beta para alfa e fase alfa para amorfa. Foram utilizadas 8 marcas comerciais de cones de guta-percha não-estandardizados disponíveis no mercado brasileiro (Konne, Tanari, Endopoint, Odous, Dentsply 0.04, Dentsply 0.06, Dentsply TP, Dentsply FM, além da guta-percha pura (controle. As temperaturas de transição foram determinadas e analisadas

  15. Hybrid Heat Exchangers

    Science.gov (United States)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  16. The Commodity and its Exchange

    DEFF Research Database (Denmark)

    Høst, Jeppe Engset

    2015-01-01

    and the value of the quota are examined through the concrete exchange of fishing rights, and it is explained why quota trade can give rise to speculation and monopolies. In the final part of the chapter, it is argued that the value of transferable fishing quotas rely on a social relation between owners...... and nonowners of quota, as a form of monopoly rent....

  17. Fair Exchange in Strand Spaces

    Directory of Open Access Journals (Sweden)

    Joshua D. Guttman

    2009-10-01

    Full Text Available Many cryptographic protocols are intended to coordinate state changes among principals. Exchange protocols coordinate delivery of new values to the participants, e.g. additions to the set of values they possess. An exchange protocol is fair if it ensures that delivery of new values is balanced: If one participant obtains a new possession via the protocol, then all other participants will, too. Fair exchange requires progress assumptions, unlike some other protocol properties. The strand space model is a framework for design and verification of cryptographic protocols. A strand is a local behavior of a single principal in a single session of a protocol. A bundle is a partially ordered global execution built from protocol strands and adversary activities. The strand space model needs two additions for fair exchange protocols. First, we regard the state as a multiset of facts, and we allow strands to cause changes in this state via multiset rewriting. Second, progress assumptions stipulate that some channels are resilient-and guaranteed to deliver messages-and some principals are assumed not to stop at certain critical steps. This method leads to proofs of correctness that cleanly separate protocol properties, such as authentication and confidentiality, from invariants governing state evolution. G. Wang's recent fair exchange protocol illustrates the approach.

  18. Totalization Data Exchange (TDEX)

    Data.gov (United States)

    Social Security Administration — The Totalization Data Exchange (TDEX) process is an exchange between SSA and its foreign country partners to identify deaths of beneficiaries residing abroad. The...

  19. Replica exchange molecular dynamics simulations reveal the structural and molecular properties of levan-type fructo-oligosaccharides of various chain lengths

    National Research Council Canada - National Science Library

    Kanjanatanin, Pongsakorn; Pichyangkura, Rath; Chunsrivirot, Surasak

    2016-01-01

    Levan and levan-type fructo-oligosaccharides (LFOs) have various potential applications in pharmaceutical and food industries due to their beneficial properties such as their low intrinsic viscosity and high water solubility...

  20. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  1. 76 FR 33993 - Exchange Visitor Program

    Science.gov (United States)

    2011-06-10

    ... due to this employment and accordingly, such students will be deemed to be in valid J-1 Exchange... Part 62 RIN 1400-ZA20 Exchange Visitor Program AGENCY: Department of State. ACTION: Notice of... Libyan students. This action is necessary to mitigate the adverse impact upon these students due to...

  2. Ion exchange in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, J.P.

    1990-12-31

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  3. Ion exchange in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, J.P.

    1990-01-01

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  4. The influence of low-temperature silver-ion exchange on the spectral-luminescent properties of fluorophosphate glasses doped with PbSe

    Science.gov (United States)

    Kolobkova, E. V.; Kuznetsova, M. S.; Nikonorov, N. V.

    2017-09-01

    Changes in the absorption and luminescence spectra of fluorophosphate glasses doped with PbSe caused by low-temperature Ag+-Na+ ion exchange are considered. It is found that the silver distribution gradient in a near-surface layer about 16 μm thick leads to two different processes of interaction between metal and semiconductor nanoparticles. PbSe molecular clusters and quantum dots more efficiently grow in deep layers with a low silver concentration. The near-surface glass layers with a high silver concentration exhibit formation of Ag metal nanoparticles, on the surface of which interaction with PbSe molecular clusters leads to the formation of Ag-Se-Pb bonds, which transform into Ag2Se layers in the process of heat treatment. The appearance of the new phase is confirmed by X-ray diffraction.

  5. Preparation and optical properties of Eu{sup 3+}/Eu{sup 2+} in phosphors based on exchanging Eu{sup 3+}-zeolite 13X

    Energy Technology Data Exchange (ETDEWEB)

    Wu Honge; Yang Xuyong [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Yu Xibin [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)], E-mail: xibinyu@shnu.edu.cn; Liu, Jie; Yang Hong; Lv Hongbin; Yin Kaizhong [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)

    2009-07-08

    The phosphors containing the structure of Eu{sup 3+}/Eu{sup 2+} were prepared via ion-exchange between europium ions and zeolite 13X. The products were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) inductively coupled plasma optical emission spectrometry (ICP) and photoluminescence (PL), respectively. The XRD and TEM results indicate that amorphous silicate structure has been formed when the as-prepared products were sintered at 800 deg. C. A broad blue emission band (430-500 nm) and a sharp red emission band (600-630 nm) excited by 397 nm which are attributed to the characteristic peaks of the Eu{sup 2+} and Eu{sup 3+} ions, respectively. The blue emission intensity weakens while red emission intensity increases as increasing sintering temperature.

  6. Thermal/Fluid Analysis of a Composite Heat Exchanger for Use on the RLV Rocket Engine

    Science.gov (United States)

    Nguyen, Dalton

    2002-01-01

    As part of efforts to design a regeneratively cooled composite nozzle ramp for use on the reusable vehicle (RLV) rocket engine, an C-SiC composites heat exchanger concept was proposed for thermal performance evaluation. To test the feasibility of the concept, sample heat exchanger panels were made to fit the Glenn Research Center's cell 22 for testing. Operation of the heat exchanger was demonstrated in a combustion environment with high heat fluxes similar to the RLV Aerospike Ramp. Test measurements were reviewed and found to be valuable for the on going fluid and thermal analysis of the actual RLV composite ramp. Since the cooling fluid for the heat exchanger is water while the RLV Ramp cooling fluid is LH2, fluid and thermal models were constructed to correlate to the specific test set-up. The knowledge gained from this work will be helpful for analyzing the thermal response of the actual RLV Composite Ramp. The coolant thermal properties for the models are taken from test data. The heat exchanger's cooling performance was analyzed using the Generalized Fluid System Simulation Program (GFSSP). Temperatures of the heat exchanger's structure were predicted in finite element models using Patran and Sinda. Results from the analytical models and the tests show that RSC's heat exchanger satisfied the combustion environments in a series of 16 tests.

  7. Front-Eddy Influence on Water Column Properties, Phytoplankton Community Structure, and Cross-Shelf Exchange of Diatom Taxa in the Shelf-Slope Area off Concepción (˜36-37°S)

    Science.gov (United States)

    Morales, Carmen E.; Anabalón, Valeria; Bento, Joaquim P.; Hormazabal, Samuel; Cornejo, Marcela; Correa-Ramírez, Marco A.; Silva, Nelson

    2017-11-01

    In eastern boundary current systems (EBCSs), submesoscale to mesocale variability contributes to cross-shore exchanges of water properties, nutrients, and plankton. Data from a short-term summer survey and satellite time series (January-February 2014) were used to characterize submesoscale variability in oceanographic conditions and phytoplankton distribution across the coastal upwelling and coastal transition zones north of Punta Lavapié, and to explore cross-shelf exchanges of diatom taxa. A thermohaline front (FRN-1) flanked by a mesoscale anticyclonic intrathermocline eddy (ITE-1), or mode-water eddy, persisted during the time series and the survey was undertaken during a wind relaxation event. At the survey time, ITE-1 contributed to an onshore intrusion of warm oceanic waters (southern section) and an offshore advection of cold coastal waters (northern section), with the latter forming a cold, high chlorophyll-a filament. In situ phytoplankton and diatom biomasses were highest at the surface in FRN-1 and at the subsurface in ITE-1, whereas values in the coastal zone were lower and dominated by smaller cells. Diatom species typical of the coastal zone and species dominant in oceanic waters were both found in the FRN-1 and ITE-1 interaction area, suggesting that this mixture was the result of both offshore and onshore advection. Overall, front-eddy interactions in EBCSs could enhance cross-shelf exchanges of coastal and oceanic plankton, as well as sustain phytoplankton growth in the slope area through localized upward injections of nutrients in the frontal zone, combined with ITE-induced advection and vertical nutrient inputs to the surface layer.

  8. Ecological effects of the Hayman Fire - Part 3: Soil properties, erosion, and implications for rehabilitation and aquatic ecosystems

    Science.gov (United States)

    Jan E. Cipra; Eugene F. Kelly; Lee MacDonald; John Norman

    2003-01-01

    This team was asked to address three questions regarding soil properties, erosion and sedimentation, and how aquatic and terrestrial ecosystems have responded or could respond to various land management options. We have used soil survey maps, burn severity maps, and digital elevation model (DEM) maps as primary map data. We used our own field measurements and...

  9. "Innovation and Intellectual Property Policies in European Research Infrastructure Consortia - PART I: The Case of the European Spallation Source ERIC"

    DEFF Research Database (Denmark)

    Yu, Helen; Wested, Jakob; Minssen, Timo

    2017-01-01

    , the European Spallation Source ERIC is required to adopt various policy documents relating to the operation and management of the facility. These cover a wide variety of issues such as user access, public procurement, intellectual property rights (IPR), data management, and dissemination. One of the main goals...

  10. Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part II: experimental set-up and error analysis

    NARCIS (Netherlands)

    Yanez Rausell, L.; Malenovsky, Z.; Clevers, J.G.P.W.; Schaepman, M.E.

    2014-01-01

    We present uncertainties associated with the measurement of coniferous needle-leaf optical properties (OPs) with an integrating sphere using an optimized gap-fraction (GF) correction method, where GF refers to the air gaps appearing between the needles of a measured sample. We used an optically

  11. Functionalization of cotton with poly-NiPAAm/chitosan microgel. Part I. Stimuli-responsive moisture management properties

    NARCIS (Netherlands)

    Krizman Lavric, P.; Warmoeskerken, Marinus; Jocic, D.

    2012-01-01

    Stimuli-responsive microgel, based on synthetic polymer (poly-NiPAAm) and biopolymer (chitosan), was incorporated onto cotton fabric surface by pad-dry-cure method using 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinker. In order to assess the moisture management properties of cotton

  12. MULTISPECTRAL IDENTIFICATION OF POTENTIALLY HAZARDOUS BYPRODUCTS OF OZONATION AND CHLORINATION - PART I: STUDIES OF CHROMATOGRAPHIC AND SPECTROSCOPIC PROPERTIES OF MX

    Science.gov (United States)

    The gas chromatographic (GC) and Fourier transform infrared and mass spectroscopic (FT-IR and MS, respectively) properties of (Z)-2-chloro-3-(dichloromethyl)4-oxobutenoic acid (MX) (a highly mutagenic byproduct of drinking water chlorination) and several related compounds were st...

  13. Studies on tableting properties of lactose. Part 2. Consolidation and compaction of different types of crystalline lactose

    NARCIS (Netherlands)

    Vromans, H.; de Boer, A.H.; Bolhuis, G.K.; Lerk, C.F.; Kussendrager, K.D.; Bosch, H.

    1985-01-01

    Lactose is available in several crystalline forms, which differ in binding properties. A new method of estimating the fragmentation propensity was applied to investigate the consolidation and compaction behaviour of this excipient for direct compression. Mercury porosimetry was used to demonstrate

  14. Exchange effects in a cold plasma

    CERN Document Server

    Ekman, Robin; Brodin, Gert

    2015-01-01

    We have studied the exchange corrections to linear electrostatic wave propagation in a plasma using a quantum kinetic formalism. Specifically we have considered the zero temperature limit. In order to simplify the calculations we have focused on the long wavelength limit, i.e. wavelengths much longer than the de Broglie wavelength. For the case of ion-acoustic waves we have calculated the exchange correction both to the damping rate and the real part of the frequency. For Langmuir waves the frequency shift due to exchange effects is found. Our results are compared with the frequency shifts deduced from commonly used exchange potentials which are computed from density functional theory.

  15. Using BARREL as part of the Heliophysics System Observatory to Probe the Microphysics and Global Properties of Energetic Electron Precipitation

    Science.gov (United States)

    Millan, R. M.

    2015-12-01

    In the inner magnetosphere where the plasmasphere, ring current and radiation belts co-exist, energy and momentum are exchanged between different plasma populations by plasma waves. Resonant interaction with these waves can lead to rapid loss of radiation belt and ring current electrons to the atmosphere. Recent work is rapidly expanding our understanding of energetic (~20 keV - 10 MeV) electron precipitation. In particular, the combination of BARREL multi-point balloon measurements with measurements from equatorial spacecraft (e.g. Van Allen Probes, LANL, THEMIS, GOES), LEO spacecraft (e.g. POES, CSSWE), and ground-based instruments (e.g. riometer, VLF) is providing a unique opportunity to study wave-particle interactions, and to quantify the spatial scale of energetic precipitation. We present a summary of recent results from BARREL combined with in situ measurements to quantitatively test models of wave-particle interactions. We also show combined BARREL and ground-based data that probes the spatial structure and evolution of relativistic precipitation.

  16. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    Science.gov (United States)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the

  17. Synthesis, structure and properties of nickel-iron-tungsten alloy electrodeposits - Part II: Effect of microstructure on hardness, electrical and magnetic properties

    Directory of Open Access Journals (Sweden)

    Ćirović Nataša

    2016-01-01

    Full Text Available Nanostructured nickel-iron-tungsten alloys were produced by electrodeposition from an ammoniacal citrate bath. The tungsten content of the alloy ranged from 0.8 wt.% to 11 wt.%, and the crystal grain size of the FCC phase of the solid solution of iron and tungsten in nickel was between 14 nm and 3.3 nm. The amorphous phase content of the alloy increases with decreasing crystal grain size. As the amorphous phase content increases, the magnetization, electrical conductivity and hardness of the alloy decrease. Annealing the alloy to crystallization temperature results in structural relaxation during which the alloy undergoes short-range ordering in conjunction with decreases in the density of chaotically distributed dislocations and internal microstrain level, which increases the exchange integral value, the electronic density of states at the Fermi level, the mean free path of electrons, the ordering and the mean size of cluster in the sliding plane and results in more uniform orientation of dipole moments of certain nanoparticles. These changes: a increase the mobility of magnetic domain walls, facilitate the orientation of domains in the external magnetic field and cause an increase in magnetization; b cause a decrease in electrical resistance, and c impede the sliding of grain boundaries and increase the hardness of the alloy. Annealing the alloys at temperatures above 400ºC results in amorphous phase crystallization and larger crystal grains of the FCC phase, along with a decrease in the density of chaotically distributed dislocations and a decrease in internal microstrain level. The formation of larger crystal grains reduces the hardness of the alloy, decreases its specific electrical resistance and impedes both the orientation of certain magnetic domains and the shift of walls of already oriented domains, thus inducing a decrease in magnetization. The heat released during the milling of Ni87.3Fe11.3W1.4 alloy with FCC-phase crystal grains 8

  18. 26 CFR 1.1231-1 - Gains and losses from the sale or exchange of certain property used in the trade or business.

    Science.gov (United States)

    2010-04-01

    ... course of business; (ii) A copyright, a literary, musical, or artistic composition, or similar property... years beginning in 1977), with an adjusted basis of $400, but not held for the production of income, is... capital asset held for more than 6 months and held for the production of income, which losses arise from...

  19. 26 CFR 1.1239-2 - Gain from sale or exchange of depreciable property between certain related taxpayers on or before...

    Science.gov (United States)

    2010-04-01

    ... property of a character subject to an allowance for depreciation provided in section 167 (including such... spouse, and his minor children and minor grandchildren. For the purpose of this section, the terms children and grandchildren include legally adopted children and their children. The provisions of section...

  20. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-15

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  1. An unusual copper(I) halide-based metal-organic framework with a cationic framework exhibiting the release/adsorption of iodine, ion-exchange and luminescent properties.

    Science.gov (United States)

    Xin, Bingjing; Zeng, Guang; Gao, Lu; Li, Yun; Xing, Shanghua; Hua, Jia; Li, Guanghua; Shi, Zhan; Feng, Shouhua

    2013-06-07

    A copper(I) halide-based compound with a formula of [Cu4I3(DABCO)2]I3 (DABCO = N,N'-dimethyl-1,4-diazabicyclo[2.2.2]octane) has been prepared by solvothermal reactions. This compound has been characterized by single-crystal X-ray diffraction, elemental analysis, IR, TG, XPS and powder X-ray diffractions. Structure analyses reveal that this compound is constructed by unprecedented cationic cluster [Cu8I6](2+) and organic ligand DABCO and the channels of this compound are occupied by I2 and I(-). The guest I2 and I(-) can move freely in and out of the host-framework. UV/vis spectra confirm that the I2 molecules in the channels can release into some organic solvents and IR spectra confirm the I(-) was exchanged by SCN(-). In addition, the luminescent properties of this compound in the solid state have also been investigated.

  2. Studies on tableting properties of lactose. Part 2. Consolidation and compaction of different types of crystalline lactose

    OpenAIRE

    Vromans, H.; A.H. de Boer; Bolhuis, G. K.; Lerk, C.F.; Kussendrager, K.D.; Bosch, H.

    1985-01-01

    Lactose is available in several crystalline forms, which differ in binding properties. A new method of estimating the fragmentation propensity was applied to investigate the consolidation and compaction behaviour of this excipient for direct compression. Mercury porosimetry was used to demonstrate that crystalline lactose fragments during compaction. Tablet strength was found to be dependent on the degree of fragmentation only. This finding indicates that the nature of the actual binding must...

  3. The Kuroshio exchange with the South and East China Seas

    Directory of Open Access Journals (Sweden)

    T. Matsuno

    2009-08-01

    Full Text Available The Kuroshio flows along the edges of the marginal East Asian seas such as the South China Sea (SCS and East China Sea (ECS. Exchanges of materials and energy between the Kuroshio and the marginal seas partly control the environments of the marginal seas. In particular, saline water from the Kuroshio maintains certain salinity in the shelf water in the ECS. Nutrients from the subsurface of the Kuroshio may influence primary production on the shelf. We summarize how the Kuroshio comes into contact with the shelf water or marginal seas, describing phenomena related to the exchange between the Kuroshio and the ECS along with the SCS, using reports in the literature along with original data. The Kuroshio tends to intrude into the SCS through the Luzon Strait in various manners such as direct intrusion, associated with eddies and as a loop current. The Kuroshio intrusion into the shelf region of the ECS has distinct seasonal variation and the Taiwan Warm Current plays a significant role in the determination of water properties in the outer shelf associated with the Kuroshio intrusion. We then examine physical processes related to the interaction between the Kuroshio and shelf water. Interaction between the Kuroshio and the bottom topography is an important process in the control of the exchange around the shelf break. Vertical mixing and frontal eddies are also important factors that control the water exchange and formation of water masses in the outer shelf. Wind stress plays a significant role in the exchange with a rather event-like manner. To determine the source of the water masses, chemical tracers could be powerful tools and it is suggested that a significant part of the shelf water consists of Kuroshio intermediate water.

  4. BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool

    Science.gov (United States)

    Schulte, Daniel O.; Bastian, Welsch; Wolfram, Rühaak; Kristian, Bär; Ingo, Sass

    2017-04-01

    Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storage (BTES) systems for seasonally fluctuating heat sources like solar thermal energy or district heating grids. The high temperature level of these heat sources prohibits the use of the shallow subsurface for environmental reasons. Therefore, deeper reservoirs have to be accessed instead. The increased depth of the systems results in high investment costs and has hindered the implementation of this technology until now. Therefore, research of medium deep BTES systems relies on numerical simulation models. Current simulation tools cannot - or only to some extent - describe key features like partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We give an update on the development of BASIMO: a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport in a dual-continuum approach. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. Thereby, partly insulated boreholes can be considered in the model. Furthermore, BASIMO can be used to improve the design of BTES systems: the tool allows for automated parameter variations and is readily coupled to other code like mathematical optimization algorithms. Optimization can be used to determine the required minimum system size or to increase the system performance.

  5. Development of procedures for calculating stiffness and damping properties of elastomers in engineering applications. Part 1: Verification of basic methods

    Science.gov (United States)

    Chiang, T.; Tessarzik, J. M.; Badgley, R. H.

    1972-01-01

    The primary aim of this investigation was verification of basic methods which are to be used in cataloging elastomer dynamic properties (stiffness and damping) in terms of viscoelastic model constants. These constants may then be used to predict dynamic properties for general elastomer shapes and operating conditions, thereby permitting optimum application of elastomers as energy absorption and/or energy storage devices in the control of vibrations in a broad variety of applications. The efforts reported involved: (1) literature search; (2) the design, fabrication and use of a test rig for obtaining elastomer dynamic test data over a wide range of frequencies, amplitudes, and preloads; and (3) the reduction of the test data, by means of a selected three-element elastomer model and specialized curve fitting techniques, to material properties. Material constants thus obtained have been used to calculate stiffness and damping for comparison with measured test data. These comparisons are excellent for a number of test conditions and only fair to poor for others. The results confirm the validity of the basic approach of the overall program and the mechanics of the cataloging procedure, and at the same time suggest areas in which refinements should be made.

  6. La and Al co-doped CaMnO 3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; Ngo, Chilan; Cadigan, Christopher A.; Bender, Guido; Richards, Ryan M.; O' Hayre, Ryan; Pylypenko, Svitlana

    2018-01-01

    This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca0.9La0.1Al0.1Mn0.9O3-d are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 degrees C shows the importance of balance between surface area, purity of the perovskite phase, and surface composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm-2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm-2, demonstrating an ~50% increase when compared to the highest performing composite with undoped carbon at the same loading.

  7. Cation-exchange induced high power electrochemical properties of core-shell Ni(OH){sub 2} rate at CoOOH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weihua [College of Chemistry and Molecular Science, Wuhan University, 430072 Wuhan (China); Department of Chemistry, Zhengzhou University, 450001 Zhengzhou (China); Yang, Yifu; Shao, Huixia [College of Chemistry and Molecular Science, Wuhan University, 430072 Wuhan (China)

    2011-01-01

    New applications such as hybrid electric vehicles and power backup require rechargeable batteries to combine high energy density with high charge and discharge rate capability. In this study, the core-shell Ni(OH){sub 2} rate at CoOOH composite is constructed via a simple cation-exchange route at moderate conditions. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), and inductively coupled plasma (ICP) are used to characterize the resulting Ni(OH){sub 2} rate at CoOOH composites. The Ni(OH){sub 2} rate at CoOOH electrode exhibits high power, higher capacity and longer life cycle when it is chosen as an positive electrode material for rechargeable alkaline MH-Ni battery. The enhanced electrochemical performance is attributed to the seamless combination of the CoOOH shell and the Ni(OH){sub 2} core, avoiding the contact resistance between them at a large current density. It is believed that our methodology provides a simple and environment friendly route to a variety of core-shell materials with different composition and novel function. (author)

  8. La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance

    Science.gov (United States)

    Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; Ngo, Chilan; Cadigan, Christopher A.; Bender, Guido; Richards, Ryan M.; O'Hayre, Ryan; Pylypenko, Svitlana

    2018-01-01

    This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca0.9La0.1Al0.1Mn0.9O3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 °C shows the importance of balance between surface area, purity of the perovskite phase, and surface composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm-2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm-2, demonstrating an ∼50% increase when compared to the highest performing composite with undoped carbon at the same loading.

  9. Effect of sintering temperature on the morphology and mechanical properties of PTFE membranes as a base substrate for proton exchange membrane

    Directory of Open Access Journals (Sweden)

    Nor Aida Zubir

    2002-11-01

    Full Text Available This paper reports the development of PTFE membranes as the base substrates for producing proton exchange membrane by using radiation-grafting technique. An aqueous dispersion of PTFE, which includes sodium benzoate, is cast in order to form suitable membranes. The casting was done by usinga pneumatically controlled flat sheet membrane-casting machine. The membrane is then sintered to fuse the polymer particles and cooled. After cooling process, the salt crystals are leached from the membrane by dissolution in hot bath to leave a microporous structure, which is suitable for such uses as a filtration membrane or as a base substrate for radiation grafted membrane in PEMFC. The effects of sintering temperature on the membrane morphology and tensile strength were investigated at 350oC and 385oC by using scanning electron microscopy (SEM and EX 20, respectively. The pore size and total void space are significantly smaller at higher sintering temperature employed with an average pore diameter of 11.78 nm. The tensile strength and tensile strain of sintered PTFE membrane at 385oC are approximately 19.02 + 1.46 MPa and 351.04 + 23.13 %, respectively. These results were indicated at 385oC, which represents significant improvements in tensile strength and tensile strain, which are nearly twice those at 350oC.

  10. Anion-exchange engineering of cookie-like Bi2S3/Bi2MoO6 heterostructure for enhanced photocatalytic activities and gas-sensing properties.

    Science.gov (United States)

    Pei, Yu; Li, Xiaoguang; Chu, Hang; Ge, Yuancai; Dong, Pei; Baines, Robert; Pei, Liyuan; Ye, Mingxin; Shen, Jianfeng

    2017-04-01

    Developing efficient visible-light-driven photocatalysts will advance alternative energy technologies, ultimately curbing the environmental pollution associated with fossil fuels. In this work, Bi2S3/Bi2MoO6 photocatalysts with a heterogeneous cookie-like structure were prepared for the first time by in-situ anion exchange at relatively low temperatures. The catalysts exhibited enhanced photocatalytic activity, which we attributed to the photocurrent response, a diminished recombination rate of photogenerated electron-hole pairs, and the existence of a large heterojunction interface. These governing factors were discerned by photoelectrochemical measurements, calculated energy band positions and photoluminescence spectra. Bi2S3/Bi2MoO6 nanocomposites also exhibit better performance in response to gas than bare Bi2MoO6 according to gas sensing tests. Our work, in relaying a feasible method to synthesize Bi2S3/Bi2MoO6-based heterojunction superstructures, and documents a universal preparation method of synthetic heterogeneous complexes, and provides necessary groundwork for the development of next generation semiconductor photocatalytic technology and gas sensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, M.E.; Miller, J.E. [Sandia National Lab., Albuquerque, NM (United States); Anthony, R.G. [Texas A& M Univ., College Station, TX (United States)

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlled to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.

  12. A method to relate steady-state ionic currents, conductances, and membrane potential in ion exchange membranes with unknown thermodynamic properties.

    Science.gov (United States)

    Sandblom, J P

    1967-05-01

    A method is presented by which the steady-state properties of an homogeneous, permselective membrane at uniform temperature can be predicted without knowledge of its thermodynamic properties other than assuming that they are functions only of local mole fractions in the membrane. By making this assumption, it is shown how the ionic conductances can be calculated at any point in the membrane from two sets of measurements, (a) R(symm), the steady-state resistance of the membrane measured between identical solutions and (b) V(0), the potential difference between nonidentical solutions for zero current. These two parameters are measured at different external solution compositions (e.g. a varying sodium-potassium ratio ranging from zero to infinity). From these measurements it is shown how the flux equations may be integrated without a knowledge of mobilities, activity coefficients, and other interior membrane parameters. The application of the method to fixed site membranes with variable mobilities is described and the theory for this particular case has also been verified experimentally in glass membranes.1 A possible application to biological membranes is discussed and a comparison is made between the present treatment and previous treatments used to calculate the steady-state properties of cell membranes, notably the theory of Teorell, Meyer, and Sievers and the constant field theory.

  13. Simulation of Ni-Based Super-Alloy and Optimizing of Its Mechanical Properties in a Near-Shaped Turbine Blade Part

    Directory of Open Access Journals (Sweden)

    Mohammd Reza Alizadeh

    2015-01-01

    Full Text Available This paper presents simulation of a Ni-based super-alloy during filling of a near-shaped turbine blade part to optimize its mechanical properties. Since geometrical shape of the airfoil is so complicated, a simple near-shaped part was made by plexiglass to water modeling. Condition and parameters of water modeling were obtained from the Procast software simulation. The flow pattern of the transparent systems, recorded by a high speed video camera, was analyzed. Air bubble amounts were quantitatively measured by an image analysis software. Quantified results were used to compare two systems in terms of ability to prevent bubble formation and entrainment. Both water modeling and computer simulating methods indicated that highest turbulences in bottom- and top-poured systems form in first initially pouring times. According to the water modeling results amount of bubble values was 40 and 18 percent for top-poured and bottom-poured systems, respectively. Then the Ni-base super-alloy IN939 is poured by investment casting in bottom- and top-poured systems and compared with each other. The results stated that bottom-poured system had higher mechanical properties compared to top-poured one. Ultimate tensile strength for the former was 820 MPa while for the part which was cast by bottom-poured system it was 850 MPa.

  14. Hydrological properties of bark of selected forest tree species. Part 2: Interspecific variability of bark water storage capacity

    Directory of Open Access Journals (Sweden)

    Ilek Anna

    2017-06-01

    Full Text Available The subject of the present research is the water storage capacity of bark of seven forest tree species: Pinus sylvestris L., Larix decidua Mill., Abies alba Mill., Pinus sylvestris L., Quercus robur L., Betula pendula Ehrh. and Fagus sylvatica L. The aim of the research is to demonstrate differences in the formation of bark water storage capacity between species and to identify factors influencing the hydrological properties of bark. The maximum water storage capacity of bark was determined under laboratory conditions by performing a series of experiments simulating rainfall and by immersing bark samples in containers filled with water. After each single experiment, the bark samples were subjected to gravity filtration in a desiccator partially filled with water. The experiments lasted from 1084 to 1389 hours, depending on the bark sample. In all the studied species, bark sampled from the thinnest trees is characterized by the highest water storage capacity expressed in mm H2O · cm-3, while bark sampled from the thickest trees - by the lowest capacity. On the other hand, bark sampled from the thickest trees is characterized by the highest water storage capacity expressed in H2O · cm-2 whereas bark from the thinnest trees - by the lowest capacity. In most species tested, as the tree thickness and thus the bark thickness and the coefficient of development of the interception surface of bark increase, the sorption properties of the bark decrease with bark depth, and the main role in water retention is played by the outer bark surface. The bark of European beech is an exception because of the smallest degree of surface development and because the dominant process is the absorption of water. When examining the hydrological properties of bark and calculating its parameters, one needs to take into account the actual surface of the bark of trees. Disregarding the actual bark surface may lead to significant errors in the interpretation of research

  15. Studies on quinones. Part 45: novel 7-aminoisoquinoline-5,8-quinone derivatives with antitumor properties on cancer cell lines.

    Science.gov (United States)

    Valderrama, Jaime A; Ibacache, J Andrea; Arancibia, Verónica; Rodriguez, Jaime; Theoduloz, Cristina

    2009-04-01

    A variety of 7-aminoisoquinoline-5,8-quinone derivatives were prepared from 2,5-dihydroxyacetophenone, methyl aminocrotonate, and the corresponding amines, through a highly efficient three-step sequence. The members of this series were tested on normal human fibroblasts and on a panel of three human cancer cell lines and their redox properties were determined by cyclic voltammetry in acetonitrile. Both the cytotoxicity and antitumor activity of 7-phenylaminoisoquinoline-5,8-quinone derivatives showed correlation with their half wave potentials and lipophilicities.

  16. Impact of Cloud Model Microphysics on Passive Microwave Retrievals of Cloud Properties. Part I: Model Comparison Using EOF Analyses

    Science.gov (United States)

    Biggerstaff, Michael I.; Seo, Eun-Kyoung; Hristova-Veleva, Svetla M.; Kim, Kwang-Yul

    2006-07-01

    The impact of model microphysics on the relationships among hydrometeor profiles, latent heating, and derived satellite microwave brightness temperatures TB have been examined using a nonhydrostatic, adaptive-grid cloud model to simulate a mesoscale convective system over water. Two microphysical schemes (each employing three-ice bulk parameterizations) were tested for two different assumptions in the number of ice crystals assumed to be activated at 0°C to produce simulations with differing amounts of supercooled cloud water. The model output was examined using empirical orthogonal function (EOF) analysis, which provided a quantitative framework in which to compare the simulations. Differences in the structure of the vertical anomaly patterns were related to physical processes and attributed to different approaches in cloud microphysical parameterizations in the two schemes. Correlations between the first EOF coefficients of cloud properties and TB at frequencies associated with the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) showed additional differences between the two parameterization schemes that affected the relationship between hydrometeors and TB. Classified in terms of TB, the microphysical schemes produced significantly different mean vertical profiles of cloud water, cloud ice, snow, vertical velocity, and latent heating. The impact of supercooled cloud water on the 85-GHz TB led to a 15% variation in mean convective rain mass at the surface. The variability in mean profiles produced by the four simulations indicates that the retrievals of cloud properties, especially latent heating, based on TMI frequencies are dependent on the particular microphysical parameterizations used to construct the retrieval database.

  17. Variability of physicochemical properties of an epoxy resin sealer taken from different parts of the same tube.

    Science.gov (United States)

    Baldi, J V; Bernardes, R A; Duarte, M A H; Ordinola-Zapata, R; Cavenago, B C; Moraes, J C S; de Moraes, I G

    2012-10-01

    To analyse several physicochemical properties of AH Plus (Dentsply DeTrey, Konstanz, Germany), including setting time, flow, radiopacity and the degree of conversion (DC); and to correlate the results with the source of the material: from the beginning, middle or end of the tubes in which they were supplied. Three experimental groups were established for each property investigated. Group 1 corresponded to material taken from the beginning of tubes A and B; Group 2 corresponded to material taken from the middle of each tube; and group 3 corresponded to that from the end of each tube. The setting time, flow and radiopacity were studied according to American National Standards Institute/American Dental Association (ANSI/ADA) Specification 57. DC was determined from infrared spectra, which were recorded at 1-h intervals for the first 6 h; then, at 2-h intervals for the next 14 h; then, at 24 and 30 h. Data were analysed statistically by analysis of variance (anova), Tukey-Kramer, Kruskal-Wallis and Dunn tests, with a significance level of 5%. Group 1 had a significantly longer setting time (2303 ± 1058 min) (P 0.05). The results suggest that segregation occurs between the organic and inorganic components of AH Plus sealer, thereby changing the setting time, flow and radiopacity. © 2012 International Endodontic Journal.

  18. Physico-chemical properties of Brazilian cocoa butter and industrial blends. Part I Chemical composition, solid fat content and consistency

    Directory of Open Access Journals (Sweden)

    Ribeiro, A. P. B.

    2012-03-01

    Full Text Available A comparative study of the primary properties of six cocoa butter samples, representative of industrial blends and cocoa butter extracted from fruits cultivated in different geographical areas in Brazil is presented. The samples were evaluated according to fatty acid composition, triacylglycerol composition, regiospecific distribution, melting point, solid fat content and consistency. The results allowed for differentiating the samples according to their chemical compositions, thermal resistance properties, hardness characteristics, as well as technological adequacies and potential use in regions with tropical climates.

    En este trabajo se presenta un estudio comparativo de las propiedades primarias de mantecas de cacao, representativas de las mezclas industriales, y de la manteca de cacao original de diferentes zonas geográficas de Brasil. Las muestras fueron evaluadas de acuerdo a la composición de ácidos grasos, composición de triglicéridos, distribución de los ácidos grasos en las moléculas de triglicéridos, punto de fusión, contenido de grasa sólida y consistencia. Los resultados permitieron diferenciar las muestras por su composición química, propiedades de resistencia térmica, características de dureza, así como en materia de adecuaciones tecnológicas y los usos potenciales en las regiones de clima tropical.

  19. Quality Control of Laser-Beam-Melted Parts by a Correlation Between Their Mechanical Properties and a Three-Dimensional Surface Analysis

    Science.gov (United States)

    Grimm, T.; Wiora, G.; Witt, G.

    2017-03-01

    Good correlations between three-dimensional surface analyses of laser-beam-melted parts of nickel alloy HX and their mechanical properties were found. The surface analyses were performed with a confocal microscope, which offers a more profound surface data basis than a conventional, two-dimensional tactile profilometry. This new approach results in a wide range of three-dimensional surface parameters, which were each evaluated with respect to their feasibility for quality control in additive manufacturing. As a result of an automated surface analysis process by the confocal microscope and an industrial six-axis robot, the results are an innovative approach for quality control in additive manufacturing.

  20. Microstructure and Wear Properties of Electron Beam Melted Ti-6Al-4V Parts: A Comparison Study against As-Cast Form

    Directory of Open Access Journals (Sweden)

    Wei Quan Toh

    2016-11-01

    Full Text Available Ti-6Al-4V (Ti64 parts of varying thicknesses were additively manufactured (AM by the powder-bed-based electron beam melting (EBM technique. Microstructure and wear properties of these EBM-built Ti-6Al-4V parts have been investigated in comparison with conventionally cast Ti64 samples. Sliding wear tests were conducted using a ball-on-disc micro-tribometer under ambient conditions. Experimental results reveal that EBM-built Ti64 samples exhibited higher microhardness and an overall larger coefficient of friction as compared to the as-cast counterpart. Of interest is that the corresponding specific wear volumes were lower for EBM-built Ti64 samples, while the as-cast Ti64 showed the poorest wear resistance despite its lower coefficient of friction. Wear mechanisms were provided in terms of quantitative microstructural characterization and detailed analysis on coefficient of friction (COF curves.

  1. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part I: Micro-structural characterization and geometric modeling

    KAUST Repository

    Han, Fei

    2014-01-01

    A computational strategy to predict the elastic properties of carbon nanotube-reinforced polymer composites is proposed in this two-part paper. In Part I, the micro-structural characteristics of these nano-composites are discerned. These characteristics include networks/agglomerations of carbon nanotubes and thick polymer interphase regions between the nanotubes and the surrounding matrix. An algorithm is presented to construct three-dimensional geometric models with large amounts of randomly dispersed and aggregated nanotubes. The effects of the distribution of the nanotubes and the thickness of the interphase regions on the concentration of the interphase regions are demonstrated with numerical results. © 2013 Elsevier B.V. All rights reserved.

  2. "Innovation and Intellectual Property Policies in European Research Infrastructure Consortia - PART I: The Case of the European Spallation Source ERIC"

    DEFF Research Database (Denmark)

    Yu, Helen; Wested, Jakob; Minssen, Timo

    2017-01-01

    Research and innovation are key pillars of the EU’s strategy to create sustainable growth and prosperity in Europe. Research infrastructures (RIs) are central instruments to implement this strategy. They bring together a wide diversity of expertise and interests to look for solutions to many...... of the problems society is facing today. To facilitate the creation and operation of such RIs, the EU adopted legal frameworks for European Research Infrastructure Consortia (ERIC). On August 31, 2015, the European Spallation Source (ESS) was established as an ERIC. Under the ERIC Regulations and ESS Statutes......, the European Spallation Source ERIC is required to adopt various policy documents relating to the operation and management of the facility. These cover a wide variety of issues such as user access, public procurement, intellectual property rights (IPR), data management, and dissemination. One of the main goals...

  3. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part II. Fatigue crack growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: margolinbz@yandex.ru; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.

    2016-11-15

    The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.

  4. "Innovation and Intellectual Property Policies in European Research Infrastructure Consortia - PART I: The Case of the European Spallation Source ERIC"

    DEFF Research Database (Denmark)

    Yu, Helen; Wested, Jakob; Minssen, Timo

    2017-01-01

    of the problems society is facing today. To facilitate the creation and operation of such RIs, the EU adopted legal frameworks for European Research Infrastructure Consortia (ERIC). On August 31, 2015, the European Spallation Source (ESS) was established as an ERIC. Under the ERIC Regulations and ESS Statutes......, the European Spallation Source ERIC is required to adopt various policy documents relating to the operation and management of the facility. These cover a wide variety of issues such as user access, public procurement, intellectual property rights (IPR), data management, and dissemination. One of the main goals...... international research collaborations? The complex relationship between scientific excellence, innovation, and IPRs must be carefully considered. Taking the European Spallation Source ERIC as an example, this article investigates ERIC Regulations and EU policies and discusses what issues and perspectives ERICs...

  5. RESEARCH OF UV-PROTECTIVE ACTIVITY OF FERULIC ACID AS PART OF OINTMENT COMPOSITIONS WITH DIFFERENT PHYSICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    I. L. Abisalova

    2014-01-01

    Full Text Available Cosmetics with the ability to neutralize harmful influence of ultraviolet rays on skin are quite in demand. UV filters in creams composition are divided into two groups: physical and chemical. Antioxidants are used as chemical UV filters. The article presents the results of ferulic acid testing as UV filter in ointment bases with lipophile, hydrophile and lipophilic and hydrophilic properties. The dependence of ferulic acid efficiency from the base type where it was applied was established. The results received are correlated with data about release rate of ferulic acid received in vitro. Ointment bases with such emulsifiers as cetyl alcohol, base emulsifier and Olivem 1000 have the most signified UV protective effect of ferulic acid.

  6. Characterisation of calamansi (Citrus microcarpa). Part II: volatiles, physicochemical properties and non-volatiles in the juice.

    Science.gov (United States)

    Cheong, Mun Wai; Zhu, Danping; Sng, Jingting; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Yu, Bin

    2012-09-15

    Calamansi juices from three countries (Malaysia, the Philippines and Vietnam) were characterised through measuring volatiles, physicochemical properties and non-volatiles (sugars, organic acids and phenolic acids). The volatile components of manually squeezed calamansi juices were extracted using dichloromethane and headspace solid-phase microextraction, and then analysed using gas chromatography-mass spectrometry/flame ionisation detector, respectively. A total of 60 volatile compounds were identified. The results indicated that the Vietnam calamansi juice contained the highest amount of volatiles. Two principal components obtained from principal component analysis (PCA) represented 89.65% of the cumulative total variations of the volatiles. Among the non-volatile components, these three calamansi juices could be, to some extent, differentiated according to fructose and glucose concentrations. Hence, this study of calamansi juices could lead to a better understanding of calamansi fruits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Sensitivity of Simulated Global Climate to Perturbations in Low-Cloud Microphysical Properties. Part I: Globally Uniform Perturbations.

    Science.gov (United States)

    Chen, C.-T.; Ramaswamy, V.

    1996-06-01

    The sensitivity of the global climate to perturbations in the microphysical properties of low clouds is investigated using a general circulation model coupled to a static mixed layer ocean with fixed cloud distributions and incorporating a new broadband parameterization for cloud radiative properties. A series of GCM experiments involving globally uniform perturbations in cloud liquid water path or effective radius (albedo perturbations), along with one for a doubling of carbon dioxide (greenhouse perturbation), lead to the following results: 1) The model's climate sensitivity (ratio of global-mean surface temperature response to the global-mean radiative forcing) is virtually independent (to {10%) of the sign, magnitude, and the spatial pattern of the forcings considered, thus revealing a linear and invariant nature of the model's global-mean response. 2) Although the total climate feedback is very similar in all the experiments, the strengths of the individual feedback mechanisms (e.g., water vapor, albedo) are different for positive and negative forcings. 3) Changes in moisture, tropospheric static stability, and sea ice extent govern the vertical and zonal patterns of the temperature response, with the spatial distribution of the response being quite different from that of the radiative forcing. 4) The zonal surface temperature response pattern, normalized with respect to the global mean, is different for experiments with positive and negative forcings, particularly in the polar regions of both hemispheres, due to differing changes in sea ice. 5) The change in the surface radiative fluxes is different for the carbon dioxide doubling and cloud liquid water path decrease experiments, even though both cases have the same radiative forcing and a similar global-mean surface temperature response; this leads to differences in the vigor of the hydrologic cycle (evaporation and precipitation rates) in these two experiments.

  8. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Impact of river overflowing on trace element contamination of volcanic soils in south Italy: part II. Soil biological and biochemical properties in relation to trace element speciation.

    Science.gov (United States)

    D'Ascoli, R; Rao, M A; Adamo, P; Renella, G; Landi, L; Rutigliano, F A; Terribile, F; Gianfreda, L

    2006-11-01

    The effect of heavy metal contamination on biological and biochemical properties of Italian volcanic soils was evaluated in a multidisciplinary study, involving pedoenvironmental, micromorphological, physical, chemical, biological and biochemical analyses. Soils affected by recurring river overflowing, with Cr(III)-contaminated water and sediments, and a non-flooded control soil were analysed for microbial biomass, total and active fungal mycelium, enzyme activities (i.e., FDA hydrolase, dehydrogenase, beta-glucosidase, urease, arylsulphatase, acid phosphatase) and bacterial diversity (DGGE characterisation). Biological and biochemical data were related with both total and selected fractions of Cr and Cu (the latter deriving from agricultural chemical products) as well as with total and extractable organic C. The growth and activity of soil microbial community were influenced by soil organic C content rather than Cu or Cr contents. In fact, positive correlations between all studied parameters and organic C content were found. On the contrary, negative correlations were observed only between total fungal mycelium, dehydrogenase, arylsulphatase and acid phosphatase activities and only one Cr fraction (the soluble, exchangeable and carbonate bound). However, total Cr content negatively affected the eubacterial diversity but it did not determine changes in soil activity, probably because of the redundancy of functions within species of soil microbial community. On the other hand, expressing biological and biochemical parameters per unit of total organic C, Cu pollution negatively influenced microbial biomass, fungal mycelium and several enzyme activities, confirming soil organic matter is able to mask the negative effects of Cu on microbial community.

  10. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.

    Science.gov (United States)

    Watts, Charles R; Gregory, Andrew; Frisbie, Cole; Lovas, Sándor

    2018-03-01

    The conformational space and structural ensembles of amyloid beta (Aβ) peptides and their oligomers in solution are inherently disordered and proven to be challenging to study. Optimum force field selection for molecular dynamics (MD) simulations and the biophysical relevance of results are still unknown. We compared the conformational space of the Aβ(1-40) dimers by 300 ns replica exchange MD simulations at physiological temperature (310 K) using: the AMBER-ff99sb-ILDN, AMBER-ff99sb*-ILDN, AMBER-ff99sb-NMR, and CHARMM22* force fields. Statistical comparisons of simulation results to experimental data and previously published simulations utilizing the CHARMM22* and CHARMM36 force fields were performed. All force fields yield sampled ensembles of conformations with collision cross sectional areas for the dimer that are statistically significantly larger than experimental results. All force fields, with the exception of AMBER-ff99sb-ILDN (8.8 ± 6.4%) and CHARMM36 (2.7 ± 4.2%), tend to overestimate the α-helical content compared to experimental CD (5.3 ± 5.2%). Using the AMBER-ff99sb-NMR force field resulted in the greatest degree of variance (41.3 ± 12.9%). Except for the AMBER-ff99sb-NMR force field, the others tended to under estimate the expected amount of β-sheet and over estimate the amount of turn/bend/random coil conformations. All force fields, with the exception AMBER-ff99sb-NMR, reproduce a theoretically expected β-sheet-turn-β-sheet conformational motif, however, only the CHARMM22* and CHARMM36 force fields yield results compatible with collapse of the central and C-terminal hydrophobic cores from residues 17-21 and 30-36. Although analyses of essential subspace sampling showed only minor variations between force fields, secondary structures of lowest energy conformers are different. © 2017 Wiley Periodicals, Inc.

  11. Extraction efficiency, phytochemical profiles and antioxidative properties of different parts of Saptarangi (Salacia chinensis L.) - An important underutilized plant.

    Science.gov (United States)

    Ghadage, Dhanaji M; Kshirsagar, Parthraj R; Pai, Sandeep R; Chavan, Jaykumar J

    2017-12-01

    The study aimed to evaluate extraction efficiency, detection and quantification of phytochemicals, minerals and antioxidative capacity of different parts of Salacia chinensis L. Continuous shaking extraction, steam bath assisted extraction, ultrasonic extraction and microwave assisted extraction with varied time intervals were employed for extraction of phenolics, flavonoids, and antioxidants. Preliminary screening revealed the presence of wide array of metabolites along with carbohydrates and starch. Steam bath assisted extraction for 10 min exposure was found most suitable for extraction phenolics (46.02 ± 2.30 mg of gallic acid equivalent per gram of dry weight and 48.57 ± 2.42 mg of tannic acid equivalent per gram of dry weight) and flavonoids (35.26 ± 1.61 mg of quercetin equivalent per gram of dry weight and 51.60 ± 2.58 mg of ellagic acid equivalent per gram of dry weight). In support, reverse phase-high performance liquid chromatography- diode array detector confirmed the presence of seven pharmaceutically important phenolic acids. Antioxidant capacity was measured by 1, 1- diphenyl-1-picryl hydrazyl (DPPH), ferric reducing antioxidant power (FRAP), 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) scavenging (ABTS) and N, N-dimethyl-p-phenylenediamine (DMPD) assays and represented as trolox equivalent antioxidant capacity (TEAC) and ascorbic acid equivalent antioxidant capacity (AEAC). Antioxidant capacity ranged from 121.02 ± 6.05 to 1567.28 ± 78.36 µM trolox equivalent antioxidant capacity and 56.62 ± 2.83 to 972.48 ± 48.62 µM ascorbic acid equivalent antioxidant capacity. Roots showed higher yields of illustrated biochemical parameters, however fresh fruit pulp was found a chief source of minerals. Gas chromatography-mass spectroscopic analysis revealed the presence of a vast array of phytoconstituents associated with different plant parts. The present study revealed the amounts of minerals and diverse phytoconstituents in

  12. Extraction efficiency, phytochemical profiles and antioxidative properties of different parts of Saptarangi (Salacia chinensis L. – An important underutilized plant

    Directory of Open Access Journals (Sweden)

    Dhanaji M. Ghadage

    2017-12-01

    Full Text Available The study aimed to evaluate extraction efficiency, detection and quantification of phytochemicals, minerals and antioxidative capacity of different parts of Salacia chinensis L. Continuous shaking extraction, steam bath assisted extraction, ultrasonic extraction and microwave assisted extraction with varied time intervals were employed for extraction of phenolics, flavonoids, and antioxidants. Preliminary screening revealed the presence of wide array of metabolites along with carbohydrates and starch. Steam bath assisted extraction for 10 min exposure was found most suitable for extraction phenolics (46.02 ± 2.30 mg of gallic acid equivalent per gram of dry weight and 48.57 ± 2.42 mg of tannic acid equivalent per gram of dry weight and flavonoids (35.26 ± 1.61 mg of quercetin equivalent per gram of dry weight and 51.60 ± 2.58 mg of ellagic acid equivalent per gram of dry weight. In support, reverse phase-high performance liquid chromatography- diode array detector confirmed the presence of seven pharmaceutically important phenolic acids. Antioxidant capacity was measured by 1, 1- diphenyl-1-picryl hydrazyl (DPPH, ferric reducing antioxidant power (FRAP, 2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid scavenging (ABTS and N, N-dimethyl-p-phenylenediamine (DMPD assays and represented as trolox equivalent antioxidant capacity (TEAC and ascorbic acid equivalent antioxidant capacity (AEAC. Antioxidant capacity ranged from 121.02 ± 6.05 to 1567.28 ± 78.36 µM trolox equivalent antioxidant capacity and 56.62 ± 2.83 to 972.48 ± 48.62 µM ascorbic acid equivalent antioxidant capacity. Roots showed higher yields of illustrated biochemical parameters, however fresh fruit pulp was found a chief source of minerals. Gas chromatography-mass spectroscopic analysis revealed the presence of a vast array of phytoconstituents associated with different plant parts. The present study revealed the amounts of minerals and diverse

  13. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts

    Science.gov (United States)

    Dai, Donghua; Gu, Dongdong; Zhang, Han; Xiong, Jiapeng; Ma, Chenglong; Hong, Chen; Poprawe, Reinhart

    2018-02-01

    Selective laser melting additive manufacturing of the AlSi12 material parts through the re-melting of the previously solidified layer using the continuous two layers 90° rotate scan strategy was conducted. The influence of the re-melting behavior and scan strategy on the formation of the ;track-track; and ;layer-layer; molten pool boundaries (MPBs), dimensional accuracy, microstructure feature, tensile properties, microscopic sliding behavior and the fracture mechanism as loaded a tensile force has been studied. It showed that the defects, such as the part distortion, delamination and cracks, were significantly eliminated with the deformation rate less than 1%. The microstructure of a homogeneous distribution of the Si phase, no apparent grain orientation on both sides of the MPBs, was produced in the as-fabricated part, promoting the efficient transition of the load stress. Cracks preferentially initiate at the ;track-track; MPBs when the tensile stress increases to a certain value, resulting in the formation of the cleavage steps along the tensile loading direction. The cracks propagate along the ;layer-layer; MPBs, generating the fine dimples. The mechanical behavior of the SLM-processed AlSi12 parts can be significantly enhanced with the ultimate tensile strength, yield strength and elongation of 476.3 MPa, 315.5 MPa and 6.7%, respectively.

  14. A new airborne polar Nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design

    Directory of Open Access Journals (Sweden)

    J. F. Gayet

    1997-04-01

    Full Text Available A new optical sensor, the airborne Polar Nephelometer, is described. The sensor is designed to measure the optical and microphysical parameters of clouds containing either water droplets or ice crystals or a mixture of these particles ranging in size from a few micrometers to about 500 µm diameter. The probe measures the scattering phase function of an ensemble of cloud particles intersecting a collimated laser beam near the focal point of a paraboloïdal mirror. The light scattered from polar angles from 3.49° to 169° is reflected onto a circular array of 33 photodiodes. The signal processing electronics and computer storage can provide one measurement of the scattering phase function every 100 ms or every 0.2 ms. The first part of the paper describes the theoretical design of a prototype version of the probe.

  15. A new airborne polar Nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design

    Directory of Open Access Journals (Sweden)

    J. F. Gayet

    Full Text Available A new optical sensor, the airborne Polar Nephelometer, is described. The sensor is designed to measure the optical and microphysical parameters of clouds containing either water droplets or ice crystals or a mixture of these particles ranging in size from a few micrometers to about 500 µm diameter. The probe measures the scattering phase function of an ensemble of cloud particles intersecting a collimated laser beam near the focal point of a paraboloïdal mirror. The light scattered from polar angles from 3.49° to 169° is reflected onto a circular array of 33 photodiodes. The signal processing electronics and computer storage can provide one measurement of the scattering phase function every 100 ms or every 0.2 ms. The first part of the paper describes the theoretical design of a prototype version of the probe.

  16. 75 FR 55409 - Regulation of Off-Exchange Retail Foreign Exchange Transactions and Intermediaries

    Science.gov (United States)

    2010-09-10

    ... forex trading. Unlike segregation of customer funds deposited for futures trading, under the relevant provisions of the Bankruptcy Code,\\31\\ such amounts held in connection with retail forex trading would not... Trading Commission 17 CFR Parts 1, 3, 4, et al. Regulation of Off-Exchange Retail Foreign Exchange...

  17. VT Telephone Exchange Boundaries

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The UtilityTelecom_EXCHANGE represents Vermont Telephone Exchange boundaries as defined by the VT Public Service Board. The original data was...

  18. Thermomechanical process optimization of U-10 wt% Mo – Part 1: high-temperature compressive properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V., E-mail: vineet.joshi@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Nyberg, Eric A.; Lavender, Curt A.; Paxton, Dean [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Garmestani, Hamid [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Burkes, Douglas E. [Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2015-10-15

    Nuclear power research facilities require alternatives to existing highly enriched uranium alloy fuel. One option for a high density metal fuel is uranium alloyed with 10 wt% molybdenum (U–10Mo). Fuel fabrication process development requires specific mechanical property data that, to date has been unavailable. In this work, as-cast samples were compression tested at three strain rates over a temperature range of 400–800 °C to provide data for hot rolling and extrusion modeling. The results indicate that with increasing test temperature the U–10Mo flow stress decreases and becomes more sensitive to strain rate. In addition, above the eutectoid transformation temperature, the drop in material flow stress is prominent and shows a strain-softening behavior, especially at lower strain rates. Room temperature X-ray diffraction and scanning electron microscopy combined with energy dispersive spectroscopy analysis of the as-cast and compression tested samples were conducted. The analysis revealed that the as-cast samples and the samples tested below the eutectoid transformation temperature were predominantly γ phase with varying concentration of molybdenum, whereas the ones tested above the eutectoid transformation temperature underwent significant homogenization.

  19. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  20. Chemical composition and antibacterial properties of essential oil and fatty acids of different parts of Ligularia persica Boiss

    Directory of Open Access Journals (Sweden)

    Maryam Mohadjerani

    2016-04-01

    Full Text Available Objectives: The objective of this research was to investigate the chemical composition and antibacterial activities of the fatty acids and essential oil from various parts of Ligularia persica Boiss (L. persica growing wild in north of Iran. Materials and Methods: Essential oils were extracted by using Clevenger-type apparatus. Antibacterial activity was tested on two Gram-positive and two Gram-negative bacteria by using micro dilution method. Results: GC and GC∕MS analysis of the oils resulted in detection of 94%, 96%, 93%, 99% of the total essential oil of flowers, stems, roots and leaves, respectively. The main components of flowers oil were cis-ocimene (15.4%, β-myrcene (4.4%, β-ocimene (3.9%, and γ-terpinene (5.0%. The major constituents of stems oil were β-phellandrene (5.4%, β-cymene (7.0%, valencene (3.9%. The main compounds of root oil were fukinanolid (17.0%, α-phellandrene (11.5% and Β-selinene (5.0% and in the case of leaves oil were cis-ocimene (4.8%, β-ocimene (4.9%, and linolenic acid methyl ester (4.7%. An analysis by GC-FID and GC-MS on the fatty-acid composition of the different parts of L. persica showed that major components were linoleic acid (11.3-31.6%, linolenic acid (4.7-21.8% and palmitic acid (7.2-23.2%. Saturated fatty acids were found in lower amounts than unsaturated ones. The least minimum inhibition concentration (MIC of the L. persica was 7.16 μg/ml against Pseudomonas aeruginosa. Conclusion: Our study indicated that the essential oil from L. persica stems and flowers showed high inhibitory effect on the Gram negative bacteria. The results also showed that fatty acids from the stems and leaves contained a high amount of poly-unsaturated fatty acids (PUFAs.

  1. Conceptual design of a hybrid parallel mechanism for mask exchanging of TMT

    Science.gov (United States)

    Wang, Jianping; Zhou, Hongfei; Li, Kexuan; Zhou, Zengxiang; Zhai, Chao

    2015-10-01

    Mask exchange system is an important part of the Multi-Object Broadband Imaging Echellette (MOBIE) on the Thirty Meter Telescope (TMT). To solve the problem of stiffness changing with the gravity vector of the mask exchange system in the MOBIE, the hybrid parallel mechanism design method was introduced into the whole research. By using the characteristics of high stiffness and precision of parallel structure, combined with large moving range of serial structure, a conceptual design of a hybrid parallel mask exchange system based on 3-RPS parallel mechanism was presented. According to the position requirements of the MOBIE, the SolidWorks structure model of the hybrid parallel mask exchange robot was established and the appropriate installation position without interfering with the related components and light path in the MOBIE of TMT was analyzed. Simulation results in SolidWorks suggested that 3-RPS parallel platform had good stiffness property in different gravity vector directions. Furthermore, through the research of the mechanism theory, the inverse kinematics solution of the 3-RPS parallel platform was calculated and the mathematical relationship between the attitude angle of moving platform and the angle of ball-hinges on the moving platform was established, in order to analyze the attitude adjustment ability of the hybrid parallel mask exchange robot. The proposed conceptual design has some guiding significance for the design of mask exchange system of the MOBIE on TMT.

  2. Thermomechanical process optimization of U-10wt% Mo – Part 2: The effect of homogenization on the mechanical properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nyberg, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-09

    Low-enriched uranium alloyed with 10 wt% molybdenum (U-10Mo) is currently being investigated as an alternative fuel for the highly enriched uranium used in several of the United States’ high performance research reactors. Development of the methods to fabricate the U-10Mo fuel plates is currently underway and requires fundamental understanding of the mechanical properties at the expected processing temperatures. In the first part of this series, it was determined that the as-cast U-10Mo had a dendritic microstructure with chemical inhomogeneity and underwent eutectoid transformation during hot compression testing. In the present (second) part of the work, the as-cast samples were heat treated at several temperatures and times to homogenize the Mo content. Like the previous as-cast material, the “homogenized” materials were then tested under compression between 500 and 800°C. The as-cast samples and those treated at 800°C for 24 hours had grain sizes of 25-30 μm, whereas those treated at 1000°C for 16 hours had grain sizes around 250 μm before testing. Upon compression testing, it was determined that the heat treatment had effects on the mechanical properties and the precipitation of the lamellar phase at sub-eutectoid temperatures.

  3. An Entropy Stable h/p Non-Conforming Discontinuous Galerkin Method with the Summation-by-Parts Property

    KAUST Repository

    Friedrich, Lucas

    2017-12-29

    This work presents an entropy stable discontinuous Galerkin (DG) spectral element approximation for systems of non-linear conservation laws with general geometric (h) and polynomial order (p) non-conforming rectangular meshes. The crux of the proofs presented is that the nodal DG method is constructed with the collocated Legendre-Gauss-Lobatto nodes. This choice ensures that the derivative/mass matrix pair is a summation-by-parts (SBP) operator such that entropy stability proofs from the continuous analysis are discretely mimicked. Special attention is given to the coupling between nonconforming elements as we demonstrate that the standard mortar approach for DG methods does not guarantee entropy stability for non-linear problems, which can lead to instabilities. As such, we describe a precise procedure and modify the mortar method to guarantee entropy stability for general non-linear hyperbolic systems on h/p non-conforming meshes. We verify the high-order accuracy and the entropy conservation/stability of fully non-conforming approximation with numerical examples.

  4. [Plasma exchange in nephrology: Indications and technique].

    Science.gov (United States)

    Ridel, Christophe; Kissling, Sébastien; Mesnard, Laurent; Hertig, Alexandre; Rondeau, Éric

    2017-02-01

    Plasma exchange is a non-selective apheresis technique that can be performed by filtration or centrifugation allowing rapid purification of high molecular weight pathogens. An immunosuppressive treatment is generally associated to reduce the rebound effect of the purified substance. Substitution solutes such as human albumin and macromolecules are needed to compensate for plasma extraction. Compensation by viro-attenuated plasma is reserved solely for the treatment of thrombotic microangiopathies or when there is a risk of bleeding, because this product is very allergenic and expensive. The treatment goal for a plasma exchange session should be between one and one and one-half times the patient's plasma volume estimated at 40 mL/kg body weight. The anticoagulation is best ensured by the citrate. Complications of plasma exchange are quite rare according to the French hemapheresis registry. The level of evidence of efficacy of plasma exchange in nephrology varies from one pathology to another. Main indications of plasma exchange in nephrology are Goodpasture syndrome, antineutrophil cytoplasmic antibody vasculitis when plasma creatinine is greater than 500 μmol/L, and thrombotic microangiopathies. During renal transplantation, plasma exchange may be proposed in the context of human leukocyte antigen (HLA) desensitization protocols or ABO-incompatible graft. After renal transplantation, plasma exchange is indicated as part of the treatment of acute humoral rejection or recurrent focal segmental glomerulosclerosis on the graft. Plasma exchanges are also proposed in the management of cryoglobulinemia or polyarteritis nodosa. Hemodialysis with membranes of very high permeability tends to replace plasma exchange for myeloma nephropathy. The benefit from plasma exchange has not been formally demonstrated for the treatment of severe lupus or antiphospholipid antibody syndrome. There is no indication of plasma exchange in the treatment of scleroderma or nephrogenic

  5. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

    Science.gov (United States)

    Dziadek, Michal; Menaszek, Elzbieta; Zagrajczuk, Barbara; Pawlik, Justyna; Cholewa-Kowalska, Katarzyna

    2015-11-01

    Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO2-CaO-P2O5 system differing in SiO2 and CaO contents were applied (mol%): S2: 80SiO2, 16CaO, 4P2O5 and A2: 40SiO2, 54CaO, 6P2O5. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37°C for 56weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~67° for 21A2-PCL compared to ~78° for pure PCL) and also makes AS surface more hydrophobic (~94° for 21S2-PCL compared to ~86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38GPa for pure PCL, 0.90GPa for 12A2-PCL to 1.31GPa for 21A2-PCL), which also depends on SBG chemical composition. After 56-week degradation test, considerably higher

  6. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties

    Energy Technology Data Exchange (ETDEWEB)

    Dziadek, Michal, E-mail: dziadek@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland); Menaszek, Elzbieta, E-mail: elzbieta.menaszek@uj.edu.pl [Jagiellonian University, Collegium Medicum, Department of Cytobiology, 9 Medyczna St., 30-688 Krakow (Poland); Zagrajczuk, Barbara, E-mail: b.zagrajczuk@gmail.com [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland); Pawlik, Justyna, E-mail: pawlikj@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland); Cholewa-Kowalska, Katarzyna, E-mail: cholewa@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland)

    2015-11-01

    Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21 vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO{sub 2}–CaO–P{sub 2}O{sub 5} system differing in SiO{sub 2} and CaO contents were applied (mol%): S2: 80SiO{sub 2}, 16CaO, 4P{sub 2}O{sub 5} and A2: 40SiO{sub 2}, 54CaO, 6P{sub 2}O{sub 5}. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37 °C for 56 weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~ 67° for 21A2-PCL compared to ~ 78° for pure PCL) and also makes AS surface more hydrophobic (~ 94° for 21S2-PCL compared to ~ 86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38 GPa for pure PCL, 0.90 GPa for 12A2-PCL to 1.31 GPa for 21A2-PCL), which also depends on

  7. Pseudo exchange bias due to rotational anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Ehrmann, A., E-mail: andrea.ehrmann@fh-bielefeld.de [Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld (Germany); Komraus, S.; Blachowicz, T.; Domino, K. [Institute of Physics – Center for Science and Education, Silesian University of Technology, 44-100 Gliwice (Poland); Nees, M.K.; Jakobs, P.J.; Leiste, H. [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Mathes, M.; Schaarschmidt, M. [ACCESS e. V., 57072 Aachen (Germany)

    2016-08-15

    Ferromagnetic nanostructure arrays with particle dimensions between 160 nm and 400 nm were created by electron-beam lithography. The permalloy structures consist of rectangular-shaped walls around a square open space. While measuring their magnetic properties using the Magneto-Optical Kerr Effect (MOKE), in some angular regions an exchange bias (EB) seemed to appear. This paper gives an overview of possible reasons for this “pseudo exchange bias” and shows experimentally and by means of micromagnetic simulations that this effect can be attributed to unintentionally measuring minor loops. - Highlights: • Pseudo exchange bias can be found in square Py nanorings of different dimensions. • Pseudo exchange bias stems from unintentionally measuring minor loops. • New approach in explaining “real” exchange bias effect in coupled FM/AFM systems. • Theoretical base to explain other measurements of a rotational anisotropy.

  8. INVESTIGATION OF ANTIHEMOLYTIC, XANTHINE OXIDASE INHIBITION, ANTIOXIDANT AND ANTIMICROBIAL PROPERTIES OF SALVIA VERBENACA L. AERIAL PART EXTRACTS.

    Science.gov (United States)

    Belkhiri, Farida; Baghiani, Abderrahmane; Zerroug, Mohammed Mihoub; Arrar, Lekhmici

    2017-01-01

    In this study, Salvia verbenaca L. aerial part extracts (SVEs): were screened for their antihemolytic, xanthine oxidase (XO) inhibition, antioxidant and antimicrobial activities. To investigate SVEs antihemolytic activity, the 2,2,-azobis (2-amidinopropane) dihydrochloride (AAPH) was used to induce erythrocyte oxidative hemolysis. In XO inhibition test, xanthine was used as substrate and cytochrome c for generating superoxide anions. The antioxidant activity of SVEs was examined by means of reducing power, DPPH free radical scavenging and iron chelating assays. In addition, SVEs were tested for their antimicrobial effects by evaluating antibacterial and antifungal activities. Ethyl acetate extract (EAE) contains the highest amount of total polyphenols and flavonoids (661.78 ± 4.00 mg GAE / g E) and (28.81 ± 0.38 mg QE / g E) respectively. In antihemolytic test EAE was the most active extract with an HT50 value of 165 min. SVEs gave significant inhibitory effects on XO, especially the chloroform extract (ChE) with IC50 value of 0.0088 ± 0.000 mg/ml. EAE was the most active extract in reducing power essay (EC50: 0.0047 ± 0.000 mg/ml) and in DPPH radical scavenging essay (IC50: 0.0086 ± 0.000 mg/ml). Finally, the EAE has inhibited the growth of nine bacterial strains with inhibition zone diameters of (12 to 16 mm), but no activities have found against fungal strains. S. verbenaca could be considered as a potential source of natural antihemolytic, enzyme modulator, antioxidant and antibacterial agents.

  9. Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties

    Science.gov (United States)

    Parenti, Susanna; del Zanna, Giulio; Petralia, Antonino; Reale, Fabio; Teriaca, Luca; Testa, Paola; Mason, Helen E.

    2017-09-01

    In this work we investigate the thermal structure of an off-limb active region (AR) in various non-flaring areas, as it provides key information on the way these structures are heated. In particular, we concentrate on the very hot component (> 3 {MK}) as it is a crucial element to distinguish between different heating mechanisms. We present an analysis using Fe and Ca emission lines from both the Solar Ultraviolet Measurement of Emitted Radiation (SUMER) on board the Solar and Heliospheric Observatory (SOHO) and the EUV Imaging Spectrometer (EIS) on board Hinode. A data set covering all ionization stages from Fe x to Fe xix has been used for the thermal analysis (both differential emission measure and emission measure, EM). Ca xiv is used for the SUMER-EIS radiometric cross calibration. We show that the very hot plasma is present and persistent almost everywhere in the core of the limb AR. The off-limb AR is clearly structured in Fe xviii. Almost everywhere, the EM analysis reveals plasma at 10 MK (visible in Fe xix emission), which is down to 0.1% of EM of the main 3 {MK} plasma. We estimate the power-law index of the hot tail of the EM to be between -8.5 and -4.4. However, the question about the possible existence of a small minor peak at around 10 {MK} remains open. The absence in some part of the AR of the Fe xix and Fe xxiii lines (which fall into our spectral range) enables us to determine an upper limit on the EM at these temperatures. Our results include a new Ca xiv 943.59 Å atomic model.

  10. Cloud Properties Simulated by a Single-Column Model. Part II: Evaluation of Cumulus Detrainment and Ice-phase Microphysics Using a Cloud Resolving Model

    Science.gov (United States)

    Luo, Yali; Krueger, Steven K.; Xu, Kuan-Man

    2005-01-01

    This paper is the second in a series in which kilometer-scale-resolving observations from the Atmospheric Radiation Measurement program and a cloud-resolving model (CRM) are used to evaluate the single-column model (SCM) version of the National Centers for Environmental Prediction Global Forecast System model. Part I demonstrated that kilometer-scale cirrus properties simulated by the SCM significantly differ from the cloud radar observations while the CRM simulation reproduced most of the cirrus properties as revealed by the observations. The present study describes an evaluation, through a comparison with the CRM, of the SCM's representation of detrainment from deep cumulus and ice-phase microphysics in an effort to better understand the findings of Part I. It is found that detrainment occurs too infrequently at a single level at a time in the SCM, although the detrainment rate averaged over the entire simulation period is somewhat comparable to that of the CRM simulation. Relatively too much detrained ice is sublimated when first detrained. Snow falls over too deep of a layer due to the assumption that snow source and sink terms exactly balance within one time step in the SCM. These characteristics in the SCM parameterizations may explain many of the differences in the cirrus properties between the SCM and the observations (or between the SCM and the CRM). A possible improvement for the SCM consists of the inclusion of multiple cumulus cloud types as in the original Arakawa-Schubert scheme, prognostically determining the stratiform cloud fraction and snow mixing ratio. This would allow better representation of the detrainment from deep convection, better coupling of the volume of detrained air with cloud fraction, and better representation of snow field.

  11. Wire-based laser metal deposition for additive manufacturing of TiAl6V4: basic investigations of microstructure and mechanical properties from build up parts

    Science.gov (United States)

    Klocke, Fritz; Arntz, Kristian; Klingbeil, Nils; Schulz, Martin

    2017-02-01

    The wire-based laser metal deposition (LMD-W) is a new technology which enables to produce complex parts made of titanium for the aerospace and automotive industry. For establishing the LMD-W as a new production process it has to be proven that the properties are comparable or superior to conventional produced parts. The mechanical properties were investigated by analysis of microstructure and tensile test. Therefore, specimens were generated using a 4.5 kW diode laser cladding system integrated in a 5-Axis-machining center. The structural mechanical properties are mainly influence by crystal structure and thereby the thermal history of the work piece. Especially the high affinity to oxide, distortion and dual phase microstructure make titanium grade 5 (TiAl6V4) one of the most challenging material for additive manufacturing. By using a proper local multi-nozzle shielding gas concept the negative influence of oxide in the process could be eliminated. The distortion being marginal at a single bead, accumulated to a macroscopic effect on the work piece. The third critical point for additive processing of titanium, the bimodal microstructure, could not be cleared by the laser process alone. All metallurgical probes showed α-martensitic-structure. Therefore, a thermal treatment became a necessary production step in the additive production chain. After the thermal treatment the microstructure as well as the distortion was analyzed and compared with the status before. Although not all technical issues could be solved, the investigation show that LMD-W of titanium grade 5 is a promising alternative to other additive techniques as electronic beam melting or plasma deposition welding.

  12. Psychometric properties of the Youth Anxiety Measure for DSM-5, Part I (YAM-5-I) in a community sample of Spanish-speaking adolescents.

    Science.gov (United States)

    Garcia-Lopez, Luis-Joaquin; Saez-Castillo, Antonio J; Fuentes-Rodriguez, Gema

    2017-01-15

    Anxiety disorders are among the most common mental disorders in adolescence. There is a need for brief screening tools to identify adolescents at risk for anxiety disorders. The Youth Anxiety Measure for DSM-5 has been recently developed to assess youths' anxiety symptoms in terms of the current classification system. The goal of this study is to provide a first test of its psychometric properties in a community sample of adolescents in Spain. The sample consisted of 505 13- to 17-year-old adolescents who completed Part I of the YAM-5 (YAM-5-I), which measures symptoms of the major anxiety disorders. Data indicated that the YAM-5-I displays appropriate internal consistency reliability. In addition, support was also found for the construct validity of the measure: most items loaded on a factor that represented the hypothesized anxiety syndromes, although it should also be noted that some items exhibited issues and therefore had to be discarded. Cross-cultural and trans-national studies are needed to determine psychometric properties of scale across languages and cultures. Our findings suggest that the YAM-5-I has satisfactory psychometric properties, which indicates that it can be used as a screening tool in Spanish-speaking adolescents from the general population. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A Systematic Study of Separators in Air-Breathing Flat-Plate Microbial Fuel Cells—Part 1: Structure, Properties, and Performance Correlations

    Directory of Open Access Journals (Sweden)

    Sona Kazemi

    2016-01-01

    Full Text Available Passive air-breathing microbial fuel cells (MFCs are a promising technology for energy recovery from wastewater and their performance is highly dependent on characteristics of the separator that isolates the anaerobic anode from the air-breathing cathode. The goal of the present work is to systematically study the separator characteristics and its effect on the performance of passive air-breathing flat-plate MFCs (FPMFCs. This was performed through characterization of structure, properties, and performance correlations of eight separators in Part 1 of this work. Eight commercial separators were characterized, in non-inoculated and inoculated setups, and were examined in passive air-breathing FPMFCs with different electrode spacing. The results showed a decrease in the peak power density as the oxygen and ethanol mass transfer coefficients in the separators increased, due to the increase of mixed potentials especially at smaller electrode spacing. Increasing the electrode spacing was therefore desirable for the application of diaphragms. The highest peak power density was measured using Nafion®117 with minimal electrode spacing, whereas using Nafion®117 or Celgard® with larger electrode spacing resulted in similar peak powers. Part 2 of this work focuses on numerical modelling of the FPMFCs based on mixed potential theory, implementing the experimental data from Part 1.

  14. Novel Processing of a Poly(phenyleneoxide) - b –Poly(vinylbenzyltrimethylammonium) Copolymer Anion Exchange Membrane; The Effect On Mechanical And Transport Properties

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Tara P.; Seifert, Soenke; Yang, Yating; Yang, Yuan; Knauss, Daniel M.; Liberatore, Matthew W.; Herring, Andrew M.

    2016-12-01

    A poly(2,6 dimethyl 1,4-phenylene oxide)-b-poly(vinyl benzyl) chloride copolymer membranes was processed by solvent casting followed by melt pressing (SCMP) to provide uniformly thin films, 25 +/- 5 mu m, with improved conductivity, mechanical strength, water uptake, dimensional swelling, and chemical stability under 1 M KOH and 80 degrees C. These properties depended strongly on the length of the melt-pressing time. The solvent cast membranes melt pressing time was optimized to provided highly conductive membranes (high OH- conductivity of 75 +/- 25 mS cm(-1) for an IEC of 1.8 mmol g(-1) at room temperature in water). Membranes that were only solvent cast and not melt-pressed swelled excessively and had insufficient mechanical integrity for detailed study. When the copolymer powder was melt pressed (without prior solvent casting) at 240 degrees C and ca. 30 MPa for 20 minutes, membranes with high mechanical strength (tensile stress at break of 32 +/- 6 MPa at 25% RH and 29 +/- 3 MPa when 95% RH at 60 degrees C), high conductivity (Cl conductivity of 80 mS/cm at 90 degrees C and 95% RH), and lower water uptake were formed. However, melt pressing alone did not give larger then 5 cm x 5 cm area films, homogeneously thin (< 60 mu m), or mechanical defect-free membranes. The SCMP membranes were uniformly thin, and thermally crosslinked. The mass loss via dehydrochlorination indicated by TGA and elemental analysis confirmed the crosslinking via thermal melt pressing. The SCMP membranes thickness could be reduced by more than 50% (25 +/- 5 mu m) compared to melt pressing alone, and the Cl conductivity increased by 44% at 90 degrees C and 95% RH. The tensile stress at break of the SCMP membranes, however, was reduced by 50% at 25% RH.

  15. Ideal Heat Exchange System

    Science.gov (United States)

    Tsirlin, A. M.

    2017-09-01

    The requirements with which a heat exchange system should comply in order that at certain values of the total contact surface and heat load the entropy production in it should be minimal have been determined. It has been shown that this system can serve as a standard for real systems of irreversible heat exchange. We have found the conditions for physical realizability of a heat exchange system in which heat exchange occurs by a law linear with respect to the temperature difference between contacting flows. Analogous conditions are given without deriving for the case of heat exchange by the Fourier law.

  16. Resolution exchange simulation.

    Science.gov (United States)

    Lyman, Edward; Ytreberg, F Marty; Zuckerman, Daniel M

    2006-01-20

    We extend replica-exchange simulation in two ways and apply our approaches to biomolecules. The first generalization permits exchange simulation between models of differing resolution--i.e., between detailed and coarse-grained models. Such "resolution exchange" can be applied to molecular systems or spin systems. The second extension is to "pseudoexchange" simulations, which require little CPU usage for most levels of the exchange ladder and also substantially reduce the need for overlap between levels. Pseudoexchanges can be used in either replica or resolution exchange simulations. We perform efficient, converged simulations of a 50-atom peptide to illustrate the new approaches.

  17. STEP - Product Model Data Sharing and Exchange

    DEFF Research Database (Denmark)

    Kroszynski, Uri

    1998-01-01

    - Product Data Representation and Exchange", featuring at present some 30 released parts, and growing continuously. Many of the parts are Application Protocols (AP). This article presents an overview of STEP, based upon years of involvement in three ESPRIT projects, which contributed to the development...

  18. Determining the sign of exchange coupling in a chromia based perpendicular exchange bias heterostructure

    Science.gov (United States)

    Singh, Uday; Street, Mike; Echtenkamp, Will; Binek, Christian; Adenwalla, Shireen

    Exchange bias arises from the coupling at the AFM/FM interface and, has been observed and studied in a wide range of systems. A key property of exchange bias systems is the sign of the coupling between the ferromagnet spins and the interfacial antiferromagnet spins, which may be aligned either ferromagnetically (parallel) or antiferromagnetically (antiparallel). Antiferromagnetic exchange coupling is known to be the generic cause of positive exchange bias. Determining the sign of exchange coupling is straight forward in system where the coupling is weak and can be overcome by Zeeman energy on field -cooling. It is, however, a challenging task when the available magnetic field is low or the magnitude of the exchange coupling is high. Here, we present a technique to determine the sign of the exchange coupling using low fields. We measure the exchange bias field as a function of ferromagnet magnetization during field cooling and the resultant behavior of the exchange bias vs. the magnetization uniquely determines the sign of the coupling. We use this to measure the sign of the exchange coupling in a Cr2O3(300 nm)/Pd(0.5 nm)/[Co(0.3 nm)/Pd(1 nm)]3 heterostructure thin film system and verify our results with the conventional high field method. This work was supported by the National Science Foundation (NSF) through Grant No. DMR-1409622 and the Nebraska Materials Research Science and Engineering Center (MRSEC) (Grant No. DMR-1420645).

  19. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis - part 2: Calculation of the evolution of percolation and transport properties.

    Science.gov (United States)

    Qajar, Jafar; Arns, Christoph H

    2017-09-01

    Percolation of reactive fluids in carbonate rocks affects the rock microstructure and hence changes the rock macroscopic properties. In Part 1 paper, we examined the voxel-wise evolution of microstructure of the rock in terms of mineral dissolution/detachment, mineral deposition, and unchanged regions. In the present work, we investigate the relationships between changes in two characteristic transport properties, i.e. permeability and electrical conductivity and two critical parameters of the pore phase, i.e. the fraction of the pore space connecting the inlet and outlet faces of the core sample and the critical pore-throat diameter. We calculate the aforementioned properties on the images of the sample, wherein a homogeneous modification of pore structure occurred in order to ensure the representativeness of the calculated transport properties at the core scale. From images, the evolution of pore connectivity and the potential role of micropores on the connectivity are quantified. It is found that the changing permeability and electrical conductivity distributions along the core length are generally in good agreement with the longitudinal evolution of macro-connected macroporosity and the critical pore-throat diameter. We incorporate microporosity into critical length and permeability calculations and show how microporosity locally plays a role in permeability. It is shown that the Katz-Thompson model reasonably predicts the post-alteration permeability in terms of pre-alteration simulated parameters. This suggests that the evolution of permeability and electrical conductivity of the studied complex carbonate core are controlled by the changes in the macro-connected macroporosity as well as the smallest pore-throats between the connected macropores. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Comparison of the Calculations Results of Heat Exchange Between a Single-Family Building and the Ground Obtained with the Quasi-Stationary and 3-D Transient Models. Part 2: Intermittent and Reduced Heating Mode

    Science.gov (United States)

    Staszczuk, Anna

    2017-03-01

    The paper provides comparative results of calculations of heat exchange between ground and typical residential buildings using simplified (quasi-stationary) and more accurate (transient, three-dimensional) methods. Such characteristics as building's geometry, basement hollow and construction of ground touching assemblies were considered including intermittent and reduced heating mode. The calculations with simplified methods were conducted in accordance with currently valid norm: PN-EN ISO 13370:2008. Thermal performance of buildings. Heat transfer via the ground. Calculation methods. Comparative estimates concerning transient, 3-D, heat flow were performed with computer software WUFI®plus. The differences of heat exchange obtained using more exact and simplified methods have been specified as a result of the analysis.

  1. 75 FR 65975 - Exchange Visitor Program-Secondary School Students

    Science.gov (United States)

    2010-10-27

    ... educational and cultural exchanges are both the cornerstone of U.S. public diplomacy and an integral component... of Subjects in 22 CFR Part 62 Cultural exchange program. 0 Accordingly, 22 CFR part 62 is to be...; 3 CFR, 1978 Comp. p. 168; the Illegal Immigration Reform and Immigrant Responsibility Act (IIRIRA...

  2. Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part II. Soil biological and biochemical properties in relation to trace element speciation

    Energy Technology Data Exchange (ETDEWEB)

    D' Ascoli, R. [Dipartimento di Scienze Ambientali, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta (Italy)]. E-mail: rosaria.dascoli@unina2.it; Rao, M.A. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: maria.rao@unina.it; Adamo, P. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: adamo@unina.it; Renella, G. [Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Universita degli Studi di Firenze, P.le delle Cascine 28, 50144 Firenze (Italy)]. E-mail: giancarlo.renella@unifi.it; Landi, L. [Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Universita degli Studi di Firenze, P.le delle Cascine 28, 50144 Firenze (Italy)]. E-mail: loretta.landi@unifi.it; Rutigliano, F.A. [Dipartimento di Scienze Ambientali, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta (Italy)]. E-mail: floraa.rutigliano@unina2.it; Terribile, F. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: terribil@unina.it; Gianfreda, L. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: liliana.gianfreda@unina.it

    2006-11-15

    The effect of heavy metal contamination on biological and biochemical properties of Italian volcanic soils was evaluated in a multidisciplinary study, involving pedoenvironmental, micromorphological, physical, chemical, biological and biochemical analyses. Soils affected by recurring river overflowing, with Cr(III)-contaminated water and sediments, and a non-flooded control soil were analysed for microbial biomass, total and active fungal mycelium, enzyme activities (i.e., FDA hydrolase, dehydrogenase, {beta}-glucosidase, urease, arylsulphatase, acid phosphatase) and bacterial diversity (DGGE characterisation). Biological and biochemical data were related with both total and selected fractions of Cr and Cu (the latter deriving from agricultural chemical products) as well as with total and extractable organic C. The growth and activity of soil microbial community were influenced by soil organic C content rather than Cu or Cr contents. In fact, positive correlations between all studied parameters and organic C content were found. On the contrary, negative correlations were observed only between total fungal mycelium, dehydrogenase, arylsulphatase and acid phosphatase activities and only one Cr fraction (the soluble, exchangeable and carbonate bound). However, total Cr content negatively affected the eubacterial diversity but it did not determine changes in soil activity, probably because of the redundancy of functions within species of soil microbial community. On the other hand, expressing biological and biochemical parameters per unit of total organic C, Cu pollution negatively influenced microbial biomass, fungal mycelium and several enzyme activities, confirming soil organic matter is able to mask the negative effects of Cu on microbial community. - In studied soils organic C content resulted the principal factor influencing growth and activity of microbial community, with Cu and Cr contents having a lower relevance.

  3. Intellectual property rights, standards and data exchange in systems biology: Reflections from the IP Expert Meeting at the University of Luxembourg, 8-9 October 2015, ERASysAPP - ERA-Net for Systems Biology Applications.

    Science.gov (United States)

    van Zimmeren, Esther; Rutz, Berthold; Minssen, Timo

    2016-12-01

    Intellectual property rights (IPRs) have become a key concern for researchers and industry in basically all high-tech sectors. IPRs regularly figure prominently in scientific journals and at scientific conferences and lead to dedicated workshops to increase the awareness and "IPR savviness" of scientists. In 2015, Biotechnology Journal published a report from an expert meeting on "Synthetic Biology & Intellectual Property Rights" organized by the Danish Agency for Science, Technology and Innovation sponsored by the European Research Area Network (ERA-Net) in Synthetic Biology (ERASynBio), in which we provided a number of recommendations for a variety of stakeholders [1]. The current article offers some deeper reflections about the interface between IPRs, standards and data exchange in systems biology (SysBio) resulting from an Expert Meeting funded by another ERA-Net, ERASysAPP. The meeting brought together experts and stakeholders (e.g. scientists, company representatives, officials from public funding organizations) in SysBio from different European countries. Despite the different profiles of the stakeholders at the meeting and the variety of interests, many concerns and opinions were shared. In case particular views were expressed by a specific type of stakeholder, this will be explicitly mentioned in the text. In this article, we explore a number of particularly relevant issues that were discussed at the meeting and offer some recommendations. SysBio involves the study of biological systems at a so-called systems level. This is not a new concept in the life sciences - many former approaches in physiology, enzymology and other scientific disciplines have already taken a systemic view of selected biological subjects. Yet, SysBio has gained strong interest within the past 10 to 15 years. One predominant reason and a critical prerequisite for this success story being that the relevant scientific methodologies and research tools have become far more powerful and

  4. Health information exchange among US hospitals.

    Science.gov (United States)

    Adler-Milstein, Julia; DesRoches, Catherine M; Jha, Ashish K

    2011-11-01

    To determine the proportion of US hospitals engaged in health information exchange (HIE) with unaffiliated providers and to identify key hospital-level and market-level factors associated with participating in exchange. Using the 2009 American Hospital Association Information Technology survey, supplemented by Dartmouth Atlas, Area Resource File, and other national data, we examined which hospitals participated in regional efforts to electronically exchange clinical data. We used logistic regression models to determine hospital-level characteristics and market-level characteristics associated with hospitals' likelihood of participating in HIE. We found that 10.7% of US hospitals engaged in HIE with unaffiliated providers. In communities where exchange occurred, for-profit hospitals and those with a small market share were far less likely to engage in HIE than nonprofit hospitals or those with a larger market share. Hospitals in more concentrated markets were more likely to exchange and hospitals in markets with higher Medicare spending were less likely to exchange. At the start of implementation of the Health Information Technology for Economic and Clinical Health (HITECH) Act, only a small minority of US hospitals electronically exchange clinical data with unaffiliated providers. Health information exchange is a key part of reforming the healthcare system, and factors related to competitiveness may be holding some providers back.

  5. The Radioecology Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Catherine L.; Beresford, Nicholas A.; Patel, Sabera; Wells, Claire; Howard, Brenda J. [NERC Centre for Ecology and Hydrology, CEH Lancaster, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom); Mora, Juan Carlos; Real, Almudena [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida complutense 22, Madrid, 28040 (Spain); Beaugelin-Seiller, Karine; Gilbin, Rodolphe; Hinton, Thomas [IRSN-Institut de Radioprotection et de Surete Nucleaire, 31, Avenue de la Division Leclerc, 92260 Fontenay-Aux-Roses (France); Vesterbacka, Pia; Muikku, Maarit; Outola, Iisa [Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881 Helsinki (Finland); Skuterud, Lavrans; AlbumYtre-Eide, Martin [Norwegian Radiation Protection Authority, Grini Naeringspark 13, Oesteraas, 1332 (Norway); Bradshaw, Clare; Stark, Karolina; Jaeschke, Ben [Stockholms Universitet, Universitetsvaegen 10, Stockholm, 10691 (Sweden); Oughton, Deborah; Skipperud, Lindis [NMBU Norwegian University of Life Science P.O. Box 5003N-1432 Aas, Oslo (Norway); Vandenhove, Hildegarde; Vanhoudt, Nathalie [SCK.CEN, Studiecentrum voor Kernenergie/Centre d' Etude de l' Energie Nucleaire, Avenue Herrmann-Debroux 40, BE-1160 Brussels (Belgium); Willrodt, Christine; Steiner, Martin [Bundesamt fuer Strahlenschutz, Willy-Brandt-Strasse 5, 38226 Salzgitter (Germany)

    2014-07-01

    The Radioecology Exchange (www.radioecology-exchange.org) was created in 2011 under the EU FP7 STAR (Strategy for Allied Radioecology) network of excellence. The project aims to integrate the research efforts on radioecology of nine European organisations into a sustainable network. The web site (together with associated Twitter feeds and Facebook page) currently provides the gateway to project outputs and other on-line radiation protection and radioecological resources. In 2013, the EU FP7 COMET (Coordination and implementation of a pan-European instrument for radioecology) project commenced; it aims to strengthen research on the impact of radiation on man and the environment. COMET includes the STAR partners with the addition of one Japanese and two Ukrainian research institutes. As STAR and COMET interact closely together and with the European Radioecology Alliance (www.er-alliance.org/), the Radioecology Exchange will be modified to become an international 'hub' for information related to radioecology. Project specific information will be hosted on separate web sites www.star-radioecology.org and www.comet-radioecology.org. This paper will present an overview of the resources hosted on the Radioecology Exchange inviting other scientists to contribute. Highlighted aspects of the site include: Social media (News blog, Twitter, Facebook) - Items announcing project outputs, training courses, jobs, studentships etc. Virtual laboratory - Information which encourages integration through joint research and integrated use of data and sample materials. These pages will focus on three categories: (1) Methodological: descriptions and video clips of commonly used analytical methods and protocols and the procedures used in STAR and COMET; (2) Informative: databases made available by STAR/COMET partners together with details of sample archives held. Fact-sheets on radio-ecologically important radionuclides and 'topical descriptions' which show absorbed

  6. ION EXCHANGE IN GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  7. Ion Exchange in Glass-Ceramics

    Science.gov (United States)

    Beall, George; Comte, Monique; Deneka, Matthew; Marques, Paulo; Pradeau, Philippe; Smith, Charlene

    2016-08-01

    In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque) and different mechanical properties (especially higher modulus and toughness). There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass). The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change). This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  8. Utilization of estimated physicochemical properties as an integrated part of predicting hepatic clearance in the early drug-discovery stage: Impact of plasma and microsomal binding.

    Science.gov (United States)

    Emoto, C; Murayama, N; Rostami-Hodjegan, A; Yamazaki, H

    2009-03-01

    Rapid prediction of hepatic clearance for drug candidates plays an important role for decision-making in the early drug-discovery stage. Although knowledge of protein binding in both plasma and microsomal components is needed in the prediction of metabolic clearance from metabolic stability studies, the capacity of protein binding assays are generally lower than those of metabolic stability assays. However, many in silico prediction methods for protein binding are now available and software packages such as ACDLabs, ADMET Predictor and SimCYP incorporate various aspects of in silico predictions relevant to estimating binding and clearance. This has facilitated the use of various estimated or measured physicochemical parameters, relevant to binding, to predict clearance. In this study, prediction of protein binding for 33 drugs was evaluated using various combinations of estimated physicochemical properties. Subsequently, the most accurate estimated protein binding values were used to predict hepatic clearance using the SimCYP software. For the drugs used herein, SimCYP provided the most accurate prediction for protein binding in both plasma and microsomes using physiochemical properties estimated with the ACDLabs software. In conclusion, the use of in silico methods as an integrated part of predicting hepatic clearance in early drug-discovery stage is recommended.

  9. Adaptively Compressed Exchange Operator

    CERN Document Server

    Lin, Lin

    2016-01-01

    The Fock exchange operator plays a central role in modern quantum chemistry. The large computational cost associated with the Fock exchange operator hinders Hartree-Fock calculations and Kohn-Sham density functional theory calculations with hybrid exchange-correlation functionals, even for systems consisting of hundreds of atoms. We develop the adaptively compressed exchange operator (ACE) formulation, which greatly reduces the computational cost associated with the Fock exchange operator without loss of accuracy. The ACE formulation does not depend on the size of the band gap, and thus can be applied to insulating, semiconducting as well as metallic systems. In an iterative framework for solving Hartree-Fock-like systems, the ACE formulation only requires moderate modification of the code, and can be potentially beneficial for all electronic structure software packages involving exchange calculations. Numerical results indicate that the ACE formulation can become advantageous even for small systems with tens...

  10. Short-term exercise-induced improvements in bone properties are for the most part not maintained during aging in hamsters.

    Science.gov (United States)

    Koistinen, Arto P; Halmesmäki, Esa P; Iivarinen, Jarkko T; Arokoski, Jari P A; Brama, Pieter A J; Jurvelin, Jukka S; Helminen, Heikki J; Isaksson, Hanna

    2014-03-01

    Physical exercise during growth affects composition, structure and mechanical properties of bone. In this study we investigated whether the beneficial effects of exercise during the early growth phase have long-lasting effects or not. Female Syrian golden hamsters (total n=152) were used in this study. Half of the hamsters had access to running wheels during their rapid growth phase (from 1 to 3months of age). The hamsters were sacrificed at the ages of 1, 3, 12, and 15months. The diaphysis of the mineralized humerus was analyzed with microCT and subjected to three-point-bending mechanical testing. The trabecular bone in the tibial metaphysis was also analyzed with microCT. The collagen matrix of the humerus bone was studied by tensile testing after decalcification. The weight of the hamsters as well as the length of the bone and the volumetric bone mineral density (BMDvol) of the humerus was higher in the running group at the early age (3months). Moreover, the mineralized bone showed improved mechanical properties in humerus and had greater trabecular thickness in the subchondral bone of tibia in the runners. However, by the age of 12 and 15months, these differences were equalized with the sedentary group. The tensile strength and Young's modulus of decalcified humerus were higher in the runners at early stage, indicating a stronger collagen network. In tibial metaphysis, trabecular thickness was significantly higher for the runners in the old age groups (12 and 15months). Our study demonstrates that physical exercise during growth improves either directly or indirectly through weight gain bone properties of the hamsters. However, the beneficial effects were for the most part not maintained during aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Part-II: Exchange current density and ionic diffusivity studies on the ordered and disordered spinel LiNi0.5Mn1.5O4 cathode

    Science.gov (United States)

    Amin, Ruhul; Belharouak, Ilias

    2017-04-01

    Additive-free pellets of Li1-xNi0.5Mn1.5O4 have been prepared for the purpose of performing ionic diffusivity and exchange current density studies. Here we report on the characterization of interfacial charge transfer kinetics and ionic diffusivity of ordered (P4332) and disordered (Fd 3 bar m) Li1-xNi0.5Mn1.5O4 as a function of lithium content at ambient temperature. The exchange current density at the electrode/electrolyte interface is found to be continuously increased with increasing the degree of delithiation for ordered phase (∼0.21-6.5 mA/cm2) at (x = 0.01-0.60), in contrast the disordered phase exhibits gradually decrease of exchange current density in the initial delithiation at the 4 V plateau regime (x = 0.01-0.04) and again monotonously increases (0.65-6.8 mA/cm2) with further delithiation at (x = 0.04-0.60). The ionic diffusivity of ordered and disordered phase is found to be ∼5 × 10-10cm2s-1 and ∼10-9cm2s-1, respectively, and does not vary much with the degree of delithiation. From the obtained results it appears that the chemical diffusivity during electrochemical use is limited by lithium transport, but is fast enough over the entire state-of-charge range to allow charge/discharge of micron-scale particles at practical C-rates.

  12. Thermomechanical process optimization of U-10wt% Mo – Part 2: The effect of homogenization on the mechanical properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V., E-mail: vineet.joshi@pnnl.gov; Nyberg, Eric A.; Lavender, Curt A.; Paxton, Dean; Burkes, Douglas E.

    2015-10-15

    In the first part of this series, it was determined that the as-cast U-10Mo had a dendritic microstructure with chemical inhomogeneity and underwent eutectoid transformation during hot compression testing. In the present (second) part of the work, the as-cast samples were heat treated at several temperatures and times to homogenize the Mo content. Like the previous as-cast material, the “homogenized” materials were then tested under compression between 500 and 800 °C. The as-cast samples and those treated at 800 °C for 24 h had grain sizes of 25–30 μm, whereas those treated at 1000 °C for 16 h had grain sizes around 250 μm before testing. Upon compression testing, it was determined that the heat treatment had effects on the mechanical properties and the precipitation of the lamellar phase at sub-eutectoid temperatures.

  13. Evaluation of polyphenolic fraction isolated from aerial parts of Tribulus pterocarpus on biological properties of blood platelets in vitro.

    Science.gov (United States)

    Olas, Beata; Morel, Agnieszka; Hamed, Arafa I; Oleszek, Wieslaw; Stochmal, Anna

    2013-01-01

    The antiplatelet and antioxidative activity of polyphenolic fraction isolated from aerial parts of Tribulus pterocarpus in blood platelets stimulated by thrombin was studied. Thrombin as a strong physiological agonist induces the enzymatic peroxidation of endogenous arachidonic acid, the formation of different reactive oxygen species, including superoxide anion radicals ([Formula: see text](·)) and the platelet aggregation. Therefore, the aim of our study was to assess if the polyphenolic fraction from aerial parts of T. pterocarpus may change the biological properties of blood platelets activated by thrombin. We used cytochrome c reduction method to test the ability of this fraction to change [Formula: see text](·) generation in platelets. Arachidonic acid metabolism was measured by the level of thiobarbituric acid reactive substances (TBARS) and by the production of 8-epi-prostaglandin (8-EPI) F(2). Moreover, we determined the effects of the fraction on blood platelet aggregation induced by thrombin. We observed that the polyphenolic fraction from T. pterocarpus reduced [Formula: see text](·), 8-EPI and TBARS production in these cells. The ability of the fraction to decrease the [Formula: see text](·) generation in blood platelets supports the importance of free radicals in platelet functions, including aggregation process. This study may suggest that the tested plant fraction might be a good candidate for protecting blood platelets against changes of their biological functions, which may be associated with the pathogenesis of different cardiovascular disorders.

  14. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  15. Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation

    OpenAIRE

    Boisson, J.; Ruttens, Ann; Mench, M.; Vangronsveld, Jaco

    1999-01-01

    In order to evaluate the possible use of hydroxyapatite (HA) as a soil additive for the in situ remediation of metal contaminated soils, the immobilizing capacity of this product was investigated. Three different concentrations of HA (0.5%, 1%, and 5% by weight (w/w)) were applied to a metal (Zn, Pb, Cu, Cd) and As contaminated soil originating from an old zinc smelter site in Belgium. After a three weeks equilibration period, exchangeable metal concentrations of the soils were determined usi...

  16. Laser Processed Heat Exchangers

    Science.gov (United States)

    Hansen, Scott

    2017-01-01

    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  17. Microsoft Exchange 2013 cookbook

    CERN Document Server

    Van Horenbeeck, Michael

    2013-01-01

    This book is a practical, hands-on guide that provides the reader with a number of clear, step-by-step exercises.""Microsoft Exchange 2013 Cookbook"" is targeted at network administrators who deal with the Exchange server in their day-to-day jobs. It assumes you have some practical experience with previous versions of Exchange (although this is not a requirement), without being a subject matter expert.

  18. Microtube strip heat exchanger

    Science.gov (United States)

    Doty, F. D.

    1991-07-01

    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchanger. The DSI completed a heat exchanger stress analysis of the ten-module heat exchanger bank; and performed a shell-side flow inhomogeneity analysis of the three-module heat exchanger bank. The company produced 50 tubestrips using an in-house CNC milling machine and began pressing them onto tube arrays. The DSI revised some of the tooling required to encapsulate a tube array and press tubestrips into the array to improve some of the prototype tooling.

  19. 41 CFR 102-38.20 - Must an executive agency follow the regulations of this part when selling all personal property?

    Science.gov (United States)

    2010-07-01

    ... Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE OF PERSONAL PROPERTY General Provisions § 102-38... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Must an executive agency...

  20. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    Science.gov (United States)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  1. Word Exchange at the Gates of Europe

    DEFF Research Database (Denmark)

    Hyllested, Adam

    that took place. By the time of arrival in Europe, the Indo-European and Uralic populations had already broken up and constituted a patchwork of languages and cultures that continued to converge and exchange. Whether contacts were connected to war or trade or exchange of inventions is revealed...... to Medieval times. The Indo-European tribes, shortly after their migrations into Europe, came to form part of new cultural communities, influenced by Uralic populations from the North. This had a significant impact on specific parts of the vocabulary, notably terms for religion and warfare. Many terms...

  2. GRUNDTVIG in transnational exchange

    DEFF Research Database (Denmark)

    Grundtvig in transnational exchange is the report from the seminar in december 2015 in cooperation with University of Cape Town and University of Hamburg.......Grundtvig in transnational exchange is the report from the seminar in december 2015 in cooperation with University of Cape Town and University of Hamburg....

  3. Optimization of Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  4. Education and Industry Exchange

    Science.gov (United States)

    Webb, Gerald A.

    1974-01-01

    Through an exchange plan a school representative worked at the personnel counter of a local company, and a supervisor from that company worked with counselors, faculty, administrators, and students from the local school. The exchange of ideas and insights were of benefit to the school and the company. (KP)

  5. Anatomical and biomechanical traits of broiler chickens across ontogeny. Part II. Body segment inertial properties and muscle architecture of the pelvic limb

    Science.gov (United States)

    Tickle, Peter G.; Rankin, Jeffery W.; Codd, Jonathan R.; Hutchinson, John R.

    2014-01-01

    In broiler chickens, genetic success for desired production traits is often shadowed by welfare concerns related to musculoskeletal health. Whilst these concerns are clear, a viable solution is still elusive. Part of the solution lies in knowing how anatomical changes in afflicted body systems that occur across ontogeny influence standing and moving. Here, to demonstrate these changes we quantify the segment inertial properties of the whole body, trunk (legs removed) and the right pelvic limb segments of five broilers at three different age groups across development. We also consider how muscle architecture (mass, fascicle length and other properties related to mechanics) changes for selected muscles of the pelvic limb. All broilers used had no observed lameness, but we document the limb pathologies identified post mortem, since these two factors do not always correlate, as shown here. The most common leg disorders, including bacterial chondronecrosis with osteomyelitis and rotational and angular deformities of the lower limb, were observed in chickens at all developmental stages. Whole limb morphology is not uniform relative to body size, with broilers obtaining large thighs and feet between four and six weeks of age. This implies that the energetic cost of swinging the limbs is markedly increased across this growth period, perhaps contributing to reduced activity levels. Hindlimb bone length does not change during this period, which may be advantageous for increased stability despite the increased energetic costs. Increased pectoral muscle growth appears to move the centre of mass cranio-dorsally in the last two weeks of growth. This has direct consequences for locomotion (potentially greater limb muscle stresses during standing and moving). Our study is the first to measure these changes in the musculoskeletal system across growth in chickens, and reveals how artificially selected changes of the morphology of the pectoral apparatus may cause deficits in

  6. Changes in physical properties and carbon stocks of gray forest soils in the southern part of Moscow region during postagrogenic evolution

    Science.gov (United States)

    Baeva, Yu. I.; Kurganova, I. N.; Lopes de Gerenyu, V. O.; Pochikalov, A. V.; Kudeyarov, V. N.

    2017-03-01

    Changes in carbon stocks and physical properties of gray forest soils during their postagrogenic evolution have been studied in the succession chronosequence comprising an arable, lands abandoned 6, 15, and 30 years ago; and a secondary deciduous forest (Experimental Field Station of the Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Pushchino, Moscow region). It is found that carbon stocks in the upper 60-cm soil layer gain with increasing period of abandonment, from 6.17 kg C/m2 on the arable land to 8.81 kg C/m2 in the forest soil, which represents the final stage of postagrogenic succession. The most intensive carbon accumulation occurs in the upper layer of the former plow (0- to 10-cm) horizon. It is shown that the self-restoration of gray forest soils is accompanied by a reliable decrease of bulk density in the upper 10-cm layer from 1.31 ± 0.01 g/cm3 on the arable to 0.97 ± 0.02 g/cm3 in the forest. In the former plow horizon of the arable-abandoned land-forest succession series, the portion of macroaggregates increases from 73.6 to 88.5%; the mean weighted diameter of aggregates, by 1.6 times; and the coefficient of aggregation, by 3.8 times. Thus, the removal of lands from agricultural use results in a gradual restoration of their natural structure, improvement of soil agronomical properties, and carbon sequestration in the upper part of the soil profile.

  7. Lithology, hydraulic properties, and water quality of the Sandstone Aquifer in the northwestern part of the Bad River Indian Reservation, Wisconsin, 1998-1999

    Science.gov (United States)

    Dunning, Charles P.

    2005-01-01

    The Precambrian sandstone aquifer in the northwestern part of the Bad River Band of Lake Superior Tribe of Chippewa Indians Reservation, Ashland County, Wisconsin, provides much of the drinking water to area residents. A study was undertaken in cooperation with the Bad River Tribe to provide specific information about the lithology, hydraulic properties, and water quality of the sandstone aquifer. During 1998 and 1999, the U.S. Geological Survey installed three monitoring wells, collected and analyzed lithologic and water samples, and conducted geophysical logging and aquifer tests to characterize the sandstone aquifer. The two monitoring wells in the southeastern part of the study area, the Diaperville Monitoring Well #1 (Diaperville MW #1) and the Tolman Monitoring Well #1 (Tolman MW #1) , are believed to have encountered older Middle Proterozoic Oronto Group sandstones. The sandstone encountered in the Ackley Monitoring Well #1 (Ackley MW #1) is believed to be Chequamegon Sandstone of the Late Proterozoic Bayfield Group. This interpretation is based on previous studies, as well as thin- section analysis of sandstone core recovered from the Ackley Monitoring Well #1. Results of aquifer tests conducted in the Diaperville Monitoring Well #1 and the Tolman Monitoring Well #1 provide ranges for hydraulic param - eter values in the sandstone aquifer: transmissivity ranges from 83 to 509 square feet per day; hydraulic conductivity ranges from 1.6 to 4.5 feet per day; storativity ranges from 0.00019 to 0.00046; and specific capacity ranges from 0.22 to 0.67 gallons per minute per foot. Though high- and low-angle fractures are present in Ackley Monitoring Well #1 core, the hydraulic properties of the bedrock appear to be due largely to the matrix porosity measured in thin section (16–21 percent) and permeability of the sandstone. The aquifer test for the Diaperville Monitoring Well #1 resulted in observed drawdown in nearby glacial wells, evidence of a hydraulic

  8. The historical development of corporate- and property law in Macedonia until Communism as part of the Kingdom of Serbs, Croats and Slovenes

    Directory of Open Access Journals (Sweden)

    Endri Papajorgji

    2015-07-01

    Full Text Available Macedonia is a candidate state for EU Membership. During Communism, Macedonia followed the communist pattern (as a consequence of the system of selfadministration of workers as part of the Yugoslav Federation and the transition process in the beginning of the 90’s was followed by a fundamental change not only in the whole economic system but in the whole society. But before the transition, with the coming of Communism, Macedonia as part of the Yugoslav Federation followed the Soviet pattern from 1945-1951 with: nationalization of major enterprises, state direction of investment and production through a series of Five-Year Plans, emphasis on heavy industry and collectivization of agriculture. After 1951, Macedonia followed its own system with the selfadministration of workers a mix of central planning- and free market economy until 1990. The problem with transition in Macedonia after 1990 was closely connected with the extent and form of implementation of economic reforms and especially privatization, because some enterprises had at least to be transformed, others restructured and others had to be completely liquidated. Another problem with transition was closely connected with two questions: the question of economics and the question of politics. In fact, it can be argued that what has happened in Albania and Macedonia, but also in all post-communist Balkan states and the new countries that have emerged since 1989, is historically unique (Papajorgji 2013. But before the transition, and Communism, lie some very important questions which will be analyzed in this paper: What tradition and family law followed Macedonia before Communism? How did this tradition of law especially in the field of corporate and property law affect the new democratic legal system of Macedonia? These are the main objectives of this article.

  9. Standard biological parts knowledgebase.

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H

    2011-02-24

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  10. Standard biological parts knowledgebase.

    Directory of Open Access Journals (Sweden)

    Michal Galdzicki

    2011-02-01

    Full Text Available We have created the Knowledgebase of Standard Biological Parts (SBPkb as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org. The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org. SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL, a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  11. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation

    OpenAIRE

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q.; Kentish, Sandra E.

    2017-01-01

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This...

  12. Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells.

    Science.gov (United States)

    Miccadei, Stefania; Di Venere, Donato; Cardinali, Angela; Romano, Ferdinando; Durazzo, Alessandra; Foddai, Maria Stella; Fraioli, Rocco; Mobarhan, Sohrab; Maiani, Giuseppe

    2008-01-01

    Cultured rat hepatocytes and human hepatoma HepG2 cells were used to evaluate the hepatoprotective properties of polyphenolic extracts from the edible part of artichoke (AE). The hepatocytes were exposed to H2O2generated in situ by glucose oxidase and were treated with either AE, or pure chlorogenic acid (ChA) or with the well known antioxidant, N, N'-diphenyl-p-phenilenediamine (DPPD). Addition of glucose oxidase to the culture medium caused depletion of intracellular glutathione (GSH) content, accumulation of malondialdehyde (MDA) in the cultures, as a lipid peroxidation indicator, and cell death. These results demonstrated that AE protected cells from the oxidative stress caused by glucose oxidase, comparable to DPPD. Furthermore, AE, as well as ChA, prevented the loss of total GSH and the accumulation of MDA. Treatment of HepG2 cells for 24 h with AE reduced cell viability in a dose-dependent manner, however, ChA had no prominent effects on the cell death rate. Similarly, AE rather than ChA induced apoptosis, measured by flow cytometric analysis of annexin and by activation of caspase-3, in HepG2 cells. Our findings indicate that AE had a marked antioxidative potential that protects hepatocytes from an oxidative stress. Furthermore, AE reduced cell viability and had an apoptotic activity on a human liver cancer cell line.

  13. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 2: Computer controlled pH gradients in the presence of urea provide improved separation of proteins: Stability influenced anion and cation exchange chromatography.

    Science.gov (United States)

    Hirsh, Allen G; Tsonev, Latchezar I

    2017-04-28

    This paper details the use of a method of creating controlled pH gradients (pISep) to improve the separation of protein isoforms on ion exchange (IEX) stationary phases in the presence of various isocratic levels of urea. The pISep technology enables the development of computer controlled pH gradients on both cationic (CEX) and anionic (AEX) IEX stationary phases over the very wide pH range from 2 to 12. In pISep, titration curves generated by proportional mixing of the acidic and basic pISep working buffers alone, or in the presence of non-buffering solutes such as the neutral salt NaCl (0-1M), polar organics such as urea (0-8M) or acetonitrile (0-80 Vol%), can be fitted with high fidelity using high order polynomials which, in turn allows construction of a mathematical manifold %A (% acidic pISep buffer) vs. pH vs. [non-buffering solute], permitting precise computer control of pH and the non-buffering solute concentration allowing formation of dual uncoupled liquid chromatographic (LC) gradients of arbitrary shape (Hirsh and Tsonev, 2012 [1]). The separation of protein isoforms examined in this paper by use of such pH gradients in the presence of urea demonstrates the fractionation power of a true single step two dimensional liquid chromatography which we denote as Stability-Influenced Ion Exchange Chromatography (SIIEX). We present evidence that SIIEX is capable of increasing the resolution of protein isoforms difficult to separate by ordinary pH gradient IEX, and potentially simplifying the development of laboratory and production purification strategies involving on-column simultaneous pH and urea unfolding or refolding of targeted proteins. We model some of the physics implied by the dynamics of the observed protein fractionations as a function of both urea concentration and pH assuming that urea-induced native state unfolding competes with native state electrostatic interaction binding to an IEX stationary phase. Implications for in vivo protein

  14. Heat exchanger design handbook

    CERN Document Server

    Thulukkanam, Kuppan

    2013-01-01

    Completely revised and updated to reflect current advances in heat exchanger technology, Heat Exchanger Design Handbook, Second Edition includes enhanced figures and thermal effectiveness charts, tables, new chapter, and additional topics--all while keeping the qualities that made the first edition a centerpiece of information for practicing engineers, research, engineers, academicians, designers, and manufacturers involved in heat exchange between two or more fluids.See What's New in the Second Edition: Updated information on pressure vessel codes, manufacturer's association standards A new c

  15. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  16. 36 CFR 254.11 - Exchanges at approximately equal value.

    Science.gov (United States)

    2010-07-01

    ... attributes; and (4) There are no significant elements of value requiring complex analysis. (b) The authorized... equal value. 254.11 Section 254.11 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LANDOWNERSHIP ADJUSTMENTS Land Exchanges § 254.11 Exchanges at approximately equal value. (a) The...

  17. Educational Exchanges Across the Equator

    Science.gov (United States)

    Norman, D. J.; Walker, C. E.; Smith, M.; Pompea, S. M.; Orellana, D.

    2003-12-01

    What is color? What is light? How can we use a spectrometer to help students understand the answers to these questions? Even half a world apart and between people of different languages and cultures, how to teach these ideas to students can be a lively subject for discussion. And it is! Aided by Internet 2-based videoconferencing, NOAO North and South have sponsored three teacher professional development videoconference workshops, dubbed ASTRO-Chile, linking teachers in Tucson, AZ, and La Serena, Chile. The teachers exchange methods and ideas about how to explain and demonstrate physical concepts, important to the study of astronomy, to students of various ages. The workshops are conducted in Spanish with four bilingual science teachers from the Tucson area discussing pedagogical approaches with their teaching counterparts in Chile. Demonstrations and project presentations, from both sites, are included as part of each workshop. This work is supported, in part, through funding from the NSF Astronomy and Astrophysics Postdoctoral Fellowship.

  18. Analysis of a Flooded Heat Exchanger

    Science.gov (United States)

    Fink, Aaron H.; Luyben, William L.

    2015-01-01

    Flooded heat exchangers are often used in industry to reduce the required heat-transfer area and the size of utility control valves. These units involve a condensing vapor on the hot side that accumulates as a liquid phase in the lower part of the vessel. The heat transfer occurs mostly in the vapor space, but the condensate becomes somewhat…

  19. Data Exchange Inventory System (DEXI)

    Data.gov (United States)

    Social Security Administration — Enterprise tool used to identify data exchanges occurring between SSA and our trading partners. DEXI contains information on both incoming and outgoing exchanges and...

  20. Microplate Heat Exchanger Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a microplate heat exchanger for cryogenic cooling systems used for continuous flow distributed cooling systems, large focal plane arrays, multiple cooling...

  1. Exchange Risk Management Policy

    CERN Document Server

    2005-01-01

    At the Finance Committee of March 2005, following a comment by the CERN Audit Committee, the Chairman invited the Management to prepare a document on exchange risk management policy. The Finance Committee is invited to take note of this document.

  2. HUD Exchange Grantee Database

    Data.gov (United States)

    Department of Housing and Urban Development — The About Grantees section of the HUD Exchange brings up contact information, reports, award, jurisdiction, and location data for organizations that receive HUD...

  3. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  4. Anion exchange polymer electrolytes

    Science.gov (United States)

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  5. Heat exchanger life extension via in-situ reconditioning

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David E.; Muralidharan, Govindarajan

    2016-06-28

    A method of in-situ reconditioning a heat exchanger includes the steps of: providing an in-service heat exchanger comprising a precipitate-strengthened alloy wherein at least one mechanical property of the heat exchanger is degraded by coarsening of the precipitate, the in-service heat exchanger containing a molten salt working heat exchange fluid; deactivating the heat exchanger from service in-situ; in a solution-annealing step, in-situ heating the heat exchanger and molten salt working heat exchange fluid contained therein to a temperature and for a time period sufficient to dissolve the coarsened precipitate; in a quenching step, flowing the molten salt working heat-exchange fluid through the heat exchanger in-situ to cool the alloy and retain a supersaturated solid solution while preventing formation of large precipitates; and in an aging step, further varying the temperature of the flowing molten salt working heat-exchange fluid to re-precipitate the dissolved precipitate.

  6. Cryptographic Combinatorial Securities Exchanges

    Science.gov (United States)

    Thorpe, Christopher; Parkes, David C.

    We present a useful new mechanism that facilitates the atomic exchange of many large baskets of securities in a combinatorial exchange. Cryptography prevents information about the securities in the baskets from being exploited, enhancing trust. Our exchange offers institutions who wish to trade large positions a new alternative to existing methods of block trading: they can reduce transaction costs by taking advantage of other institutions’ available liquidity, while third party liquidity providers guarantee execution—preserving their desired portfolio composition at all times. In our exchange, institutions submit encrypted orders which are crossed, leaving a “remainder”. The exchange proves facts about the portfolio risk of this remainder to third party liquidity providers without revealing the securities in the remainder, the knowledge of which could also be exploited. The third parties learn either (depending on the setting) the portfolio risk parameters of the remainder itself, or how their own portfolio risk would change if they were to incorporate the remainder into a portfolio they submit. In one setting, these third parties submit bids on the commission, and the winner supplies necessary liquidity for the entire exchange to clear. This guaranteed clearing, coupled with external price discovery from the primary markets for the securities, sidesteps difficult combinatorial optimization problems. This latter method of proving how taking on the remainder would change risk parameters of one’s own portfolio, without revealing the remainder’s contents or its own risk parameters, is a useful protocol of independent interest.

  7. 78 FR 25669 - Exchange Visitor Program-Teachers

    Science.gov (United States)

    2013-05-02

    ... stated purpose, the teacher exchange program is not to be used to recruit and train foreign teachers for... Department as best practices and positive program models. Teacher Eligibility Current regulations state that... Part 62 RIN 1400-AC60 Exchange Visitor Program--Teachers AGENCY: Department of State. ACTION: Proposed...

  8. THE JU-LMU LINK FOR MEDICAL EDUCATION: EXCHANGING ...

    African Journals Online (AJOL)

    Anke Wanger, Minas Woldetsadik, Matthias Siebeck

    the community-based education method (CBE) successfully used in Jimma to the LMU. In order to achieve this, mutual exchange of staff and students between these two universities is necessary. METHODS: As the first part of this exchange, six interns in their final year in Medical. School at Jimma University and five staff ...

  9. Spin-Exchange Pumped NMR Gyros

    CERN Document Server

    Walker, Thad G

    2016-01-01

    We present the basic theory governing spin-exchange pumped NMR gyros. We review the basic physics of spin-exchange collisions and relaxation as they pertain to precision NMR. We present a simple model of operation as an NMR oscillator and use it to analyze the dynamic response and noise properties of the oscillator. We discuss the primary systematic errors (differential alkali fields, quadrupole shifts, and offset drifts) that limit the bias stability, and discuss methods to minimize them. We give with a brief overview of a practical implementation and performance of an NMR gyro built by Northrop-Grumman Corporation, and conclude with some comments about future prospects.

  10. Exchanging Description Logic Knowledge Bases

    NARCIS (Netherlands)

    Arenas, M.; Botoeva, E.; Calvanese, D.; Ryzhikov, V.; Sherkhonov, E.

    2012-01-01

    In this paper, we study the problem of exchanging knowledge between a source and a target knowledge base (KB), connected through mappings. Differently from the traditional database exchange setting, which considers only the exchange of data, we are interested in exchanging implicit knowledge. As

  11. Gifts and exchanges problems, frustrations, and triumphs

    CERN Document Server

    Katz, Linda S; Denning, Catherine

    2013-01-01

    This important book explores the many questions challenging librarians who work with gifts and exchanges (G&E) as part of their daily responsibilities. Too often, because of shrinking library budgets, library gifts are considered burdensome and unprofitable drains on both financial and personnel resources. However, Gifts and Exchanges: Problems, Frustrations, . . . and Triumphs gives you solutions that will allow you to embrace your library's gifts as rewards. In this book, you will discover the latest ways of disposing unwanted materials, planning and holding book sales and auctions, and oper

  12. CYLINDER OF THE DISPOSABLE MASS EXCHANGE DEVICE FOR HEMOSORPTION

    Directory of Open Access Journals (Sweden)

    F. I. Kazakov

    2015-01-01

    Full Text Available BACKGROUND. Hemocarboperfusion, previously widely used in our country, can universally pass out of use due to the lack of industrial production of disposable mass exchange devices.MATERIAl AND METHODS. Physicochemical properties of materials and design features of the body samples elements of various sizes have been studied.RESULTS. The elements and materials properties of the hemosorption mass exchanger cylinder have been studied. Hydrodynamic parameters of manipulation using the developed cylinders at different perfusion rates have been studied in bench experiments.CONCLUSION. The original cylinder of the disposable mass exchange device for hemosorption, which meets the current clinical needs, has been developed. 

  13. Nanomodified polymer materials for regenerative heat exchangers

    Science.gov (United States)

    Shchegolkov, Alexander; Shchegolkov, Alexey; Dyachkova, Tatyana

    2017-11-01

    The paper presents thermophysical properties of nanomodified paraffin mixed with polymers as polyethylene or fluoroplastic, which may be effectively used for the development of heat exchange elements of personal protective equipment. It has been experimentally shown that the heat exchangers based on the nanomodified polymer composites have twofold mass compared to the standard regenerative heat exchanger with comparable dimensions. The best result has been obtained on the basis of composite containing polyethylene and paraffin modified with CNTs, which thermal conductivity is 1.6 times higher than forconventional paraffin. The application of carbon nanostructures as the modifiers of heat storage materials improves cooling efficiency by 14.9-17.9 °C by creating more comfortable conditions for breathing via personal protective equipment.

  14. Extending exchange symmetry beyond bosons and fermions

    Science.gov (United States)

    Tichy, Malte C.; Mølmer, Klaus

    2017-08-01

    We study quantum many-body states of particles subject to a more general exchange symmetry than the behavior under pairwise exchange obeyed by bosons and fermions. We refer to these hypothetical particles as immanons because the scalar product of states with the generalized exchange symmetry is the immanant of the matrix containing all mutual scalar products of the occupied single-particle states, a generalization of the determinant and permanent applied for fermions and bosons. Immanons are shown to obey a partial Pauli principle that forbids the occupation of single-particle states above certain threshold numbers. This has measurable consequences for their tendency to favor or oppose multiple occupation of single-particle modes, and it links conjectured mathematical properties of immanants to the expected outcome of a physical Gedanken experiment.

  15. Assessment on bamboo scrimber as a substitute for timber in building envelope in tropical and humid subtropical climate zones - part 1 hygrothermal properties test

    Science.gov (United States)

    Huang, Zujian; Sun, Yimin; Musso, Florian

    2017-11-01

    Bamboo scrimber was bamboo fiber based panel developed in 2000s that was potential to be an ideal substitute for timber in bamboo growing areas. For obtaining material parameters and evaluating the performance in building envelope, bamboo scrimber was systematically tested for hygrothermal properties, based on the building envelope heat and moisture process model. Static test items included density calculation and vacuum saturation test for basic properties; sorption test for moisture storage properties; capillary absorption test, water vapour transmission test and drying test for moisture transport properties; thermal analysis for heat storage properties; thermal conductivity test, surface light and thermal properties test for heat transport properties. The test results, by comparison with reference timbers showed that bamboo scrimber had higher heat storage and heat transport properties and lower moisture storage and transport properties. The dynamic test in wind tunnel with outdoor weather condition showed that bamboo scrimber had lower moisture absorption and desorption rate than reference hardwood. The significant magnitude difference between the static and dynamic test results showed the necessity of a comprehensive evaluation approach that could take more practical conditions into consideration.

  16. Microgravity condensing heat exchanger

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  17. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  18. Temporal variations of the fractal properties of seismicity in the western part of the north Anatolian fault zone: possible artifacts due to improvements in station coverage

    Directory of Open Access Journals (Sweden)

    A. O. Öncel

    1995-01-01

    Full Text Available Seismically-active fault zones are complex natural systems exhibiting scale-invariant or fractal correlation between earthquakes in space and time, and a power-law scaling of fault length or earthquake source dimension consistent with the exponent b of the Gutenberg-Richter frequency-magnitude relation. The fractal dimension of seismicity is a measure of the degree of both the heterogeneity of the process (whether fixed or self-generated and the clustering of seismic activity. Temporal variations of the b-value and the two-point fractal (correlation dimension Dc have been related to the preparation process for natural earthquakes and rock fracture in the laboratory These statistical scaling properties of seismicity may therefore have the potential at least to be sensitive short- term predictors of major earthquakes. The North Anatolian Fault Zone (NAFZ is a seismicallyactive dextral strike slip fault zone which forms the northern boundary of the westward moving Anatolian plate. It is splayed into three branches at about 31oE and continues westward toward the northern Aegean sea. In this study, we investigate the temporal variation of Dc and the Gutenberg-Richter b-value for seismicity in the western part of the NAFZ (including the northern Aegean sea for earthquakes of Ms > 4.5 occurring in the period between 1900 and 1992. b ranges from 0.6-1.6 and Dc from 0.6 to 1.4. The b-value is found to be weakly negatively correlated with Dc (r=-0.56. However the (log of event rate N is positively correlated with b, with a similar degree of statistical significance (r=0.42, and negatively correlated with Dc (r=-0.48. Since N increases dramatically with improved station coverage since 1970, the observed negative correlation between b and Dc is therefore more likely to be due to this effect than any underlying physical process in this case. We present this as an example of how man-made artefacts of recording can have similar statistical effects to

  19. Heat exchanger panel

    Science.gov (United States)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)

    2005-01-01

    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  20. Microscale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.