WorldWideScience

Sample records for excess light energy

  1. Principles of light energy management

    Science.gov (United States)

    Davis, N.

    1994-01-01

    Six methods used to minimize excess energy effects associated with lighting systems for plant growth chambers are reviewed in this report. The energy associated with wall transmission and chamber operating equipment and the experimental requirements, such as fresh air and internal equipment, are not considered here. Only the energy associated with providing and removing the energy for lighting is considered.

  2. Double photoionization of helium at an excess energy of 60 eV using left- and right-elliptically-polarized light

    International Nuclear Information System (INIS)

    Collins, S.A.; Cvejanovic, S.; Dawson, C.; Reddish, T.J.; Seccombe, D.P.; Huetz, A.; Malegat, L.; Selles, P.; Kazansky, A.K.; Danjo, A.; Soejima, K.; Okuno, K.; Yagishita, A.

    2002-01-01

    Helium double photoionization (γ,2e) triple differential cross sections (TDCSs) were measured at an excess energy of 60 eV using a dual toroidal spectrometer and synchrotron radiation from a helical undulator (BL-28A, Photon Factory, Japan). Energy-sharing ratios (R=E 2 /E 1 ) for the two ejected electrons of 5 and 11 are studied with both right- and left-handed elliptically polarized light. The TDCSs are found to be in good agreement with those obtained using the hyperspherical R matrix with semiclassical outgoing waves theory. The circular dichroism for a limited mutual angular range (φ 12 ≅110 deg. -200 deg.) is determined from the experimental data for both R=5 and 11, and compared to theoretical calculations performed over the complete range of mutual angles. No dynamic nodes are found in either the experimental (within the explored φ 12 range) or theoretical circular dichroism for these R values at this excess energy

  3. 10 CFR 904.10 - Excess energy.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Excess energy. 904.10 Section 904.10 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.10 Excess energy. (a) If excess Energy is determined by the United States to be available...

  4. Principles of light energy management

    Energy Technology Data Exchange (ETDEWEB)

    Davis, N. [Growth Chambers, Chagrin Falls, OH (United States)

    1994-12-31

    A review is presented on methods to minimize the effects of excess energy associated with lighting systems for plant growth. Information on lamp efficiencies and methods for separating and collecting unwanted heat is included.

  5. Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Davis, Maria C; Fiehn, Oliver; Durnford, Dion G

    2013-07-01

    There are several well-described acclimation responses to excess light in green algae but the effect on metabolism has not been thoroughly investigated. This study examines the metabolic changes during photoacclimation to high-light (HL) stress in Chlamydomonas reinhardtii using nuclear magnetic resonance and mass spectrometry. Using principal component analysis, a clear metabolic response to HL intensity was observed on global metabolite pools, with major changes in the levels of amino acids and related nitrogen metabolites. Amino acid pools increased during short-term photoacclimation, but were especially prominent in HL-acclimated cultures. Unexpectedly, we observed an increase in mitochondrial metabolism through downstream photorespiratory pathways. The expression of two genes encoding key enzymes in the photorespiratory pathway, glycolate dehydrogenase and malate synthase, were highly responsive to the HL stress. We propose that this pathway contributes to metabolite pools involved in nitrogen assimilation and may play a direct role in photoacclimation. Our results suggest that primary and secondary metabolism is highly pliable and plays a critical role in coping with the energetic imbalance during HL exposure and a necessary adjustment to support an increased growth rate that is an effective energy sink for the excess reducing power generated during HL stress. © 2013 John Wiley & Sons Ltd.

  6. Assessment of photobiological safety of energy-efficiency urban lighting

    Directory of Open Access Journals (Sweden)

    Łukasz Stanisław Pierzchała

    2018-02-01

    Full Text Available Exceeding the safe threshold for exposure on high energy radiation (UV and blue light could cause the emergence of a number of diseases. Eyesight is particularly sensitive to excessive lighting. This paper presents the laboratory research on the assessment of the photobiological risk generated by the energy-efficiency urban lighting. The results show that LED lighting systems can be a source of radiation that significantly negatively affects the eyesight and could contribute to circadian rhythm disorders.

  7. On the excess energy of nonequilibrium plasma

    International Nuclear Information System (INIS)

    Timofeev, A. V.

    2012-01-01

    The energy that can be released in plasma due to the onset of instability (the excess plasma energy) is estimated. Three potentially unstable plasma states are considered, namely, plasma with an anisotropic Maxwellian velocity distribution of plasma particles, plasma with a two-beam velocity distribution, and an inhomogeneous plasma in a magnetic field with a local Maxwellian velocity distribution. The excess energy can serve as a measure of the degree to which plasma is nonequilibrium. In particular, this quantity can be used to compare plasmas in different nonequilibrium states.

  8. Overview of Light Hydrogen-Based Low Energy Nuclear Reactions

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.

  9. Overview of light water/hydrogen-based low energy nuclear reactions

    International Nuclear Information System (INIS)

    Miley, George H.; Shrestha, Prajakti J.

    2006-01-01

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading. (author)

  10. Transmutation in the electrolysis of light water - excess energy and iron production in a gold electrode

    International Nuclear Information System (INIS)

    Ohmori, Tadayoshi; Mizuno, Tadahiko; Nodasaka, Yoshinobu; Enyo, Michio; Minagawa, Hideki

    1997-01-01

    The identification of some reaction products possibly produced during the generation of excess energy is attempted. Electrolysis is performed for 7 days with a constant current intensity of 1 A. The electrolytes used are Na 2 SO 4 , K 2 SO 4 , K 2 CO 3 , and KOH. After the electrolysis, the elements in the electrode near the surface are analyzed by Auger electron spectroscopy and electron probe microanalysis. In every case, a notable amount of iron atoms in the range of 1.0 x 10 16 to 1.8 x 10 17 atom/cm 2 (true area) are detected together with the generation of a certain amount of excess energy evolution. The isotopic abundance of iron atoms, which are 6.5, 77.5, and 14.5% for 54 Fe, 56 Fe, and 57 Fe, respectively, and are obviously different from the natural isotopic abundance, are measured at the top surface of a gold electrode by secondary ion mass spectrometry. The content of 57 Fe tends to increase up to 25% in the more inner layers of the electrode. 8 refs., 11 figs., 3 tabs

  11. Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts.

    Directory of Open Access Journals (Sweden)

    Li Wu

    Full Text Available As an important successional stage and main type of biological soil crusts (BSCs in Shapotou region of China (southeastern edge of Tengger Desert, lichen soil crusts (LSCs often suffer from many stresses, such as desiccation and excess light intensity. In this study, the chlorophyll fluorescence and CO2 exchange in the rehydrated LSCs were detected under a series of photosynthetically active radiation (PAR gradients to study the photosynthetic acclimation of LSCs. The results showed that although desiccation leaded to the loss of photosynthetic activity in LSCs, the fluorescence parameters including Fo, Fv and Fv/Fm of LSCs could be well recovered after rehydration. After the recovery of photosynthetic activity, the effective photosynthetic efficiency ΦPSII detected by Imaging PAM had declined to nearly 0 within both the lichen thallus upper and lower layers when the PAR increased to 200 μE m-2 s-1, however the net photosynthesis detected by the CO2 gas analyzer in the LSCs still appeared when the PAR increased to 1000 μE m-2 s-1. Our results indicate that LSCs acclimating to high PAR, on the one hand is ascribed to the special structure in crust lichens, making the incident light into the lichen thallus be weakened; on the other hand the massive accumulation of photosynthetic pigments in LSCs also provides a protective barrier for the photosynthetic organisms against radiation damage. Furthermore, the excessive light energy absorbed by crust lichens is also possibly dissipated by the increasing non-photochemical quenching, therefore to some extent providing some protection for LSCs.

  12. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Osto, Luca [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Cazzaniga, Stefano [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Bressan, Mauro [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Paleček, David [Lund Univ. (Sweden). Dept. of Chemical Physics; Židek, Karel [Lund Univ. (Sweden). Dept. of Chemical Physics; Niyogi, Krishna K. [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst., Dept. of Plant and Microbial Biology; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Fleming, Graham R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry, Graduate Group in Applied Science and Technology; Zigmantas, Donatas [Lund Univ. (Sweden). Dept. of Chemical Physics; Bassi, Roberto [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Consiglio Nazionale delle Ricerche (CNR), Firenze (Italy). Istituto per la Protezione delle Piante (IPP)

    2017-04-10

    Oxygenic photoautotrophs require mechanisms for rapidly matching the level of chlorophyll excited states from light harvesting with the rate of electron transport from water to carbon dioxide. These photoprotective reactions prevent formation of reactive excited states and photoinhibition. The fastest response to excess illumination is the so-called non-photochemical quenching which, in higher plants, requires the luminal pH sensor PsbS and other yet unidentified components of the photosystem II antenna. Both trimeric light-harvesting complex II (LHCII) and monomeric LHC proteins have been indicated as site(s) of the heat-dissipative reactions. Different mechanisms have been proposed: Energy transfer to a lutein quencher in trimers, formation of a zeaxanthin radical cation in monomers. Here, we report on the construction of a mutant lacking all monomeric LHC proteins but retaining LHCII trimers. Its non-photochemical quenching induction rate was substantially slower with respect to the wild type. A carotenoid radical cation signal was detected in the wild type, although it was lost in the mutant. Here, we conclude that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation. Trimeric LHCII was responsible for the slowly activated quenching component whereas inclusion in supercomplexes was not required. Finally, this latter activity does not depend on lutein nor on charge transfer events, whereas zeaxanthin was essential.

  13. Light pollution: the possible consequences of excessive illumination on retina.

    Science.gov (United States)

    Contín, M A; Benedetto, M M; Quinteros-Quintana, M L; Guido, M E

    2016-02-01

    Light is the visible part of the electromagnetic radiation within a range of 380-780 nm; (400-700 on primates retina). In vertebrates, the retina is adapted to capturing light photons and transmitting this information to other structures in the central nervous system. In mammals, light acts directly on the retina to fulfill two important roles: (1) the visual function through rod and cone photoreceptor cells and (2) non-image forming tasks, such as the synchronization of circadian rhythms to a 24 h solar cycle, pineal melatonin suppression and pupil light reflexes. However, the excess of illumination may cause retinal degeneration or accelerate genetic retinal diseases. In the last century human society has increased its exposure to artificial illumination, producing changes in the Light/Dark cycle, as well as in light wavelengths and intensities. Although, the consequences of unnatural illumination or light pollution have been underestimated by modern society in its way of life, light pollution may have a strong impact on people's health. The effects of artificial light sources could have direct consequences on retinal health. Constant exposure to different wavelengths and intensities of light promoted by light pollution may produce retinal degeneration as a consequence of photoreceptor or retinal pigment epithelium cells death. In this review we summarize the different mechanisms of retinal damage related to the light exposure, which generates light pollution.

  14. Is the CMS e e j j excess a hint for light supersymmetry?

    Science.gov (United States)

    Krauss, Manuel E.; Porod, Werner

    2015-09-01

    We discuss the impact of additional two-body decays of the right-handed neutrino into a light charged Higgs state on the dilepton plus dijet cross sections from resonant W' production. We consider in particular a supersymmetric left-right symmetric model which predicts such a light charged Higgs boson. We demonstrate that the e e j j excess as measured by CMS can be explained best if the W' also has decay modes into Higgsino-like charginos and neutralinos with masses of a few hundred GeV. Provided that this excess is confirmed, the model predicts also one right-handed neutrino with a mass below 200 GeV as well as a doubly charged Higgs boson which should be discovered at the LHC in the near future.

  15. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  16. Measuring excess free energies of self-assembled membrane structures.

    Science.gov (United States)

    Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus

    2010-01-01

    Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.

  17. MicroBooNE: The Search For The MiniBooNE Low Energy Excess

    Energy Technology Data Exchange (ETDEWEB)

    Kaleko, David [Columbia Univ., New York, NY (United States)

    2017-01-01

    This thesis describes work towards the search for a low energy excess in MicroBooNE. What MicroBooNE is, what the low energy excess is, and how one searches for the latter in the former will be described in detail.

  18. Design and Analysis of Hybrid Solar Lighting and Full-Spectrum Solar Energy Systems

    International Nuclear Information System (INIS)

    Muhs, J.D.

    2001-01-01

    This paper describes a systems-level design and analysis of a new approach for improving the energy efficiency and affordability of solar energy in buildings, namely, hybrid solar lighting and full-spectrum solar energy systems. By using different portions of the solar spectrum simultaneously for multiple end-use applications in buildings, the proposed system offers unique advantages over other alternatives for using sunlight to displace electricity (conventional topside daylighting and solar technologies). Our preliminary work indicates that hybrid solar lighting, a method of collecting and distributing direct sunlight for lighting purposes, will alleviate many of the problems with passive daylighting systems of today, such as spatial and temporal variability, glare, excess illumination, cost, and energy efficiency. Similarly, our work suggests that the most appropriate use of the visible portion of direct, nondiffuse sunlight from an energy-savings perspective is to displace electric light rather than generate electricity. Early estimates detailed in this paper suggest an anticipated system cost of well under$2.0/Wp and 5-11(cents)/kWh for displaced and generated electricity in single-story commercial building applications. Based on a number of factors discussed in the paper, including sunlight availability, building use scenarios, time-of-day electric utility rates, cost, and efficacy of the displaced electric lights, the simple payback of this approach in many applications could eventually be well under 5 years

  19. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  20. Energy costs of feeding excess protein from corn-based byproducts to finishing cattle

    Science.gov (United States)

    The increased use of byproducts in finishing diets leads to diets that contain greater concentrations of CP and MP than required by cattle. The hypothesis was that excess dietary CP and MP would increase maintenance energy requirments due to the energy costs of removing excess N as urea in urine. ...

  1. Induction of Efficient Energy Dissipation in the Isolated Light-harvesting Complex of Photosystem II in the Absence of Protein Aggregation

    NARCIS (Netherlands)

    Ilioaia, C.; Johnson, M.P.; Horton, P.; Ruban, A.V.

    2008-01-01

    Under excess illumination, the Photosystem II light-harvesting antenna of higher plants has the ability to switch into an efficient photoprotective mode, allowing safe dissipation of excitation energy into heat. In this study, we show induction of the energy dissipation state, monitored by

  2. Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation

    Science.gov (United States)

    Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš

    2017-09-01

    Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.

  3. Energy potential of the modified excess sludge

    Science.gov (United States)

    Zawieja, Iwona

    2017-11-01

    On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4), it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  4. Energy potential of the modified excess sludge

    Directory of Open Access Journals (Sweden)

    Zawieja Iwona

    2017-01-01

    Full Text Available On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4, it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  5. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    Science.gov (United States)

    Lau, Gabriel V.; Hunt, Patricia A.; Müller, Erich A.; Jackson, George; Ford, Ian J.

    2015-12-01

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  6. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Gabriel V.; Müller, Erich A.; Jackson, George [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hunt, Patricia A. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Ford, Ian J. [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-12-28

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the “mitosis” or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  7. Revisiting light stringy states in view of the 750 GeV diphoton excess

    Energy Technology Data Exchange (ETDEWEB)

    Anastasopoulos, Pascal, E-mail: pascal@hep.itp.tuwien.ac.at [Technische Universität Wien, Institut für Theoretische Physik, A-1040 Vienna (Austria); Bianchi, Massimo, E-mail: massimo.bianchi@roma2.infn.it [Dipartimento di Fisica and Sezione I.N.F.N., Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2016-10-15

    We investigate light massive string states that appear at brane intersections. They replicate the massless spectrum in a richer fashion and may be parametrically lighter than standard Regge excitations. We identify the first few physical states and determine their BRST invariant vertex operators. In the supersymmetric case we reconstruct the super-multiplet structure. We then compute some simple interactions, such as the decay rate of a massive scalar or vector into two massless fermions. Finally we suggest an alternative interpretation of the 750 GeV diphoton excess at LHC in terms of a light massive string state, a replica of the Standard Model Higgs.

  8. An analysis of energy-efficient light fittings and lighting controls

    International Nuclear Information System (INIS)

    Li, Danny H.W.; Cheung, K.L.; Wong, S.L.; Lam, Tony N.T.

    2010-01-01

    Electric lighting is one of the major energy consuming items in many non-domestic buildings. Using appropriate energy-efficient light fittings with dimming controls and proper daylighting schemes can help reduce the electrical demand and contribute to visual comfort and green building development. This paper presents a study on the energy and lighting performances for energy-efficient fluorescent lamps associated with electronic ballasts and high frequency photoelectric dimming controls installed in a school building. Electricity expenditures and indoor illuminance levels for a workshop and a classroom employing high frequency dimming controls were analyzed. Simple prediction methods were used to illustrate the lighting savings. The findings provide the operational and performance information, which would be applicable to other spaces with similar building layouts and lighting schemes.

  9. Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis.

    Science.gov (United States)

    Crisp, Peter A; Ganguly, Diep R; Smith, Aaron B; Murray, Kevin D; Estavillo, Gonzalo M; Searle, Iain; Ford, Ethan; Bogdanović, Ozren; Lister, Ryan; Borevitz, Justin O; Eichten, Steven R; Pogson, Barry J

    2017-08-01

    Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants ( k ) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5'-3' RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory. © 2017 American Society of Plant Biologists. All rights reserved.

  10. The abundant excess heat production during low energy nuclear reaction in the nano scale solid state the cold fusion, 14 years' legacy

    International Nuclear Information System (INIS)

    Woo, Tae Ho; Miley, George H.; Lipson, Andrei; Kim, Sung O.; Luo, Nie; Castano, Carlos H.

    2002-01-01

    The quite abundant excess heat and radioactive materials are found during the solid state reaction. This phenomenon has done during the Low Energy Nuclear Reaction (LENR) in the nano scale molecular structure electrodes and Hydrogen compound electrolytes. The Palladium (or Nickel) and Platinum are incorporated as the electrode and the Light Water (H 2 O) as the electrolyte. The excess heat was produced up to 40% in year 2001. The Alpha particles are also detected. The computer code, Coherent Lattice Accelerator Inter-Ionic Reaction Enhancer (CLAIRE) Code System, is constructed for the simulation. The 0.1 A of the distance between two the Hydrogen ion (proton) and Palladium nucleus is the critical point for the nuclear fusion reaction

  11. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction

    International Nuclear Information System (INIS)

    Broberg Viklund, Sarah; Johansson, Maria T.

    2014-01-01

    Highlights: • Technologies for recovery and use of industrial excess heat were investigated. • Heat harvesting, heat storage, heat utilization, and heat conversion technologies. • Heat recovery potential for Gävleborg County in Sweden was calculated. • Effects on global CO 2 emissions were calculated for future energy market scenarios. - Abstract: Industrial excess heat is a large untapped resource, for which there is potential for external use, which would create benefits for industry and society. Use of excess heat can provide a way to reduce the use of primary energy and to contribute to global CO 2 mitigation. The aim of this paper is to present different measures for the recovery and utilization of industrial excess heat and to investigate how the development of the future energy market can affect which heat utilization measure would contribute the most to global CO 2 emissions mitigation. Excess heat recovery is put into a context by applying some of the excess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden. Two different cases for excess heat recovery are studied: heat delivery to a district heating system and heat-driven electricity generation. To investigate the impact of excess heat recovery on global CO 2 emissions, six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrial excess heat in Gävleborg County is not used today. The results show that with the proposed recovery measures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be supplied from this heat. Electricity generation would result in reduced global CO 2 emissions in all of the analyzed scenarios, while heat delivery to a DH system based on combined heat and power production from biomass would result in increased global CO 2 emissions when the CO 2 emission charge is low

  12. Lenr and "cold Fusion" Excess Heat:. Their Relation to Other Anomalous Microphysical Energy Experiments and Emerging New Energy Technologies

    Science.gov (United States)

    Mallove, Eugene F.

    2005-12-01

    During the past 15 years, indisputable experimental evidence has built up for substantial excess heat (far beyond ordinary chemical energy) and low-energy nuclear reaction phenomena in specialized heavy hydrogen and ordinary hydrogen-containing systems.1 The primary theorists in the field that is properly designated Cold Fusion/LENR have generally assumed that the excess heat phenomena is commensurate with nuclear ash (such as helium), whether already identified or presumed to be present but not yet found. That was an excellent initial hypothesis. However, the commensurate nuclear ash hypothesis has not been proved, and appears to be approximately correct in only a few experiments. During this same period, compelling evidence although not as broadly verified as data from cold fusion/LENR has also emerged for other microphysical sources of energy that were previously unexpected by accepted physics. The exemplar of this has been the "hydrino" physics work of Dr. Randall Mills and his colleagues at Black-Light Power Corporation, which was a radical outgrowth from the cold fusion field that emerged publicly in May 1991.2 Even more far-reaching is the work in vacuum energy extraction pioneered by Dr. Paulo and Alexandra Correa, which first became public in 1996.3 This vacuum energy experimentation began in the early 1980s and has been reduced to prototype technological devices, such as the patented PAGDTM (pulsed abnormal glow discharge) electric power generator, as well as many published experiments that can be performed in table-top fashion to verify the Correa Aetherometry (non-luminiferous or non-electromagnetic aether measurement science).4 In an era when mainstream science and its media is all agog about dark matter and dark energy composing the vast bulk of the universe, there is a great need to reconcile, if possible, the significant bodies of evidence from these three major experimental and theoretical streams: cold fusion/LENR, hydrino physics, and

  13. Household transitions to energy efficient lighting

    International Nuclear Information System (INIS)

    Mills, Bradford; Schleich, Joachim

    2014-01-01

    New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The ‘rebound’ effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on ILs accelerated the pace of transition to CFLs and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with CFLs or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions. - Highlights: • EU ban on ILs has fostered transitions to energy efficient lightingEnergy efficient, environmentally friendly, and durable lighting preferences make CFL and LED transitions more likely • Indicators of greater lighting needs are associated with higher propensities to replace ILs with CFLs and LEDs • For residential lighting, the rebound effect manifests itself through increases in luminosity • In IL to CLF transitions luminosity increases are lower with higher levels of education

  14. Fusion reaction using low energy neutron-excess nucleus beam

    International Nuclear Information System (INIS)

    Fukuda, Tomokazu

    1994-01-01

    The present state and the plan of the experiment of measuring the fusion reaction near barriers by using neutron-excess nucleus beam, which has been advanced at RIKEN are reported. One of the purposes of this experiment is the feasibility investigation of the fusion reaction by using neutron-excess nuclei, which is indispensable for synthesizing superheavy elements. It is intended to systematically explore some enhancing mechanism in the neutron-excess nuclei which are unfavorable in beam intensity. This research can become the good means to prove the dynamic behavior of the neutrons on the surfaces of nuclei in reaction. The fusion reaction of 27 Al + Au was measured by using the stable nucleus beam of 27 Al, and the results are shown. In order to know the low energy fusion reaction of 11 Li and 11 Be which are typical halo nuclei, the identification by characteristic α ray of composite nuclei is carried out in 7,9,11 Li + 209 Bi and 9,10,11 Be + 208 Pb. A new detector having high performance, New MUSIC, is being developed. As the experiment by using this detector, the efficient measurement of the fusion reaction by using heavy neutron-excess nuclei up to Ni is considered. An example of 8 Li + α → 11 B + n reaction for celestial body physics is mentioned. (K.I.)

  15. Mechanisms of energy transfer and conversion in plant Light-Harvesting Complex II

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Tiago Ferreira de

    2009-09-24

    The light-harvesting complex of photosystem II (LHC-II) is the major antenna complex in plant photosynthesis. It accounts for roughly 30% of the total protein in plant chloroplasts, which makes it arguably the most abundant membrane protein on Earth, and binds about half of plant chlorophyll (Chl). The complex assembles as a trimer in the thylakoid membrane and binds a total of 54 pigment molecules, including 24 Chl a, 18 Chl b, 6 lutein (Lut), 3 neoxanthin (Neo) and 3 violaxanthin (Vio). LHC-II has five key roles in plant photosynthesis. It: (1) harvests sunlight and transmits excitation energy to the reaction centres of photosystems II and I, (2) regulates the amount of excitation energy reaching each of the two photosystems, (3) has a structural role in the architecture of the photosynthetic supercomplexes, (4) contributes to the tight appression of thylakoid membranes in chloroplast grana, and (5) protects the photosynthetic apparatus from photo damage by non photochemical quenching (NPQ). A major fraction of NPQ is accounted for its energy-dependent component qE. Despite being critical for plant survival and having been studied for decades, the exact details of how excess absorbed light energy is dissipated under qE conditions remain enigmatic. Today it is accepted that qE is regulated by the magnitude of the pH gradient ({delta}pH) across the thylakoid membrane. It is also well documented that the drop in pH in the thylakoid lumen during high-light conditions activates the enzyme violaxanthin de-epoxidase (VDE), which converts the carotenoid Vio into zeaxanthin (Zea) as part of the xanthophyll cycle. Additionally, studies with Arabidopsis mutants revealed that the photosystem II subunit PsbS is necessary for qE. How these physiological responses switch LHC-II from the active, energy transmitting to the quenched, energy-dissipating state, in which the solar energy is not transmitted to the photosystems but instead dissipated as heat, remains unclear and is the

  16. Energy efficient lighting

    International Nuclear Information System (INIS)

    Aslam, M.

    1992-01-01

    The main sources of Pakistan's energy supply are oil, natural gas, coal, hydro power, nuclear power and liquefied petroleum gas. At present 75 % of total energy delivered is met through oil and gas. The limited resources and financial constraints have proved to be stumbling block in the way of prosperity and economics stability. Lighting is a conspicuous consumer of energy and thus an easy prey for saving drives which is indeed a very promising target for energy saving. (A.B.)

  17. The abundant excess heat production during low energy nuclear reaction in the nano scale solid state the cold fusion, 14 years' legacy

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho; Miley, George H.; Lipson, Andrei; Kim, Sung O.; Luo, Nie; Castano, Carlos H. [The University of Illinois, Urbana (United States)

    2002-05-01

    The quite abundant excess heat and radioactive materials are found during the solid state reaction. This phenomenon has done during the Low Energy Nuclear Reaction (LENR) in the nano scale molecular structure electrodes and Hydrogen compound electrolytes. The Palladium (or Nickel) and Platinum are incorporated as the electrode and the Light Water (H{sub 2}O) as the electrolyte. The excess heat was produced up to 40% in year 2001. The Alpha particles are also detected. The computer code, Coherent Lattice Accelerator Inter-Ionic Reaction Enhancer (CLAIRE) Code System, is constructed for the simulation. The 0.1 A of the distance between two the Hydrogen ion (proton) and Palladium nucleus is the critical point for the nuclear fusion reaction.

  18. Controlling light-use by Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor

    NARCIS (Netherlands)

    Hoekema, S.; Douma, R.D.; Janssen, M.G.J.; Tramper, J.; Wijffels, R.H.

    2006-01-01

    The main bottleneck in scale-up of phototrophic fermentation is the low efficiency of light energy conversion to the desired product, which is caused by an excessive dissipation of light energy to heat. The photoheterotrophic formation of hydrogen from acetate and light energy by the microorganism

  19. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    Science.gov (United States)

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  20. Downtown Detroit Energy Efficient Street Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, Malik [Detroit Economic Growth Corp, Detroit, MI (United States)

    2013-11-29

    Reliable public lighting remains a critically important and valuable public service in Detroit, Michigan. The Downtown Detroit Energy Efficiency Lighting Program (the, “Program”) was designed and implemented to bring the latest advancements in lighting technology, energy efficiency, public safety and reliability to Detroit’s Central Business District, and the Program accomplished those goals successfully. Downtown’s nighttime atmosphere has been upgraded as a result of the installation of over 1000 new LED roadway lighting fixtures that were installed as part of the Program. The reliability of the lighting system has also improved.

  1. Excess-electron energy levels, localization and transport in disordered media

    International Nuclear Information System (INIS)

    Hamill, W.H.

    1980-01-01

    In disordered dielectrics, the fundamental parameters which control the physics and chemistry of excess electrons are time, temperature and energy or mean scattering distance. Viscosity and hardness do not directly affect the electron affinity of media, the optical spectra, or the chemical reactivity of dry or delocalized electrons or of relaxed localized or trapped electrons. Since the mean scattering distance and the transport mechanism, including barrier height, are fundamental, both liquids and glasses (including polymers) are considered in order to cover the range of relevant information. Based on the above described background, transport, localization, dry electron scavenging, trapped electron scavenging and recombination are explained. There are no available data for the energy of excess dry electrons in the media relative to vacuum in glasses, unfortunately, because of the very small yield of separated charge pairs at cryogenic temperature. Thermoplastic glassy solids provide attractive possibility above 250 K, and deserve consideration as the substitutes for cryogenic glasses. The same consideration applies to the measurements of electron drift mobility, which are essential for the adequate description of electron scavenging. (Wakatsuki, Y.)

  2. From fossil fuels to energies-of-light

    Energy Technology Data Exchange (ETDEWEB)

    Winter, C.J. [Stuttgart Univ. (Germany); Energon - Winter (C.J.) GmbH, Leonberg (Germany)

    2000-07-01

    Energies-of-light are the final result on the ongoing decarbonisation of carbonaceous fuels, their hydrogenation and, thus, dematerialization (coal -> petroleum -> natural gas -> hydrogen). Energies-of-light utilise all sorts of renewable energies and the chemical secondary energy carrier hydrogen for energy storage and transport, as well as a transportation fuel.

  3. Energy efficient lighting in the retail sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Good Practice Guide gives details on how energy efficient lighting can be incorporated in the brief for a lighting consultant or contractor. The advantages of energy efficiency are highlighted, and the lighting of retail stores, the introduction of energy efficiency measures, and the application of good practice are discussed. Case studies of W H Smith, Cambridge, Tesco Stores, Boots plc, the Harvey Centre, Harlow, and the National Westminster Bank plc are presented. A guide for senior executives and specialists in lighting design is also included. (UK)

  4. The bright and choked gamma-ray burst contribution to the IceCube and ANTARES low-energy excess

    Science.gov (United States)

    Denton, Peter B.; Tamborra, Irene

    2018-04-01

    The increasing statistics of the high-energy neutrino flux observed by the IceCube Observatory points towards an excess of events above the atmospheric neutrino background in the 30–400 TeV energy range. Such an excess is compatible with the findings of the ANTARES Telescope and it would naturally imply the possibility that more than one source class contributes to the observed flux. Electromagnetically hidden sources have been invoked to interpret this excess of events at low energies. By adopting a unified model for the electromagnetically bright and choked gamma-ray bursts and taking into account particle acceleration at the internal and collimation shock radii, we discuss whether bright and choked bursts are viable candidates. Our findings suggest that, although producing a copious neutrino flux, choked and bright astrophysical jets cannot be the dominant sources of the excess of neutrino events. A fine tuning of the model parameters or distinct scenarios for choked jets should be invoked in order to explain the low-energy neutrino data of IceCube and ANTARES.

  5. Biomimetic light-harvesting funnels for re-directioning of diffuse light.

    Science.gov (United States)

    Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo

    2018-02-14

    Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.

  6. Procedure to Measure Indoor Lighting Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Blair, N.; Torcellini, P.

    2005-10-01

    This document provides standard definitions of performance metrics and methods to determine them for the energy performance of building interior lighting systems. It can be used for existing buildings and for proposed buildings. The primary users for whom these documents are intended are building energy analysts and technicians who design, install, and operate data acquisition systems, and who analyze and report building energy performance data. Typical results from the use of this procedure are the monthly and annual energy used for lighting, energy savings from occupancy or daylighting controls, and the percent of the total building energy use that is used by the lighting system. The document is not specifically intended for retrofit applications. However, it does complement Measurement and Verification protocols that do not provide detailed performance metrics or measurement procedures.

  7. Reuse of the Reflective Light and the Recycle Heat Energy in Concentrated Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Hsin-Chien Chen

    2013-01-01

    Full Text Available A complex solar unit with microcrystalline silicon solar cells placed around the centered GaAs triple junction solar cell has been proposed and carried out. With the same illumination area and intensity, the total resultant power shows that the excess microcrystalline silicon solar cells increase the total output power by 13.2% by absorbing the reflective light from the surface of optical collimators. Furthermore, reusing the residual heat energy generated from the above-mentioned mechanism helps to increase the output power by around 14.1%. This mechanism provides a simple method to enhance the utility rate of concentrated photovoltaic (CPV system. Such concept can be further applied to the aerospace industry and the development of more efficient CPV solar energy applications.

  8. Prediction of mass excess, β-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Uno, Masahiro; Yamada, Masami

    1983-02-01

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and β-decay energies (β-decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV

  9. Prediction of mass excess, #betta#-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Uno, Masahiro; Yamada, Masami.

    1983-02-01

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and #betta#-decay energies (#betta# - -decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV. (author)

  10. Excess Gibbs energy for six binary solid solutions of molecularly simple substances

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, L J; Staveley, L A.K.

    1985-01-01

    In this paper we apply the method developed in a previous study of Ar + CH/sub 4/ to the evaluation of the excess Gibbs energy G /SUP E.S/ for solid solutions of two molecularly simple components. The method depends on combining information on the excess Gibbs energy G /SUP E.L/ for the liquid mixture of the two components with a knowledge of the (T, x) solid-liquid phase diagram. Certain thermal properties o the pure substances are also needed. G /SUP E.S/ has been calculated for binary mixtures of Ar + Kr, Kr + CH/sub 4/, CO + N/sub 2/, Kr + Xe, Ar + N/sub 2/, and Ar + CO. In general, but not always, the solid mixtures are more non-ideal than the liquid mixtures of the same composition at the same temperature. Except for the Kr + CH/sub 4/ system, the ratio r = G /SUP E.S/ /G /SUP E.L/ is larger the richer the solution in the component with the smaller molecules.

  11. Boxes, Boosts, and Energy Duality: Understanding the Galactic-Center Gamma-Ray Excess through Dynamical Dark Matter

    CERN Document Server

    Boddy, Kimberly K.

    2017-03-28

    Many models currently exist which attempt to interpret the excess of gamma rays emanating from the Galactic Center in terms of annihilating or decaying dark matter. These models typically exhibit a variety of complicated cascade mechanisms for photon production, leading to a non-trivial kinematics which obscures the physics of the underlying dark sector. In this paper, by contrast, we observe that the spectrum of the gamma-ray excess may actually exhibit an intriguing "energy-duality" invariance under $E_\\gamma \\rightarrow E_\\ast^2/E_\\gamma$ for some $E_\\ast$. As we shall discuss, such an energy duality points back to a remarkably simple alternative kinematics which in turn is realized naturally within the Dynamical Dark Matter framework. Observation of this energy duality could therefore provide considerable information about the properties of the dark sector from which the Galactic-Center gamma-ray excess might arise, and highlights the importance of acquiring more complete data for the Galactic-Center exce...

  12. Xenon lighting adjusted to plant requirements

    Energy Technology Data Exchange (ETDEWEB)

    Koefferlein, M.; Doehring, T.; Payer, H.D.; Seidlitz, H.K. [GSF-Forschungszentrum fuer Umwelt und Gesundheit, Oberschleissheim (Germany)

    1994-12-31

    The high luminous flux and spectral properties of xenon lamps would provide an ideal luminary for plant lighting if not excess IR radiation poses several problems for an application: the required filter systems reduce the irradiance at spectral regions of particular importance for plant development. Most of the economical drawbacks of xenon lamps are related to the difficult handling of that excess IR energy. Furthermore, the temporal variation of the xenon output depending on the oscillations of the applied AC voltage has to be considered for the plant development. However, xenon lamps outperform other lighting systems with respect to spectral stability, immediate response, and maximum luminance. Therefore, despite considerable competition by other lighting techniques, xenon lamps provide a very useful tool for special purposes. In plant lighting however, they seem to play a less important role as other lamp and lighting developments can meet these particular requirements at lower costs.

  13. Lighting consumption and buildings’ energy certifications in Italy

    International Nuclear Information System (INIS)

    Blaso, Laura; Loverso, Valerio R.M; Mutani, Guglielmina

    2015-01-01

    This paper discusses the procedure prescribed by Italian Standards to account the heat gains due to artificial lighting in the calculation of the energy performance indices for a building. A new procedure, based on the Lighting Energy Numerical Indicator (LENI), is proposed. This consists of three steps: i) internal gains from lighting are calculated accounting for day lighting and controls; ii) these gains are summed to the internal heat gains from occupants and appliances; iii) the global heat gains are used to calculate the energy performance indices (for lighting, cooling, heating and hot water production) for an office building following the Italian Technical Standards. The case-study used is the building hosting the Department of Energy at Politecnico di Torino. The building was assumed to be located in Turin and Palermo, and the use of a manual on/off switch and of a photo dimming sensor was also compared. For each configuration, all energy performance indices were calculated comparing standard and new approach [it

  14. Solid-state lighting: an energy-economics perspective

    International Nuclear Information System (INIS)

    Tsao, J Y; Creighton, J R; Coltrin, M E; Simmons, J A; Saunders, H D

    2010-01-01

    Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb-Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy.

  15. Solid-state lighting: an energy-economics perspective

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, J Y; Creighton, J R; Coltrin, M E; Simmons, J A [Physical, Chemical and Nano Sciences Center, Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-0601 (United States); Saunders, H D, E-mail: jytsao@sandia.go, E-mail: jrcreig@sandia.go, E-mail: mecoltr@sandia.go, E-mail: jsimmon@sandia.go, E-mail: hsaunders@decisionprocessesinc.co [Decision Processes Incorporated, 2308 Saddleback Drive, Danville, CA 94506 (United States)

    2010-09-08

    Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb-Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy.

  16. Opportunities of energy saving in lighting systems for public buildings

    Directory of Open Access Journals (Sweden)

    Ayman Abd El-khalek

    2017-03-01

    Full Text Available The lighting system provides many options for cost-effective energy saving with low or no inconvenience. Lighting improvements are excellent investments in most public buildings, it is usually cost-effective to address because lighting improvements are often easier to make than many process upgrades.For public buildings, the easy no and low cost options to help save money and improve the energy performance are:Understand energy use.Identify optionsPrioritize actionsMake the changes and measure the savings.Continue managing energy efficiency.The challenge is to retrofit traditional lamps with LED lamps of good quality. The benefits of LED light bulbs are long-lasting, durable, cool, mercury free, more efficient, and cost effective.The light Emitting Diode (LED bulb uses a semiconductor as its light source, and is currently one of the most energy efficient and quickly developing types of bulbs for lighting. LEDs increasingly are being purchased to replace traditional bulbs. LEDs are relatively more expensive than other types of bulbs, but are very cost-effective because they use only a fraction of electricity of traditional lighting methods nd can last for longer.Benchmarking guides decision makers to policies aimed at the energy sector through better understanding of energy consumption trends nationwide, e.g.: energy price, moderating, peak demand, and encouraging sectors, low energy expansions.The “Improving Energy Efficiency Project of Lighting and Appliances” carried out energy audits and implemented opportunities of energy saving in lighting for different type of public buildings.To rationalize the use of energy by giving guidelines to consumers, the IEEL&A project prepared some brochures.This paper leads with the results of case studies as energy audits, opportunities in lighting systems, energy saving and CO2 reduction.

  17. Interruption of scheduled, automatic feeding and reduction of excess energy intake in toddlers.

    Science.gov (United States)

    Ciampolini, Mario; Brenna, J Thomas; Giannellini, Valerio; Bini, Stefania

    2013-01-01

    Childhood obesity due to the consumption of excess calories is a severe problem in developed countries. In a previous investigation on toddlers, hospital laboratory measurements showed an association of food-demand behavior with constant lower blood glucose before meals than for scheduled meals. We hypothesize that maternal scheduling of meals for toddlers results in excess energy intake compared to feeding only on demand (previously "on request"). We tested the cross-sectional null hypothesis of no difference in energy intake between scheduled (automatic) and demanded meals (administered after evaluation) in 24 mother-toddler (21 months old at entry) pairs with chronic, nonspecific diarrhea presenting at a clinic. We tested the same hypothesis in a subset of 14 toddlers by measuring the resting (sleeping) metabolic rate 4 hours after lunch, as well as the total daily energy expenditure (TEE) in 10 toddlers. We trained mothers to recognize meal demands (as in the previous investigation) and to provide food in response, but required no blood glucose measurements before meals. Energy intake was assessed by a 10-day food diary, resting metabolic rate (RMR) by respiratory analyses (indirect calorimetry) in 14 toddlers, and TEE by doubly labeled water in 10 toddlers. Their blood parameters, anthropometry, and number of days with diarrhea were assessed before training and 50 days after training. RMR decreased from 58.6 ± 7.8 to 49.0 ± 9.1 kcal/kg/d (P kcal/kg/d (P kcal/kg/d (P < 0.001). The height Z-score increased significantly, while weight growth was normal. Toddlers entering the study over the median RMR decreased their RMR significantly more than those below the median RMR (P < 0.01). Scheduled meal suspension induces meal demand frequency to increase. Demanded meals are associated with significantly lower energy intake, RMR, and TEE than scheduled meals. Feeding on demand may be an effective skill in a strategy for reducing excess energy intake in the long term

  18. Light's labour's lost - policies for energy-efficient lighting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-29

    When William Shakepeare wrote Love's Labour's Lost he would have used light from tallow candles at a cost (today) of 12,000 British pounds per million-lumen hours. The same amount of light from electric lamps now costs only 2 pounds! But today's low-cost illumination still has a dark side. Globally, lighting consumes more electricity than is produced by either hydro or nuclear power and results in CO2 emissions equivalent to two thirds of the world's cars. A standard incandescent lamp may be much more efficient than a tallow candle, but it is far less efficient than a high-pressure sodium lamp. Were inefficient light sources to be replaced by the equivalent efficient ones, global lighting energy demand would be up to 40% less at a lower overall cost. Larger savings still could be realised through the intelligent use of controls, lighting levels and daylight. But achieving efficient lighting is not just a question of technology; it requires policies to transform current practice. This book documents the broad range of policy measures to stimulate efficient lighting that have already been implemented around the world and suggests new ways these could be strengthened to prevent light's labour's from being lost.

  19. Light's labour's lost - policies for energy-efficient lighting

    International Nuclear Information System (INIS)

    2006-01-01

    When William Shakepeare wrote Love's Labour's Lost he would have used light from tallow candles at a cost (today) of 12,000 British pounds per million-lumen hours. The same amount of light from electric lamps now costs only 2 pounds. But today's low-cost illumination still has a dark side. Globally, lighting consumes more electricity than is produced by either hydro or nuclear power and results in CO2 emissions equivalent to two thirds of the world's cars. A standard incandescent lamp may be much more efficient than a tallow candle, but it is far less efficient than a high-pressure sodium lamp. Were inefficient light sources to be replaced by the equivalent efficient ones, global lighting energy demand would be up to 40% less at a lower overall cost. Larger savings still could be realised through the intelligent use of controls, lighting levels and daylight. But achieving efficient lighting is not just a question of technology; it requires policies to transform current practice. This book documents the broad range of policy measures to stimulate efficient lighting that have already been implemented around the world and suggests new ways these could be strengthened to prevent light's labour's from being lost

  20. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons

    International Nuclear Information System (INIS)

    Mukherjee, B.; Simrock, S.; Khachan, J.; Rybka, D.; Romaniuk, R.

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a 60 Co source up to a dose level in excess of 1.0 kGy (1.0 x 10 5 rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong Bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted. (authors)

  1. ACTIVATION PARAMETERS AND EXCESS THERMODYANAMIC ...

    African Journals Online (AJOL)

    Applying these data, viscosity-B-coefficients, activation parameters (Δμ10≠) and (Δμ20≠) and excess thermodynamic functions, viz., excess molar volume (VE), excess viscosity, ηE and excess molar free energy of activation of flow, (GE) were calculated. The value of interaction parameter, d, of Grunberg and Nissan ...

  2. Excess wind power

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    Expansion of wind power is an important element in Danish climate change abatement policy. Starting from a high penetration of approx 20% however, momentary excess production will become an important issue in the future. Through energy systems analyses using the EnergyPLAN model and economic...... analyses it is analysed how excess productions are better utilised; through conversion into hydrogen of through expansion of export connections thereby enabling sales. The results demonstrate that particularly hydrogen production is unviable under current costs but transmission expansion could...

  3. The role of energy losses in photosynthetic light harvesting

    Science.gov (United States)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  4. Light energy dissipation under water stress conditions

    International Nuclear Information System (INIS)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P.

    1990-01-01

    Using 14 CO 2 gas exchange and metabolite analyses, stomatal as well as total internal CO 2 uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to -2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO 2 exchange was drastically reduced, whereas the total CO 2 uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO 2 . This CO 2 -recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO 2 recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations

  5. Direct Energy Centre underground parking integrated light control system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    LightSavers is a project undertaken by the Toronto Atmospheric Fund to accelerate the use of lighting technologies. As part of the project a pilot test has been carried out in the Direct Energy Center in Toronto. The aim of this report is to present the study and its results. The Direct Energy Center is a large event facility with an large underground parking facility. A lighting energy management system, the energy control system (ECS), capable of adjusting lighting levels based on occupancy was implemented in the centre and data was collected during over one year. Results showed that the ECS permitted a reduction in energy consumption and thus greenhouse gas emissions by 47% and the payback will take less than 6 years. This project demonstrated that the energy control system provides better energy, environmental and economic performance than a traditional automation system.

  6. Lighting Energy Saving with Light Pipe in Farm Animal Production

    Directory of Open Access Journals (Sweden)

    Hans von Wachenfelt

    2015-12-01

    Full Text Available The Swedish animal production sector has potential for saving electric lighting of €4-9 million per year using efficient daylight utilisation. To demonstrate this, two light pipe systems, Velux® (house 1 and Solatube® (house 2, are installed in two identical pig houses to determine if the required light intensity, daylight autonomy (DA, and reduced electricity use for illumination can be achieved. In each house, three light sensors continuously measure the indoor daylight relative to an outdoor sensor. If the horizontal illuminance at pig height decreases below 40 lux between 08.00 and 16.00 hours, an automatic control system activates the lights, and electricity use is measured. The daylight factor (DF and DA are determined for each house, based on annual climate data. The mean annual DA of 48% and 55% is achieved for house 1 and house 2, respectively. Light pipes in house 2 have delivered significantly more DA than those in house 1. The most common illuminance range between 0 and 160 lux is recorded in both houses, corresponding to approximately 82% and 83% of daylight time for house 1 and house 2, respectively. Further, the daylighting system for house 2 has produced a uniform DF distribution between 0.05 and 0.59. The results demonstrate that considerable electric energy savings can be achieved in the animal production sector using light pipes. Saving 50% of electric lighting would correspond to 36 GWh or 2520 t CO2 per year for Sweden, but currently the energy savings are not making the investment profitable.

  7. ENERGY STAR Certified Light Commercial HVAC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Light Commercial HVAC that are effective as of...

  8. The role of energy losses in photosynthetic light harvesting

    International Nuclear Information System (INIS)

    Krüger, T P J; Van Grondelle, R

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example. (topical review)

  9. Enantiomeric excesses induced in amino acids by ultraviolet circularly polarized light irradiation of extraterrestrial ice analogs: A possible source of asymmetry for prebiotic chemistry

    International Nuclear Information System (INIS)

    Modica, Paola; De Marcellus, Pierre; D'Hendecourt, Louis Le Sergeant; Meinert, Cornelia; Meierhenrich, Uwe J.; Nahon, Laurent

    2014-01-01

    The discovery of meteoritic amino acids with enantiomeric excesses of the L-form (ee L ) has suggested that extraterrestrial organic materials may have contributed to prebiotic chemistry and directed the initial occurrence of the ee L that further led to homochirality of amino acids on Earth. A proposed mechanism for the origin of ee L in meteorites involves an asymmetric photochemistry of extraterrestrial ices by UV circularly polarized light (CPL). We have performed the asymmetric synthesis of amino acids on achiral extraterrestrial ice analogs by VUV CPL, investigating the chiral asymmetry transfer at two different evolutionary stages at which the analogs were irradiated (regular ices and/or organic residues) and at two different photon energies (6.6 and 10.2 eV). We identify 16 distinct amino acids and precisely measure the L-enantiomeric excesses using the enantioselective GC × GC-TOFMS technique in five of them: α-alanine, 2,3-diaminopropionic acid, 2-aminobutyric acid, valine, and norvaline, with values ranging from ee L = –0.20% ± 0.14% to ee L = –2.54% ± 0.28%. The sign of the induced ee L depends on the helicity and the energy of CPL, but not on the evolutionary stage of the samples, and is the same for all five considered amino acids. Our results support an astrophysical scenario in which the solar system was formed in a high-mass star-forming region where icy grains were irradiated during the protoplanetary phase by an external source of CPL of a given helicity and a dominant energy, inducing a stereo-specific photochemistry.

  10. Light energy dissipation under water stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P. (Universitaet Kaiserslautern (West Germany))

    1990-04-01

    Using {sup 14}CO{sub 2} gas exchange and metabolite analyses, stomatal as well as total internal CO{sub 2} uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to {minus}2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO{sub 2} exchange was drastically reduced, whereas the total CO{sub 2} uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO{sub 2}. This CO{sub 2}-recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO{sub 2} recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.

  11. Fuel poverty, excess winter deaths, and energy costs in Vermont: Burdensome for whom?

    International Nuclear Information System (INIS)

    Teller-Elsberg, Jonathan; Sovacool, Benjamin; Smith, Taylor; Laine, Emily

    2016-01-01

    Energy, whether from electricity, natural gas, heating oil, propane, kerosene, or wood, is essential for the well-being of many Americans, yet those who spend more than 10 percent of their income of energy services can be considered “fuel poor.” This study assesses the extent and severity of fuel poverty in Vermont. It analyzes energy burdens in Vermont by household income deciles, using data from the Census Bureau's American Community Survey. Approximately 71,000 people suffered from fuel poverty in Vermont in 2000, and in 2012 the number rose to 125,000, or one in five Vermonters. Startlingly, fuel poverty grew 76 percent during this period. Excess winter deaths, caused potentially by fuel poverty, kill more Vermonters each year than car crashes. The article then provides 12 policy recommendations based on a small sample of elite semi-structured research interviews. These include suggestions that the Vermont legislature better fund investments in weatherization among low-income households; that community groups and social service agencies scale up the training of energy efficiency coaches; that state agencies endorse improvements in housing efficiency and appropriate fuel switching; and that utilities and fuel providers offer extra assistance for disconnected households and allow for on-bill financing of efficiency improvements. - Highlights: • Those spending 10 percent of their monthly income or more on energy services are in “fuel poverty”. • In this study we analyze the energy burden in Vermont by household income deciles. • We calculate that excess winter deaths caused potentially by fuel poverty kill more Vermonters each year than car crashes. • We conclude with implications for energy planners and policymakers.

  12. Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat

    Directory of Open Access Journals (Sweden)

    Borna Doračić

    2018-03-01

    Full Text Available District heating plays a key role in achieving high primary energy savings and the reduction of the overall environmental impact of the energy sector. This was recently recognized by the European Commission, which emphasizes the importance of these systems, especially when integrated with renewable energy sources, like solar, biomass, geothermal, etc. On the other hand, high amounts of heat are currently being wasted in the industry sector, which causes low energy efficiency of these processes. This excess heat can be utilized and transported to the final customer by a distribution network. The main goal of this research was to calculate the potential for excess heat utilization in district heating systems by implementing the levelized cost of excess heat method. Additionally, this paper proves the economic and environmental benefits of switching from individual heating solutions to a district heating system. This was done by using the QGIS software. The variation of different relevant parameters was taken into account in the sensitivity analysis. Therefore, the final result was the determination of the maximum potential distance of the excess heat source from the demand, for different available heat supplies, costs of pipes, and excess heat prices.

  13. Questions asked concerning energy savings in lighting systems

    International Nuclear Information System (INIS)

    Bernet, J.

    2005-01-01

    This article discusses the question why information on the power consumption of lighting fixtures is not often to be found in articles in lifestyle magazines or in the displays of designer-boutiques. The efficiency of various types of lighting is discussed. In particular, the differences between traditional incandescent bulbs and energy-saving lighting systems are examined from the aesthetical, colour-reproduction and energy-consumption points of view. Further information presented includes details on colour-reproduction indexes and colour temperature. The lighting needs of various types of room are looked at and the influence of the physical form of the lighting fixtures on purchasing decisions is examined

  14. ENERGY STAR Certified Products - Lighting

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains a simplified list of all currently certified ENERGY STAR Lighting models with basic model information collected across all product categories...

  15. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  16. Excess plutonium disposition using ALWR technology

    International Nuclear Information System (INIS)

    Phillips, A.; Buckner, M.R.; Radder, J.A.; Angelos, J.G.; Inhaber, H.

    1993-02-01

    The Office of Nuclear Energy of the Department of Energy chartered the Plutonium Disposition Task Force in August 1992. The Task Force was created to assess the range of practicable means of disposition of excess weapons-grade plutonium. Within the Task Force, working groups were formed to consider: (1) storage, (2) disposal,and(3) fission options for this disposition,and a separate group to evaluate nonproliferation concerns of each of the alternatives. As a member of the Fission Working Group, the Savannah River Technology Center acted as a sponsor for light water reactor (LWR) technology. The information contained in this report details the submittal that was made to the Fission Working Group of the technical assessment of LWR technology for plutonium disposition. The following aspects were considered: (1) proliferation issues, (2) technical feasibility, (3) technical availability, (4) economics, (5) regulatory issues, and (6) political acceptance

  17. Phenomenology of SU(5 low-energy realizations: The diphoton excess and Higgs flavor violation

    Directory of Open Access Journals (Sweden)

    Andrea Di Iura

    2016-10-01

    Full Text Available We discuss different SU(5 low-energy realizations and illustrate their use with the diphoton excess and Higgs flavor violation, which require new physics at the TeV scale. In particular, we study two scenarios for a 750 GeV resonance: in the first one the resonance belongs to the adjoint of SU(5, being either an SU(2L singlet or a triplet, while in the second case the signal is due to the CP-even and CP-odd states of a new SU(2L Higgs doublet belonging to a 45H or a 70H representations, giving rise to a two-Higgs doublet model at low energies. We study the fine-tuning needed for the desired members of the multiplets to be light enough, while having the rest at the GUT scale. In these scenarios, the production and decay into photons of the new resonance are mediated by the leptoquarks (LQ present in these large SU(5 representations. We analyze the phenomenology of such scenarios, focusing on the most relevant predictions that can help to disentangle the different models, like decays into gauge bosons, Standard Model (SM fermions and LQs pair production. In the case of the 45H (the Georgi–Jarlskog model, we also study the possibility to have Higgs flavor violation. We find that Bs mixing limits (in addition to τ→μγ always imply that Br(h→τμ,bs≲10−5.

  18. Background model systematics for the Fermi GeV excess

    Energy Technology Data Exchange (ETDEWEB)

    Calore, Francesca; Cholis, Ilias; Weniger, Christoph

    2015-03-01

    The possible gamma-ray excess in the inner Galaxy and the Galactic center (GC) suggested by Fermi-LAT observations has triggered a large number of studies. It has been interpreted as a variety of different phenomena such as a signal from WIMP dark matter annihilation, gamma-ray emission from a population of millisecond pulsars, or emission from cosmic rays injected in a sequence of burst-like events or continuously at the GC. We present the first comprehensive study of model systematics coming from the Galactic diffuse emission in the inner part of our Galaxy and their impact on the inferred properties of the excess emission at Galactic latitudes 2° < |b| < 20° and 300 MeV to 500 GeV. We study both theoretical and empirical model systematics, which we deduce from a large range of Galactic diffuse emission models and a principal component analysis of residuals in numerous test regions along the Galactic plane. We show that the hypothesis of an extended spherical excess emission with a uniform energy spectrum is compatible with the Fermi-LAT data in our region of interest at 95% CL. Assuming that this excess is the extended counterpart of the one seen in the inner few degrees of the Galaxy, we derive a lower limit of 10.0° (95% CL) on its extension away from the GC. We show that, in light of the large correlated uncertainties that affect the subtraction of the Galactic diffuse emission in the relevant regions, the energy spectrum of the excess is equally compatible with both a simple broken power-law of break energy E(break) = 2.1 ± 0.2 GeV, and with spectra predicted by the self-annihilation of dark matter, implying in the case of bar bb final states a dark matter mass of m(χ)=49(+6.4)(-)(5.4)  GeV.

  19. The prospect for fusion energy with light ions

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Adams, R.G.; Bailey, J.E.

    1998-01-01

    Intense ion beams may be the best option for an Inertial Fusion Energy (IFE) driver. While light ions may be the long-term pulsed power approach to IFE, the current economic climate is such that there is no urgency in developing fusion energy sources. Research on light ion beams at Sandia will be suspended at the end of this fiscal year in favor of z-pinches studying ICF target physics, high yield fusion, and stewardship issues. The authors document the status of light ion research and the understanding of the feasibility of scaling light ions to IFE

  20. Interruption of scheduled, automatic feeding and reduction of excess energy intake in toddlers

    Directory of Open Access Journals (Sweden)

    Ciampolini M

    2013-01-01

    Full Text Available Mario Ciampolini,1 J Thomas Brenna,2 Valerio Giannellini,3 Stefania Bini11Preventive Gastroenterology Unit, Department of Paediatrics, Università di Firenze, Florence, Italy; 2Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; 3Department of Pharmaceutical Sciences, Università di Firenze, Florence, ItalyBackground: Childhood obesity due to the consumption of excess calories is a severe problem in developed countries. In a previous investigation on toddlers, hospital laboratory measurements showed an association of food-demand behavior with constant lower blood glucose before meals than for scheduled meals. We hypothesize that maternal scheduling of meals for toddlers results in excess energy intake compared to feeding only on demand (previously “on request”.Objective: We tested the cross-sectional null hypothesis of no difference in energy intake between scheduled (automatic and demanded meals (administered after evaluation in 24 mother–toddler (21 months old at entry pairs with chronic, nonspecific diarrhea presenting at a clinic. We tested the same hypothesis in a subset of 14 toddlers by measuring the resting (sleeping metabolic rate 4 hours after lunch, as well as the total daily energy expenditure (TEE in 10 toddlers.Methods: We trained mothers to recognize meal demands (as in the previous investigation and to provide food in response, but required no blood glucose measurements before meals. Energy intake was assessed by a 10-day food diary, resting metabolic rate (RMR by respiratory analyses (indirect calorimetry in 14 toddlers, and TEE by doubly labeled water in 10 toddlers. Their blood parameters, anthropometry, and number of days with diarrhea were assessed before training and 50 days after training.Results: RMR decreased from 58.6 ± 7.8 to 49.0 ± 9.1 kcal/kg/d (P < 0.001 and TEE decreased from 80.1 ± 6.9 to 67.8 ± 10.0 kcal/kg/d (P < 0.001. Energy intake decreased from 85.7 ± 15.3 to 70.3 ± 15.8 kcal

  1. Ultra high benefits system for electric energy saving and management of lighting energy in buildings

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Presenting a novel multi channel smart system to manage lighting energy in buildings. • Saving considerable electric energy which is converted to lighting in buildings. • Providing desired constant and adjustable luminance for each location in buildings. • Capability of working with all AC electric power sources. • To automatically control and manage lighting energy in buildings. - Abstract: This paper presents a smart system, including a multi channel dimmer and a central process unit (CPU) together with an exact multi channel feedback mechanism, which automatically regulates and manages lighting in buildings. Based on a multi channel luminance feedback, a high benefits technique is utilized to convert the electric energy to lighting energy. Saving a lot of the electric energy which should be converted to lighting energy in buildings, managing the lighting energy in buildings, providing desired constant and adjustable luminance for each room (location), and the capability of working with all AC electric power sources regardless of frequency and voltage amplitude are some advantages of using the proposed system and technique, thus it will be widely used in buildings. An experimental prototype of the proposed smart system has been constructed to validate the theoretical results and to carry out the experimental tests. Experimental results earned by utilizing the proposed smart system in a sample building are presented to prove the benefits of using the system. The experimental results explicitly show a considerable electric energy saving (about 27%) in the sample building while the proposed system has provided desired constant and adjustable luminance for each location of the building

  2. Excess Gibbs Energy for Ternary Lattice Solutions of Nonrandom Mixing

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hae Young [DukSung Womens University, Seoul (Korea, Republic of)

    2008-12-15

    It is assumed for three components lattice solution that the number of ways of arranging particles randomly on the lattice follows a normal distribution of a linear combination of N{sub 12}, N{sub 23}, N{sub 13} which are the number of the nearest neighbor interactions between different molecules. It is shown by random number simulations that this assumption is reasonable. From this distribution, an approximate equation for the excess Gibbs energy of three components lattice solution is derived. Using this equation, several liquid-vapor equilibria are calculated and compared with the results from other equations.

  3. Energy transfer dynamics in Light-Harvesting Dendrimers

    Science.gov (United States)

    Melinger, Joseph S.; McMorrow, Dale; Kleiman, Valeria D.

    2002-03-01

    We explore energy transfer dynamics in light-harvesting phenylacetylene symmetric and asymmetric dendrimers. Femtosecond pump-probe spectroscopy is used to probe the ultrafast dynamics of electronic excitations in these dendrimers. The backbone of the macromolecule consists of branches of increasing conjugation length, creating an energy gradient, which funnels energy to an accepting perylene trap. In the case of the symmetric dendrimer (nanostar), the energy transfer efficiency is known to approach nearly unity, although the nature and timescale of the energy transfer process is still unknown. For the asymmetric dendrimers, energy transfer efficiencies are very high, with the possibility of more complex transfer processes. We experimentally monitor the transport of excitons through the light-harvesting dendrimer. The transients show a number of components, with timescales ranging from <300fs to several tens of picoseconds, revealing the complex photophysics taking place in these macromolecules. We interpret our results in terms of the Förster mechanism in which energy transfer occurs through dipole-dipole interactions.

  4. Casino Rama hits the jackpot with energy-efficient lighting

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-10-15

    A lighting retrofit program was conducted by Casino Rama in an effort to improve quality while reducing costs and environmental impacts. Casino Rama, Ontario's only commercial First Nation's casino, was opened in July 1996. With over 25,000 bulbs in use, the facility had a lot to gain by reducing energy costs. Toronto Hydro (TH) Energy Services evaluated the facility's current usage level and recommended ways to increase energy efficiency. The casino used mostly incandescent and fluorescent lights which provided adequate light, but which required a great deal of upkeep. The operators wanted to relamp the lighting package that consumed the most electricity with high-efficiency lighting systems that would maintain a consistent look with that of the warm-glow provided by incandescent light bulbs. In order to benefit from energy savings, an efficient, non-invasive system was needed with minimal construction costs to retrofit the lighting system. TH Energy concluded that high-quality, longer-lasting lamps were required. TCP Inc. provided energy-efficient compact fluorescent lamps (CFLs) that have an average life of 10,000 hours and use a quarter of the energy of standard incandescent bulbs, resulting in increased energy savings, lower utility costs and greenhouse gas reduction. The retrofit involved the replacement of more than 5,000 bulbs with over 4,000 CFLs being installed on the 3 massive canopies over the casino entrance. Long-life LED products lasting up to 50,000 hours were also used for the glass elevator shaft, which minimized maintenance costs. Cold-cathode lamps that last an average 25,000 hours were recommended for rapid cycle applications such as signage. The relamping process was completed in 7 working days with minimal disruption to business activity. The casino has saved $200,000 from its annual hydro bill and has freed up valuable manpower for other maintenance-related tasks. The relamping is reducing greenhouse gas emissions by 7 to 8

  5. Casino Rama hits the jackpot with energy-efficient lighting

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2007-10-15

    A lighting retrofit program was conducted by Casino Rama in an effort to improve quality while reducing costs and environmental impacts. Casino Rama, Ontario's only commercial First Nation's casino, was opened in July 1996. With over 25,000 bulbs in use, the facility had a lot to gain by reducing energy costs. Toronto Hydro (TH) Energy Services evaluated the facility's current usage level and recommended ways to increase energy efficiency. The casino used mostly incandescent and fluorescent lights which provided adequate light, but which required a great deal of upkeep. The operators wanted to relamp the lighting package that consumed the most electricity with high-efficiency lighting systems that would maintain a consistent look with that of the warm-glow provided by incandescent light bulbs. In order to benefit from energy savings, an efficient, non-invasive system was needed with minimal construction costs to retrofit the lighting system. TH Energy concluded that high-quality, longer-lasting lamps were required. TCP Inc. provided energy-efficient compact fluorescent lamps (CFLs) that have an average life of 10,000 hours and use a quarter of the energy of standard incandescent bulbs, resulting in increased energy savings, lower utility costs and greenhouse gas reduction. The retrofit involved the replacement of more than 5,000 bulbs with over 4,000 CFLs being installed on the 3 massive canopies over the casino entrance. Long-life LED products lasting up to 50,000 hours were also used for the glass elevator shaft, which minimized maintenance costs. Cold-cathode lamps that last an average 25,000 hours were recommended for rapid cycle applications such as signage. The relamping process was completed in 7 working days with minimal disruption to business activity. The casino has saved $200,000 from its annual hydro bill and has freed up valuable manpower for other maintenance-related tasks. The relamping is reducing greenhouse gas emissions by 7 to 8 per cent, based

  6. Photo-double ionization of argon at 20 and 40 eV excess energy

    International Nuclear Information System (INIS)

    Bolognesi, P; Zitnik, M; Malegat, L; Selles, P; Turri, G; Coreno, M; Camilloni, R; Avaldi, L

    2004-01-01

    We have measured the triple differential cross section of the Ar 2+ 3p 4 ( 3 P e ) state at 20 and 40 eV excess energy in equal and unequal energy sharing conditions, respectively. The present results and previous data of the He 2+ ( 1 S e ) state measured in the same conditions have been represented by an exact parametrization of the triple differential cross section given by Malegat et al (1997 J. Phys. B: At. Mol. Opt. Phys. 30 251; 2002 J. Phys. B: At. Mol. Opt. Phys. 35 5169)

  7. Energy efficiency public lighting management in the cities

    International Nuclear Information System (INIS)

    Radulovic, Dusko; Skok, Srdjan; Kirincic, Vedran

    2011-01-01

    Cities all around the world are faced with a rapid increase of urban population, and their crucial sustainable development issue becomes energy management. Moreover, the national energy management sector is slowly passing from government surveillance to the responsibility of local municipalities. The energy efficiency management in cities helps local governments to focus on important energy projects that have strong environmental aspects and financial feasibility. This paper analyzes the public lighting energy management in the Croatian city of Rijeka in order to determine the connection of the energy market liberalization and sustainable development in urban areas. Research results indicate a significant connection between investments in energy management of public lighting and its influence on lower emissions of carbon dioxide (CO 2 ).

  8. Energy utilization of light and heavy weaned piglets subjected to different dietary energy levels

    Directory of Open Access Journals (Sweden)

    Andréa Machado Leal Ribeiro

    Full Text Available ABSTRACT This study was conducted to evaluate the effects of dietary metabolisable energy (ME: 3.25, 3.40, 3.55, or 3.70 Mcal kg−1 and weaning weight (WW: light 4.0±0.7 kg, and heavy: 6.3±0.6 kg on productive response and energy utilization of weaned piglets. Sixty-four male piglets were housed in 32 metabolic cages (two animals per cage during the first 14 d postweaning. At day 15, only one animal per cage was kept until day 28. Body composition, energy, and nutrient deposition rates and energy utilization efficiency were measured through a comparative slaughter procedure. Piglets with light WW had a poorer feed conversion ratio and lower weight gain and feed intake when expressed per live weight. Increased ME led to greater daily fat deposition in the empty bodies (defined as weighted mean of the carcass + organs + blood, no intestinal content, while light WW piglets had a reduced protein deposition. Light WW piglets increased heat production with increased ME, but no effect was seen for the heavy WW piglets. By contrast, heavy WW piglets increased empty body gross energy as ME increased, while no influence was observed on light WW piglets. Increasing dietary energy levels did not contribute to the subsequent growth performance of piglets that were lighter at weaning. The lack of interaction between weaning weight and dietary ME content on growth performance does not support the hypothesis that light piglets at weaning do not exhibit compensatory growth because of limitations in energy intake.

  9. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens.

    Science.gov (United States)

    Pinnola, Alberta; Dall'Osto, Luca; Gerotto, Caterina; Morosinotto, Tomas; Bassi, Roberto; Alboresi, Alessandro

    2013-09-01

    Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)-dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments.

  10. Day-light-controlled artificial lighting a potential energy saver": right interior light by sky luninance trracking

    NARCIS (Netherlands)

    Rutten, A.J.F.; Mills, Evan

    1991-01-01

    The energy consumption in office buildings can considerably be cut, if daylight is used as task lighting. A conservative estimate - starting from existing knowledge and calculation methods - gives a potential saving of 460 GWh a year or 46 % of the electricity costs for artificial lighting in Dutch

  11. Nuclear structure studies with low-energy light ions: fundamental and applied

    International Nuclear Information System (INIS)

    Mazumdar, I.

    2016-01-01

    Studies in low and medium energy nuclear physics have been dominated by heavy-ion induced reactions for last five decades. Heavy-ion induced nuclear reactions have enriched our knowledge of the structural evolutions and intricacies of reaction dynamics of the nuclear many-body systems. However, the emergence and rise of heavy-ion physics have seen a general decline in studies with low- and medium-energy light-ion beams. The harsh reality of dwindling number of low-energy light ion facilities adversely affect research in nuclear physics. Very low-energy and high current light-ion facilities immediately conjures up in our minds the studies in nuclear astrophysics. Measurements of light-ion capture cross sections and astrophysical S factors are the major themes of research at most of the light-ion facilities. However, the importance low energy light-ion beams is multifarious. A variety of measurements providing vital support and inputs to heavy-ion research can only be carried out at the low-energy, light-ion facilities. Light-ion beams are also useful for generation of mono-energetic neutron beams. In this talk I will draw from some of our recent measurements to show the importance of light-ion beams in nuclear astrophysics and also in applied nuclear physics. (author)

  12. ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; De Cia, Annalisa; Waldman, Roni; Ofek, Eran O.; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Perley, Daniel A. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Quimby, Robert M. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Yan, Lin [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Fremling, Christoffer; Taddia, Francesco; Sollerman, Jesper [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Valenti, Stefano [Department of Physics, University of California, Davis, CA 95616 (United States); Arcavi, Iair; Howell, D. Andrew [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kasliwal, Mansi M., E-mail: paul.vreeswijk@weizmann.ac.il [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2017-01-20

    We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (∼10 days) and brightness relative to the main peak (2–3 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration (>30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of {sup 56}Ni and {sup 56}Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.

  13. Zeaxanthin Binds to Light-Harvesting Complex Stress-Related Protein to Enhance Nonphotochemical Quenching in Physcomitrella patens[W

    Science.gov (United States)

    Pinnola, Alberta; Dall’Osto, Luca; Gerotto, Caterina; Morosinotto, Tomas; Bassi, Roberto; Alboresi, Alessandro

    2013-01-01

    Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)–dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments. PMID:24014548

  14. Photoprotection in Plants Involves a Change in Lutein 1 Binding Domain in the Major Light-harvesting Complex of Photosystem II

    NARCIS (Netherlands)

    Ilioaia, C.; Johnson, M.P.; Liao, P.N.; Pascal, A.A.; van Grondelle, R.; Walla, P.J.; Ruban, A.V.; Robert, B.

    2011-01-01

    Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem

  15. UV emissions from low energy artificial light sources.

    Science.gov (United States)

    Fenton, Leona; Moseley, Harry

    2014-01-01

    Energy efficient light sources have been introduced across Europe and many other countries world wide. The most common of these is the Compact Fluorescent Lamp (CFL), which has been shown to emit ultraviolet (UV) radiation. Light Emitting Diodes (LEDs) are an alternative technology that has minimal UV emissions. This brief review summarises the different energy efficient light sources available on the market and compares the UV levels and the subsequent effects on the skin of normal individuals and those who suffer from photodermatoses. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Energy efficient solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Hansen, C.; Petersen, Poul Michael

    2012-11-15

    Even though vast improvements have been made on efficiency and light quality, SSL is still in its infancy. One of the barriers for a market introduction is the price, which still is around 5 times higher than traditional lighting technologies. In order to fulfil the potential of SSL, further research and development needs to increase the light extraction from semiconductor materials, provide better and cheaper production and packaging, and advanced optical systems for optimized light distribution and new thermal solutions for SSL lamps and luminaires. Nanotechnology and applied research at DTU Fotonik in close collaboration with industry are essential parts in the development of new enhanced LED optical systems and LEDs with higher light extraction efficiency. Photonic crystals can help to efficiently extract light from LEDs and to form a desired emission profile. Future directions are devoted to the next generation of LEDs, in which the spontaneous emission is photon enhanced. One realization of this idea is using LEDs with a layer of nanocrystals, which are coupled to the quantum well of the LED. Such R and D work is ongoing all over the world and DOE roadmaps foresee luminous efficiencies by 2020 that are close to 250 lm/W for both cold and warm white light from LEDs, and prices in the order of one dollar per kilolumen. Such figures will drastically reduce the energy consumption worldwide for lighting, and hence a marked reduction in carbon emissions. (Author)

  17. Low energy IceCube data and a possible Dark Matter related excess

    Energy Technology Data Exchange (ETDEWEB)

    Chianese, M., E-mail: chianese@na.infn.it [INFN, Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Complesso Univ. Monte S. Angelo, I-80126 Napoli (Italy); Miele, G.; Morisi, S. [INFN, Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Complesso Univ. Monte S. Angelo, I-80126 Napoli (Italy); Vitagliano, E. [Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Complesso Univ. Monte S. Angelo, I-80126 Napoli (Italy); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2016-06-10

    In this Letter we focus our attention on the IceCube events in the energy range between 60 and 100 TeV, which show an order 2-sigma excess with respect to a power-law with spectral index 2. We analyze the possible origin of such an excess by comparing the distribution of the arrival directions of IceCube events with the angular distributions of simply distributed astrophysical galactic/extragalactic sources, as well as with the expected flux coming from DM interactions (decay and annihilation) for different DM profiles. The statistical analysis performed seems to disfavor the correlation with the galactic plane, whereas rules out the DM annihilation scenario only in case of small clumpiness effect. The small statistics till now collected does not allow to scrutinize the cases of astrophysical isotropic distribution and DM decay scenarios. For this reason we perform a forecast analysis in order to stress the role of future Neutrino Telescopes.

  18. Energy Optimization of Road Tunnel Lighting Systems

    Directory of Open Access Journals (Sweden)

    Ferdinando Salata

    2015-07-01

    Full Text Available A road tunnel is an enclosed and covered infrastructure for the vehicular traffic. Its lighting system provides 24 h of artificial sources only, with a higher amount of electric power used during the day. Due to safety reasons, when there is natural lighting outside the tunnel, the lighting levels in the stretches right after the entrance and before the exit must be high, in order to guide the driver’s eye towards the middle of the tunnel where the luminance must guarantee safe driving, avoid any over-dimensioning of the lighting systems, and produce energy savings. Such effects can be reached not only through the technological advances in the field of artificial lighting sources with high luminous efficiency, but also through new materials for road paving characterized by a higher reflection coefficient than other ordinary asphalts. This case study examines different technical scenarios, analyzing and comparing possible energy and economic savings. Traditional solutions are thus compared with scenarios suggesting the solutions previously mentioned. Special asphalts are interesting from an economic point of view, whereas the high costs of LED sources nowadays represent an obstacle for their implementation.

  19. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  20. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  1. Energy-saving approaches to solid state street lighting

    Science.gov (United States)

    Vitta, Pranciškus; Stanikūnas, Rytis; Tuzikas, Arūnas; Reklaitis, Ignas; Stonkus, Andrius; Petrulis, Andrius; Vaitkevičius, Henrikas; Žukauskas, Artūras

    2011-10-01

    We consider the energy-saving potential of solid-state street lighting due to improved visual performance, weather sensitive luminance control and tracking of pedestrians and vehicles. A psychophysical experiment on the measurement of reaction time with a decision making task was performed under mesopic levels of illumination provided by a highpressure sodium (HPS) lamp and different solid-state light sources, such as daylight and warm-white phosphor converted light-emitting diodes (LEDs) and red-green-blue LED clusters. The results of the experiment imply that photopic luminances of road surface provided by solid-state light sources with an optimized spectral power distribution might be up to twice as low as those provided by the HPS lamp. Dynamical correction of road luminance against road surface conditions typical of Lithuanian climate was estimated to save about 20% of energy in comparison with constant-level illumination. The estimated energy savings due to the tracking of pedestrians and vehicles amount at least 25% with the cumulative effect of intelligent control of at least 40%. A solid-state street lighting system with intelligent control was demonstrated using a 300 m long test ground consisting of 10 solid-state street luminaires, a meteorological station and microwave motion sensor network operated via power line communication.

  2. CMOS indoor light energy harvesting system for wireless sensing applications

    CERN Document Server

    Ferreira Carvalho, Carlos Manuel

    2016-01-01

    This book discusses in detail the CMOS implementation of energy harvesting.  The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed.  The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system.  The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system.  ·         Discusses several energy sources which can be used to power energy harvesting systems and includes an overview of PV cell technologies  ·         Includes an introduction to voltage step-...

  3. Design of a Stand-Alone Photovoltaic (PV Models for Home Lightings and Clean Environment

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper gives a well-documented health risks of fuel-based lighting (kerosene lamps and fuel-powered generators and proposed a design of a stand-alone solar PV system for sustainable home lightings in rural Nigerian area. The design was done in three different patterns of electricity consumptions with energy efficient lightings (EELs using two different battery types (Rolls Surrette 6CS25PS and hoppecke 10 OpzS 1000 on; i judicious power consumption, ii normal power consumption, iii excess power consumption; and compared them with the incandescent light bulb consumption. The stand-alone photovoltaic energy systems were designed to match the rural Nigerian sunlight and weather conditions to meet the required lightings of the household. The objective function and constraints for the design models were formulated and optimization procedure were used to demonstrate the best solution (reliability at the lowest lifecycle cost. Initial capital costs as well as annualized costs over 5, 10, 15, 20, and 25 years were quantified and documented. The design identified the most cost-effective and reliable solar and battery array among the patterns of electricity consumption with energy efficient lighting options (judicious power consumption, normal power consumption, and excess power consumption.

  4. Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden-Part 2: Results for future energy market scenarios

    International Nuclear Information System (INIS)

    Joensson, Johanna; Svensson, Inger-Lise; Berntsson, Thore; Moshfegh, Bahram

    2008-01-01

    In this paper the trade-off between internal and external use of excess heat from a kraft pulp mill is investigated for four different future energy market scenarios. The work follows the methodology described in Svensson et al. [2008. Excess heat from kraft pulp mills: trade-offs between internal and external use in the case of Sweden-Part 1: methodology. Energy Policy, submitted for publication], where a systematic approach is proposed for investigating the potential for profitable excess heat cooperation. The trade-off is analyzed by economic optimization of an energy system model consisting of a pulp mill and an energy company (ECO). In the model, investments can be made, which increase the system's energy efficiency by utilization of the mill's excess heat, as well as investments that increase the electricity production. The results show that the trade-off depends on energy market prices, the district heating demand and the type of existing heat production. From an economic point of view, external use of the excess heat is preferred for all investigated energy market scenarios if the mill is studied together with an ECO with a small heat load. For the cases with medium or large district heating loads, the optimal use of excess heat varies with the energy market price scenarios. However, from a CO 2 emissions perspective, external use is preferred, giving the largest reduction of global emissions in most cases

  5. Conversion and conservation of light energy in a photosynthetic microbial mat ecosystem

    DEFF Research Database (Denmark)

    Al-Najjar, A. A.; de Beer, Dirk; Jørgensen, Bo Barker

    2010-01-01

    : in light-limiting conditions, 95.5% of the absorbed light energy dissipated as heat and 4.5% was channeled into photosynthesis. This energy disproportionation changed in favor of heat dissipation at increasing irradiance, with >99% of the absorbed light energy being dissipated as heat and 700 micromol...

  6. Conversion of excess wind energy into hydrogen for fuel cell applications. A system analysis within the context of the Dutch energy system

    International Nuclear Information System (INIS)

    Kraaij, G.J.; Weeda, M.

    2008-09-01

    For reduction of greenhouse gas emissions, an increased use of renewable energy sources in the electricity sector is planned. The amount of excess wind power from an increase of offshore wind power capacity is calculated for an isolated Dutch society. The excess wind power is converted into hydrogen by electrolysis and the subsequent use of the hydrogen in residential applications as well as transport applications is investigated for economic, environmental and storage aspects. At an equivalent of 8 GW offshore wind power in 2020 the wind power contributes around 20% to the electricity demand, with an excess wind power amounting to approx. 4% of the Dutch electricity consumption. Excess wind occurs during 20% of the time. Conversion of this electricity to hydrogen requires 6 GW of electrolyser capacity with an average load factor of 10%, leading to high depreciation costs of the electrolysers and subsequent high hydrogen costs. For economic as well as environmental reasons the use of hydrogen in transport applications is more beneficial than in residential applications

  7. Measuring and evaluating energy consumption in street lighting networks

    International Nuclear Information System (INIS)

    Janiga, P.; Gasparovsky, D.

    2012-01-01

    Smart metering and smart grid are incoming technologies that provide new opportunities in various fields. In connection with the issue of evaluation of the energy aspects of public lighting networks opens up the possibility of evaluating and measuring consumption. Based on the obtained values would be possible to determine energy consumption of lighting systems. This obtained value could serve as a basis for comparing the relevant networks and thus the optimality assessment of lighting designs. Currently, the measure placed in the switchboard of public lighting. If we have considered sections parametramim same lighting, it is necessary to obtain more value from the measured or determined to assess the consumption of time. Proposal of such methods is still under construction but the basic methods have already been outlined. (Authors)

  8. Energy conservation through more efficient lighting.

    Science.gov (United States)

    Maya, J; Grossman, M W; Lagushenko, R; Waymouth, J F

    1984-10-26

    The efficiency of a mercury-rare gas electrical discharge, which forms the basis of a fluorescent lamp, can be increased about 5 percent simply by increasing the concentration of mercury-196 from 0.146 percent (natural) to about 3 percent. These findings can be implemented immediately without any significant change in the process of manufacturing of this widely used source of illumination, provided that mercury-196 can be obtained economically. The potential energy savings for the United States are estimated to be worth in excess of $200 million per year.

  9. Wireless sensor and actuator networks for lighting energy efficiency and user satisfaction

    Science.gov (United States)

    Wen, Yao-Jung

    Buildings consume more than one third of the primary energy generated in the U.S., and lighting alone accounts for approximately 30% of the energy usage in commercial buildings. As the largest electricity consumer of all building electrical systems, lighting harbors the greatest potential for energy savings in the commercial sector. Fifty percent of current energy consumption could be reduced with energy-efficient lighting management strategies. While commercial products do exist, they are poorly received due to exorbitant retrofitting cost and unsatisfactory performance. As a result, most commercial buildings, especially legacy buildings, have not taken advantage of the opportunity to generate savings from lighting. The emergence of wireless sensor and actuator network (WSAN) technologies presents an alternative that circumvents costly rewiring and promises better performance than existing commercial lighting systems. The goal of this dissertation research is to develop a framework for wireless-networked lighting systems with increased cost effectiveness, energy efficiency, and user satisfaction. This research is realized through both theoretical developments and implementations. The theoretical research aims at developing techniques for harnessing WSAN technologies to lighting hardware and control strategies. Leveraging redundancy, a sensor validation and fusion algorithm is developed for extracting pertinent lighting information from the disturbance-prone desktop-mounted photosensors. An adaptive sensing strategy optimizes the timing of data acquisition and power-hungry wireless transmission of sensory feedback in real-time lighting control. Exploiting the individual addressability of wireless-enabled luminaires, a lighting optimization algorithm is developed to create the optimal lighting that minimizes energy usage while satisfying occupants' diverse lighting preferences. The wireless-networked lighting system was implemented and tested in a number of real

  10. Mechanisms of Light Energy Harvesting in Dendrimers and Hyperbranched Polymers

    Directory of Open Access Journals (Sweden)

    David L. Andrews

    2011-12-01

    Full Text Available Since their earliest synthesis, much interest has arisen in the use of dendritic and structurally allied forms of polymer for light energy harvesting, especially as organic adjuncts for solar energy devices. With the facility to accommodate a proliferation of antenna chromophores, such materials can capture and channel light energy with a high degree of efficiency, each polymer unit potentially delivering the energy of one photon—or more, when optical nonlinearity is involved. To ensure the highest efficiency of operation, it is essential to understand the processes responsible for photon capture and channelling of the resulting electronic excitation. Highlighting the latest theoretical advances, this paper reviews the principal mechanisms, which prove to involve a complex interplay of structural, spectroscopic and electrodynamic properties. Designing materials with the capacity to capture and control light energy facilitates applications that now extend from solar energy to medical photonics.

  11. Green Lighting. Energy-efficient integrated lighting systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Linhart, F.; Scartezzini, J.-L.

    2009-10-15

    The objective of the Green Lighting project was to develop a High Performance Integrated Lighting System, based on advanced technologies for day- and electric lighting, achieving a Lighting Power Density (LPD) that does not exceed 3 W/m{sup 2}. The project has revealed that Anidolic Daylighting Systems (ADS) are an ideal basis for High Performance Integrated Lighting Systems. Not only are they able to provide adequate illumination (i.e. sufficiently high illuminance) in office rooms during large fractions of normal office hours, under various sky conditions and over the entire year, but they are also highly appreciated by office occupants at the condition that glare control mechanisms are available. Complementary electric lighting is, however, still necessary to back up the ADS at times when there is insufficient daylight flux available. It was shown during this project, that the most interesting trade-offs between energy-efficiency and visual comfort are obtained by using a combination of ceiling-mounted directly emitting luminaires with very high optical efficiencies for ambient lighting and portable desk lamps for temporary task lighting. The most appropriate lamps for the ceiling-mounted luminaires are currently highly efficient fluorescent tubes, but white LED tubes can be considered a realistic option for the future. The most suitable light sources for desk lamps for temporary task lighting are Compact Fluorescent Lamps (CFLs) and white LED light bulbs. Based on the above-mentioned technologies, a High Performance Integrated Lighting System with a very low LPD has been developed over the last three years. The system has been set up in an office room of the LESO solar experimental building located on the EPFL campus; it has been tested intensively during a Post-Occupancy Evaluation (POE) study involving twenty human subjects. This study has revealed that the subjects' performance and subjective visual comfort was improved by the new system, compared to

  12. MCNP6 fragmentation of light nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan G., E-mail: mashnik@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kerby, Leslie M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of Idaho, Moscow, ID 83844 (United States)

    2014-11-11

    Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEU's), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to {sup 4}He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  13. Partitioning of the nonfixed excess energy and the reverse critical energy in CH2OH + --> CHO + +H2: A classical trajectory study

    Science.gov (United States)

    Lee, Tae Geol; Kim, Myung Soo; Park, Seung C.

    1996-04-01

    Dynamics of the four-centered elimination reaction CH2OH+→CHO++H2 has been investigated over the internal energy range 4.6-5.9 eV using the classical trajectory method. A realistic semiempirical potential reported previously [J. Chem. Phys. (in press, 1996)] has been used for the calculation. It has been found that the disposal of the nonfixed excess energy at the transition state and of the reverse critical energy can be considered independently as manifest in the sum rule analysis. The former is determined statistically while the latter dynamically. Based on the above idea, a method to determine the kinetic energy release distribution originating only from the reverse critical energy has been developed.

  14. The renewable energy household lighting for Chibayish inhabitant’s in Iraq★

    Directory of Open Access Journals (Sweden)

    Dawood Furat

    2017-01-01

    Full Text Available Affordable and clean energy is one of the major goals for global sustainable development. Lighting is a major aspect of human energy consumption and access to quality lighting is one of the most important indicators of human development. Like other countries around the world, the Iraqi government has realized the importance of climate change and the necessity for clean energy which has led them to officially ratifying the Kyoto Protocol in January 2008. However, it is challenging to implement a clean and renewable energy lighting system for a small community like Chibayish in the Iraqi marshes. The Chibayish unique house building technique of man-made islands (floating baskets, results that these floating houses are not connected to the Iraqi national grid. The villagers in Chibayish require artificial light for their indoor living areas after dark and also for night fishing, which is a common practice. In this research study, various renewable energy resources have been examined in order to identify the most locally practical renewable energy technology for household lighting needs. The solar irradiance profile in the area showed the viability of solar energy in comparison to other renewable energy sources considered within these specific environmental conditions. An analysis carried out using HOMER Pro simulator shows that the solar photovoltaic is an affordable and reliable option for this community.

  15. Energy-saving control strategy for lighting system based on multivariate extremum seeking with Newton algorithm

    International Nuclear Information System (INIS)

    Yin, Chun; Dadras, Sara; Huang, Xuegang; Mei, Jun; Malek, Hadi; Cheng, Yuhua

    2017-01-01

    Highlights: • An energy-saving control strategy is proposed for multi-group lighting sources. • The proposed controller is designed to minimize the light-energy consumption. • It is designed to speed up the convergence rate without increasing the oscillation. • The minimal energy usage is guaranteed, while keeping the desired lighting level. • Experimental results shows the superiorities of the energy-saving control strategy. - Abstract: In recent years, the energy problem has been a universal concern. In order to improve the lighting energy efficiency and reduce the electric energy consumption, this paper develops an energy-saving control strategy for the lighting system with multiple lighting sources. The control strategy presented in this paper includes two parts: a new multivariate extremum seeking control method with Newton algorithm is developed to minimize the light-energy consumption by separately manipulating the brightness of multiple lighting sources, and a proportion-integration-differentiation control approach is adopted to realize the desired lighting level. The proposed scheme can increase the convergence speed of the closed loop system toward the minimum light-energy consumption, meanwhile, the accuracy of the control strategy will be improved. Experimental results illustrate that the light-energy consumption via the proposed method can reach more rapidly to a smaller vicinity of the minimum energy point, so, the lighting energy efficiency is greatly increased accordingly.

  16. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  17. Light ion beam approach to ICF ignition, gain, and energy production

    International Nuclear Information System (INIS)

    Olson, R.; Allshouse, G.; Cook, D.

    1993-01-01

    The US Department of Energy is supporting research oriented toward both near-term defense applications as well as long-term energy applications of inertial confinement fusion (ICF). The ICF programs at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for these applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The LIBRA light ion beam commercial reactor study provides a baseline approach towards the use of the high gain light ion ICF technology as a source of commercial electrical energy

  18. Light ion beam approach to ICF ignition, gain, and energy production

    International Nuclear Information System (INIS)

    Olson, R.; Allshouse, G.; Cook, D.

    1994-01-01

    The U.S. Department of Energy is supporting research oriented toward both near-term defense applications as well as long-term energy applications of inertial confinement fusion (ICF). The ICF program at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for these applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The LIBRA light ion beam commercial reactor study provides a baseline approach towards the use of the high gain light ion ICF technology as a source of commercial electrical energy. (author)

  19. Design of a Stand-Alone Photovoltaic Model for Home Lightings and Clean Environment

    Energy Technology Data Exchange (ETDEWEB)

    Ani, Vincent Anayochukwu, E-mail: vincent_ani@yahoo.com [Department of Electronic Engineering, University of Nigeria, Nsukka (Nigeria)

    2016-01-11

    This paper gives a well-documented health risk of fuel-based lighting (kerosene lamps and fuel-powered generators) and proposed a design of a stand-alone solar PV system for sustainable home lightings in rural Nigerian area. The design was done in three different patterns of electricity consumptions with energy efficient lightings (EELs) using two different battery types (Rolls Surrette 6CS25PS and Hoppecke 10 OpzS 1000) on; (i) judicious power consumption, (ii) normal power consumption, and (iii) excess power consumption; and compared them with the incandescent light bulb consumption. The stand-alone photovoltaic energy systems were designed to match the rural Nigerian sunlight and weather conditions to meet the required lightings of the household. The objective function and constraints for the design models were formulated and optimization procedures were used to demonstrate the best solution (reliability at the lowest lifecycle cost). Initial capital costs as well as annualized costs over 5, 10, 15, 20, and 25 years were quantified and documented. The design identified the most cost-effective and reliable solar and battery array among the patterns of electricity consumption with EEL options (judicious power consumption, normal power consumption, and excess power consumption).

  20. Design of a Stand-Alone Photovoltaic Model for Home Lightings and Clean Environment

    International Nuclear Information System (INIS)

    Ani, Vincent Anayochukwu

    2016-01-01

    This paper gives a well-documented health risk of fuel-based lighting (kerosene lamps and fuel-powered generators) and proposed a design of a stand-alone solar PV system for sustainable home lightings in rural Nigerian area. The design was done in three different patterns of electricity consumptions with energy efficient lightings (EELs) using two different battery types (Rolls Surrette 6CS25PS and Hoppecke 10 OpzS 1000) on; (i) judicious power consumption, (ii) normal power consumption, and (iii) excess power consumption; and compared them with the incandescent light bulb consumption. The stand-alone photovoltaic energy systems were designed to match the rural Nigerian sunlight and weather conditions to meet the required lightings of the household. The objective function and constraints for the design models were formulated and optimization procedures were used to demonstrate the best solution (reliability at the lowest lifecycle cost). Initial capital costs as well as annualized costs over 5, 10, 15, 20, and 25 years were quantified and documented. The design identified the most cost-effective and reliable solar and battery array among the patterns of electricity consumption with EEL options (judicious power consumption, normal power consumption, and excess power consumption).

  1. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2007-03-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22 degrees C or conditions representing a cool autumn with 8 h/7 degrees C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7 degrees C) or warm autumn conditions (8-h photoperiod/22 degrees C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of beta-carotene in the warm autumn

  2. HAWC Observations Strongly Favor Pulsar Interpretations of the Cosmic-Ray Positron Excess

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Cholis, Ilias [Johns Hopkins U.; Linden, Tim [Ohio State U., CCAPP; Fang, Ke [Maryland U.

    2017-11-17

    Recent measurements of the Geminga and B0656+14 pulsars by the gamma-ray telescope HAWC (along with earlier measurements by Milagro) indicate that these objects generate significant fluxes of very high-energy electrons. In this paper, we use the very high-energy gamma-ray intensity and spectrum of these pulsars to calculate and constrain their expected contributions to the local cosmic-ray positron spectrum. Among models that are capable of reproducing the observed characteristics of the gamma-ray emission, we find that pulsars invariably produce a flux of high-energy positrons that is similar in spectrum and magnitude to the positron fraction measured by PAMELA and AMS-02. In light of this result, we conclude that it is very likely that pulsars provide the dominant contribution to the long perplexing cosmic-ray positron excess.

  3. THE CENTAURUS A ULTRAHIGH-ENERGY COSMIC-RAY EXCESS AND THE LOCAL EXTRAGALACTIC MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Yüksel, Hasan; Kronberg, Philipp P.; Stanev, Todor; Kistler, Matthew D.

    2012-01-01

    The ultrahigh-energy cosmic-ray (UHECR) anisotropies discovered by the Pierre Auger Observatory provide the potential to finally address both the particle origins and properties of the nearby extragalactic magnetic field (EGMF). We examine the implications of the excess of ∼10 20 eV events around the nearby radio galaxy Centaurus A. We find that, if Cen A is the source of these cosmic rays, the angular distribution of events constrains the EGMF strength within several Mpc of the Milky Way to ∼> 20 nG for an assumed primary proton composition. Our conclusions suggest that either the observed excess is a statistical anomaly or the local EGMF is stronger than conventionally thought. We discuss several implications, including UHECR scattering from more distant sources, time delays from transient sources, and the possibility of using magnetic lensing signatures to attain tighter constraints.

  4. THE CENTAURUS A ULTRAHIGH-ENERGY COSMIC-RAY EXCESS AND THE LOCAL EXTRAGALACTIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Yueksel, Hasan; Kronberg, Philipp P. [Theoretical Division, MS B285, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Kistler, Matthew D. [Lawrence Berkeley National Laboratory and Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2012-10-10

    The ultrahigh-energy cosmic-ray (UHECR) anisotropies discovered by the Pierre Auger Observatory provide the potential to finally address both the particle origins and properties of the nearby extragalactic magnetic field (EGMF). We examine the implications of the excess of {approx}10{sup 20} eV events around the nearby radio galaxy Centaurus A. We find that, if Cen A is the source of these cosmic rays, the angular distribution of events constrains the EGMF strength within several Mpc of the Milky Way to {approx}> 20 nG for an assumed primary proton composition. Our conclusions suggest that either the observed excess is a statistical anomaly or the local EGMF is stronger than conventionally thought. We discuss several implications, including UHECR scattering from more distant sources, time delays from transient sources, and the possibility of using magnetic lensing signatures to attain tighter constraints.

  5. Superconductors with excess quasiparticles

    International Nuclear Information System (INIS)

    Elesin, V.F.; Kopaev, Y.V.

    1981-01-01

    This review presents a systematic kinetic theory of nonequilibrium phenomena in superconductors with excess quasiparticles created by electromagnetic or tunnel injection. The energy distributions of excess quasiparticles and of nonequilibrium phonons, dependence of the order parameter on the power and frequency (or intensity) of the electromagnetic field, magnetic properties of nonequilibrium superconductors, I-V curves of superconductor-insulator-superconductor junctions, and other properties are described in detail. The stability of superconducting states far from thermodynamic equilibrium is investigated and it is shown that characteristic instabilities leading to the formation of nonuniform states of a new type or phase transitions of the first kind are inherent to superconductors with excess quasiparticles. The results are compared with experimental data

  6. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis.

    Science.gov (United States)

    Chen, Zhong; Gallie, Daniel R

    2012-09-01

    In response to conditions of excess light energy, plants induce non-photochemical quenching (NPQ) as a protective mechanism to prevent over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, which contributes significantly to reversible NPQ to thermally dissipate excess absorbed light energy, involves de-epoxidation of violaxanthin and antheraxanthin to zeaxanthin in response to excess light energy. The activation of violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction, requires the generation of a light-induced, transthylakoid pH gradient. In this work, we overexpressed or repressed the expression of VDE in Arabidopsis (Arabidopsis thaliana) to examine whether VDE is rate-limiting for the induction of NPQ. Increasing VDE expression increased the de-epoxidation state of xanthophyll pigments, the rate of NPQ induction, and the level of NPQ achieved under subsaturating light. In saturating light, however, overexpression of VDE did not increase the xanthophyll pigment de-epoxidation state, the level of NPQ achieved following its initial induction, or substantially improve tolerance to high light. Only under chilling, which reduces VDE activity, did an increase in VDE expression provide slightly greater phototolerance. Repression of VDE expression impaired violaxanthin de-epoxidation, reduced the generation of NPQ, and lowered the level of NPQ achieved while increasing photosensitivity. These results demonstrate that the endogenous level of VDE is rate-limiting for NPQ in Arabidopsis under subsaturating but not saturating light and can become rate-limiting under chilling conditions. These results also show that increasing VDE expression confers greater phototolerance mainly under conditions which limit endogenous VDE activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Light's labour's lost - policies for energy-efficient lighting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-29

    When William Shakepeare wrote Love's Labour's Lost he would have used light from tallow candles at a cost (today) of 12,000 British pounds per million-lumen hours. The same amount of light from electric lamps now costs only 2 pounds! But today's low-cost illumination still has a dark side. Globally, lighting consumes more electricity than is produced by either hydro or nuclear power and results in CO2 emissions equivalent to two thirds of the world's cars. A standard incandescent lamp may be much more efficient than a tallow candle, but it is far less efficient than a high-pressure sodium lamp. Were inefficient light sources to be replaced by the equivalent efficient ones, global lighting energy demand would be up to 40% less at a lower overall cost. Larger savings still could be realised through the intelligent use of controls, lighting levels and daylight. But achieving efficient lighting is not just a question of technology; it requires policies to transform current practice. This book documents the broad range of policy measures to stimulate efficient lighting that have already been implemented around the world and suggests new ways these could be strengthened to prevent light's labour's from being lost.

  8. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption.

    Science.gov (United States)

    Do, D D; Do, H D; Nicholson, D

    2009-01-29

    We present a new approach to calculating excess isotherm and differential enthalpy of adsorption on surfaces or in confined spaces by the Monte Carlo molecular simulation method. The approach is very general and, most importantly, is unambiguous in its application to any configuration of solid structure (crystalline, graphite layer or disordered porous glass), to any type of fluid (simple or complex molecule), and to any operating conditions (subcritical or supercritical). The behavior of the adsorbed phase is studied using the partial molar energy of the simulation box. However, to characterize adsorption for comparison with experimental data, the isotherm is best described by the excess amount, and the enthalpy of adsorption is defined as the change in the total enthalpy of the simulation box with the change in the excess amount, keeping the total number (gas + adsorbed phases) constant. The excess quantities (capacity and energy) require a choice of a reference gaseous phase, which is defined as the adsorptive gas phase occupying the accessible volume and having a density equal to the bulk gas density. The accessible volume is defined as the mean volume space accessible to the center of mass of the adsorbate under consideration. With this choice, the excess isotherm passes through a maximum but always remains positive. This is in stark contrast to the literature where helium void volume is used (which is always greater than the accessible volume) and the resulting excess can be negative. Our definition of enthalpy change is equivalent to the difference between the partial molar enthalpy of the gas phase and the partial molar enthalpy of the adsorbed phase. There is no need to assume ideal gas or negligible molar volume of the adsorbed phase as is traditionally done in the literature. We illustrate this new approach with adsorption of argon, nitrogen, and carbon dioxide under subcritical and supercritical conditions.

  9. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  10. Acclimation responses to high light by Guazuma ulmifolia Lam. (Malvaceae) leaves at different stages of development.

    Science.gov (United States)

    Calzavara, A K; Rocha, J S; Lourenço, G; Sanada, K; Medri, C; Bianchini, E; Pimenta, J A; Stolf-Moreira, R; Oliveira, H C

    2017-09-01

    The re-composition of deforested environments requires the prior acclimation of seedlings to full sun in nurseries. Seedlings can overcome excess light either through the acclimation of pre-existing fully expanded leaves or through the development of new leaves that are acclimated to the new light environment. Here, we compared the acclimation capacity of mature (MatL, fully expanded at the time of transfer) and newly expanded (NewL, expanded after the light shift) leaves of Guazuma ulmifolia Lam. (Malvaceae) seedlings to high light. The seedlings were initially grown under shade and then transferred to full sunlight. MatL and NewL were used for chlorophyll fluorescence and gas exchange analyses, pigment extraction and morpho-anatomical measurements. After the transfer of seedlings to full sun, the MatL persisted and acclimated to some extent to the new light condition, since they underwent alterations in some morpho-physiological traits and maintained a functional electron transport chain and positive net photosynthesis rate. However, long-term exposure to high light led to chronic photoinhibition in MatL, which could be related to the limited plasticity of leaf morpho-anatomical attributes. However, the NewL showed a high capacity to use the absorbed energy in photochemistry and dissipate excess energy harmlessly, attributes that were favoured by the high structural plasticity exhibited by these leaves. Both the maintenance of mature, photosynthetically active leaves and the production of new leaves with a high capacity to cope with excess energy were important for acclimation of G. ulmifolia seedlings. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. [LIGHT POLLUTION AS THE HYGIENIC PROBLEM].

    Science.gov (United States)

    Kaptsov, V A; Gerasev, V F; Deynego, V N

    2015-01-01

    Mass introduction of lighting devices according to the concept of "maximum coverage area" and multistoried buildings of cities gave rise to light pollution, which became a problem for astronomers, ecologists and hygienists. Analysis of modern lighting devices and installations has shown that about 30-45% of the luminous flux becomes the light pollution. Night lighting of cities causes both direct and indirect damage to the environment, leads to unnecessary energy wastes. So in the USA due to excessive light there is wasted about 2 million barrels of oil per day. Light pollution affects the human hormonal system, causing various health disorders, such as insomnia and depression as a consequence. The light pollution through the ganglion cells of the retina affects the synthesis of melatonin by the pineal gland (epiphysis) and contributes to its calcification, which greatly affects the human psyche. At present, many countries have been paying much state attention to this problem via delivery of national documents and change of the concept of the designing of lighting devices and installations. The essence of this concept--to shine with a preset quality of light only in the right place at the specified time interval. This reduces the light pollution, saves energy and increases the environmental safety of lighting. There is presented an example of a technical solution to reduce the light pollution in the application of the light panel in the form of the gradient of the light guide generator project development.

  12. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Assef, R. J.; Diaz-Santos, T. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Walton, D. J.; Brightman, M. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-236, Pasadena, CA 91109 (United States); Alexander, D. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Blain, A. W. [Physics and Astronomy, University of Leicester, 1 University Road, Leicester LE1 7RH (United Kingdom); Finkelstein, S. L. [The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Wu, J. W., E-mail: roberto.assef@mail.udp.cl [UCLA Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States)

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  13. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    International Nuclear Information System (INIS)

    Assef, R. J.; Diaz-Santos, T.; Walton, D. J.; Brightman, M.; Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W.; Alexander, D.; Bauer, F.; Blain, A. W.; Finkelstein, S. L.; Hickox, R. C.; Wu, J. W.

    2016-01-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M ⊙ yr −1 . Deep polarimetry observations could confirm the reflection hypothesis

  14. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    Science.gov (United States)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  15. Photosynthetic Properties and Potentials for Improvement of Photosynthesis in Pale Green Leaf Rice under High Light Conditions

    Directory of Open Access Journals (Sweden)

    Junfei Gu

    2017-06-01

    Full Text Available Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS. Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl and a normally pigmented control (Z802 were subjected to high (HL and low light (LL. Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC binding proteins, electron transport rates (ETR, photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size.

  16. Photosynthetic Properties and Potentials for Improvement of Photosynthesis in Pale Green Leaf Rice under High Light Conditions

    Science.gov (United States)

    Gu, Junfei; Zhou, Zhenxiang; Li, Zhikang; Chen, Ying; Wang, Zhiqin; Zhang, Hao; Yang, Jianchang

    2017-01-01

    Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS). Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ) to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl) and a normally pigmented control (Z802) were subjected to high (HL) and low light (LL). Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC) binding proteins, electron transport rates (ETR), photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size. PMID:28676818

  17. Persuasive lighting : the influence of feedback through lighting on energy conservation behavior

    NARCIS (Netherlands)

    Ham, J.R.C.; Midden, C.J.H.; Maan, S.J.; Merkus, B.; Kort, de Y.A.W.; et al, xx

    2009-01-01

    Earlier research has investigated persuasive technology: Technology designed to influence human behavior or attitudes. The current research investigates lighting as persuasive technology. In an experimental study, participants could conserve energy while carrying out tasks and received feedback

  18. Physical Alternative to the Dark Energy Paradigm

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2013-12-01

    Full Text Available The physical nature of the presently dominating enigmatic dark energy in the expanding universe is demonstrated to be explainable as an excess of the kinetic energy with respect to its potential energy. According to traditional Friedman cosmology, any non-zero value of the total energy integral is ascribed to the space curvature. However, as we show, in the flat universe the total energy also can be different from zero. Initially, a very small excess of kinetic energy originates from the early universe. The present observational data show that our universe has probably a flat space with an excess of kinetic energy. The evolutionary scenario shows that the universe presently is in the transitional stage where its radial coordinate expansion approaches the velocity of light. A possibility of the closed Bubble universe with the local Big Bang and everlasting expansion is demonstrated. Dark matter can be essentially contributed by the non-relativistic massive neutrinos, which have cooled to very low temperatures and velocities thus favoring the formation of the observed broad equipotential wells in galaxies.

  19. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives.

    Science.gov (United States)

    Beaupré, Serge; Boudreault, Pierre-Luc T; Leclerc, Mario

    2010-02-23

    World energy needs grow each year. To address global warming and climate changes the search for renewable energy sources with limited greenhouse gas emissions and the development of energy-efficient lighting devices are underway. This Review reports recent progress made in the synthesis and characterization of conjugated polymers based on bridged phenylenes, namely, poly(2,7-fluorene)s, poly(2,7-carbazole)s, and poly(2,7-dibenzosilole)s, for applications in solar cells and white-light-emitting diodes. The main strategies and remaining challenges in the development of reliable and low-cost renewable sources of energy and energy-saving lighting devices are discussed.

  20. CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, Matej; Krucker, Säm; Battaglia, Marina; Kleint, Lucia; Casadei, Diego [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Oliveros, Juan Carlos Martinez; Hudson, Hugh S. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

    2016-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.

  1. A COMPREHENSIVE CENSUS OF NEARBY INFRARED EXCESS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Cotten, Tara H.; Song, Inseok, E-mail: tara@physast.uga.edu, E-mail: song@physast.uga.edu [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States)

    2016-07-01

    The conclusion of the Wide-Field Infrared Survey Explorer ( WISE ) mission presents an opportune time to summarize the history of using excess emission in the infrared as a tracer of circumstellar material and exploit all available data for future missions such as the James Webb Space Telescope . We have compiled a catalog of infrared excess stars from peer-reviewed articles and perform an extensive search for new infrared excess stars by cross-correlating the Tycho-2 and all-sky WISE (AllWISE) catalogs. We define a significance of excess in four spectral type divisions and select stars showing greater than either 3 σ or 5 σ significance of excess in the mid- and far-infrared. Through procedures including spectral energy distribution fitting and various image analyses, each potential excess source was rigorously vetted to eliminate false positives. The infrared excess stars from the literature and the new stars found through the Tycho-2 and AllWISE cross-correlation produced nearly 500 “Prime” infrared excess stars, of which 74 are new sources of excess, and >1200 are “Reserved” stars, of which 950 are new sources of excess. The main catalog of infrared excess stars are nearby, bright, and either demonstrate excess in more than one passband or have infrared spectroscopy confirming the infrared excess. This study identifies stars that display a spectral energy distribution suggestive of a secondary or post-protoplanetary generation of dust, and they are ideal targets for future optical and infrared imaging observations. The final catalogs of stars summarize the past work using infrared excess to detect dust disks, and with the most extensive compilation of infrared excess stars (∼1750) to date, we investigate various relationships among stellar and disk parameters.

  2. Excessive prices as abuse of dominance?

    DEFF Research Database (Denmark)

    la Cour, Lisbeth; Møllgaard, Peter

    2007-01-01

    firm abused its position by charging excessive prices. We also test whether tightening of the Danish competition act has altered the pricing behaviour on the market. We discuss our results in the light of a Danish competition case against the dominant cement producer that was abandoned by the authority...

  3. Energy savings due to daylight and artificial lighting integration in office buildings in hot climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ashwal, Nagib T. [Sana' a University, Sana' a (Yemen); Budaiwi, Ismail M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-07-01

    Reducing energy consumption while maintaining acceptable environmental quality in buildings has been a challenging task for building professionals. In office buildings, artificial lighting systems are a major consumer of energy and can significantly contribute to building cooling load. Furthermore, although reliable, artificial lighting does not necessarily provide the required quality of lighting. Significant improvement in lighting quality and energy consumption can be achieved by proper integration of daylight and artificial lighting. The objective of this study is to investigate the energy performance of office buildings resulting from daylight and artificial lighting integration in hot climates. A parametric analysis is conducted to find the impact of different window design parameters, including window area, height and glazing type, on building energy performance. Results have shown that as much as 35% reduction in lighting energy consumption and 13% reduction in total energy consumption can be obtained when proper daylighting and artificial lighting integration is achieved.

  4. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    Science.gov (United States)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The

  5. Increased Air Temperature during Simulated Autumn Conditions Does Not Increase Photosynthetic Carbon Gain But Affects the Dissipation of Excess Energy in Seedlings of the Evergreen Conifer Jack Pine1[OA

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo

    2007-01-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22°C or conditions representing a cool autumn with 8 h/7°C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7°C) or warm autumn conditions (8-h photoperiod/22°C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of β-carotene in the warm autumn treatment as well as by changes in

  6. Deriving mass-energy equivalence and mass-velocity relation without light

    Science.gov (United States)

    Dai, Youshan; Dai, Liang

    2018-04-01

    Relativity requires that a particle's momentum and energy are the same functions of the particle's velocity in all inertial frames. Using the fact that momentum and energy must transform linearly between reference frames, we present a novel derivation of the mass-energy equivalence, namely, the relation that the energy is proportional to the moving mass, with no postulate about the existence of light or its properties. We further prove the mass-velocity relation without relying on momentum and energy conservation or on the Lorentz transformation. It is demonstrated that neither conservation laws nor the Lorentz transformation are necessary to establish those relations, and that those relations have a wider scope of validity than that of the conservation laws and the invariance of the speed of light.

  7. The energy distribution and the recent light history of X Persei

    International Nuclear Information System (INIS)

    Persi, P.; Viotti, R.; Ferrari-Toniolo, M.

    1977-01-01

    Recent UVBRI and near-infrared photometry of X Per, the optical counterpart of 3U 0352 + 30, is used to derive the physical parameters of the Be star and of the circumstellar envelope. A stellar radius of 4.9 R (sun) and a luminosity of 2.1 x 10 4 L (sun), 1 mag fainter than for a main sequence BO star, are derived for the primary. The colour excess is Esub(B-V) 12 cm -3 . The infrared excess is absent during the stage of lower luminosity (1974 to 75). The intrinsic energy distribution of the Be star is also anomalous with a variable Balmer excess. It is suggested that the long-term photometric history of X Per is the result of a size variation of the atmospheric envelope of the Be star which probably affects both the X-ray emission and the infrared excess. Wind accretion on to a nearby compact companion (neutron star) might be responsible for the X-ray emission. A mass loss of about 10 -9 M(sun) yr -1 is thus derived for the Be star. (author)

  8. Illumination properties and energy savings of a solar fiber optic lighting system balanced by artificial lights

    OpenAIRE

    Lingfors, David

    2013-01-01

    A solar fiber optic lighting system, SP3 from the Swedish company Parans Solar Lighting AB, has been installed in a study area/corridor test site. A collector is tracking the sun during daytime, focusing the direct sun irradiance via Fresnel lenses into optical fibers, which guide the solar light into the building. The illumination properties of the system have been characterized. The energy saving due to reduced need of artificial lighting have been calculated and methods for balancing the a...

  9. Functional Imaging of Hybrid Nanostructures. Visualization of Mechanisms for Solar Energy Utilization. Northwestern FG-02-07ER46401 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lauhon, Lincoln J. [Northwestern Univ., Evanston, IL (United States)

    2015-03-20

    The report describes advances in understanding the interaction of light with hybrid nanostructured materials, and the influence of physical and electronic structure on the flow of excess energetic charge carriers to support the design and optimization of new materials for photoelectrical and photoelectrochemical energy conversion. Raman scattering, multi-wavelength optical excitation, and numerical modeling are combined with electrical transport measurements on model hybrid materials structures and devices to resolve, in energy and space, the absorption of light, the generation of excess energetic charge carriers, and the efficiency of their separation to generate electrical and chemical energy. Appropriate combinations of spatially-resolved, time-resolved, and spectrally-resolved measurements are used to isolate and quantify various steps in the energy conversion process, including geometrically and plasmonically enhanced absorption, the generation of carriers with excess energy, and the efficiency with which the carriers can move to and perform useful chemistry at interfaces.

  10. Conversion of concentrated solar thermal energy into chemical energy.

    Science.gov (United States)

    Tamaura, Yutaka

    2012-01-01

    When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.

  11. Light energy conversion by photocatalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fujishima, Akira; Yamagata, Sadamu [Univ. of Tokyo (Japan)

    1989-01-01

    The photocatalytic reaction, to be made to a suspended semiconductor powder system, was explained in summary. By using semiconductor as an electrode for the electrolyzation, etc. and projecting light on it to generate photoelectromotive force, a photocell can be composed. eg., by composing titanium oxide electrode, n-type semiconductor and platinum electrode, and irradiating light on the former electrode to generate electric current, oxygen and hydrogen are produced from the titanium oxide electrode and platinum electrode, respectively, which means the possibility of obtainment of clean energy from water as raw material. Such a wet type photocell, easy to produce, is active also in research. With white titanium oxide powder being suspended in water solution, hydrogen is produced by projecting light into it. Such a semiconductor is called photocatalyst, in which the research has been widely developed, mainly by taking notice of the hydrogen production on reduction side, since 1972. The photocatalysis using colloid and, differently, that doing heteropolyacid are also taken notice of. 24 refs., 6 figs.

  12. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Idaho, Moscow, ID (United States)

    2015-08-24

    Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to sup>4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  13. Evaluation and Optimization of a Traditional North-Light Roof on Industrial Plant Energy Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Adriaenssens, Sigrid [Form-Finding Lab, Department of Civil and Environmental Engineering, School of Engineering and Applied Science, Princeton Univ., NJ (United States); Hao Liu [Center for Intelligent and Networked Systems, Department of Automation, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing (China); Wahed, Miriam [Form-Finding Lab, Department of Civil and Environmental Engineering, School of Engineering and Applied Science, Princeton Univ., NJ (United States); Qianchuan Zhao [Center for Intelligent and Networked Systems, Department of Automation, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing (China)

    2013-04-15

    Increasingly strict energy policies, rising energy prices, and a desire for a positive corporate image currently serve as incentives for multinational corporations to reduce their plants’ energy consumption. This paper quantitatively investigates and discusses the value of a traditional north-light roof using a complete building energy simulation and optimization framework. The findings indicate that the north-light system yields positive building energy performance for several climate zones, including: (i) Humid Subtropical; (ii) Semiarid Continental; (iii) Mediterranean; and (iv) Subtropical Highland. In the Subtropical Highland climate zone, for example, the building energy consumption of a north-light roof is up to 54% less than that of a conventional flat roof. Based on these positive findings, this paper further presents an optimization framework that alters the north-light roof shape to further improve its energy performance. To quantitatively guarantee a high probability of finding satisfactory designs while reducing the computational processing time, ordinal optimization is introduced into the scheme. The Subtropical Highland case study shows further energy building consumption reduction of 26% for an optimized north-light roof shape. The presented evaluation and optimization framework could be used in designing a plant with integrated north-lights roof that aim at energy efficiency while maintaining environmental occupant comfort levels.

  14. Red shift in the spectrum of a chlorophyll species is essential for the drought-induced dissipation of excess light energy in a poikilohydric moss, Bryum argenteum.

    Science.gov (United States)

    Shibata, Yutaka; Mohamed, Ahmed; Taniyama, Koichiro; Kanatani, Kentaro; Kosugi, Makiko; Fukumura, Hiroshi

    2018-05-01

    Some mosses are extremely tolerant of drought stress. Their high drought tolerance relies on their ability to effectively dissipate absorbed light energy to heat under dry conditions. The energy dissipation mechanism in a drought-tolerant moss, Bryum argenteum, has been investigated using low-temperature picosecond time-resolved fluorescence spectroscopy. The results are compared between moss thalli samples harvested in Antarctica and in Japan. Both samples show almost the same quenching properties, suggesting an identical drought tolerance mechanism for the same species with two completely different habitats. A global target analysis was applied to a large set of data on the fluorescence-quenching dynamics for the 430-nm (chlorophyll-a selective) and 460-nm (chlorophyll-b and carotenoid selective) excitations in the temperature region from 5 to 77 K. This analysis strongly suggested that the quencher is formed in the major peripheral antenna of photosystem II, whose emission spectrum is significantly broadened and red-shifted in its quenched form. Two emission components at around 717 and 725 nm were assigned to photosystem I (PS I). The former component at around 717 nm is mildly quenched and probably bound to the PS I core complex, while the latter at around 725 nm is probably bound to the light-harvesting complex. The dehydration treatment caused a blue shift of the PS I emission peak via reduction of the exciton energy flow to the pigment responsible for the 725 nm band.

  15. Study on light and thermal energy of illumination device for plant factory design

    Science.gov (United States)

    Yoshida, A.; Moriuchi, K.; Ueda, Y.; Kinoshita, S.

    2018-01-01

    To investigate the effect of illumination devices on the yield of crops cultivated in a plant factory, it is necessary to measure the actual cultivation environmental factors related to the plant growth and understand the distribution ratio of light and thermal energy to the electrical energy injected into the illumination device. Based on cultivation results, we found that light intensity greatly affected the growth of plant weight. Regarding the selection of illumination device, its spectral components also affected the morphological change. Lighting experiments using a high frequency (Hf) fluorescent lamp and a light emitting diode (LED) bulb were performed. A certain difference was found in the distribution ratio of light energy to electrical energy between Hf and LED. It was showed that by placing the safety equipment or internal circuits outside the cultivated site, the air conditioning load could be reduced.

  16. Angular correlations and fragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Kristiansson, Anders.

    1990-05-01

    Intermediate energy heavy-ion collisions have been studied from 35 A MeV up to 94 A MeV at various accelerators. Angular correlations between light particles and detection of projectile- and target-fragments have been used to investigate the reaction mechanisms in this transition region between low- and high energy. An excess of correlations is observed in the particle-particle elastic scattering plane. This excess increases with particle mass and can be understood in terms of momentum conservation. The fragmentation measurements gives an indication that both energy and momentum transfer to the spectator volumes does occur. (author)

  17. Lighting energy efficiency in office buildings: Sri Lanka

    International Nuclear Information System (INIS)

    Wijayatunga, Priyantha D.C.; Fernando, W.J.L.S.; Ranasinghe, S.

    2003-01-01

    This paper describes a study conducted in the lighting sector of office buildings as a part of a broader research study aimed at developing building codes for Sri Lanka addressing lighting as well as thermal comfort in order to optimise the use of electricity within these buildings. The study covered different tasks performed in office buildings and the optimum lighting levels required to perform these tasks in the office environment in Sri Lanka. Also, it included assessing the visual performance of people involved in different activities under varying illumination levels in a controlled environment and a comparison of these optimum lighting levels with international standards. It can be seen that the required optimum lighting levels are generally lower in Sri Lanka in comparison to specified standard levels, and this scenario is likely to be similar in other developing countries too. These findings clearly emphasise the need to adopt lighting standards most appropriate to local conditions, in turn helping improve the energy efficiency within buildings

  18. ATLAS Z Excess in Minimal Supersymmetric Standard Model

    International Nuclear Information System (INIS)

    Lu, Xiaochuan; Terada, Takahiro

    2015-06-01

    Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.

  19. Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy

    Science.gov (United States)

    Torchynska, T.; Khomenkova, L.; Slaoui, A.

    2018-04-01

    Si-rich SiN x films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiN x films. Spectroscopic ellipsometry was used to determine the refractive index of the SiN x films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiN x films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1-3.0 eV are related to the carrier recombination via radiative native defects in the SiN x host. Simultaneously, the PL bands with the peaks at 1.5-2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiN x emission is discussed.

  20. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    Penning, Julie [Navigant Consulting Inc., Washington, DC (United States); Stober, Kelsey [Navigant Consulting Inc., Washington, DC (United States); Taylor, Victor [Navigant Consulting Inc., Washington, DC (United States); Yamada, Mary [Navigant Consulting Inc., Washington, DC (United States)

    2016-09-01

    The DOE report, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, is a biannual report which models the adoption of LEDs in the U.S. general-lighting market, along with associated energy savings, based on the full potential DOE has determined to be technically feasible over time. This version of the report uses an updated 2016 U.S. lighting-market model that is more finely calibrated and granular than previous models, and extends the forecast period to 2035 from the 2030 limit that was used in previous editions.

  1. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    International Nuclear Information System (INIS)

    Dewa, Takehisa; Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu; Nango, Mamoru

    2013-01-01

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency

  2. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dewa, Takehisa, E-mail: takedewa@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Japan Science and Technology, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nango, Mamoru, E-mail: nango@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2013-06-20

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency.

  3. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  4. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. India : Energy-Efficient Street Lighting--Implementation and Financing Solutions

    OpenAIRE

    World Bank

    2015-01-01

    There has been a clear need for energy-efficient (EE) technologies that can be applicable in the municipal street lighting sector. The objective of this manual is to support the preparation and implementation of street lighting projects in India, using performance contracting and other public private partnership-based delivery approaches. This manual draws upon global best practices, inclu...

  6. Can a large neutron excess help solve the baryon loading problem in gamma-Ray burst fireballs?

    Science.gov (United States)

    Fuller; Pruet; Abazajian

    2000-09-25

    We point out that the baryon loading problem in gamma-ray burst (GRB) models can be ameliorated if a significant fraction of the baryons which inertially confine the fireball is converted to neutrons. A high neutron fraction can result in a reduced transfer of energy from relativistic light particles in the fireball to baryons. The energy needed to produce the required relativistic flow in the GRB is consequently reduced, in some cases by orders of magnitude. A high neutron-to-proton ratio has been calculated in neutron star-merger fireball environments. Significant neutron excess also could occur near compact objects with high neutrino fluxes.

  7. Annealing behaviour of excess carriers in neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Maekawa, T.; Nogami, S.; Inoue, S.

    1993-01-01

    In neutron-transmutation-doped silicon wafers excess carriers are clearly generated over the transmuted phosphorus atoms. The generation occurs for annealing temperatures above 900 o C. The maximum percentage of excess carriers obtained is about 24.5% of the final carrier concentration. Due to the difference in energy of generation and removal, the excess carriers can be removed by annealing above 800 o C. The radiation damage responsible for generation of excess carriers is fairly thermostable in the range of annealing temperatures below 800 o C. From deep-level transient spectroscopy measurements, it is found that the radiation damage remains insensitive to changes in carrier concentration. The activation energies of excess carrier generation and removal are estimated from the analysis of the thermal and temporal behaviours of radiation damage in the annealing process. (Author)

  8. Evaluation of energy efficiency in street lighting: model proposition considering climate variability

    Directory of Open Access Journals (Sweden)

    Amaury Caruzzo

    2015-12-01

    Full Text Available This paper assesses the impacts of climate variability on efficient electricity consumption in street lighting in Brazil. The Climate Demand Method (CDM was applied, and the energy savings achieved by Brazil’s National Efficient Street Lighting Program (ReLuz in 2005 were calculated, considering the monthly climatology of sunshine duration, disaggregated by county in Brazil. The total energy savings in street lighting in 2005 were estimated at 63 GWh/year or 1.39% higher than the value determined by ReLuz/Eletrobrás and there was a 15 MW reduction in demand in Brazil, considering the nearly 393,000 points in ReLuz served in 2005. The results indicate that, besides the difference in latitude, climate variability in different county increases the daily usage of street lighting up to 19%. Furthermore, Brazil’s large size means that seasonality patterns in energy savings are not homogeneous, and there is a correlation between the monthly variability in sunshine duration and the latitude of mesoregions. The CDM was also shown to be suitable for ranking mesoregions with the highest levels of energy saving lighting.

  9. Understanding energy efficient lighting as an outcome of dynamics of social practices

    DEFF Research Database (Denmark)

    Jensen, Charlotte Louise

    2017-01-01

    In policy-making, reducing energy consumption from lighting is largely treated as a matter of optimizing products. However, since lighting is a highly cultural and socio-material phenomenon, this article argues that current ways of using light cannot be attributed to the properties of the light s...

  10. Energy efficiency effect on the public street lighting by using LED light replacement and kwh-meter installation at DKI Jakarta Province, Indonesia

    Science.gov (United States)

    Sudarmono, Panggih; Deendarlianto; Widyaparaga, Adhika

    2018-05-01

    Public street lighting consumes large energy for the public interest, but many street lights still do not use energy-saving technologies. In 2014, Provincial Government of DKI Jakarta operated 179,305 units of street lights. Of the number of installed armature, 92 % of them or 166,441 units are HPS (High-Pressure Sodium) armatures which are inefficient. In 2016, the Provincial Government of DKI Jakarta cut down the energy used for street lighting, by implementing the programs of kWh-meter installation in every street lighting panel and use energy-saving lamps equipped with the smart system. The Provincial Government of DKI Jakarta is registered with 6,399 customer IDs in PLN (State Owned Electric Company), and gradually carried out the kWh Meter installation and changes to the contract. The program to use energy-saving lights done by replacing the HPS armature that is not energy efficient to LED armature which is known to be energy efficient. Until the end of 2016, the number of armatures that has been replaced was 89,417 units. The research results on 25 samples of PLN customer IDs and the replacement of 2,162 units armature, showed that the energy efficiency through kWh meter installation and armature replacement reduce the power consumption from 330,414 kWh to 71,278 kWh or by 78.43%. Generally, there was a decrease in the value of electricity bill compared to the before the replacement. The program of kWh-meter installations and replacement of the armature has a payback period of 2.66 years.

  11. Pore-Confined Light Metal Hydrides for Energy Storage and Catalysis

    NARCIS (Netherlands)

    Bramwell, P.L.|info:eu-repo/dai/nl/371685117

    2017-01-01

    Light metal hydrides have enjoyed several decades of attention in the field of hydrogen storage, but their applications have recently begun to diversify more and more into the broader field of energy storage. For example, light metal hydrides have shown great promise as battery materials, in sensors

  12. Energy efficiency of lighting systems in residential buildings; Energieeffizienzsteigerung der Beleuchtungstechnik in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Troeger, Andreas [Technische Univ. Dresden (Germany). Elektrotechnisches Inst.; Wittig, Michael; Schlosser, Roman; Wuerfel, Matthias [Westsaechsische Hochschule Zwickau (Germany). Fakultaet Elektrotechnik

    2011-07-01

    Due to political demands such as the law of an eco-friendly-design of Energy Using Products (EBPG), the production and thus the long-term use of conventional light bulbs is no longer possible within the European Union. Energy saving light bulbs are preferred as replacement for those bulbs. However, these lighting systems have unfavourable properties for certain areas of applications, such as low luminance during the heating phase or a low lifetime if used under strongly fluctuating stress. Therefore, using conventional light bulbs in stairwells, their properties are of great disadvantage. The paper examines possible applications for LED lighting systems (Light Emitting Diode), meeting the standards. Investigations of possible on-demand switching or dimming of LED lighting have been executed with the help of presence or movement sensors and by using smart grids such as the KNX-compliant components. Furthermore, technical requirements, economic viability and energetic advantages and disadvantages of separate DC power networks for the operating of the LED lights have been tested. Since energy storage increased in rental buildings, the storage system DC supply can be used for DC power of such consumers. In this way, the AC and the rectifier losses can be avoided and thus the energy efficiency of lighting can be increased in rental buildings. To implement the project a model of a staircase has been created by using the simulation software DIALux. Furthermore the given lighting conditions have been measured in the stairwell. Thus, the staircase model yields comparative results. (orig.)

  13. Industrial excess heat for district heating in Denmark

    International Nuclear Information System (INIS)

    Bühler, Fabian; Petrović, Stefan; Karlsson, Kenneth; Elmegaard, Brian

    2017-01-01

    Highlights: •Method for utilisation potential of industrial excess heat for district heating. •Industrial excess heat from thermal processes is quantified at single production units. •Linking of industrial excess heat sources and district heating demands done in GIS. •Excess heat recovery using direct heat transfer and heat pumps. •5.1% of the Danish district heating demand could be supplied by industrial excess heat. -- Abstract: Excess heat is available from various sources and its utilisation could reduce the primary energy use. The accessibility of this heat is however dependent amongst others on the source and sink temperature, amount and potential users in its vicinity. In this work a new method is developed which analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal processes which equals 5.1% of the current demand. More than half of this heat was found to be usable directly, without the need for a heat pump.

  14. Data mining application in industrial energy audit for lighting

    Energy Technology Data Exchange (ETDEWEB)

    Maricar, N.M.; Kim, G.C.; Jamal, N. [Kolej Univ., Melaka (Malaysia). Faculty of Electrical Engineering

    2005-07-01

    A data mining application for lighting energy audits at industrial sites was presented. Data collection was based on the parameters needed for the analysis part of the audit. Data collection included the activity for which the room was used; its dimension; light level readings in lux; the number of luminaries; the number of lamps per luminaries; lamp fixtures; and lamp wattage. The lumen method was used to calculate the recommended numbers of luminaries in the room. The number was then compared with the existing system's luminaries. The installed load efficacy ratio (ILER) was then used to determine proper retrofit action to maximize energy usage. The difference between the calculated lux and the standard lux was used to create data subsets. A data mining algorithm was used to determine that the ILER plays an important role in calculating the efficiency of lighting systems. It was also concluded that the method can be used to minimize the time needed to analyze large amounts of lighting data. The results of case studies were also used to show that the combined data mining algorithm provided accurate assessments using existing calculated data. 7 refs., 8 tabs., 5 figs.

  15. Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis.

    Science.gov (United States)

    Fassioli, Francesca; Olaya-Castro, Alexandra; Scheuring, Simon; Sturgis, James N; Johnson, Neil F

    2009-11-04

    In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.

  16. Energy-analysis of the total nuclear energy cycle based on light water reactors

    International Nuclear Information System (INIS)

    Kistemaker, J.

    1975-01-01

    The energy economy of the total nuclear energy cycle is investigated. Attention is paid to the importance of fossil fuel saving by using nuclear energy. The energy analysis is based on the construction and operation of power plants with an electric output of 1000MWe. Light water moderated reactors with a 2.7 - 3.2% enriched uranium core are considered. Additionally, the whole fuel cycle including ore winning and refining, enrichment and fuel element manufacturing and reprocessing has been taken into account. Neither radioactive waste storage problems nor safety problems related to the nuclear energy cycle and safeguarding have been dealt with, as exhaustive treatments can be found elswhere

  17. Dissecting long-term adjustments of photoprotective and photo-oxidative stress acclimation occurring in dynamic light environments

    Directory of Open Access Journals (Sweden)

    Shizue Matsubara

    2016-11-01

    Full Text Available Changes in light intensity directly affect the performance of the photosynthetic apparatus. Light energy absorbed in excess of cells’ needs leads to production of reactive oxygen species and photo-oxidative damage. Excess light in both constant and dynamic environments induces photoprotective acclimation in plants. Distinct sets of signals and regulatory mechanisms are involved in acclimatory adjustment of photoprotection and photosynthesis under constant and dynamic (fluctuating light conditions. We are still far away from drawing a comprehensive picture of acclimatory signal transduction pathways, particularly in dynamic environments. In this perspective article, we propose the use of Arabidopsis plants that produce H2O2 in chloroplasts (GO plants under atmospheric CO2 levels as a tool to study the mechanisms of long-term acclimation to photo-oxidative stress. In our opinion there are new avenues to future investigations on acclimatory adjustments and signal transduction occurring in plants under dynamic light environments.

  18. A photophysical control mechanism for zeaxanthin-associated radiationless energy dissipation in photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H.A.; Cua, A. [Connecticut Univ., Storrs, CT (United States). Dept. of Chemistry; Young, A. [Johns Moores Univ., Liverpool (United Kingdom). School of Biological and Earth Sciences; Gosztola, D.; Wasielewski, M.R. [Argonne National Lab., IL (United States)

    1994-09-01

    Understanding the way in which excess solar energy is dissipated by photosynthetic membranes under high light stress is a major problem in photosynthesis studies. This paper reports femtosecond time-resolved, fast-transient optical spectroscopic analyses of three important xanthophylls: violaxanthin, antheraxanthin, zeoaxanthin. The results support the notion that the enzymatic reactions that interconvert these xanthophylls act as a kind of ``molecular gear shift`` controlling whether the molecules function as light-harvesting pigments performing forward energy transfer or as fluorescence quenchers performing reverse energy transfer.

  19. Effect of melatonin and lighting schedule on energy metabolism in broiler chickens

    NARCIS (Netherlands)

    Apeldoorn, E.J.; Schrama, J.W.; Mashaly, M.M.; Parmentier, H.K.

    1999-01-01

    The effect of melatonin and lighting schedule on energy metabolism in broiler chickens was studied. Eight groups of six female broiler chickens each were assigned to a continuous lighting schedule [23 h light (L):1 h darkness (D)] or an intermittent lighting schedule (1L:3D), and were fed a diet

  20. Flow of light energy in benthic photosynthetic microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Al-Najjar, Mohammad Ahmad A.

    2010-12-15

    The work in this thesis demonstrates the assessment of the energy budget inside microbial mat ecosystems, and the factors affecting light utilization efficiency. It presents the first balanced light energy budget for benthic microbial mat ecosystems, and shows how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). The energy budget was dominated by heat dissipation on the expense of photosynthesis. The maximum efficiency of photosynthesis was at light limiting conditions When comparing three different marine benthic photosynthetic ecosystems (originated from Abu-Dhabi, Arctic, and Exmouth Gulf in Western Australia), differences in the efficiencies were calculated. The results demonstrated that the maximum efficiency depended on mat characteristics affecting light absorption and scattering; such as, photopigments ratio and distribution, and the structural organization of the photosynthetic organisms relative to other absorbing components of the ecosystem (i.e., EPS, mineral particles, detritus, etc.). The maximum efficiency decreased with increasing light penetration depth, and increased with increasing the accessory pigments (phycocyanin and fucoxanthin)/chlorophyll ratio. Spatial heterogeneity in photosynthetic efficiency, pigment distribution, as well as light acclimation in microbial mats originating from different geographical locations was investigated. We used a combined pigment imaging approach (variable chlorophyll fluorescence and hyperspectral imaging), and fingerprinting approach. For each mat, the photosynthetic activity was proportional to the local pigment concentration in the photic zone, but not for the deeper layers and between different mats. In each mat, yield of PSII and E1/2 (light acclimation) generally decreased in parallel with depth, but the gradients in both parameters varied greatly between samples. This mismatch between pigments concentration

  1. Energy saved neon sign lighting power supply for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tanitteerapan, T.; Dokpikul, S.; Arunrungrasmi, S. [King Mongkut Univ. of Technology Thonburi, Bangmod, Tungkru, Bangkok (Thailand). Dept. of Electrical Technology Education, Faculty of Industrial Education

    2007-07-01

    Petroleum oil, natural gas and fossil fuels are commonly used in power plants for electrical power generation. However, because of their negative environmental impacts, energy and environmental savings from renewable energy resources are necessary choices. Solar energy can be converted to the electrical voltage by using solar arrays. This process can be used in many electrical applications. This paper introduced a neon sign lighting power supply for a small photovoltaic powered stand-alone commercial advertising board for a remote area in Thailand. The circuit implementation was very simple, consisting of an active switch device, a resonant capacitor and high frequency transformer. The control also operated as a fixed frequency and fixed duty ratio controller. The paper discussed the principle of neon sign lighting, power circuit operation, and control circuit operation. To verify the proposed power supply, the circuit experiment of the proposed power supply for the neon sign lighting was applied to a 10 foot long, 10 millimeter diameter bulb. The neon sign was ignited smoothly with little power consumption. 2 refs., 1 tab., 10 figs.

  2. Lighting and social practices - what role does lighting play for low energy house (LEH) households and LED frontrunners?

    DEFF Research Database (Denmark)

    Jensen, Charlotte Louise

    As lighting in Danish households consume approximately 1.3 TWh every year, reducing electricity consumption from lighting is important. Studies have shown that a mere substitution of inefficient lighting technologies towards more efficient ones may not be possible, as many social and cultural...... dimensions influence how people use and relate to lighting. Assessing how very distinctive contexts of households (that diverge from an exemplary kind of household), such as low energy houses and LED frontrunner households, use and understand lighting, may give some insight into what may trigger or hamper...

  3. The Energy Audit Activity Focused on the Lighting Systems in Historical Buildings

    Directory of Open Access Journals (Sweden)

    Giacomo Salvadori

    2016-11-01

    Full Text Available The energy audit for a building is a procedure designed mainly to obtain adequate knowledge of the energy consumption profile, identify, and quantify opportunities for energy savings by a cost-benefit analysis and report, clearly and comprehensively, about the obtained results. If the audit is referred to a building with a significant historical and artistic value, a compatibility evaluation of the energy saving interventions with the architectural features should also be developed. In this paper, analysing the case study of a historical building used as public offices in Pisa (Italy, the authors describe how it is possible to conduct an energy audit activity (especially dedicated to the lighting system and they show how, for this type of buildings, it is possible to obtain significant energy savings with a refurbishment of the lighting system. A total number of seven interventions on indoor and outdoor lighting sub-systems were analysed in the paper. They are characterised by absolute compatibility with the historical and artistic value of the building and they show short payback times, variable between 4 and 34 months, allowing a reduction of the electrical energy consumption for the artificial indoor and outdoor lighting variable from 1.1 MWh/year to 39.0 MWh/year. The followed methodology and the evaluation results described in the paper, although based on a case study, can be extended to numerous historical buildings used as public offices, a recurring situation in the centres of Italian historical cities.

  4. Energy-saving quality road lighting with colloidal quantum dot nanophosphors

    Science.gov (United States)

    Erdem, Talha; Kelestemur, Yusuf; Soran-Erdem, Zeliha; Ji, Yun; Demir, Hilmi Volkan

    2014-12-01

    Here the first photometric study of road-lighting white light-emitting diodes (WLEDs) integrated with semiconductor colloidal quantum dots (QDs) is reported enabling higher luminance than conventional light sources, specifically in mesopic vision regimes essential to street lighting. Investigating over 100 million designs uncovers that quality road-lighting QD-WLEDs, with a color quality scale and color rendering index ≥85, enables 13-35% higher mesopic luminance than the sources commonly used in street lighting. Furthermore, these QD-WLEDs were shown to be electrically more efficient than conventional sources with power conversion efficiencies ≥16-29%. Considering this fact, an experimental proof-of-concept QD-WLED was demonstrated, which is the first account of QD based color conversion custom designed for street lighting applications. The obtained white LED achieved the targeted mesopic luminance levels in accordance with the road lighting standards of the USA and the UK. These results indicate that road-lighting QD-WLEDs are strongly promising for energy-saving quality road lighting.

  5. Energy Efficient Task Light

    DEFF Research Database (Denmark)

    Logadottir, Asta; Ardkapan, Siamak Rahimi; Johnsen, Kjeld

    2014-01-01

    The objectives of this work is to develop a task light for office lighting that fulfils the minimum requirements of the European standard EN12464 - 1 : Light and lightingLighting of work places, Part 1: Indoor workplaces and the Danish standard DS 700 : Lys og belysning I arbejdsrum , or more...... specifically the requirements that apply to the work area and the immediate surrounding area. By providing a task light that fulfils the requirements for task lighting and the immediate surrounding area, the general lighting only needs to provide the illuminance levels required for background lighting...... and thereby a reduction in installed power for general lighting of about 40 % compared to the way illuminance levels are designed in an office environment in Denmark today. This lighting strategy is useful when the placement of the task area is not defined in the space before the lighting is design ed...

  6. Saving energy by overriding automatic lighting control: A case study

    NARCIS (Netherlands)

    Lelkens, A.

    2011-01-01

    Modern office buildings are often equipped with automatic systems that turn on the lights if somebody enters a room and turn them off when everybody has left the room. This ensures that users do not leave the lights on during the night and thus avoids wasting energy. For cost reasons, most of these

  7. Optically nonlinear energy transfer in light-harvesting dendrimers

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2004-08-01

    Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.

  8. Lighting and cooling energy consumption in an open-plan office using solar film coating

    International Nuclear Information System (INIS)

    Li, Danny H.W.; Lam, Tony N.T.; Wong, S.L.; Tsang, Ernest K.W.

    2008-01-01

    In subtropical Hong Kong, solar heat gain via glazing contributes to a significant proportion of the building envelope cooling load. The principal fenestration design includes eliminating direct sunlight and reducing cooling requirements. Daylighting is an effective approach to allow a flexible building facade design strategy, and to enhance an energy-efficient and green building development. This paper studies the lighting and cooling energy performances for a fully air-conditioned open-plan office when solar control films together with daylight-linked lighting controls are being used. Measurements were undertaken at two stages including the electricity expenditures for the office using photoelectric dimming controls only (first stage) and together with the solar control film coatings on the windows (second stage). Electric lighting and cooling energy consumption, transmitted daylight illuminance and solar radiation were systematically recorded and analysed. The measured data were also used for conducting and validating the building energy simulations. The findings showed that the solar film coatings coupled with lighting dimming controls cut down 21.2% electric lighting and 6.9% cooling energy consumption for the open-plan office

  9. Effect of light energy density on conversion degree and hardness of dual-cured resin cement.

    Science.gov (United States)

    Komori, Paula Carolina de Paiva; de Paula, Andréia Bolzan; Martin, Airton Abrāo; Tango, Rubens Nisie; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2010-01-01

    This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm x 5 mm) and covered with a Mylar strip. The tip of the light-curing unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37 degrees C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (alpha = 0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the light-curing unit and by its light energy density.

  10. Energy Efficient LED Spectrally Matched Smart Lighting, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative Imaging and Research and the University of Houston Clear Lake have teamed to develop a widely extensible, affordable, energy efficient, smart lighting...

  11. Light + architecture. Daylight - artificial light - energy; Licht + Architektur. Tageslicht - Kunstlicht - Energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The symposium intends to provide scientific and technical fundamentals for room lighting with daylight. Daylight deflection systems and artificial light control systems were analyzed for this purpose, and a catalogue of criteria was established. Planners were given tools for projecting daylight control systems. Builder-owners received the fundamentals for economic assessment of combined daylight and artificial light illumination systems, while industrial producers obtained information for further development to maturity and for marketing of daylight-dependent artificial light control systems. (GL)

  12. Light energy management in peach: utilization, photoprotection , photodamage and recovery. Maximizing light absorption in orchard is not always the best solution

    OpenAIRE

    Losciale, Pasquale

    2008-01-01

    The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 – 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or i...

  13. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    Science.gov (United States)

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  14. High-energy gamma-ray beams from Compton-backscattered laser light

    International Nuclear Information System (INIS)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized #betta#-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10 7 s - 1 ) of background-free polarized #betta# rays whose energy will be determined to a high accuracy (δE = 2.3 MeV). Initially, 300(420)-MeV #betta# rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the #betta#-ray energy up to 700 MeV

  15. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  16. Energy-saving modification on outdoor lighting in the nuclear power plant

    International Nuclear Information System (INIS)

    Yao Bo

    2010-01-01

    The outdoor lighting in the nuclear power plant don't automatically shut down,and cause lights to be long-light. It is proposed to install light-control switches in the electric circuit in order to achieve automatic control. The original outdoor lighting circuit uses the circuit breaker for over-current protection and short circuit fault protection, and use remote circuit breaker to manually operate the lamp on and off.Each circuit branch installs a light-control switch, and set the threshold of 100 lux for the light-control switch. When the natural illumination meet the minimum illumination requirement (> 100lux), the lights shut down the power.When natural illumination doesn't meet the lighting requirement (<100lux), the lighting automatically close.After the modification, it is resolved the outdoor lighting easily becoming a long light,and save energy. (authors)

  17. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  18. Miniature photovoltaic energy system for lighting

    International Nuclear Information System (INIS)

    Awais, M.

    1999-01-01

    In this project a miniature photovoltaic energy system has been designed and developed, that may be used in remote areas and villages for lighting purposes. System sizing is the important part of the project because it affects the cost of the system. Therefore, first of all system sizing has been done. For conversion of dc voltage of the battery into ac voltage, an inverter has been designed. To charge the battery when the sun is not shining, a standby system has been developed using a bicycle and dynamo. To indicate the battery's state of charge and discharge, a battery monitoring circuit has also been developed. Similarly, to protect the battery from over discharging, a battery protection circuit has been designed. In order to measure how much energy is going from standby system to the battery, an efficient dc electronic energy meter has been designed and developed. The working of the overall system has been tested and found to give good performance. (author)

  19. Identification and Evaluation of Cases for Excess Heat Utilisation Using GIS

    Directory of Open Access Journals (Sweden)

    Fabian Bühler

    2018-03-01

    Full Text Available Excess heat is present in many sectors, and its utilization could reduce the primary energy use and emission of greenhouse gases. This work presents a geographical mapping of excess heat, in which excess heat from the industry and utility sector was distributed to specific geographical locations in Denmark. Based on this mapping, a systematic approach for identifying cases for the utilization of excess heat is proposed, considering the production of district heat and process heat, as well as power generation. The technical and economic feasibility of this approach was evaluated for six cases. Special focus was placed on the challenges for the connection of excess heat sources to heat users. To account for uncertainties in the model input, different methods were applied to determine the uncertainty of the results and the most important model parameters. The results show how the spatial mapping of excess heat sources can be used to identify their utilization potentials. The identified case studies show that it can be economically feasible to connect the heat sources to the public energy network or to use the heat to generate electricity. The uncertainty analysis suggests that the results are indicative and are particularly useful for a fast evaluation, comparison and prioritization of possible matches. The excess heat temperature and obtainable energy price were identified as the most important input parameters.

  20. Identification and Evaluation of Cases for Excess Heat Utilisation Using GIS

    DEFF Research Database (Denmark)

    Bühler, Fabian; Petrovic, Stefan; Ommen, Torben Schmidt

    2018-01-01

    Excess heat is present in many sectors, and its utilization could reduce the primary energy use and emission of greenhouse gases. This work presents a geographical mapping of excess heat, in which excess heat from the industry and utility sector was distributed to specific geographical locations...

  1. Study on light output and energy resolution of PbWO4 crystal

    International Nuclear Information System (INIS)

    Su Guanghui; Yue Ke; Sun Zhiyu

    2010-01-01

    The light output and energy resolution of PbWO 4 crystal are studied with different wrapping materials and methods. The Wrapping condition was optimized by analyzing the experimental data to gain higher light output and better energy resolution. A GEANT4-based package has been developed to simulate the corresponding features of PbWO 4 crystal, and the simulation results are consistent with the experimental data. (authors)

  2. National award for energy-efficient town lighting. Compilation of energy-efficient town lighting techniques; Bundeswettbewerb Energieeffiziente Stadtbeleuchtung. Sammlung energieeffizienter Techniken fuer die Stadtbeleuchtung

    Energy Technology Data Exchange (ETDEWEB)

    Piller, Sabine; Huebner, Vanessa; Barbre, Felix; Schaefer, Moritz [Berliner Energieagentur GmbH, Berlin (Germany)

    2009-02-11

    The national award for innovative urban lighting was initiated by the Federal Environmental Office. The resulting publication presents innovative techniques for urban lighting. While it is not a complete market survey, it provides an outline of modern, energy-efficient and environment-friendly technologies that are commercially available. Most systems are also available at comparatively low cost. For more information, interested users should refer to http://www.bmu.de/klimaschutzinitiative/aktuell/41708.php. (orig./AKB)

  3. Thermo-optically induced reorganizations in the main light harvesting antenna of plants. II

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Varkonyi, Zsuzsanna; Kovacs, Laszlo

    2005-01-01

    We have investigated the circular dichroism spectral transients associated with the light-induced reversible reorganizations in chirally organized macrodomains of pea thylakoid membranes and loosely stacked lamellar aggregates of the main chlorophyll a/b light harvesting complexes (LHCII) isolated...... from the same membranes. These reorganizations have earlier been assigned to originate from a thermo-optic effect. According to the thermo-optic mechanism, fast local thermal transients due to dissipation of the excess excitation energy induce elementary structural changes in the close vicinity...

  4. A Hybrid Indoor Ambient Light and Vibration Energy Harvester for Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2014-05-01

    Full Text Available To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  5. 76 FR 47178 - Energy Efficiency Program: Test Procedure for Lighting Systems (Luminaires)

    Science.gov (United States)

    2011-08-04

    ... DEPARTMENT OF ENERGY [Docket Number EERE-2011-BT-TP-0041] RIN 1904-AC50 Energy Efficiency Program: Test Procedure for Lighting Systems (Luminaires) AGENCY: Office of Energy Efficiency and Renewable... (``DOE'' or the ``Department'') is currently evaluating energy efficiency test procedures for luminaires...

  6. Future indoor light and associated energy consumption based on professionals' visions: A practice- and network-oriented analysis

    DEFF Research Database (Denmark)

    Franceschini, Simone; Borup, Mads; Rosales-Carreón, Jesús

    2018-01-01

    Through the insight and visions of Danish lighting experts, this manuscript investigates relationships between future lighting technologies and practices and the expected impacts on energy and lighting consumption. The light-emitting diode (LED) will be the dominant technology of the future smart...... light systems. Though, energy efficiency is expected to improve, new market players will appear and new lighting opportunites will be exploited that, in turn, will increase the demand for light. A rebound effect is expected. The overall impact on the future consumption of energy is uncertain, so we...

  7. An excess noise measurement system for weak responsivity avalanche photodiodes

    Science.gov (United States)

    Qiao, Liang; Dimler, Simon J.; Baharuddin, Aina N. A. P.; Green, James E.; David, John P. R.

    2018-06-01

    A system for measuring, with reduced photocurrent, the excess noise associated with the gain in avalanche photodiodes (APDs), using a transimpedance amplifier front-end and based on phase-sensitive detection is described. The system can reliably measure the excess noise power of devices, even when the un-multiplied photocurrent is low (~10 nA). This is more than one order of magnitude better than previously reported systems and represents a significantly better noise signal to noise ratio. This improvement in performance has been achieved by increasing the value of the feedback resistor and reducing the op-amp bandwidth. The ability to characterise APD performance with such low photocurrents enables the use of low power light sources such as light emitting diode rather than lasers to investigate the APD noise performance.

  8. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  9. Optical meta-atom for localization of light with quantized energy.

    Science.gov (United States)

    Lannebère, Sylvain; Silveirinha, Mário G

    2015-10-30

    The capacity to confine light into a small region of space is of paramount importance in many areas of modern science. Here we suggest a mechanism to store a quantized 'bit' of light--with a very precise amount of energy--in an open core-shell plasmonic structure ('meta-atom') with a nonlinear optical response. Notwithstanding the trapped light state is embedded in the radiation continuum, its lifetime is not limited by the radiation loss. Interestingly, it is shown that the interplay between the nonlinear response and volume plasmons enables breaking fundamental reciprocity restrictions, and coupling very efficiently an external light source to the meta-atom. The collision of an incident optical pulse with the meta-atom may be used to release the trapped light 'bit'.

  10. Light Ion Beams for Energy Production in ADS

    Directory of Open Access Journals (Sweden)

    Paraipan Mihaela

    2018-01-01

    Full Text Available A comparative study of the energy efficiency of proton beams with an energy from 0.5 GeV to 4 GeV and light ion beams (7Li, 9Be, 11B, and 12C with energies from 0.25 AGeV to 1 AGeV in natural and enriched quasi-infinite U target is presented. The numerical results on the particle transport and interaction are obtained using the code Geant4. The following target optimization issues are addressed: the beam window dimensions, and the possibility to use a core from low Z materials. The best solution for ADS from the point of view of the energy gain and miniaturization is obtained for 7Li or 9Be beam with an energy of 0.3–0.4 AGeV and a target with Be core.

  11. Lighting and energy performance for an office using high frequency dimming controls

    International Nuclear Information System (INIS)

    Li, Danny H.W.; Lam, Tony N.T.; Wong, S.L.

    2006-01-01

    Artificial lighting is one of the major electricity consuming items in many non-domestic buildings. Recently, there has been an increasing interest in incorporating daylight in architectural and building designs to reduce the electricity use and enhance greener building developments. This paper presents field measurements for a fully air conditioned open plan office using a photoelectric dimming system. Electric lighting load, indoor illuminance levels and daylight availability were systematically measured and analyzed. The general features and characteristics of the results such as electric lighting energy savings and transmitted daylight illuminance in the forms of frequency distributions and cumulative frequency distributions are presented. Daylighting theories and regression models have been developed and discussed. It has been found that energy savings in electric lighting were over 30% using the high frequency dimming controls. The results from the study would be useful and applicable to other office spaces with similar architectural layouts and daylight linked lighting control systems

  12. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  13. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors.

    Directory of Open Access Journals (Sweden)

    Eleonora Sforza

    Full Text Available Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently.

  14. Visible Light Photocatalysis of [2+2] Styrene Cycloadditions via Energy Transfer

    Science.gov (United States)

    Lu, Zhan; Yoon, Tehshik P.

    2012-01-01

    Hip to be square: Styrenes participate in [2+2] cycloadditions upon irradiation with visible light in the presence of an iridium(III) polypyridyl complex. In contrast to previous reports of visible light photoredox catalysis, the mechanism of this process involves photosensitization by energy transfer and not electron transfer. PMID:22965321

  15. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy.

    Science.gov (United States)

    Robakowski, Piotr; Bielinis, Ernest; Sendall, Kerrie

    2018-05-01

    This study addressed whether competition under different light environments was reflected by changes in leaf absorbed light energy partitioning, photosynthetic efficiency, relative growth rate and biomass allocation in invasive and native competitors. Additionally, a potential allelopathic effect of mulching with invasive Prunus serotina leaves on native Quercus petraea growth and photosynthesis was tested. The effect of light environment on leaf absorbed light energy partitioning and photosynthetic characteristics was more pronounced than the effects of interspecific competition and allelopathy. The quantum yield of PSII of invasive P. serotina increased in the presence of a competitor, indicating a higher plasticity in energy partitioning for the invasive over the native Q. petraea, giving it a competitive advantage. The most striking difference between the two study species was the higher crown-level net CO 2 assimilation rates (A crown ) of P. serotina compared with Q. petraea. At the juvenile life stage, higher relative growth rate and higher biomass allocation to foliage allowed P. serotina to absorb and use light energy for photosynthesis more efficiently than Q. petraea. Species-specific strategies of growth, biomass allocation, light energy partitioning and photosynthetic efficiency varied with the light environment and gave an advantage to the invader over its native competitor in competition for light. However, higher biomass allocation to roots in Q. petraea allows for greater belowground competition for water and nutrients as compared to P. serotina. This niche differentiation may compensate for the lower aboveground competitiveness of the native species and explain its ability to co-occur with the invasive competitor in natural forest settings.

  16. The efficiency, energy intensity and visual impact of the accent lighting in the retail grocery stores

    Directory of Open Access Journals (Sweden)

    Ľudmila Nagyová

    2014-11-01

    Full Text Available Over the last few years, topics of displaying, presentation, lighting, energy saving and issues related to the environment while selling the fresh food (fruits, vegetable, bakery products, meat are becoming an important matter among traders. However, just bigger companies with transnational capital have devoted their attention to this issue yet. Generally, the energy costs make up 70% of operating costs in retail stores where the cooling system and lighting are the most energy consuming. Accent lighting in modern retails is largely involved in the overall design and atmosphere in shops and plays a crucial role in presenting the goods as well. Using of accent lighting can draw the customer's attention to a specific part of the sales area and achieve the overall harmonization in the store. With the rational using of combination of energy saving and effective accent lighting retailers can achieve not only attractive presentation of displayed products but also appreciable savings in the operation of their stores. It is the only factor that can be exactly measured and controlled. Using a Colour and Lux Meters we found out the intensity and color temperature of accent lighting used in domestic and foreign retail chains for the different kinds of fresh food products. Based on the obtained values we have compiled graphs, which are showing visual comfort. We also identified different types of accent lighting, which we assigned to their impact on emotional involvement of consumers. The starting points were the tests we conducted in simulated laboratory conditions. While searching of a compromise between effective and energy efficient accent lighting we take into consideration consumers' emotional response as well as the annual electricity consumption of different types of light sources. At the end we recommend options for energy-efficient, effective and spectacular lighting while using the optimal number of light sources and their logical organization

  17. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-06-01

    Full Text Available Light-emitting diode (LED lighting should be considered for lighting efficiency enhancement, however, waste heat from light-emitting diode (LED lighting increases the internal cooling load during the summer season. In order to solve this problem we propose a thermal management system for light-emitting diode (LED lighting with a heat exchanger module integrated with the building’s heating, ventilation, and air conditioning (HVAC system to move the lighting’s waste heat outdoors. An experiment was carried out to investigate the thermal effects in a test chamber and the heat exchange rate between the heat sink and the duct air. The heat generated by the light-emitting diode (LED lighting was calculated as 78.1% of light-emitting diode (LED input power and the heat exchange rate of the lighting heat exchange module was estimated to be between 86.5% and 98.1% according to the light-emitting diode (LED input power and the flow rate of air passing the heat sink. As a result, the average light-emitting diode (LED lighting heat contribution rate for internal heat gain was determined as 0.05; this value was used to calculate the heating and cooling energy demand of the office building through an energy simulation program. In the simulation results, the cooling energy demand was reduced by 19.2% compared with the case of conventionally installed light-emitting diode (LED lighting.

  18. Unravelling radiative energy transfer in solid-state lighting

    Science.gov (United States)

    Melikov, Rustamzhon; Press, Daniel Aaron; Ganesh Kumar, Baskaran; Sadeghi, Sadra; Nizamoglu, Sedat

    2018-01-01

    Today, a wide variety of organic and inorganic luminescent materials (e.g., phosphors, quantum dots, etc.) are being used for lighting and new materials (e.g., graphene, perovskite, etc.) are currently under investigation. However, the understanding of radiative energy transfer is limited, even though it is critical to understand and improve the performance levels of solid-state lighting devices. In this study, we derived a matrix approach that includes absorption, reabsorption, inter-absorption and their iterative and combinatorial interactions for one and multiple types of fluorophores, which is simplified to an analytical matrix. This mathematical approach gives results that agree well with the measured spectral and efficiency characteristics of color-conversion light-emitting diodes. Moreover, it also provides a deep physical insight by uncovering the entire radiative interactions and their contribution to the output optical spectrum. The model is universal and applicable for all kinds of fluorophores.

  19. Simplified Production of Organic Compounds Containing High Enantiomer Excesses

    Science.gov (United States)

    Cooper, George W. (Inventor)

    2015-01-01

    The present invention is directed to a method for making an enantiomeric organic compound having a high amount of enantiomer excesses including the steps of a) providing an aqueous solution including an initial reactant and a catalyst; and b) subjecting said aqueous solution simultaneously to a magnetic field and photolysis radiation such that said photolysis radiation produces light rays that run substantially parallel or anti-parallel to the magnetic field passing through said aqueous solution, wherein said catalyst reacts with said initial reactant to form the enantiomeric organic compound having a high amount of enantiomer excesses.

  20. New rules of thumb maximizing energy efficiency in street lighting with discharge lamps: The general equations for lighting design

    Science.gov (United States)

    Peña-García, A.; Gómez-Lorente, D.; Espín, A.; Rabaza, O.

    2016-06-01

    New relationships between energy efficiency, illuminance uniformity, spacing and mounting height in public lighting installations were derived from the analysis of a large sample of outputs generated with a widely used software application for lighting design. These new relationships greatly facilitate the calculation of basic lighting installation parameters. The results obtained are also based on maximal energy efficiency and illuminance uniformity as a premise, which are not included in more conventional methods. However, these factors are crucial since they ensure the sustainability of the installations. This research formulated, applied and analysed these new equations. The results of this study highlight their usefulness in rapid planning and urban planning in developing countries or areas affected by natural disasters where engineering facilities and computer applications for this purpose are often unavailable.

  1. Long-Range Energy Propagation in Nanometer Arrays of Light Harvesting Antenna Complexes

    NARCIS (Netherlands)

    Escalantet, Maryana; Escalante Marun, M.; Lenferink, Aufrid T.M.; Zhao, Yiping; Tas, Niels Roelof; Huskens, Jurriaan; Hunter, C. Neil; Subramaniam, Vinod; Otto, Cornelis

    2010-01-01

    Here we report the first observation of long-range transport of excitation energy within a biomimetic molecular nanoarray constructed from LH2 antenna complexes from Rhodobacter sphaeroides. Fluorescence microscopy of the emission of light after local excitation with a diffraction-limited light beam

  2. Unfair and excessive prices in the energy sector

    International Nuclear Information System (INIS)

    Van der Woude, M.

    2008-01-01

    The concept of competition refers to a process where firms dispute the favour of their customers by proposing better products at the lowest possible price. This consumer welfare creating process is to a large extent Darwinian in nature: those who cannot compete must die. The law of supply and demand is ruthless and so is competition law. Principles of fairness and justice are extraneous to competition law: the lion eats the deer. Still, EC competition law is not amoral, as illustrated by the very first example of abusive conduct given by Article 82 EC: 'directly or indirectly imposing unfair purchase or selling prices or other unfair trading conditions' can constitute an abuse. The concept of fairness as a constituent element of EC competition law may disturb those who analyze the competitive process through a scientific lens. Fairness does not relate to economic effects and cannot be measured or quantified. It is a concept that appeals to ethics and norms. The dichotomy between competition as an amoral welfare creating process, that can be the subject of economic research, and the normative concept of fairness does not necessarily lead to a contradiction. Fairness becomes relevant where the competitive process has ceased to play its welfare creating role: i.e. where monopolies prevail over perfect competition. When confronted to a monopoly, abstention is the customer's only choice and for some goods, such as food, clothing and housing, abstention is not considered as a realistic choice. In scenarios where the monopolist faces an inelastic demand curve, fairness is probably the customer's only safety buoy. The energy sector is one of the sectors where these situations occur. In our modern societies, customers expect the light to go on, when they turn the switch, and their houses to be heated, when activating their boilers. Candles and jumpers not offering realistic alternatives, demand is close to inelastic, at least on the short term. Moreover, the energy sector

  3. Assessment of Excess Sludge Ultrasonic, Mechanical and Hybrid Pretreatment in Relation to the Energy Parameters

    Directory of Open Access Journals (Sweden)

    Łukasz Skórkowski

    2018-04-01

    Full Text Available Anaerobic digestion is the most common stabilization process at large sewage treatment plants. To improve its effects, a sludge pre-conditioning process called disintegration is recommended. The aim of the presented study was to compare the direct effects of various types of mechanical disintegration, performed for the same excess sludge, in relation to the energy parameters and effectiveness of the process. Four different disintegration methods were used: mechanical disintegration in semi-technical and laboratory scale homogenizing mixers, ultrasonic disintegration (US and combined (hybrid process. The disintegration was performed for volumetric energy EV = 4.67–100 kWh m−3, the results were evaluated based on dispersion (kdCOD, kdCST, lysis (kdSCOD, acidification (kdVFA and nutrient release (kdTN, kdTP disintegration indicators. The statistical analysis of the results indicates the influence of disintegrator type (mixer/US/hybrid, scale (laboratory/semi-technical and energy input on the direct results of disintegration. Hybrid disintegration delivered better direct results than two pre-treatment processes used separately. The efficiency of the hybrid process defined as the increase of the indicator (disintegration products—∆FCOD, ∆SCOD per unit of energy was considerably higher than for a single stage disintegration process.

  4. Basic Research Needs for Solid-State Lighting. Report of the Basic Energy Sciences Workshop on Solid-State Lighting, May 22-24, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J. M.; Burrows, P. E.; Davis, R. F.; Simmons, J. A.; Malliaras, G. G.; So, F.; Misewich, J.A.; Nurmikko, A. V.; Smith, D. L.; Tsao, J. Y.; Kung, H.; Crawford, M. H.; Coltrin, M. E.; Fitzsimmons, T. J.; Kini, A.; Ashton, C.; Herndon, B.; Kitts, S.; Shapard, L.; Brittenham, P. W.; Vittitow, M. P.

    2006-05-24

    The workshop participants enthusiastically concluded that the time is ripe for new fundamental science to beget a revolution in lighting technology. SSL sources based on organic and inorganic materials have reached a level of efficiency where it is possible to envision their use for general illumination. The research areas articulated in this report are targeted to enable disruptive advances in SSL performance and realization of this dream. Broad penetration of SSL technology into the mass lighting market, accompanied by vast savings in energy usage, requires nothing less. These new ?good ideas? will be represented not by light bulbs, but by an entirely new lighting technology for the 21st century and a bright, energy-efficient future indeed.

  5. Use of light agricultural waste as biomass for energy

    International Nuclear Information System (INIS)

    Kulkarni, P.K.

    1996-01-01

    Along with solar energy light agricultural wastes form an important source of renewable energy. Sugar cane field trash (PACHAT) forms a large source of energy, totally wasted even today. This article covers the thinking on biomass as energy source in India from 1985 till today and describes the important developments. Agricultural waste is a widely distributed source and costly to collect and transport. Hence its mode of use, equipment required became site specific. Equipment for carbonization and gasification of pachat developed by the author are described. Utilisation of agricultural waste is still an open field and challenge to develop and perfect small and large devices directly for thermal use or power generation. (author). 3 refs., 2 figs., 3 tabs

  6. Shining light on radiation detection and energy transfer : Triazole ligands used for detection of radiation and lanthanide binding

    NARCIS (Netherlands)

    Dijkstra, Peter

    2016-01-01

    Some substances, fluorophores, absorb light and then emit that light again as fluorescence. Apart from absorption of light, some of these substances can also emit light after having absorbed energy from radiation. A substance which can absorb radiation and emit the energy as light is called a

  7. Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, Francis; Enscoe, Abby

    2010-04-19

    An installation in a Federal building tested the effectiveness of a highly-controlled, workstation-specific lighting retrofit. The study took place in an open-office area with 86 cubicles and low levels of daylight. Each cubicle was illuminated by a direct/indirectpendant luminaire with three 32 watt lamps, two dimmable DALI ballasts, and an occupancy sensor. A centralized control system programmed all three lamps to turn on and off according to occupancy on a workstation-by-workstation basis. Field measurements taken over the course of several monthsdemonstrated 40% lighting energy savings compared to a baseline without advanced controls that conforms to GSA's current retrofit standard. A photometric analysis found that the installation provided higher desktop light levels than the baseline, while an occupant survey found that occupants in general preferred the lighting system to thebaseline.Simple payback is fairly high; projects that can achieve lower installation costs and/or higher energy savings and those in which greenhouse gas reduction and occupant satisfaction are significant priorities provide the ideal setting for workstation-specific lighting retrofits.

  8. Conversion and conservation of light energy in a photosynthetic microbial mat ecosystem

    DEFF Research Database (Denmark)

    Al-Najjar, A.A.; De Beer, D.; Jørgensen, B. B.

    2011-01-01

    approach uses microscale measurements of the rates of heat dissipation, gross photosynthesis and light absorption in the system, and a model describing light propagation and conversion in a scattering-absorbing medium. The energy budget was dominated by heat dissipation on the expense of photosynthesis...

  9. Recent advances in the treatment and management of excessive daytime sleepiness.

    Science.gov (United States)

    Black, Jed; Duntley, Stephen P; Bogan, Richard K; O'Malley, Mary B

    2007-02-01

    Excessive daytime sleepiness (EDS) is a prevalent complaint among patients in psychiatric care. Patients with conditions of EDS have often been misdiagnosed with depression due to their complaints of lack of energy, poor concentration, memory disturbance, and a reduced interest in life. Impaired alertness associated with EDS can be detrimental to a person's quality of life by causing decreased work performance, self-consciousness, low self esteem, and social isolation. Excessive sleepiness is also associated with various health problems, comorbid medical and psychiatric conditions, and fatal accidents occurring after the driver has fallen asleep at the wheel. Contributing factors leading to EDS range from insufficient sleep hours to central nervous system-mediated debilitating hypersomnolence. Circadian rhythm disorders, sleep disorders such as obstructive sleep apnea and narcolepsy, and medications that cause sleepiness may also contribute to symptoms of EDS. Recognition of the symptoms of sleep deprivation is essential, as many such patients do not have a clear awareness of their own sleepiness. Treatment options, depending upon the condition, include light therapy or appropriate airway management techniques such as nasal continuous positive airway pressure (CPAP). Occasionally, wakefulness-promoting medications are necessary, particularly in patients with narcolepsy. In this expert roundtable supplement, Stephen P. Duntley, MD, reviews the definition and prevalence of EDS and discusses the contributing factors and consequences of daytime sleepiness. Next, Richard K. Bogan, MD, FCCP, gives an overview of the differential diagnosis of EDS and the assessment tools available for identifying sleepiness in symptomatic patients. Finally, Mary B. O'Malley, MD, PhD, reviews treatment of EDS, including counseling on sleep hygiene and duration of sleep, mechanical treatments, bright-light therapy, and wake-promoting medications.

  10. Connected Lighting Systems Efficiency Study$-$ PoE Cable Energy Losses, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Karsten [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poplawski, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-11-30

    First report in a study of the efficiency of connected lighting systems. The report summarizes the results of an exploratory study investigating power losses in Ethernet cables used between PoE switches and luminaires in PoE connected lighting systems. Testing was conducted at the Pacific Northwest National Laboratory (PNNL) Connected Lighting Test Bed in September 2017. The results were analyzed to explore the impact of cable selection on PoE lighting system energy efficiency, as well as the effectiveness of guidelines recently introduced by the American National Standards Institute (ANSI) C137 Lighting Systems Committee.

  11. Abnormal excess heat observed during Mizuno-type experiments

    International Nuclear Information System (INIS)

    Fauvarque, Jean-Francois; Clauzon, Pierre Paul; Lalleve, Gerard Jean-Michel

    2006-01-01

    A simple calorimeter has been designed that works at constant temperature; that of boiling water. Heat Losses can be estimated accurately with an ohmic heater. As expected, losses are independent of the electric power input to the heater and the amount of evaporated water is linearly dependant on the power input. The device has been used to determine the heating power of a plasma electrolysis (the Ohmori-Mizuno experiment). We confirm that in this experiment, the heat output from electrolysis is greater than the electrical power input. The excess energy increases as the electrolysis voltage is increased from 200 up to 350 V (400 V input). The excess energy may be as high as 120 W. (author)

  12. Conventional physics can explain cold fusion excess heat

    Science.gov (United States)

    Chubb, S. R.

    In 1989, when Fleischmann, Pons and Hawkins (FP), claimed they had created room temperature, nuclear fusion in a solid, a firestorm of controversy erupted. Beginning in 1991, the Office of Naval Research began a decade-long study of the FP excess heat effect. This effort documented the fact that the excess heat that FP observed is the result of a form of nuclear fusion that can occur in solids at reduced temperature, dynamically, through a deuteron (d)+d□4He reaction, without high-energy particles or □ rays. A key reason this fact has not been accepted is the lack of a cogent argument, based on fundamental physical ideas, justifying it. In the paper, this question is re-examined, based on a generalization of conventional energy band theory that applies to finite, periodic solids, in which d's are allowed to occupy wave-like, ion band states, similar to the kinds of states that electrons occupy in ordinary metals. Prior to being experimentally observed, the Ion Band State Theory (IBST) of cold fusion predicted a potential d+d□4He reaction, without high energy particles, would explain the excess heat, the 4He would be found in an unexpected place (outside heat-producing electrodes), and high-loading, x□1, in PdDx, would be required.

  13. Evaluating an emergent behaviour algorithm in JCSP for energy conservation in lighting systems

    DEFF Research Database (Denmark)

    Kosek, Anna Magdalena; Syed, Aly; Kerridge, J.

    2011-01-01

    Since the invention of the light bulb, artificial light is accompanying people all around the world every day and night. As the light bulb itself evolved a lot through years, light control systems are still switch-based and require users to make most of the decisions about its behaviour. This pap...... presents an algorithm for emergent behaviour in a lighting system to achieve stable, user defined light level, while saving energy. The algorithm employs a parallel design and was tested using JCSP. © 2011 The authors and IOS Press. All rights reserved....

  14. The role of energy losses in photosynthetic light harvesting

    NARCIS (Netherlands)

    Kruger, T. P. J.; van Grondelle, R.

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic

  15. Analysis and prediction of daylighting and energy performance in atrium spaces using daylight-linked lighting controls

    International Nuclear Information System (INIS)

    Chow, Stanley K.H.; Li, Danny H.W.; Lee, Eric W.M.; Lam, Joseph C.

    2013-01-01

    Highlights: ► Daylight-linked lighting control and energy performance for atrium is studied. ► Field measurement of automatic dimming control shows 93% energy saving. ► Field measurement of manual on–off control shows 95% energy saving. ► Atrium illuminance is correlated with daylight factor for energy saving prediction. - Abstract: In subtropical Hong Kong, a certain amount of electricity is used to create visually comfortable interior spaces through electric lighting, which is the second major electricity-consuming item in commercial buildings, accounting for 20–30% of total electricity use. The burning of fossil fuels for electricity generation has many adverse effects on the environment. Daylighting is an important and useful strategy for enhancing visual comfort and reducing the need for the electricity consumed by light fittings. The rational use of daylight through tools such as photoelectric lighting controls can effectively reduce buildings’ electricity consumption and the related pollutants and greenhouse gas emissions. Daylighting design techniques are often best demonstrated via field measurements that provide reliable operational and energy performance data for establishing design guidelines. An atrium provides an environmentally controlled indoor public space that introduces daylight into the hearts of large buildings. In circulation areas such as corridors, people expect the way ahead to be sufficiently lit and daylight-linked lighting controls can deliver excellent energy savings. This paper presents the daylighting and energy performance of an atrium space using daylight-linked lighting controls. The cost, energy and environmental issues related to various daylight illuminances are estimated and design implications are discussed

  16. Solar Lighting Technologies for Highway Green Rest Areas in China: Energy Saving Economic and Environmental Evaluation

    Directory of Open Access Journals (Sweden)

    Xiaochun Qin

    2015-01-01

    Full Text Available In this paper, taking Lushan West Sea highway green rest area in Jiangxi Province of China as the case study, the suitable types, applicability, advantages, and effective methods of solar lighting technologies for highway rest area were determined based on the analysis of characteristics of highway green rest area. It was proved that solar lighting technologies including the natural light guidance system, solar LED lighting, and maximizing natural light penetration were quite suitable for highway rest area in terms of lighting effects and energy and economic efficiency. The illuminance comparison of light guidance system with electrical lighting was made based on the on-site experiment. Also, the feasibility of natural light guidance system was well verified in terms of the lighting demand of the visitor centre in the rest area by the illuminance simulation analysis. The evaluation of the energy saving, economic benefits, and environmental effects of solar lighting technologies for highway rest area was, respectively, made in detail. It was proved that the application of solar technology for green lighting of highway rest facilities not only could have considerable energy saving capacity and achieve high economic benefits, but also make great contributions to the reduction of environment pollution.

  17. Hydrogen evolution from water using solid carbon and light energy

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T; Sakata, T

    1979-11-15

    Hydrogen is produced from water vapour and solid carbon when mixed powders of TiO2, RuO2 and active carbon exposed to water vapor at room temperature, or up to 80 C, are illuminated. At 80 C, the rate of CO and COat2 formation increased. Therefore solar energy would be useful here as a combination of light energy and heat energy. Oxygen produced on the surface of the photocatalyst has a strong oxidising effect on the carbon. It is suggested that this process could be used for coal gasification and hydrogen production from water, accompanied by storage of solar energy.

  18. Progress and results in Zero-Point Energy research

    International Nuclear Information System (INIS)

    King, M.B.

    1992-01-01

    This paper reports that the vacuum polarization of atomic nuclei may trigger a coherence in the zero-point energy (ZPE) whenever a large number of nuclei undergo abrupt, synchronous motion. Experimental evidence arises from the energy anomalies observed in heavy-ion collisions, ion-acoustic plasma oscillations, sonoluminescence, fractoemission, large charge density plasmoids, abrupt electric discharges, and light water cold fusion experiments. Further evidence arises from inventions that utilize coherent ion-acoustic activity to output anomalously excessive power

  19. An Improved Energy Management Strategy for Hybrid Energy Storage System in Light Rail Vehicles

    OpenAIRE

    Long Cheng; Wei Wang; Shaoyuan Wei; Hongtao Lin; Zhidong Jia

    2018-01-01

    A single-objective optimization energy management strategy (EMS) for an onboard hybrid energy storage system (HESS) for light rail (LR) vehicles is proposed. The HESS uses batteries and supercapacitors (SCs). The main objective of the proposed optimization is to reduce the battery and SC losses while maintaining the SC state of charge (SOC) within specific limits based on the distance between consecutive LR stations. To do this, a series of optimized SOC limits is used to prevent the SC from ...

  20. Search for new light bosons in high energy astronomy

    International Nuclear Information System (INIS)

    Wouters, Denis

    2014-01-01

    High-Energy astronomy studies the most violent phenomena in the universe with observations in a large spectrum of energies ranging from X rays to very high energy gamma rays (1 keV - 100 TeV). Such phenomena could be for instance supernovae explosions and their remnants, pulsars and pulsar wind nebulae or ultra relativistic jets formation by active galactic nuclei. Understanding these phenomena requires to use well-known particle physics processes. By means of high energy photons, studying such phenomena enables one to search for physics beyond the standard model. Concepts regarding the emission and propagation of high-energy photons are introduced and applied to study their emission by extragalactic sources and to constrain the extragalactic background light which affects their propagation. In this thesis, these high-energy extragalactic emitters are observed in order to search for new light bosons such as axion-like particles (ALPs). The theoretical framework of this family of hypothetical particles is reviewed as well as the associated phenomenology. In particular, because of their coupling to two photons, ALPs oscillate with photons in an external magnetic field. A new signature of such oscillations in turbulent magnetic fields, under the form of stochastic irregularities in the source energy spectrum, is introduced and discussed. A search for ALPs with the HESS telescopes with this new signature is presented, resulting in the first constraints on ALPs parameters coming from high-energy astronomy. Current constraints on ALPs at very low masses are improved by searching for the same signature in X-ray observations. An extension of these constraints to scalar field models for modified gravity in the framework of dark energy is then discussed. The potential of the search for ALPs with CTA, the prospected gamma-ray astronomy instrument, is eventually studied; in particular, a new observable is proposed that relies on the high number of sources that are expected to

  1. Energy savings by implementation of light quality LED lighting. Final report; Implementering af energibesparelser ved benyttelse af hoejkvalitets LED belysning. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Hansen, C.; Thorseth, A.; Poulsen, Peter

    2010-03-15

    The project developed two new LED light sources and systems, emphasising the potential of LED technology for energy savings and lighting quality. A LED light source for display case lighting, replacing incandescent lamps, was successfully installed in the Treasury at Rosenborg Castle in Copenhagen, Denmark, and it was decided to extend the solution in 2010. Electricity savings of 74% were achieved. LED light sources replacing halogen bulbs in cooker hoods reduce electricity consumption by 69% and ensure even lighting of the entire working surface with about 500 lux at all cooking areas. Furthermore, a new LED optics system was patented. (ln)

  2. Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends

    International Nuclear Information System (INIS)

    Huo, Ming-Ming; Zhang, Jian-Ping; Hu, Rong; Xing, Ya-Dong; Liu, Yu-Chen; Ai, Xi-Cheng; Hou, Jian-Hui

    2014-01-01

    Primary charge photogeneration dynamics in neat and fullerene-blended films of a pair of alternating benzo[1,2-b:4,5-b ′ ]dithiophene (BDT) and thieno[3,4-b]thiophene (TT) copolymers are comparatively studied by using near-infrared, time-resolved absorption (TA) spectroscopy under low excitation photon fluence. PBDTTT-E and PBDTTT-C, differed merely in the respective TT-substituents of ester (-E) and carbonyl (-C), show distinctly different charge photogeneration dynamics. The pair of neat PBDTTT films show exciton lifetimes of ∼0.1 ns and fluorescence quantum yields below 0.2%, as well as prominent excess-energy enhanced exciton dissociation. In addition, PBDTTT-C gives rise to >50% higher P •+ yield than PBDTTT-E does irrespective to the excitation photon energy. Both PBDTTT-E:PC 61 BM and PBDTTT-C:PC 61 BM blends show subpicosecond exciton lifetimes and nearly unitary fluorescence quenching efficiency and, with respect to the former blend, the latter one shows substantially higher branching ratio of charge separated (CS) state over interfacial charge transfer (ICT) state, and hence more efficient exciton-to-CS conversion. For PBDTTT-C:PC 61 BM, the ultrafast charge dynamics clearly show the processes of ICT-CS interconversion and P •+ migration, which are possibly influenced by the ICT excess energy. However, such processes are relatively indistinctive in the case of PBDTTT-E:PC 61 BM. The results strongly prove the importance of ICT dissociation in yielding free charges, and are discussed in terms of the film morphology and the precursory solution-phase macromolecular conformation

  3. Unfair and excessive prices in the energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Van der Woude, M. [Erasmus University, Rotterdam (Netherlands)

    2008-05-15

    The concept of competition refers to a process where firms dispute the favour of their customers by proposing better products at the lowest possible price. This consumer welfare creating process is to a large extent Darwinian in nature: those who cannot compete must die. The law of supply and demand is ruthless and so is competition law. Principles of fairness and justice are extraneous to competition law: the lion eats the deer. Still, EC competition law is not amoral, as illustrated by the very first example of abusive conduct given by Article 82 EC: 'directly or indirectly imposing unfair purchase or selling prices or other unfair trading conditions' can constitute an abuse. The concept of fairness as a constituent element of EC competition law may disturb those who analyze the competitive process through a scientific lens. Fairness does not relate to economic effects and cannot be measured or quantified. It is a concept that appeals to ethics and norms. The dichotomy between competition as an amoral welfare creating process, that can be the subject of economic research, and the normative concept of fairness does not necessarily lead to a contradiction. Fairness becomes relevant where the competitive process has ceased to play its welfare creating role: i.e. where monopolies prevail over perfect competition. When confronted to a monopoly, abstention is the customer's only choice and for some goods, such as food, clothing and housing, abstention is not considered as a realistic choice. In scenarios where the monopolist faces an inelastic demand curve, fairness is probably the customer's only safety buoy. The energy sector is one of the sectors where these situations occur. In our modern societies, customers expect the light to go on, when they turn the switch, and their houses to be heated, when activating their boilers. Candles and jumpers not offering realistic alternatives, demand is close to inelastic, at least on the short term. Moreover

  4. Effect of daylight saving time on lighting energy use: A literature review

    International Nuclear Information System (INIS)

    Aries, Myriam B.C.; Newsham, Guy R.

    2008-01-01

    The principal reason for introducing (and extending) daylight saving time (DST) was, and still is, projected energy savings, particularly for electric lighting. This paper presents a literature review concerning the effects of DST on energy use. Simple estimates suggest a reduction in national electricity use of around 0.5%, as a result of residential lighting reduction. Several studies have demonstrated effects of this size based on more complex simulations or on measured data. However, there are just as many studies that suggest no effect, and some studies suggest overall energy penalties, particularly if gasoline consumption is accounted for. There is general consensus that DST does contribute to an evening reduction in peak demand for electricity, though this may be offset by an increase in the morning. Nevertheless, the basic patterns of energy use, and the energy efficiency of buildings and equipment have changed since many of these studies were conducted. Therefore, we recommend that future energy policy decisions regarding changes to DST be preceded by high-quality research based on detailed analysis of prevailing energy use, and behaviours and systems that affect energy use. This would be timely, given the extension to DST underway in North America in 2007

  5. psi and excess leptons in photoproduction

    International Nuclear Information System (INIS)

    Ritson, D.M.

    1976-03-01

    The A-dependence of psi photoproduction was measured on beryllium and tantalum. From this it is found sigma/sub psi N/ = 2.75 +- 0.90 mb. A study was made of excess leptons relative to pion production in photoproduction. A μ/π ratio of 1.40 +- 0.25 x 10 -4 was found at 20 GeV incident photon energy. The energy dependence of psi photoproduction was determined and appeared to have a ''pseudo-threshold'' at 12 GeV

  6. Light and architecture. Daylight - artificial light - energy; Licht und Architektur. Tageslicht - Kunstlicht - Energie

    Energy Technology Data Exchange (ETDEWEB)

    Wambsganss, M. (ed.) [ip5 ingenieurpartnerschaft, Karlsruhe (Germany)]|[Fachhochschule Rosenheim (Germany)

    2007-07-01

    The symposium intends to provide scientific and technical fundamentals for room lighting with daylight. Daylight deflection systems and artificial light control systems were analyzed for this purpose, and a catalogue of criteria was established. Planners were given tools for projecting daylight control systems. Builder-owners received the fundamentals for economic assessment of combined daylight and artificial light illumination systems, while industrial producers obtained information for further development to maturity and for marketing of daylight-dependent artificial light control systems. (GL)

  7. Excessive amounts of mu heavy chain block B-cell development.

    Science.gov (United States)

    Zhu, Lingqiao; Chang, Cheong-Hee; Dunnick, Wesley

    2011-09-01

    Antigen-independent B-cell development occurs in several stages that depend on the expression of Ig heavy and light chain. We identified a line of mice that lacked mature B cells in the spleen. This mouse line carried approximately 11 copies of a transgene of the murine heavy chain constant region locus, and B-lineage cells expressed excessive amounts of the intracellular μ heavy chain. B-cell development failed in the bone marrow at the pro/pre B-cell transition, and examination of other lines with various copy numbers of the same transgene suggested that deficiencies in B-cell development increased with increased transgene copy number. Expression of a transgenic (Tg) light chain along with the Tg μ heavy chain led to minimal rescue of B-cell development in the bone marrow and B cells in the spleen. There are several potential mechanisms for the death of pro/pre B cells as a consequence of excess heavy chain expression.

  8. Minimizing the Threat of Light Pollution on Observatories through Education: the Quality Lighting Teaching Kit

    Science.gov (United States)

    Walker, Constance E.; M, Pompea, Stephen

    2018-01-01

    Poor quality lighting impedes astronomy research and our right to see a starry night sky. It creates safety issues, affects human circadian sensitivities, disrupts ecosystems, and wastes billions of dollars/year in energy consumption. It also leads to excess carbon emissions. How do you change the mindset of society that is used to turning night into day? You educate the next generation on quality lighting.As an outcome of the International Year of Light 2015, the National Optical Astronomy Observatory’s Education and Public Outreach group has produced a Quality Lighting Teaching (QLT) Kit. The kits are designed around problem-based learning scenarios. The kit’s six activities allow students to address real lighting problems that relate to wildlife, sky glow, aging eyes, energy consumption, safety, and light trespass. The activities are optimized for 11-14 year olds but can be expanded to younger and older. All materials are in both English and Spanish. Most of the activities can be done within in a few minutes during class or afterschool and as stations or as stand-alones. Everything you need for the six activities is included in the kit. Tutorial videos on how to do the activities can be found at www.noao.edu/education/qltkit.php. Ninety-two out of one hundred kits have been distributed in thirty-two countries through SPIE (the International Society for Optical Engineering), CIE (the International Commission on Illuminations), OSA (the Optical Society), IDA (the International Dark Sky Association), and the IAU OAD–Office of Astronomy Development. Successful feedback is promoting a choice between commercializing the kit or gaining further grants to build more kits. A plan is being considered to distribute kits to observatories around the world, hence helping to reduce the effects of one of the three threats to observational astronomy through awareness and action.

  9. Charge Energy Transport in Hopping Systems with Rapidly Decreasing Density of States

    Science.gov (United States)

    Mendels, Dan; Organic Electronics Group Technion Team

    2014-03-01

    An accurate description of the carrier hopping topology in the energy domain of hopping systems incorporating a rapidly decreasing density of states and the subsequent energetic position of these systems' so called effective conduction band is crucial for rationalizing and quantifying these systems' thermo-electric properties, doping related phenomena and carrier gradient effects such as the emergence of the General Einstein Relation under degenerate conditions. Additionally, as will be shown, the 'mobile' carriers propagating through the system can have excess energies reaching 0.3eV above the system quasi-Fermi energy. Hence, since these mobile carriers are most prone to reach systems interfaces and interact with oppositely charged carriers, their excess energy should be considered in determining the efficiencies of energy dependent processes such as carrier recombination and exciton dissociation. In light of the stated motivations, a comprehensive numerical and analytical study of the topology of hopping in the energetic density of such systems (i.e. the statistics regarding which energy values carriers visit most and in what manner) was implemented and the main statistical features of the hopping process that determine the position in energy of the system's effective conduction band were distilled. The obtained results also help shed light on yet to be elucidated discrepancies between predictions given by the widely employed transport energy concept and Monte Carlo simulations.

  10. Fragment formation in GeV-energy proton and light heavy-ion induced reactions

    International Nuclear Information System (INIS)

    Murakami, T.; Haga, M.; Haseno, M.

    2002-01-01

    We have investigated similarities and differences among the fragment formation processes in GeV-energy light-ion and light heavy-ion induced reactions. We have newly measured inclusive and exclusive energy spectra of intermediate mass fragments (3 ≤ Z ≤ 30; IMFs) for 8-GeV 16 O and 20 Ne and 12-GeV 20 Ne induced target multifragmentations (TMFs) in order to compare them with those previously measured for 8- and 12-GeV proton induced TMFs. We fond noticeable difference in their spectrum shapes and magnitudes but all of them clearly indicate the existence of sideward-peaked components, indicating fragment formations are mainly dictated not by a incident energy per nucleon but by a total energy of the projectile. (author)

  11. Protecting the Melatonin Rhythm through Circadian Healthy Light Exposure

    Directory of Open Access Journals (Sweden)

    Maria Angeles Bonmati-Carrion

    2014-12-01

    Full Text Available Currently, in developed countries, nights are excessively illuminated (light at night, whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD, including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system.

  12. Effect of daylight saving time on lighting energy use: a literature review

    NARCIS (Netherlands)

    Aries, M.B.C.; Newsham, G.R.

    2008-01-01

    The principal reason for introducing (and extending) daylight saving time (DST) was, and still is, projected energy savings, particularly for electric lighting. This paper presents a literature review concerning the effects of DST on energy use. Simple estimates suggest a reduction in national

  13. Lighting. Eclairage

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Increasing energy costs have led to a review of the high costs of lighting. The use of new energy-efficient lighting equipment, coupled with the use of the proper quantity and quality of lighting only where it is needed, creates a potential for cost reduction. A manual is provided to aid the process of adapting Canadian industrial, commercial, and institutional enterprises to these higher costs. An introductory review of lighting fundamentals is presented, providing a basic understanding of concepts such as illumination, light output measurements, power requirements, lighting quality, and energy audit methods. The currently available lighting equipment used to achieve cost savings is then reviewed, including energy saving lamps and ballasts, controls, and automatic energy control systems. A number of energy management opportunities are identified, such as modification of lighting usage patterns, calculation of the optimum number of lighting fixtures, replacement of existing lamps, and the application of task lighting. Examples are included to show the cost savings possible when applying some of the techniques suggested. 27 figs., 11 tabs.

  14. Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J

    2018-05-03

    Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ∆pucBA abce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1-reaction centers (LH1-RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2-3 times larger for ICMs accumulating LH2 complexes with the classical B800-850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ∆pucBA abce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.

  15. A principle to correlate extreme values of excess thermodynamic functions with partial molar quantities

    Institute of Scientific and Technical Information of China (English)

    尉志武; 刘芸; 周蕊; 薛芳渝

    2001-01-01

    Excess thermodynamic properties are widely used quantitatively for fluids. It was found that at constant temperature and pressure a molar excess quantity of a mutually miscible binary mixture at the extreme points equals the excess partial molar quantities of the two components, i.e.F1E = F2E = FmE , forming a triple cross point. The relationship is hold for properties such as en-thalpy, entropy, Gibbs free energy, and volume, and is applicable for excess functions with multi extreme points. Solutions at extreme points can be referred to as special mixtures. Particularly fora special mixture of Gibbs free energy, activity coefficients of the two components are identical.

  16. Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores.

    Science.gov (United States)

    Yoneda, Yusuke; Noji, Tomoyasu; Katayama, Tetsuro; Mizutani, Naoto; Komori, Daisuke; Nango, Mamoru; Miyasaka, Hiroshi; Itoh, Shigeru; Nagasawa, Yutaka; Dewa, Takehisa

    2015-10-14

    Introducing appropriate artificial components into natural biological systems could enrich the original functionality. To expand the available wavelength range of photosynthetic bacterial light-harvesting complex 2 (LH2 from Rhodopseudomonas acidophila 10050), artificial fluorescent dye (Alexa Fluor 647: A647) was covalently attached to N- and C-terminal Lys residues in LH2 α-polypeptides with a molar ratio of A647/LH2 ≃ 9/1. Fluorescence and transient absorption spectroscopies revealed that intracomplex energy transfer from A647 to intrinsic chromophores of LH2 (B850) occurs in a multiexponential manner, with time constants varying from 440 fs to 23 ps through direct and B800-mediated indirect pathways. Kinetic analyses suggested that B800 chromophores mediate faster energy transfer, and the mechanism was interpretable in terms of Förster theory. This study demonstrates that a simple attachment of external chromophores with a flexible linkage can enhance the light harvesting activity of LH2 without affecting inherent functions of energy transfer, and can achieve energy transfer in the subpicosecond range. Addition of external chromophores, thus, represents a useful methodology for construction of advanced hybrid light-harvesting systems that afford solar energy in the broad spectrum.

  17. Annual Energy Usage Reduction and Cost Savings of a School: End-Use Energy Analysis

    Science.gov (United States)

    Alghoul, M. A.; Bakhtyar, B.; Asim, Nilofar; Sopian, K.

    2014-01-01

    Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m2/year, but can theoretically be reduced to 40.19 kWh/mm2/year. PMID:25485294

  18. Practical Investigation for Road Lighting using Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Maged A. Abu Adma

    2017-12-01

    Full Text Available Abstract - Hybrid renewable energy systems are recently used to counteract the limitations of solar and wind as solo renewable energy sources due to adverse weather conditions. This study explains a design of a fully independent -off grid- hybrid solar and wind road lighting system according to geography and weather conditions recorded from the National Research Institute of Astronomy and Geophysics. The computerized model is designed step by step by the aid of Simulink-Matlab and the simulation was successfully run to show the performance of each module.

  19. Industrial excess heat for district heating in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Petrovic, Stefan; Karlsson, Kenneth Bernard

    2017-01-01

    analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate...... the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity...... analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal...

  20. Cost-benefit analysis of retrofit of high-intensity discharge factory lighting with energy-saving alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Preston, D.J. [Alabama Industrial Assessment Center, The University of Alabama, 1530 W. Tremont St, Allentown, PA 18102 (United States); Woodbury, K.A. [Alabama Industrial Assessment Center, The University of Alabama, 290 Hardaway Hall, Box 870276, Tuscaloosa, AL 35487-0276 (United States)

    2013-05-15

    Due to increased concern about overall energy costs and the appearance of efficient and inexpensive lighting system alternatives, factories and plants with high-intensity discharge (HID) lighting are forced to consider retrofit with more modern, energy-efficient lighting. The decision is complicated from an economic perspective, and there is a lack of information readily available on the topic. This study provides an analysis of the replacement by retrofit of common probe-start metal halide and high-pressure sodium industrial lighting systems. Retrofit options considered include the more recent pulse-start metal halide lamps and a range of T5 high output and T8 fluorescent lamp configurations. Recent data on lighting system pricing, labor and energy costs, and time required for tasks are reported. The results generated include savings, payback period, and net present value for many retrofit options, as well as the change in energy consumption, carbon footprint, and lumen output for each retrofit. Effects of varying rate of return and daily duration of operation are considered. Based on change in lumen output, payback period, net present value, and comparison of lighting quality, one or two options are recommended from the overall retrofit options considered. A fluorescent retrofit is recommended for each of the HID initial scenarios considered. The payback period is no more than 3 years in any recommended case. The focus of this study is on the potential energy and cost savings, and some proposed solutions may, or may not, be acceptable due to lack of illuminance uniformity.

  1. High Performance and Energy Efficient Traffic Light Controller Design Using FPGA

    DEFF Research Database (Denmark)

    Pandey, Sujeet; Shrivastav, Vivek Kumar; Sharma, Rashmi

    2017-01-01

    and then we have analyzed power consumption for traffic light controller on different FPGA. Leakage power is in range of 97.5-99% of total power consumption by traffic light controller on Virtex-7 FPGA. Signal power, clock power and IOs power are almost negligible. Power dissipation is measured on XPOWER......In this work, Verilog is used as hardware description language for implementation of traffic light controller. It shows Red, Green and Yellow color at a predefined interval. Technology scaling is used as energy efficient technique. We have used 90nm, 65nm, 40nm and 28nm technology based FPGA...

  2. Solar energy as an alternate energy source to mixed oxide fuels in light-water cooled reactors

    International Nuclear Information System (INIS)

    Bertini, H.W.

    1977-01-01

    Supplemental information pertaining to the generic environmental impact statement on the Pu recycling process for mixed oxide light-water cooled reactors (GESMO) was requested from several sources. In particular, the role of alternate sources of energy was to be explored and the implications of these alternate sources to the question of Pu recycle in LWRs were to be investigated. In this vein, solar energy as an alternate source is the main subject of this report, along with other information related to solar energy. The general conclusion is that solar energy should have little effect on the decisions concerning GESMO

  3. Energy efficient lighting in the residences of staff of the University of ...

    African Journals Online (AJOL)

    CFL) as an energy-efficient lighting system. The results of the study show that even though academics in the university have received information about the use of CFLs as a way of saving energy, very few show interest in their use. It is inferred ...

  4. Making it not too obvious. The effect of ambient light feedback on space heating energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Maan, S.; Merkus, B.; Ham, J.; Midden, C. [Human-Technology Interaction, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2011-03-15

    Earlier research investigating persuasive technology - technology designed to influence human behavior or attitude - indicates that persuasive technology can stimulate energy efficient behavior. However, most applications of persuasive technology need people's focal attention to be successful, and people may often not have these cognitive resources available. The current research investigates a form of persuasive technology that is less obvious and easier to process: ambient lighting as persuasive technology. In an experimental study, participants could conserve energy while setting temperatures on a central heating panel and receive feedback about their energy consumption in each task. We tested the effect of feedback through a lamp that gradually changed color dependent on energy consumption and compared these effects to more widely used factual feedback. Half of the participants received lighting feedback, and half of the participants received numerical feedback. To investigate whether ambient feedback is easier to process than numerical feedback, half of the participants performed a cognitive load task in addition to the focal task. Results indicated that feedback through lighting has stronger persuasive effects than numerical feedback. Furthermore, ambient lighting feedback seemed easier to process than numerical feedback because cognitive load interfered with processing numerical feedback, but not with processing lighting feedback. Implications for theory and design of energy consumption feedback systems, persuasive lighting, and (ambient) persuasive technology are discussed.

  5. Optically nonlinear energy transfer in light-harvesting dendrimers

    OpenAIRE

    Andrews, David; Bradshaw, DS

    2004-01-01

    Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems,organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Sta...

  6. Energy efficient lighting and controls at North Lanarkshire Council: Good practice case study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    The Sir Matt Busby Sports Complex is an important local facility for the people of Bellshill, North Lanarkshire. The sports and leisure complex, a North Lanarkshire Council property, offers a combination of indoor and outdoor sporting facilities including a floodlit synthetic football pitch and a comprehensive mix of swimming, sauna, gym and sports hall facilities. The electrical demand imposed by lighting for any business can be very significant, constituting up to 30% of the electrical power consumption. At the Sir Matt Busby Sports Complex a combination of new efficient light fittings and controls has improved lighting levels, reduced overall energy consumption by nearly 10% and provided substantial cost savings. The Carbon Trust has assisted the Council by identifying and prioritising energy saving opportunities and providing a prioritised implementation plan. This partnership arrangement and the Council's access to UK Pound 930,000 of 'spend to save' funding, provided by the Scottish Executive, has allowed the rapid implementation of energy efficiency measures. (GB)

  7. Effectiveness of prediction equations in estimating energy expenditure sample of Brazilian and Spanish women with excess body weight

    OpenAIRE

    Lopes Rosado, Eliane; Santiago de Brito, Roberta; Bressan, Josefina; Martínez Hernández, José Alfredo

    2014-01-01

    Objective: To assess the adequacy of predictive equations for estimation of energy expenditure (EE), compared with the EE using indirect calorimetry in a sample of Brazilian and Spanish women with excess body weight Methods: It is a cross-sectional study with 92 obese adult women [26 Brazilian -G1- and 66 Spanish - G2- (aged 20-50)]. Weight and height were evaluated during fasting for the calculation of body mass index and predictive equations. EE was evaluated using the open-circuit indirect...

  8. A principle to correlate extreme values of excess thermody-namic functions with partial molar quantities

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Excess thermodynamic properties are widely used quantitatively for fluids. It was found that at constant temperature and pressure a molar excess quantity of a mutually miscible binary mixture at the extreme points equals the excess partial molar quantities of the two components, i.e. , forming a triple cross point. The relationship is hold for properties such as enthalpy, entropy, Gibbs free energy, and volume, and is applicable for excess functions with multi extreme points. Solutions at extreme points can be referred to as special mixtures. Particularly for a special mixture of Gibbs free energy, activity coefficients of the two components are identical.

  9. High-speed Light Peak optical link for high energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.X. [Academia Sinica, Taipei, Taiwan (China); Chiang, F. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Deng, B. [Hubei Polytechnic University, Huangshi, Hubei (China); Southern Methodist University, Dallas, TX (United States); Hou, J. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Hou, S., E-mail: suen@gate.sinica.edu.tw [Academia Sinica, Taipei, Taiwan (China); Liu, C.; Liu, T. [Southern Methodist University, Dallas, TX (United States); Teng, P.K. [Academia Sinica, Taipei, Taiwan (China); Wang, C.H. [National United University, Miaoli, Taiwan (China); Xu, T. [Shandong University, Ji' nan (China); Southern Methodist University, Dallas, TX (United States); Ye, J. [Southern Methodist University, Dallas, TX (United States)

    2014-11-21

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with {sup 60}Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  10. Lighting.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  11. Energy cost unit of street and park lighting system with solar technology for a more friendly city

    Science.gov (United States)

    Warman, E.; Nasution, F. S.; Fahmi, F.

    2018-03-01

    Street and park lighting system is part of a basic infrastructure need to be available in such a friendly city. Enough light will provide more comfort to citizens, especially at night since its function to illuminate roads and park environments around the covered area. The necessity to add more and more lighting around the city caused the rapid growth of the street and park lighting system while the power from PLN (national electricity company) is insufficient and the cost is getting higher. Therefore, it is necessary to consider other energy sources that are economical, environmentally friendly with good continuity. Indonesia, which located on the equator, have benefited from getting solar radiation throughout the year. This free solar radiation can be utilized as an energy source converted by solar cells to empower street and park lighting system. In this study, we planned the street and park lighting with solar technology as alternatives. It was found that for Kota Medan itself, an average solar radiation intensity of 3,454.17 Wh / m2 / day is available. By using prediction and projection method, it was calculated that the energy cost unit for this system was at Rp 3,455.19 per kWh. This cost was higher than normal energy cost unit but can answer the scarcity of energy availability for street and park lighting system

  12. An astrophysical engine that stores gravitational work as nuclear Coulomb energy

    Science.gov (United States)

    Clayton, Donald

    2014-03-01

    I describe supernovae gravity machines that store large internal nuclear Coulomb energy, 0.80Z2A- 1 / 3MeV per nucleus. Excess of it is returned later by electron capture and positron emission. Decay energy manifests as (1) observable gamma-ray lines (2) light curves of supernovae (3) chemical energy of free carbon dissociated from CO molecules (4) huge abundances of radiogenic daughters. I illustrate by rapid silicon burning, a natural epoch in SN II. Gravitational work produces the high temperatures that photoeject nucleons and alpha particles from heavy nuclei. These are retained by other nuclei to balance photoejection rates (quasiequilibrium). The abundance distribution adjusts slowly as remaining abundance of Z = N 28Si decomposes, so p, n, α recaptures hug the Z = N line. This occurs in milliseconds, too rapidly for weak decay to alter bulk Z/N ratio. The figure displays those quasiequilibrium abundances color-coded to their decays. Z = N = 2k nuclei having k 10 are radioactive owing to excess Coulomb energy. Weak decays radiate that excess energy weeks later to fuel the four macroscopic energetic phenomena cited. How startling to think of the Coulomb nuclear force as storing cosmic energy and its weak decay releasing macroscopic activation to SNII.

  13. Crystal structure of spinach major light-harvesting complex at 2.72Å resolution

    Science.gov (United States)

    Liu, Zhenfeng; Yan, Hanchi; Wang, Kebin; Kuang, Tingyun; Zhang, Jiping; Gui, Lulu; An, Xiaomin; Chang, Wenrui

    2004-03-01

    The major light-harvesting complex of photosystem II (LHC-II) serves as the principal solar energy collector in the photosynthesis of green plants and presumably also functions in photoprotection under high-light conditions. Here we report the first X-ray structure of LHC-II in icosahedral proteoliposome assembly at atomic detail. One asymmetric unit of a large R32 unit cell contains ten LHC-II monomers. The 14 chlorophylls (Chl) in each monomer can be unambiguously distinguished as eight Chla and six Chlb molecules. Assignment of the orientation of the transition dipole moment of each chlorophyll has been achieved. All Chlb are located around the interface between adjacent monomers, and together with Chla they are the basis for efficient light harvesting. Four carotenoid-binding sites per monomer have been observed. The xanthophyll-cycle carotenoid at the monomer-monomer interface may be involved in the non-radiative dissipation of excessive energy, one of the photoprotective strategies that have evolved in plants.

  14. Engineering a pH-Regulated Switch in the Major Light-Harvesting Complex of Plants (LHCII): Proof of Principle.

    Science.gov (United States)

    Liguori, Nicoletta; Natali, Alberto; Croce, Roberta

    2016-12-15

    Under excess light, photosynthetic organisms employ feedback mechanisms to avoid photodamage. Photoprotection is triggered by acidification of the lumen of the photosynthetic membrane following saturation of the metabolic activity. A low pH triggers thermal dissipation of excess absorbed energy by the light-harvesting complexes (LHCs). LHCs are not able to sense pH variations, and their switch to a dissipative mode depends on stress-related proteins and allosteric cofactors. In green algae the trigger is the pigment-protein complex LHCSR3. Its C-terminus is responsible for a pH-driven conformational change from a light-harvesting to a quenched state. Here, we show that by replacing the C-terminus of the main LHC of plants with that of LHCSR3, it is possible to regulate its excited-state lifetime solely via protonation, demonstrating that the protein template of LHCs can be modified to activate reversible quenching mechanisms independent of external cofactors and triggers.

  15. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    McCarthy, K.A.; Williams, D.L.; Reister, R.

    2012-01-01

    The US Department of Energy Light Water Reactor Sustainability (LWRS) Program is focused on enabling the long-term operation of US commercial power plants. Decisions on life extension will be made by commercial power plant owners - the information provided by the research and development activities in the LWRS Program will reduce the uncertainty (and therefore the risk) associated with making those decisions. The LWRS Program encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper provides an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables. (author)

  16. Replacement policy of residential lighting optimized for cost, energy, and greenhouse gas emissions

    Science.gov (United States)

    Liu, Lixi; Keoleian, Gregory A.; Saitou, Kazuhiro

    2017-11-01

    Accounting for 10% of the electricity consumption in the US, artificial lighting represents one of the easiest ways to cut household energy bills and greenhouse gas (GHG) emissions by upgrading to energy-efficient technologies such as compact fluorescent lamps (CFL) and light emitting diodes (LED). However, given the high initial cost and rapidly improving trajectory of solid-state lighting today, estimating the right time to switch over to LEDs from a cost, primary energy, and GHG emissions perspective is not a straightforward problem. This is an optimal replacement problem that depends on many determinants, including how often the lamp is used, the state of the initial lamp, and the trajectories of lighting technology and of electricity generation. In this paper, multiple replacement scenarios of a 60 watt-equivalent A19 lamp are analyzed and for each scenario, a few replacement policies are recommended. For example, at an average use of 3 hr day-1 (US average), it may be optimal both economically and energetically to delay the adoption of LEDs until 2020 with the use of CFLs, whereas purchasing LEDs today may be optimal in terms of GHG emissions. In contrast, incandescent and halogen lamps should be replaced immediately. Based on expected LED improvement, upgrading LED lamps before the end of their rated lifetime may provide cost and environmental savings over time by taking advantage of the higher energy efficiency of newer models.

  17. In-situ TEM study on structural change and light emission of a multiwall carbon nanotube during Joule heating

    Science.gov (United States)

    Nishikawa, K.; Asaka, K.; Nakahara, H.; Saito, Y.

    2018-01-01

    Structure changes of a multiwall carbon nanotube (MWNT) during Joule heating were studied with simultaneous measurement of light emission spectra. The outer shells of the MWNT peeled off one by one because of excessive heating. All the peeled outer shells finally disappeared and inner shells whose tips were closed emerged, i.e., a new MWNT was formed. Each diameter of the shells comprising the MWNT decreased compared with those before the fracture. Light emission spectra during Joule heating of an MWNT were composed of both the blackbody radiation and characteristic peaks. The peaks in the light emission spectra shifted to higher energies in accordance with shrinkage of the inner shells. The energies of the peaks in the spectra corresponded to energy gaps between van Hove singularities calculated from the diameters of the shells, indicating that the peaks in the spectra are attributed to the interband electron transition in the MWNT.

  18. Efficient and versatile light. LEDs save energy and open up manifold possibilities of design; Effizientes und vielseitiges Licht. LEDs sparen Energie und eroeffnen zahlreiche Designmoeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Fiebig, Michael [OSRAM Opto Semicondutors GmbH, Muenchen (Germany). Bereich Marketing und Business Development

    2010-07-01

    Light bulbs leave the European market step by step. These conventional light sources are too inefficient in the private and conventional sector. There are a lot of alternatives to light bulbs. But no technology will be able to save as much energy as light emitting diodes (LED) in the future. Today, these LEDs meet us in most different applications. Continuously new areas of application are opened up in order to reduce the power requirement clearly for the production of artificial light. Apart from energy conservation diodes also enable untold possibilities. In the future, light can be still more flexibly used owing to LED. LEDs are ideal light sources for planners and designers.

  19. An economic perspective on the reliability of lighting systems in building with highly efficient energy: A case study

    International Nuclear Information System (INIS)

    Salata, F.; Lieto Vollaro, A. de; Ferraro, A.

    2014-01-01

    Highlights: • Proper design of efficient lighting systems. • The reliability and durability of the light sources. • Maintenance of lighting systems. • Quality standards of LED lamps. • Optimum economic choice of light sources. - Abstract: The performance of lighting system must be calculated in order to determine the energy requirements of the building. In the normative [EN 12464-1] are established lighting requirements which have effects on energy needs. The European standard [EN 15193] provides guidance on that evaluation. The easiest way to comply with reduction of energy requirements leads to the replacement of traditional lamps with LED ones, but if we calculate also the reliability parameters, the economic return is not guaranteed. Using bibliographic data, we have compared lighting’s results for a museum (LED lamps versus CFL and halogen lamps). The objective function of the study is to optimize the energy consumption of lighting systems, but at the same time to assess the reliability (MTTF of the lamps) of these systems. Without accurate information about this last parameters, the right choice of the lamps cannot be done successfully

  20. Nanostructures for Enhanced Light Absorption in Solar Energy Devices

    Directory of Open Access Journals (Sweden)

    Gustav Edman Jonsson

    2011-01-01

    Full Text Available The fascinating optical properties of nanostructured materials find important applications in a number of solar energy utilization schemes and devices. Nanotechnology provides methods for fabrication and use of structures and systems with size corresponding to the wavelength of visible light. This opens a wealth of possibilities to explore the new, often of resonance character, phenomena observed when the object size and the electromagnetic field periodicity (light wavelength λ match. Here we briefly review the effects and concepts of enhanced light absorption in nanostructures and illustrate them with specific examples from recent literature and from our studies. These include enhanced optical absorption of composite photocatalytically active TiO2/graphitic carbon films, systems with enhanced surface plasmon resonance, field-enhanced absorption in nanofabricated carbon structures with geometrical optical resonances and excitation of waveguiding modes in supported nanoparticle assembles. The case of Ag particles plasmon-mediated chemistry of NO on graphite surface is highlighted to illustrate the principle of plasmon-electron coupling in adsorbate systems.

  1. Membrane systems for energy efficient separation of light gases

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Archuleta, T.; Barbero, R. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    Ethylene and propylene are two of the largest commodity chemicals in the United States and are major building blocks for the petrochemicals industry. These olefins are separated currently by cryogenic distillation which demands extremely low temperatures and high pressures. Over 75 billion pounds of ethylene and propylene are distilled annually in the US at an estimated energy requirement of 400 trillion BTU`s. Non-domestic olefin producers are rapidly constructing state-of-the-art plants. These energy-efficient plants are competing with an aging United States olefins industry in which 75% of the olefins producers are practicing technology that is over twenty years old. New separation opportunities are therefore needed to continually reduce energy consumption and remain competitive. Amoco has been a leader in incorporating new separation technology into its olefins facilities and has been aggressively pursuing non-cryogenic alternatives to light gas separations. The largest area for energy reduction is the cryogenic isolation of the product hydrocarbons from the reaction by-products, methane and hydrogen. This separation requires temperatures as low as {minus}150{degrees}F and pressures exceeding 450 psig. This CRADA will focus on developing a capillary condensation process to separate olefinic mixtures from light gas byproducts at temperatures that approach ambient conditions and at pressures less than 250 psig; this technology breakthrough will result in substantial energy savings. The key technical hurdle in the development of this novel separation concept is the precise control of the pore structure of membrane materials. These materials must contain specially-shaped channels in the 20-40A range to provide the driving force necessary to remove the condensed hydrocarbon products. In this project, Amoco is the technology end-user and provides the commercialization opportunity and engineering support.

  2. Multireference excitation energies for bacteriochlorophylls A within light harvesting system 2

    DEFF Research Database (Denmark)

    Anda, Andre; Hansen, Thorsten; De Vico, Luca

    2016-01-01

    Light-harvesting system 2 (LH2) of purple bacteria is one of the most popular antenna complexes used to study Nature's way of collecting and channeling solar energy. The dynamics of the absorbed energy is probed by ultrafast spectroscopy. Simulation of these experiments relies on fitting a range...... bacteriochlorophylls in LH2. We find that the excitation energies vary among the bacteriochlorophyll monomers and that they are regulated by the curvature of the macrocycle ring and the dihedral angle of an acetyl moiety. Increasing the curvature lifts the ground state energy, which causes a red shift...

  3. High-energy X-ray measurements of structural anisotropy and excess free volume in a homogenously deformed Zr-based metallic glass

    International Nuclear Information System (INIS)

    Ott, R.T.; Kramer, M.J.; Besser, M.F.; Sordelet, D.J.

    2006-01-01

    We have used high-energy X-ray scattering to measure the structural anisotropy and excess free volume in a homogeneously deformed Zr-based metallic glass alloy. The scattering results show that bond length anisotropy is present in the samples following isothermal tensile creep deformation. The average atomic bond length in the direction parallel to the tensile loading axis is larger than that in the direction normal to the loading axis. The magnitude of the bond length anisotropy is found to be dependent on the gradient of macroscopic plastic strain along the gauge length. Furthermore, the scattering results show that the excess free volume also increases with increasing macroscopic plastic strain. Results from differential scanning calorimetry analysis of free volume variations along the gauge length of the creep samples are consistent with results from the X-ray scattering experiments

  4. Can renewable energy turn Nigeria’s lights on? Briefing paper

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, Chris

    2013-01-15

    Around 70 million Nigerians have no access to grid electricity. Reliable night-time lighting for households, for refrigeration, and affordable power for businesses would change many lives, and renewable energy has the potential to do this. But for solar power, hydropower and wind energy to be made available on a significant scale, government policy needs to change. Affordable loans to finance development and market growth for a range of installations, including solar thermal power, which shows major long-term potential for northern Nigeria, are essential. And government and non-government organisations must implement a strategy to increase understanding among individual consumers, business people and policymakers about the benefits of renewable energy.

  5. Bounds on dark matter interpretation of Fermi-LAT GeV excess

    Directory of Open Access Journals (Sweden)

    Kyoungchul Kong

    2014-11-01

    Full Text Available Annihilation of light dark matter of mDM≈(10–40 GeV into the Standard Model fermions has been suggested as a possible origin of the gamma-ray excess at GeV energies in the Fermi-LAT data. In this paper, we examine possible model-independent signatures of such dark matter models in other experiments such as AMS-02, colliders, and cosmic microwave background (CMB measurements. We point out that first generation of fermion final states is disfavored by the existing experimental data. Currently AMS-02 positron measurements provide stringent bounds on cross sections of dark matter annihilation into leptonic final states, and e+e− final state is in severe tension with this constraint, if not ruled out. The e+e− channel will be complementarily verified in an early stage of ILC and future CMB measurements. Light quark final states (qq¯ are relatively strongly constrained by the LHC and dark matter direct detection experiments even though these bounds are model-dependent. Dark matter signals from annihilations into qq¯ channels would be constrained by AMS-02 antiproton data which will be released in very near future. In optimistic case, diffuse radio emission from nearby galaxy (clusters and the galactic center might provide another hint or limit on dark matter annihilation.

  6. Testing ATLAS Z+MET excess with LHC run 2

    International Nuclear Information System (INIS)

    Lu, Xiaochuan; Terada, Takahiro

    2016-05-01

    The ATLAS collaboration reported a 3σ excess in the search of events containing on-Z dilepton, jets, and large missing momentum (MET) in the 8 TeV LHC run. Motivated by this excess, many models of new physics have been proposed. Recently, the ATLAS and CMS collaborations reported new results for similar Z+MET channels in the 13 TeV run. In this paper, we comprehensively discuss the consistency between the proposed models and the LHC results of Run 1 and Run 2. We find that in models with heavy gluino production, there is generically some tension between the 8 TeV and 13 TeV results. On the other hand, models with light squark production provide relatively better fitting to both results.

  7. A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

    Directory of Open Access Journals (Sweden)

    Alexander N. Obraztsov

    2013-08-01

    Full Text Available The development of new types of light sources is necessary in order to meet the growing demands of consumers and to ensure an efficient use of energy. The cathodoluminescence process is still under-exploited for light generation because of the lack of cathodes suitable for the energy-efficient production of electron beams and appropriate phosphor materials. In this paper we propose a nano-graphite film material as a highly efficient cold cathode, which is able to produce high intensity electron beams without energy consumption. The nano-graphite film material was produced by using chemical vapor deposition techniques. Prototypes of cathodoluminescent lamp devices with a construction optimized for the usage of nano-graphite cold cathodes were developed, manufactured and tested. The results indicate prospective advantages of this type of lamp and the possibility to provide advanced power efficiency as well as enhanced spectral and other characteristics.

  8. Optimal sampling plan for clean development mechanism energy efficiency lighting projects

    International Nuclear Information System (INIS)

    Ye, Xianming; Xia, Xiaohua; Zhang, Jiangfeng

    2013-01-01

    Highlights: • A metering cost minimisation model is built to assist the sampling plan for CDM projects. • The model minimises the total metering cost by the determination of optimal sample size. • The required 90/10 criterion sampling accuracy is maintained. • The proposed metering cost minimisation model is applicable to other CDM projects as well. - Abstract: Clean development mechanism (CDM) project developers are always interested in achieving required measurement accuracies with the least metering cost. In this paper, a metering cost minimisation model is proposed for the sampling plan of a specific CDM energy efficiency lighting project. The problem arises from the particular CDM sampling requirement of 90% confidence and 10% precision for the small-scale CDM energy efficiency projects, which is known as the 90/10 criterion. The 90/10 criterion can be met through solving the metering cost minimisation problem. All the lights in the project are classified into different groups according to uncertainties of the lighting energy consumption, which are characterised by their statistical coefficient of variance (CV). Samples from each group are randomly selected to install power meters. These meters include less expensive ones with less functionality and more expensive ones with greater functionality. The metering cost minimisation model will minimise the total metering cost through the determination of the optimal sample size at each group. The 90/10 criterion is formulated as constraints to the metering cost objective. The optimal solution to the minimisation problem will therefore minimise the metering cost whilst meeting the 90/10 criterion, and this is verified by a case study. Relationships between the optimal metering cost and the population sizes of the groups, CV values and the meter equipment cost are further explored in three simulations. The metering cost minimisation model proposed for lighting systems is applicable to other CDM projects as

  9. Excess energy partitioning between electrons departing at 0o and 180o in the ionization of helium near threshold

    International Nuclear Information System (INIS)

    Asmis, K.R.; Allan, M.

    1997-01-01

    Partitioning of excess energy between electrons departing at 0 o and 180 o after electron-impact ionization of helium has been measured. A recently developed scheme, using a magnetically collimated electron-impact spectrometer, pulsed incident electron beam and time-of-flight detection was used to detect the electrons departing in the forward and backward directions. The ratios of the forward and backward doubly differential cross-sections (DDCS) for an incident electron energy 3 eV above threshold and secondary electron energies of 0.7, 1.5 and 2.9 eV were measured. The relative DDCS at 0 o and 180 o are also presented as a function of the secondary electron energy, for incident electron energies 3 and 5 eV above threshold. Our measurements show that the distribution of the secondary electrons is, in contrast to electrons detected at 90 o , not flat for electrons departing at 0 o and 180 o at the present low primary energies. The yield of the faster secondary electrons is forward peaked, the yield of the slower secondary electrons is backward peaked. The sum of the 0 o and 180 o DDCS is, however, flat within the experimental uncertainty limits. (Author)

  10. Excess Diffuse Light Absorption in Upper Mesophyll Limits CO2 Drawdown and Depresses Photosynthesis.

    Science.gov (United States)

    Earles, J Mason; Théroux-Rancourt, Guillaume; Gilbert, Matthew E; McElrone, Andrew J; Brodersen, Craig R

    2017-06-01

    In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower ( Helianthus annuus ) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO 2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Energy and traffic light labelling have no impact on parent and child fast food selection.

    Science.gov (United States)

    Dodds, Pennie; Wolfenden, Luke; Chapman, Kathy; Wellard, Lyndal; Hughes, Clare; Wiggers, John

    2013-10-25

    Labelling of food from fast food restaurants at point-of-purchase has been suggested as one strategy to reduce population energy consumption and contribute to reductions in obesity prevalence. The aim of this study was to examine the effects of energy and single traffic light labelling systems on the energy content of child and adult intended food purchases. The study employed a randomised controlled trial design. English speaking parents of children aged between three and 12 years were recruited from an existing research cohort. Participants were mailed one of three hypothetical fast food menus. Menus differed in their labelling technique- either energy labels, single traffic light labels, or a no-label control. Participants then completed a telephone survey which assessed intended food purchases for both adult and child. The primary trial outcome was total energy of intended food purchase. A total of 329 participants completed the follow-up telephone interview. Eighty-two percent of the energy labelling group and 96% of the single traffic light labelling group reported noticing labelling information on their menu. There were no significant differences in total energy of intended purchases of parents, or intended purchases made by parents for children, between the menu labelling groups, or between menu labelling groups by socio-demographic subgroups. This study provided no evidence to suggest that energy labelling or single traffic light labelling alone were effective in reducing the energy of fast food items selected from hypothetical fast food menus for purchase. Additional complementary public health initiatives promoting the consumption of healthier foods identified by labelling, and which target other key drivers of menu item selection in this setting may be required. Copyright © 2013. Published by Elsevier Ltd.

  12. An alternative explanation for the GeV excess in the Fermi gamma ray data

    Energy Technology Data Exchange (ETDEWEB)

    Gebauer, Iris; Boer, Wim de; Neumann, Alexander [Karlsruhe Institute of Technologie, Karlsruhe (Germany)

    2016-07-01

    Towards the Galactic center the diffuse Fermi Gamma Ray data show a 1-3 GeV excess, which has been interpreted previously as a new source, like dark matter annihilation, contributions from millisecond pulsars or cosmic rays interacting with molecular clouds. We search for this excess in the whole Galactic Plane and find it to be perfectly correlated with the spatial distribution of the {sup 26}Al line, thought to be a tracer of SNRs. So the excess is not only found in the Galactic Center, but found everywhere, where there are molecular clouds (MCs). This excludes the dark matter annihilation interpretation. If we assume the proton spectrum in MCs to be depleted at energies below 14 GeV by a combination of trapping, solar winds and energy losses, we find a perfect description of the whole gamma ray sky. In this case the excess is not an excess, but a depletion of low energy gamma rays below a few GeV due to the depletion of the protons in MCs below 14 GeV, which happens not only in the Galactic Center, but everywhere in the Galactic Plane, where there are MCs with star formation, as proven by the identical morphology of the excess and the 1.8 MeV line of {sup 26}Al, observed by Comptel and Integral.

  13. Resource Allocation for Outdoor Visible Light Communications with Energy Harvesting Capabilities

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz; Amin, Osama; Chaaban, Anas; Alouini, Mohamed-Slim

    2018-01-01

    Visible light communication (VLC) is a promising technology that can support high data rate services for outdoor mass gathering night events while permitting energy harvesting. In this paper, a VLC system is considered where a transmitter sends data

  14. An update on the LHC monojet excess

    Science.gov (United States)

    Asadi, Pouya; Buckley, Matthew R.; DiFranzo, Anthony; Monteux, Angelo; Shih, David

    2018-03-01

    In previous work, we identified an anomalous number of events in the LHC jets+MET searches characterized by low jet multiplicity and low-to-moderate transverse energy variables. Here, we update this analysis with results from a new ATLAS search in the monojet channel which also shows a consistent excess. As before, we find that this "monojet excess" is well-described by the resonant production of a heavy colored state decaying to a quark and a massive invisible particle. In the combined ATLAS and CMS data, we now find a local (global) preference of 3.3 σ (2.5 σ) for the new physics model over the Standard Model-only hypothesis. As the signal regions containing the excess are systematics-limited, we consider additional cuts to enhance the signal-to-background ratio. We show that binning finer in H T and requiring the jets to be more central can increase S/B by a factor of ˜1 .5.

  15. Italy's recurrent energy dependency dilemma

    International Nuclear Information System (INIS)

    Ippolito, F.

    1993-01-01

    This paper first critically assesses the objectives of Italy's 1988 National Energy Plan which, in light of the moratorium on nuclear energy, called for moderate but steady reductions in imported energy supplies through the implementation of energy conservation programs and the development of available domestic conventional and renewable energy sources. The economics and energy analyses evidence that, in view this nation's current troubled economic situation, the Energy Plan's target for the year 2000 of a 76% dependency on foreign oil is just not good enough and not in line with stricter European environmental normatives limiting carbon dioxide emissions. It is argued that in order to effectively reduce the nation's excessively high energy costs, keep pace with other industrialized countries in a highly competitive market (Italy's energy tariffs are almost 55% greater than those of Germany and France), and to respect new European anti-pollution laws, Italy must restart its nuclear program and take advantage of the recent advances being made in passive reactor safety systems

  16. Improvement of energy efficiency and quality of street lighting in South Italy as an action of Sustainable Energy Action Plans. The case study of Comiso (RG)

    International Nuclear Information System (INIS)

    Beccali, Marco; Bonomolo, Marina; Ciulla, Giuseppina; Galatioto, Alessandra; Lo Brano, Valerio

    2015-01-01

    Existing street lighting systems, in most of South Italy cities, are often inefficient due to the obsolescence of lamps and luminaires and of ineffective light control systems unable to implement efficient on-off and dimming strategies. Energy efficiency improvement, in street lighting systems, is often one of the key actions to be adopted by Public Administration in their Sustainable Energy Action Plan in the framework of the “Covenant of Majors” activities. As a task of FACTOR 20 project, a set of planning options has been analysed and proposed. Particularly, street lighting efficiency projects have been studied for representative case studies. A detailed survey of the public lighting systems, in Comiso, allowed represent current performance figures such us installed power, luminance and illuminance levels in roads categories, electricity consumption, switching and dimming schedules. A project of system upgrade has been elaborated. To do this, many lighting simulations, energy and economic assessments in three scenarios have been performed. The obtained results show that high improvements of the lighting quality are foreseeable together with large energy and economic saving. An economic sensitivity analysis, has shown how the performance can change. The proposed methodology can be applied in many similar South Italy cities. - Highlights: • Retrofit actions in urban lighting systems of typical South Italy cities are studied. • A methodology for the comparison of baseline and design scenarios is presented. • An analysis of energy and economic savings of different scenarios is performed. • A sensitivity analysis of payback times is presented for different costs of LED and kWhe.

  17. Energetics and dynamics of excess electrons in simple fluids

    International Nuclear Information System (INIS)

    Space, B.

    1992-01-01

    Excess electronic dynamical and equilibrium properties are modeled in both polarizable and nonpolarizable noble gas fluids. Explicit dynamical calculations are carried out for excess electrons in fluid helium, where excess electronic eigenstates are localized. Energetics and dynamics are considered for fluids which span the entire range of polarizability present in the rare gases. Excess electronic eigenstates and eigenvalues are calculated for fluids of helium, argon and xenon. Both equilibrium and dynamical information is obtained from the calculation of these wavefunctions. A surface hopping trajectory method for studying nonadiabatic excess electronic relaxation in condensed systems is used to explore the nonadiabatic relaxation after photoexciting an equilibrated excess electron in dense fluid helium. The different types on nonadiabatic phenomena which are important in excess electronic relaxation are surveyed. The same surface hopping trajectory method is also used to study the rapid nonadiabatic relaxation after an excess electron is injected into unperturbed fluid helium. Several distinctively different relaxation processes, characterized by their relative importance at different times during the relaxation to a localized equilibrium state, are detailed. Though the dynamical properties of excess electrons under the conditions considered here have never been studied before, the behavior is remarkably similar to that observed in both experimental and theoretical studies of electron hydration dynamics, indicating that the processes described may be very general relaxation mechanisms for localization and trapping in fluids. Additionally, ground state energies of an excess electron, e 0 , are computed as a function of solvent density using model electron-atom pseudopotentials in fluid helium, argon, and xenon. The nonuniqueness of the pseudopotential description of electron-molecule interactions is demonstrated

  18. Measurement and Verification of Energy Savings and Performance from Advanced Lighting Controls

    Energy Technology Data Exchange (ETDEWEB)

    PNNL

    2016-02-21

    This document provides a framework for measurement and verification (M&V) of energy savings, performance, and user satisfaction from lighting retrofit projects involving occupancy-sensor-based, daylighting, and/or other types of automatic lighting. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for retrofit projects and to assist in developing specific project M&V plans.

  19. Energy transfer dynamics from individual semiconductor nanoantennae to dye molecules with implication to light-harvesting nanosystems

    Science.gov (United States)

    Shan, Guangcun; Hu, Mingjun; Yan, Ze; Li, Xin; Huang, Wei

    2018-03-01

    Semiconductor nanocrystals can be used as nanoscale optical antennae to photoexcite individual dye molecules in an ensemble via energy transfer mechanism. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. Herein we investigate the effect of the average donor-acceptor spacing on the time-resolved fluorescence intensity and dynamics of single donor-acceptor pairs with the dye acceptor concentration decreasing by using quantum Monte-Carlo simulation of FRET dynamics. Our results validated that the spatial disorder controlling the microscopic energy transfer rates accounts for the scatter in donor fluorescence lifetimes and intensities, which provides a new design guideline for artificial light-harvesting nanosystems.

  20. Determining the phonon energy of highly oriented pyrolytic graphite by scanning tunneling microscope light emission spectroscopy

    Science.gov (United States)

    Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi

    2018-03-01

    We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).

  1. Excess electrons in reduced rutile and anatase TiO2

    Science.gov (United States)

    Yin, Wen-Jin; Wen, Bo; Zhou, Chuanyao; Selloni, Annabella; Liu, Li-Min

    2018-05-01

    As a prototypical photocatalyst, TiO2 is a material of scientific and technological interest. In photocatalysis and other applications, TiO2 is often reduced, behaving as an n-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO2. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO2 focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO2, for intrinsic oxygen vacancy and Ti interstitial defects, and for surface hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.

  2. Sol-Gel Glass Holographic Light-Shaping Diffusers

    Science.gov (United States)

    Yu, Kevin; Lee, Kang; Savant, Gajendra; Yin, Khin Swe (Lillian)

    2005-01-01

    Holographic glass light-shaping diffusers (GLSDs) are optical components for use in special-purpose illumination systems (see figure). When properly positioned with respect to lamps and areas to be illuminated, holographic GLSDs efficiently channel light from the lamps onto specified areas with specified distributions of illumination for example, uniform or nearly uniform irradiance can be concentrated with intensity confined to a peak a few degrees wide about normal incidence, over a circular or elliptical area. Holographic light diffusers were developed during the 1990s. The development of the present holographic GLSDs extends the prior development to incorporate sol-gel optical glass. To fabricate a holographic GLSD, one records a hologram on a sol-gel silica film formulated specially for this purpose. The hologram is a quasi-random, micro-sculpted pattern of smoothly varying changes in the index of refraction of the glass. The structures in this pattern act as an array of numerous miniature lenses that refract light passing through the GLSD, such that the transmitted light beam exhibits a precisely tailored energy distribution. In comparison with other light diffusers, holographic GLSDs function with remarkably high efficiency: they typically transmit 90 percent or more of the incident lamp light onto the designated areas. In addition, they can withstand temperatures in excess of 1,000 C. These characteristics make holographic GLSDs attractive for use in diverse lighting applications that involve high temperatures and/or requirements for high transmission efficiency for ultraviolet, visible, and near-infrared light. Examples include projectors, automobile headlights, aircraft landing lights, high-power laser illuminators, and industrial and scientific illuminators.

  3. Characterization of high density SiPM non-linearity and energy resolution for prompt gamma imaging applications

    Science.gov (United States)

    Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.

    2017-07-01

    Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.

  4. Energy transfer and colour tunability in UV light induced Tm3+/Tb3+/Eu3+: ZnB glasses generating white light emission.

    Science.gov (United States)

    Naresh, V; Gupta, Kiran; Parthasaradhi Reddy, C; Ham, Byoung S

    2017-03-15

    A promising energy transfer (Tm 3+ →Tb 3+ →Eu 3+ ) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm 3+ /Tb 3+ /Eu 3+ ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II) x -[O(-II)] y centres in the ZnB glass matrix. At 360nm (UV) excitation, triply doped Tm 3+ /Tb 3+ /Eu 3+ : ZnB glasses simultaneously shown their characteristic emission bands in blue (454nm: 1 D 2 → 3 F 4 ), green (547nm: 5 D 4 → 7 F 5 ) and red (616nm: 5 D 0 → 7 F 2 ) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb 3+ in ET from Tm 3+ →Eu 3+ was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb 3+ , Eu 3+ ) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Final report for EDI energy conservation with diode light; Slutrapport for EDI energibesparelser med diodelys

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The aim of this project has been to develop technological knowledge and a competence platform for utilization of new light emitting diode technology for general lighting purposes. Furthermore the project has aimed at developing a 3 W light diode bulb to replace 15-20 W filament bulbs and halogen spotlights, and thereby demonstrating a large energy conservation potential in the use of LED technology for lighting purposes. (BA)

  6. Engineering Designed Proteins for Light Capture, Energy Transfer, and Emissive Sensing In Vivo

    Science.gov (United States)

    Mancini, Joshua A.

    Proteins that are used for photosynthetic light harvesting and biological signaling are critical to life. These types of proteins act as scaffolds that hold small, sometimes metal-containing organic molecules in precise locations for light absorption and successive use. For signaling proteins, this energy can be used to induce a photoisomerization of the small molecule that can turn on or off a signaling cascade that controls the physiology of an organism. Alternatively, photosynthetic light-harvesting proteins funnel this energy in a directional manner towards a charge separating catalytic component that can change this light energy into chemical energy. The protein environment also serves to tune the photophysical properties of the small molecules. This is seen extensively with the linear tetrapyrroles that are used in both photosynthetic and signaling proteins. Many efforts have been made to harness these natural proteins for societal use, including improving photophysical properties and interfacing capabilities with manmade catalytic components. Several methods of achieving improvement have entailed structurally guided mutation and directed evolution. However, these methods all have their limitations due to the inherent complexity and fragility of the natural proteins. This work presents an alternative more robust method to natural proteins. My thesis states: that man-made proteins, known as maquettes, employing basic rules of protein folding, can be designed to become light harvesting and signaling proteins that can be assembled fully in vivo providing an alternative, robust, and versatile platform for meeting the diverse array of societal "green chemistry" and biomedical needs. This in vivo assembly is carried out by interacting with cyanobacterial protein and pigment machinery, both as stand-alone units and as protein fusions with natural antenna complexes. Additionally, this work offers insight for fast and tight binding of circular and linear tetrapyrroles

  7. Excessive Daytime Sleepiness

    Directory of Open Access Journals (Sweden)

    Yavuz Selvi

    2016-06-01

    Full Text Available Excessive daytime sleepiness is one of the most common sleep-related patient symptoms, with preva-lence in the community estimated to be as high as 18%. Patients with excessive daytime sleepiness may exhibit life threatening road and work accidents, social maladjustment, decreased academic and occupational performance and have poorer health than comparable adults. Thus, excessive daytime sleepiness is a serious condition that requires investigation, diagnosis and treatment primarily. As with most medical condition, evaluation of excessive daytime sleepiness begins a precise history and various objective and subjective tools have been also developed to assess excessive daytime sleepiness. The most common causes of excessive daytime sleepiness are insufficient sleep hygiene, chronic sleep deprivation, medical and psychiatric conditions and sleep disorders, such as obstructive sleep apnea, medications, and narcolepsy. Treatment option should address underlying contributors and promote sleep quantity by ensuring good sleep hygiene. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 114-132

  8. The DarkLight Experiment: A Precision Search for New Physics at Low Energies

    OpenAIRE

    Balewski, J.; Bernauer, J.; Bessuille, J.; Corliss, R.; Cowan, R.; Epstein, C.; Fisher, P.; Hasell, D.; Ihloff, E.; Kahn, Y.; Kelsey, J.; Milner, R.; Steadman, S.; Thaler, J.; Tschalaer, C.

    2014-01-01

    We describe the current status of the DarkLight experiment at Jefferson Laboratory. DarkLight is motivated by the possibility that a dark photon in the mass range 10 to 100 MeV/c$^2$ could couple the dark sector to the Standard Model. DarkLight will precisely measure electron proton scattering using the 100 MeV electron beam of intensity 5 mA at the Jefferson Laboratory energy recovering linac incident on a windowless gas target of molecular hydrogen. The complete final state including scatte...

  9. Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices.

    Science.gov (United States)

    Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin

    2017-07-25

    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

  10. Research on natural lighting in reading spaces of university libraries in Jinan under the perspective of energy-efficiency

    Science.gov (United States)

    Yang, Zengzhang

    2017-11-01

    The natural lighting design in the reading spaces of university libraries not only influences physical and mental health of readers but also concerns the energy consumption of the libraries. The scientific and rational design of natural lighting is the key to the design of energy saving for physical environment of the reading space. The paper elaborates the present situation and existed problems of natural lighting in reading spaces of university libraries across Jinan region based on characteristics of light climate of Jinan region and concrete utilization of reading spaces in university libraries, and combining field measurement, survey, research and data analysis of reading spaces in Shandong Women’s University’s library. The paper, under the perspective of energy-efficiency, puts forward proposals to improve natural lighting in the reading spaces of university libraries from five aspects, such as adjustment of interior layout, optimization of outer windows design, employment of the reflector panel, design lighting windows on inner walls and utilization of adjustable sun shading facilities.

  11. Effects of excessive energy intake and supplementation with chromium propionate on insulin resistance parameters in nonlactating dairy cows.

    Science.gov (United States)

    Leiva, T; Cooke, R F; Aboin, A C; Drago, F L; Gennari, R; Vasconcelos, J L M

    2014-02-01

    The objective was to compare insulin resistance parameters in cows with adequate or excessive energy intake as well as in cows with excessive energy intake receiving Cr supplementation as chromium propionate. Thirteen multiparous, nonlactating Gir × Holstein cows were ranked by BW and BCS and assigned to 1 of 3 dietary treatments on d 0: 1) diet to meet their ME requirements without Cr supplementation (MAN; n = 4), 2) diet to exceed their ME requirements without Cr supplementation (HIGH; n = 4), and 3) HIGH with 2.5 g/d of chromium propionate (HIGHCR; n = 5, with 10 mg of Cr/cow daily). Diets were formulated to provide 100% of daily ME requirements of MAN and 177% of daily ME requirements of HIGH and HIGHCR cows and offered twice daily via individual self-locking head gates from d 0 to 88. Cow BW and BCS were recorded on d 0 and 88 of the experiment. Blood samples were collected before and 2 h after the morning feeding twice weekly. Preprandial revised quantitative insulin sensitivity check index (RQUICKI) was determined using serum glucose, insulin, and NEFA concentrations obtained before feeding. Glucose tolerance tests (GTT) were performed on d 32 and 88 by infusing cows with 0.5 g of glucose/kg of BW whereas blood samples were collected at -15, 0, 10, 20, 30, 45, 60, and 90 min relative to infusion. Change in BCS tended to be greater in HIGH and HIGHCR (P = 0.09) compared with MAN cows. Within samples collected twice weekly, serum concentrations of glucose, insulin (beginning on d 14 of the experiment), and NEFA (preprandial samples only) were greater (P ≤ 0.05) in HIGH compared with HIGHCR cows and tended to be greater in HIGH compared with MAN cows (P ≤ 0.10) but did not differ (P ≥ 0.52) between HIGHCR and MAN cows. Moreover, HIGH cows had reduced RQUICKI compared with MAN (P = 0.02) and HIGHCR cows (P = 0.05) whereas RQUICKI was similar between MAN and HIGHCR cows (P = 0.53). Within samples collected during the GTT, mean serum insulin concentrations

  12. Scalar dark matter, type II seesaw and the DAMPE cosmic ray e+ + e- excess

    Science.gov (United States)

    Li, Tong; Okada, Nobuchika; Shafi, Qaisar

    2018-04-01

    The DArk Matter Particle Explorer (DAMPE) has reported a measurement of the flux of high energy cosmic ray electrons plus positrons (CREs) in the energy range between 25GeV and 4.6TeV. With unprecedented high energy resolution, the DAMPE data exhibit an excess of the CREs flux at an energy of around 1.4TeV. In this letter, we discuss how the observed excess can be understood in a minimal framework where the Standard Model (SM) is supplemented by a stable SM singlet scalar as dark matter (DM) and type II seesaw for generating the neutrino mass matrix. In our framework, a pair of DM particles annihilates into a pair of the SM SU(2) triplet scalars (Δs) in type II seesaw, and the subsequent Δ decays create the primary source of the excessive CREs around 1.4TeV. The lepton flavor structure of the primary source of CREs has a direct relation with the neutrino oscillation data. We find that the DM interpretation of the DAMPE excess determines the pattern of neutrino mass spectrum to be the inverted hierarchy type, taking into account the constraints from the Fermi-LAT observations of dwarf spheroidal galaxies.

  13. 78 FR 43197 - Duke Energy Florida, Inc.; Florida Power & Light Company; Tampa Electric Company; Orlando...

    Science.gov (United States)

    2013-07-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ER13-1922-000; ER13-1929-000; ER13-1932-000; NJ13-11-000] Duke Energy Florida, Inc.; Florida Power & Light Company; Tampa Electric Company; Orlando Utilities Commission; Notice of Compliance Filings Take notice that on July 10, 2013, Duke Energy...

  14. Search for scalar dark matter via pseudoscalar portal interactions in light of the Galactic Center gamma-ray excess

    Science.gov (United States)

    Yang, Kwei-Chou

    2018-01-01

    In light of the observed Galactic center gamma-ray excess, we investigate a simplified model, for which the scalar dark matter interacts with quarks through a pseudoscalar mediator. The viable regions of the parameter space, that can also account for the relic density and evade the current searches, are identified, if the low-velocity dark matter annihilates through an s -channel off shell mediator mostly into b ¯b , and/or annihilates directly into two hidden on shell mediators, which subsequently decay into the quark pairs. These two kinds of annihilations are s wave. The projected monojet limit set by the high luminosity LHC sensitivity could constrain the favored parameter space, where the mediator's mass is larger than the dark matter mass by a factor of 2. We show that the projected sensitivity of 15-year Fermi-LAT observations of dwarf spheroidal galaxies can provide a stringent constraint on the most parameter space allowed in this model. If the on shell mediator channel contributes to the dark matter annihilation cross sections over 50%, this model with a lighter mediator can be probed in the projected PICO-500L experiment.

  15. Energy audit: A case study to reduce lighting cost for an industrial site

    CSIR Research Space (South Africa)

    Dzobo, O

    2017-06-01

    Full Text Available were done using lux meter. 2. Data Analysis: Detailed analysis of collected data was done from the database that was generated. This forms the baseline case which is used later to quantify any energy cost savings achieved as a result of recommended... in the plant and selected offices were measured during day time by using a lux/light meter. Measurements were taken at a number of points and averaged. For offices the light levels were also determined with the lights OFF and window-blinds fully open...

  16. Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications

    International Nuclear Information System (INIS)

    Watanabe, M; Nakamura, A; Kunii, A; Kusano, K; Futagawa, M

    2015-01-01

    A scalable indoor light energy harvester was fabricated by microelectromechanical system (MEMS) and printing hybrid technology and evaluated for agricultural IoT applications under different environmental input power density conditions, such as outdoor farming under the sun, greenhouse farming under scattered lighting, and a plant factory under LEDs. We fabricated and evaluated a dye- sensitized-type solar cell (DSC) as a low cost and “scalable” optical harvester device. We developed a transparent conductive oxide (TCO)-less process with a honeycomb metal mesh substrate fabricated by MEMS technology. In terms of the electrical and optical properties, we achieved scalable harvester output power by cell area sizing. Second, we evaluated the dependence of the input power scalable characteristics on the input light intensity, spectrum distribution, and light inlet direction angle, because harvested environmental input power is unstable. The TiO 2 fabrication relied on nanoimprint technology, which was designed for optical optimization and fabrication, and we confirmed that the harvesters are robust to a variety of environments. Finally, we studied optical energy harvesting applications for agricultural IoT systems. These scalable indoor light harvesters could be used in many applications and situations in smart agriculture. (paper)

  17. Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications

    Science.gov (United States)

    Watanabe, M.; Nakamura, A.; Kunii, A.; Kusano, K.; Futagawa, M.

    2015-12-01

    A scalable indoor light energy harvester was fabricated by microelectromechanical system (MEMS) and printing hybrid technology and evaluated for agricultural IoT applications under different environmental input power density conditions, such as outdoor farming under the sun, greenhouse farming under scattered lighting, and a plant factory under LEDs. We fabricated and evaluated a dye- sensitized-type solar cell (DSC) as a low cost and “scalable” optical harvester device. We developed a transparent conductive oxide (TCO)-less process with a honeycomb metal mesh substrate fabricated by MEMS technology. In terms of the electrical and optical properties, we achieved scalable harvester output power by cell area sizing. Second, we evaluated the dependence of the input power scalable characteristics on the input light intensity, spectrum distribution, and light inlet direction angle, because harvested environmental input power is unstable. The TiO2 fabrication relied on nanoimprint technology, which was designed for optical optimization and fabrication, and we confirmed that the harvesters are robust to a variety of environments. Finally, we studied optical energy harvesting applications for agricultural IoT systems. These scalable indoor light harvesters could be used in many applications and situations in smart agriculture.

  18. Thermodynamic description of the Al–Mg–Si system using a new formulation for the temperature dependence of the excess Gibbs energy

    International Nuclear Information System (INIS)

    Tang, Ying; Du, Yong; Zhang, Lijun; Yuan, Xiaoming; Kaptay, George

    2012-01-01

    Highlights: ► An exponential formulation to describe ternary excess Gibbs energy is proposed. ► Theoretical analysis is performed to verify stability of phase using new formulation. ► Al–Mg–Si system and its boundary binaries have been assessed by the new formulation. ► Present calculations for Al–Mg–Si system are more reasonable than previous ones. - Abstract: An exponential formulation was proposed to replace the linear interaction parameter in the Redlich–Kister (R–K) polynomial for the excess Gibbs energy of ternary solution phase. The theoretical analysis indicates that the proposed new exponential formulation can not only avoid the artificial miscibility gap at high temperatures but also describe the ternary system well. A thermodynamic description for the Al–Mg–Si system and its boundary binaries was then performed by using both R–K linear and exponential formulations. The inverted miscibility gaps occurring in the Mg–Si and the Al–Mg–Si systems at high temperatures due to the use of R–K linear polynomials are avoided by using the new formulation. Besides, the thermodynamic properties predicted with the new formulation confirm the general thermodynamic belief that the solution phase approaches to the ideal solution at infinite temperatures, which cannot be described with the traditional R–K linear polynomials.

  19. Chemiosmotic Energy Conservation in Dinoroseobacter shibae: Proton Translocation Driven by Aerobic Respiration, Denitrification, and Photosynthetic Light Reaction

    Directory of Open Access Journals (Sweden)

    Christian Kirchhoff

    2018-05-01

    Full Text Available Dinoroseobacter shibae is an aerobic anoxygenic phototroph and able to utilize light energy to support its aerobic energy metabolism. Since the cells can also grow anaerobically with nitrate and nitrite as terminal electron acceptor, we were interested in how the cells profit from photosynthesis during denitrification and what the steps of chemiosmotic energy conservation are. Therefore, we conducted proton translocation experiments and compared O2-, NO3-, and NO2- respiration during different light regimes and in the dark. We used wild type cells and transposon mutants with knocked-out nitrate- and nitrite- reductase genes (napA and nirS, as well as a mutant (ppsR impaired in bacteriochlorophyll a synthesis. Light had a positive impact on proton translocation, independent of the type of terminal electron acceptor present. In the absence of an electron acceptor, however, light did not stimulate proton translocation. The light-driven add-on to proton translocation was about 1.4 H+/e- for O2 respiration and about 1.1 H+/e- for NO3- and NO2-. We could see that the chemiosmotic energy conservation during aerobic respiration involved proton translocation, mediated by the NADH dehydrogenase, the cytochrome bc1 complex, and the cytochrome c oxidase. During denitrification the last proton translocation step of the electron transport was missing, resulting in a lower H+/e- ratio during anoxia. Furthermore, we studied the type of light-harvesting and found that the cells were able to channel light from the green–blue spectrum most efficiently, while red light has only minor impact. This fits well with the depth profiles for D. shibae abundance in the ocean and the penetration depth of light with different wavelengths into the water column.

  20. How to prevent greenhouse gas emissions in electrical installations: lighting energy savings and solar energy approaches

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, C.; Aksoy, C. [Sakarya University, Faculty of Engineering, Electrical and Electronics Engineering Department, Serdivan (Turkey)

    2012-07-01

    Day by day greenhouse gas emissions increase dramatically. A passive adaptive method of lighting energy savings, daylight responsive systems are considered one of the best solutions for energy efficiency, saving and prevent CO{sub 2} emissions. Results of an annual experiment which was held in Sakarya University proves the necessity of daylight responsive systems with a 41% energy saving and 942.5 kg of prevented CO{sub 2} emissions Thinking this prevention is realized just only in a 36 m{sup 2} room with the use of 8 luminaries spreading such systems to nationwide, a major amount of greenhouse gas emissions would be prohibited. On the other hand energy saving is not the only way to reduce CO{sub 2} emissions. Again in Sakarya University a project has started to investigate the possibility of illumination of a complete building by using solar energy. This paper evaluates these mentioned systems both in energy efficiency, greenhouse gas emissions prevention and economic point of views. (author)

  1. A comparative analysis of mechanisms of fast light particles production in nucleus-nucleus collisions at low and intermediate energies

    CERN Document Server

    Denikin, A S

    2002-01-01

    The dynamics and the mechanisms of formation of pre-equilibrium light particles in nucleus-nucleus collisions at low and intermediate energies are discussed in terms of a classical four-body model. The energy and angular distributions of light particles have been calculated. It has been found that at energies lower than 50A MeV the formation of the most high-energy part of the nuclear spectrum occurs at the expense of the acceleration of light target particles with the mean field of the projectile. The obtained data are in good agreement with available experimental data

  2. [Consumption of free sugars and excess weight in infants. A longitudinal study].

    Science.gov (United States)

    Jardí, Cristina; Aranda, Núria; Bedmar, Cristina; Ribot, Blanca; Elias, Irene; Aparicio, Estefania; Arija, Victoria

    2018-05-14

    The consumption of free sugars has been related to excess weight, with the WHO recommending an intake of <10% of total energy. The aim of this study is to assess the association between the consumption of free sugars at 12 months and the risk of excess weight at 30 months in healthy children. A longitudinal study was conducted on 81 children followed-up from birth to 30 months. A record was made of the clinical history and anthropometry, at birth, and at 12 and 30 months. Weight status was classified as with or without excess weight, according to WHO values. At 12 months, the intake of energy and nutrients was analysed by differentiating the intake of free and natural sugars. Multivariate analyses adjusted for the main confounding variables were performed. Free sugars were consumed by 40.4% of the 12-month-old children, being higher than that recommended, and being significantly higher in children with excess weight at 30 months (60.9%). The higher intake of free sugars at 12 months is associated with an increased risk of excess weight at 30 months (OR: 1.130, 95% CI: 1.032-1.238). The consumption of free sugars is much higher than that recommended in 12-month-old infants. This high intake could be a risk factor for excess weight, even at early ages. Copyright © 2018. Publicado por Elsevier España, S.L.U.

  3. Assessment of Coulomb shifts in nucleon scattering resonances on light nuclei at low energies

    International Nuclear Information System (INIS)

    Takibaev, N.Zh.; Uzakova, Zh.; Abdanova, L.

    2003-01-01

    The assessments of the Coulomb forces contribution to position and width of the resonances at nucleons scattering on light nuclei within low energy field are given. In particular the shifts of resonances in amplitudes arising in the processes protons scattering on light nuclei relatively neutrons scattering resonance characteristics on these nuclei are considered

  4. Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized

    International Nuclear Information System (INIS)

    Gao Ting; Lin Wensheng; Gu Anzhong

    2011-01-01

    Research highlights: → We propose two new light hydrocarbon separation processes utilizing LNG cold energy. → Both processes produce liquefied ethane and LPG with high ethane recovery rate. → CH 4 -riched gas from the high pressure process is compressed to final pressure. → Re-liquefied CH 4 -riched gas from the low pressure one is pumped to final pressure. → Both processes have good performance; the low pressure one is economically better. -- Abstract: Liquefied natural gas (LNG) often consists of some kinds of light hydrocarbons other than methane, such as ethane, propane and butane, which are of high additional value. By efficiently utilization of LNG cryogenic energy, these light hydrocarbons (C 2 + ) can be separated from LNG with low power consumption and LNG is gasified meanwhile. Two novel light hydrocarbon separation processes are proposed in this paper. The first process uses a demethanizer working at higher pressure (about 4.5 MPa). The methane-riched natural gas from the demethanizer can be compressed to pipeline pressure with low power consumption. The other one uses a demethanizer working at lower pressure (about 2.4 MPa). By cascade utilization of LNG cryogenic energy, the methane-riched natural gas from the demethanizer is entirely re-liquefied. Then the liquid product is pressurized to pipeline pressure by pumps instead of compressors, reducing the power consumption greatly. By both of the two processes, liquefied ethane and LPG (liquefied petroleum gas, i.e. C 3 + ) at atmosphere pressure can be obtained directly, and high ethane recovery rate can be gained. On the basis of one typical feed gas composition, the effects of the ethane content and the ethane price to the economics of the light hydrocarbon separation plants are studied, and the economics are compared for these two processes. The results show that recovering light hydrocarbons from LNG can gain great profits by both of the two processes, and from the view of economics, the

  5. A simple and accurate model for the design of public lighting with energy efficiency functions based on regression analysis

    International Nuclear Information System (INIS)

    Rabaza, Ovidio; Gómez-Lorente, Daniel; Pérez-Ocón, Francisco; Peña-García, Antonio

    2016-01-01

    In this study, new relationships between the energy efficiency of street lighting systems, street width, and luminaire height were derived from the analysis of a large sample of outputs, generated with a software application widely used for lighting design. The result was a quadratic polynomial that perfectly fit the relationships obtained and whose coefficients characterize each type of luminaire. This greatly simplifies the design of lighting facilities because it only uses one equation, but at the same time, takes all necessary variables into account. The procedure maximized the energy efficiency of the street lighting systems, as far as conditions allowed, and greatly facilitated the calculation of the parameters of a basic lighting installation, according to CIE (International Commission on Illumination) recommendations. - Highlights: • New parameter relationships for efficient public lighting design were obtained. • A second-order polynomial simplifies the design of the lighting facilities using only one equation. • The procedure guarantees the maximization of energy efficiency of street lighting systems. • The results have been successfully tested with a well-known and reliable free software.

  6. Red light for Green Paper: The EU policy on energy efficiency

    International Nuclear Information System (INIS)

    Nilsson, Mats

    2007-01-01

    The EU Green Paper on energy efficiency calls for action to decrease energy use and thus achieve increased competitiveness, fulfil the environmental targets and increase security of supply. In this comment, we examine the role the EU Commission suggest that energy efficiency, and policies supporting energy efficiency, takes. The policies and the suggestions are qualitatively elaborated upon in the light of the goal of a common European electricity market. We suggest that the rationales for the energy efficiency measures are weak, and that the suggested goals of increased competitiveness, environmental targets, and security of supply are best reached with the direct measures especially designed for each goal. Some of the energy efficiency measures may counter-act other direct policies. Further, The Green Paper measures may prove detrimental to the European Electricity market insofar as the policies suggested could lead to a policy fatigue among the electricity consumers

  7. Cost-Benefit Analysis and Emission Reduction of Energy Efficient Lighting at the Universiti Tenaga Nasional

    Science.gov (United States)

    Ganandran, G. S. B.; Mahlia, T. M. I.; Ong, Hwai Chyuan; Rismanchi, B.; Chong, W. T.

    2014-01-01

    This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment. PMID:25133258

  8. Cost-Benefit Analysis and Emission Reduction of Energy Efficient Lighting at the Universiti Tenaga Nasional

    Directory of Open Access Journals (Sweden)

    G. S. B. Ganandran

    2014-01-01

    Full Text Available This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment.

  9. Excess electron transport in cryoobjects

    International Nuclear Information System (INIS)

    Eshchenko, D.G.; Storchak, V.G.; Brewer, J.H.; Cottrell, S.P.; Cox, S.F.J.

    2003-01-01

    Experimental results on excess electron transport in solid and liquid phases of Ne, Ar, and solid N 2 -Ar mixture are presented and compared with those for He. Muon spin relaxation technique in frequently switching electric fields was used to study the phenomenon of delayed muonium formation: excess electrons liberated in the μ + ionization track converge upon the positive muons and form Mu (μ + e - ) atoms. This process is shown to be crucially dependent upon the electron's interaction with its environment (i.e., whether it occupies the conduction band or becomes localized in a bubble of tens of angstroms in radius) and upon its mobility in these states. The characteristic lengths involved are 10 -6 -10 -4 cm, the characteristic times range from nanoseconds to tens microseconds. Such a microscopic length scale sometimes enables the electron spend its entire free lifetime in a state which may not be detected by conventional macroscopic techniques. The electron transport processes are compared in: liquid and solid helium (where electron is localized in buble); liquid and solid neon (where electrons are delocalized in solid and the coexistence of localized and delocalized electrons states was found in liquid recently); liquid and solid argon (where electrons are delocalized in both phases); orientational glass systems (solid N 2 -Ar mixtures), where our results suggest that electrons are localized in orientational glass. This scaling from light to heavy rare gases enables us to reveal new features of excess electron localization on microscopic scale. Analysis of the experimental data makes it possible to formulate the following tendency of the muon end-of-track structure in condensed rare gases. The muon-self track interaction changes from the isolated pair (muon plus the nearest track electron) in helium to multi-pair (muon in the vicinity of tens track electrons and positive ions) in argon

  10. Luminosity excesses in low-mass young stellar objects - a statistical study

    International Nuclear Information System (INIS)

    Strom, K.M.; Strom, S.E.; Kenyon, S.J.; Hartmann, L.

    1988-01-01

    This paper presents a statistical study in which the observed total luminosity is compared quantitatively with an estimate of the stellar luminosity for a sample of 59 low-mass young stellar objects (YSOs) in the Taurus-Auriga complex. In 13 of the analyzed YSOs, luminosity excesses greater than 0.20 are observed together with greater than 0.6 IR excesses, which typically contribute the bulk of the observed excess luminosity and are characterized by spectral energy distributions which are flat or rise toward long wavelengths. The analysis suggests that YSOs showing the largest luminosity excesses typically power optical jets and/or molecular outflows or have strong winds, as evidenced by the presence of O I emission, indicating a possible correlation between accretion and mass-outflow properties. 38 references

  11. Strange fireball as an explanation of the muon excess in Auger data

    Science.gov (United States)

    Anchordoqui, Luis A.; Goldberg, Haim; Weiler, Thomas J.

    2017-03-01

    We argue that ultrahigh-energy cosmic-ray collisions in Earth's atmosphere can probe the strange quark density of the nucleon. These collisions have center-of-mass energies ≳1 04.6A GeV , where A ≥14 is the nuclear baryon number. We hypothesize the formation of a deconfined thermal fireball which undergoes a sudden hadronization. At production the fireball has a very high matter density and consists of gluons and two flavors of light quarks (u , d ). Because the fireball is formed in the baryon-rich projectile fragmentation region, the high baryochemical potential damps the production of u u ¯ and d d ¯ pairs, resulting in gluon fragmentation mainly into s s ¯. The strange quarks then become much more abundant and upon hadronization the relative density of strange hadrons is significantly enhanced over that resulting from a hadron gas. Assuming the momentum distribution functions can be approximated by Fermi-Dirac and Bose-Einstein statistics, we estimate a kaon-to-pion ratio of about 3 and expect a similar (total) baryon-to-pion ratio. We show that, if this were the case, the excess of strange hadrons would suppress the fraction of energy which is transferred to decaying π0's by about 20%, yielding an ˜40 % enhancement of the muon content in atmospheric cascades, in agreement with recent data reported by the Pierre Auger Collaboration.

  12. Calculated energy distributions for light 0.25--18-keV ions scattered from solid surfaces

    International Nuclear Information System (INIS)

    Robinson, J.E.; Harms, A.A.; Karapetsas, S.K.

    1975-01-01

    Scattered energy distributions are calculated for light ions incident on Nb and Mo surfaces of interest for controlled nulcear fusion reactors. The scattered energy is found to vary as a function of the reflection coefficient between a multiple-collision limit at low energies and a single-collision Rutherford scattering limit at high energies. High-energy peaking of the scattered particle distributions is also found for low incident energies

  13. The galactic center GeV excess from a series of leptonic cosmic-ray outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Evoli, Carmelo [Univ. Hamburg, Hamburg (Germany); Calore, Francesca [Univ. of Amsterdam, Amsterdam (Netherlands); Linden, Tim [Univ. of Chicago, Chicago, IL (United States); Weniger, Christoph [Univ. of Amsterdam, Amsterdam (Netherlands); Hooper, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, Chicago, IL (United States)

    2015-06-16

    It has been proposed that a recent outburst of cosmic-ray electrons could account for the excess of GeV-scale gamma rays observed from the region surrounding the Galactic Center. After studying this possibility in some detail, we identify scenarios in which a series of leptonic cosmic-ray outbursts could plausibly generate the observed excess. The morphology of the emission observed outside of ~1° – 2° from the Galactic Center can be accommodated with two outbursts, one which took place approximately ~106 years ago, and another (injecting only about 10% as much energy as the first) about ~105 years ago. The emission observed from the innermost ~1° – 2° requires one or more additional recent outbursts and/or a contribution from a centrally concentrated population of unresolved millisecond pulsars. Furthermore, in order to produce a spectrum that is compatible with the measured excess (whose shape is approximately uniform over the region of the excess), the electrons from the older outburst must be injected with significantly greater average energy than those injected more recently, enabling their spectra to be similar after ~106 years of energy losses.

  14. Low Energy Nuclear Reactions: 2007 Update

    Science.gov (United States)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  15. Application of users’ light-switch stochastic models to dynamic energy simulation

    DEFF Research Database (Denmark)

    Camisassi, V.; Fabi, V.; Andersen, Rune Korsholm

    2015-01-01

    deterministic inputs, due to the uncertain nature of human behaviour. In this paper, new stochastic models of users’ interaction with artificial lighting systems are developed and implemented in the energy simulation software IDA ICE. They were developed from field measurements in an office building in Prague......The design of an innovative building should include building overall energy flows estimation. They are principally related to main six influencing factors (IEA-ECB Annex 53): climate, building envelope and equipment, operation and maintenance, occupant behaviour and indoor environment conditions...

  16. Energy Research Advisory Board, Civilian Nuclear Power Panel: Subpanel 1 report, Light water reactor utilization and improvement: Volume 2

    International Nuclear Information System (INIS)

    1986-10-01

    The Secretary of Energy requested that the Office of Nuclear Energy prepare a strategic national plan that outlines the Department's role in the future development of civilian nuclear power and that the Energy Research Advisory Board establish an ad hoc panel to review and comment on this plan. The Energy Research Advisory Board formed a panel for this review and three subpanels were formed. One subpanel was formed to address the institutional issues surrounding nuclear power, one on research and development for advanced nuclear power plants and a third subpanel on light water reactor utilization and improvement. The subpanel on light water reactors held two meetings at which representatives of the DOE, the NRC, EPRI, industry and academic groups made presentations. This is the report of the subpanel on light water reactor utilization and improvement. This report presents the subpanel's assessment of initiatives which the Department of Energy should undertake in the national interest, to develop and support light water reactor technologies

  17. Same-sign dilepton excesses and vector-like quarks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuan-Ren [Department of Physics, National Taiwan Normal University,Ting-Chou Road, Taipei 116, Taiwan (China); Cheng, Hsin-Chia [Department of Physics, University of California,One Shields Avenue, Davis, CA 95616 (United States); Low, Ian [Department of Physics and Astronomy, Northwestern University,Sheridan Road, Evanston, IL 60208 (United States); High Energy Physics Division, Argonne National Laboratory,S. Cass Avenue, Argonne, IL 60439 (United States)

    2016-03-15

    Multiple analyses from ATLAS and CMS collaborations, including searches for ttH production, supersymmetric particles and vector-like quarks, observed excesses in the same-sign dilepton channel containing b-jets and missing transverse energy in the LHC Run 1 data. In the context of little Higgs theories with T parity, we explain these excesses using vector-like T-odd quarks decaying into a top quark, a W boson and the lightest T-odd particle (LTP). For heavy vector-like quarks, decay topologies containing the LTP have not been searched for at the LHC. The bounds on the masses of the T-odd quarks can be estimated in a simplified model approach by adapting the search limits for top/bottom squarks in supersymmetry. Assuming a realistic decay branching fraction, a benchmark with a 750 GeV T-odd b{sup ′} quark is proposed. We also comment on the possibility to fit excesses in different analyses in a common framework.

  18. Energy Efficiency Comparison between Compact Fluorescent Lamp and Common Light Bulb

    Science.gov (United States)

    Tanushevsk, Atanas; Rendevski, Stojan

    2016-01-01

    For acquainting the students of applied physics and students of teaching physics with the concept of energy efficiency, electrical and spectral characteristics of two widely used lamps--integrated fluorescence lamp and common light bulb have been investigated. Characterization of the lamps has been done by measuring the spectral irradiance and…

  19. Worldwide Portals to Classroom Research on Light Pollution

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.; Buxner, S.

    2016-12-01

    Issues affecting society can provide stimulus for scientific research relevant to students' lives and, hence, of interest to them. These multi-disciplinary, non-traditional science topics often need foundational instruction for both students and instructors that steers students to and through research using Problem-Based or Project-Based Learning and provides more of a comfort zone for the instructor in terms of content and execution. A program created by the National Optical Astronomy Observatory's Education and Public Outreach staff (NOAO EPO) during the International Year of Light (2015) offers real-life challenges for students to solve and leads them to further research. The program is called the Quality Lighting Teaching (QLT) program (www.noao.edu/education/qltkit.php). For instructors, the impact of the program is amplified by providing professional development using tutorial videos created at NOAO on each of 6 activities and by conducting Q&A sessions via 14 Google+ Hangouts. Hangouts make communication possible with groups from 30 countries, which have received 88 QLT Kits. The central issue is poor quality lighting. It not only impedes astronomy research and seeing a starry night sky, but creates safety issues, affects human circadian sensitivities, disrupts ecosystems, and wastes billions of dollars/year in energy consumption. It also leads to excess carbon emissions. In this problem-based scenario, the city mayor (e.g., instructor) has received complaints from citizens about streetlights. Students are assembled into task forces to determine the underlying problems in the 6 complaint categories, as well as come up with feasible solutions. By exploring the concepts and practices of quality lighting, students will solve realistic cases on how light pollution affects wildlife, the night sky, our eyes, energy consumption, safety, and light trespass into buildings. The QLT Kit has all the materials for the explorations. Join us for our assessment of the

  20. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  1. Use of Natural Light vs. Cold LED Lighting in Installations for the Recovery of Victims of Gender Violence: Impact on Energy Consumption and Victims’ Recovery

    Directory of Open Access Journals (Sweden)

    Raquel Amorim

    2017-04-01

    Full Text Available The efficiency of lighting installations is a major challenge concerning Governments, productive sectors and individuals. However, the importance of accurate lighting in some areas, especially those related to Health and Wellbeing is so critical that the constraints of energy efficiency and sustainability are not always a priority. This situation has become more critical with the current boom in the application of non-visual effects of light to these areas. In this study, the effects oftwo different kinds of lighting on femalevictims of gender violence are compared and analyzed in terms of positive results and impact on energy consumption and sustainability. The lighting technologies used are integrated in facilities where these women carry out different activities aimed at their integration into daily life after their traumatic experiences. The results are expected to become a tool for professionals working with these collectives and for installation designers. In spite of the well-known effects of cold light, especially for tasks involving arousal, sleepiness and other critical variables, it is demonstrated that daylight, which is obviously cheaper from productive and environmental perspectives, is better for this application.

  2. Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at sNN=19.6 and 200 GeV

    Directory of Open Access Journals (Sweden)

    L. Adamczyk

    2015-11-01

    Full Text Available The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity |yee|<1 in minimum-bias Au+Au collisions at sNN=19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ spectral function for Mee<1.1 GeV/c2. The integrated dielectron excess yield at sNN=19.6 GeV for 0.4excess yield in central collisions is higher than that at sNN=17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at sNN=200 GeV is longer than those in peripheral collisions and at lower energies.

  3. Dual-Hop VLC/RF Transmission System with Energy Harvesting Relay under Delay Constraint

    KAUST Repository

    Rakia, Tamer

    2017-02-09

    In this paper, we introduce a dual-hop visible light communication (VLC) / radio frequency (RF) transmission system to extend the coverage of indoor VLC systems. The relay between the two hops is able to harvest light energy from different artificial light sources and sunlight entering the room. The relay receives data packet over a VLC channel and uses the harvested energy to retransmit it to a mobile terminal over an RF channel. We develop a novel statistical model for the harvested electrical power and analyze the probability of data packet loss. We define a system design parameter (α ∈ [0, 1)) that controls the time dedicated for excess energy harvesting and data packet retransmission. It was found that the parameter has an optimal value which minimizes the packet loss probability. Further more, this optimal value is independent of the RF channel path loss. However, optimal showed inverse dependence on the packet size.

  4. The Energy Saving Potential of Occupancy-Based Lighting Control Strategies in Open-Plan Offices: The Influence of Occupancy Patterns

    Directory of Open Access Journals (Sweden)

    Christel de Bakker

    2017-12-01

    Full Text Available Occupancy-based lighting control strategies have been proven to be effective in diminishing offices’ energy consumption. These strategies have typically worked by controlling lighting at the room level but, recently, lighting systems have begun to be equipped with sensors on a more fine-grained level, enabling lighting control at the desk level. For some office cases, however, the savings gained using this strategy may not outweigh the costs and design efforts compared to room control. This is because, in some offices, individual occupancy patterns are similar, hence the difference in savings between desk and room control would be minimal. This study examined the influence of occupancy pattern variance within an office space on the relative energy savings of control strategies with different control zone sizes. We applied stochastic modeling to estimate the occupancy patterns, as this method can account for uncertainty. To validate our model, simulation results were compared to earlier studies and real measurements, which demonstrated that our simulations provided realistic occupancy patterns. Next, office cases varying in both job-function type distribution and office policy were investigated on energy savings potential to determine the influence of occupancy pattern variance. The relative energy savings potential of the different control strategies differed minimally for the test cases, suggesting that variations in individual occupancy patterns negligibly influence energy savings. In all cases, lighting control at the desk level showed a significantly higher energy savings potential than strategies with lower control zone granularity, suggesting that it is useful to implement occupancy-based lighting at the desk level in all office cases. This strategy should, thus, receive more attention from both researchers and lighting designers.

  5. Consumer preferences and willingness to pay for compact fluorescent lighting: Policy implications for energy efficiency promotion in Saint Lucia

    International Nuclear Information System (INIS)

    Reynolds, Travis; Kolodinsky, Jane; Murray, Byron

    2012-01-01

    This article examines consumer willingness to pay for energy-saving compact fluorescent light bulbs using the results of a stated preferences study conducted in the Caribbean island nation of Saint Lucia. Geographic location, low income status, and age are found to affect willingness-to-pay for compact fluorescent lighting, while higher income status and other demographic variables appear to have minimal or no significant impacts. Energy efficiency knowledge is associated with increased willingness-to-pay for energy-efficient bulbs and with increased use of compact fluorescent lighting. Contrary to theoretical expectations, past purchase of compact fluorescent bulbs is found to have no impact on self-reported willingness to pay. We hypothesize that this null result is due to the recent emergence of low-cost, low-quality compact fluorescent bulbs in the Saint Lucian lighting market, which may be negatively influencing consumers' preferences and expectations regarding energy-efficient lighting. Findings support the argument that government-sponsored education and subsidy programs will likely result in increased use of energy-saving technologies in Saint Lucia. But such behavioral changes may not be sustained in the long run unless low quality bulbs – the “lemons” of the compact fluorescent lighting market – can be clearly identified by consumers. - Highlights: ▶ We model how knowledge, attitudes, and past purchase affect CFL adoption. ▶ Saint Lucian consumers have some knowledge of and favorable attitudes toward CFLs. ▶ Energy efficiency knowledge increases stated willingness-to-pay (WTP) for CFLs. ▶ Past purchase does not increase WTP; low-quality ‘lemons’ may influence consumers. ▶ Policy can lower consumer risks in lighting markets where low quality bulbs exist.

  6. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea.

    Science.gov (United States)

    Sukhova, Ekaterina; Mudrilov, Maxim; Vodeneev, Vladimir; Sukhov, Vladimir

    2018-05-01

    Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO 2 assimilation by the Calvin-Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.

  7. Verification of excess defense material

    International Nuclear Information System (INIS)

    Fearey, B.L.; Pilat, J.F.; Eccleston, G.W.; Nicholas, N.J.; Tape, J.W.

    1997-01-01

    The international community in the post-Cold War period has expressed an interest in the International Atomic Energy Agency (IAEA) using its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring excess materials, which include both classified and unclassified materials. Although the IAEA has suggested the need to address inspections of both types of materials, the most troublesome and potentially difficult problems involve approaches to the inspection of classified materials. The key issue for placing classified nuclear components and materials under IAEA safeguards is the conflict between these traditional IAEA materials accounting procedures and the US classification laws and nonproliferation policy designed to prevent the disclosure of critical weapon-design information. Possible verification approaches to classified excess defense materials could be based on item accountancy, attributes measurements, and containment and surveillance. Such approaches are not wholly new; in fact, they are quite well established for certain unclassified materials. Such concepts may be applicable to classified items, but the precise approaches have yet to be identified, fully tested, or evaluated for technical and political feasibility, or for their possible acceptability in an international inspection regime. Substantial work remains in these areas. This paper examines many of the challenges presented by international inspections of classified materials

  8. Energy-dependent microscopic optical potential for scattering of nucleons on light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Farag, M.Y.H.; Esmael, E.H. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Maridi, H.M. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Taiz University, Physics Department, Faculty of Applied Science, Taiz (Yemen)

    2014-06-15

    We present an energy-dependent microscopic optical model potential for elastic scattering of nucleons on light nuclei. The single-folding model is used for the real part of the optical potential (OP), while the imaginary part is derived within the high-energy approximation theory. The energy dependence of the OP is determined from the parameterization of the volume integrals those calculated from the best-fit OP that fit the experimental data of the cross sections and analyzing powers. This energy-dependent OP is successfully applied to analyze the proton elastic scattering of {sup 4,6,i8}He, {sup 6,7}Li, and {sup 9,10}Be nuclei at low and intermediate incident energies up to 200MeV/nucleon. (orig.)

  9. The health risks associated with energy efficient fluorescent, LEDs, and artificial lighting

    Science.gov (United States)

    Panahi, Allen

    2014-09-01

    With the phasing out of incandescent lamps in many countries, the introduction of new LED based light sources and luminaries sometimes raise the question of whether the spectral characteristics of the LED and other energy savings Fluorescent lights including the popular CFLs are suitable to replace the traditional incandescent lamps. These concerns are sometimes raised particularly for radiation emissions in the UV and Blue parts of the spectrum. This paper aims to address such concerns for the common `white light' sources typically used in household and other general lighting used in the work place. Recent studies have shown that women working the night shift have an increased probability of developing breast cancer. We like to report on the findings of many studies done by medical professionals, in particular the recent announcement of AMA in the US and many studies conducted in the UK, as well as the European community to increase public awareness on the long term health risks of the optical and opto-biological effects on the human health caused by artificial lighting.

  10. The light element formation: a signature of high energy nuclear astrophysics

    International Nuclear Information System (INIS)

    Audouze, J.; Meneguzzi, M.; Reeves, H.

    1976-01-01

    Light elements D, 6 Li, 9 Be, 10 B and 11 B (and possibly also 7 Li) are not produced by the general nucleosynthetic processes occurring in stars. They appear to be synthesized by high energy processes occuring either during the interaction of galactic cosmic rays with the interstellar medium or in supernovae envelopes. These formation processes are discussed. It is emphasized that the most coherent scenario regarding the formation of the light elements is obtained by taking also into account the nuclear processes which may have occurred during hot phases of the early Universe (Big Bang). Implications on chemical evolution of galaxies and on cosmology are briefly recalled. (Auth.)

  11. A tale of tails: Dark matter interpretations of the Fermi GeV excess in light of background model systematics

    NARCIS (Netherlands)

    Calore, F.; Cholis, I.; McCabe, C.; Weniger, C.

    2015-01-01

    Several groups have identified an extended excess of gamma rays over the modeled foreground and background emissions towards the Galactic center (GC) based on observations with the Fermi Large Area Telescope. This excess emission is compatible in morphology and spectrum with a telltale sign from

  12. Human-centered sensor-based Bayesian control: Increased energy efficiency and user satisfaction in commercial lighting

    Science.gov (United States)

    Granderson, Jessica Ann

    2007-12-01

    The need for sustainable, efficient energy systems is the motivation that drove this research, which targeted the design of an intelligent commercial lighting system. Lighting in commercial buildings consumes approximately 13% of all the electricity generated in the US. Advanced lighting controls1 intended for use in commercial office spaces have proven to save up to 45% in electricity consumption. However, they currently comprise only a fraction of the market share, resulting in a missed opportunity to conserve energy. The research goals driving this dissertation relate directly to barriers hindering widespread adoption---increase user satisfaction, and provide increased energy savings through more sophisticated control. To satisfy these goals an influence diagram was developed to perform daylighting actuation. This algorithm was designed to balance the potentially conflicting lighting preferences of building occupants, with the efficiency desires of building facilities management. A supervisory control policy was designed to implement load shedding under a demand response tariff. Such tariffs offer incentives for customers to reduce their consumption during periods of peak demand, trough price reductions. In developing the value function occupant user testing was conducted to determine that computer and paper tasks require different illuminance levels, and that user preferences are sufficiently consistent to attain statistical significance. Approximately ten facilities managers were also interviewed and surveyed to isolate their lighting preferences with respect to measures of lighting quality and energy savings. Results from both simulation and physical implementation and user testing indicate that the intelligent controller can increase occupant satisfaction, efficiency, cost savings, and management satisfaction, with respect to existing commercial daylighting systems. Several important contributions were realized by satisfying the research goals. A general

  13. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted

    NARCIS (Netherlands)

    Driever, S.M.; Baker, N.R.

    2011-01-01

    Electron flux from water via photosystem II (PSII) and PSI to oxygen (water–water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO2 assimilation is restricted. Mass spectrometry was used to measure O2 uptake and evolution together with CO2 uptake in leaves

  14. Correlation of classroom typologies to lighting energy performance of academic building in warm-humid climate (case study: ITS Campus Sukolilo Surabaya)

    Science.gov (United States)

    Ekasiwi, S. N. N.; Antaryama, I. G. N.; Krisdianto, J.; Ulum, M. S.

    2018-03-01

    Classrooms in educational buildings require certain lighting requirements to serve teaching and learning activities during daytime. The most typical design is double sided opening in order to get good daylight distribution in the classroom. Using artificial light is essential to contribute the worse daylight condition. A short observation indicates that during the lecture time the light turned on, even in the daytime. That might result in wasting electrical energy. The aim of the study is to examine the type of classroom, which perform comfortable lighting environment as well as saving energy. This paper reports preliminary results of the study obtained from field observation and measurements. The use of energy and usage pattern of artificial lighting during the lecture is recorded and then the data evaluated to see the suitability of existing energy use to building energy standards. The daylighting design aspects have to be the first consideration. However, the similarity in WWR of the classroom, the Daylight Factor (DF) may differ. It depends on the room depth. The similarity of the increase of WWR and Ratio of openings to floor area do not directly correspond to the increase of DF. The outdoor condition of larger daylight access and the room depth are the influencing factors. Despite the similarity of physical type, usage pattern of the classroom imply the use of electrical energy for lighting. The results indicate the factors influencing lighting energy performance in correlation to their typologies

  15. Monte Carlo and Lambertian light guide models of the light output from scintillation crystals at megavoltage energies

    International Nuclear Information System (INIS)

    Evans, Philip M.; Mosleh-Shirazi, M. Amin; Harris, Emma J.; Seco, Joao

    2006-01-01

    A new model of the light output from single-crystal scintillators in megavoltage energy x-ray beams has been developed, based on the concept of a Lambertian light guide model (LLG). This was evaluated in comparison with a Monte Carlo (MC) model of optical photon transport, previously developed and reported in the literature, which was used as a gold standard. The LLG model was developed to enable optimization of scintillator detector design. In both models the dose deposition and light propagation were decoupled, the scintillators were cuboids, split into a series of cells as a function of depth, with Lambertian side and entrance faces, and a specular exit face. The signal in a sensor placed 1 and 1000 mm beyond the exit face was calculated. Cesium iodide (CSI) crystals of 1.5 and 3 mm square cross section and 1, 5, and 10 mm depth were modeled. Both models were also used to determine detector signal and optical gain factor as a function of CsI scintillator thickness, from 2 to 10 mm. Results showed a variation in light output with position of dose deposition of a factor of up to approximately 5, for long, thin scintillators (such as 10x1.5x1.5 mm 3 ). For short, fat scintillators (such as 1x3x3 mm 3 ) the light output was more uniform with depth. MC and LLG generally agreed to within 5%. Results for a sensor distance of 1 mm showed an increase in light output the closer the light originates to the exit face, while a distance of 1000 mm showed a decrease in light output the closer the light originates to the exit face. For a sensor distance of 1 mm, the ratio of signal for a 10 mm scintillator to that for a 2 mm scintillator was 1.98, whereas for the 1000 mm distance the ratio was 3.00. The ratio of quantum efficiency (QE) between 10 and 2 mm thicknesses was 4.62. We conclude that these models may be used for detector optimization, with the light guide model suitable for parametric study

  16. Influence of energy density of different light sources on knoop hardness of a dual-cured resin cement

    Directory of Open Access Journals (Sweden)

    Evandro Piva

    2008-06-01

    Full Text Available The purpose of this study was to evaluate the Knoop hardness of a dual-cured resin-based luting cement irradiated with different light sources as well energy density through a ceramic sample. Three light-curing unit (LCUs were tested: tungsten halogen light (HAL, light-emitting diode (LED and xenon plasma-arc (PAC lamp. Disc-shaped specimens were fabricated from a resin-based cement (Enforce. Three energy doses were used by modifying the irradiance (I of each LCU and the irradiation time (T: 24 Jcm-2 (I/2x2T, 24 Jcm-2 (IxT and 48 Jcm-2 (Ix2T. Energy doses were applied through a 2.0-mm-thick ceramic sample (Duceram Plus. Three groups underwent direct irradiation over the resin cement with the different LCUs and a chemically-activated group served as a control. Thirteen groups were tested (n=10. Knoop hardness number (KHN means were obtained from cross-sectional areas. Two-way ANOVA and the Holm-Sidak method were used for statistical comparisons of activation mode and energy doses (a=5%. Application of 48 J.cm-2 energy dose through the ceramic using LED (50.5±2.8 and HAL (50.9±3.7 produced significantly higher KHN means (p<0.05 than the control (44.7±3.8. LED showed statistically similar performance to HAL. Only HAL showed a relationship between the increase of LCU energy dose and hardness increase.

  17. Influence of energy density of different light sources on Knoop hardness of a dual-cured resin cement.

    Science.gov (United States)

    Piva, Evandro; Correr-Sobrinho, Lourenço; Sinhoreti, Mario Alexandre Coelho; Consani, Simonides; Demarco, Flávio Fernando; Powers, John Michael

    2008-01-01

    The purpose of this study was to evaluate the Knoop hardness of a dual-cured resin-based luting cement irradiated with different light sources as well energy density through a ceramic sample. Three light-curing unit (LCUs) were tested: tungsten halogen light (HAL), light-emitting diode (LED) and xenon plasma-arc (PAC) lamp. Disc-shaped specimens were fabricated from a resin-based cement (Enforce). Three energy doses were used by modifying the irradiance (I) of each LCU and the irradiation time (T): 24 Jcm(-2) (I/2x2T), 24 Jcm(-2) (IxT) and 48 Jcm(-2) (Ix2T). Energy doses were applied through a 2.0-mm-thick ceramic sample (Duceram Plus). Three groups underwent direct irradiation over the resin cement with the different LCUs and a chemically-activated group served as a control. Thirteen groups were tested (n=10). Knoop hardness number (KHN) means were obtained from cross-sectional areas. Two-way ANOVA and the Holm-Sidak method were used for statistical comparisons of activation mode and energy doses (alpha=5%). Application of 48 J.cm(-2) energy dose through the ceramic using LED (50.5+/-2.8) and HAL (50.9+/-3.7) produced significantly higher KHN means (p<0.05) than the control (44.7+/-3.8). LED showed statistically similar performance to HAL. Only HAL showed a relationship between the increase of LCU energy dose and hardness increase.

  18. Performance of the mixed LED light quality on the growth and energy efficiency of Arthrospira platensis.

    Science.gov (United States)

    Mao, Ruixin; Guo, Shuangsheng

    2018-06-01

    The effect of mixed light quality with red, blue, and green LED lamps on the growth of Arthrospira platensis was studied, so as to lay the theoretical and technical basis for establishing a photo-bioreactor lighting system for application in space. Meanwhile, indexes, like morphology, growth rate, photosynthetic pigment compositions, energy efficiency, and main nutritional components, were measured respectively. The results showed that the blue light combined with red light could decrease the tightness of filament, and the effect of green light was opposite. The combination of blue light or green light with red light induced the filaments to get shorter in length. The 8R2B treatment could promote the growth of Arthrospira platensis significantly, and its dry weight reached 1.36 g L -1 , which was 25.93% higher than the control. What's more, 8R2B treatment had the highest contents of carbohydrate and lipid, while 8R2G was rich in protein. 8R0.5G1.5B had the highest efficiency of biomass production, which was 161.53 mg L -1  kW -1  h -1 . Therefore, the combination of red and blue light is more conducive to the growth of Arthrospira platensis, and a higher biomass production and energy utilization efficiency can be achieved simultaneously under the mixed light quality with the ratio of 8R0.5G1.5B.

  19. Observation of excess redshifts when light travels through galactic clusters

    International Nuclear Information System (INIS)

    Karoji, Hiroshi; Nottale, Laurent; Vigier, J.-P.

    1975-01-01

    Starting from an analysis of the space distribution of nearby clusters of galaxies and of the angular anisotropy of the Hubble constant (discovered by Rubin, Ford and Rubin) one can verify with very strong statistical significance the assumption of Roberts-Pecker and Vigier that light originating from distant sources is submitted to a new type of interaction when crossing the radiation field associated with clusters of galaxies [fr

  20. Block level energy planning for domestic lighting - a multi-objective fuzzy linear programming approach

    Energy Technology Data Exchange (ETDEWEB)

    Jana, C. [Indian Inst. of Social Welfare and Business Management, Kolkata (India); Chattopadhyay, R.N. [Indian Inst. of Technology, Kharagpur (India). Rural Development Centre

    2004-09-01

    Creating provisions for domestic lighting is important for rural development. Its significance in rural economy is unquestionable since some activities, like literacy, education and manufacture of craft items and other cottage products are largely dependent on domestic lighting facilities for their progress and prosperity. Thus, in rural energy planning, domestic lighting remains a key sector for allocation of investments. For rational allocation, decision makers need alternative strategies for identifying adequate and proper investment structure corresponding to appropriate sources and precise devices. The present study aims at designing a model of energy utilisation by developing a decision support frame for an optimised solution to the problem, taking into consideration four sources and six devices suitable for the study area, namely Narayangarh Block of Midnapore District in India. Since the data available from rural and unorganised sectors are often ill-defined and subjective in nature, many coefficients are fuzzy numbers, and hence several constraints appear to be fuzzy expressions. In this study, the energy allocation model is initiated with three separate objectives for optimisation, namely minimising the total cost, minimising the use of non-local sources of energy and maximising the overall efficiency of the system. Since each of the above objective-based solutions has relevance to the needs of the society and economy, it is necessary to build a model that makes a compromise among the three individual solutions. This multi-objective fuzzy linear programming (MOFLP) model, solved in a compromising decision support frame, seems to be a more rational alternative than single objective linear programming model in rural energy planning. (author)

  1. Converging Light, Energy and Hormonal Signaling Control Meristem Activity, Leaf Initiation, and Growth1[CC-BY

    Science.gov (United States)

    Mohammed, Binish; Bilooei, Sara Farahi; Grove, Elliot; Railo, Saana; Palme, Klaus

    2018-01-01

    The development of leaf primordia is subject to light control of meristematic activity. Light regulates the expression of thousands of genes with roles in cell proliferation, organ development, and differentiation of photosynthetic cells. Previous work has highlighted roles for hormone homeostasis and the energy-dependent Target of Rapamycin (TOR) kinase in meristematic activity, yet a picture of how these two regulatory mechanisms depend on light perception and interact with each other has yet to emerge. Their relevance beyond leaf initiation also is unclear. Here, we report the discovery that the dark-arrested meristematic region of Arabidopsis (Arabidopsis thaliana) experiences a local energy deprivation state and confirm previous findings that the PIN1 auxin transporter is diffusely localized in the dark. Light triggers a rapid removal of the starvation state and the establishment of PIN1 polar membrane localization consistent with auxin export, both preceding the induction of cell cycle- and cytoplasmic growth-associated genes. We demonstrate that shoot meristematic activity can occur in the dark through the manipulation of auxin and cytokinin activity as well as through the activation of energy signaling, both targets of photomorphogenesis action, but the organ developmental outcomes differ: while TOR-dependent energy signals alone stimulate cell proliferation, the development of a normal leaf lamina requires photomorphogenesis-like hormonal responses. We further show that energy signaling adjusts the extent of cell cycle activity and growth of young leaves non-cellautonomously to available photosynthates and leads to organs constituted of a greater number of cells developing under higher irradiance. This makes energy signaling perhaps the most important biomass growth determinant under natural, unstressed conditions. PMID:29284741

  2. Investigation of excess thyroid cancer incidence in Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Athas, W.F.

    1996-04-01

    Los Alamos County (LAC) is home to the Los Alamos National Laboratory, a U.S. Department of Energy (DOE) nuclear research and design facility. In 1991, the DOE funded the New Mexico Department of Health to conduct a review of cancer incidence rates in LAC in response to citizen concerns over what was perceived as a large excess of brain tumors and a possible relationship to radiological contaminants from the Laboratory. The study found no unusual or alarming pattern in the incidence of brain cancer, however, a fourfold excess of thyroid cancer was observed during the late-1980`s. A rapid review of the medical records for cases diagnosed between 1986 and 1990 failed to demonstrate that the thyroid cancer excess had resulted from enhanced detection. Surveillance activities subsequently undertaken to monitor the trend revealed that the excess persisted into 1993. A feasibility assessment of further studies was made, and ultimately, an investigation was conducted to document the epidemiologic characteristics of the excess in detail and to explore possible causes through a case-series records review. Findings from the investigation are the subject of this report.

  3. Investigation of excess thyroid cancer incidence in Los Alamos County

    International Nuclear Information System (INIS)

    Athas, W.F.

    1996-04-01

    Los Alamos County (LAC) is home to the Los Alamos National Laboratory, a U.S. Department of Energy (DOE) nuclear research and design facility. In 1991, the DOE funded the New Mexico Department of Health to conduct a review of cancer incidence rates in LAC in response to citizen concerns over what was perceived as a large excess of brain tumors and a possible relationship to radiological contaminants from the Laboratory. The study found no unusual or alarming pattern in the incidence of brain cancer, however, a fourfold excess of thyroid cancer was observed during the late-1980's. A rapid review of the medical records for cases diagnosed between 1986 and 1990 failed to demonstrate that the thyroid cancer excess had resulted from enhanced detection. Surveillance activities subsequently undertaken to monitor the trend revealed that the excess persisted into 1993. A feasibility assessment of further studies was made, and ultimately, an investigation was conducted to document the epidemiologic characteristics of the excess in detail and to explore possible causes through a case-series records review. Findings from the investigation are the subject of this report

  4. Industrial energy efficiency in light of climate change negotiations: Comparing major developing countries and the U.S

    International Nuclear Information System (INIS)

    Phylipsen, D.; Price, L.; Worrell, E.; Blok, K.

    1999-01-01

    In light of the commitments accepted within the Framework Convention on Climate Change there is an increasing need for useful information on energy consumption and energy efficiency. Governments can use this information in designing policies to reduce greenhouse gas emissions and prioritizing energy savings options. International comparison of energy efficiency can provide a benchmark against which a country's performance can be measured and policies can be evaluated. A methodology for international comparisons of industrial energy efficiency was developed by the International Network on Energy Demand analysis in the Industrial Sector. In this paper this methodology is used to analyze the energy efficiency of two energy-intensive industries in major developing countries. Energy consumption trends are shown for the steel and cement industry and an analysis is made of technologies used. In light of the Byrd-Hagel resolution, which states that the US will not ratify any climate treaty unless it also mandates commitments to limit greenhouse gas emissions for developing countries, the energy efficiency in the two sectors is compared to that of the US. The analysis shows that in the iron and steel sector South Korea and Brazil are more energy-efficient than the US, while Mexico has achieved a comparable energy efficiency level in recent years. For cement, South Korea, Brazil and Mexico are the most efficient countries analyzed. In recent years, China, and especially, India appear to have achieved energy efficiency levels, more or less comparable to that of the US. In light of data constraints, however, further analysis is required

  5. Modeling light-duty plug-in electric vehicles for national energy and transportation planning

    International Nuclear Information System (INIS)

    Wu, Di; Aliprantis, Dionysios C.

    2013-01-01

    This paper sets forth a family of models of light-duty plug-in electric vehicle (PEV) fleets, appropriate for conducting long-term national-level planning studies of the energy and transportation sectors in an integrated manner. Using one of the proposed models, three case studies on the evolution of the U.S. energy and transportation infrastructures are performed, where portfolios of optimum investments over a 40-year horizon are identified, and interdependencies between the two sectors are highlighted. The results indicate that with a gradual but aggressive introduction of PEVs coupled with investments in renewable energy, the total cost from the energy and transportation systems can be reduced by 5%, and that overall emissions from electricity generation and light-duty vehicle (LDV) tailpipes can be reduced by 10% over the 40-year horizon. The annual gasoline consumption from LDVs can be reduced by 66% by the end of the planning horizon, but an additional 800 TWh of annual electricity demand will be introduced. In addition, various scenarios of greenhouse gas (GHG) emissions reductions are investigated. It is found that GHG emissions can be significantly reduced with only a marginal cost increment, by shifting electricity generation from coal to renewable sources. - Highlights: • We model plug-in electric vehicles (PEVs) for long-term national planning studies. • Realistic travel patterns are used to estimate the vehicles' energy consumption. • National energy and transportation system interdependencies are considered. • Case studies illustrate optimum investments in energy and transportation sectors. • PEVs synergistically with renewable energy can aggressively reduce GHG emissions

  6. Matrix converter applied to energy saving for street lighting systems

    OpenAIRE

    Román Lumbreras, Manuel; Velasco Quesada, Guillermo; Conesa Roca, Alfons

    2010-01-01

    This work presents a three-phase AC-AC converter, with independent phase control, based on matrix-converter structure. This converter is applied to electrical energy saving on the public lighting systems by means of regulation and control of the voltage applied to the lamps. The developed converter represents a technological improvement with respect to the traditional systems based on an autotransformer: it reduces system cost and volume, and increases lamps lifetime.

  7. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort

    Energy Technology Data Exchange (ETDEWEB)

    Software, Anyhere; Fernandes, Luis; Lee, Eleanor; Ward, Greg

    2013-03-15

    A simulation study was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled to satisfy key visual comfort parameters. Using the Radiance lighting simulation software, interior illuminance and luminance levels were computed for a south-facing private office illuminated by a window split into two independently-controlled EC panes. The transmittance of these was optimized hourly for a workplane illuminance target while meeting visual comfort constraints, using a least-squares algorithm with linear inequality constraints. Blinds were successively deployed until visual comfort criteria were satisfied. The energy performance of electrochromics proved to be highly dependent on how blinds were controlled. With hourly blind position adjustments, electrochromics showed significantly higher (62percent and 53percent, respectively without and with overhang) lighting energy consumption than clear glass. With a control algorithm designed to better approximate realistic manual control by an occupant, electrochromics achieved significant savings (48percent and 37percent, respectively without and with overhang). In all cases, energy consumption decreased when the workplace illuminance target was increased. In addition, the fraction of time during which the occupant had an unobstructed view of the outside was significantly greater with electrochromics: 10 months out of the year versus a handful of days for the reference case.

  8. Bimodal nature in low-energy fission of light actinides

    International Nuclear Information System (INIS)

    Nagame, Yuichiro; Nishinaka, Ichiro; Tsukada, Kazuaki; Ikezoe, Hiroshi; Otsuki, Tsutomu; Sueki, Keisuke; Nakahara, Hiromichi; Kudo, Hisaaki.

    1995-01-01

    To solve various problems in the mass division process of light actinoids, some experiments on the basis of bimodal fission were carried. Mass and kinetic energy distribution of Th-232 and U-238 were determined. Pa-225 (N= 134) and Pa-227 (N=136), fission nuclei, were produced by Bi-209 + 0-16 and Bi-209 + 0-18 heavy ion nucleus reactions, and the mass yield distribution were determined by the time-of-flight method and the radiochemical procedure. From the results, two independent deforming processes were proved in the fission process of light actinoid nuclei. On the deforming process through the low fission barrier, nucleus fissioned after small deformation under the influence of stabilization of the shell structure of fission product. In the case of process through the high barrier, however, the nucleus fissioned after large deformation. The unsymmetrical mass division was derived from the former and the symmetrical one from the latter. (S.Y.)

  9. Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Żubrowska-Sudoł Monika

    2017-01-01

    Full Text Available The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9% and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%. Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge.

  10. Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants

    Science.gov (United States)

    Żubrowska-Sudoł, Monika; Podedworna, Jolanta; Bisak, Agnieszka; Sytek-Szmeichel, Katarzyna; Krawczyk, Piotr; Garlicka, Agnieszka

    2017-11-01

    The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9%) and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%). Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge.

  11. Alternative search strategies to explore ATLAS diboson excess

    Indian Academy of Sciences (India)

    Charanjit K Khosa

    2017-10-05

    Oct 5, 2017 ... the mass range of W/Z boson) and also explore the possibility of three-particle BSM final state mimicking diboson excess. .... electron and muon and /ET > 350 GeV are removed. ..... Energy Phys.1510, 076 (2015), arXiv:1506.06767 [hep- ph] .... [15] A Belyaev, N D Christensen and A Pukhov, Comput. Phys.

  12. Predictors of excessive use of social media and excessive online gaming in Czech teenagers.

    Science.gov (United States)

    Spilková, Jana; Chomynová, Pavla; Csémy, Ladislav

    2017-12-01

    Background and aims Young people's involvement in online gaming and the use of social media are increasing rapidly, resulting in a high number of excessive Internet users in recent years. The objective of this paper is to analyze the situation of excessive Internet use among adolescents in the Czech Republic and to reveal determinants of excessive use of social media and excessive online gaming. Methods Data from secondary school students (N = 4,887) were collected within the 2015 European School Survey Project on Alcohol and Other Drugs. Logistic regression models were constructed to describe the individual and familial discriminative factors and the impact of the health risk behavior of (a) excessive users of social media and (b) excessive players of online games. Results The models confirmed important gender-specific distinctions - while girls are more prone to online communication and social media use, online gaming is far more prevalent among boys. The analysis did not indicate an influence of family composition on both the excessive use of social media and on excessive online gaming, and only marginal effects for the type of school attended. We found a connection between the excessive use of social media and binge drinking and an inverse relation between excessive online gaming and daily smoking. Discussion and conclusion The non-existence of significant associations between family environment and excessive Internet use confirmed the general, widespread of this phenomenon across the social and economic strata of the teenage population, indicating a need for further studies on the topic.

  13. Visible light to electrical energy conversion using photoelectrochemical cells

    Science.gov (United States)

    Wrighton, Mark S. (Inventor); Ellis, Arthur B. (Inventor); Kaiser, Steven W. (Inventor)

    1983-01-01

    Sustained conversion of low energy visible or near i.r. light (>1.25 eV) to electrical energy has been obtained using wet photoelectrochemical cells where there are no net chemical changes in the system. Stabilization of n-type semi-conductor anodes of CdS, CdSe, CdTe, GaP, GaAs and InP to photoanodic dissolution is achieved by employing selected alkaline solutions of Na.sub.2 S, Na.sub.2 S/S, Na.sub.2 Se, Na.sub.2 Se/Se, Na.sub.2 Te and Na.sub.2 Te/Te as the electrolyte. The oxidation of (poly) sulfide, (poly)selenide or (poly)telluride species occurs at the irradiated anode, and reduction of polysulfide, polyselenide or polytelluride species occurs at the dark Pt cathode of the photoelectrochemical cell. Optical to electrical energy conversion efficiencies approaching 15% at selected frequencies have been observed in some cells. The wavelength for the onset of photocurrent corresponds to the band gap of the particular anode material used in the cell.

  14. Characterizing high-energy light curves of Fermi/Lat GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Gillette, Jarred [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-21

    A systematic analysis of the light curves of Gamma-Ray Burst (GRBs) with redshift and detected at high-energy (> 100 MeV) by Fermi/LAT has never been done before our work, because there were only a handful of detections. Now we have 20 of those, which we can use to characterize the GRBs in their rest frame. We compared a characteristic decay times Tc of GRBs with redshifts using the new “Pass 8” data, and used a Crystal Ball function to parametrize GRB characteristics. An unexpected anti-correlation between Tc and the peak flux was observed. This means that brighter peaked GRBs have shorter durations. There is also no correlation between the Tc and the decay index, which makes the anti-correlation with brightness more clear. This results appears to be consistent with the External Shock model, which is one of the competing hypothesis on the origin of the high-energy emission. We did not observe any bimodality, which is seen in GRBs at lower energies.

  15. Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au +Au collisions at √{sNN} = 19.6 and 200 GeV

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calder'on de la Barca S'anchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, X.; Huang, B.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, X.; Li, W.; Li, Z. M.; Li, Y.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, R.; Ma, G. L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, Y.; Sun, Z.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, Y.; Wang, F.; Wang, H.; Wang, J. S.; Wang, G.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, Z.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Y. F.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, X. P.; Zhang, S.; Zhang, J.; Zhang, Z.; Zhang, Y.; Zhang, J. L.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.

    2015-11-01

    The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity |yee | < 1 in minimum-bias Au +Au collisions at √{sNN} = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ spectral function for Mee < 1.1 GeV /c2. The integrated dielectron excess yield at √{sNN} = 19.6 GeV for 0.4 excess yield in central collisions is higher than that at √{sNN} = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au +Au collisions at √{sNN} = 200 GeV is longer than those in peripheral collisions and at lower energies.

  16. High energy gain in three-dimensional simulations of light sail acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sgattoni, A., E-mail: andrea.sgattoni@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milano (Italy); CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Sinigardi, S. [CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); INFN sezione di Bologna, Bologna (Italy); Macchi, A. [CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Pisa (Italy)

    2014-08-25

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  17. High energy gain in three-dimensional simulations of light sail acceleration

    International Nuclear Information System (INIS)

    Sgattoni, A.; Sinigardi, S.; Macchi, A.

    2014-01-01

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  18. Characterising the 750 GeV diphoton excess

    International Nuclear Information System (INIS)

    Bernon, Jérémy; Goudelis, Andreas; Kraml, Sabine; Mawatari, Kentarou; Sengupta, Dipan

    2016-01-01

    We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon pairs as well as heavier parent resonances that undergo three-body or cascade decays. We find that combinations of the distributions of the diphoton system and the leading photon can distinguish the topology and mass spectra of the different scenarios, while patterns of QCD radiation can help differentiate the production mechanisms. Moreover, missing energy is a powerful discriminator for the heavy parent scenarios if they involve (effectively) invisible particles. While our study concentrates on the current excess at 750 GeV, the analysis is general and can also be useful for characterising other potential diphoton signals in the future.

  19. excess molar volumes, and refractive index of binary mixtures

    African Journals Online (AJOL)

    Preferred Customer

    because (a) water molecules have hydroxyl group which can make stronger hydrogen bonding than methanol and (b) water molecules and glycerol have suitable kinetic energy for bulk volumes at high temperature. Thus, the mixture of glycerol + water have big excess molar volume than methanol. The hydrogen bonding ...

  20. A search for pair production of new light bosons decaying into muons

    CERN Document Server

    Khachatryan, V.; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dobur, Didar; Fasanella, Giuseppe; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Caebergs, Thierry; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Ali, Ahmed; Aly, Reham; Aly, Shereen; Assran, Yasser; Ellithi Kamel, Ali; Kuotb Awad, Alaa Metwaly; Lotfy, Ahmad; Masod, Rehab; Radi, Amr; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Pekkanen, Juska; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Husemann, Ulrich; Kassel, Florian; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Mal, Prolay; Mandal, Koushik; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Kumar, Arun; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukherjee, Swagata; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sudhakar, Katta; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Gabusi, Michele; Magnani, Alice; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Dattola, Domenico; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Kim, Hyunsoo; Kim, Tae Jeong; Ryu, Min Sang; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Vaitkus, Juozas; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Ramirez Sanchez, Gabriel; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Toriashvili, Tengizi; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Myagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Du Pree, Tristan; Dupont, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Piparo, Danilo; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Aarrestad, Thea Klaeboe; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Taroni, Silvia; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Ferro, Cristina; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Dozen, Candan; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Sagir, Sinan; Sinthuprasith, Tutanon; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova PANEVA, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wei, Hua; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Hu, Zhen; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Jung, Andreas Werner; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Whitbeck, Andrew; Yang, Fan; Yin, Hang; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rank, Douglas; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Wang, Sean-jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Bhopatkar, Vallary; Hohlmann, Marcus; Kalakhety, Himali; Mareskas-palcek, Darren; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Sen, Sercan; Snyder, Christina; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Nash, Kevin; Osherson, Marc; Swartz, Morris; Xiao, Meng; Xin, Yongjie; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Mcginn, Christopher; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Primavera, Federica; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Verzetti, Mauro; Vishnevskiy, Dmitry; Demortier, Luc; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Krutelyov, Vyacheslav; Montalvo, Roy; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Christian, Allison; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Gomber, Bhawna; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2016-01-10

    A search for the pair production of new light bosons, each decaying into a pair of muons, is performed with the CMS experiment at the LHC, using a dataset corresponding to an integrated luminosity of 20.7 fb$^{-1}$ collected in proton-proton collisions at center-of-mass energy of $\\sqrt{s} =$ 8 TeV. No excess is observed in the data relative to standard model background expectation and a model independent upper limit on the product of the cross section, branching fraction, and acceptance is derived. The results are compared with two benchmark models, the first one in the context of the next-to-minimal supersymmetric standard model, and the second one in scenarios containing a hidden sector, including those predicting a non-negligible light boson lifetime.

  1. The reaction pd→3Heηat 200 MeV excess energy

    International Nuclear Information System (INIS)

    Waters, M.

    1994-05-01

    This work was carried out within the scope of the PROMICE research program at the CELSIUS cooler-storage ring of the The Svedberg Laboratory in Uppsala, Sweden. The aim is to study the fundamental mechanisms for production of mesons in light ion collisions and their interaction with nuclei and nucleons. The role of different resonances in nuclei as well as meson-meson interactions will be examined. In order to enable even measurements of rare mesonic decays, the PROMICE detector setup will later be extended to the full 4π WASA apparatus. PROMICE/WASA is a collaboration between laboratories in Japan, Poland, Russia, Sweden and Germany. The present stage of the setup has been used to measure η production in p-d collisions by detection of the recoil nucleus in the channel d(p, 3 He)η at beam energies of T p =1250 and 1276 MeV using an internal cluster target. (orig.)

  2. Light requirements in microalgal photobioreactors. An overview of biophotonic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana P. [Universidade Catolica Portuguesa, Porto (Portugal). CBQF/Escola Superior de Biotecnologia; Silva, Susana O. [Universidade Catolica Portuguesa, Porto (Portugal). CBQF/Escola Superior de Biotecnologia; INESC Porto, Porto (Portugal); Baptista, Jose M. [INESC Porto, Porto (Portugal); Universidade da Madeira, Funchal (Portugal). Centro de Competencia de Ciencias Exactas e de Engenharia; Malcata, F. Xavier [ISMAI - Instituto Superior da Maia, Avioso S. Pedro (Portugal); Universidade Nova de Lisboa, Oeiras (Portugal). Inst. de Tecnologia Quimica e Biologica

    2011-03-15

    In order to enhance microalgal growth in photobioreactors (PBRs), light requirement is one of the most important parameters to be addressed; light should indeed be provided at the appropriate intensity, duration, and wavelength. Excessive intensity may lead to photo-oxidation and -inhibition, whereas low light levels will become growth-limiting. The constraint of light saturation may be overcome via either of two approaches: increasing photosynthetic efficiency by genetic engineering, aimed at changing the chlorophyll antenna size; or increasing flux tolerance, via tailoring the photonic spectrum, coupled with its intensity and temporal characteristics. These approaches will allow an increased control over the illumination features, leading to maximization of microalgal biomass and metabolite productivity. This minireview briefly introduces the nature of light, and describes its harvesting and transformation by microalgae, as well as its metabolic effects under excessively low or high supply. Optimization of the photosynthetic efficiency is discussed under the two approaches referred to above; the selection of light sources, coupled with recent improvements in light handling by PBRs, are chronologically reviewed and critically compared. (orig.)

  3. Analysis on Zero Energy Consumption Strategy for Office Buildings Lighting in Lianyungang Area

    Science.gov (United States)

    Wu, Dongmei

    2018-01-01

    In recent years, the energy-saving environmental protection has aroused the people’s high concern, and set off a new application practice in China. By analyzing the advantages of the illumination condition in Lianyungang area and combining the content and form of office space, the author puts forward a series of ways and means of energy saving in office building lighting, in order to provide a way for reference to the goal of building Zero energy consumption in the office space environment under the background of green architecture.

  4. 10 CFR 434.514 - Lighting.

    Science.gov (United States)

    2010-01-01

    ... ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.514 Lighting. 514.1Interior Lighting Power... lighting power used to calculate the Design Energy Consumption shall be the actual adjusted power for...

  5. A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants

    International Nuclear Information System (INIS)

    Reinbothe, C.; Lebedev, N.; Reinbothe, S.

    1999-01-01

    When etiolated angiosperm seedlings break through the soil after germination, they are immediately exposed to sunlight, but at this stage they are unable to perform photosynthesis1. In the absence of chlorophyll a and chlorophyll b, two other porphyrin species cooperate as the basic light-harvesting structure of etiolated plants. Protochlorophyllide a and protochlorophyllide b (ref. 2) form supramolecular complexes with NADPH and two closely related NADPH:protochlorophyllide oxidoreductase (POR) proteins—PORA and PORB (ref. 3)—in the prolamellar body of etioplasts. Here we report that these light-harvesting POR–protochlorophyllide complexes, named LHPP, are essential for the establishment of the photosynthetic apparatus and also confer photoprotection on the plant. They collect sunlight for rapid chlorophyll a biosynthesis and, simultaneously, dissipate excess light energy in the bulk of non-photoreducible protochlorophyllide b. Based on this dual function, it seems that LHPP provides the link between skotomorphogenesis and photosynthesis that is required for efficient de-etiolation

  6. Illuminating the Pecking Order in Off-Grid Lighting: A Demonstration of LED Lighting for Saving Energy in the Poultry Sector

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Jennifer; Mills, Evan

    2010-11-06

    The Lumina Project and Lighting Africa conducted a full-scale field test involving a switch from kerosene to solar-LED lighting for commercial broiler chicken production at an off-grid farm in Kenya. The test achieved lower operating costs, produced substantially more light, improved the working environment, and had no adverse effect on yields. A strategy using conventional solar-fluorescent lighting also achieved comparable yields, but entailed a six-fold higher capital cost and significantly higher recurring battery replacement costs. Thanks to higher energy and optical efficiencies, the LED system provided approximately twice the illumination to the chicken-production area and yet drew less than half the power.At the study farm, 3000 chickens were grown in each of three identical houses under kerosene, fluorescent, and LED lighting configurations. Under baseline conditions, a yearly expenditure of 1,200 USD is required to illuminate the three houses with kerosene. The LED system eliminates this fuel use and expense with a corresponding simple payback time of 1.5 years, while the solar-fluorescent system has a payback time of 9.3 years. The corresponding reduction in fuel expenditure in both cases represents a 15percent increase in after-tax net income (revenues minus expenses) across the entire business operation. The differential cost-effectiveness between the LED and fluorescent systems would be substantially greater if the fluorescent system were upsized to provide the same light as the LED system. Providing light with the fluorescent or LED systems is also far more economical than connecting to the grid in this case. The estimated grid-connection cost at this facility is 1.7 million Kenya Schillings (approximately 21,250 USD), which is nearly six-times the cost of the fluorescent system and 35-times the cost of the LED system.The LED system also confers various non-energy benefits. The relative uniformity of LED lighting, compared to the fluorescent or

  7. Origins of sharp cosmic-ray electron structures and the DAMPE excess

    Science.gov (United States)

    Huang, Xian-Jun; Wu, Yue-Liang; Zhang, Wei-Hong; Zhou, Yu-Feng

    2018-05-01

    Nearby sources may contribute to cosmic-ray electron (CRE) structures at high energies. Recently, the first DAMPE results on the CRE flux hinted at a narrow excess at energy ˜1.4 TeV . We show that in general a spectral structure with a narrow width appears in two scenarios. The first is spectrum broadening for the continuous sources with a δ -function-like injection spectrum. In this scenario, a finite width can develop after propagation through the Galaxy, which can reveal the distance of the source. Well-motivated sources include minispikes and subhalos formed by dark matter (DM) particles χs which annihilate directly into e+e- pairs. The second is phase-space shrinking for burstlike sources with a power-law-like injection spectrum. The spectrum after propagation can shrink at a cooling-related cutoff energy and form a sharp spectral peak. The peak can be more prominent due to the energy-dependent diffusion. In this scenario, the width of the excess constrains both the power index and the distance of the source. Possible such sources are pulsar wind nebulae (PWNe) and supernova remnants (SNRs). We analysis the DAMPE excess and find that the continuous DM sources should be fairly close within ˜0.3 kpc , and the annihilation cross sections are close to the thermal value. For the burstlike source, the narrow width of the excess suggests that the injection spectrum must be hard with power index significantly less than two, the distance is within ˜(3 - 4 ) kpc , and the age of the source is ˜0.16 Myr . In both scenarios, large anisotropies in the CRE flux are predicted. We identify possible candidates of minispike and PWN sources in the current Fermi-LAT 3FGL and ATNF catalog, respectively. The diffuse γ -rays from these sources can be well below the Galactic diffuse γ -ray backgrounds and less constrained by the Fermi-LAT data, if they are located at the low Galactic latitude regions.

  8. Observation of Resonant Behavior in the Energy Velocity of Diffused Light

    International Nuclear Information System (INIS)

    Sapienza, R.; Garcia, P. D.; Blanco, A.; Lopez, C.; Bertolotti, J.; Wiersma, D. S.; Martin, M. D.; Vina, L.

    2007-01-01

    In this Letter we demonstrate Mie resonances mediated transport of light in randomly arranged, monodisperse dielectric spheres packed at high filling fractions. By means of both static and dynamic optical experiments we show resonant behavior in the key transport parameters and, in particular, we find that the energy transport velocity, which is lower than the group velocity, also displays a resonant behavior

  9. Carbon source recovery from excess sludge by mechanical disintegration for biological denitrification.

    Science.gov (United States)

    Zubrowska-Sudol, M

    2018-04-01

    The goal of the study was to evaluate the possibility of carbon source recovery from excess sludge by mechanical disintegration for biological denitrification. The total efficiency of denitrification, unit demand for organic compounds for denitrification, unit volume of disintegrated sludge and unit cost of nitrogen removal as a function of energy density used for excess sludge disintegration (70, 140 and 210 kJ/L) were analyzed. In the study a full-scale disc disintegrator was used (motor power: 30 kWh, motor speed: 2,950 rpm). It was shown that the amounts of organic compounds released from the activated sludge flocs at all tested levels of energy density are high enough to be used to intensify the removal of nitrogen compounds from wastewater. It was also documented that the energy density provided during process of disintegration was an important factor determining the characteristics of organic compounds obtained under the disintegration for their use in order to intensify the process of denitrification. The highest value of total efficiency of denitrification (50.5 ± 3.1 mg N/L) was obtained for carbon source recovery from excess sludge at 70 kJ/L, but the lowest unit cost of nitrogen removal occurred for 140 kJ/L (0.0019 ± 0.0011 EUR/g N).

  10. Evaluation of signal energy calculation methods for a light-sharing SiPM-based PET detector

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyang [School of Automation and Electrical Engineering, University of Science & Technology Beijing, Beijing 100083 (China); Beijing Engineering Research Center of Industrial Spectrum Imaging, University of Science and Technology Beijing, Beijing 100083 (China); Ma, Tianyu; Xu, Tianpeng; Liu, Yaqiang; Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Gu, Yu, E-mail: guyu@ustb.edu.cn [School of Automation and Electrical Engineering, University of Science & Technology Beijing, Beijing 100083 (China)

    2017-03-11

    Signals of a light-sharing positron emission tomography (PET) detector are commonly multiplexed to three analog pulses (E, X, and Y) and then digitally sampled. From this procedure, the signal energy that are critical to detector performance are obtained. In this paper, different signal energy calculation strategies for a self-developed SiPM-based PET detector, including pulse height and different integration methods, are evaluated in terms of energy resolution and spread of the crystal response in the flood histogram using a root-mean-squared (RMS) index. Results show that integrations outperform the pulse height. Integration using the maximum derivative value of the pulse E as the landmark point and 28 integrated points (448 ns) has the best performance in these evaluated methods for our detector. Detector performance in terms of energy and position is improved with this integration method. The proposed methodology is expected to be applicable for other light-sharing PET detectors.

  11. The low energy frontier: searches for ultra-light particles beyond the Standard Model

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In the recent years theoretical studies and astrophysical observations have confirmed that unknown constituents of our universe like dark matter may find its explanation not only at large-scale experiments at highest energies, but could also show up at the opposite energy scale. In many laboratories world-wide searches for axions, axion-like particles, hidden photons, chameleons or other so-called WISPs with masses below the eV scale are ongoing. Examples at DESY are the experiments ALPS ("Any Light Particle Search") and SHIPS ("Solar HIdden Photon Search"). At CERN CAST and OSQAR take data. In all these experiments new particles could manifest themselves in a very spectacular manner. Light would apparently shine through thickest walls. The results of a first generation of laboratory and astrophysics experiments will be summarized and plans for future enterprises be discussed

  12. EuropeaN Energy balance Research to prevent excessive weight Gain among Youth (ENERGY project: Design and methodology of the ENERGY cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Moreno Luis

    2011-01-01

    Full Text Available Abstract Background Obesity treatment is by large ineffective long term, and more emphasis on the prevention of excessive weight gain in childhood and adolescence is warranted. To inform energy balance related behaviour (EBRB change interventions, insight in the potential personal, family and school environmental correlates of these behaviours is needed. Studies on such multilevel correlates of EBRB among schoolchildren in Europe are lacking. The ENERGY survey aims to (1 provide up-to-date prevalence rates of measured overweight, obesity, self-reported engagement in EBRBs, and objective accelerometer-based assessment of physical activity and sedentary behaviour and blood-sample biomarkers of metabolic function in countries in different regions of Europe, (2 to identify personal, family and school environmental correlates of these EBRBs. This paper describes the design, methodology and protocol of the survey. Method/Design A school-based cross-sectional survey was carried out in 2010 in seven different European countries; Belgium, Greece, Hungary, the Netherlands, Norway, Slovenia, and Spain. The survey included measurements of anthropometrics, child, parent and school-staff questionnaires, and school observations to measure and assess outcomes (i.e. height, weight, and waist circumference, EBRBs and potential personal, family and school environmental correlates of these behaviours including the social-cultural, physical, political, and economic environmental factors. In addition, a selection of countries conducted accelerometer measurements to objectively assess physical activity and sedentary behaviour, and collected blood samples to assess several biomarkers of metabolic function. Discussion The ENERGY survey is a comprehensive cross-sectional study measuring anthropometrics and biomarkers as well as assessing a range of EBRBs and their potential correlates at the personal, family and school level, among 10-12 year old children in seven

  13. Analysis of energy efficient highway lighting retrofits.

    Science.gov (United States)

    2015-06-01

    Solid state lighting technology is advancing rapidly to a point where light emitting diode (LED) lighting : systems can be viable replacements for existing lighting systems using high pressure sodium (HPS). The : present report summarizes analyses co...

  14. Light deficiency confers breast cancer risk by endocrine disorders.

    Science.gov (United States)

    Suba, Zsuzsanna

    2012-09-01

    North-America and northern European countries exhibit the highest incidence rate of breast cancer, whereas women in southern regions are relatively protected. Immigrants from low cancer incidence regions to high-incidence areas might exhibit similarly higher or excessive cancer risk as compared with the inhabitants of their adoptive country. Additional cancer risk may be conferred by incongruence between their biological characteristics and foreign environment. Many studies established the racial/ethnic disparities in the risk and nature of female breast cancer in United States between African-American and Caucasian women. Mammary tumors in black women are diagnosed at earlier age, and are associated with higher rate of mortality as compared with cancers of white cases. Results of studies on these ethnic/racial differences in breast cancer incidence suggest that excessive pigmentation of dark skinned women results in a relative light-deficiency. Poor light exposure may explain the deleterious metabolic and hormonal alterations; such as insulin resistance, deficiencies of estrogen, thyroxin and vitamin-D conferring excessive cancer risk. The more northern the location of an adoptive country the higher the cancer risk for dark skinned immigrants. Recognition of the deleterious systemic effects of darkness and excessive melatonin synthesis enables cancer protection treatment for people living in light-deficient environment. Recent patents provide new methods for the prevention of hormonal and metabolic abnormities.

  15. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning.

    Science.gov (United States)

    Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N

    2015-04-15

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.

  16. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    Science.gov (United States)

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.

    2015-01-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919

  17. Economic analysis of using excess renewable electricity to displace heating fuels

    DEFF Research Database (Denmark)

    Pensini, Alessandro; Rasmussen, Claus Nygaard; Kempton, Willett

    2014-01-01

    . Because excess electricity appears to be cost-optimum, this raises the question as to whether the excess electricity, which in the case of wind power is predominately produced in colder weather, might displace other fuels for purposes such as heat. This study models using excess electricity for heating......, based on an analysis of electricity and heat use in a TSO in the North-Eastern part of the United States (PJM Interconnection). The heating system was modeled as heat pump based district heating (HPDH) with thermal energy storage (TES). Thus, excess electricity is transformed into heat, which is easy....... An algorithm that calculates the total cost of a unit of heat was used to determine the economically optimal size of the system’s main components and the influence that natural gas (NG) and electricity prices have on this optimum. It was found that a system based on heat pumps (HP) and centralized thermal...

  18. On stimulated scattering of laser light in inertial fusion energy targets

    International Nuclear Information System (INIS)

    Nikolic, Lj; Skoric, M.M.; Ishiguro, S.; Sato, T.

    2002-11-01

    Propagation of a laser light through regions of an underdense plasma is an active research topic in laser fusion. In particular, a large effort has been invested in studies of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) which can reflect laser energy and produce energetic particles to preheat a fusion energy target. Experiments, theory and simulations agree on a complex interplay between various laser-plasma instabilities. By particle-in-cell simulations of an underdense electron-plasma, we have found, apart from the standard SRS, a strong backscattering near the electron plasma frequency at densities beyond the quarter critical. This novel instability, recognized in recent experiments as stimulated laser scattering on a trapped electron-acoustic mode (SEAS), is absent from a classical theory of laser-parametric instabilities. A parametric excitation of SEAS instability, is explained by a three-wave resonant decay of the incident laser light into a standing backscattered wave and a slow trapped electron acoustic wave (ω p ). Large SEAS pulsations, eventually suppressed by relativistic heating of electrons, are observed in our simulations. This phenomenon seems relevant to future hohlraum target and fast ignition experiments. (author)

  19. Light harvesting via energy transfer in the dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Siegers, Conrad

    2007-11-09

    The PhD-thesis ''Light Harvesting via Energy Transfer in the Dye Solar Cell'' (University of Freiburg, July 2007) describes the conceptual design, synthesis and testing of energy donor acceptor sensitizers for the dye solar cell (DSC). Under monochromatic illumination solar cells sensitized with the novel donor acceptor systems revealed a higher power conversion efficiency than cells containing exclusively the acceptor component. The following approach led to this conclusion: (i) the choice of suitable chromophores as energy donor and acceptor moieties according to the Foerster-theory, (ii) the synthesis of different donor acceptor systems, (iii) the development of a methodology allowing the quantification of energy transfer within dye solar cells, and (iv) the evaluation of characteristics of DSCs that were sensitized with the different donor acceptor systems. The acceptor chromophores used in this work were derived from [Ru(dcbpy)2acac]Cl (dcbpy = 4,4'-dicarboxy-2,2'-bipyridin, acac = acetylacetonato). This complex offered the opportunity to introduce substituents at the acac-ligand's terminal CH3 groups without significantly affecting its excellent photoelectrochemical properties. Alkylated 4-amino-1,8-naphthalimides (termed Fluorols in the following) were used as energy donor chromophores. This class of compounds fulfils the requirements for efficient energy transfer to [Ru(dcbpy)2acac]Cl. Covalently linking donor and acceptor chromophores to one another was achieved by two different concepts. A dyad comprising one donor and one acceptor chromophore was synthesized by subsequent hydrosilylation steps of an olefin-bearing donor and an acceptor precursor to the dihydrosilane HSiMe2-CH2CH2-SiMe2H. A series of polymers comprising multiple donor and acceptor units was made by the addition of alkyne-bearing chromophores to hyperbranched polyglycerol azide (''Click-chemistry''). In this series the donor acceptor

  20. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  1. Concentrating solar power: a sustainable and renewable way to get energy from solar light

    International Nuclear Information System (INIS)

    Montecchi, Marco

    2015-01-01

    Solar light irradiating the Earth is a great sustainable and renewable power source. In concentrating solar power plants, mirrors are used to redirect the solar light toward a small area where a receiver captures and converts it into thermal-energy which can be stored. ENEA has been developing the parabolic-trough Italian technology, as well as several facilities for the component characterization. The paper reports on some of those which are purely optical instruments [it

  2. Activity coefficients and excess Gibbs' free energy of some binary mixtures formed by p-cresol at 95.23 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, T.E. Vittal [Properties Group, Chemical Engineering Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007 (India); Venkanna, N. [Swamy Ramanandateertha Institute of Science and Technology, Hyderabad 508 004 (India); Kumar, Y. Naveen [Swamy Ramanandateertha Institute of Science and Technology, Hyderabad 508 004 (India); Ashok, K. [Swamy Ramanandateertha Institute of Science and Technology, Hyderabad 508 004 (India); Sirisha, N.M. [Swamy Ramanandateertha Institute of Science and Technology, Hyderabad 508 004 (India); Prasad, D.H.L. [Properties Group, Chemical Engineering Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)]. E-mail: dasika@iict.res.in

    2007-07-15

    Bubble point temperatures at 95.23 kPa, over the entire composition range are measured for the binary mixtures formed by p-cresol with 1,2-dichloroethane, 1,1,2,2-tetrachloroethane trichloroethylene, tetrachloroethylene, and o- , m- , and p-xylenes, making use of a Swietoslawski-type ebulliometer. Liquid phase mole fraction (x {sub 1}) versus bubble point temperature (T) measurements are found to be well represented by the Wilson model. The optimum Wilson parameters are used to calculate the vapor phase composition, activity coefficients, and excess Gibbs free energy. The results are discussed.

  3. Individual Diet Modeling Shows How to Balance the Diet of French Adults with or without Excessive Free Sugar Intakes.

    Science.gov (United States)

    Lluch, Anne; Maillot, Matthieu; Gazan, Rozenn; Vieux, Florent; Delaere, Fabien; Vaudaine, Sarah; Darmon, Nicole

    2017-02-20

    Dietary changes needed to achieve nutritional adequacy for 33 nutrients were determined for 1719 adults from a representative French national dietary survey. For each individual, an iso-energy nutritionally adequate diet was generated using diet modeling, staying as close as possible to the observed diet. The French food composition table was completed with free sugar (FS) content. Results were analyzed separately for individuals with FS intakes in their observed diets ≤10% or >10% of their energy intake (named below FS-ACCEPTABLE and FS-EXCESS, respectively). The FS-EXCESS group represented 41% of the total population (average energy intake of 14.2% from FS). Compared with FS-ACCEPTABLE individuals, FS-EXCESS individuals had diets of lower nutritional quality and consumed more energy (2192 vs. 2123 kcal/day), particularly during snacking occasions (258 vs. 131 kcal/day) (all p -values diets were significant increases in fresh fruits, starchy foods, water, hot beverages and plain yogurts; and significant decreases in mixed dishes/sandwiches, meat/eggs/fish and cheese. For FS-EXCESS individuals only, the optimization process significantly increased vegetables and significantly decreased sugar-sweetened beverages, sweet products and fruit juices. The diets of French adults with excessive intakes of FS are of lower nutritional quality, but can be optimized via specific dietary changes.

  4. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  5. A SUZAKU OBSERVATION OF Mkn 590 REVEALS A VANISHING SOFT EXCESS

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424 (United States); Duro, Refiz [Dr. Karl Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Frederic-Alexander Universitaet Erlangen-Nuernberg, 7 Sternwartstrasse, D-96049 Bamberg (Germany)

    2012-11-01

    We have analyzed a long-look Suzaku observation of the Seyfert 1.2 Mkn 590. We aimed to measure the Compton reflection strength, Fe K complex properties, and soft excess emission as had been observed previously in this source. The Compton reflection strength was measured to be in the range 0.2-1.0 depending on the model used. A moderately strong Fe K{alpha} emission line was detected with an equivalent width of {approx}120 {+-} 25 eV and an Fe K{beta} line was identified with an equivalent width of {approx}30 {+-} 20 eV, although we could not rule out contribution from ionized Fe emission at this energy. Surprisingly, we found no evidence for soft excess emission. Comparing our results with a 2004 observation from XMM-Newton we found that either the soft excess has decreased by a factor of 20-30 in 7 years or the photon index has steepened by 0.10 (with no soft excess present) while the continuum flux in the range 2-10 keV has varied only minimally (10%). This result could support recent claims that the soft excess is independent of the X-ray continuum.

  6. A SUZAKU OBSERVATION OF Mkn 590 REVEALS A VANISHING SOFT EXCESS

    International Nuclear Information System (INIS)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard; Duro, Refiz

    2012-01-01

    We have analyzed a long-look Suzaku observation of the Seyfert 1.2 Mkn 590. We aimed to measure the Compton reflection strength, Fe K complex properties, and soft excess emission as had been observed previously in this source. The Compton reflection strength was measured to be in the range 0.2-1.0 depending on the model used. A moderately strong Fe Kα emission line was detected with an equivalent width of ∼120 ± 25 eV and an Fe Kβ line was identified with an equivalent width of ∼30 ± 20 eV, although we could not rule out contribution from ionized Fe emission at this energy. Surprisingly, we found no evidence for soft excess emission. Comparing our results with a 2004 observation from XMM-Newton we found that either the soft excess has decreased by a factor of 20-30 in 7 years or the photon index has steepened by 0.10 (with no soft excess present) while the continuum flux in the range 2-10 keV has varied only minimally (10%). This result could support recent claims that the soft excess is independent of the X-ray continuum.

  7. Dietary patterns are associated with excess weight and abdominal obesity in a cohort of young Brazilian adults.

    Science.gov (United States)

    Machado Arruda, Soraia Pinheiro; da Silva, Antônio Augusto Moura; Kac, Gilberto; Vilela, Ana Amélia Freitas; Goldani, Marcelo; Bettiol, Heloisa; Barbieri, Marco Antônio

    2016-09-01

    The objective of the present study was to investigate whether dietary patterns are associated with excess weight and abdominal obesity among young adults (23-25 years). A cross-sectional study was conducted on 2061 participants of a birth cohort from Ribeirão Preto, Brazil, started in 1978-1979. Twenty-seven subjects with caloric intake outside ±3 standard deviation range were excluded, leaving 2034 individuals. Excess weight was defined as body mass index (BMI ≥ 25 kg/m(2)), abdominal obesity as waist circumference (WC > 80 cm for women; >90 cm for men) and waist/hip ratio (WHR > 0.85 for women; >0.90 for men). Poisson regression with robust variance adjustment was used to estimate the prevalence ratio (PR) adjusted for socio-demographic and lifestyle variables. Four dietary patterns were identified by principal component analysis: healthy, traditional Brazilian, bar and energy dense. In the adjusted analysis, the bar pattern was associated with a higher prevalence of excess weight (PR 1.46; 95 % CI 1.23-1.73) and abdominal obesity based on WHR (PR 2.19; 95 % CI 1.59-3.01). The energy-dense pattern was associated with a lower prevalence of excess weight (PR 0.73; 95 % CI 0.61-0.88). Men with greater adherence to the traditional Brazilian pattern showed a lower prevalence of excess weight (PR 0.65; 95 % CI 0.51-0.82), but no association was found for women. There was no association between the healthy pattern and excess weight/abdominal obesity. In this sample, the bar pattern was associated with higher prevalences of excess weight and abdominal obesity, while the energy-dense (for both genders) and traditional Brazilian (only for men) patterns were associated with lower prevalences of excess weight.

  8. D-D neutron energy-spectra measurements in Alcator C

    International Nuclear Information System (INIS)

    Pappas, D.S.; Wysocki, F.J.; Furnstahl, R.J.

    1982-08-01

    Measurements of energy spectra of neutrons produced during high density (anti n/sub e/ > 2 x 10 14 cm -3 ) deuterium discharges have been performed using a proton-recoil (NE 213) spectrometer. A two foot section of light pipe (coupling the scintillator and photomultiplier) was used to extend the scintillator into a diagnostic viewing port to maximize the neutron detection efficiency while not imposing excessive magnetic shielding requirements. A derivative unfolding technique was used to deduce the energy spectra. The results showed a well defined peak at 2.5 MeV which was consistent with earlier neutron flux measurements on Alcator C that indicated the neutrons were of thermonuclear origin

  9. Light energy attenuation through orthodontic ceramic brackets at different irradiation times.

    Science.gov (United States)

    Santini, Ario; Tiu, Szu Hui; McGuinness, Niall J P; Aldossary, Mohammed Saeed

    2016-09-01

    To evaluate the total light energy (TLE) transmission through three types of ceramic brackets with, bracket alone and with the addition of orthodontic adhesive, at different exposure durations, and to compare the microhardness of the cured adhesive. Three different makes of ceramic brackets, Pure Sapphire(M), Clarity™ ADVANCED(P) and Dual Ceramic(P) were used. Eighteen specimens of each make were prepared and allocated to three groups (n = 6). MARC(®)-resin calibrator was used to determine the light curing unit (LCU) tip irradiance (mW/cm(2)) and TLE (J/cm(2)) transmitted through the ceramic brackets, and through ceramic bracket plus Transbond™ XT Light Cure Adhesive, for 5, 10 and 20 s. Vickers-hardness values at the bottom of the cured adhesive were determined. Statistical analysis used one-way analysis of variance (ANOVA); P = 0.05. TLE transmission rose significantly among all samples with increasing exposure durations. TLE reaching the adhesive- enamel interface was less than 10 J/cm(2), and through monocrystalline and polycrystalline ceramic brackets was significantly different (P brackets. Clinicians are advised to measure the tip irradiance of their LCUs and increase curing time beyond 5 s. Orthodontic clinicians should understand the type of light curing device and the orthodontic adhesive used in their practice.

  10. One of a kind complex offers unique energy management challenges

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K. (West Edmonton Mall, Engineering and Maintenance, AB (Canada))

    1993-10-01

    The West Edmonton Mall in Alberta covers ca 5.2 million ft[sup 2] and has over 800 stores and services, 110 eating places, 5 major amusement facilities, a hotel, and 19 movie theaters. The mall was built in three phases, the first of which had a rather standard electrical and mechanical system. The later phases incorporated more complex electric and mechanical equipment. The electrical billing structure for the mall is based on peak demand, and reduction of peak demand is more important than reducing consumption. As may be expected at such a complex facility, opportunities for energy management are numerous. The lighting system was the first to receive attention. The old practice of leaving lights on at all times was replaced by establishing a time clock system on all mall corridor lighting and time controls to all skylight perimeter lighting. Several thousand watts of excess lighting was removed, time clocks were installed on yard and parkade lighting, and energy efficient lamps were installed. These measures not only reduced energy consumption but lowered air conditioning requirements and achieved savings on purchases of lamps and ballasts. In heating systems, it is felt that 2 MW of power can be saved by converting electrical heating units to gas-fired units. A night setback system was installed on the ice plant, and unnecessary loads were eliminated from the parkade ramp heating system. Winter peaks were shaved by installing 4,700 KVAR of power factor correction; this measure paid for itself in 13 months. Further energy management options include converting fans to variable speed drives, installing a cogeneration unit, and installing a more efficient wave generator in the water park. 3 figs.

  11. SUPERLUMINOUS SUPERNOVAE POWERED BY MAGNETARS: LATE-TIME LIGHT CURVES AND HARD EMISSION LEAKAGE

    International Nuclear Information System (INIS)

    Wang, S. Q.; Wang, L. J.; Dai, Z. G.; Wu, X. F.

    2015-01-01

    Recently, research performed by two groups has revealed that the magnetar spin-down energy injection model with full energy trapping can explain the early-time light curves of SN 2010gx, SN 2013dg, LSQ12dlf, SSS120810, and CSS121015 but fails to fit the late-time light curves of these superluminous supernovae (SLSNe). These results imply that the original magnetar-powered model is challenged in explaining these SLSNe. Our paper aims to simultaneously explain both the early- and late-time data/upper limits by considering the leakage of hard emissions. We incorporate quantitatively the leakage effect into the original magnetar-powered model and derive a new semianalytical equation. Comparing the light curves reproduced by our revised magnetar-powered model with the observed data and/or upper limits of these five SLSNe, we found that the late-time light curves reproduced by our semianalytical equation are in good agreement with the late-time observed data and/or upper limits of SN 2010gx, CSS121015, SN 2013dg, and LSQ12dlf and the late-time excess of SSS120810, indicating that the magnetar-powered model might be responsible for these SLSNe and that the gamma-ray and X-ray leakages are unavoidable when the hard photons were down-Comptonized to softer photons. To determine the details of the leakage effect and unveil the nature of SLSNe, more high-quality bolometric light curves and spectra of SLSNe are required

  12. An investigation of excess noise in transition-edge sensors on a solid silicon substrate

    International Nuclear Information System (INIS)

    Crowder, S.G.; Lindeman, M.A.; Anderson, M.B.; Bandler, S.R.; Bilgri, N.; Bruijn, M.P.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Germeau, A.; Hoevers, H.F.C.; Iyomoto, N.; Kelly, R.; Kilbourne, C.A.; Lai, T.; Man, J.; McCammon, D.; Nelms, K.L.; Porter, F.S.; Rocks, L.; Saab, T.; Sadleir, J.; Vidugiris, G.

    2006-01-01

    Transition-edge sensors (TESs) exhibit two major types of excess noise above the expected and unavoidable thermodynamic fluctuation noise (TFN) to the heat sink and Johnson noise. High-resistance TESs such as those made by the Netherlands Institute for Space Research (SRON) show excess noise consistent with internal TFN (ITFN) caused by random energy transport within the TES itself while low resistance TESs show an excess voltage noise of unknown origin seemingly unrelated to temperature fluctuations. Running a high-resistance TES on a high thermal conductivity substrate should suppress ITFN and allow detection of any excess voltage noise. We tested two TESs on a solid silicon substrate fabricated by SRON of a relatively high normal state resistance of ∼200 mΩ. After determining a linear model of the TES response to noise for the devices, we found little excess TFN and little excess voltage noise for bias currents of up to ∼20 μA

  13. Lighting standards updated. Energy consumption in new standards; Verlichtingsnormen gewijzigd. Energiegebruik in nieuwe normen verwerkt

    Energy Technology Data Exchange (ETDEWEB)

    Visser, R. [Professional Lighting Designers' Association PLDA, Guetersloh (Germany)

    2011-12-15

    For the illumination of workplaces, a new version of the standard NEN-EN 12464-1 (Light and illumination. Lighting for workplaces. Part 1. Indoor workplaces) has been published. Also the Dutch standard NEN 3087 on visual ergonomics is completely revised . Furthermore, the guideline NPR 3437 (Ergonomics. Visual aspects of tinted glazing in the work environment) is repealed. Finally, NEN 2916 is replace by NEN 7120, a standard on energy consumption of lighting in relation to the energy performance of buildings. [Dutch] Voor de verlichting van werkplekken is een nieuwe versie van NEN-EN 12464-1 verschenen (Licht en verlichting. Werkplekverlichting. Deel 1. Werkplekken binnen). Ook is de Nederlandse norm NEN 3087 over visuele ergonomie geheel herzien. Verder is de Praktijkrichtlijn NPR 3437 (Ergonomie. Visuele aspecten van getinte beglazing in de werkomgeving) ingetrokken en is NEN 2916 vervangen door NEN 7120, een norm over het energiegebruik van verlichting in relatie tot de energieprestatie van gebouwen.

  14. Testing ATLAS diboson excess with dark matter searches at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Seng Pei [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Shirai, Satoshi [Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany)

    2015-11-27

    The ATLAS collaboration has recently reported a 2.6σ excess in the search for a heavy resonance decaying into a pair of weak gauge bosons. Only fully hadronic final states are being looked for in the analysis. If the observed excess really originates from the gauge bosons’ decays, other decay modes of the gauge bosons would inevitably leave a trace on other exotic searches. In this paper, we propose the use of the Z boson decay into a pair of neutrinos to test the excess. This decay leads to a very large missing energy and can be probed with conventional dark matter searches at the LHC. We discuss the current constraints from the dark matter searches and the prospects. We find that optimizing these searches may give a very robust probe of the resonance, even with the currently available data of the 8 TeV LHC.

  15. Testing ATLAS diboson excess with dark matter searches at LHC

    International Nuclear Information System (INIS)

    Liew, Seng Pei; Shirai, Satoshi

    2015-01-01

    The ATLAS collaboration has recently reported a 2.6σ excess in the search for a heavy resonance decaying into a pair of weak gauge bosons. Only fully hadronic final states are being looked for in the analysis. If the observed excess really originates from the gauge bosons’ decays, other decay modes of the gauge bosons would inevitably leave a trace on other exotic searches. In this paper, we propose the use of the Z boson decay into a pair of neutrinos to test the excess. This decay leads to a very large missing energy and can be probed with conventional dark matter searches at the LHC. We discuss the current constraints from the dark matter searches and the prospects. We find that optimizing these searches may give a very robust probe of the resonance, even with the currently available data of the 8 TeV LHC.

  16. Testing ATLAS diboson excess with dark matter searches at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Seng Pei [Tokyo Univ. (Japan). Dept. of Physics; Shirai, Satoshi [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-08-15

    The ATLAS collaboration has recently reported a 2.6σ excess in the search for a heavy resonance decaying into a pair of weak gauge bosons. Only fully hadronic final states are being looked for in the analysis. If the observed excess really originates from the gauge bosons' decays, other decay modes of the gauge bosons would inevitably leave a trace on other exotic searches. In this paper, we propose the use of the Z boson into a pair of neutrinos to test the excess. This decay leads to a very large missing energy and can be probed with conventional dark matter searches at the LHC. We discuss the current constraints from the dark matter searches and the prospects. We find that optimizing these searches may give a very robust probe of the resonance, even with the currently available data of the 8 TeV LHC.

  17. On the origin of the slow M-T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses.

    Science.gov (United States)

    Bernát, Gábor; Steinbach, Gábor; Kaňa, Radek; Govindjee; Misra, Amarendra N; Prašil, Ondřej

    2018-05-01

    The slow kinetic phases of the chlorophyll a fluorescence transient (induction) are valuable tools in studying dynamic regulation of light harvesting, light energy distribution between photosystems, and heat dissipation in photosynthetic organisms. However, the origin of these phases are not yet fully understood. This is especially true in the case of prokaryotic oxygenic photoautotrophs, the cyanobacteria. To understand the origin of the slowest (tens of minutes) kinetic phase, the M-T fluorescence decline, in the context of light acclimation of these globally important microorganisms, we have compared spectrally resolved fluorescence induction data from the wild type Synechocystis sp. PCC 6803 cells, using orange (λ = 593 nm) actinic light, with those of mutants, ΔapcD and ΔOCP, that are unable to perform either state transition or fluorescence quenching by orange carotenoid protein (OCP), respectively. Our results suggest a multiple origin of the M-T decline and reveal a complex interplay of various known regulatory processes in maintaining the redox homeostasis of a cyanobacterial cell. In addition, they lead us to suggest that a new type of regulatory process, operating on the timescale of minutes to hours, is involved in dissipating excess light energy in cyanobacteria.

  18. Conversion of visible light to electrical energy - Stable cadmium selenide photoelectrodes in aqueous electrolytes

    Science.gov (United States)

    Wrighton, M. S.; Ellis, A. B.; Kaiser, S. W.

    1977-01-01

    Stabilization of n-type CdSe to photoanodic dissolution is reported. The stabilization is accomplished by the competitive oxidation of S(--) or S(n)(--) at the CdSe photoanode in an electrochemical cell. Such stabilized cells are shown to sustain the conversion of low energy (not less than 1.7 eV) visible light to electricity with good efficiency and no deterioration of the CdSe photoelectrode or of the electrolyte. The electrolyte undergoes no net chemical change because the oxidation occurring at the photoelectrode is reversed at the cathode. Conversion of monochromatic light at 633 nm to electricity is shown to be up to approximately 9% efficient with output potentials of approximately 0.4 V. Conversion of solar energy to electricity is estimated to be approximately 2% efficient.

  19. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chiao-Wen Yeh

    2010-03-01

    Full Text Available White light-emitting diodes (WLEDs have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV LEDs and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED or polymer light-emitting diode (PLED, have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450-480 nm and nUV (380-400 nm LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+ is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  20. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Science.gov (United States)

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  1. The effect of energy and traffic light labelling on parent and child fast food selection: a randomised controlled trial.

    Science.gov (United States)

    Dodds, Pennie; Wolfenden, Luke; Chapman, Kathy; Wellard, Lyndal; Hughes, Clare; Wiggers, John

    2014-02-01

    Labelling of food from fast food restaurants at point-of-purchase has been suggested as one strategy to reduce population energy consumption and contribute to reductions in obesity prevalence. The aim of this study was to examine the effects of energy and single traffic light labelling systems on the energy content of child and adult intended food purchases. The study employed a randomised controlled trial design. English speaking parents of children aged between three and 12 years were recruited from an existing research cohort. Participants were mailed one of three hypothetical fast food menus. Menus differed in their labelling technique – either energy labels, single traffic light labels, or a no-label control. Participants then completed a telephone survey which assessed intended food purchases for both adult and child. The primary trial outcome was total energy of intended food purchase. A total of 329 participants completed the follow-up telephone interview. Eighty-two percent of the energy labelling group and 96% of the single traffic light labelling group reported noticing labelling information on their menu. There were no significant differences in total energy of intended purchases of parents, or intended purchases made by parents for children, between the menu labelling groups, or between menu labelling groups by socio-demographic subgroups. This study provided no evidence to suggest that energy labelling or single traffic light labelling alone were effective in reducing the energy of fast food items selected from hypothetical fast food menus for purchase. Additional complementary public health initiatives promoting the consumption of healthier foods identified by labelling, and which target other key drivers of menu item selection in this setting may be required.

  2. Radicals excess in the retina: A model for light flashes in space

    International Nuclear Information System (INIS)

    Narici, L.; De Martino, A.; Brunetti, V.; Rinaldi, A.; Sannita, W.G.; Paci, M.

    2009-01-01

    The risk due to cosmic radiation is a major issue in planning future missions to the Moon or Mars and would be critical if inadequately addressed. Functional risks must also be considered. The perception of light flashes reported by astronauts in space, and ascribed mostly to the action of ionizing radiation in the eye (retina), is an evidence for radiation functional interaction. No detailed model of the ion/retina interaction is yet available. Here we present the first model for a generation mechanism compatible with light flashes in space, and the results of in vitro tests supporting it. The model can be a common end point for the interactions between ionizing radiation and visual system in space. It would also support the assessment of functional radiation risks in space.

  3. The energy saving potential of occupancy-based lighting control strategies in open-plan offices: the influence of occupancy patterns

    NARCIS (Netherlands)

    de Bakker, C.; van de Voort, T.; Rosemann, A.L.P.

    2018-01-01

    Occupancy-based lighting control strategies have been proven to be effective in diminishing offices’ energy consumption. These strategies have typically worked by controlling lighting at the room level but, recently, lighting systems have begun to be equipped with sensors on a more fine-grained

  4. Quantitative Proteomics Reveals Ecophysiological Effects of Light and Silver Stress on the Mixotrophic Protist Poterioochromonas malhamensis.

    Directory of Open Access Journals (Sweden)

    Daniela Beisser

    Full Text Available Aquatic environments are heavily impacted by human activities including climate warming and the introduction of xenobiotics. Due to the application of silver nanoparticles as bactericidal agent the introduction of silver into the environment strongly has increased during the past years. Silver ions affect the primary metabolism of algae, in particular photosynthesis. Mixotrophic algae are an interesting test case as they do not exclusively rely on photosynthesis which may attenuate the harmful effect of silver. In order to study the effect of silver ions on mixotrophs, cultures of the chrysophyte Poterioochromonas malhamensis were treated in a replicate design in light and darkness with silver nitrate at a sub-lethal concentration. At five time points samples were taken for the identification and quantitation of proteins by mass spectrometry. In our analysis, relative quantitative protein mass spectrometry has shown to be a useful tool for functional analyses in conjunction with transcriptome reference sequences. A total of 3,952 proteins in 63 samples were identified and quantified, mapping to 4,829 transcripts of the sequenced and assembled transcriptome. Among them, 720 and 104 proteins performing various cellular functions were differentially expressed after eight days in light versus darkness and after three days of silver treatment, respectively. Specifically pathways of the energy and primary carbon metabolism were differentially affected by light and the utilization of expensive reactions hints to an energy surplus of P. malhamensis under light conditions. The excess energy is not invested in growth, but in the synthesis of storage metabolites. The effects of silver were less explicit, observable especially in the dark treatments where the light effect could not mask coinciding but weaker effects of silver. Photosynthesis, particularly the light harvesting complexes, and several sulphur containing enzymes were affected presumably due to

  5. Excess Entropy and Diffusivity

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Excess Entropy and Diffusivity. Excess entropy scaling of diffusivity (Rosenfeld,1977). Analogous relationships also exist for viscosity and thermal conductivity.

  6. Impact assessment of energy-efficient lighting in patients with lupus erythematosus: a pilot study.

    Science.gov (United States)

    Fenton, L; Dawe, R; Ibbotson, S; Ferguson, J; Silburn, S; Moseley, H

    2014-03-01

    Patients with lupus erythematosus (LE) are often abnormally photosensitive. Ultraviolet (UV) exposure can not only induce cutaneous lesions but may also contribute to systemic flares and disease progression. Various forms of energy-efficient lighting have been shown to emit UV radiation. To determine the effects of these emissions on individuals with LE. This assessment investigated cutaneous responses to repeated exposures from three types of lighting: compact fluorescent lamp (CFL), light-emitting diode (LED) and energy-efficient halogen (EEH). The subjects were 15 patients with LE and a control group of five healthy volunteers. No cutaneous LE lesions were induced by any of the light sources. Delayed skin erythema was induced at the site of CFL irradiation in six of the 15 patients with LE and two of the five healthy subjects. Erythema was increased in severity and more persistent in patients with LE. One patient with LE produced a positive delayed erythema to the EEH. A single patient with LE produced immediate abnormal erythemal responses to the CFL, LED and EEH. Further investigation revealed that this patient also had solar urticaria. All other subjects had negative responses to LED exposure. Compact fluorescent lamps emit UV that can induce skin erythema in both individuals with LE and healthy individuals when situated in close proximity. However, this occurs to a greater extent and is more persistent in patients with LE. EEHs emit UVA that can induce erythema in patients with LE. LEDs provide a safer alternative light source without risk of UV exposure. © 2013 British Association of Dermatologists.

  7. 24 CFR 236.60 - Excess Income.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Excess Income. 236.60 Section 236... § 236.60 Excess Income. (a) Definition. Excess Income consists of cash collected as rent from the... Rent. The unit-by-unit requirement necessitates that, if a unit has Excess Income, the Excess Income...

  8. Use of alternative sources of energy: design study of photovoltaic based parking area lighting system

    International Nuclear Information System (INIS)

    Perraki, V.; Loucas, G.

    2000-01-01

    This study proposes the lighting of the parking area and the surrounding streets of the north west part of the University Campus of Patras, using an alternative source of energy, the photovoltaic energy. The sizing of the proposed system results to a reliable, autonomous system which covers the total of the energy needs without any maintenance. Although the energy produced is more expensive compared to the grid electricity nowadays, such solutions seem necessary and well promising for the future as the fuel reserves are limited. (authors)

  9. Excess heat production in Pd/D during periodic pulse discharge current in various conditions

    International Nuclear Information System (INIS)

    Karabut, A.B.

    2006-01-01

    Experimental date from low-energy nuclear reactions (LENR) in condensed media are presented. The nuclear reactions products were found in solid cathode media used in glow discharge. Apparently, the nuclear reactions were initiated when bombarding the cathode surface by plasma ions with the energy of 1.0 - 2.0 keV. Excess heat from a high current glow discharge reaction in D 2 , Xe, and Kr using cathodes already charged with preliminary deuterium-charged Pd and Ti cathode samples are given. Excess heat up to 10-15 W and efficiency up to 130% were recorded under the experiments for Pd cathode samples in D 2 discharge. Excess heat up to 5 W and efficiency up to 150% were recorded for Pd cathodes that were charged with deuterium before the run, in Xe and Kr discharges. At the same time excess heat was not observed for pure Pd cathode samples in Xe and Kr discharges. The formation of impurity nuclides ( 7 Li, 13 C, 15 N, 20 Ne, 29 Si, 44 Ca, 48 Ca, 56 Fe, 57 Fe, 59 Co, 64 Zn, 66 Zn, 75 As, 107 Ag, 109 Ag, 110 Cd, 111 Cd, 112 Cd, 114 Cd and 115 In) with 'the efficiency up to 10 13 at./s was recorded. The isotopic ratios of these new nuclides were quite different from the natural ratios. Soft X-ray radiation from the solid-state cathode with the intensity up to 0.01 Gy/s was recorded in experiments with discharges in H 2 , D 2 , Ar, Xe, and Kr. The X-ray radiation was observed in bursts of up to 10 6 photons, with up to 10 5 bursts per second while the discharge was formed and within 100 ms after turning off the discharge current. The results of the X-ray radiation registration showed that the excited energy levels have a lifetime up to 100 ms or more, and the energy of 1.2 - 2.5 keV. A possible mechanism for producing excess heat and nuclear transmutation reactions in the solid medium with the excited energy levels is considered

  10. STANDALONE PHOTOVOLTAIC SYSTEMS SIZING OPTIMIZATION USING DESIGN SPACE APPROACH: CASE STUDY FOR RESIDENTIAL LIGHTING LOAD

    Directory of Open Access Journals (Sweden)

    D. F. AL RIZA

    2015-07-01

    Full Text Available This paper presents a sizing optimization methodology of panel and battery capacity in a standalone photovoltaic system with lighting load. Performance of the system is identified by performing Loss of Power Supply Probability (LPSP calculation. Input data used for the calculation is the daily weather data and system components parameters. Capital Cost and Life Cycle Cost (LCC is calculated as optimization parameters. Design space for optimum system configuration is identified based on a given LPSP value, Capital Cost and Life Cycle Cost. Excess energy value is used as an over-design indicator in the design space. An economic analysis, including cost of the energy and payback period, for selected configurations are also studied.

  11. Harmonizing the MSSM with the Galactic Center excess

    Science.gov (United States)

    Butter, Anja; Murgia, Simona; Plehn, Tilman; Tait, Tim M. P.

    2017-08-01

    The minimal supersymmetric setup offers a comprehensive framework to interpret the Fermi-LAT Galactic Center excess. Taking into account experimental, theoretical, and astrophysical uncertainties we can identify valid parameter regions linked to different annihilation channels. They extend to dark matter masses above 250 GeV. There exists a very mild tension between the observed relic density and the annihilation rate in the center of our Galaxy for specific channels. The strongest additional constraints come from the new generation of direct detection experiments, ruling out much of the light and intermediate dark matter mass regime and giving preference to heavier dark matter annihilating into a pair of top quarks.

  12. CO2 reduction through energy conservation

    International Nuclear Information System (INIS)

    1991-05-01

    A study was carried out of the potential to economically reduce carbon dioxide emissions through energy conservation in the petroleum and natural gas industry. The study examined current and projected emissions levels, cogeneration at gas plants, flaring, economics, regulation, reporting requirements, implementation, and research and development. Economically attractive energy conservation measures can reduce oil and gas industry, exclusive of Athabasca oil sands operations, CO 2 emissions by 6-7%. The energy conservation options identified range from field energy awareness committees through to equipment retrofits and replacement. At ca 3 million tonnes/y, these reductions will not offset the increases in oil and gas related CO 2 emissions anticipated by producers and Alberta government agencies. There will be increasing emphasis on in-situ bitumen production, more energy intensive light crude oil production and increasing natural gas sales, increasing energy inputs in excess of reductions. Cogeneration of electricity for utility company distribution and for internally required steam at gas plants and in-situ production sites is not economic due to low electricity prices. 8 tabs

  13. Detection of gamma-rays with a 3.5 l liquid xenon ionization chamber triggered by the primary scintillation light

    CERN Document Server

    Aprile, E; Chen Dan Li; Muhkerjee, R; Xu Fan

    2002-01-01

    A gridded ionization chamber with a drift length of 4.5 cm and a total volume of 3.5 l, was operated with high-purity liquid xenon and extensively tested with gamma-rays from sup 1 sup 3 sup 7 Cs, sup 2 sup 2 Na and sup 6 sup 0 Co radioactive sources. An electron lifetime in excess of 1 ms was inferred from two independent measurements. The electric field dependence of the collected charge and energy resolution was studied in the range 0.1-4 kV/cm, for different gamma-ray energies. With an electric field of 4 kV/cm, the spectral performance of the detector is consistent with an energy resolution of 5.9% at 1 MeV, scaling with energy as E sup - sup 0 sup . sup 5. The chamber was also used to detect the primary scintillation light produced by gamma-ray interactions in liquid xenon. The light signal was successfully used to trigger the acquisition of the charge signal with a FADC readout. A trigger efficiency of approx 85% was measured at 662 keV.

  14. Bounds on an Energy-Dependent and Observer-Independent Speed of Light from Violations of Locality

    International Nuclear Information System (INIS)

    Hossenfelder, Sabine

    2010-01-01

    We show that models with deformations of special relativity that have an energy-dependent speed of light have nonlocal effects. The requirement that the arising nonlocality is not in conflict with known particle physics allows us to derive strong bounds on deformations of special relativity and rule out a modification to first order in energy over the Planck mass.

  15. Excess free volume in metallic glasses measured by X-ray diffraction

    International Nuclear Information System (INIS)

    Yavari, Alain Reza; Moulec, Alain Le; Inoue, Akihisa; Nishiyama, Nobuyuki; Lupu, Nicoleta; Matsubara, Eiichiro; Botta, Walter Jose; Vaughan, Gavin; Di Michiel, Marco; Kvick, Ake

    2005-01-01

    In crystalline materials, lattice expansion as measured by diffraction methods differs from the expansion of the sample dimensions as measured by dilatometry, due to the contribution of thermal vacancies to the latter. We have found that in glassy materials and metallic glasses in particular, this is not the case for the contribution of free volume. These findings are the first direct experimental confirmation of simulation results indicating that atomic size holes are unstable in glasses such that free volume is dispersed randomly. This allows direct measurement of excess free volume in glasses using diffraction methods in place of dilatometry, which is difficult to use once the sample softens at the glass transition temperature T g and above. Quenched-in and deformation-induced free-volume ΔV f were measured by X-ray diffraction in transmission during heating using synchrotron light. The measured thermal expansion coefficients α th were the same as in dilatometry. The glass transition T g appeared as a break in the value of α th at T g . The 'change-of-slope method' was applied to the kinetics of relaxation to derive the activation energy for the free-volume annihilation process

  16. Chapter 2: Commercial and Industrial Lighting Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gowans, Dakers [Left Fork Energy, Harrison, NY (United States); Telarico, Chad [DNV GL, Mahwah, NJ (United States)

    2017-11-02

    The Commercial and Industrial Lighting Evaluation Protocol (the protocol) describes methods to account for gross energy savings resulting from the programmatic installation of efficient lighting equipment in large populations of commercial, industrial, and other nonresidential facilities. This protocol does not address savings resulting from changes in codes and standards, or from education and training activities. A separate Uniform Methods Project (UMP) protocol, Chapter 3: Commercial and Industrial Lighting Controls Evaluation Protocol, addresses methods for evaluating savings resulting from lighting control measures such as adding time clocks, tuning energy management system commands, and adding occupancy sensors.

  17. Innovations in LED lighting for reduced-ESM crop production in space

    Science.gov (United States)

    Massa, Gioia; Mitchell, Cary; Bourget, C. Michael; Morrow, Robert

    In controlled-environment crop production such as will be practiced at the lunar outpost and Mars base, the single most energy-demanding aspect is electric lighting for plant growth, including energy costs for energizing lamps as well as for removing excess heat. For a variety of reasons, sunlight may not be a viable option as the main source of crop lighting off-Earth and traditional electric lamps for crop lighting have numerous drawbacks for use in a space environment. A collaborative research venture between the Advanced Life Support Crops Group at Purdue University and the Orbital Technologies Corporation (ORBITEC) has led to the development of efficient, reconfigurable LED lighting technologies for crop growth in an ALSS. The light sources use printed-circuit red and blue LEDs, which are individually tunable for a range of photosynthetic photon fluxes and photomorphogenic plant responses. Initial lighting arrays have LEDs that can be energized from the bottom upward when deployed in a vertical, intracanopy configuration, allowing the illumination to be tailored for stand height throughout the cropping cycle. Preliminary testing with the planophile crop cowpea (Vigna unguiculata L. Walp, breeding line IT87D-941-1), resulted in optimizing internal reflectance of growth compartments by lining walls, floor, and a movable ceiling with white Poly film, as well as by determining optimal planting density and plant positioning. Additionally, these light strips, called "lightsicles", can be configured into an overhead plane of light engines. When intracanopy and overhead-LED-lit cowpea crop production was compared, cowpea plants grown with intracanopy lighting had much greater understory leaf retention and produced more dry biomass per kilowatt-hour of lighting energy than did overhead-lit plants. The efficiency of light capture is reduced in overhead-lit scenarios due to mutual shading of lower leaves by upper leaves in closed canopies leading to premature abscission

  18. Reduction of excess sludge production using mechanical disintegration devices.

    Science.gov (United States)

    Strünkmann, G W; Müller, J A; Albert, F; Schwedes, J

    2006-01-01

    The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.

  19. Determining the primary cosmic ray energy from the total flux of Cherenkov light measured at the Yakutsk EAS array

    International Nuclear Information System (INIS)

    Ivanov, A. A.; Knurenko, S. P.; Sleptsov, I. E.

    2007-01-01

    We present a method for determining the energy of the primary particle that generates an extensive air shower (EAS) of comic rays based on measuring the total flux of Cherenkov light from the shower. Applying this method to Cherenkov light measurements at the Yakutsk EAS array has allowed us to construct the cosmic ray energy spectrum in the range 10 15 - 3 x 10 19 eV

  20. High-field strong-focusing undulator designs for X-ray Linac Coherent Light Source (LCLS) applications

    International Nuclear Information System (INIS)

    Caspi, S.; Schlueter, R.; Tatchyn, R.

    1995-01-01

    Linac-driven X-Ray Free Electron Lasers (e.g., Linac Coherent Light Sources (LCLSs)), operating on the principle of single-pass saturation in the Self-Amplified Spontaneous Emission (SASE) regime typically require multi-GeV beam energies and undulator lengths in excess of tens of meters to attain sufficient gain in the 1 angstrom--0.1 angstrom range. In this parameter regime, the undulator structure must provide: (1) field amplitudes B 0 in excess of 1T within periods of 4cm or less, (2) peak on-axis focusing gradients on the order of 30T/m, and (3) field quality in the 0.1%--0.3% range. In this paper the authors report on designs under consideration for a 4.5--1.5 angstrom LCLS based on superconducting (SC), hybrid/PM, and pulsed-Cu technologies

  1. Internal heat gain from different light sources in the building lighting systems

    Directory of Open Access Journals (Sweden)

    Suszanowicz Dariusz

    2017-01-01

    Full Text Available EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  2. Internal heat gain from different light sources in the building lighting systems

    Science.gov (United States)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  3. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

    2008-09-24

    Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for"next-generation" x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop"Science for a New Class of Soft X-Ray Light Sources" was held in Berkeley in October 2007. From an analysisof the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions.

  4. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    International Nuclear Information System (INIS)

    Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

    2008-01-01

    Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for 'next-generation' x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop 'Science for a New Class of Soft X-Ray Light Sources' was held in Berkeley in October 2007. From an analysis of the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions

  5. Association between excess weight and beverage portion size consumed in Brazil

    Directory of Open Access Journals (Sweden)

    Ilana Nogueira Bezerra

    2018-02-01

    Full Text Available ABSTRACT OBJECTIVE To describe the beverage portion size consumed and to evaluate their association with excess weight in Brazil. METHODS We used data from the National Dietary Survey, which included individuals with two days of food record aged over 20 years (n = 24,527 individuals. The beverages were categorized into six groups: soft drink, 100% fruit juice, fruit drink, alcoholic beverage, milk, and coffee or tea. We estimated the average portion consumed for each group and we evaluated, using linear regression, the association between portion size per group and the variables of age, sex, income, and nutritional status. We tested the association between portion size and excess weight using Poisson regression, adjusted for age, sex, income, and total energy intake. RESULTS The most frequently consumed beverages in Brazil were coffee and tea, followed by 100% fruit juices, soft drinks, and milk. Alcoholic beverages presented the highest average in the portion size consumed, followed by soft drinks, 100% fruit juice, fruit drink, and milk. Portion size showed positive association with excess weight only in the soft drink (PR = 1.19, 95%CI 1.10–1.27 and alcoholic beverage groups (PR = 1.20, 95%CI, 1.11–1.29, regardless of age, sex, income, and total energy intake. CONCLUSIONS Alcoholic beverages and soft drinks presented the highest averages in portion size and positive association with excess weight. Public health interventions should address the issue of portion sizes offered to consumers by discouraging the consumption of large portions, especially sweetened and low nutritional beverages.

  6. Color optimization of conjugated-polymer/InGaN hybrid white light emitting diodes by incomplete energy transfer

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Lai, Chun-Feng; Madhusudhana Reddy, P.; Chen, Yung-Lin; Chiou, Wei-Yung; Chang, Shinn-Jen

    2015-01-01

    By using the wavelength conversion method, white light emitting diodes (WLEDs) were produced by applying mixtures of polysiloxane and fluorescent polymers on InGaN based light emitting diodes. UV curable organic–inorganic hybrid materials with high refractive index (1.561), compromised optical, thermal and mechanical properties was used as encapsulants. Red light emitting fluorescent FABD polymer (with 9,9-dioctylfluorene (F), anthracene (A) and 2,1,3-benzothiadiazole (B), and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (D) repeating units) and green light emitting fluorescent FAB polymer were used as wavelength converters. The encapsulant/fluorescent polymer mixture and InGaN produce the white light by incomplete energy transfer mechanism. WLEDs with high color rendering index (CRI, about 93), and tunable correlated color temperature (CCT) properties can be produced by controlling the composition and chemical structures of encapsulating polymer and fluorescent polymer in hybrid materials, offering cool-white and neutral-white LEDs. - Highlights: • Highly efficient white light-emitting diodes (WLEDs) were produced. • Conjugated-polymer/InGaN hybrid WLEDs by incomplete energy transfer mechanism. • WLEDs with high color-rendering index and tunable correlated color temperature. • Polysiloxane encapsulant with superior optical, mechanical and thermal properties

  7. Laser, light, and energy devices for cellulite and lipodystrophy.

    Science.gov (United States)

    Peterson, Jennifer D; Goldman, Mitchel P

    2011-07-01

    Cellulite affects all races, and it is estimated that 85% of women older than 20 years have some degree of cellulite. Many currently accepted cellulite therapies target deficiencies in lymphatic drainage and microvascular circulation. Devices using radiofrequency, laser, and light-based energies, alone or in combination and coupled frequently with tissue manipulation, are available for improving cellulite. Laser assisted liposuction may improve cellulite appearance. Although improvement using these devices is temporary, it may last several months. Patients who want smoother skin with less visible cellulite can undergo a series of treatments and then return for additional treatments as necessary. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Impact of Non-Uniformity in Light Collection on the Energy Resolution of the PANDA Electromagnetic Calorimeter at Photon Energies Below 1 GeV

    Science.gov (United States)

    Diehl, Stefan; Brinkmann, Kai-Thomas; Drexler, Peter; Dormenev, Valery; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg; PANDA-Collaboration

    2017-11-01

    The electromagnetic calorimeter (EMC) of the PANDA detector at the future FAIR facility comprises more than 15,000 lead tungstate (PWO) crystals. The barrel part will consist of 11 crystal geometries with different degree of tapering, which causes a non-uniformity in light collection as an interplay between the focusing and the internal absorption of the light. For the most tapered crystals the detected light is enhanced by 40%, if the scintillation process is created in the front part of the crystal. Due to the shower development and its fluctuations the non-uniformity leads to a reduction of the energy resolution. To reduce this effect, one lateral crystal side face has been de-polished to a roughness of 0.3 μm. Measurements confirm an increase of the light yield in the rear part of the crystal. In contrast, only a slight decrease can be observed in the front part. The overall non-uniformity is significantly reduced below 5%. This paper will discuss the experimental studies based on GEANT4 and optical simulations to understand the impact of a de-polished side face on the light collection. For consequences on the future performance, a 3×3 sub-array of de-polished crystals was directly studied using a tagged photon beam in the energy range from 50 MeV up to 800 MeV, respectively, performed at the tagged photon facility at MAMI, Mainz. The comparison to an array composed of polished crystals confirms a significant improvement of the constant term of the energy resolution from above 2 % down to 0.5 % and only a small increase of the statistical term. The results can be reproduced in GEANT4 simulations.

  9. Photo-protection in the centric diatom Coscinodiscus granii is not controlled by chloroplast high-light avoidance movement.

    Directory of Open Access Journals (Sweden)

    Johannes Wilhelm Goessling

    2016-01-01

    Full Text Available Diatoms are important phototrophs in the worlds’ oceans contributing approximately 40% of the global primary photosynthetic production. This is partially explained by their capacity to exploit environments with variable light conditions, but there is limited knowledge on how diatoms cope with changes in the spectral composition and intensity of light. In this study, the influence of light quality and high irradiance on photosynthesis in the centric diatom Coscinodiscus granii was investigated with microscopic imaging and variable chlorophyll fluorescence techniques. Determination of the wavelength-dependent functional absorption cross-section of photosystem (PS II revealed that absorption of blue light (BL and red light (RL was 2.3-fold and 0.8-fold that of white light (WL, respectively. Hence, BL was more efficiently converted into photo-chemical energy. Excessive energy from BL was dissipated via non-photochemical quenching (NPQ mechanisms, while RL apparently induced only negligible NPQ even at high irradiance. A dose dependent increase of cells exhibiting an altered chloroplast distribution was observed after exposure to high levels of BL and WL, but not RL. However, no effective quantum yield of PSII was measured in the majority of cells with an altered chloroplast distribution, and positive Sytox green® death staining confirmed that most of these cells were dead. We conclude that although Coscinodiscus granii can sustain high irradiance it does not perform chloroplast high-light avoidance movements for photo-protection.

  10. Eco-innovation dynamics and sustainability – new perspectives in innovation studies illuminated through the case of lighting and its energy consumption

    DEFF Research Database (Denmark)

    Franceschini, Simone

    There is an increasing consensus about the need to reduce the environmental burden of economic activities. The concept of sustainable development has led to increased efficiency of the economic process through innovation, which is now the main strategy applied both to preserve environmental capital...... and to achieve economic growth. Consequently, many innovations have been given the label of “eco” due to their ability to improve the efficiency of the economic process. The history of energy consumption is a paradigmatic example of diffusion of this type of eco-innovations. The efficiency of converting energy...... of energy during the provision of light. Researchers have already investigated the dynamics of production and consumption associated with the most recent light “revolutions”. Interestingly, these revolutions resulted in increased energy consumption for the provision of light, even if energy efficiency...

  11. 75 FR 53963 - Notice of Baseline Filings: The Peoples Gas Light and Coke Company, Minnesota Energy Resources...

    Science.gov (United States)

    2010-09-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-86-000, Docket No. PR10-87-000, Docket No. PR10-88- 000, Docket No. PR10-89-000, Docket No. PR10-90-000] Notice of Baseline Filings: The Peoples Gas Light and Coke Company, Minnesota Energy Resources Corporation, Louisville Gas...

  12. Application specific dimensioning of energy storage systems for light rail vehicles; Betriebsspezifische Auslegung von Energiespeichern fuer Strassenbahnen

    Energy Technology Data Exchange (ETDEWEB)

    Klausner, S. [Fraunhofer-Institut fuer Verkehrs- und Infrastruktursysteme IVI, Dresden (Germany). Abt. fuer Emissionsfreie Antriebe und Energiespeicher; Lehnert, M. [Fraunhofer-Institut fuer Verkehrs- und Infrastruktursysteme IVI, Dresden (Germany)

    2008-07-01

    The insertion of electric energy storage systems to obtain a decreasing energy and power demand of trams and light rail vehicles can occur as stationary or mobile construction. For the dimensioning of a mobile energy storage system the objective of the application has to be fixed. At the practical example of the tram in Dresden the dimensioning with the goal energy saving is demonstrated. (orig.)

  13. Cross section ratio and angular distributions of the reaction p + d → 3He + η at 48.8 MeV and 59.8 MeV excess energy

    International Nuclear Information System (INIS)

    Adlarson, P.; Calen, H.; Fransson, K.; Gullstroem, C.O.; Heijkenskjoeld, L.; Hoeistad, B.; Johansson, T.; Marciniewski, P.; Redmer, C.F.; Wolke, M.; Zlomanczuk, J.; Augustyniak, W.; Marianski, B.; Morsch, H.P.; Trzcinski, A.; Zupranski, P.; Bardan, W.; Ciepal, I.; Czerwinski, E.; Hodana, M.; Jany, A.; Jany, B.R.; Jarczyk, L.; Kamys, B.; Kistryn, S.; Krzemien, W.; Magiera, A.; Moskal, P.; Ozerianska, I.; Podkopal, P.; Rudy, Z.; Skurzok, M.; Smyrski, J.; Wronska, A.; Zielinski, M.J.; Bashkanov, M.; Clement, H.; Doroshkevich, E.; Perez del Rio, E.; Pricking, A.; Skorodko, T.; Wagner, G.J.; Bergmann, F.S.; Demmich, K.; Goslawski, P.; Huesken, N.; Khoukaz, A.; Passfeld, A.; Taeschner, A.; Berlowski, M.; Stepaniak, J.; Bhatt, H.; Lalwani, K.; Varma, R.; Buescher, M.; Engels, R.; Goldenbaum, F.; Hejny, V.; Khan, F.A.; Lersch, D.; Lorentz, B.; Maier, R.; Ohm, H.; Prasuhn, D.; Schadmand, S.; Sefzick, T.; Stassen, R.; Sterzenbach, G.; Stockhorst, H.; Stroeher, H.; Wurm, P.; Zurek, M.; Coderre, D.; Ritman, J.; Erven, A.; Erven, W.; Kemmerling, G.; Kleines, H.; Wuestner, P.; Eyrich, W.; Hauenstein, F.; Krapp, M.; Zink, A.; Fedorets, P.; Foehl, K.; Goswami, A.; Grigoryev, K.; Kirillov, D.A.; Piskunov, N.M.; Klos, B.; Stephan, E.; Weglorz, W.; Kulessa, P.; Pysz, K.; Siudak, R.; Szczurek, A.; Kupsc, A.; Pszczel, D.; Mikirtychiants, M.; Pyszniak, A.; Roy, A.; Sawant, S.; Serdyuk, V.; Sopov, V.; Yamamoto, A.; Yurev, L.; Zabierowski, J.

    2014-01-01

    We present new data for angular distributions and on the cross section ratio of the p+d → 3 He + η reaction at excess energies of Q = 48.8 MeV and Q = 59.8 MeV. The data have been obtained at the WASA-at-COSY experiment (Forschungszentrum Juelich) using a proton beam and a deuterium pellet target. While the shape of obtained angular distributions show only a slow variation with the energy, the new results indicate a distinct and unexpected total cross section fluctuation between Q = 20 MeV and Q = 60 MeV, which might indicate the variation of the production mechanism within this energy interval. (orig.)

  14. Integrated economic and life cycle assessment of thermochemical production of bioethanol to reduce production cost by exploiting excess of greenhouse gas savings

    International Nuclear Information System (INIS)

    Reyes Valle, C.; Villanueva Perales, A.L.; Vidal-Barrero, F.; Ollero, P.

    2015-01-01

    Highlights: • Assessment of economics and sustainability of thermochemical ethanol production. • Exploitation of excess CO 2 saving by either importing fossil energy or CO 2 trading. • Significant increase in alcohol production by replacing biomass with natural gas. • CO 2 emission trading is not cost-competitive versus import of fossil energy. • Lowest ethanol production cost for partial oxidation as reforming technology. - Abstract: In this work, two options are investigated to enhance the economics of the catalytic production of bioethanol from biomass gasification by exploiting the excess of CO 2 emission saving: (i) to import fossil energy, in the form of natural gas and electricity or (ii) to trade CO 2 emissions. To this end, an integrated life cycle and economic assessment is carried out for four process configurations, each using a different light hydrocarbon reforming technology: partial oxidation, steam methane reforming, tar reforming and autothermal reforming. The results show that for all process configurations the production of bioethanol and other alcohols significantly increases when natural gas displaces biomass, maintaining the total energy content of the feedstock. The economic advantage of the partial substitution of biomass by natural gas depends on their prices and this is explored by carrying out a sensitivity analysis, taking historical prices into account. It is also concluded that the trade of CO 2 emissions is not cost-competitive compared to the import of natural gas if the CO 2 emission price remains within historical European prices. The CO 2 emission price would have to double or even quadruple the highest CO 2 historical price for CO 2 emission trading to be a cost-competitive option

  15. Searches for prompt light gravitino signatures in $e^{+}e^{-}$ Collisions at $\\sqrt{s}$ = 189 GeV

    CERN Document Server

    Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Boeriu, O.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schmitt, S.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2001-01-01

    Searches for final states expected in models with light gravitinos have been performed, including experimental topologies with multi-leptons with missing energy, leptons and photons with missing energy, and jets and photons with missing energy. No excess over the expectations from the Standard Model has been observed. Limits are placed on production cross-sections in the different experimental topologies. Additionally, combining with searches for the anomalous production of lepton and photon pairs with missing energy results are interpreted in the context of minimal models of gauge mediated SUSY breaking. Exclusion limits are established at the 95% confidence level on the supersymmetric particle masses; m-slepton > 70GeV and m-neutralino > 85GeV for tan(beta)=2, m-stau > 76GeV, m-selectron,-smu > 93GeV and m-neutralino > 76GeV for tan(beta)=20.

  16. Review of light-ion driver development for inertial fusion energy

    Science.gov (United States)

    Bluhm, H.; Hoppé, P.

    2001-05-01

    The concept of a light ion beam driver for Inertial Fusion Energy (IFE) is based on multi-terawatt, multi-megavolt pulsed power generators, two-stage ion acceleration and charge neutralised transport. In this paper we discuss the present status for each of these components and identify the main issues for research. Only modest extrapolations from presently available technologies seem necessary for the high voltage pulse generator. The greatest challenge of this approach is the accelerator, which will consist of two stages, the injector and the post-accelerator. Large progress has been made in understanding the physical phenomena occurring in the injector gap. This progress has become possible by new sophisticated diagnostics that allowed detailed temporally and spatially resolved measurements of field and particle densities in the acceleration gap and by relativistic fully electromagnetic PIC-simulation tools, that stimulated analytic models. The conclusions drawn from these studies, namely limiting the ion current density to small enhancements to reduce the beam divergence need still to be verified experimentally. Systematic experimental research on post-acceleration at high power and voltage must aim at a complete understanding of instabilities coupling from the injector to the post-accelerator and at limiting voltages and barriers for the extraction of unwanted ions from plasmas at the injection side. Ultimately the light ion approach requires rep-rateable large area ion sources with ion masses greater than 1 and particle energies around 30 MeV. Although different cleaning protocols were able to reduce the amount of parasitic ions in the Li beam from a LiF field emission source the achievements are still insufficient. A field of common interest between light and heavy ion beam driven fusion is beam transport from the accelerator to the target. Supposedly the most favourable concept for both approaches is self-pinched transport. Experimental evidence for self

  17. Light emission mechanism of mixed host organic light-emitting diodes

    Science.gov (United States)

    Song, Wook; Lee, Jun Yeob

    2015-03-01

    Light emission mechanism of organic light-emitting diodes with a mixed host emitting layer was studied using an exciplex type mixed host and an exciplex free mixed host. Monitoring of the current density and luminance of the two type mixed host devices revealed that the light emission process of the exciplex type mixed host was dominated by energy transfer, while the light emission of the exciplex free mixed host was controlled by charge trapping. Mixed host composition was also critical to the light emission mechanism, and the contribution of the energy transfer process was maximized at 50:50 mixed host composition. Therefore, it was possible to manage the light emission process of the mixed host devices by managing the mixed host composition.

  18. Light vehicle energy efficiency programs and their impact on Brazilian CO2 emissions

    International Nuclear Information System (INIS)

    Wills, William; La Rovere, Emilio Lebre

    2010-01-01

    This paper analyses the impact of an energy efficiency program for light vehicles in Brazil on emissions of carbon dioxide (CO 2 ), the main greenhouse gas in the atmosphere. Several energy efficiency programs for light vehicles around the world are reviewed. The cases of Japan and Europe were selected for presentation here given their status as current and future world leaders in the control of passenger vehicle fuel consumption. The launching of the National Climate Change Plan and the pressure on the Brazilian car industry due to the world financial crisis make it a good time for the Brazilian government to implement such a program, and its various benefits are highlighted in this study. Three scenarios are established for Brazil covering the 2000-2030 period: the first with no efficiency goals, the second with the Japanese goals applied with a 10 years delay, and the third, with the Japanese goals applied with no delay. The consequences of a vehicular efficiency program and its middle and long-term effects on the consumption of energy and the CO 2 emissions are quantified and discussed. The simulation results indicate that efficiency goals may make an important contribution to reducing vehicular emissions and fuel consumption in Brazil, compared to a baseline scenario.

  19. Holidays in lights: Tracking cultural patterns in demand for energy services

    Science.gov (United States)

    Román, Miguel O.; Stokes, Eleanor C.

    2015-06-01

    Successful climate change mitigation will involve not only technological innovation, but also innovation in how we understand the societal and individual behaviors that shape the demand for energy services. Traditionally, individual energy behaviors have been described as a function of utility optimization and behavioral economics, with price restructuring as the dominant policy lever. Previous research at the macro-level has identified economic activity, power generation and technology, and economic role as significant factors that shape energy use. However, most demand models lack basic contextual information on how dominant social phenomenon, the changing demographics of cities, and the sociocultural setting within which people operate, affect energy decisions and use patterns. Here we use high-quality Suomi-NPP VIIRS nighttime environmental products to: (1) observe aggregate human behavior through variations in energy service demand patterns during the Christmas and New Year's season and the Holy Month of Ramadan and (2) demonstrate that patterns in energy behaviors closely track sociocultural boundaries at the country, city, and district level. These findings indicate that energy decision making and demand is a sociocultural process as well as an economic process, often involving a combination of individual price-based incentives and societal-level factors. While nighttime satellite imagery has been used to map regional energy infrastructure distribution, tracking daily dynamic lighting demand at three major scales of urbanization is novel. This methodology can enrich research on the relative importance of drivers of energy demand and conservation behaviors at fine scales. Our initial results demonstrate the importance of seating energy demand frameworks in a social context.

  20. Holiday in Lights: Tracking Cultural Patterns in Demand for Energy Services

    Science.gov (United States)

    Roman, Miguel O.; Stokes, Eleanor C.

    2015-01-01

    Successful climate change mitigation will involve not only technological innovation, but also innovation in how we understand the societal and individual behaviors that shape the demand for energy services. Traditionally, individual energy behaviors have been described as a function of utility optimization and behavioral economics, with price restructuring as the dominant policy lever. Previous research at the macro-level has identified economic activity, power generation and technology, and economic role as significant factors that shape energy use. However, most demand models lack basic contextual information on how dominant social phenomenon, the changing demographics of cities, and the sociocultural setting within which people operate, affect energy decisions and use patterns. Here we use high-quality Suomi-NPP VIIRS nighttime environmental products to: (1) observe aggregate human behavior through variations in energy service demand patterns during the Christmas and New Year's season and the Holy Month of Ramadan and (2) demonstrate that patterns in energy behaviors closely track sociocultural boundaries at the country, city, and district level. These findings indicate that energy decision making and demand is a sociocultural process as well as an economic process, often involving a combination of individual price-based incentives and societal-level factors. While nighttime satellite imagery has been used to map regional energy infrastructure distribution, tracking daily dynamic lighting demand at three major scales of urbanization is novel. This methodology can enrich research on the relative importance of drivers of energy demand and conservation behaviors at fine scales. Our initial results demonstrate the importance of seating energy demand frameworks in a social context.

  1. Light yield of a CsI(Tl) crystal under irradiation by protons with the energy from 3 to 15 MeV

    International Nuclear Information System (INIS)

    Dorchoman, D.; Konstantin, M.; Lazarovich, D.; Muntyanu, I.; Oganesyan, K.O.; Porokhovoj, S.Yu.

    1976-01-01

    Measurement results are presented of light yield in CsI(Tl) crystals at the irradiation by protons with the energy from 3 to 15 MeV. Plates of 100x100x2 mm size are used as CsI(Tl) scintillator samples. A brief analysis of possible sistematic errors is given which allows to estimate the total error upon the light yield valve determination equal to 0,5%. Measurement results of crystal light yield show that the dependence of CsI(Tl) light yield on proton energy is described by the straight line passing through the origin

  2. New light Higgs boson and short-baseline neutrino anomalies

    Science.gov (United States)

    Asaadi, J.; Church, E.; Guenette, R.; Jones, B. J. P.; Szelc, A. M.

    2018-04-01

    The low-energy excesses observed by the MiniBooNE experiment have, to date, defied a convincing explanation under the standard model even with accommodation for nonzero neutrino mass. In this paper we explore a new oscillation mechanism to explain these anomalies, invoking a light neutrinophilic Higgs boson, conceived to induce a low Dirac neutrino mass in accord with experimental limits. Beam neutrinos forward scattering off of a locally overdense relic neutrino background give rise to a novel matter effect with an energy-specific resonance. An enhanced oscillation around this resonance peak produces flavor transitions which are highly consistent with the MiniBooNE neutrino- and antineutrino-mode data sets. The model provides substantially improved χ2 values beyond either the no-oscillation hypothesis or the more commonly explored 3 +1 sterile neutrino hypothesis. This mechanism would introduce distinctive signatures at each baseline in the upcoming short-baseline neutrino program at Fermilab, presenting opportunities for further exploration.

  3. Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent.

    Science.gov (United States)

    Savitch, Leonid V; Ivanov, Alexander G; Krol, Marianna; Sprott, David P; Oquist, Gunnar; Huner, Norman P A

    2010-09-01

    Second year needles of Lodgepole pine (Pinus contorta L.) were exposed for 6 weeks to either simulated control summer ['summer'; 25 °C/250 photon flux denisty (PFD)], autumn ('autumn'; 15°C/250 PFD) or winter conditions ('winter'; 5 °C/250 PFD). We report that the proportion of linear electron transport utilized in carbon assimilation (ETR(CO2)) was 40% lower in both 'autumn' and 'winter' pine when compared with the 'summer' pine. In contrast, the proportion of excess photosynthetic linear electron transport (ETR(excess)) not used for carbon assimilation within the total ETR(Jf) increased by 30% in both 'autumn' and 'winter' pine. In 'autumn' pine acclimated to 15°C, the increased amounts of 'excess' electrons were directed equally to 21  kPa O2-dependent and 2  kPa O2-dependent alternative electron transport pathways and the fractions of excitation light energy utilized by PSII photochemistry (Φ(PSII)), thermally dissipated through Φ(NPQ) and dissipated by additional quenching mechanism(s) (Φ(f,D)) were similar to those in 'summer' pine. In contrast, in 'winter' needles acclimated to 5 °C, 60% of photosynthetically generated 'excess' electrons were utilized through the 2  kPa O2-dependent electron sink and only 15% by the photorespiratory (21  kPa O2) electron pathway. Needles exposed to 'winter' conditions led to a 3-fold lower Φ(PSII), only a marginal increase in Φ(NPQ) and a 2-fold higher Φ(f,D), which was O2 dependent compared with the 'summer' and 'autumn' pine. Our results demonstrate that the employment of a variety of alternative pathways for utilization of photosynthetically generated electrons by Lodgepole pine depends on the acclimation temperature. Furthermore, dissipation of excess light energy through constitutive non-photochemical quenching mechanisms is O2 dependent.

  4. Enhanced Global Signal of Neutral Hydrogen Due to Excess Radiation at Cosmic Dawn

    Science.gov (United States)

    Feng, Chang; Holder, Gilbert

    2018-05-01

    We revisit the global 21 cm signal calculation incorporating a possible radio background at early times, and find that the global 21 cm signal shows a much stronger absorption feature, which could enhance detection prospects for future 21 cm experiments. In light of recent reports of a possible low-frequency excess radio background, we propose that detailed 21 cm calculations should include a possible early radio background.

  5. The experience of the LIGHT (Light and Power Company of Rio de Janeiro State, Brazil), in low cost energy networks for rural electrification; A experiencia da LIGHT na implantacao de redes de baixo custo para eletrificacao rural

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Fernando F; Andre, Oswaldo P [Light Servicos de Eletricidade SA, Rio de Janeiro, RJ (Brazil)

    1987-12-31

    This paper shows the experience of LIGHT (Light and Power Company of Rio de Janeiro State, Brazil), in planning and implementation of low cost energy networks in rural electrification. Were also showed guidelines for consumer`s orientation, viability of installations and wiring options. 4 figs., 16 tabs., 12 refs.

  6. Comparing the responses of rumen ciliate protozoa and bacteria to excess carbohydrate.

    Science.gov (United States)

    Teixeira, César R V; Lana, Rogério de Paula; Tao, Junyi; Hackmann, Timothy J

    2017-06-01

    When given excess carbohydrate, certain microbial species respond by storing energy (synthesizing reserve carbohydrate), but other species respond by dissipating the energy as heat (spilling energy). To determine the importance of these responses in the rumen microbial community, this study quantified the responses of mixed ciliate protozoa vs bacteria to glucose. We hypothesized that ciliates would direct more glucose to synthesis of reserve carbohydrate (and less to energy spilling) than would bacteria. Ciliates and bacteria were isolated from rumen fluid using filtration and centrifugation, resuspended in nitrogen-free buffer to limit growth, and dosed with 5 mM glucose. Compared with bacteria, ciliates consumed glucose >3-fold faster and synthesized reserve carbohydrate 4-fold faster. They incorporated 53% of glucose carbon into reserve carbohydrate-nearly double the value (27%) for bacteria. Energy spilling was not detected for ciliates, as all heat production (104%) was accounted by synthesis of reserve carbohydrate and endogenous metabolism. For bacteria, reserve carbohydrate and endogenous metabolism accounted for only 68% of heat production, and spilling was detected within 11 min of dosing glucose. These results suggest that ciliates alter the course of ruminal carbohydrate metabolism by outcompeting bacteria for excess carbohydrate, maximizing reserve carbohydrate synthesis, and minimizing energy spilling. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Production of light fragments in hA collisions at high energies

    International Nuclear Information System (INIS)

    Braun, M.A.; Vechernin, V.V.

    1988-12-01

    Production of fast relativistic light fragments in hA collisions at high energies is considered. Direct coalescence of produced nucleons into fragments is shown to be the main mechanism for fragment production. The influence of the nuclear field is small and is not described by the well-known Butler-Pearson formulas. The coalescence coefficient strongly depends on the angle and on the behaviour of the fragment wave function at small internucleon distances. (author). 14 refs, 7 figs

  8. Proposed energy conservation contingency plan: emergency restrictions on advertising lighting. Authorities, need, rationale, and operation

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The emergency restrictions on advertising lighting proposed in Energy Conservation Contingency Plan No. 5 of 1977 are presented. A statement is given on the need for rationale and operation of the Contingency Plan.

  9. Lighting market sourcebook for the US

    Energy Technology Data Exchange (ETDEWEB)

    Vorsatz, D.; Shown, L.; Koomey, J.; Moezzi, M.; Denver, A.; Atkinson, B.

    1997-12-01

    Throughout the United States, in every sector and building type, lighting is a significant electrical end-use. Based on the many and varied studies of lighting technologies, and experience with programs that promote lighting energy-efficiency, there is a significant amount of cost-effective energy savings to be achieved in the lighting end use. Because of such potential savings, and because consumers most often do not adopt cost-effective lighting technologies on their own, programs and policies are needed to promote their adoption. Characteristics of lighting energy use, as well as the attributes of the lighting marketplace, can significantly affect the national pattern of lighting equipment choice and ownership. Consequently, policy makers who wish to promote energy-efficient lighting technologies and practices must understand the lighting technologies that people use, the ways in which they use them, and marketplace characteristics such as key actors, product mix and availability, price spectrum, and product distribution channels. The purpose of this report is to provide policy-makers with a sourcebook that addresses patterns of lighting energy use as well as data characterizing the marketplace in which lighting technologies are distributed, promoted, and sold.

  10. Investigating Students' Mental Models about the Quantization of Light, Energy, and Angular Momentum

    Science.gov (United States)

    Didis, Nilüfer; Eryilmaz, Ali; Erkoç, Sakir

    2014-01-01

    This paper is the first part of a multiphase study examining students' mental models about the quantization of physical observables--light, energy, and angular momentum. Thirty-one second-year physics and physics education college students who were taking a modern physics course participated in the study. The qualitative analysis of data revealed…

  11. Light pollution in Valencian Natural Parks: where light not only annoys astronomers

    Science.gov (United States)

    Marco, E.; Morales Rubio, A.; Bullón, J. M.

    2013-05-01

    Street lighting of the city of Valencia produces a yellowish halo that prevents astronomical observation. Moreover, within the metropolitan area, there are three natural parks: the Parc Natural de l'Albufera, the Parc Natural del Túria and the Parc Natural de la Calderona. The light pollution affects the nighttime wildlife parks. Therefore, since 2010, a campaign is being carried out in order to collect data but also to raise awareness and reporting of the harmful effects of excessive and incorrect installation of existing luminaires. Since 2012 this study has been extended to other Valencian natural parks far from Valencia. Their sky darkness is a value to preserve.

  12. Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light

    International Nuclear Information System (INIS)

    Wang, Yunming; Tang, Bingtao; Zhang, Shufen

    2014-01-01

    Graphical abstract: Organic shape-stabilized solar thermal energy storage materials (OCSPCMs) with broadband harvesting for visible light were obtained by crosslinking and color matching, which provided a new platform for improving the efficiency of solar radiation utilization. - Highlights: • Novel phase change materials (OCSPCMs) were obtained by crosslinking and color matching. • The η of the OCSPCM was higher than 0.74 (visible light from 400 nm to 700 nm). • The phase change latent heats of the OCSPCMs were more than 120 J/g. • The OCSPCM has excellent form-stable effect during phase change process. - Abstract: Broadband visible sunlight usage and shape-stabilized effect were achieved using organic, cross-linking, and shape-stabilized phase-changed materials (OCSPCMs) with broadband visible light absorption, which were obtained by cross-linking reticulation and color matching (yellow, red, and blue) according to solar irradiation energy density. The obtained OCSPCMs exhibited excellent form-stable phase-change energy storage and broadband visible light-harvesting. Under broadband irradiation (from 400 nm to 700 nm), the light-to-heat conversion and the thermal energy storage efficiency (η > 0.74) of the OCSPCMs were significantly improved upon solar irradiation by color matching compared with those of OCSPCMs with single-band selective absorption of visible light (yellow, red, or blue). Differential scanning calorimetric results indicated that the phase change temperatures and latent heats of OCSPCMs ranged from 32.6 °C to 60.2 °C and from 120.1 J/g to 132.7 J/g, respectively. The novel materials show a reversible (more than 200 cycles) phase transition via ON/OFF switching of visible light irradiation

  13. Effects of concentrate type and chromium propionate on insulin sensitivity, productive and reproductive parameters of lactating dairy cows consuming excessive energy.

    Science.gov (United States)

    Leiva, T; Cooke, R F; Brandão, A P; Pardelli, U; Rodrigues, R O; Corrá, F N; Vasconcelos, J L M

    2017-03-01

    This experiment compared insulin sensitivity parameters, milk production and reproductive outcomes in lactating dairy cows consuming excessive energy, and receiving in a 2×2 factorial arrangement design: (1) concentrate based on ground corn (CRN; n=13) or citrus pulp (PLP; n=13), and (2) supplemented (n=14) or not (n=12) with 2.5 g/day of chromium (Cr)-propionate. During the experiment (day 0 to 182), 26 multiparous, non-pregnant, lactating Gir×Holstein cows (initial days in milk=80±2) were offered corn silage for ad libitum consumption, and individually received concentrate formulated to allow diets to provide 160% of their daily requirements of net energy for lactation. Cow BW and body condition score (BCS) were recorded weekly. Milk production was recorded daily and milk samples collected weekly. Blood samples were collected weekly before the morning concentrate feeding. Glucose tolerance tests (GTT; 0.5 g of glucose/kg of BW) were performed on days -3, 60, 120 and 180. Follicle aspiration for in vitro embryo production was performed via transvaginal ovum pick-up on days -1, 82 and 162. No treatment differences were detected (P⩾0.25) for BW and BCS change during the experiment. Within weekly blood samples, concentrations of serum insulin and glucose, as well as insulin : glucose ratio were similar among treatments (P⩾0.19), whereas CRN had less (Pinsulin : glucose ratio. Serum insulin concentrations were less (P=0.04) in CRN supplemented with Cr-propionate compared with non-supplemented CRN (8.2 v. 13.5 µIU/ml, respectively; SEM=1.7), whereas Cr-propionate supplementation did not impact (P=0.70) serum insulin within PLP cows. Milk production, milk fat and solid concentrations were similar (P⩾0.48) between treatments. However, CRN had greater (Pdairy cows consuming excessive energy did not improve insulin sensitivity, milk production and reproductive outcomes, whereas Cr-propionate supplementation only enhanced insulin sensitivity in cows receiving a

  14. Fetal Programming of Obesity: Maternal Obesity and Excessive Weight Gain

    Directory of Open Access Journals (Sweden)

    Seray Kabaran

    2014-10-01

    Full Text Available The prevalence of obesity is an increasing health problem throughout the world. Maternal pre-pregnancy weight, maternal nutrition and maternal weight gain are among the factors that can cause childhood obesity. Both maternal obesity and excessive weight gain increase the risks of excessive fetal weight gain and high birth weight. Rapid weight gain during fetal period leads to changes in the newborn body composition. Specifically, the increase in body fat ratio in the early periods is associated with an increased risk of obesity in the later periods. It was reported that over-nutrition during fetal period could cause excessive food intake during postpartum period as a result of metabolic programming. By influencing the fetal metabolism and tissue development, maternal obesity and excessive weight gain change the amounts of nutrients and metabolites that pass to the fetus, thus causing excessive fetal weight gain which in turn increases the risk of obesity. Fetal over-nutrition and excessive weight gain cause permanent metabolic and physiologic changes in developing organs. While mechanisms that affect these organs are not fully understood, it is thought that the changes may occur as a result of the changes in fetal energy metabolism, appetite control, neuroendocrine functions, adipose tissue mass, epigenetic mechanisms and gene expression. In this review article, the effects of maternal body weight and weight gain on fetal development, newborn birth weight and risk of obesity were evaluated, and additionally potential mechanisms that can explain the effects of fetal over-nutrition on the risk of obesity were investigated [TAF Prev Med Bull 2014; 13(5.000: 427-434

  15. Demonstration technology development of new hydrogen energy; Shinsuiso energy jissho gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    A phenomenon of excess heat generation through the electrolysis of heavy water using palladium metals as electrode can be recognized as new hydrogen energy. Its mechanism has been investigated for four years since FY 1993. In FY 1993, the New Hydrogen Energy Demonstration Research Center and the New Hydrogen Energy Demonstration Laboratory were organized, and the research was initiated. For the excess heat generation demonstration model tests, two types of electrolysis experimental units were constructed, and the Pd/D-based electrolysis experiments were initiated. For the measurements of excess heat using an open type electrolysis cell, there were rather large errors ranging from -13% to +7%. It is necessary to improve the accuracy. For the measurements using a fuel cell type electrolysis cell, generation of the excess heat ranging from 0% to 6% was observed. For the validity of this, it is required to confirm the long-term stability of calibration and cell components. For the correlation between the increase in absorbing rate and the generation of excess heat, results of 2 to 3% lower were obtained. 28 refs., 89 figs., 26 tabs.

  16. The systematics of the (18O,20Ne) reaction and its application to the determination of the mass excess of 122Cd

    International Nuclear Information System (INIS)

    Kruechten, B. van.

    1987-01-01

    The aim of the thesis should be the determination of the mass excess of the neutron-deficient nucleus 122 Cd with the ( 18 O, 20 Ne) reaction proved for light target nuclei (A lab ≤ 15 0 ) lay below the detection limit of 1 μb/sr it was first necessary to determine optimum kinematical conditions for the study of the reaction 124 Sn( 18 O, 20 Ne). For this purpose systematic studies of the angular distributions of the ( 18 O, 20 Ne) reaction on target nuclei with mass numbers between 28 ( 28 Si) and 208 ( 208 Pb) were performed at beam energies of 82, 102, 141, and 189 MeV. The evaluation of these measurements gave first information on the dependences of the cross sections on energy, Q-value, target mass, and angle. For the 124 Sn( 18 O, 20 Ne) 122 Cd reaction a maximum cross section of about 1 μb/sr at a beam energy 30 MeV above the Coulomb threshold (100 MeV) and a laboratory angle of 40 0 could be expected. In a new experiment this prediction could be verified. The analysis of the measured spectra yielded a Q-value for the 124 Sn( 18 O, 20 Ne) 122 Cd reaction of 0.1 ± 0.44 MeV. The mass excess of -82.08 ± 0.44 MeV calculated from this for 122 Cd is by 1.5 MeV more positive than the prediction of the Wapstra table. (orig./HSI) [de

  17. CH3 NH3 PbBr3 Perovskite Nanocrystals as Efficient Light-Harvesting Antenna for Fluorescence Resonance Energy Transfer.

    Science.gov (United States)

    Muthu, Chinnadurai; Vijayan, Anuja; Nair, Vijayakumar C

    2017-05-04

    Hybrid perovskites have created enormous research interest as a low-cost material for high-performance photovoltaic devices, light-emitting diodes, photodetectors, memory devices and sensors. Perovskite materials in nanocrystal form that display intense luminescence due to the quantum confinement effect were found to be particularly suitable for most of these applications. However, the potential use of perovskite nanocrystals as a light-harvesting antenna for possible applications in artificial photosynthesis systems is not yet explored. In the present work, we study the light-harvesting antenna properties of luminescent methylammonium lead bromide (CH 3 NH 3 PbBr 3 )-based perovskite nanocrystals using fluorescent dyes (rhodamine B, rhodamine 101, and nile red) as energy acceptors. Our studies revealed that CH 3 NH 3 PbBr 3 nanocrystals are an excellent light-harvesting antenna, and efficient fluorescence resonance energy transfer occurs from the nanocrystals to fluorescent dyes. Further, the energy transfer efficiency is found to be highly dependent on the number of anchoring groups and binding ability of the dyes to the surface of the nanocrystals. These observations may have significant implications for perovskite-based light-harvesting devices and their possible use in artificial photosynthesis systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modernisation of the energy supply and lighting systems of a school building at Erfurt; Energetische und lichttechnische Sanierung der Regelschule Erfurt

    Energy Technology Data Exchange (ETDEWEB)

    Russ, C. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Gruppe Solares Bauen

    1997-12-31

    A complete energy-oriented modernization of an Erfurt type school building in large panel construction with the aid of intelligent control systems improves thermal and lighting conditions. Thermal insulation systems and efficient glazing reduce thermal energy demand by approximately 50 per cent. Equally, light-directing systems and daylight-controlled artificial lighting cut down electric energy consumption by about 50 per cent. The executed modernization, lighting system design, and ventilation requirements are discussed in detail. (MSK) [Deutsch] Anhand einer kompletten energetischen Sanierung wird der waerme und lichttechnische Zustand fuer eine Pschlattenbauschule vom Erfurter-Schultyp unter Einbeziehung intelligenter Steuersysteme verbessert. Waermedaemmung und effiziente Verglasung reduzieren den Heiwaermebedarf um ca. 50%. Lichtlenkende Systeme und eine tageslichtabhaengig gesteuerte Kunstlichtbeleuchtung minimieren die Elektroenergie ebenfalls um etwa 50%. Im Einzelnen wird auf die energetische Sanierung, auf die lichttechnische Gestaltung sowie auf den Lueftungsbedarf eingegangen.

  19. Extending LHC coverage to light pseudoscalar mediators and coy dark sectors

    International Nuclear Information System (INIS)

    Kozaczuk, Jonathan; Martin, Travis A.W.

    2015-01-01

    Many dark matter models involving weakly interacting massive particles (WIMPs) feature new, relatively light pseudoscalars that mediate dark matter pair annihilation into Standard Model fermions. In particular, simple models of this type can explain the gamma ray excess originating in the Galactic Center as observed by the Fermi Large Area Telescope. In many cases the pseudoscalar’s branching ratio into WIMPs is suppressed, making these states challenging to detect at colliders through standard dark matter searches. Here, we study the prospects for observing these light mediator states at the LHC without exploiting missing energy techniques. While existing searches effectively probe pseudoscalars with masses between 5–14 GeV and above 90 GeV, the LHC reach can be extended to cover much of the interesting parameter space in the intermediate 20–80 GeV mass range in which the mediator can have appreciable Yukawa-like couplings to Standard Model fermions but would have escaped detection by LEP and other experiments. Models explaining the Galactic Center excess via a light pseudoscalar mediator can give rise to a promising signal in this regime through the associated production of the mediator with bottom quarks while satisfying all other existing constraints. We perform an analysis of the backgrounds and trigger efficiencies, detailing the cuts that can be used to extract the signal. A significant portion of the otherwise unconstrained parameter space of these models can be conclusively tested at the 13 TeV LHC with 100 fb −1 , and we encourage the ATLAS and CMS collaborations to extend their existing searches to this mass range.

  20. The optical/ultraviolet excess of isolated neutron stars in the resonant cyclotron scattering model

    Science.gov (United States)

    Tong, Hao; Xu, Ren-Xin; Song, Li-Ming

    2011-12-01

    X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.

  1. 34 CFR 300.16 - Excess costs.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Excess costs. 300.16 Section 300.16 Education... DISABILITIES General Definitions Used in This Part § 300.16 Excess costs. Excess costs means those costs that... for an example of how excess costs must be calculated.) (Authority: 20 U.S.C. 1401(8)) ...

  2. Cosmic PeV neutrinos and the sources of ultrahigh energy protons

    Science.gov (United States)

    Kistler, Matthew D.; Stanev, Todor; Yüksel, Hasan

    2014-12-01

    The IceCube experiment recently detected the first flux of high-energy neutrinos in excess of atmospheric backgrounds. We examine whether these neutrinos originate from within the same extragalactic sources as ultrahigh energy cosmic rays. Starting from rather general assumptions about spectra and flavors, we find that producing a neutrino flux at the requisite level through pion photoproduction leads to a flux of protons well below the cosmic-ray data at ˜1 018 eV , where the composition is light, unless pions/muons cool before decaying. This suggests a dominant class of accelerator that allows for cosmic rays to escape without significant neutrino yields.

  3. Serum Free Light Chains in Neoplastic Monoclonal Gammopathies: Relative Under-Detection of Lambda Dominant Kappa/Lambda Ratio, and Underproduction of Free Lambda Light Chains, as Compared to Kappa Light Chains, in Patients With Neoplastic Monoclonal Gammopathies.

    Science.gov (United States)

    Lee, Won Sok; Singh, Gurmukh

    2018-07-01

    Quantitative evaluation of serum free light chains is recommended for the work up of monoclonal gammopathies. Immunoglobulin light chains are generally produced in excess of heavy chains. In patients with monoclonal gammopathy, κ/λ ratio is abnormal less frequently with lambda chain lesions. This study was undertaken to ascertain if the levels of overproduction of the two light chain types and their detection rates are different in patients with neoplastic monoclonal gammopathies. Results of serum protein electrophoresis (SPEP), serum protein immunofixation electrophoresis (SIFE), urine protein electrophoresis (UPEP), urine protein immunofixation electrophoresis (UIFE), and serum free light chain assay (SFLCA) in patients with monoclonal gammopathies were examined retrospectively. The κ/λ ratios were appropriately abnormal more often in kappa chain lesions. Ratios of κ/λ were normal in about 25% of patients with lambda chain lesions in whom free homogenous lambda light chains were detectable in urine. An illustrative case suggests underproduction of free lambda light chains, in some instances. The lower prevalence of lambda dominant κ/λ ratio in lesions with lambda light chains is estimated to be due to relative under-detection of lambda dominant κ/λ ratio in about 25% of the patients and because lambda chains are not produced in as much excess of heavy chains as are kappa chains, in about 5% of the patients. The results question the medical necessity and clinical usefulness of the serum free light chain assay. UPEP/UIFE is under-utilized.

  4. District heating in sequential energy supply

    International Nuclear Information System (INIS)

    Persson, Urban; Werner, Sven

    2012-01-01

    Highlights: ► European excess heat recovery and utilisation by district heat distribution. ► Heat recovery in district heating systems – a structural energy efficiency measure. ► Introduction of new theoretical concepts to express excess heat recovery. ► Fourfold potential for excess heat utilisation in EU27 compared to current levels. ► Large scale excess heat recovery – a collaborative challenge for future Europe. -- Abstract: Increased recovery of excess heat from thermal power generation and industrial processes has great potential to reduce primary energy demands in EU27. In this study, current excess heat utilisation levels by means of district heat distribution are assessed and expressed by concepts such as recovery efficiency, heat recovery rate, and heat utilisation rate. For two chosen excess heat activities, current average EU27 heat recovery levels are compared to currently best Member State practices, whereby future potentials of European excess heat recovery and utilisation are estimated. The principle of sequential energy supply is elaborated to capture the conceptual idea of excess heat recovery in district heating systems as a structural and organisational energy efficiency measure. The general conditions discussed concerning expansion of heat recovery into district heating systems include infrastructure investments in district heating networks, collaboration agreements, maintained value chains, policy support, world market energy prices, allocation of synergy benefits, and local initiatives. The main conclusion from this study is that a future fourfold increase of current EU27 excess heat utilisation by means of district heat distribution to residential and service sectors is conceived as plausible if applying best Member State practice. This estimation is higher than the threefold increase with respect to direct feasible distribution costs estimated by the same authors in a previous study. Hence, no direct barriers appear with

  5. η-meson production in proton-proton collisions at excess energies of 40 and 72 MeV

    Science.gov (United States)

    Petrén, H.; Bargholtz, Chr.; Bashkanov, M.; Bogoslavsky, D.; Calén, H.; Clement, H.; Demirörs, L.; Ekström, C.; Fransson, K.; Fäldt, G.; Gerén, L.; Höistad, B.; Ivanov, G.; Jacewicz, M.; Jiganov, E.; Johansson, T.; Keleta, S.; Khakimova, O.; Koch, I.; Kren, F.; Kullander, S.; Kupść, A.; Lindberg, K.; Marciniewski, P.; Morosov, B.; Pauly, C.; Petukhov, Y.; Povtorejko, A.; Schönning, K.; Scobel, W.; Skorodko, T.; Stepaniak, J.; Tegnér, P.-E.; Thörngren Engblom, P.; Tikhomirov, V.; Wilkin, C.; Wolke, M.; Zabierowski, J.; Zartova, I.; Złomańczuk, J.

    2010-11-01

    The production of η mesons in proton-proton collisions has been studied using the WASA detector at the CELSIUS storage ring at excess energies of Q=40 MeV and Q=72 MeV. The η was detected through its 2γ decay in a near-4π electromagnetic calorimeter, whereas the protons were measured by a combination of straw chambers and plastic scintillator planes in the forward hemisphere. About 6.9×104 and 9.3×104 events were found at Q=40 MeV and Q=72 MeV, respectively, with background contributions of less than 5%. A simple parametrization of the production cross section in terms of low partial waves was used to evaluate the acceptance corrections. Strong evidence was found for the influence of higher partial waves. The Dalitz plots show the presence of p waves in both the pp and the η{pp} systems and the angular distributions of the η in the center-of-mass frame suggest the influence of d-wave η mesons.

  6. Energy Transfer between Conjugated Colloidal Ga2O3 and CdSe/CdS Core/Shell Nanocrystals for White Light Emitting Applications

    Directory of Open Access Journals (Sweden)

    Paul C. Stanish

    2016-02-01

    Full Text Available Developing solid state materials capable of generating homogeneous white light in an energy efficient and resource-sustainable way is central to the design of new and improved devices for various lighting applications. Most currently-used phosphors depend on strategically important rare earth elements, and rely on a multicomponent approach, which produces sub-optimal quality white light. Here, we report the design and preparation of a colloidal white-light emitting nanocrystal conjugate. This conjugate is obtained by linking colloidal Ga2O3 and II–VI nanocrystals in the solution phase with a short bifunctional organic molecule (thioglycolic acid. The two types of nanocrystals are electronically coupled by Förster resonance energy transfer owing to the short separation between Ga2O3 (energy donor and core/shell CdSe/CdS (energy acceptor nanocrystals, and the spectral overlap between the photoluminescence of the donor and the absorption of the acceptor. Using steady state and time-resolved photoluminescence spectroscopies, we quantified the contribution of the energy transfer to the photoluminescence spectral power distribution and the corresponding chromaticity of this nanocrystal conjugate. Quantitative understanding of this new system allows for tuning of the emission color and the design of quasi-single white light emitting inorganic phosphors without the use of rare-earth elements.

  7. Energy Transfer between Conjugated Colloidal Ga2O3 and CdSe/CdS Core/Shell Nanocrystals for White Light Emitting Applications

    Science.gov (United States)

    Stanish, Paul C.; Radovanovic, Pavle V.

    2016-01-01

    Developing solid state materials capable of generating homogeneous white light in an energy efficient and resource-sustainable way is central to the design of new and improved devices for various lighting applications. Most currently-used phosphors depend on strategically important rare earth elements, and rely on a multicomponent approach, which produces sub-optimal quality white light. Here, we report the design and preparation of a colloidal white-light emitting nanocrystal conjugate. This conjugate is obtained by linking colloidal Ga2O3 and II–VI nanocrystals in the solution phase with a short bifunctional organic molecule (thioglycolic acid). The two types of nanocrystals are electronically coupled by Förster resonance energy transfer owing to the short separation between Ga2O3 (energy donor) and core/shell CdSe/CdS (energy acceptor) nanocrystals, and the spectral overlap between the photoluminescence of the donor and the absorption of the acceptor. Using steady state and time-resolved photoluminescence spectroscopies, we quantified the contribution of the energy transfer to the photoluminescence spectral power distribution and the corresponding chromaticity of this nanocrystal conjugate. Quantitative understanding of this new system allows for tuning of the emission color and the design of quasi-single white light emitting inorganic phosphors without the use of rare-earth elements. PMID:28344289

  8. Energy-efficient multicast traffic grooming strategy based on light-tree splitting for elastic optical networks

    Science.gov (United States)

    Liu, Huanlin; Yin, Yarui; Chen, Yong

    2017-07-01

    In order to address the problem of optimizing the spectrum resources and power consumption in elastic optical networks (EONs), we investigate the potential gains by jointly employing the light-tree splitting and traffic grooming for multicast requests. An energy-efficient multicast traffic grooming strategy based on light-tree splitting (EED-MTGS-LS) is proposed in this paper. Firstly, we design a traffic pre-processing mechanism to decide the multicast requests' routing order, which considers the request's bandwidth requirement and physical hops synthetically. Then, by dividing a light-tree to some sub-light-trees and grooming the request to these sub-light-trees, the light-tree sharing ratios of multicast requests can be improved. What's more, a priority scheduling vector is constructed, which aims to improve the success rate of spectrum assignment for grooming requests. Finally, a grooming strategy is designed to optimize the total power consumption by reducing the use of transponders and IP routers during routing. Simulation results show that the proposed strategy can significantly improve the spectrum utilization and save the power consumption.

  9. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    Science.gov (United States)

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-01-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application. PMID:27550827

  10. Empirical Study of How Traffic Intensity Detector Parameters Influence Dynamic Street Lighting Energy Consumption: A Case Study in Krakow, Poland

    Directory of Open Access Journals (Sweden)

    Igor Wojnicki

    2018-04-01

    Full Text Available The deployment of dynamic street lighting, which adjusts lighting levels to fulfill particular needs, leads to energy savings. These savings contribute to the overall lighting infrastructure maintenance cost. Yet another contribution is the cost of traffic intensity data. The data is read directly from sensor systems or intelligent transportation systems (ITSs. The more frequent the readings are, the more costly they become, because of hardware capabilities, data transfer and software license costs, among others. The paper investigates a relationship between the frequency of readings, in particular the averaging window size and step, and achieved energy savings. It is based on a simulation, taking into account a representative part of a city and traffic intensity data, which span over a period of one year. While the energy consumption reduction is simulated, all data, including each luminaire power setting, induction loop locations and street characteristics, come from a representative sample of the city of Krakow, Poland. Controlling the power settings complies with the lighting standard CEN/TR 13201. Analysis of the outcomes indicates that the shorter the window size or step are, the more energy saving that is available. In particular, for the previous standard CEN/TR 13201 2004, having the window size and step at 15 min results in 26.75% of energy saving, while reducing these values to 6 min provides 27%. Savings are more profound for the current standard (CEN/TR 13201 2014, assuming a 15 min size and step results in 47.43%, while having a 6 min size and step provides 47.69%. The results can serve as a guideline for identifying the economic viability of dynamic lighting control systems. Additionally, it can be observed that the current lighting standard provides far greater potential for dynamic control then the previous standard.

  11. Luminaires for Advanced Lighting in Education

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. Lynn [RTI International, Research Triangle Park, NC (United States)

    2017-06-29

    Evolving education methods and greater use of technology in the classroom are dictating the need to rethink facility designs, including classroom lighting. Advances in LED-based lighting technology have created the possibility of lighting systems that are not only cost effective and energy efficient, but also color-tunable and as durable as other facility infrastructures (a 20-30 year life expectancy). Thus, there is the opportunity that the modern lighting system can be used by educators as a tool in their teaching strategy. To meet this need, RTI International and Finelite, Inc. teamed to develop and test the Next Generation Integrated Classroom Lighting System (NICLS). The NICLS technology incorporates a high performance, color-tunable light engine into new luminaire designs (e.g., pendant, direct-indirect, downlight, troffers) that are acceptable for use in classrooms. During this project, we successfully demonstrated that the NICLS technology achieves exceptional performance and exceeds all DOE goals for the classroom of the future, including: Luminous efficacy value for NICLS luminaires in excess of 125 lpw at all CCT values; TWL range of 2,700 K to 6,500 K while maintaining a CRI of 82 or higher at all values; Capability for full-range dimming (100% to 1%) at all CCT values with flicker levels below industry guidelines; Performance of the lighting system in a classroom mock-up, incorporating daylight and occupancy sensing to provide automatic control of lighting zones to further reduce energy consumption; Rated lifetime on the system exceeding 50,000 hours with a lumen maintenance of at least 85% at 50,000 hours; and Teacher-focused UI located at the front of the classroom to operate the lighting system. A smartphone-based UI is also available to accommodate teacher movement in the classroom. A critical element of developing this technology is designing the user interface to be compatible with modern teaching methods, including increased use of icons and

  12. Multifunctional Device based on phosphor-piezoelectric PZT: lighting, speaking, and mechanical energy harvesting.

    Science.gov (United States)

    Lee, Sunghoon; Kang, Taewook; Lee, Wunho; Afandi, Mohammad M; Ryu, Jongho; Kim, Jongsu

    2018-01-10

    We demonstrated the tri-functional device based on all powder-processing methods by using ZnS powder as phosphor layer and piezoelectric material as dielectric layer. The fabricated device generated the electroluminescent (EL) light from phosphor and the sound from piezoelectric sheet under a supply of external electric power, and additionally harvested the reverse-piezoelectric energy to be converted into EL light. Under sinusoidal applied voltage, EL luminances were exponentially increased with a maximum luminous efficiency of 1.3 lm/W at 40 V and 1,000 Hz, and sound pressure levels (SPLs) were linearly increased. The EL luminances were linearly dependent on applied frequency while the SPLs showed the parabolic increase behavior below 1,000 Hz and then the flat response. The temperature dependence on EL luminances and SPLs was demonstrated; the former was drastically increased and the latter was slightly decreased with the increase of temperature. Finally, as an energy harvesting application, the piezoelectric-induced electroluminescence effect was demonstrated by applying only mechanical pressure to the device without any external electric power.

  13. Assessment of building facade performance in terms of daylighting and the associated energy consumption in architectural spaces: Vertical and horizontal shading devices for southern exposure facades

    Energy Technology Data Exchange (ETDEWEB)

    Alzoubi, Hussain H.; Al-Zoubi, Amneh H. [Department of Architecture, Jordan University of Science and Technology, Irbid 22110 (Jordan)

    2010-08-15

    This paper examines the effect of vertical and horizontal shading devices on the quality of daylight in buildings and the associated energy saving. Excessive daylight in architectural spaces contributes negatively to the energy consumption in buildings. Blinds and shading devices are good solutions to attenuate the surplus amount of daylight in spaces. Accordingly, this study evaluates the effect of shading devices on the amount of light flux and the associated solar energy in buildings. It estimates the energy consumption attributed to lighting spaces for three common positions of shading devices. Computer simulation strategy was undertaken to correlate the illuminance level in spaces with room geometry and architectural shading elements. The Holophane model for lighting calculations was used to estimate the average illuminance level on workplane and correlate it with the expected saving energy in buildings. The study concluded that there is an optimal orientation for shading devices that keeps the internal illuminance level within the acceptable range with minimum amount of solar heat gain. (author)

  14. Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase

    Directory of Open Access Journals (Sweden)

    Kim Jaoon YH

    2012-01-01

    Full Text Available Abstract Background Solar energy is the ultimate energy source on the Earth. The conversion of solar energy into fuels and energy sources can be an ideal solution to address energy problems. The recent discovery of proteorhodopsin in uncultured marine γ-proteobacteria has made it possible to construct recombinant Escherichia coli with the function of light-driven proton pumps. Protons that translocate across membranes by proteorhodopsin generate a proton motive force for ATP synthesis by ATPase. Excess protons can also be substrates for hydrogen (H2 production by hydrogenase in the periplasmic space. In the present work, we investigated the effect of the co-expression of proteorhodopsin and hydrogenase on H2 production yield under light conditions. Results Recombinant E. coli BL21(DE3 co-expressing proteorhodopsin and [NiFe]-hydrogenase from Hydrogenovibrio marinus produced ~1.3-fold more H2 in the presence of exogenous retinal than in the absence of retinal under light conditions (70 μmole photon/(m2·s. We also observed the synergistic effect of proteorhodopsin with endogenous retinal on H2 production (~1.3-fold more with a dual plasmid system compared to the strain with a single plasmid for the sole expression of hydrogenase. The increase of light intensity from 70 to 130 μmole photon/(m2·s led to an increase (~1.8-fold in H2 production from 287.3 to 525.7 mL H2/L-culture in the culture of recombinant E. coli co-expressing hydrogenase and proteorhodopsin in conjunction with endogenous retinal. The conversion efficiency of light energy to H2 achieved in this study was ~3.4%. Conclusion Here, we report for the first time the potential application of proteorhodopsin for the production of biohydrogen, a promising alternative fuel. We showed that H2 production was enhanced by the co-expression of proteorhodopsin and [NiFe]-hydrogenase in recombinant E. coli BL21(DE3 in a light intensity-dependent manner. These results demonstrate that E. coli

  15. Teager-Kaiser Energy and Higher-Order Operators in White-Light Interference Microscopy for Surface Shape Measurement

    Directory of Open Access Journals (Sweden)

    Abdel-Ouahab Boudraa

    2005-10-01

    Full Text Available In white-light interference microscopy, measurement of surface shape generally requires peak extraction of the fringe function envelope. In this paper the Teager-Kaiser energy and higher-order energy operators are proposed for efficient extraction of the fringe envelope. These energy operators are compared in terms of precision, robustness to noise, and subsampling. Flexible energy operators, depending on order and lag parameters, can be obtained. Results show that smoothing and interpolation of envelope approximation using spline model performs better than Gaussian-based approach.

  16. Excess heat production in Pd/D during periodic pulse discharge current in various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Karabut, A.B. [FSUE ' LUCH' , 24 Zheleznodorozhnaya St., Podolsk, Moscow Region 142100 (Russian Federation)

    2006-07-01

    Experimental date from low-energy nuclear reactions (LENR) in condensed media are presented. The nuclear reactions products were found in solid cathode media used in glow discharge. Apparently, the nuclear reactions were initiated when bombarding the cathode surface by plasma ions with the energy of 1.0 - 2.0 keV. Excess heat from a high current glow discharge reaction in D{sub 2}, Xe, and Kr using cathodes already charged with preliminary deuterium-charged Pd and Ti cathode samples are given. Excess heat up to 10-15 W and efficiency up to 130% were recorded under the experiments for Pd cathode samples in D{sub 2} discharge. Excess heat up to 5 W and efficiency up to 150% were recorded for Pd cathodes that were charged with deuterium before the run, in Xe and Kr discharges. At the same time excess heat was not observed for pure Pd cathode samples in Xe and Kr discharges. The formation of impurity nuclides ({sup 7}Li, {sup 13}C, {sup 15}N, {sup 20}Ne, {sup 29}Si, {sup 44}Ca, {sup 48}Ca, {sup 56}Fe, {sup 57}Fe, {sup 59}Co, {sup 64}Zn, {sup 66}Zn, {sup 75}As, {sup 107}Ag, {sup 109}Ag, {sup 110}Cd, {sup 111}Cd, {sup 112}Cd, {sup 114}Cd and {sup 115}In) with 'the efficiency up to 10{sup 13} at./s was recorded. The isotopic ratios of these new nuclides were quite different from the natural ratios. Soft X-ray radiation from the solid-state cathode with the intensity up to 0.01 Gy/s was recorded in experiments with discharges in H{sub 2}, D{sub 2}, Ar, Xe, and Kr. The X-ray radiation was observed in bursts of up to 10{sup 6} photons, with up to 10{sup 5} bursts per second while the discharge was formed and within 100 ms after turning off the discharge current. The results of the X-ray radiation registration showed that the excited energy levels have a lifetime up to 100 ms or more, and the energy of 1.2 - 2.5 keV. A possible mechanism for producing excess heat and nuclear transmutation reactions in the solid medium with the excited energy levels is considered.

  17. Light and energy - daylight measurements

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Jens; Logadottir, A.; Traberg-Borup, S.; Barrie-Nielsen, K.

    2009-07-01

    All measurements where conducted in the spring of 2007, except the Interpane panel. The solar cell panels have been evaluated by three performance indicators to assess the daylight quantity within the room and the systems ability to maintain view to the outside. In the study, we used two performance indicators to assess the daylight quantity within the room: 1. the daylight factor (overcast sky) 2. the relative work plane illuminance (clear sky condition) Overcast sky: In general, all panels provided less daylight than the recommended requirement in the Danish Building Regulation of 2% on the work plane. This will most likely result in additional need for electric lighting. However, larger window areas and more parts of the facade with clear unobstructed glass may be one solution. Clear sky: In general, all panels provided less interior light levels than the two reference systems in the back of the room. Almost all systems aloud more or less direct sunlight in the window perimeter through the clear openings and additional needs for some kind of shading device is to be expected. Some systems blocked a large portion of the light in the majority of the room, and additional electric light in this part of the room may be needed. Only one performance indicator where used to describe the quality of the panels. View: In general, all panels, except two, obstruct the view significantly and cause figure/background confusion for a view position close to the window and the discrepancies of colour judgements. Only two systems provided a fairly clear view to the outside without to much distortion of the view. (au)

  18. Light and energy - solar cells in transparent facades. Final report; Lys og energi - solceller i transparente facader. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The overall purpose with the project 'LIGHT AND ENERGY - solar cells in transparent facades' is to demonstrate and disseminate the potentials for the application of light-filtering solar cells as multi-functional components, which meets the architectural objectives while contributing to a good indoor climate, a suitable quality of lighting indoor and at the same time produces electricity. The project was divided into six activities. The first activity 'zooms in' on the light-filtering solar cells on the market today. The following activities gradually 'zoom out' from the solar cell itself to the building component and ends up in the facade and the room behind. This order - which largely reflects the chronological development of the project - is repeated in the final project report to ensure the best possible overview. The characterisation in the different activities has been a combination of technical measurements, simulations, calculations and a thorough architectural evaluation of solar cell component, facade and room for attain an overall, interprofessional evaluation of the solar cell panels. It is important to stress that the basis of the project is the solar cell products available on the market today and In the near future. The possibilities and ideas have been evaluated and documented using mock-ups in 1:1 scale since the individual components have completely other qualities when they are integrated in a facade - the platform of this project. These models in full scale are a possibility to register and experience the character of the light inside out and under different light settings. It has been important to think of the solar cell filter as a part of the architecture instead of a replacement for windows and actively use the light-filtering features as a possibility in new facade designs - a filter which in combination with the completely transparent glass and completely light-blocking materials opens up for new possibilities

  19. Energy Saving by Chopping off Peak Demand Using Day Light

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Maitra

    2011-08-01

    Full Text Available An artificial intelligent technique has been implemented in this research using real time datas to calculate how much energy can be chopped from peak load demand. The results are based on real time data that are taken from power delivering centers. These datas do reflect the present condition of power and a solution to those critical conditions during the peak period. These are done in such a way such that helps in judicious scheduling of load. The time based load scheduling has been done so as to understand the basic criteria for solving power crisis during morning peak and early evening peak. The sunray availability and percentage of load that will use day light saving (DLS technique has been taken into account in this work. The results shows that about 0.5% to 1% of load can be shedded off from the peak load period which otherwise is reduction of power. Thus it otherwise also means that an equivalent amount of energy is saved which amounts to a large saving of national money. This result is obtained on monthly and even daily basis. Thus this paper justifies DLS gives a new renewable technique to save energy.

  20. Graphene oxide quantum dot-sensitized porous titanium dioxide microsphere: Visible-light-driven photocatalyst based on energy band engineering.

    Science.gov (United States)

    Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming

    2017-07-15

    We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.