WorldWideScience

Sample records for ex-situ anaerobic bioremediation

  1. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF TNT-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the findings of the second evaluation of the J.R. Simplot Ex-situ Bioremediation Technology also known as the Simplot Anaerobic Bioremediation (SABRE™) process. This technology was developed by the J.R. Simplot Company to biologically degrade nitroaromatic...

  2. Groundbreaking technology: in-situ anaerobic bioremediation for treatment of contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Fernandes, K.A.

    2002-01-01

    Anaerobic in-situ bioremediation is a technique often used to cleanse contaminated soil and groundwater. 'Anaerobic in-situ bioremediation' is a phrase with distinct terms all having relevance in the application of this technique. Anaerobic implies the absence of dissolved oxygen, while 'in-situ' simply means that the environmental cleansing occurs with out removing, displacing, or significantly disturbing the specimen or surrounding area. 'Bioremediation' is a term used to describe the biological use of microbes or plants to detoxify the environment. In order to properly implement this complex process, one must have an understanding of microbiology, biochemistry, genetics, metabolic processes, and structure and function of natural microbial communities. (author)

  3. Enhanced ex-situ bioremediation of soil contaminated with ...

    African Journals Online (AJOL)

    contaminated soil. Thus, the objective of this study was to investigate the feasibility and effectiveness of using electrical biostimulation processes to enhance ex-situ bioremediation of soils contaminated with organic pollutants. The effect of ...

  4. BIOREMEDIATION OF CONTAMINATED WASTE BY CADMIUM (Cd IN WATERS USING INDIGEN BACTERIUM WITH EX-SITU WAY

    Directory of Open Access Journals (Sweden)

    Titik Wijayanti

    2017-10-01

    Full Text Available The bioremediation technique for a contaminated liquid waste of heavy metals using indigenous bacteria is a convenient alternative to steps continues to be developed. The research aims to find out the effectiveness of an indigenous bacterial consortium in bioremediation of contaminated liquid waste by cadmium by ex-situ. Experiments were arranged in RAL made in ex-situ where a liquid waste industry was given five treatments, namely control and four indigenous bacterial consortia (A, D, E, and J obtained from the isolation of bacteria originating from cadmium-contaminated of waste in Pasuruan district. Furthermore conducted observations of BOD5, COD, d.o. and Cd for seven days to find out the effectiveness of bioremediation. The results showed the four indigenous bacteria consortia have the bioremediation ability to reduce levels of cadmium, BOD5, COD, and increasing levels of DO. Indigenous bacterial consortia D has the best ability of liquid industrial waste bioremediation by ex-situ. Indigenous bacterial consortia J has the best of capacity reduction levels of cadmium, then the other of indigenous bacterial consortia.

  5. In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones

    Science.gov (United States)

    2016-02-11

    FINAL REPORT In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones SERDP Project ER-2306...volatile organic compound (CVOCs), ethene and ethane in groundwater at Raritan Arsenal Area 18C after in situ bioremediation . 4 List of...aquifers, the bioremediation approach most commonly used for chlorinated solvents. The ability of methanotrophs to biodegrade 1,4-dioxane was

  6. Ex-situ bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Minier, M.R.

    1994-01-01

    The use of stress acclimated bacteria and nutrient supplements to enhance the biodegradation of petroleum contaminated soil can be a cost effective and reliable treatment technology to reduce organic contaminant levels to below established by local, state, and federal regulatory clean-up criteria. This paper will summarize the results of a field study in which 12,000 yds 3 of petroleum contaminated soil was successfully treated via ex-situ bioremediation and through management of macro and micronutrient concentrations, as well as, other site specific environmental factors that are essential for optimizing microbial growth

  7. Performance parameters for ex situ bioremediation systems

    International Nuclear Information System (INIS)

    Wade, D.R.

    1994-01-01

    The potential of biotechnology to reduce the concentration of undesirable hydrocarbons, i.e. gasoline and diesel fuel pollution, is very attractive due to its apparent benign nature and potentially low cost. When good industrial practices are used in the design, construction, and administration of the bioremediation system, the performance of the technology can be predicted and monitored. Some of the principles behind the design, construction, and operation of ex situ bioremediation systems and facilities are described. Biological considerations include creation of a favorable environment for hydrocarbon degrading bacteria in the soils, selection of bacteria, and bacterial byproducts. Chemical considerations include nutrient augmentation, oxygen availability, and the use of surfactants and dispersants. Physical considerations include soil textures and structures, soil temperatures, moisture content, and the use of bulking agents. Experience has shown that indigenous microbes will usually be sufficient to implement bioremediation of petroleum hydrocarbons if encouraged through the application of fertilizers. The introduction of additional carbon sources may be considered if rapid bioremediation rates are desired or if soil conditions are poor. Adjustments to a bioremediation system may be made to enhance the performance of the bacterial community by introducing bulking agents and external temperature sources. Surfactants may be helpful in promoting bacteria-hydrocarbon contact and may be particularly useful for mobilization of free-phase hydrocarbons. 7 refs

  8. BIOREMEDIATION OF CONTAMINATED WASTE BY CADMIUM (Cd) IN WATERS USING INDIGEN BACTERIUM WITH EX-SITU WAY

    OpenAIRE

    Titik Wijayanti; Dinna Eka Graha Lestari

    2017-01-01

    The bioremediation technique for a contaminated liquid waste of heavy metals using indigenous bacteria is a convenient alternative to steps continues to be developed. The research aims to find out the effectiveness of an indigenous bacterial consortium in bioremediation of contaminated liquid waste by cadmium by ex-situ. Experiments were arranged in RAL made in ex-situ where a liquid waste industry was given five treatments, namely control and four indigenous bacterial consortia (A, D, E, and...

  9. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Hu, S.S.; Buckler, M.J.

    1993-01-01

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  10. In Situ Bioremediation of Energetic Compounds in Groundwater

    Science.gov (United States)

    2012-05-01

    negligible. Thus, this project clearly shows that in situ bioremediation of explosives in groundwater using active-passive cosubstrate addition can...Arlington, NJ, offices), the National Research Council (NRC) Biotechnology Research Institute (Montreal, Canada) and the Environmental Technology...NDAB are unlikely to accumulate during in situ anaerobic bioremediation explosives using cheese whey as a cosubstrate. 7.4 ADEQUATE DISTRIBUTION OF

  11. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF DINOSEB-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY REPORT

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the J.R. Simplot Ex-Situ Bioremediation Technology on the degradation of dinoseb (2-set-butyl-4,6-dinitrophenol) an agricultural herbicide. This technology was developed by the J.R. Simplot Company (Simplot) to biologically ...

  12. Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater

    Science.gov (United States)

    Turick, Charles E.; Apel, William W.

    1997-10-28

    A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed.

  13. Testing of in situ and ex situ bioremediation approaches for an oil-contaminated peat bog following a pipeline break

    International Nuclear Information System (INIS)

    Wilson, J.J.; Lee, D.W.; Yeske, B.M.; Kuipers, F.

    2000-01-01

    The feasibility of treating a 1985 pipeline spill of light Pembina Cardium crude oil at a bog near Violet Grove, Alberta was discussed. Pembina Pipeline Corporation arranged for a treatability test to be conducted on oil-contaminated sphagnum peat moss from the site to determine effective in situ or ex situ remediation options for the site. The test was used to evaluate the biodegradation potential of contaminants. Four tests were designed to simulate field different field treatment approaches and to collect critical data on toxicity and leachability of the peat moss. The tests included a bioslurry test, a soil microcosm test, an aerated water saturated peat column test, and a standard toxicity characteristic leachate potential test. The first three tests gave similar results of at least 74 per cent biodegradation of the residual crude oil on the peat solids and no residual toxicity as measured by the Microtox Assay. It was determined that both in situ bioremediation using an aerated water injection system or an ex situ landfarming approach would achieve required criteria and no fertilizers would be necessary to maintain active bioremediation. The new gas-liquid reactor (GLR) aeration technology used in these tests creates a constant supply of hyperoxygenated water prior to column injection. The continuous release of tiny air bubbles maximizes air surface area and increases the gas transfer rates. 3 tabs., 3 figs

  14. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  15. Ex-situ bioremediation of U(VI from contaminated mine water using Acidithiobacillus ferrooxidans strains

    Directory of Open Access Journals (Sweden)

    Maria eRomero-Gonzalez

    2016-05-01

    Full Text Available The ex-situ bioremoval of U(VI from contaminated water using Acidithiobacillus ferrooxidans strain 8455 and 13538 was studied under a range of pH and uranium concentrations. The effect of pH on the growth of bacteria was evaluated across the range 1.5 – 4.5 pH units. The respiration rate of At. ferrooxidans at different U(VI concentrations was quantified as a measure of the rate of metabolic activity over time using an oxygen electrode. The biosorption process was quantified using a uranyl nitrate solution, U-spiked growth media and U-contaminated mine water. The results showed that both strains of At. ferrooxidans are able to remove U(VI from solution at pH 2.5 – 4.5, exhibiting a buffering capacity at pH 3.5. The respiration rate of the micro-organism was affected at U(VI concentration of 30 mg L-1. The kinetics of the sorption fitted a pseudo-first order equation, and depended on the concentration of U(VI. The KD obtained from the biosorption experiments indicated that strain 8455 is more efficient for the removal of U(VI. A bioreactor designed to treat a solution of 100 mg U(VI L-1 removed at least 50% of the U(VI in water. The study demonstrated that At. ferrooxidans can be used for the ex-situ bioremediation of U(VI contaminated mine water.

  16. Ex situ bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Ta-Chen; Pan, Po-Tsen; Cheng, Sheng-Shung

    2010-04-15

    An innovative bioprocess method, Systematic Environmental Molecular Bioremediation Technology (SEMBT) that combines bioaugmentation and biostimulation with a molecular monitoring microarray biochip, was developed as an integrated bioremediation technology to treat S- and T-series biopiles by using the landfarming operation and reseeding process to enhance the bioremediation efficiency. After 28 days of the bioremediation process, diesel oil (TPH(C10-C28)) and fuel oil (TPH(C10-C40)) were degraded up to approximately 70% and 63% respectively in the S-series biopiles. When the bioaugmentation and biostimulation were applied in the beginning of bioremediation, the microbial concentration increased from approximately 10(5) to 10(6) CFU/g dry soil along with the TPH biodegradation. Analysis of microbial diversity in the contaminated soils by microarray biochips revealed that Acinetobacter sp. and Pseudomonas aeruginosa were the predominant groups in indigenous consortia, while the augmented consortia were Gordonia alkanivorans and Rhodococcus erythropolis in both series of biopiles during bioremediation. Microbial respiration as influenced by the microbial activity reflected directly the active microbial population and indirectly the biodegradation of TPH. Field experimental results showed that the residual TPH concentration in the complex biopile was reduced to less than 500 mg TPH/kg dry soil. The above results demonstrated that the SEMBT technology is a feasible alternative to bioremediate the oil-contaminated soil. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  17. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    Science.gov (United States)

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Effects of Triton X-100 and Quillaya Saponin on the ex situ bioremediation of a chronically polychlorobiphenyl-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Fava, F.; Di Gioia, D. [Bologna Univ. (Italy). Dept. of Applied Chemistry and Material Science

    1998-12-31

    The possibility of enhancing the ex situ bioremediation of a chronically polychlorinated biphenyl (PCB)-contaminated soil by using Triton X-100 or Quillaya Saponin, a synthetic and a biogenic surfactant, respectively, was studied. The soil, which contained about 350 mg/kg of PCBs and indigenous aerobic bacteria capable of growing on biphenyl or on monochlorobenzoic acids, was amended with inorganic nutrients and biphenyl, saturated with water and treated in aerobic batch slurry- and fixed-phase reactors. Triton X-100 and Quillays Saponin were added to the reactors at a final concentration of 10 g/l at the 42nd day of treatment, and at the 43rd and 100th day, respectively. Triton X-100 was not metabolised by the soil microflora and it exerted inhibitory effects on the indigenous bacteria. Quillaya Saponin, on the contrary, was readily metabolised by the soil microflora. Under slurry-phase conditions, Triton X-100 negatively influenced the soil bioremediation process by affecting the availability of the chlorobenzoic acid degrading indigenous bacteria, wheres Quillays Saponin slightly enhanced the biological degradation and dechlorination of the soil PCBs. In the fixed-phase reactors, where both the surfactant availability and the mixing of the soil were lower, Triton X-100 did not exert inhibitory effects on the soil biomass and enhanced significantly the soil PCB depletion, whereas Quillays Saponin did not influence the bioremediation process. (orig.)

  19. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  20. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    International Nuclear Information System (INIS)

    Cassidy, Daniel P.; Srivastava, Vipul J.; Dombrowski, Frank J.; Lingle, James W.

    2015-01-01

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks

  1. Efficacy monitoring of in situ fuel bioremediation

    International Nuclear Information System (INIS)

    Mueller, J.; Borchert, S.; Heard, C.

    1996-01-01

    The wide-scale, multiple-purpose use of fossil fuels throughout the industrialized world has resulted in the inadvertent contamination of myriad environments. Given the scope and magnitude of these environmental contamination problems, bioremediation often represents the only practical and economically feasible solution. This is especially true when depth of contamination, magnitude of the problem, and nature of contaminated material preclude other remedial actions, short of the no-response alternative. From the perspective, the effective, safe and scientifically valid use of in situ bioremediation technologies requires cost-efficient and effective implementation strategies in combination with unequivocal approaches for monitoring efficacy of performance. Accordingly, with support from the SERDP program, the authors are field-testing advanced in situ bioremediation strategies and new approaches in efficacy monitoring that employ techniques instable carbon and nitrogen isotope biogeochemistry. One field demonstration has been initiated at the NEX site in Port Hueneme, CA (US Navy's National Test Site). The objectives are: (1) to use stable isotopes as a biogeochemical monitoring tool for in situ bioremediation of refined petroleum (i.e., BTEX), and (2) to use vertical groundwater circulation technology to effect in situ chemical containment and enhanced in situ bioremediation

  2. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  3. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A.

    1993-01-01

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  4. The use of vinasse as an amendment to ex-situ bioremediation of soil and groundwater contaminated with diesel oil

    Directory of Open Access Journals (Sweden)

    Adriano Pinto Mariano

    2009-08-01

    Full Text Available This work investigated the possibility of using vinasse as an amendment in ex-situ bioremediation processes. Groundwater and soil samples were collected at petrol stations. The soil bioremediation was simulated in Bartha biometer flasks, used to measure the microbial CO2 production, during 48 days, where vinasse was added at a concentration of 33 mL.Kg-1of soil. Biodegradation efficiency was also measured by quantifying the total petroleum hydrocarbons (TPH by gas chromatography. The groundwater bioremediation was carried out in laboratory experiments simulating aerated (bioreactors and not aerated (BOD flasks conditions. In both the cases, the concentration of vinasse was 5 % (v/v and different physicochemical parameters were evaluated during 20 days. Although an increase in the soil fertility and microbial population were obtained with the vinasse, it demonstrated not to be adequate to enhance the bioremediation efficiency of diesel oil contaminated soils. The addition of the vinasse in the contaminated groundwaters had negative effects on the biodegradation of the hydrocarbons, since vinasse, as a labile carbon source, was preferentially consumed.Este trabalho investigou a possibilidade de se usar a vinhaça como um agente estimulador de processos de biorremediação ex-situ. Amostras de água subterrânea e solo foram coletadas em três postos de combustíveis. A biorremediação do solo foi simulada em frascos de Bartha, usados para medir a produção de CO2, durante 48 dias, onde a vinhaça foi adicionada a uma concentração de 33 mL.Kg-1 de solo. A eficiência de biodegradação também foi medida pela quantificação de hidrocarbonetos totais de petróleo (TPH por cromatografia gasosa. A biorremediação da água subterrânea foi realizada em experimentos laboratoriais simulando condições aeradas (bioreatores e não aeradas (frascos de DBO. Em ambos os casos, a concentração de vinhaça foi de 5 % (v/v e diferentes parâmetros f

  5. In situ bioremediation for the Hanford carbon tetrachloride plume. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-04-01

    The 200 Area at Hanford (also called the Central Plateau) contains approximately 817 waste sites, 44 facilities to be demolished, and billions of gallons of contaminated groundwater resulting from chemical processing plants and associated waste facilities (e.g., waste tanks). From 1955 to 1973, carbon tetrachloride, nitrate, and other materials were discharged to subsurface liquid waste disposal facilities in the 200 Area. As much as 600,000 kilograms of carbon tetrachloride may have entered the soil column and a portion of this has contaminated the underlying aquifer. In Situ Bioremediation for the Hanford Carbon Tetrachloride Plume (ISB), which is the term used in this report for an in situ treatment process using indigenous micro-organisms with a computer based Accelerated Bioremediation Design Tool (ABDT), remediates groundwater contaminated with volatile organic compounds (VOCs) and nitrates under anaerobic conditions. ISB involves the injection of nutrients into the groundwater and subsequent extraction and re-injection of the groundwater to provide nutrient distribution in the aquifer

  6. Comparative Demonstration of Active and Semi-Passive In Situ Bioremediation Approaches for Perchlorate Impacted Groundwater: Active In Situ Bioremediation Demonstration

    Science.gov (United States)

    2013-04-01

    http://www.itrcweb.org/Documents/PERC-1.pdf • ITRC Perchlorate Team. 2008. Remediation Technologies for Perchlorate Contamination in Water and Soil ...pdf • Solutions EIS. 2006. Protocol for Enhanced In Situ Bioremediation Using Emulsified Vegetable Oil . Prepared for ESTCP. May 2006. • http...Air Force. 2007. Protocol for In Situ Bioremediation of Chlorinated Solvents Using Edible Oil . Prepared for AFCEC - Environmental Science Division

  7. In-situ bioremediation of TCE-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Travis, B.J. [Los Alamos National Lab., NM (United States); Rosenberg, N.D. [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A barrier to wider use of in situ bioremediation technology is that results are often variable and difficult to predict. In situ bioremediation has shown some very notable and well publicized successes, but implementation of the technology is complex. An incomplete understanding of the effects of variable site characteristics and the lack of adequate tools to predict and measure success have made the design, control and validation of bioremediation more empirical than desired. The long-term objective of this project is to improve computational tools used to assess and optimize the expected performance of bioremediation at a site. An important component of the approach is the explicit inclusion of uncertainties and their effect on the end result. The authors have extended their biokinetics model to include microbial competition and predation processes. Predator species can feed on the microbial species that degrade contaminants, and the simulation studies show that species interactions must be considered when designing in situ bioremediation systems. In particular, the results for TCE indicate that protozoan grazing could reduce the amount of biodegradation by about 20%. These studies also indicate that the behavior of barrier systems can become complex due to predator grazing.

  8. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    Science.gov (United States)

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Design Of Bioremediation Systems For Groundwater (Aerobic and Anaerobic Plus Representative Case Studies)

    Science.gov (United States)

    The attached presentation discusses the fundamentals of bioremediation in the subsurface. The basics of aerobic, cometabolic, and anaerobic bioremediation are presented. Case studies from the Delaware Sand & Gravel Superfund Site, Dover Cometabolic Research Project and the SABR...

  10. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects.

    Science.gov (United States)

    Azubuike, Christopher Chibueze; Chikere, Chioma Blaise; Okpokwasili, Gideon Chijioke

    2016-11-01

    Environmental pollution has been on the rise in the past few decades owing to increased human activities on energy reservoirs, unsafe agricultural practices and rapid industrialization. Amongst the pollutants that are of environmental and public health concerns due to their toxicities are: heavy metals, nuclear wastes, pesticides, green house gases, and hydrocarbons. Remediation of polluted sites using microbial process (bioremediation) has proven effective and reliable due to its eco-friendly features. Bioremediation can either be carried out ex situ or in situ, depending on several factors, which include but not limited to cost, site characteristics, type and concentration of pollutants. Generally, ex situ techniques apparently are more expensive compared to in situ techniques as a result of additional cost attributable to excavation. However, cost of on-site installation of equipment, and inability to effectively visualize and control the subsurface of polluted sites are of major concerns when carrying out in situ bioremediation. Therefore, choosing appropriate bioremediation technique, which will effectively reduce pollutant concentrations to an innocuous state, is crucial for a successful bioremediation project. Furthermore, the two major approaches to enhance bioremediation are biostimulation and bioaugmentation provided that environmental factors, which determine the success of bioremediation, are maintained at optimal range. This review provides more insight into the two major bioremediation techniques, their principles, advantages, limitations and prospects.

  11. Microbes safely, effectively bioremediate oil field pits

    International Nuclear Information System (INIS)

    Shaw, B.; Block, C.S.; Mills, C.H.

    1995-01-01

    Natural and augmented bioremediation provides a safe, environmental, fast, and effective solution for removing hydrocarbon stains from soil. In 1992, Amoco sponsored a study with six bioremediation companies, which evaluated 14 different techniques. From this study, Amoco continued using Environmental Protection Co.'s (EPC) microbes for bioremediating more than 145 sites near Farmington, NM. EPC's microbes proved effective on various types of hydrocarbon molecules found in petroleum stained soils from heavy crude and paraffin to volatiles such as BTEX (benzene, toluene, ethylbenzene, xylene) compounds. Controlled laboratory tests have shown that these microbes can digest the hydrocarbon molecules with or without free oxygen present. It is believed that this adaptation gives these microbes their resilience. The paper describes the bioremediation process, environmental advantages, in situ and ex situ bioremediation, goals of bioremediation, temperature effects, time, cost, and example sites that were treated

  12. Bioremediation in Germany: Markets, technologies, and leading companies

    International Nuclear Information System (INIS)

    Raphael, T.; Glass, D.J.

    1995-01-01

    Bioremediation has become an internationally accepted remediation tool. Commercial bioremediation activities take place in many European countries, but Germany and the Netherlands are the clear European leaders, with both having a long history of public and private sector activity in biological technologies. The German bioremediation market has been driven by government regulation, in particular the waste laws that apply to contaminated soils. The 1994 German market for bioremediation is estimated at $70 to 100 million (US $). There are at least 150 companies active in bioremediation in Germany, most of which practice bioremediation of hydrocarbon-contaminated soils, either in situ or ex situ. Because of their predominance in the current European market, German firms are well positioned to expand into those nations in the European Union (EU) currently lacking an environmental business infrastructure

  13. Natural carriers in bioremediation: A review

    Directory of Open Access Journals (Sweden)

    Anna Dzionek

    2016-09-01

    Full Text Available Bioremediation of contaminated groundwater or soil is currently the cheapest and the least harmful method of removing xenobiotics from the environment. Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes, reduces their costs, and also allows for the multiple use of biocatalysts. Among the developed methods of immobilization, adsorption on the surface is the most common method in bioremediation, due to the simplicity of the procedure and its non-toxicity. The choice of carrier is an essential element for successful bioremediation. It is also important to consider the type of process (in situ or ex situ, type of pollution, and properties of immobilized microorganisms. For these reasons, the article summarizes recent scientific reports about the use of natural carriers in bioremediation, including efficiency, the impact of the carrier on microorganisms and contamination, and the nature of the conducted research.

  14. Bioremediation at a petroleum refinery

    International Nuclear Information System (INIS)

    Carson, A.W.; Jarvis, J.; Richardson, K.E.

    1994-01-01

    This paper presents a summary of three projects at the Mobil Refinery in Torrance, California where bioremediation technologies were successfully employed for the remediation of hydrocarbon contaminated soil. The three projects represent variations of implementation of bioremediation, both in-situ and ex-situ. Soil from all of the projects was considered non-hazardous designated waste under the California Code of Regulations, Title 23, section 2522. The projects were permitted and cleanup requirements were defined with the Los Angeles Regional Water Quality Control Board. In all of the projects, different methods were used for supplying water, oxygen, and nutrients to the hydrocarbon degrading bacteria to stimulate growth. The Stormwater Retention Basin Project utilized in-situ mechanical mixing of soils to supply solid nutrients and oxygen, and a self-propelled irrigation system to supply water. The Tank Farm Lake project used an in-situ active bioventing technology to introduce oxygen, moisture, and vapor phase nutrients. The Tank 1340X247 project was an ex-situ bioventing remediation project using a drip irrigation system to supply water and dissolved nutrients, and a vapor extraction system to provide oxygen

  15. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut

    Directory of Open Access Journals (Sweden)

    Ali Ramadan Mohamed Muftah

    2013-01-01

    Full Text Available It is well known that during biodegradation of oil in natural geological conditions, or oil pollutants in the environment, a degradation of hydrocarbons occurs according to the well defined sequence. For example, the major changes during the degradation process of n-alkanes occur in the second, slight and third, moderate level (on the biodegradation scale from 1 to 10. According to previous research, in the fourth, heavy level, when intensive changes of phenanthrene and its methyl isomers begin, n-alkanes have already been completely removed. In this paper, the ex situ natural bioremediation (unstimulated bioremediation, without addition of biomass, nutrient substances and biosurfactant of soil contaminated with heavy residual fuel oil (mazut was conducted during the period of 6 months. Low abundance of n-alkanes in the fraction of total saturated hydrocarbons in the initial sample (identification was possible only after concentration by urea adduction technique showed that the investigated oil pollutant was at the boundary between the third and the fourth biodegradation level. During the experiment, an intense degradation of phenanthrene and its methyl-, dimethyl-and trimethyl-isomers was not followed by the removal of the remaining n-alkanes. The abundance of n-alkanes remained at the initial low level, even at end of the experiment when the pollutant reached one of the highest biodegradation levels. These results showed that the unstimulated biodegradation of some hydrocarbons, despite of their high biodegradability, do not proceed completely to the end, even at final degradation stages. In the condition of the reduced availability of some hydrocarbons, microorganisms tend to opt for less biodegradable but more accessible hydrocarbons.

  16. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Dawn; Giloteaux, L.; Williams, Kenneth H.; Wrighton, Kelly C.; Wilkins, Michael J.; Thompson, Courtney A.; Roper, Thomas J.; Long, Philip E.; Lovley, Derek

    2013-07-28

    The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well-recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, acetate amendments initially promoted the growth of metal-reducing Geobacter species followed by the growth of sulfate-reducers, as previously observed. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater prior to the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the amoeboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity, and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.

  17. In-Situ Bioremediation of Perchlorate in Groundwater and Soil

    OpenAIRE

    Jin, Liyan

    2012-01-01

    Historical, uncontrolled disposal practices have made perchlorate a significant threat to drinking water supplies in the United States. In-situ bioremediation (ISB) technologies are cost effective and provide an environmental friendly solution for treating contaminated groundwater and soil. In situ bioremediation was considered as an option for treatment of perchlorate in groundwater and soil in Lockheed Martin Corporation's Beaumont Site 2 (Beaumont, CA). Based on the perchlorate distribu...

  18. In-situ bioremediation at the French Limited Site

    International Nuclear Information System (INIS)

    Woodward, R.; Ramsden, D.

    1990-01-01

    In situ biodegradation of petrochemical wastes at the French Limited Superfund Site was stimulated by providing the appropriate pH, essential nutrients, oxygen, and substrate availability. Fourteen wastewater treatment parameters, plus toxicity, were monitored to document the program of bioremediation. Periodic, organic priority pollutant analysis of mixed liquor, settled sludges and subsoils provided data for kinetics interpretation and half life calculation. The half lives of thirteen PAH compounds ranged from 27 to 46 days, in contrast to the degradation rate, in months, reported for these compounds in LTUs. An ambitious air monitoring program measured fugitive emissions at lagoon side, fenceline, and from the lagoon surface by floating flux chamber. The amount of volatiles lost never exceeded 1/2 of the OSHA 8 hr TLV and it could be readily managed by adjusting the intensity and frequency of mixing and aeration. The demonstration confirmed the feasibility of in situ bioremediation and led to one of the first US EPA Record of Decisions to use bioremediation for cleanup of a large Superfund site. A consent Decree outlining the site remedial action program was signed by the PRP task group and published in the Federal Register. This represents a landmark project for in situ bioremediation and has established precedence for use of this technology at CERCLA and RCRA sites nationwide

  19. Ex-situ bioremediation of Brazilian soil contaminated with plasticizers process wastes

    Directory of Open Access Journals (Sweden)

    I. D. Ferreira

    2012-03-01

    Full Text Available The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in São Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg-1 dry soil, during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

  20. TECHNOLOGIES FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2012-05-01

    Full Text Available Biological methods for remediation of soils is based on the degradation of pollutants due to activity of microorganisms (bacteria, fungi. Effectiveness of biological decontamination of soils depends on the following factors: biodegradation of pollutants, type of microorganisms used, choice of oxidant and nutrient and subject to clean up environmental characteristics. Ex situ techniques for bioremediation of soils polluted are: composting (static / mechanical agitation, land farming and biopiles. Techniques in situ bioremediation of soils polluted are: bioventingul, biospargingul and biostimulation – bioaugumentarea.

  1. Initial assessment of intrinsic and assisted bioremediation potential for diesel fuel impacted soils at Eureka, NWT

    International Nuclear Information System (INIS)

    Wilson, J. J.; Yeske, B.; Lee, D.; Nahir, M.

    1999-01-01

    Two diesel fuel-impacted soil columns prepared to simulate in situ conditions for assessing intrinsic bioremediation were studied. The samples were from Eureka in the Northwest Territories. Two soil jars that were mixed periodically to simulate the ex situ land treatment bioremediation option, were also part of the treatability study. Results strongly suggest that bioremediation at Eureka is a viable option, although the slow rate of biodegradation and the short operating season will necessitate treatment over several years to achieve the remediation endpoint. The intrinsic bioremediation process can be accelerated using periodic addition of a water soluble nitrogen fertilizer, as shown by the nitrogen-amended soil column test. Ex situ bioremediation also appears to be possible judged by the response of the natural bacterial population to periodic mixing and oxygen uptake at 5 degrees C. The principal challenge will be to adequately mix the soil at the surface and to prevent it from drying out. The addition of organic bulking material may be required. 1 ref., 3 tabs., 4 figs

  2. Bioremediation of soils and sediments containing PAHs and PCP using Daramend trademark

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    A full-scale demonstration of Grace Dearborn's Daramend trademark for bioremediation of soil containing chlorinated phenols, PAHs and petroleum hydrocarbons is being conducted at an industrial wood treatment site in Ontario. A pilot-scale demonstration of Daramend for the clean-up of sediments contaminated with PAHs was also conducted. The full-scale demonstration, which includes bioremediation of approximately 4,500 m 3 of soil, was initiated at a wood preserving facility in Ontario, in the summer of 1993. The soil contains chlorinated phenols, PAHs and total petroleum hydrocarbons at concentrations of up to 700, 1,400 and 6,300 mg/kg respectively. Full-scale bioremediation at this site employs the same Daramend protocols and organic amendment treatments that were used at the pilot-scale phase where the PAH, total petroleum hydrocarbon, and pentachlorophenol concentrations were reduced to below the Canadian clean-up guidelines for industrial soils. In addition, the toxicity of the soil to earthworms was eliminated while the rate of seed germination was increased to that of an agricultural soil during the pilot scale demonstration phase. The ex-situ portion of the full-scale demonstration is currently being audited by the EPA under the SITE program. This paper will focus on the ex-situ work. The pilot-scale demonstration of sediment remediation consisted of ex-situ bioremediation of approximately 90 tonnes of PAH-contaminated sediment in a confined treatment area

  3. Investigating the biogeochemical interactions involved in simultaneous TCE and Arsenic in situ bioremediation

    Science.gov (United States)

    Cook, E.; Troyer, E.; Keren, R.; Liu, T.; Alvarez-Cohen, L.

    2016-12-01

    The in situ bioremediation of contaminated sediment and groundwater is often focused on one toxin, even though many of these sites contain multiple contaminants. This reductionist approach neglects how other toxins may affect the biological and chemical conditions, or vice versa. Therefore, it is of high value to investigate the concurrent bioremediation of multiple contaminants while studying the microbial activities affected by biogeochemical factors. A prevalent example is the bioremediation of arsenic at sites co-contaminated with trichloroethene (TCE). The conditions used to promote a microbial community to dechlorinate TCE often has the adverse effect of inducing the release of previously sequestered arsenic. The overarching goal of our study is to simultaneously evaluate the bioremediation of arsenic and TCE. Although TCE bioremediation is a well-understood process, there is still a lack of thorough understanding of the conditions necessary for effective and stable arsenic bioremediation in the presence of TCE. The objective of this study is to promote bacterial activity that stimulates the precipitation of stable arsenic-bearing minerals while providing anaerobic, non-extreme conditions necessary for TCE dechlorination. To that end, endemic microbial communities were examined under various conditions to attempt successful sequestration of arsenic in addition to complete TCE dechlorination. Tested conditions included variations of substrates, carbon source, arsenate and sulfate concentrations, and the presence or absence of TCE. Initial arsenic-reducing enrichments were unable to achieve TCE dechlorination, probably due to low abundance of dechlorinating bacteria in the culture. However, favorable conditions for arsenic precipitation in the presence of TCE were eventually discovered. This study will contribute to the understanding of the key species in arsenic cycling, how they are affected by various concentrations of TCE, and how they interact with the key

  4. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: A microcosm study

    Science.gov (United States)

    Chen, Yu Dao; Barker, James F.; Gui, Lai

    2008-02-01

    Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600˜800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron

  5. Cost effectiveness of in situ bioremediation at Savannah River

    International Nuclear Information System (INIS)

    Saaty, R.P.; Showalter, W.E.; Booth, S.R.

    1995-01-01

    In situ bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the Savannah River Integrated Demonstration is tricloroethylene (TCE) a volatile organic compound (VOC). A 384-day test run at Savannah River, sponsored by the US Department of Energy (DOE), Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In situ bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biological process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted airstream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given these data, the cost effectiveness of this new technology can be evaluated

  6. Model Parameter Variability for Enhanced Anaerobic Bioremediation of DNAPL Source Zones

    Science.gov (United States)

    Mao, X.; Gerhard, J. I.; Barry, D. A.

    2005-12-01

    The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethene source areas containing dense, non-aqueous phase liquids (DNAPL). This 4-year, 5.7 million dollars research effort focuses on a pilot-scale demonstration of enhanced bioremediation at a trichloroethene (TCE) DNAPL field site in the United Kingdom, and includes a significant program of laboratory and modelling studies. Prior to field implementation, a large-scale, multi-laboratory microcosm study was performed to determine the optimal system properties to support dehalogenation of TCE in site soil and groundwater. This statistically-based suite of experiments measured the influence of key variables (electron donor, nutrient addition, bioaugmentation, TCE concentration and sulphate concentration) in promoting the reductive dechlorination of TCE to ethene. As well, a comprehensive biogeochemical numerical model was developed for simulating the anaerobic dehalogenation of chlorinated ethenes. An appropriate (reduced) version of this model was combined with a parameter estimation method based on fitting of the experimental results. Each of over 150 individual microcosm calibrations involved matching predicted and observed time-varying concentrations of all chlorinated compounds. This study focuses on an analysis of this suite of fitted model parameter values. This includes determining the statistical correlation between parameters typically employed in standard Michaelis-Menten type rate descriptions (e.g., maximum dechlorination rates, half-saturation constants) and the key experimental variables. The analysis provides insight into the degree to which aqueous phase TCE and cis-DCE inhibit dechlorination of less-chlorinated compounds. Overall, this work provides a database of the numerical

  7. IPCS: An integrated process control system for enhanced in-situ bioremediation

    International Nuclear Information System (INIS)

    Huang, Y.F.; Wang, G.Q.; Huang, G.H.; Xiao, H.N.; Chakma, A.

    2008-01-01

    To date, there has been little or no research related to process control of subsurface remediation systems. In this study, a framework to develop an integrated process control system for improving remediation efficiencies and reducing operating costs was proposed based on physical and numerical models, stepwise cluster analysis, non-linear optimization and artificial neural networks. Process control for enhanced in-situ bioremediation was accomplished through incorporating the developed forecasters and optimizers with methods of genetic algorithm and neural networks modeling. Application of the proposed approach to a bioremediation process in a pilot-scale system indicated that it was effective in dynamic optimization and real-time process control of the sophisticated bioremediation systems. - A framework of process control system was developed to improve in-situ bioremediation efficiencies and reducing operating costs

  8. Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater

    National Research Council Canada - National Science Library

    Secody, Roland E

    2007-01-01

    .... An innovative technology was recently developed which uses dual-screened treatment wells to mix an electron donor into perchlorate-contaminated groundwater in order to effect in situ bioremediation...

  9. Applied bioremediation of hazardous, petroleum, and industrial wastes

    International Nuclear Information System (INIS)

    Ulm, D.J.; McGuire, P.N.; Lynch, E.R.

    1994-01-01

    Blasland and Bouck Engineers, P.C. (Blasland and Bouck) conducted a large-scale soil bioremediation pilot study at an inactive hazardous waste site in Upstate New York. Remediation of soils at the site is regulated in accordance with a Consent Order entered into with the New York State Department of Environmental Conservation. The chemicals of concern in soils at the site consist of a wide range of volatile and semi-volatile organic compounds including: trichloroethylene, methylene chloride, methanol, aniline, and N,N-dimethylaniline. The large-scale soil Bioremediation Pilot Study consisted of evaluating the effectiveness of two bioremediation techniques: ex-situ solid phase treatment of excavation soils; and in-situ solid phase treatment with soil mixing. The feasibility of bioremediation for soils at this site was evaluated in the field at pilot scale due to the generally high sensitivity of the technology's effectiveness and feasibility from site to site

  10. Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer

    Science.gov (United States)

    Hunkeler, Daniel; Höhener, Patrick; Zeyer, Josef

    2002-12-01

    A diesel fuel contaminated aquifer in Menziken, Switzerland was treated for 4.5 years by injecting aerated groundwater, supplemented with KNO 3 and NH 4H 2PO 4 to stimulate indigenous populations of petroleum hydrocarbon (PHC) degrading microorganisms. After dissolved PHC concentrations had stabilized at a low level, engineered in situ bioremediation was terminated. The main objective of this study was to evaluate the efficacy of intrinsic in situ bioremediation as a follow-up measure to remove PHC remaining in the aquifer after terminating engineered in situ bioremediation. In the first 7 months of intrinsic in situ bioremediation, redox conditions in the source area became more reducing as indicated by lower concentrations of SO 42- and higher concentrations of Fe(II) and CH 4. In the core of the source area, strongly reducing conditions prevailed during the remaining study period (3 years) and dissolved PHC concentrations were higher than during engineered in situ bioremediation. This suggests that biodegradation in the core zone was limited by the availability of oxidants. In lateral zones of the source area, however, gradually more oxidized conditions were reestablished again, suggesting that PHC availability increasingly limited biodegradation. The total DIC production rate in the aquifer decreased within 2 years to about 25% of that during engineered in situ bioremediation and remained at that level. Stable carbon isotope analysis confirmed that the produced DIC mainly originated from PHC mineralization. The total rate of DIC and CH 4 production in the source area was more than 300 times larger than the rate of PHC elution. This indicates that biodegradation coupled to consumption of naturally occurring oxidants was an important process for removal of PHC which remained in the aquifer after terminating engineered measures.

  11. In situ bioremediation under high saline conditions

    International Nuclear Information System (INIS)

    Bosshard, B.; Raumin, J.; Saurohan, B.

    1995-01-01

    An in situ bioremediation treatability study is in progress at the Salton Sea Test Base (SSTB) under the NAVY CLEAN 2 contract. The site is located in the vicinity of the Salon Sea with expected groundwater saline levels of up to 50,000 ppm. The site is contaminated with diesel, gasoline and fuel oils. The treatability study is assessing the use of indigenous heterotrophic bacteria to remediate petroleum hydrocarbons. Low levels of significant macro nutrients indicate that nutrient addition of metabolic nitrogen and Orthophosphate are necessary to promote the process, requiring unique nutrient addition schemes. Groundwater major ion chemistry indicates that precipitation of calcium phosphorus compounds may be stimulated by air-sparging operations and nutrient addition, which has mandated the remedial system to include pneumatic fracturing as an option. This presentation is tailored at an introductory level to in situ bioremediation technologies, with some emphasize on innovations in sparge air delivery, dissolved oxygen uptake rates, nutrient delivery, and pneumatic fracturing that should keep the expert's interest

  12. Pilot-scale feasibility of petroleum hydrocarbon-contaminated soil in situ bioremediation

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Walker, A.B.

    1995-01-01

    An environmental project was conducted to evaluate in situ bioremediation of petroleum hydrocarbon-contaminated soils on Kwajalein Island, a US Army Kwajalein Atoll base in the Republic of the Marshall Islands. Results of laboratory column studies determined that nutrient loadings stimulated biodegradation rates and that bioremediation of hydrocarbon-contaminated soils at Kwajalein was possible using indigenous microbes. The column studies were followed by an ∼10-month on-site demonstration at Kwajalein to further evaluate in situ bioremediation and to determine design and operating conditions necessary to optimize the process. The demonstration site contained low levels of total petroleum hydrocarbons (diesel fuel) in the soil near the ground surface, with concentrations increasing to ∼10,000 mg/kg in the soil near the groundwater. The demonstration utilized 12 in situ plots to evaluate the effects of various combinations of water, air, and nutrient additions on both the microbial population and the hydrocarbon concentration within the treatment plots as a function of depth from the ground surface

  13. Initial characterization of a highly contaminated high explosives outfall in preparation for in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Betty A. Strietelmeier; Patrick J. Coyne; Patricia A. Leonard; W. Lamar Miller; Jerry R. Brian

    1999-12-01

    In situ bioremediation is a viable, cost-effective treatment for environmental contamination of many kinds. The feasibility of using biological techniques to remediate soils contaminated with high explosives (HE) requires laboratory evaluation before proceeding to a larger scale field operation. Laboratory investigations have been conducted at pilot scale which indicate that an anaerobic process could be successful at reducing levels of HE, primarily HMX, RDX and TNT, in contaminated soils. A field demonstration project has been designed to create an anaerobic environment for the degradation of HE materials. The first step in this project, initial characterization of the test area, was conducted and is the subject of this report. The levels of HE compounds found in the samples from the test area were higher than the EPA Method 8330 was able to extract without subsequent re-precipitation; therefore, a new method was developed using a superior extractant system. The test area sampling design was relatively simple as one might expect in an initial characterization. A total of 60 samples were each removed to a depth of 4 inches using a 1 inch diameter corer. The samples were spaced at relatively even intervals across a 20 foot cross-section through the middle of four 7-foot-long adjacent plots which are designed to be a part of an in situ bioremediation experiment. Duplicate cores were taken from each location for HE extraction and analysis in order to demonstrate and measure the heterogeneity of the contamination. Each soil sample was air dried and ball-milled to provide a homogeneous solid for extraction and analysis. Several samples had large consolidated pieces of what appeared to be solid HE. These were not ball-milled due to safety concerns, but were dissolved and the solutions were analyzed. The new extraction method was superior in that results obtained for several of the contaminants were up to 20 times those obtained with the EPA extraction method. The

  14. Ex situ Flora of China

    Directory of Open Access Journals (Sweden)

    Hongwen Huang

    2017-12-01

    Full Text Available The role of living collections-based research and discovery has been a prominent feature throughout the history of evolution and advance of botanical science: such research is the core and soul of the botanical gardens. Currently, there are c. 162 Chinese botanical gardens, harboring c. 20,000 species in China. As an example of initiatives to utilize the garden cultivated flora to address plant diversity conservation and germplasm discovery for sustainable agriculture and the bio-industries, the Ex situ Flora of China project aims to catalog and document this mega-diversity of plants that are cultivated in the Chinese botanical gardens. The concept of Ex situ Flora of China is a complete new formulation of species, based on garden cultivated individuals and populations, to obtain better morphological descriptions, provide multi-purpose applicability and a fundamental data service that will support national bio-strategies and bio-industries. It emphasises integrative information, accurately collected from living collections across different Chinese botanical gardens, on biology, phenology, cultivation requirements and uses of plant resources, which are normally not available from traditional Floras based on herbarium specimens. The ex situ flora should provide better information coverage for taxonomy, biological and introduction and collection data and color photos of stems, leaves, flowers, fruits and seed, as well as useful information of cultivation key points and main use of each plant. In general, the Ex situ Flora of China provides more useful information than the traditional Flora Reipublicae Popularis Sinicae. The project of Ex situ Flora of China is planned to be one of the most important initiatives of the plant diversity research platform for sustainable economic and social development in China.

  15. Numerical simulations in support of the in situ bioremediation demonstration at Savannah River

    International Nuclear Information System (INIS)

    Travis, B.J.; Rosenberg, N.D.

    1994-06-01

    This report assesses the performance of the in situ bioremediation technology demonstrated at the Savannah River Integrated Demonstration (SRID) site in 1992--1993. The goal of the technology demonstration was to stimulate naturally occurring methanotrophic bacteria at the SRID site with injection of methane, air and air-phase nutrients (nitrogen and phosphate) such that significant amounts of the chlorinated solvent present in the subsurface would be degraded. Our approach is based on site-specific numerical simulations using the TRAMP computer code. In this report, we discuss the interactions among the physical and biochemical processes involved in in situ bioremediation. We also investigate improvements to technology performance, make predictions regarding the performance of this technology over long periods of time and at different sites, and compare in situ bioremediation with other remediation technologies

  16. Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella Vulgaris

    KAUST Repository

    Cheng, Tuoyuan

    2016-01-01

    To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical

  17. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [University of Massachusetts, Amherst

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

  18. In situ bioremediation using horizontal wells. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    In Situ Bioremediation (ISB) is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation. This process (ISB) involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove Volatile Organic Compounds (VOCs) from the vadose zone concomitant with biodegradation of the VOCs. This process is effective for remediation of soils and ground water contaminated with VOCs both above and below the water table. A full-scale demonstration of ISB was conducted as part of the Savannah River Integrated Demonstration: VOCs in Soils and Ground Water at Nonarid Sites. This demonstration was performed at the Savannah River Site from February 1992 to April 1993

  19. In situ bioremediation of chlorinated solvent with natural gas

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells

  20. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process

    International Nuclear Information System (INIS)

    Huang, Y.F.; Huang, G.H.; Wang, G.Q.; Lin, Q.G.; Chakma, A.

    2006-01-01

    Groundwater contamination due to releases of petroleum products is a major environmental concern in many urban districts and industrial zones. Over the past years, a few studies were undertaken to address in situ bioremediation processes coupled with contaminant transport in two- or three-dimensional domains. However, they were concentrated on natural attenuation processes for petroleum contaminants or enhanced in situ bioremediation processes in laboratory columns. In this study, an integrated numerical and physical modeling system is developed for simulating an enhanced in situ biodegradation (EISB) process coupled with three-dimensional multiphase multicomponent flow and transport simulation in a multi-dimensional pilot-scale physical model. The designed pilot-scale physical model is effective in tackling natural attenuation and EISB processes for site remediation. The simulation results demonstrate that the developed system is effective in modeling the EISB process, and can thus be used for investigating the effects of various uncertainties. - An integrated modeling system was developed to enhance in situ bioremediation processes

  1. Observation on the biodegradation and bioremediation potential of methyl t-butyl ether

    International Nuclear Information System (INIS)

    Salanitro, J.; Wisniewski, H.; McAllister, P.

    1995-01-01

    There have been few reports documenting evidence for the biodegradation of the fuel oxygenate alkyl ether, methyl t-butyl ether (MTBE) in groundwater, soils, and biosludges. Partial (or complete) microbial breakdown of MTBE has been observed in an anaerobic subsoil, a river sediment under methanogenic conditions, a cyclohexane-degrading bacterial consortium and a pure culture of the methylotroph, Methylisnus trichosporium OB3b. An aerobic bacterial enrichment (BC-1) isolated from an industrial transient (non-accumulating) metabolic intermediate. The studies suggest that MTBE is cleaved by BC-1 to TBA which is then metabolized via isopropanol and acetone. There is little information on the occurrence of indigenous MTBE-degraders in groundwater, soils and activated sludges. Preliminary evidence has been obtained, however, from a marketing terminal groundwater site that naturally-occurring MTBE-degraders are present in some monitoring wells. Microcosm experiments with groundwater from this aquifer show that MTBE is aerobically degraded (no TBA formed) with a first-order decay rate (0.31/day) similar to BTEX. Also, MTBE did not inhibit the intrinsic biodegradation potential of BTEX in groundwater microcosms. In summary, the data presented indicate that MTBE biodegradation has been observed in some environmental media. Further work is needed to assess the feasibility of using indigenous or derived aerobic and anaerobic MTBE-degrading cultures for treating fuel ethers in groundwaters or wastewater with in-situ or ex-situ bioremediation technologies

  2. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    Science.gov (United States)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  3. Planning for ex situ conservation in the face of uncertainty

    Science.gov (United States)

    Canessa, Stefano; Converse, Sarah J.; West, Matt; Clemann, Nick; Gillespie, Graeme; McFadden, Michael; Silla, Aimee J; Parris, Kirsten M; McCarthy, Michael A

    2016-01-01

    Ex situ conservation strategies for threatened species often require long-term commitment and financial investment to achieve management objectives. We present a framework that considers the decision to adopt ex situ management for a target species as the end point of several linked decisions. We used a decision tree to intuitively represent the logical sequence of decision making. The first decision is to identify the specific management actions most likely to achieve the fundamental objectives of the recovery plan, with or without the use of ex-situ populations. Once this decision has been made, one decides whether to establish an ex situ population, accounting for the probability of success in the initial phase of the recovery plan, for example, the probability of successful breeding in captivity. Approaching these decisions in the reverse order (attempting to establish an ex situ population before its purpose is clearly defined) can lead to a poor allocation of resources, because it may restrict the range of available decisions in the second stage. We applied our decision framework to the recovery program for the threatened spotted tree frog (Litoria spenceri) of southeastern Australia. Across a range of possible management actions, only those including ex situ management were expected to provide >50% probability of the species’ persistence, but these actions cost more than use of in situ alternatives only. The expected benefits of ex situ actions were predicted to be offset by additional uncertainty and stochasticity associated with establishing and maintaining ex situ populations. Naïvely implementing ex situ conservation strategies can lead to inefficient management. Our framework may help managers explicitly evaluate objectives, management options, and the probability of success prior to establishing a captive colony of any given species.

  4. Planning for ex situ conservation in the face of uncertainty.

    Science.gov (United States)

    Canessa, Stefano; Converse, Sarah J; West, Matt; Clemann, Nick; Gillespie, Graeme; McFadden, Michael; Silla, Aimee J; Parris, Kirsten M; McCarthy, Michael A

    2016-06-01

    Ex situ conservation strategies for threatened species often require long-term commitment and financial investment to achieve management objectives. We present a framework that considers the decision to adopt ex situ management for a target species as the end point of several linked decisions. We used a decision tree to intuitively represent the logical sequence of decision making. The first decision is to identify the specific management actions most likely to achieve the fundamental objectives of the recovery plan, with or without the use of ex-situ populations. Once this decision has been made, one decides whether to establish an ex situ population, accounting for the probability of success in the initial phase of the recovery plan, for example, the probability of successful breeding in captivity. Approaching these decisions in the reverse order (attempting to establish an ex situ population before its purpose is clearly defined) can lead to a poor allocation of resources, because it may restrict the range of available decisions in the second stage. We applied our decision framework to the recovery program for the threatened spotted tree frog (Litoria spenceri) of southeastern Australia. Across a range of possible management actions, only those including ex situ management were expected to provide >50% probability of the species' persistence, but these actions cost more than use of in situ alternatives only. The expected benefits of ex situ actions were predicted to be offset by additional uncertainty and stochasticity associated with establishing and maintaining ex situ populations. Naïvely implementing ex situ conservation strategies can lead to inefficient management. Our framework may help managers explicitly evaluate objectives, management options, and the probability of success prior to establishing a captive colony of any given species. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria: Desulfovibrio mutants with altered sensitivity to oxidative stress

    International Nuclear Information System (INIS)

    Payne, Rayford B.; Ringbauer, Joseph A. Jr.; Wall, Judy D.

    2006-01-01

    Sulfate-reducing bacteria of the genus Desulfovibrio are ubiquitous in anaerobic environments such as groundwater, sediments, and the gastrointestinal tract of animals. Because of the ability of Desulfovibrio to reduce radionuclides and metals through both enzymatic and chemical means, they have been proposed as a means to bioremediate heavy metal contaminated sites. Although classically thought of as strict anaerobes, Desulfovibrio species are surprisingly aerotolerant. Our objective is to understand the response of Desulfovibrio to oxidative stress so that we may more effectively utilize them in bioremediation of heavy metals in mixed aerobic-anaerobic environments. The enzymes superoxide dismutase, superoxide reductase, catalase, and rubrerythrin have been shown by others to be involved in the detoxification of reactive oxygen species in Desulfovibrio. Some members of the genus Desulfovibrio can even reduce molecular oxygen to water via a membrane bound electron transport chain with the concomitant production of ATP, although their ability to grow with oxygen as the sole electron acceptor is still questioned.

  6. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  7. Process, engineering and design aspects of contaminated soil bioremediation. Pt. 1 In situ treatments

    International Nuclear Information System (INIS)

    De Fraja Frangipane, E.; Andreottola, G.; Tatano, F.

    1995-01-01

    The present paper is an up-to-date overview of contaminated soil bioremediation techniques, which are analyzed in detail with regard to main process, engineering and design aspects. General biochemical/kinetic aspects of bioremediation of contaminated soil, and in situ treatments, are discussed in this part one

  8. Principles of Bioremediation Assessment

    Science.gov (United States)

    Madsen, E. L.

    2001-12-01

    Although microorganisms have successfully and spontaneously maintained the biosphere since its inception, industrialized societies now produce undesirable chemical compounds at rates that outpace naturally occurring microbial detoxification processes. This presentation provides an overview of both the complexities of contaminated sites and methodological limitations in environmental microbiology that impede the documentation of biodegradation processes in the field. An essential step toward attaining reliable bioremediation technologies is the development of criteria which prove that microorganisms in contaminated field sites are truly active in metabolizing contaminants of interest. These criteria, which rely upon genetic, biochemical, physiological, and ecological principles and apply to both in situ and ex situ bioremediation strategies include: (i) internal conservative tracers; (ii) added conservative tracers; (iii) added radioactive tracers; (iv) added isotopic tracers; (v) stable isotopic fractionation patterns; (vi) detection of intermediary metabolites; (vii) replicated field plots; (viii) microbial metabolic adaptation; (ix) molecular biological indicators; (x) gradients of coreactants and/or products; (xi) in situ rates of respiration; (xii) mass balances of contaminants, coreactants, and products; and (xiii) computer modeling that incorporates transport and reactive stoichiometries of electron donors and acceptors. The ideal goal is achieving a quantitative understanding of the geochemistry, hydrogeology, and physiology of complex real-world systems.

  9. Key Factors Controlling the Applicability and Efficiency of Bioremediation of Chlorinated Ethenes In Situ

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.; Takeuchi, M.; Komai, T.

    2012-12-01

    Bioremediation has been considered as one of environmentally friendly and cost effective approaches for cleaning up the sites polluted by organic contaminants, such as chlorinated ethenes. Although bioremediation, in its widest sense, is not new, and many researches have been performed on bioremediation of different kinds of pollutants, an effective design and implication of in situ bioremediation still remains a challenging problem because of the complexity. Many factors may affect the applicability and efficiency of bioremediation of chlorinated ethenes in situ, which include the type and concentration of contaminants, biological, geological and hydro-geological conditions of the site, physical and chemical characteristics of groundwater and soils to be treated, as well as the constraints in engineering. In this presentation, an overview together with a detailed discussion on each factor will be provided. The influences of individual factors are discussed using the data obtained or cited from different sites and experiments, and thus under different environmental conditions. The results of this study illustrated that 1) the establishment of microbial consortium is of crucial importance for a complete degradation of chlorinated ethenes, 2) in situ control of favorable conditions for increasing microbial activities for bio-degradation through a designed pathway is the key to success, 3) the focus of a successful remediation system is to design an effective delivery process that is capable of producing adequate amendment mixing of contaminant-degrading bacteria, appropriate concentrations of electron acceptors, electron donors, and microbial nutrients in the subsurface treatment area.

  10. In situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Skeen, R.S.; Roberson, K.R.; Workman, D.J.; Petersen, J.N.; Shouche, M.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl 4 ), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl 4 , nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations

  11. Bioremediation of copper-contaminated soils by bacteria.

    Science.gov (United States)

    Cornu, Jean-Yves; Huguenot, David; Jézéquel, Karine; Lollier, Marc; Lebeau, Thierry

    2017-02-01

    Although copper (Cu) is an essential micronutrient for all living organisms, it can be toxic at low concentrations. Its beneficial effects are therefore only observed for a narrow range of concentrations. Anthropogenic activities such as fungicide spraying and mining have resulted in the Cu contamination of environmental compartments (soil, water and sediment) at levels sometimes exceeding the toxicity threshold. This review focuses on the bioremediation of copper-contaminated soils. The mechanisms by which microorganisms, and in particular bacteria, can mobilize or immobilize Cu in soils are described and the corresponding bioremediation strategies-of varying levels of maturity-are addressed: (i) bioleaching as a process for the ex situ recovery of Cu from Cu-bearing solids, (ii) bioimmobilization to limit the in situ leaching of Cu into groundwater and (iii) bioaugmentation-assisted phytoextraction as an innovative process for in situ enhancement of Cu removal from soil. For each application, the specific conditions required to achieve the desired effect and the practical methods for control of the microbial processes were specified.

  12. Potential for Methanosarcina to contribute to uranium reduction during acetate-promoted groundwater bioremediation

    DEFF Research Database (Denmark)

    Holmes, Dawn E; Orellana, Roberto; Giloteaux, Ludovic

    2017-01-01

    Previous studies of in situ bioremediation of uranium-contaminated groundwater with acetate injections have focused on the role of Geobacter species in U(VI) reduction because of a lack of other abundant known U(VI)-reducing microorganisms. Monitoring the levels of methyl CoM reductase subunit...... an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest that Methanosarcina have the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary environments....

  13. Biostimulation of indigenous microbial community for bioremediation of petroleum refinery sludge.

    Directory of Open Access Journals (Sweden)

    Jayeeta Sarkar

    2016-09-01

    Full Text Available Nutrient deficiency severely impairs the catabolic activity of indigenous microorganisms in hydrocarbon rich environments (HREs and limits the rate of intrinsic bioremediation. The present study aimed to characterize the microbial community in refinery waste and evaluate the scope for biostimulation based in situ bioremediation. Samples recovered from the wastewater lagoon of Guwahati refinery revealed a hydrocarbon enriched high total petroleum hydrocarbon (TPH, oxygen-, moisture-limited, reducing environment. Intrinsic biodegradation ability of the indigenous microorganisms was enhanced significantly (>80% reduction in TPH by 90 days with nitrate amendment. Preferred utilization of both higher- (>C30 and middle- chain (C20-30 length hydrocarbons were evident from GC-MS analysis. Denaturing gradient gel electrophoresis (DGGE and community level physiological profiling (CLPP analyses indicated distinct shift in community’s composition and metabolic abilities following nitrogen (N amendment. High throughput deep sequencing of 16S rRNA gene showed that the native community was mainly composed of hydrocarbon degrading, syntrophic, methanogenic, nitrate/iron/sulfur reducing facultative anaerobic bacteria and archaebacteria, affiliated to γ- and δ-Proteobacteria and Euryarchaeota respectively. Genes for aerobic and anaerobic alkane metabolism (alkB and bssA, methanogenesis (mcrA, denitrification (nirS and narG and N2 fixation (nifH were detected. Concomitant to hydrocarbon degradation, lowering of dissolve O2 and increase in oxidation-reduction potential (ORP marked with an enrichment of N2 fixing, nitrate reducing aerobic/facultative anaerobic members e.g., Azovibrio, Pseudoxanthomonas and Commamonadaceae members was evident in N amended microcosm. This study highlighted that indigenous community of refinery sludge was intrinsically diverse, yet appreciable rate of in situ bioremediation could be achieved by supplying adequate N sources.

  14. Biostimulation of Indigenous Microbial Community for Bioremediation of Petroleum Refinery Sludge

    Science.gov (United States)

    Sarkar, Jayeeta; Kazy, Sufia K.; Gupta, Abhishek; Dutta, Avishek; Mohapatra, Balaram; Roy, Ajoy; Bera, Paramita; Mitra, Adinpunya; Sar, Pinaki

    2016-01-01

    Nutrient deficiency severely impairs the catabolic activity of indigenous microorganisms in hydrocarbon rich environments (HREs) and limits the rate of intrinsic bioremediation. The present study aimed to characterize the microbial community in refinery waste and evaluate the scope for biostimulation based in situ bioremediation. Samples recovered from the wastewater lagoon of Guwahati refinery revealed a hydrocarbon enriched [high total petroleum hydrocarbon (TPH)], oxygen-, moisture-limited, reducing environment. Intrinsic biodegradation ability of the indigenous microorganisms was enhanced significantly (>80% reduction in TPH by 90 days) with nitrate amendment. Preferred utilization of both higher- (>C30) and middle- chain (C20-30) length hydrocarbons were evident from GC-MS analysis. Denaturing gradient gel electrophoresis and community level physiological profiling analyses indicated distinct shift in community’s composition and metabolic abilities following nitrogen (N) amendment. High throughput deep sequencing of 16S rRNA gene showed that the native community was mainly composed of hydrocarbon degrading, syntrophic, methanogenic, nitrate/iron/sulfur reducing facultative anaerobic bacteria and archaebacteria, affiliated to γ- and δ-Proteobacteria and Euryarchaeota respectively. Genes for aerobic and anaerobic alkane metabolism (alkB and bssA), methanogenesis (mcrA), denitrification (nirS and narG) and N2 fixation (nifH) were detected. Concomitant to hydrocarbon degradation, lowering of dissolve O2 and increase in oxidation-reduction potential (ORP) marked with an enrichment of N2 fixing, nitrate reducing aerobic/facultative anaerobic members [e.g., Azovibrio, Pseudoxanthomonas and Comamonadaceae members] was evident in N amended microcosm. This study highlighted that indigenous community of refinery sludge was intrinsically diverse, yet appreciable rate of in situ bioremediation could be achieved by supplying adequate N sources. PMID:27708623

  15. Augmented In Situ Subsurface Bioremediation Process™BIO-REM, Inc. - Demonstration Bulletin

    Science.gov (United States)

    The Augmented In Situ Subsurface Bioremediation Process™ developed by BIO-REM, Inc., uses microaerophilic bacteria and micronutrients (H-10) and surface tension depressants/penetrants for the treatment of hydrocarbon contaminated soils and groundwater. The bacteria utilize hydroc...

  16. Biosurfactants during in situ bioremediation: factors that influence the production and challenges in evalution.

    Science.gov (United States)

    Decesaro, Andressa; Machado, Thaís Strieder; Cappellaro, Ângela Carolina; Reinehr, Christian Oliveira; Thomé, Antônio; Colla, Luciane Maria

    2017-09-01

    Research on the influence of biosurfactants on the efficiency of in situ bioremediation of contaminated soil is continuously growing. Despite the constant progress in understanding the mechanisms involved in the effects of biosurfactants, there are still many factors that are not sufficiently elucidated. There is a lack of research on autochthonous or exogenous microbial metabolism when biostimulation or bioaugmentation is carried out to produce biosurfactants at contaminated sites. In addition, studies on the application of techniques that measure the biosurfactants produced in situ are needed. This is important because, although the positive influence of biosurfactants is often reported, there are also studies where no effect or negative effects have been observed. This review aimed to examine some studies on factors that can improve the production of biosurfactants in soils during in situ bioremediation. Moreover, this work reviews the methodologies that can be used for measuring the production of these biocomposts. We reviewed studies on the potential of biosurfactants to improve the bioremediation of hydrocarbons, as well as the limitations of methods for the production of these biomolecules by microorganisms in soil.

  17. In situ closed-loop bioremediation: Rapid closure in a northern climate

    International Nuclear Information System (INIS)

    Weymann, D.F.; Hammerbeck, L.M.

    1995-01-01

    In situ closed-loop bioremediation was employed to achieve site closure at a former railyard in Minneapolis, Minnesota. Soil and groundwater were contaminated with gasoline. The closed-loop remediation system design incorporated three downgradient groundwater recovery wells and a low-pressure pipe infiltration gallery. Aboveground treatment of recovered groundwater was provided by a fixed-film bioreactor. The total reported benzene, toluene, ethylbenzene, and xylenes (BTEX)-removal efficiency of the bioreactor ranged from 98.8% to 100%. Concentrations of BTEX components in groundwater wells were reduced by 45% to 98%. The cleanup goals set by the Minnesota Pollution Control Agency were met within the first 6 months of treatment, and the remediation system was shut down after 20 months of operation. This project further demonstrates the effectiveness of reactor-based, closed-loop in situ bioremediation at sites with favorable conditions

  18. Bioremediation: is it the solution to reclamation of heavy oil contaminated soils in the Canadian climate?

    International Nuclear Information System (INIS)

    Goodman, R.; Nicholson, P.; Varga, M.; Boadi, D.; Yang, A.

    1997-01-01

    The issue of bioremediation of heavy oil contaminated soils in cold climates was discussed. No model of the bioremediation system for cold climates exists. Environmental groups use three environmental concepts as the basis to evaluate petroleum activities: (1) cradle to grave responsibility, (2) the precautionary principle, and (3) sustainable development. The reclamation of an abandoned petroleum production facility must meet stringent standards. Most sites are contaminated with weathered hydrocarbons, brine and other chemicals that have been used at the location. Bioremediation, either in-situ or ex-situ, is one of the lowest cost remediation techniques available and has been used extensively by the downstream petroleum industry in warm climates. However, there are many unresolved issues with the use of bioremediation in cold climates, for heavy or weathered crude oil products and in areas of clay or other low permeability. Some of these unresolved issues are highlighted

  19. TECHNOLOGIES FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH PETROLEUM PRODUCTS

    OpenAIRE

    Roxana Gabriela POPA

    2012-01-01

    Biological methods for remediation of soils is based on the degradation of pollutants due to activity of microorganisms (bacteria, fungi). Effectiveness of biological decontamination of soils depends on the following factors: biodegradation of pollutants, type of microorganisms used, choice of oxidant and nutrient and subject to clean up environmental characteristics. Ex situ techniques for bioremediation of soils polluted are: composting (static / mechanical agitation), land farming and biop...

  20. [Species diversity of ex-situ cultivated Chinese medicinal plants].

    Science.gov (United States)

    Que, Ling; Chi, Xiu-Lian; Zang, Chun-Xin; Zhang, Yu; Chen, Min; Yang, Guang; Jin, An-Qi

    2018-03-01

    Ex-situ conservation is an important means to protect biological genetic resources. Resource protection has received more and more attention with the continuous improvement of the comprehensive utilization of traditional Chinese medicine resources. In this paper, the research and compilation of the species list of ex-situ cultivated medicinal plants in 12 Chinese Academy of Sciences botanic gardens and 19 specialized medicinal botanic gardens in China were carried out. Based on the Species 2000(2017) and other classification databases, species diversity of medicinal plants ex-situ cultivated in these botanical gardens were analyzed. The study found that there were 16 351 higher plant species in our country, belonging to 276 families and 1 936 genera. Of these, 6 949 specieswere medicinal plants, accounting for 50.4% of the total medicinal plants. There were 1 280 medicinal plants were in threatened status, accounting for 19.6% of all threatened species in the Chinese Biodiversity Red List, with ex-situ cultivated proportion of 59.5%. And 3 988 medicinal plants were Chinese endemic species, accounting for 22.5% of all Chinese endemic species, with ex-situ cultivated proportion of 53.3%. This article has reference significance for the management and protection of medicinal plant resources. Copyright© by the Chinese Pharmaceutical Association.

  1. In Situ Bioremediation of Chlorinated Ethenes in Hydraulically-Tight Sediments: Challenges and Limitations

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.; Takeuchi, M.; Komai, T.

    2011-12-01

    Chlorinated ethenes, like perchloroethene (PCE) and trichloroethene (TCE), have been widely used by many industries, especially in developed countries like Japan. Because of their wide applications, lack of proper regulation, poor handing, storage and disposal practices in the past, chlorinated ethenes have become a type of the most prevalent contaminants for soils and groundwater pollution. For the sake of their degradability, bioremediation has been considered as a potentially cost-effective and environmentally friendly approach for cleanup of chlorinated ethenes in situ. In this presentation, we briefly overview the status of soil and groundwater pollution, the recent amendment of the Soil Contamination Countermeasures Act in Japan, comparison between the bioremediation and other techniques like pump and treat, and the mechanisms of reductive dechlorination, direct oxidation and co-metabolism of chlorinated ethenes. We then introduce and discuss some recent challenges and advancements in in-situ bioremediation including technologies for accelerating bio-degradation of chlorinated ethenes, technologies for assessing diffusive properties of dissolved hydrogen in hydraulically-tight soil samples, and combination of bioremediation with other techniques like electro-kinetic approach. Limiting factors that may cause incomplete remediation and/or ineffectiveness of bioremediation are examined from biochemical, geochemical and hydro-geological aspects. This study reconfirmed and illustrated that: 1) The key factor for an effective bioremediation is how to disperse a proper accelerating agent throughout the polluted strata, 2) The effective diffusion coefficient of dissolved hydrogen in geologic media is relatively big and is almost independent on their permeability, and 3) To effectively design and perform an accelerated bioremediation, a combination of natural migration with pressurized injection and/or other approaches, like electro-migration, for stimulating mass

  2. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan A.; Jones, Susanne B.; Brown, Robert C.; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging biorefinery technologies for biofuel production: in situ and ex situ catalytic pyrolysis. Stochastic simulations based on process and economic parameter distributions are applied to calculate biorefinery performance and production costs. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $4.20 per gallon with a standard deviation of 1.15, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($4.27 per gallon and 0.79 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic risk than in situ pyrolysis despite a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are significant parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis.

  3. Keeping All the PIECES: Phylogenetically Informed Ex Situ Conservation of Endangered Species.

    Science.gov (United States)

    Larkin, Daniel J; Jacobi, Sarah K; Hipp, Andrew L; Kramer, Andrea T

    2016-01-01

    Ex situ conservation in germplasm and living collections is a major focus of global plant conservation strategies. Prioritizing species for ex situ collection is a necessary component of this effort for which sound strategies are needed. Phylogenetic considerations can play an important role in prioritization. Collections that are more phylogenetically diverse are likely to encompass more ecological and trait variation, and thus provide stronger conservation insurance and richer resources for future restoration efforts. However, phylogenetic criteria need to be weighed against other, potentially competing objectives. We used ex situ collection and threat rank data for North American angiosperms to investigate gaps in ex situ coverage and phylogenetic diversity of collections and to develop a flexible framework for prioritizing species across multiple objectives. We found that ex situ coverage of 18,766 North American angiosperm taxa was low with respect to the most vulnerable taxa: just 43% of vulnerable to critically imperiled taxa were in ex situ collections, far short of a year-2020 goal of 75%. In addition, species held in ex situ collections were phylogenetically clustered (P species been drawn at random. These patterns support incorporating phylogenetic considerations into ex situ prioritization in a manner balanced with other criteria, such as vulnerability. To meet this need, we present the 'PIECES' index (Phylogenetically Informed Ex situ Conservation of Endangered Species). PIECES integrates phylogenetic considerations into a flexible framework for prioritizing species across competing objectives using multi-criteria decision analysis. Applying PIECES to prioritizing ex situ conservation of North American angiosperms, we show strong return on investment across multiple objectives, some of which are negatively correlated with each other. A spreadsheet-based decision support tool for North American angiosperms is provided; this tool can be customized to

  4. In situ bioremediation: Cost effectiveness of a remediation technology field tested at the Savannah River

    International Nuclear Information System (INIS)

    Saaty, R.P.; Showalter, W.E.; Booth, S.R.

    1995-01-01

    In Situ Bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the SRID is the volatile organic compound (VOC), tricloroetylene(TCE). A 384 day test run at Savannah River, sponsored by the US Department of Energy, Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In Situ Bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biolgoical process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted air stream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given this data, the cost effectiveness of this new technology can be evaluated

  5. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into

  6. In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites.

    Science.gov (United States)

    Majone, Mauro; Verdini, Roberta; Aulenta, Federico; Rossetti, Simona; Tandoi, Valter; Kalogerakis, Nicolas; Agathos, Spiros; Puig, Sebastià; Zanaroli, Giulio; Fava, Fabio

    2015-01-25

    This paper contains a critical examination of the current application of environmental biotechnologies in the field of bioremediation of contaminated groundwater and sediments. Based on analysis of conventional technologies applied in several European Countries and in the US, scientific, technical and administrative barriers and constraints which still need to be overcome for an improved exploitation of bioremediation are discussed. From this general survey, it is evident that in situ bioremediation is a highly promising and cost-effective technology for remediation of contaminated soil, groundwater and sediments. The wide metabolic diversity of microorganisms makes it applicable to an ever-increasing number of contaminants and contamination scenarios. On the other hand, in situ bioremediation is highly knowledge-intensive and its application requires a thorough understanding of the geochemistry, hydrogeology, microbiology and ecology of contaminated soils, groundwater and sediments, under both natural and engineered conditions. Hence, its potential still remains partially unexploited, largely because of a lack of general consensus and public concerns regarding the lack of effectiveness and control, poor reliability, and possible occurrence of side effects, for example accumulation of toxic metabolites and pathogens. Basic, applied and pre-normative research are all needed to overcome these barriers and make in situ bioremediation more reliable, robust and acceptable to the public, as well as economically more competitive. Research efforts should not be restricted to a deeper understanding of relevant microbial reactions, but also include their interactions with the large array of other relevant phenomena, as a function of the truly variable site-specific conditions. There is a need for a further development and application of advanced biomolecular tools for site investigation, as well as of advanced metabolic and kinetic modelling tools. These would allow a

  7. Ex-situ and in-situ mineral carbonation as a means to sequester carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen J.; Dahlin, David C.; O' Connor, William K.; Penner, Larry R.; Rush, G.E.

    2004-01-01

    The U. S. Department of Energy's Albany Research Center is investigating mineral carbonation as a method of sequestering CO2 from coal-fired-power plants. Magnesium-silicate minerals such as serpentine [Mg3Si2O5(OH)4] and olivine (Mg2SiO4) react with CO2 to produce magnesite (MgCO3), and the calcium-silicate mineral, wollastonite (CaSiO3), reacts to form calcite (CaCO3). It is possible to carry out these reactions either ex situ (above ground in a traditional chemical processing plant) or in situ (storage underground and subsequent reaction with the host rock to trap CO2 as carbonate minerals). For ex situ mineral carbonation to be economically attractive, the reaction must proceed quickly to near completion. The reaction rate is accelerated by raising the activity of CO2 in solution, heat (but not too much), reducing the particle size, high-intensity grinding to disrupt the crystal structure, and, in the case of serpentine, heat-treatment to remove the chemically bound water. All of these carry energy/economic penalties. An economic study illustrates the impact of mineral availability and process parameters on the cost of ex situ carbon sequestration. In situ carbonation offers economic advantages over ex situ processes, because no chemical plant is required. Knowledge gained from the ex situ work was applied to long-term experiments designed to simulate in situ CO2 storage conditions. The Columbia River Basalt Group (CRBG), a multi-layered basaltic lava formation, has potentially favorable mineralogy (up to 25% combined concentration of Ca, Fe2+, and Mg cations) for storage of CO2. However, more information about the interaction of CO2 with aquifers and the host rock is needed. Core samples from the CRBG, as well as samples of olivine, serpentine, and sandstone, were reacted in an autoclave for up to 2000 hours at elevated temperatures and pressures. Changes in core porosity, secondary mineralizations, and both solution and solid chemistry were measured.

  8. Use of bioreactor landfill for nitrogen removal to enhance methane production through ex situ simultaneous nitrification-denitrification and in situ denitrification.

    Science.gov (United States)

    Sun, Xiaojie; Zhang, Hongxia; Cheng, Zhaowen

    2017-08-01

    High concentrations of nitrate-nitrogen (NO 3 - -N) derived from ex situ nitrification phase can inhibit methane production during ex situ nitrification and in situ denitrification bioreactor landfill. A combined process comprised of ex situ simultaneous nitrification-denitrification (SND) in an aged refuse bioreactor (ARB) and in situ denitrification in a fresh refuse bioreactor (FRB) was conducted to reduce the negative effect of high concentrationsof NO 3 - -N. Ex situ SND can be achieved because NO 3 - -N concentration can be reduced and the removal rate of ammonium-nitrogen (NH 4 + -N) remains largely unchanged when the ventilation rate of ARB-A2 is controlled. The average NO 3 - -N concentrations of effluent were 470mg/L in ex situ nitrification ARB-A1 and 186mg/L in ex situ SND ARB-A2. The average NH 4 + -N removal rates of ARB-A1 and ARB-A2 were 98% and 94%, respectively. Based on the experimental data from week 4 to week 30, it is predicted that NH 4 + -N concentration in FRB-F1 of the ex situ nitrification and in situ denitrification process would reach 25mg/L after 63weeks, and about 40weeks for the FRB-F2 of ex situ SND and in situ denitrification process . Ex situ SND and in situ denitrification process can improve themethane production of FRB-F2. The lag phase time of methane production for the FRB-F2 was 11weeks. This phase was significantly shorter than the 15-week phases of FRB-F1 in ex situ nitrification and in situ denitrification process. A seven-week stabilizationphase was required to increase methane content from 5% to 50% for FRB-F2. Methane content in FRB-F1 did not reach 50% but reached the 45% peak after 20weeks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Technical and Regulatory Requirements for Enhanced In Situ Bioremediation of Chlorinated Solvents in Groundwater

    National Research Council Canada - National Science Library

    1998-01-01

    Enhanced in situ bioremediation (EISB) of chlorinated solvents in groundwater involves the input of an organic carbon source, nutrients, electron acceptors, and/or microbial cultures to stimulate degradation...

  10. Bioremediation of contaminated sites

    International Nuclear Information System (INIS)

    Schneider, C.

    1996-01-01

    By volatilizing aromatic compounds through aeration, landfarming is a recognized approach to the bioremediation of hydrocarbon contaminated soil. With this method, the soil is cultivated and aided with fertilizer amendment to provide a nutrient source for the microbial population involved in the degradation of hydrocarbons. The effectiveness of bioremediation will depend on several factors, including topographic features, soil properties, and biochemistry. Since bioremediation is inhibited by anaerobic conditions, sites that are sloped or have trenches to collect runoff water are preferable. As for soil properties, the percentage of sand should not be too high, but aeration is essential to avoid anaerobic conditions. Addition of straw is generally beneficial, and fertilizers with nitrogen, phosphorous and potassium will help degrading hydrocarbons. Temperature, pH, and salt content are also important factors since they facilitate microbial activity. 3 refs

  11. In-situ bioremediation: Or how to get nutrients to all the contaminated soil

    International Nuclear Information System (INIS)

    Jackson, D.S.; Scovazzo, P.

    1994-01-01

    Petroleum contamination is a pervasive environmental problem. Bioremediation is winning favor primarily because the soil may be treated on site and systems can be installed to operate without interfering with facility activities. Although bioremediation has been utilized for many years, its acceptance as a cost-effective approach is only now being realized. KEMRON applied in-situ bioremediation at a retired rail yard which had maintained a diesel locomotive refueling station supplied by two 20,000 gallon above ground storage tanks. Contamination originated from both spillage at the pumps and leaking fuel distribution lines. The contamination spread over a 3 acre area from the surface to a depth of up to 20 feet. Levels of diesel contamination found in the soil ranged from less than a 100 ppm to more than 25,000 ppm. The volume of soil which ultimately required treatment was more than 60,000 cubic yards. Several remedial options were examined including excavation and disposal. Excavation was rejected because it would have been cost prohibitive due to the random distribution of the contaminated soil. In-situ Bioremediation was selected as the only alternative which could successfully treat all the contaminated soils. This paper focuses on how KEMRON solved four major problems which would have prevented a successful remediation project. These problems were: soil compaction, random distribution of contaminated soils, potential free product, and extremely high levels of dissolved iron in the groundwater

  12. In situ vadose zone bioremediation of soil contaminated with nonvolatile hydrocarbons

    International Nuclear Information System (INIS)

    Hogg, D.S.; Burden, R.J.; Riddell, P.J.

    1992-01-01

    In situ bioremediation has been successfully carried out on petroleum hydrocarbon-contaminated soil at a decommissioned bulk storage terminal in New Zealand. The site soils were contaminated mainly with diesel fuel and spent oil at concentrations ranging up to 95,000 mg/kg of total recoverable petroleum hydrocarbons. The in situ remediation system combines an enhanced bioremediation with vapor extraction and is installed almost entirely below grade, thereby allowing above ground activities to continue unimpeded. Laboratory-scale feasibility testing indicated that although appreciable volatilization of low molecular weight components would occur initially, biodegradation would be the primary mechanism by which contaminated soil would be remediated. During the remedial design phase, preliminary field testing was conducted to evaluate the optimum spacing for extraction wells and inlet vents. A pilot-scale system was installed in a 15-m by 35-m area of the site in June 1989 and operated for approximately 1 year. Soil monitoring performed approximately every 3 months indicated an overall reduction in soil petroleum hydrocarbon concentrations of 87% for the period from June 1989 to May 1991

  13. Hydrodynamics of foam flows for in situ bioremediation of DNAPL-contaminated subsurface

    International Nuclear Information System (INIS)

    Bouillard, J.X.; Enzien, M.; Peters, R.W.; Frank, J.; Botto, R.E.; Cody, G.

    1995-01-01

    In situ remediation technologies such as (1) pump-and-treat, (2) soil vacuum extraction, (3) soil flushing/washing, and (4) bioremediation are being promoted for cleanup of contaminated sites. However, these technologies are limited by flow channeling of chemical treatment agents. Argonne National Laboratory (ANL), the Gas Research Institute, and the Institute of Gas Technology are collaboratively investigating a new bioremediation technology using foams. The ability of a foam to block pores and limit flow bypassing makes it ideal for DNAPL remediation. The hydrodynamics of gas/liquid foam flows differ significantly from the hydrodynamics of single and multiphase nonfoaming flows. This is illustrated using a multiphase flow hydrodynamic computer model and a two-dimensional flow visualization cell. A state-of-the-art, nonintrusive, three-dimensional magnetic resonance imaging technique was developed to visualize DNAPL mobilization in three dimensions. Mechanisms to be investigated are in situ DNAPL interactions with the foam, DNAPL emulsification, DNAPL scouring by the foam, and subsequent DNAPL mobilization/redeposition in the porous media

  14. Development of an aerobic/anaerobic process for in-situ-rehabilitation of a mostly with mineral oil contaminated location. Final report; Entwicklung eines aeroben/anaeroben Verfahrens zur `In situ-Sanierung` eines vorwiegend mineraloelkontaminierten Altlaststandortes. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, C; Winsel, E; Wartenberg, G

    1994-12-31

    - A location contaminated with mineral oil was tested for the possibility of a bioremediation; - the microbiological tests showed, that there is both an aerobiotic and an optional anaerobic autochthonous pollutants degrading microflora but only the activation of the aerobiotic germs was possible by both suitable nutrients and test conditions; - in degrading tests with a high concentration of pollutants a degradation was possible by addition of different nutrients. Within a week a degradation of about 70% was shown. In areas of lower concentration the possible degradation was smaller. - An in-situ-rehabilitation by a hydraulic supply of the soil microorganisms was not possible because of the anisotropic conditions at the location in a depth of 5-10 m; - an in-situ-rehabilitation with both soil air aspiration and aeration, for the supply of the soil microorganisms too, is even possible at anisotropic soil conditions; - now there is knowledge about both a variable filtration and tubing for an optimal adaptation for the bioremediation to the damage; - apparatus were developped for in-situ-rehabilitation for small and medium locations, useable for biological processes too; - there is a wide utilization of the aeration apparatus is because of the careful environmental use. (orig.) [Deutsch] - Ein Mineraloel-kontaminierter Altlaststandort wurde im Hinblick auf eine moegliche biologische Sanierung untersucht. - Die mikrobiologischen Untersuchungen ergaben, dass eine aerobe und fakultativ anaerobe autochthone schadstoffabbauende Mikroflora vorhanden ist, aber nur der aeroben Keime durch geeignete Naehrstoffe und Versuchsbedingungen aktivierbar waren. - In Abbauuntersuchungen durch Zusatz unterschiedlicher Naehrsalze konnte bei hoher Schadstoffkonzentration schon nach 1 Woche ein Abbau > 70% erreicht werden. In niederen Konzentrationsbereichen war die Schadstoffabbaupotenz wesentlich geringer. - Die anisotropen Verhaeltnisse am Standort in 5-10m Tiefe liessen eine In-situ

  15. Large Scale Bioremediation of Petroleum Hydrocarbon Contaminated Waste at Various Installations of ONGC. India: Case Studies

    OpenAIRE

    Mandal, Ajoy Kumar; Sarma, Priyangshu Manab; Jeyaseelan, C Paul; Channashettar, Veeranna A; Singh, Bina; Agnihotri, Anil; Lal, Banwari; Datta, Jayati

    2014-01-01

    In situ and ex situ bioremediation of oil contaminated effluent pits, sludge pits, oil spilled land and tank bottom, and effluent treatment plant (ETP) oily sludge was carried out at Ankleshwar, Mehsana, Assam and Cauvery Asset of Oil and Natural Gas Corporation Limited (ONGC), India. The types of contaminant were heavy paraffinic, asphaltic and light crude oil and emulsified oily sludge /contaminated soil. An indigenous microbial consortium was developed by assembling four species of bacteri...

  16. In situ bioremediation of petroleum hydrocarbons and chlorinated hydrocarbons: Three case studies

    International Nuclear Information System (INIS)

    Bost, R.C.; Perry, R.G.; Barber, T.

    1997-01-01

    In situ biodegradation of organic contaminants is one of the most cost-effective means of site remediation. This method has proven successful in soils, ground water, and slurries. Bacteria capable of degrading organic contaminants within an aquifer include many species from a wide spectrum of genera, e.g. Pseudomonas, Corynebacterium, Bacillus, etc. In most cases, a mixture of bacterial strains is required to completely oxidize a complex organic contaminant. Each strain of an organism may target a specific compound, working together with other organisms to ultimately degrade each intermediate until complete degradation, also known as mineralization, occurs. One or more of the following mechanisms are utilized by bacteria for organic chemical degradation: (1) aerobic, (2) anaerobic, and (3) co-metabolic. During aerobic oxidation of organic chemicals, bacteria utilize the pollutant as an electron and hydrogen source and oxygen acts as the electron and hydrogen acceptor, resulting in water. As the bacterial enzymes cleave the compound, oxidized products are produced along with energy for the reaction to proceed. This is the most rapid and widely utilized mechanism. Dehalogenation occurs under aerobic, or perhaps more often, under anoxic conditions. This process occurs in the presence of alternate electron acceptors and replaces chlorine with hydrogen. The mechanism of co-metabolism can be aerobic or anaerobic, but is more often aerobic. This process requires a separate energy source for the bacterial cell because the pollutant is not utilized as an energy source. The role of bioremediation in site remediation is demonstrated below by three case studies: (1) a refinery, (2) a municipal landfill and (3) a pesticide formulation plant

  17. Effect of silica particles modified by in-situ and ex-situ methods on the reinforcement of silicone rubber

    International Nuclear Information System (INIS)

    Song, Yingze; Yu, Jinhong; Dai, Dan; Song, Lixian; Jiang, Nan

    2014-01-01

    Highlights: • In-situ and ex-situ methods were applied to modify silica particles. • In-situ method was more beneficial to preparing silica particles with high BET surface area. • Silicone rubber filled with in-situ modified silica exhibits excellent mechanical and thermal properties. - Abstract: In-situ and ex-situ methods were applied to modify silica particles in order to investigate their effects on the reinforcement of silicone rubber. Surface area and pore analyzer, laser particle size analyzer, Fourier-transform infrared spectroscopy (FTIR), contact-angle instrument, and transmission electron microscope (TEM) were utilized to investigate the structure and properties of the modified silica particles. Dynamic mechanical thermal analyzer (DMTA) was employed to characterize the vulcanizing behavior and mechanical properties of the composites. Thermogravimetric analysis (TGA) was performed to test the thermal stability of the composites. FTIR and contact angle analysis indicated that silica particles were successfully modified by these two methods. The BET surface area and TEM results reflected that in-situ modification was more beneficial to preparing silica particles with irregular shape and higher BET surface area in comparison with ex-situ modification. The DMTA and TGA data revealed that compared with ex-situ modification, the in-situ modification produced positive influence on the reinforcement of silicone rubber

  18. Deploying in situ bioremediation at the Hanford Site

    International Nuclear Information System (INIS)

    Truex, M.J.; Johnson, C.D.; Newcomer, D.R.; Doremus, L.A.; Hooker, B.S.; Peyton, B.M.; Skeen, R.S.; Chilakapati, A.

    1994-11-01

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC1 4 ) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl 4 . Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy's Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process

  19. Multi-Objective Optimization of an In situ Bioremediation Technology to Treat Perchlorate-Contaminated Groundwater

    Science.gov (United States)

    The presentation shows how a multi-objective optimization method is integrated into a transport simulator (MT3D) for estimating parameters and cost of in-situ bioremediation technology to treat perchlorate-contaminated groundwater.

  20. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    Science.gov (United States)

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  1. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    Science.gov (United States)

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. IRP, Aerobic Cometabolic In Situ Bioremediation Technology Guidance Manual and Screening Software User's Guide

    National Research Council Canada - National Science Library

    1998-01-01

    ...) have been documented. These compounds can pose a serious threat to human health or the environment. Aerobic cometabolic in situ bioremediation is an innovative technology being used for treatment of groundwater contaminated with CAHs, especially TCE...

  3. Polluted soils with heavy metals. Stabilization by magnesium oxide. Ex-situ and in-situ testings; Suelos contaminados con metales pesados. Estabilizacion con oxido de magnesio. Ensayos ex situ-in situ

    Energy Technology Data Exchange (ETDEWEB)

    Cenoz, S.; Hernandez, J.; Gangutia, N.

    2004-07-01

    This work describes the use of Low-Grade MgO as a stabiliser agent for polluted soil reclaim. Low-Grade MgO may be an economically feasible alternative in the stabilisation of heavy metals from heavily contaminated soils. The effectiveness of Low-Grade MgO has been studied in three ex-situ stabilisation of heavily polluted soils contaminated by the flue-dust of pyrite roasting. LG-MgO provides an alkali reservoir guaranteeing long-term stabilisation without varying the pH conditions. The success of the ex-situ stabilisation was corroborated with the analysis of heavy metals in the leachates collected from the landfill o ver a long period of time. The study also includes the results obtained in an in-situ pilot scale stabilisation of contaminated soil. (Author) 17 refs.

  4. In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site.

    Science.gov (United States)

    Jugnia, Louis B; Manno, Dominic; Drouin, Karine; Hendry, Meghan

    2018-05-04

    Bioremediation was performed in situ at a former military range site to assess the performance of native bacteria in degrading hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (2,4-DNT). The fate of these pollutants in soil and soil pore water was investigated as influenced by waste glycerol amendment to the soil. Following waste glycerol application, there was an accumulation of organic carbon that promoted microbial activity, converting organic carbon into acetate and propionate, which are intermediate compounds in anaerobic processes. This augmentation of anaerobic activity strongly correlated to a noticeable reduction in RDX concentrations in the amended soil. Changes in concentrations of RDX in pore water were similar to those observed in the soil suggesting that RDX leaching from the soil matrix, and treatment with waste glycerol, contributed to the enhanced removal of RDX from the water and soil. This was not the case with 2,4-DNT, which was neither found in pore water nor affected by the waste glycerol treatment. Results from saturated conditions and Synthetic Precipitation Leaching Procedure testing, to investigate the environmental fate of 2,4-DNT, indicated that 2,4-DNT found on site was relatively inert and was likely to remain in its current state on the site.

  5. Selection of electron acceptors and strategies for in situ bioremediation

    International Nuclear Information System (INIS)

    Norris, R.D.

    1995-01-01

    The most critical aspect of designing in situ bioremediation systems is, typically, the selection and method of delivery of the electron acceptor. Nitrate, sulfate, and several forms of oxygen can be introduced, depending on the contaminants and the site conditions. Oxygen can be added as air, pure oxygen, hydrogen peroxide, or an oxygen release compound. Simplistic cost calculations can illustrate the advantages of some methods over others, providing technical requirements can be met

  6. Challenging oil bioremediation at deep-sea hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Alberto Scoma

    2016-08-01

    Full Text Available The Deepwater Horizon (DWH accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (biotechnology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons at deep-sea remain unanswered, as much as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil take up are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled-oil. The fate of solid alkanes (tar and that of hydrocarbons degradation rates was largely overlooked, as the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea, despite being present at hydrocarbon seeps at the Gulf of Mexico. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  7. Laboratory-scale in situ bioremediation in heterogeneous porous media: biokinetics-limited scenario.

    Science.gov (United States)

    Song, Xin; Hong, Eunyoung; Seagren, Eric A

    2014-03-01

    Subsurface heterogeneities influence interfacial mass-transfer processes and affect the application of in situ bioremediation by impacting the availability of substrates to the microorganisms. However, for difficult-to-degrade compounds, and/or cases with inhibitory biodegradation conditions, slow biokinetics may also limit the overall bioremediation rate, or be as limiting as mass-transfer processes. In this work, a quantitative framework based on a set of dimensionless coefficients was used to capture the effects of the competing interfacial and biokinetic processes and define the overall rate-limiting process. An integrated numerical modeling and experimental approach was used to evaluate application of the quantitative framework for a scenario in which slow-biokinetics limited the overall bioremediation rate of a polycyclic aromatic hydrocarbon (naphthalene). Numerical modeling was conducted to simulate the groundwater flow and naphthalene transport and verify the system parameters, which were used in the quantitative framework application. The experiments examined the movement and biodegradation of naphthalene in a saturated, heterogeneous intermediate-scale flow cell with two layers of contrasting hydraulic conductivities. These experiments were conducted in two phases: Phase I, simulating an inhibited slow biodegradation; and Phase II, simulating an engineered bioremediation, with system perturbations selected to enhance the slow biodegradation rate. In Phase II, two engineered perturbations to the system were selected to examine their ability to enhance in situ biodegradation. In the first perturbation, nitrogen and phosphorus in excess of the required stoichiometric amounts were spiked into the influent solution to mimic a common remedial action taken in the field. The results showed that this perturbation had a moderate positive impact, consistent with slow biokinetics being the overall rate-limiting process. However, the second perturbation, which was to

  8. Integrating In-Situ and Ex-Situ Data Management Processes for Biodiversity Conservation

    Directory of Open Access Journals (Sweden)

    Karin R. Schwartz

    2017-10-01

    Full Text Available There is an increasing need for a “one plan approach” for conservation strategies that integrate in-situ and ex-situ management processes. Zoological institutions contribute directly to threatened species conservation through paradigms, such as reintroduction, head-starting, supplementation, or rescue/rehabilitation/release. This in-situ/ex-situ integration necessitates collaboration at all levels of conservation action including planning, implementation, monitoring and assessment to drive adaptive management processes. Each component is dependent on the availability and accuracy of data for evidence to facilitate evaluation and adaptive management processes. The Zoological Information Management System (ZIMS, managed by Species360, is a centralized web-based information system used in zoological institutions worldwide to pool life history, behavior and health data and facilitate animal husbandry, health, and breeding management processes. Currently used for few integrated conservation programs, ZIMS is an innovative tool that offers a new opportunity to link data management processes for animals that spend a part of their lives under human care and part in their natural environment and has great potential for use in managed wild populations.

  9. Advances in speed and performance of on-site bioremediation

    International Nuclear Information System (INIS)

    Shearon, M.S.; Autry, A.R.; Archer, B.

    1991-01-01

    SafeSoil is a proprietary additive and ex-situ treatment process which mediates and enhances biodegradation of environmental pollutants. The additive itself contains natural surfactants, organic and inorganic nutrients, and enzymes (primarily oxygenases). The treatment is an ex-situ process involving excavation and stockpiling of contaminated soil, mixing of the excavated soil with the authors proprietary additive in a mixer, and then the placement of the treated soil in curing piles, during which time biodegradation is actively occurring. SafeSoil was proven effective at treating approximately 35,000 cubic yards of soil contaminated with gasoline, diesel fuel, kerosene, motor oil, and transmission fluid to below specified action levels (50 ppm for TFH, and five ppm for total BTEX) in a full-scale remedial action for the channel Gateway Development project at Marina del Rey, California, within 15 days for 70 to 75% of the soil mass treated. More time was required for successful bioremediation of some of the more recalcitrant (persistent) contaminants, principally longer chain aliphatic hydrocarbons

  10. The influence of the roll diameter in flat rolling of of superconducting in situ and ex situ MgB2 tape

    DEFF Research Database (Denmark)

    Hancock, Michael Halloway; Bay, Niels

    2007-01-01

    , 150 and 210 mm in each step. The investigation has shown that the in situ powder is more readily compacted than the ex situ powder, with an average increase of relative density after mechanical processing of 37% for in situ powder and 19% for ex situ powder. Statistical analysis showed that the choice......Applying the powder in tube (PIT) method, single-filament MgB2/Fe wire and tape has been manufactured applying both the ex situ and the in situ approach. The influence of the roll diameter in three-step flat rolling on the powder density and critical temperature has been examined using rolls of 70...... roll in the first and second reductions followed by the 150 mm or 210 mm roll in the last reduction was the optimum strategy for both powder types. AC susceptibility testing showed that for the in situ tapes there was no correlation between the powder density and the critical temperature. For ex situ...

  11. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    Science.gov (United States)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  12. In situ bioremediation strategies for oiled shoreline environments

    International Nuclear Information System (INIS)

    Lee, K.; Mora, S. de

    1999-01-01

    Despite advances in preventative measures, recent events have demonstrated that accidental oil spills at sea will still occur. While physical (e.g. booms and skimmers) and chemical (e.g. chemical dispersants) methods have been developed to recover and/or disperse oil spilled at sea, they are not 100% effective and are frequently limited by operational constraints attributed to sea state and/or nature of the contamination. As a result, oil spills frequently impact shoreline environments. In situ bioremediation, the addition of substances or modification of habitat at contaminated sites to accelerate natural biodegradation processes, is now recognised as an alternative spill response technology of the remediation of these sites. Recommended for use following the physical removal of bulk oil, this treatment strategy has an operational advantage in that it breaks down and/or removes the residual contamination in place. Laboratory experiments and field trials have demonstrated the feasibility and success of bioremediation strategies such as nutrient enrichment to enhance bacterial degradation of oil on cobble, sand beach and salt marsh environments. With improved knowledge of the factors that limit natural oil degradation rates, the feasibility of other strategies such as phytoremediation, enhanced oil-mineral fines interaction and the addition of oxygen or alternative electron acceptors are now being evaluated. Laboratory and field test protocols are being refined for the selection of effective bioremediation agents and methods of application. It is recommended that future operational guidelines include real time product efficacy test and environmental effects monitoring programs. Termination of treatment should be implemented when: 1) it is no longer effective; 2) the oil has degraded to acceptable biologically benign concentrations; or 3) toxicity due to the treatment is increasing. (Author)

  13. Bioremediation of chlorinated solvents and diesel soils

    International Nuclear Information System (INIS)

    Huismann, S.S.; Peterson, M.A.; Jardine, R.J.

    1995-01-01

    The US Army, in a cooperative effort with the Tennessee Valley Authority (TVA) and its cooperator, ENSR, performed an innovative enhanced bioremediation project at Fort Gillem in Atlanta, Georgia. The objective of the project was to remediate six hundred cubic yards of soil affected by a mixture of chlorinated compounds and petroleum hydrocarbons which posed a threat to uppermost groundwater and private drinking water wells. ENSR completed a demonstration project to measure the effects of bioremediation on both chlorinated compounds (primarily TCE) and petroleum hydrocarbons (number-sign 2 diesel). Contaminated soil was placed on top of a bermed polyethylene liner to construct an ex-situ biovault. Nutrients were added to the soil as it was loaded onto the liner. Contaminated soil was also used to construct a control vault. A methane barrier cover was placed over both piles. The cover was designed to prevent short circuiting of induced airflow in and around the enhanced pile, and to prevent the release of fugitive emissions from either pile

  14. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kun-Ching [Zachry Department of Civil Engineering, Texas A& M University, College Station, TX 77843-3136 (United States); Fuller, Mark E.; Hatzinger, Paul B. [CB& I Federal Services, Lawrenceville, NJ 08648 (United States); Chu, Kung-Hui, E-mail: kchu@civil.tamu.edu [Zachry Department of Civil Engineering, Texas A& M University, College Station, TX 77843-3136 (United States)

    2016-11-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a nitroamine explosive, is commonly detected in groundwater at military testing and training sites. The objective of this study was to characterize the microbial community capable of using nitrogen derived from the RDX or RDX intermediates during in situ bioremediation. Active groundwater microorganisms capable of utilizing nitro-, ring- or fully-labeled {sup 15}N-RDX as a nitrogen source were identified using stable isotope probing (SIP) in groundwater microcosms prepared from two wells in an aquifer previously amended with cheese whey to promote RDX biodegradation. A total of fifteen 16S rRNA gene sequences, clustered in Clostridia, β-Proteobacteria, and Spirochaetes, were derived from the {sup 15}N-labeled DNA fractions, suggesting the presence of metabolically active bacteria capable of using RDX and/or RDX intermediates as a nitrogen source. None of the derived sequences matched RDX-degrading cultures commonly studied in the laboratory, but some of these genera have previously been linked to RDX degradation in site groundwater via {sup 13}C-SIP. When additional cheese whey was added to the groundwater samples, 28 sequences grouped into Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria were identified. The data suggest that numerous bacteria are capable of incorporating N from ring- and nitro-groups in RDX during anaerobic bioremediation, and that some genera may be involved in both C and N incorporation from RDX. - Highlights: • Cheese whey addition resulted in 28 different clones associated with RDX degradation. • The 28 clones belong to Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria. • SIP identified 15 clones using RDX and/or its metabolites as a nitrogen source. • The clones clustered in Clostridia, β-Proteobacteria, and Spirochaetes.

  15. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation

    International Nuclear Information System (INIS)

    Cho, Kun-Ching; Fuller, Mark E.; Hatzinger, Paul B.; Chu, Kung-Hui

    2016-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a nitroamine explosive, is commonly detected in groundwater at military testing and training sites. The objective of this study was to characterize the microbial community capable of using nitrogen derived from the RDX or RDX intermediates during in situ bioremediation. Active groundwater microorganisms capable of utilizing nitro-, ring- or fully-labeled "1"5N-RDX as a nitrogen source were identified using stable isotope probing (SIP) in groundwater microcosms prepared from two wells in an aquifer previously amended with cheese whey to promote RDX biodegradation. A total of fifteen 16S rRNA gene sequences, clustered in Clostridia, β-Proteobacteria, and Spirochaetes, were derived from the "1"5N-labeled DNA fractions, suggesting the presence of metabolically active bacteria capable of using RDX and/or RDX intermediates as a nitrogen source. None of the derived sequences matched RDX-degrading cultures commonly studied in the laboratory, but some of these genera have previously been linked to RDX degradation in site groundwater via "1"3C-SIP. When additional cheese whey was added to the groundwater samples, 28 sequences grouped into Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria were identified. The data suggest that numerous bacteria are capable of incorporating N from ring- and nitro-groups in RDX during anaerobic bioremediation, and that some genera may be involved in both C and N incorporation from RDX. - Highlights: • Cheese whey addition resulted in 28 different clones associated with RDX degradation. • The 28 clones belong to Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria. • SIP identified 15 clones using RDX and/or its metabolites as a nitrogen source. • The clones clustered in Clostridia, β-Proteobacteria, and Spirochaetes

  16. Bioremediation of contaminated soil: Strategy and case histories

    International Nuclear Information System (INIS)

    Balba, M.T.; Ying, A.C.; McNeice, T.G.

    1991-01-01

    Microorganisms are capable of degrading many kinds of xenobiotic compounds and toxic chemicals. These microorganisms are ubiquitous in nature and there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of micro-organisms to metabolize these compounds under the prevailing environmental conditions. Two general reasons account for the failure of microbes to degrade pollutants in any environment: (1) inherent molecular recalcitrance of the contaminants and (2) environmental factors. The inherent molecular recalcitrance is usually associated with xenobiotic compounds where the chemical structure of the molecule is such that microbes and enzymes required for its catabolism have not evolved yet in nature. The environmental factors include a range of physicochemical conditions which influence microbial growth and activity. Biological remediation of contaminated sites can be accomplished using naturally-occurring microorganisms to treat the contaminants. Only particular groups of microorganisms are capable of decomposing specific compounds. The development of a bioremediation program for a specific contaminated soil system usually includes: thorough site/soil/waste characterization; treatability studies; and design and implementation of the bioremediation plan. The results of in situ and ex situ treatment programs involving the cleanup of petroleum hydrocarbon-contaminated soil will be discussed in detail. The paper will address key issues affecting the success of the bioremediation process such as nutrient transport, metal precipitation and potential soil clogging, microbial inoculation, etc

  17. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering.

    Science.gov (United States)

    Stumpf, Taisa Regina; Yang, Xiuying; Zhang, Jingchang; Cao, Xudong

    2018-01-01

    Bacterial cellulose (BC) is secreted by a few strains of bacteria and consists of a cellulose nanofiber network with unique characteristics. Because of its excellent mechanical properties, outstanding biocompatibilities, and abilities to form porous structures, BC has been studied for a variety of applications in different fields, including the use as a biomaterial for scaffolds in tissue engineering. To extend its applications in tissue engineering, native BC is normally modified to enhance its properties. Generally, BC modifications can be made by either in situ modification during cell culture or ex situ modification of existing BC microfibers. In this review we will first provide a brief introduction of BC and its attributes; this will set the stage for in-depth and up-to-date discussions on modified BC. Finally, the review will focus on in situ and ex situ modifications of BC and its applications in tissue engineering, particularly in bone regeneration and wound dressing. Copyright © 2016. Published by Elsevier B.V.

  18. Field Implementation Plan for the In-Situ Bioremediation Treatability Study at the Technical Area-V Groundwater Area of Concern

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-31

    This Field Implementation Plan (FIP) was prepared by Sandia National Laboratories, New Mexico (SNL/NM) and provides instruction on conducting a series of in-situ bioremediation (ISB) tests as described in the Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern, referred to as the Revised Work Plan in this FIP. The Treatability Study is designed to gravity inject an electron-donor substrate and bioaugmentation bacteria into groundwater via three injection wells to perform bioremediation of the constituents of concern (COCs), nitrate and trichloroethene (TCE), in the regions with the highest concentrations at the Technical Area-V Groundwater (TAVG) Area of Concern (AOC). The Treatability Study will evaluate the effectiveness of bioremediation solution delivery and COC treatment over time. This FIP is designed for SNL/NM work planning and management. It is not intended to be submitted for regulator’s approval. The technical details presented in this FIP are subject to change based on field conditions, availability of equipment and materials, feasibility, and inputs from Sandia personnel and Aboveground Injection System contractor.

  19. Field Implementation Plan for the In-Situ Bioremediation Treatability Study at the Technical Area-V Groundwater Area of Concern

    International Nuclear Information System (INIS)

    Li, Jun

    2016-01-01

    This Field Implementation Plan (FIP) was prepared by Sandia National Laboratories, New Mexico (SNL/NM) and provides instruction on conducting a series of in-situ bioremediation (ISB) tests as described in the Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern, referred to as the Revised Work Plan in this FIP. The Treatability Study is designed to gravity inject an electron-donor substrate and bioaugmentation bacteria into groundwater via three injection wells to perform bioremediation of the constituents of concern (COCs), nitrate and trichloroethene (TCE), in the regions with the highest concentrations at the Technical Area-V Groundwater (TAVG) Area of Concern (AOC). The Treatability Study will evaluate the effectiveness of bioremediation solution delivery and COC treatment over time. This FIP is designed for SNL/NM work planning and management. It is not intended to be submitted for regulator's approval. The technical details presented in this FIP are subject to change based on field conditions, availability of equipment and materials, feasibility, and inputs from Sandia personnel and Aboveground Injection System contractor.

  20. Evaluation of Long-term Performance of Enhanced Anaerobic Source Zone Bioremediation using mass flux

    Science.gov (United States)

    Haluska, A.; Cho, J.; Hatzinger, P.; Annable, M. D.

    2017-12-01

    Chlorinated ethene DNAPL source zones in groundwater act as potential long term sources of contamination as they dissolve yielding concentrations well above MCLs, posing an on-going public health risk. Enhanced bioremediation has been applied to treat many source zones with significant promise, but long-term sustainability of this technology has not been thoroughly assessed. This study evaluated the long-term effectiveness of enhanced anaerobic source zone bioremediation at chloroethene contaminated sites to determine if the treatment prevented contaminant rebound and removed NAPL from the source zone. Long-term performance was evaluated based on achieving MCL-based contaminant mass fluxes in parent compound concentrations during different monitoring periods. Groundwater concertation versus time data was compiled for 6-sites and post-remedial contaminant mass flux data was then measured using passive flux meters at wells both within and down-gradient of the source zone. Post-remedial mass flux data was then combined with pre-remedial water quality data to estimate pre-remedial mass flux. This information was used to characterize a DNAPL dissolution source strength function, such as the Power Law Model and the Equilibrium Stream tube model. The six-sites characterized for this study were (1) Former Charleston Air Force Base, Charleston, SC; (2) Dover Air Force Base, Dover, DE; (3) Treasure Island Naval Station, San Francisco, CA; (4) Former Raritan Arsenal, Edison, NJ; (5) Naval Air Station, Jacksonville, FL; and, (6) Former Naval Air Station, Alameda, CA. Contaminant mass fluxes decreased for all the sites by the end of the post-treatment monitoring period and rebound was limited within the source zone. Post remedial source strength function estimates suggest that decreases in contaminant mass flux will continue to occur at these sites, but a mass flux based on MCL levels may never be exceeded. Thus, site clean-up goals should be evaluated as order

  1. Comparing electrical characteristics of in situ and ex situ Al2O3/GaN interfaces formed by metalorganic chemical vapor deposition

    Science.gov (United States)

    Chan, Silvia H.; Bisi, Davide; Tahhan, Maher; Gupta, Chirag; DenBaars, Steven P.; Keller, Stacia; Zanoni, Enrico; Mishra, Umesh K.

    2018-04-01

    Al2O3/n-GaN MOS-capacitors grown by metalorganic chemical vapor deposition with in-situ- and ex-situ-formed Al2O3/GaN interfaces were characterized. Capacitors grown entirely in situ exhibited ˜4 × 1012 cm-2 fewer positive fixed charges and up to ˜1 × 1013 cm-2 eV-1 lower interface-state density near the band-edge than did capacitors with ex situ oxides. When in situ Al2O3/GaN interfaces were reformed via the insertion of a 10-nm-thick GaN layer, devices exhibited behavior between the in situ and ex situ limits. These results illustrate the extent to which an in-situ-formed dielectric/GaN gate stack improves the interface quality and breakdown performance.

  2. Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization

    Science.gov (United States)

    ch, Sudheer; Kumar, Deepak; Prasad, Ram Kailash; Mathur, Shashi

    2013-08-01

    A methodology based on support vector machine and particle swarm optimization techniques (SVM-PSO) was used in this study to determine an optimal pumping rate and well location to achieve an optimal cost of an in-situ bioremediation system. In the first stage of the two stage methodology suggested for optimal in-situ bioremediation design, the optimal number of wells and their locations was determined from preselected candidate well locations. The pumping rate and well location in the first stage were subsequently optimized in the second stage of the methodology. The highly nonlinear system of equations governing in-situ bioremediation comprises the equations of flow and solute transport coupled with relevant biodegradation kinetics. A finite difference model was developed to simulate the process of in-situ bioremediation using an Alternate-Direction Implicit technique. This developed model (BIOFDM) yields the spatial and temporal distribution of contaminant concentration for predefined initial and boundary conditions. BIOFDM was later validated by comparing the simulated results with those obtained using BIOPLUME III for the case study of Shieh and Peralta (2005). The results were found to be in close agreement. Moreover, since the solution of the highly nonlinear equation otherwise requires significant computational effort, the computational burden in this study was managed within a practical time frame by replacing the BIOFDM model with a trained SVM model. Support Vector Machine which generates fast solutions in real time was considered to be a universal function approximator in the study. Apart from reducing the computational burden, this technique generates a set of near optimal solutions (instead of a single optimal solution) and creates a re-usable data base that could be used to address many other management problems. Besides this, the search for an optimal pumping pattern was directed by a simple PSO technique and a penalty parameter approach was adopted

  3. Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization.

    Science.gov (United States)

    ch, Sudheer; Kumar, Deepak; Prasad, Ram Kailash; Mathur, Shashi

    2013-08-01

    A methodology based on support vector machine and particle swarm optimization techniques (SVM-PSO) was used in this study to determine an optimal pumping rate and well location to achieve an optimal cost of an in-situ bioremediation system. In the first stage of the two stage methodology suggested for optimal in-situ bioremediation design, the optimal number of wells and their locations was determined from preselected candidate well locations. The pumping rate and well location in the first stage were subsequently optimized in the second stage of the methodology. The highly nonlinear system of equations governing in-situ bioremediation comprises the equations of flow and solute transport coupled with relevant biodegradation kinetics. A finite difference model was developed to simulate the process of in-situ bioremediation using an Alternate-Direction Implicit technique. This developed model (BIOFDM) yields the spatial and temporal distribution of contaminant concentration for predefined initial and boundary conditions. BIOFDM was later validated by comparing the simulated results with those obtained using BIOPLUME III for the case study of Shieh and Peralta (2005). The results were found to be in close agreement. Moreover, since the solution of the highly nonlinear equation otherwise requires significant computational effort, the computational burden in this study was managed within a practical time frame by replacing the BIOFDM model with a trained SVM model. Support Vector Machine which generates fast solutions in real time was considered to be a universal function approximator in the study. Apart from reducing the computational burden, this technique generates a set of near optimal solutions (instead of a single optimal solution) and creates a re-usable data base that could be used to address many other management problems. Besides this, the search for an optimal pumping pattern was directed by a simple PSO technique and a penalty parameter approach was adopted

  4. Test plan for in situ bioremediation demonstration of the Savannah River Integrated Demonstration Project DOE/OTD TTP No.: SR 0566-01. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.

    1991-09-18

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms will be simulated to degrade trichloroethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated zone. in situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work.

  5. Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella Vulgaris

    KAUST Repository

    Cheng, Tuoyuan

    2016-05-01

    To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical oxygen demand (COD) together with oil and grease in terms of hexane extractable material (HEM) in the reactors were measured after batch cultivation tests of Chlorella Vulgaris, indicating the releasing algal metabolites were oleaginous (dissolved HEM up to 8.470 mg/L) and might hazard effluent quality. Ultrafiltration adopted as solid-liquid separation step was studied via critical flux and liquid chromatography-organic carbon detection (LC-OCD) analysis. Although nutrients removal was dominated by algal assimilation, nitrogen removal (99.6% maximum) was affected by generation time (2.49 days minimum) instead of specific nitrogen removal rate (sN, 20.72% maximum), while phosphorus removal (49.83% maximum) was related to both generation time and specific phosphorus removal rate (sP, 1.50% maximum). COD increase was affected by cell concentration (370.90 mg/L maximum), specific COD change rate (sCOD, 0.87 maximum) and shading effect. sCOD results implied algal metabolic pathway shift under nutrients stress, generally from lipid accumulation to starch accumulation when phosphorus lower than 5 mg/L, while HEM for batches with initial nitrogen of 10 mg/L implied this threshold around 8 mg/L. HEM and COD results implied algal metabolic pathway shift under nutrients stress. Anaerobic membrane bioreactor effluent polishing showed similar results to synthetic anaerobic secondary effluent with slight inhibition while 4 symbiotic bioremediation of raw municipal wastewater with microalgae and activated sludge showed competition for ammonium together with precipitation or microalgal luxury uptake of phosphorus. Critical flux was governed by algal cell concentration for ultrafiltration membrane with pore size of 30 nm, while

  6. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta).

    Science.gov (United States)

    Sode, Sidsel; Bruhn, Annette; Balsby, Thorsten J S; Larsen, Martin Mørk; Gotfredsen, Annemarie; Rasmussen, Michael Bo

    2013-10-01

    Phosphorus and biologically active nitrogen are valuable nutrient resources. Bioremediation with macroalgae is a potential means for recovering nutrients from waste streams. In this study, reject water from anaerobically digested sewage sludge was successfully tested as nutrient source for cultivation of the green macroalgae Ulva lactuca. Maximal growth rates of 54.57±2.16% FW d(-1) were achieved at reject water concentrations equivalent to 50 μM NH4(+). Based on the results, the growth and nutrient removal was parameterised as function of NH4(+) concentration a tool for optimisation of any similar phycoremediation system. Maximal nutrient removal rates of 22.7 mg N g DW(-1) d(-1) and 2.7 mg P g DW(-1) d(-1) were achieved at reject water concentrations equivalent to 80 and 89 μM NH4(+), respectively. A combined and integrated use of the produced biomass in a biorefinery is thought to improve the feasibility of using Ulva for bioremediation of reject water. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation

  8. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M.; Wu, W.-M.; Wu, L.; He, Z.; Van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; Gu, B.; Watson, D.; Jardine, P.M.; Marsh, T.L.; Tiedje, J.M.; Hazen, T.C.; Criddle, C.S.; Zhou, J.

    2010-02-15

    A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.

  9. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation.

    Directory of Open Access Journals (Sweden)

    Maria eGenovese

    2014-04-01

    Full Text Available The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs in coastal sediments. Approximately 1,000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6,500 ppm. The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after three months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS allowing the containment of sediments and their physical-chemical treatment, e.g. aeration. Aeration for three months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB, and after one month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus- and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB.

  10. Soil weed seed bank in situ and ex situ at a smallholder field in Maranhão State, northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Mário Luiz Ribeiro Mesquita

    2014-11-01

    Full Text Available The objective of this research was to assess the density, floristic composition,  phytosociology and diversity of a soil weed seed bank ex situ by germination in a greenhouse and in situ by weed sampling on a smallholder corn field located in Lago Verde County, Maranhão State. Fifteen pairs of 25 m2 plots were designated. In half of these plots, 90 soil samples were collected with an open metal template measuring 25 x 16 x 3 cm and placed in a greenhouse to germinate. In the other half, 90 weed samples were collected using the same metal template. We recorded a total of 1,998 individuals from 40 species, 31 genera and 16 families, from which 659 individuals germinated in situ and 1,339 exsitu. Density was higher ex situ, with 372 plants m-2. The Cyperaceae family had the highest floristic richness with nine species, followed by the Poaceae with six. The dominant species based on the Importance Value Index were Lindernia crustacea (IVI 27.7% in situ and Scleria lithosperma (IVI 37.0% ex situ. Floristic diversity was higher ex situ, with H’ = 2.66 nats ind-1. These results could help predict infestation potential and could lead to improved weed management strategies in corn-growing areas on smallholdings in Maranhão State, northeastern Brazil.

  11. Retrieval/ex situ thermal treatment scoring interaction report

    Energy Technology Data Exchange (ETDEWEB)

    Raivo, B.D.; Richardson, J.G.

    1993-11-01

    A retrieval/ex situ thermal treatment technology process for the Idaho National Engineering Laboratory transuranic waste pits and trenches is present. A system performance score is calculated, and assumptions, requirements, and reference baseline technologies for all subelements are included.

  12. Ex situ conservation of plant diversity in the world's botanic gardens.

    Science.gov (United States)

    Mounce, Ross; Smith, Paul; Brockington, Samuel

    2017-10-01

    Botanic gardens conserve plant diversity ex situ and can prevent extinction through integrated conservation action. Here we quantify how that diversity is conserved in ex situ collections across the world's botanic gardens. We reveal that botanic gardens manage at least 105,634 species, equating to 30% of all plant species diversity, and conserve over 41% of known threatened species. However, we also reveal that botanic gardens are disproportionately temperate, with 93% of species held in the Northern Hemisphere. Consequently, an estimated 76% of species absent from living collections are tropical in origin. Furthermore, phylogenetic bias ensures that over 50% of vascular genera, but barely 5% of non-vascular genera, are conserved ex situ. While botanic gardens are discernibly responding to the threat of species extinction, just 10% of network capacity is devoted to threatened species. We conclude that botanic gardens play a fundamental role in plant conservation, but identify actions to enhance future conservation of biodiversity.

  13. Cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror

    International Nuclear Information System (INIS)

    Yuan Sheng; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory; Macdougall, James; Mochi, Iacopo; Warwick, Tony

    2011-01-01

    At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in-situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. In this paper, we report an initial cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror. This cross-check provides a validation of the in-situ shearing interferometry, currently under development at the ALS.

  14. An evaluation of in-situ bioremediation processes

    International Nuclear Information System (INIS)

    Cole, L.L.; Rashidi, M.

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology

  15. An evaluation of in-situ bioremediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L.L. [Prairie View A and M Univ., TX (United States); Rashidi, M. [Lawrence Livermore National Lab., CA (United States). Environmental Programs Directorate

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology.

  16. Genetic approaches refine ex situ lowland tapir (Tapirus terrestris) conservation.

    Science.gov (United States)

    Gonçalves da Silva, Anders; Lalonde, Danielle R; Quse, Viviana; Shoemaker, Alan; Russello, Michael A

    2010-01-01

    Ex situ conservation management remains an important tool in the face of continued habitat loss and global environmental change. Here, we use microsatellite marker variation to evaluate conventional assumptions of pedigree-based ex situ population management and directly inform a captive lowland tapir breeding program within a range country. We found relatively high levels of genetic variation (N(total) = 41; mean H(E) = 0.67 across 10 variable loci) and little evidence for relatedness among founder individuals (N(founders) = 10; mean relatedness = -0.05). Seven of 29 putative parent-offspring relationships were excluded by parentage analysis based on allele sharing, and we identified 2 individuals of high genetic value to the population (mk ex situ conservation.

  17. In Situ Study of Thermal Stability of Copper Oxide Nanowires at Anaerobic Environment

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2014-01-01

    Full Text Available Many metal oxides with promising electrochemical properties were developed recently. Before those metal oxides realize the use as an anode in lithium ion batteries, their thermal stability at anaerobic environment inside batteries should be clearly understood for safety. In this study, copper oxide nanowires were investigated as an example. Several kinds of in situ experiment methods including in situ optical microscopy, in situ Raman spectrum, and in situ transmission electron microscopy were adopted to fully investigate their thermal stability at anaerobic environment. Copper oxide nanowires begin to transform as copper(I oxide at about 250°C and finish at about 400°C. The phase transformation proceeds with a homogeneous nucleation.

  18. Bioremediation: A natural solution

    International Nuclear Information System (INIS)

    Hicks, B.N.; Caplan, J.A.

    1993-01-01

    Bioremediation is an attractive remediation alternative because most full-scale bioremediation projects involve cost-effective contaminant treatment on-site. Recently, large scale bioremediation projects have included cleanups of ocean tanker spills, land-based chemical spills, and leaking chemical and petroleum storage tanks. Contaminated matrices have included beaches, soils, groundwater, surface waters (i.e., pits, ponds, lagoons), process waste streams and grease traps. Bioremediation is especially cost-effective when both soil and groundwater matrices are impacted because one remediation treatment system can be design to treat both media simultaneously in place. The primary advantages of in situ bioremediation include: on-site destruction of contaminants; accelerated cleanup time; minimal disruption to operations; lower remediation costs; and reduction of future liability

  19. PROTOCOL FOR DETERMINING BIOAVAILABILITY AND BIOKINETICS OF ORGANIC POLLUTANTS IN DISPERSED, COMPACTED AND INTACT SOIL SYSTEMS TO ENHANCE IN SITU BIOREMEDIATION

    Science.gov (United States)

    The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and o...

  20. Electrochemical studies, in-situ and ex-situ characterizations of different manganese compounds electrodeposited in aerated solutions; Etudes electrochimiques, suivis in-situ et caracterisations ex-situ de divers composes de manganese electrodeposes dans des solutions aerees

    Energy Technology Data Exchange (ETDEWEB)

    Peulon, S.; Lacroix, A.; Chausse, A. [Univ. d' Evry-val-d' Essonne, Laboratoire Analyse et Modelisation pour la Biologie et l' Environnement (LAMBE CNRS UMR 8587), 91 - Evry (France); Larabi-Gruet, N. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France)

    2007-07-01

    This work deals with the electrodeposition of manganese compounds. A systematic study of the synthesis experimental conditions has been carried out, and the obtained depositions have been characterized by different ex-situ analyses methods (XRD, FTIR, SEM). The in-situ measurements of mass increase with a quartz microbalance during the syntheses have allowed to estimate the growth mechanisms which are in agreement with the ex-situ characterizations. The cation has an important role in the nature of the electrodeposited compounds. In presence of sodium, a mixed lamellar compound Mn(III)/Mn(IV), the birnessite, is deposited, whereas in presence of potassium, bixbyite is formed (Mn{sub 2}O{sub 3}), these two compounds having a main role in the environment. The substrate can also influence the nature of the formed intermediary compounds. Little studied compounds such as feitkneichtite ({beta}-MnOOH) and groutite ({alpha}-MnOOH) have been revealed. (O.M.)

  1. Proceedings of the 10. world congress on anaerobic digestion 2004 : anaerobic bioconversion, answer for sustainability

    International Nuclear Information System (INIS)

    2004-01-01

    This conference reviewed the broad scope of anaerobic process-related activities taking place globally and confirmed the possibilities of using anaerobic processes to add value to industrial wastewaters, municipal solid wastes and organic wastes while minimizing pollution and greenhouse gases. It focused on biomolecular tools, instrumentation of anaerobic digestion processes, anaerobic bioremediation of chlorinated organics, and thermophilic and mesophilic digestion. Several papers focused on the feasibility of using waste products to produce hydrogen and methane for electricity generation. The sessions of the conference were entitled acidogenesis; microbial ecology; process control; sulfur content; technical development; domestic wastewater; agricultural waste; organic municipal solid wastes; instrumentation; molecular biology; sludges; agricultural feedstock; bioremediation; industrial wastewater; hydrogen production; pretreatments; sustainability; and integrated systems. The conference featured 387 posters and 192 oral presentations, of which 111 have been indexed separately for inclusion in this database. refs., tabs., figs

  2. Bioremediation of oil contaminated soils

    International Nuclear Information System (INIS)

    Beeson, D.L.; Hogue, J.I.; Peterson, J.C.; Guerra, G.W.

    1994-01-01

    The Baldwin Waste Oil Site was an abandoned waste oil recycling facility located in Robstown, Nueces County, Texas. As part of their site assessment activities, the US Environmental Protection Agency (EPA) requested that the Ecology and Environment, Inc., Technical Assistance Team (TAT) investigate the feasibility of using in-situ bioremediation to remediate soils contaminated with oil and grease components, petroleum hydrocarbons, and volatile organic compounds. Bioremediation based on the land treatment concept was tested. The land treatment concept uses techniques to optimize indigenous microbial populations and bring them in contact with the contaminants. The study was designed to collect data upon which to base conclusions on the effectiveness of bioremediation, to demonstrate the effectiveness of bioremediation under field conditions, and to identify potential problems in implementing a full-scale project. Bioremediation effectiveness was monitored through total petroleum hydrocarbons (TPH) and Oil and Grease (O and G) analyses. Site specific treatment goals for the pilot project were concentrations of less than 1% for O and G and less than 10,000 mg/kg for TPH. Based on the reduction of TPH and O and G concentrations and the cost effectiveness of bioremediation based on the land treatment concept, full-scale in-situ bioremediation was initiated by the EPA at the Baldwin Waste Oil Site in February of 1993

  3. Floristic diversity of the soil weed seed bank in a rice-growing area of Brazil: in situ and ex situ evaluation

    Directory of Open Access Journals (Sweden)

    Mário Luiz Ribeiro Mesquita

    2013-09-01

    Full Text Available The objective of this study was to compare the ex situ and in situ floristic diversity of the soil weed seed bank of a rice field in northeastern Brazil. In a rice field in the county of Bacabal, located in the state of Maranhão, thirty 25-m² plots were laid out. From 15 plots, soil samples (6/plot; n = 90 were taken with a soil probe (25 × 16 × 3 cm and placed in aluminum trays in the greenhouse. From the remaining 15 plots, weed samples (6/plot; n = 90 were taken with the same soil probe. The number of seeds was estimated by germination. We evaluated the numbers of species and individuals, as well as the density, frequency, abundance and importance value (IV for each species. Diversity was computed by the Shannon index (H'. We recorded 13,892 individuals (among 20 families, 40 genera and 60 species, of which 11,530 (among 50 species germinated ex situ and 2,362 (among 34 species germinated in situ. The family Cyperaceae had the highest number of species (16, followed by Poaceae (10. The dominant species, in situ and ex situ, were Schoenoplectus juncoides (IV=47.4% and Ludwigia octovalvis (IV=34.8%, respectively. Floristic diversity was higher ex situ (H'=2.66. The information obtained here could help determine the infestation potential of these species, which could lead to improved management strategies.

  4. An Expert support model for ex situ soil remediation

    NARCIS (Netherlands)

    Okx, J.P.; Frankhuizen, E.M.; Wit, de J.C.; Pijls, C.G.J.M.; Stein, A.

    2000-01-01

    This paper presents an expert support model recombining knowledge and experience obtained during ex situ soil remediation. To solve soil remediation problems, an inter-disciplinary approach is required. Responsibilities during the soil remediation process, however, are increasingly decentralised,

  5. Bioremediation of diesel from a rocky shoreline in an arid tropical climate.

    Science.gov (United States)

    Guerin, Turlough F

    2015-10-15

    A non invasive sampling and remediation strategy was developed and implemented at shoreline contaminated with spilt diesel. To treat the contamination, in a practical, cost-effective, and safe manner (to personnel working on the stockpiles and their ship loading activity), a non-invasive sampling and remediation strategy was designed and implemented since the location and nature of the impacted geology (rock fill) and sediment, precluded conventional ex-situ and any in-situ treatment where drilling is required. A bioremediation process using surfactant, and added N & P and increased aeration, increased the degradation rate allowing the site owner to meet their regulatory obligations. Petroleum hydrocarbons decreased from saturation concentrations to less than detectable amounts at the completion of treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Ex situ bioremediation of mineral oil in soils: Aerated pile treatment. Final report

    International Nuclear Information System (INIS)

    Graves, D.

    1998-04-01

    Under a contract with Southern Company Services, a pilot-scale evaluation of mineral oil biodegradation was conducted at Plant Mitchell. The evaluation consisted of two demonstrations to examine land treatment and aerated pile treatment of soil contaminated with the mineral insulating oil used in electrical transformers. Treatment of mineral oil contaminated soil is problematic in the State of Georgia and throughout the US because current practice is to excavate and landfill the contaminated soil. In many cases, the cost associated with these activities far exceeds the environmental risk of mineral oil in soil. This project was designed to evaluate the performance of bioremediation for the treatment of mineral oil in soil. Testing was carried out in a demonstration facility prepared by Georgia Power Company. The facility consisted of 12 independent treatment cells constructed on a concrete pad and covered with a roof

  7. Electrochemical studies, in-situ and ex-situ characterizations of different manganese compounds electrodeposited in aerated solutions

    International Nuclear Information System (INIS)

    Peulon, S.; Lacroix, A.; Chausse, A.; Larabi-Gruet, N.

    2007-01-01

    This work deals with the electrodeposition of manganese compounds. A systematic study of the synthesis experimental conditions has been carried out, and the obtained depositions have been characterized by different ex-situ analyses methods (XRD, FTIR, SEM). The in-situ measurements of mass increase with a quartz microbalance during the syntheses have allowed to estimate the growth mechanisms which are in agreement with the ex-situ characterizations. The cation has an important role in the nature of the electrodeposited compounds. In presence of sodium, a mixed lamellar compound Mn(III)/Mn(IV), the birnessite, is deposited, whereas in presence of potassium, bixbyite is formed (Mn 2 O 3 ), these two compounds having a main role in the environment. The substrate can also influence the nature of the formed intermediary compounds. Little studied compounds such as feitkneichtite (β-MnOOH) and groutite (α-MnOOH) have been revealed. (O.M.)

  8. Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers

    Directory of Open Access Journals (Sweden)

    Shuo-Wei Chen

    2016-04-01

    Full Text Available The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs with ex-situ sputtered physical vapor deposition (PVD aluminum nitride (AlN nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study shows the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.

  9. Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation.

    Science.gov (United States)

    Chen, Ku-Fan; Kao, Chih-Ming; Chen, Chiu-Wen; Surampalli, Rao Y; Lee, Mu-Sheng

    2010-01-01

    In the first phase of this study, the effectiveness of intrinsic bioremediation on the containment of petroleum hydrocarbons was evaluated at a gasoline spill site. Evidences of the occurrence of intrinsic bioremediation within the BTEX (benzene, toluene, ethylbenzene, and xylenes) plume included (1) decreased BTEX concentrations; (2) depletion of dissolved oxygen (DO), nitrate, and sulfate; (3) production of dissolved ferrous iron, methane, and CO2; (4) deceased pH and redox potential; and (5) increased methanogens, total heterotrophs, and total anaerobes, especially within the highly contaminated areas. In the second phase of this study, enhanced aerobic bioremediation process was applied at site to enhance the BTEX decay rates. Air was injected into the subsurface near the mid-plume area to biostimulate the naturally occurring microorganisms for BTEX biodegradation. Field results showed that enhanced bioremediation process caused the change of BTEX removal mechanisms from anaerobic biodegradation inside the plume to aerobic biodegradation. This variation could be confirmed by the following field observations inside the plume due to the enhanced aerobic bioremediation process: (1) increased in DO, CO2, redox potential, nitrate, and sulfate, (2) decreased in dissolved ferrous iron, sulfide, and methane, (3) increased total heterotrophs and decreased total anaerobes. Field results also showed that the percentage of total BTEX removal increased from 92% to 99%, and the calculated total BTEX first-order natural attenuation rates increased from 0.0092% to 0.0188% per day, respectively, after the application of enhanced bioremediation system from the spill area to the downgradient area (located approximately 300 m from the source area).

  10. The Impacts of Ex Situ Transplantation on the Physiology of the Taiwanese Reef-Building Coral Seriatopora hystrix

    Directory of Open Access Journals (Sweden)

    Anderson B. Mayfield

    2013-01-01

    Full Text Available We sought to determine whether the Indo-Pacific reef-building coral Seriatopora hystrix performs in a similar manner in the laboratory as it does in situ by measuring Symbiodinium density, chlorophyll a (chl-a concentration, and the maximum quantum yield of photosystem II (FV/FM at the time of field sampling (in situ, as well as after three weeks of acclimation and one week of experimentation (ex situ. Symbiodinium density was similar between corals of the two study sites, Houbihu (an upwelling reef and Houwan (a nonupwelling reef, and also remained at similar levels ex situ as in situ. On the other hand, both areal and cell-specific chl-a concentrations approximately doubled ex situ relative to in situ, an increase that may be due to having employed a light regime that differed from that experienced by these corals on the reefs of southern Taiwan from which they were collected. As this change in Symbiodinium chl-a content was documented in corals of both sites, the experiment itself was not biased by this difference. Furthermore, FV/FM increased by only 1% ex situ relative to in situ, indicating that the corals maintained a similar level of photosynthetic performance as displayed in situ even after one month in captivity.

  11. Ecotoxicological evaluation of in situ bioremediation of soils contaminated by the explosive 2,4,6-trinitrotoluene (TNT)

    International Nuclear Information System (INIS)

    Frische, Tobias

    2003-01-01

    The luminescent bacteria assay, using soil leachates, was the most sensitive toxicity indicator. - To evaluate the environmental relevance of in situ bioremediation of contaminated soils, effective and reliable monitoring approaches are of special importance. The presented study was conducted as part of a research project investigating in situ bioremediation of topsoils contaminated by the explosive 2,4,6-trinitrotoluene (TNT). Changes in soil toxicity within different experimental fields at a former ordnance factory were evaluated using a battery of five bioassays (plant growth, Collembola reproduction, soil respiration, luminescent bacteria acute toxicity and mutagenicity test) in combination to chemical contaminant analysis. Resulting data reveal clear differences in sensitivities between methods with the luminescent bacteria assay performed with soil leachates as most sensitive toxicity indicator. Complete test battery results are presented in so-called soil toxicity profiles to visualise and facilitate the interpretation of data. Both biological and chemical monitoring results indicate a reduction of soil toxicity within 17 months of remediation

  12. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    Foght, J.M.; Westlake, D.W.S.

    1992-01-01

    In-situ bioremediation of crude oil spills relies on either the indigenous microbes at the polluted site, whose degradative abilities are accelerated by adding such agents as fertilizers or dispersants, or on introducing pollutant-degrading microbes into the site (possibly accompanied by stimulatory chemicals). The bioremediation method to be used at a specific site must be selected to be suitable for that site and its environmental conditions. The basic components of bioremediation are outlined and the background information needed to understand the chemical and biological limitations of the technique are presented. Specifically, the microbial community, the crude oil substrate composition, and biological limiting factors are discussed. Generalized examples of bioremediation applications are illustrated. 10 refs

  13. In situ bioremediation (natural attenuation) at a gas plant waste site

    International Nuclear Information System (INIS)

    Ginn, J.S.; Sims, R.C.

    1995-01-01

    A former manufactured gas plant (MGP) waste site in New York was evaluated with regard to natural attenuation of polycyclic aromatic hydrocarbons (PAHs). Parent-compound concentrations of PAHs within an aquifer plume were observed to decrease with time subsequent to source removal of coal tar. Biotransformation-potential studies indicated that indigenous microorganisms in soil from the site were capable of degrading naphthalene and phenanthrene. A biochemical metabolite of phenanthrene degradation, 1-hydroxy-2-naphthoic acid (1H2NA), was tentatively characterized in coal-tar-contaminated soil from the site-based on liquid chromatographic retention time. Kinetic information was developed for the disappearance of phenanthrene and 1H2NA in nonspiked contaminated soil at the site. The Microtox trademark bioassay was used to evaluate toxicity trends in contaminated soil at the site. Results from the Microtox trademark indicated a decreasing trend in toxicity with respect to time in contaminated site soil. Research results were evaluated with regard to the National Research Council's guidelines for evaluating in situ bioremediation, and were used to enhance site characterization and monitoring information for evaluating the role of bioremediation as part of natural attenuation of PAHs at coal-tar-contaminated sites

  14. A demonstration of in situ bioremediation of CCL4 at the Hanford Site

    International Nuclear Information System (INIS)

    Hooker, B.S.; Skeen, R.S.; Truex, M.J.; Peyton, B.M.

    1994-11-01

    The United States Department of Energy's VOC-Arid Integrated Demonstration Program (VOC/Arid-ID) is developing an in situ bioremediation technology to meet the need for a cost-effective method to clean ground water contaminated with chlorinated solvents, nitrates, or other organic and inorganic contaminants. Currently, a field demonstration of the technology is being conducted at the Hanford site in southeastern Washington state. The goal of this demonstration is to stimulate native denitrifying microorganisms to destroy carbon tetrachloride and nitrate. Contaminants are destroyed by mixing an electron donor (acetate) and an electron acceptor (nitrate) into the aquifer, using a matrix of recirculation wells. This work also evaluates the effectiveness.of applying scale-up techniques developed in the petrochemical industry to bioremediation. The scale-up process is based on combining fluid mixing and transport predictions with numerical descriptions for biological transport and reaction kinetics. This paper focuses on the necessity of this design approach to select nutrient feeding strategies that limit biofouling while actively destroying contaminants

  15. Surfactant-aided recovery/in situ bioremediation for oil-contaminated sites

    International Nuclear Information System (INIS)

    Ducreaux, J.; Baviere, M.; Seabra, P.; Razakarisoa, O.; Shaefer, G.; Arnaud, C.

    1995-01-01

    Bioremediation has been the most commonly used method way for in situ cleaning of soils contaminated with low-volatility petroleum products such as diesel oil. However, whatever the process (bioventing, bioleaching, etc.), it is a time-consuming technique that may be efficiency limited by both accessibility and too high concentrations of contaminants. A currently developed process aims at quickly recovering part of the residual oil in the vadose and capillary zones by surfactant flushing, then activating in situ biodegradation of the remaining oil in the presence of the same or other surfactants. The process has been tested in laboratory columns and in an experimental pool, located at the Institut Franco-Allemand de Recherche sur l'Environnement (IFARE) in Strasbourg, France. Laboratory column studies were carried out to fit physico-chemical and hydraulic parameters of the process to the field conditions. The possibility of recovering more than 80% of the oil in the flushing step was shown. For the biodegradation step, forced aeration as a mode of oxygen supply, coupled with nutrient injection aided by surfactants, was tested

  16. Management of groundwater in-situ bioremediation system using reactive transport modelling under parametric uncertainty: field scale application

    Science.gov (United States)

    Verardo, E.; Atteia, O.; Rouvreau, L.

    2015-12-01

    In-situ bioremediation is a commonly used remediation technology to clean up the subsurface of petroleum-contaminated sites. Forecasting remedial performance (in terms of flux and mass reduction) is a challenge due to uncertainties associated with source properties and the uncertainties associated with contribution and efficiency of concentration reducing mechanisms. In this study, predictive uncertainty analysis of bio-remediation system efficiency is carried out with the null-space Monte Carlo (NSMC) method which combines the calibration solution-space parameters with the ensemble of null-space parameters, creating sets of calibration-constrained parameters for input to follow-on remedial efficiency. The first step in the NSMC methodology for uncertainty analysis is model calibration. The model calibration was conducted by matching simulated BTEX concentration to a total of 48 observations from historical data before implementation of treatment. Two different bio-remediation designs were then implemented in the calibrated model. The first consists in pumping/injection wells and the second in permeable barrier coupled with infiltration across slotted piping. The NSMC method was used to calculate 1000 calibration-constrained parameter sets for the two different models. Several variants of the method were implemented to investigate their effect on the efficiency of the NSMC method. The first variant implementation of the NSMC is based on a single calibrated model. In the second variant, models were calibrated from different initial parameter sets. NSMC calibration-constrained parameter sets were sampled from these different calibrated models. We demonstrate that in context of nonlinear model, second variant avoids to underestimate parameter uncertainty which may lead to a poor quantification of predictive uncertainty. Application of the proposed approach to manage bioremediation of groundwater in a real site shows that it is effective to provide support in

  17. Intrinsic Anaerobic Bioremediation of Hydrocarbons in Contaminated Subsurface Plumes and Marine Sediments

    Science.gov (United States)

    Nanny, M. A.; Nanny, M. A.; Suflita, J. M.; Suflita, J. M.; Davidova, I.; Kropp, K.; Caldwell, M.; Philp, R.; Gieg, L.; Rios-Hernandez, L. A.

    2001-05-01

    petroleum production plant, MS profiles consistent with the addition products of methylcycloalkenes were observed. This work helps attests to: 1) the extrapolatability of laboratory results to the field, 2) the unifying metabolic features for the anaerobic destruction of diverse types of hydrocarbons, and 3) how this information can be used to assess the intrinsic bioremediation processes in petroleum-contaminated environments.

  18. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 μg/L in the aqueous phase and from approximately 10 to 290 μg/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone

  19. The adsorption of methanol and water on SAPO-34: in situ and ex situ X-ray diffraction studies

    DEFF Research Database (Denmark)

    Wragg, David S.; Johnsen, Rune; Norby, Poul

    2010-01-01

    The adsorption of methanol on SAPO-34 has been studied using a combination of in situ synchrotron powder X-ray diffraction to follow the process and ex situ high resolution powder diffraction to determine the structure. The unit cell volume of SAPO-34 is found to expand by 0.5% during methanol ad...

  20. Addendum to the Principles And Practices Manual. Loading Rates and Impacts of Substrate Delivery for Enhanced Anaerobic Bioremediation

    Science.gov (United States)

    2010-01-01

    attenuation MSDS material safety data sheet NAVFAC ESC Naval Facilities Engineering Command/Engineering Services Center NDMA N-nitrosodimethylamine...compounds (ER-1607, ER-200425, and ER- 201028). N-nitrosodimethylamine ( NDMA ) is used with propellants and is a carcinogen and emerging groundwater...contaminant at a number of DoD and DOE facilities. NDMA may be amendable to enhanced in situ bioremediation (Szecsody et al., 2009; Hatzinger et al., 2008

  1. In situ bioremediation of a diesel fuel spill in northern Manitoba

    International Nuclear Information System (INIS)

    Hryhoruk, C.D.

    1994-01-01

    At a northern Manitoba airport, a site was contaminated with diesel fuel, which was confined within the unsaturated zone in silt and silty sand. A two-phase bioremediation process was designed and implemented in-situ in a pilot test. The first phase, ground surface spraying, involved mixing nutrients (ammonium-nitrogen and orthophosphate) with water in a tank and then spraying the mixture on the ground surface above the diesel plume. The second phase, a pump-cycle system, involved pumping groundwater from below the diesel plume into one of two tanks in series. The groundwater underwent both nutrient addition (weekly) and aeration in the tanks, then it was pumped into eight feeder wells which circumscribed an extraction well. Soil testing revealed that both remediation processes aided in increasing subsurface nutrient concentrations and the moisture content within the diesel plume. In addition, high total coliform counts were observed in both the silt and silty sand layers. This implied that conditions for suitable bioremediation can be developed in relatively fine-grained soil. Intermittent soil sampling at three locations over a 14-month period revealed that the diesel plume decreased in size by ca 30% and contaminant concentrations (diesel fuel) also decreased. Plume movement also occurred. The pump-cycle system remains operational. 67 refs., 77 figs., 9 tabs

  2. In situ bioremediation of a diesel fuel spill in northern Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Hryhoruk, C D

    1994-01-01

    At a northern Manitoba airport, a site was contaminated with diesel fuel, which was confined within the unsaturated zone in silt and silty sand. A two-phase bioremediation process was designed and implemented in-situ in a pilot test. The first phase, ground surface spraying, involved mixing nutrients (ammonium-nitrogen and orthophosphate) with water in a tank and then spraying the mixture on the ground surface above the diesel plume. The second phase, a pump-cycle system, involved pumping groundwater from below the diesel plume into one of two tanks in series. The groundwater underwent both nutrient addition (weekly) and aeration in the tanks, then it was pumped into eight feeder wells which circumscribed an extraction well. Soil testing revealed that both remediation processes aided in increasing subsurface nutrient concentrations and the moisture content within the diesel plume. In addition, high total coliform counts were observed in both the silt and silty sand layers. This implied that conditions for suitable bioremediation can be developed in relatively fine-grained soil. Intermittent soil sampling at three locations over a 14-month period revealed that the diesel plume decreased in size by ca 30% and contaminant concentrations (diesel fuel) also decreased. Plume movement also occurred. The pump-cycle system remains operational. 67 refs., 77 figs., 9 tabs.

  3. Enhancing in situ bioremediation with pneumatic fracturing

    International Nuclear Information System (INIS)

    Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

    1994-04-01

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

  4. In situ precipitation and sorption of arsenic from groundwater: Laboratory and ex situ field tests

    International Nuclear Information System (INIS)

    Whang, J.M.; Adu-Wusu, K.; Frampton, W.H.; Staib, J.G.

    1997-01-01

    Permeable, reactive walls may provide long term, low-maintenance prevention of off-site migration of contaminated groundwater. Laboratory and ex situ field tests conducted on several arsenic-contaminated groundwaters indicate that both precipitation and sorption can remove arsenic to levels of less than 10 ppb. Precipitation has been induced by adjusting pH, adding selected cations, and/or reducing the oxidation-reduction potential. Adjusting pH or adding cations was most effective when there were high levels of other ionic species with which arsenic could coprecipitate. Reducing the oxidation-reduction potential was effective on a variety of groundwaters. Humate was an effective sorbent at low pH; aluminum and iron materials were effective over a large range of conditions. Long term performance of precipitation systems can be limited by formation of precipitate on reactive surfaces. Long term sorption can be reduced by competing ions, such as phosphate. Laboratory and ex situ field tests indicate that reactive walls may have lifetimes of decades or more

  5. Geochemical and microbiological characteristics during in situ chemical oxidation and in situ bioremediation at a diesel contaminated site.

    Science.gov (United States)

    Sutton, Nora B; Kalisz, Mariusz; Krupanek, Janusz; Marek, Jan; Grotenhuis, Tim; Smidt, Hauke; de Weert, Jasperien; Rijnaarts, Huub H M; van Gaans, Pauline; Keijzer, Thomas

    2014-02-18

    While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the compatibility with further bioremediation, a pilot scale treatment at a diesel-contaminated location was performed consisting of two persulfate injection events followed by a single nutrient amendment. Groundwater parameters measured throughout the 225 day experiment showed a significant decrease in pH and an increase in dissolved diesel and organic carbon within the treatment area. Molecular analysis of the microbial community size (16S rRNA gene) and alkane degradation capacity (alkB gene) by qPCR indicated a significant, yet temporary impact; while gene copy numbers initially decreased 1-2 orders of magnitude, they returned to baseline levels within 3 months of the first injection for both targets. Analysis of soil samples with sequential extraction showed irreversible oxidation of metal sulfides, thereby changing subsurface mineralogy and potentially mobilizing Fe, Cu, Pb, and Zn. Together, these results give insight into persulfate application in terms of risks and effective coupling with bioremediation.

  6. In-situ bioremediation of a hydrocarbon-contaminated pond at Hall Beach, Northwest Territories

    International Nuclear Information System (INIS)

    Eno, R.; Rogers, J.; Heroux, J.; Reimer, K.

    1999-01-01

    The effectiveness of in-situ bioremediation as a means of cleaning up fuel spills in Arctic regions is demonstrated by a case study involving a former fuel tank farm site at Hall Beach, Northwest Territories. An in-situ treatment method, based on the theory of a completely mixed batch wastewater system, was used in this instance. The treatment centred around a commercial floating aerator, which was installed in the pond to provide oxygen. Pre-calculated amounts of nutrients in the form of ammonium chloride and sodium phosphate were also added. The treatment was repeated in the following thawing season to verify initial results. The study is still ongoing; analysis results of the samples collected during the second season are not yet available. However, initial results looked promising and were consistent with what would be expected of increased biological activity. 4 figs

  7. Use of thermophilic bacteria for bioremediation of petroleum contaminants

    International Nuclear Information System (INIS)

    Al-Maghrabi, I.M.A.; Bin Aqil, A.O.; Chaalal, O.; Islam, M.R.

    1999-01-01

    Several strains of thermophilic bacteria were isolated from the environment of the United Arab Emirates. These bacteria show extraordinary resistance to heat and have their maximum growth rate around 60--80 C. This article investigates the potential of using these facultative bacteria for both in situ and ex situ bioremediation of petroleum contaminants. In a series of batch experiments, bacterial growth was observed using a computer image analyzer following a recently developed technique. These experiments showed clearly that the growth rate is enhanced in the presence of crude oil. This is coupled with a rapid degradation of the crude oil. These bacteria were found to be ideal for breaking down long-chain organic molecules at a temperature of 40 C, which is the typical ambient temperature of the Persian Gulf region. The same strains of bacteria are also capable of surviving in the presence of the saline environment that can prevail in both sea water and reservoir connate water. This observation prompted further investigation into the applicability of the bacteria in microbial enhanced oil recovery. In the United Arab Emirates, the reservoirs are typically at a temperature of around 85 C. Finally, the performance of the bacteria is tested in a newly developed bioreactor that uses continuous aeration through a transverse slotted pipe. This reactor also uses mixing without damaging the filamentous bacteria. In this process, the mechanisms of bioremediation are identified

  8. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions.

    Science.gov (United States)

    Bradley, Paul M; Landmeyer, James E; Chapelle, Francis H

    2002-10-01

    The potential for [U-14C] TBA biodegradation was examined in laboratory microcosms under a range of terminal electron accepting conditions. TBA mineralization to CO2 was substantial in surface-water sediments under oxic, denitrifying, or Mn(IV)-reducing conditions and statistically significant but low under SO4-reducing conditions. Thus, anaerobic TBA biodegradation may be a significant natural attenuation mechanism for TBA in the environment, and stimulation of in situ TBA bioremediation by addition of suitable terminal electron acceptors may be feasible. No degradation of [U-14C] TBA was observed under methanogenic or Fe(III)-reducing conditions.

  9. Biodegradation of 2,3,7,8 TCDD by anaerobic and aerobic microcosms collected from bioremediation treatments for cleaning up dioxin contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Dang Thi; Tuan, Mai Anh; Viet, Nguyen Quoc; Sanh, Nguyen Thi [Vietnamese Academy of Science and Technology (VAST) (Viet Nam). Inst. of Biotechnology; Sau, Trinh Khac [Vietnam-Russian Tropical Center (Viet Nam); Papke, O. [ERGO Forschungsgesellschaft, Hamburg (Germany)

    2004-09-15

    There are many microbes that can degrade polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurants (PCDFs) and polychlorinated biphenyls (PCBs) have been isolated including purified bacteria, actinomycetes, white rods, filamentous fungi, anaerobes and also anaerobic and aerobic consortia. Bioremediation one of biological remediation has been studied as hopeful alternative to physical and chemical treatments that using for cleaning up PCDDs, PCDFs. In Vietnam for cleaning up ''hot spot'' of some former military air bases, bioremediation has been studying in different scales of Danang site. After 18 to 24 month treatments, the reduction of toxicity was significally detected. In order to study biodegradability by different groups and one of dominated strain that are existing microorganisms in our treatments, the investigation of 2,3,7,8 TCDD anaerobic and aerobic degradations was carried out in the laboratory condition. Anaerobic microbial consortium containing three different bacteria such as two Gram- negative vibrio and rod and one gram positive cocoides bacteria. This consortium could degrade 118 pg TEQ/ml 2,3,7,8 TCDD after 133 days under sulfate reduction. Concentration of 2,3,7,8 TCDD in the soil extract that adding to medium at starting point of cultivation was 144.6 pg TEQ/ml. About 81% toxicity was removed. Aerobic consortium containing all three Gram-negative bacteria and one fungal strain. After 9 day shaking at 180 rpm/min and 30 C, 85.6 % of 164.45 pg TEQ/ml 2,3,7,8 TCDD was removed. Other preliminary results of study of 2,3,7,8 TCDD biodegradation as sole carbon and energy by show that this strain FDN30 could remove 43,45 pg TEQ/ml (59%) of 73,1 pgTEQ/ml adding dioxin after two weeks. These findings explain why high concentration of contaminants in treated soil was decreased after two year treatment. Indigenous microorganisms play leading role in the detoxification of 2,3,7,8 TCDD in contaminated soils.

  10. Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor.

    Science.gov (United States)

    Mei, Xiaojie; Quek, Pei Jun; Wang, Zhiwei; Ng, How Yong

    2017-09-01

    In this study, a chemically enhanced backflush (CEB) cleaning method using NaOH solution was proposed for fouling mitigation in anaerobic membrane bioreactors (AnMBRs). Ex-situ cleaning tests revealed that NaOH dosages ranging from 0.05 to 1.30mmol/L had positive impacts on anaerobic biomass, while higher dosages (>1.30mmol/L) showed inhibition and/or toxic impacts. In-situ cleaning tests showed that anaerobic biomass could tolerate much higher NaOH concentrations due to the alkali consumption by anaerobic process and/or the buffering role of mixed liquor. More importantly, 10-20mmol-NaOH/L could significantly reduce membrane fouling rates (4-5.5 times over the AnMBR with deionized water backflush) and slightly improve methanogenic activities. COD removal efficiencies were over 87% and peaked at 20mmol-NaOH/L. However, extremely high NaOH concentration had adverse effects on filtration and treatment performance. Economic analysis indicated that 12mmol/L of NaOH was the cost-efficient and optimal fouling-control dosage for the CEB cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Contamination-remedying technology based on biotechnology. ; Bioremediation. Biotechnology wo mochiita osen shufuku gijutsu. ; Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M [The Japan Research Institute, Ltd., Osaka (Japan)

    1993-08-01

    Bioremediation technology is outlined. The bioremediation technology is a contamination-remedying technology for the injurious chemical matter discharged in the environment to be made innocuous by utilizing the decomposing ability of microorganisms. That technology is characterized by its energywise economical performance, secondary waste which is not producible and remedy which is possible on site against the contamination. As a treatment system, that technology comprises solid phase bioremediation (The contaminated soil is purified in a soil treatment unit.), slurry phase bioremediation (The contaminated soil is made slurry and decomposed by microorganisms.) and in-situ bioremediation (The treatment is made by injecting nutrients and microorganisms underground.). As for how to use the microorganisms, there are two methods: One in which living groups of microorganisms are activated and the other in which microorganisms are artificially cultivated. As contaminants in the US, listed are organic solvent, wood preservative, high-molecular aromatic halide, agricultural chemical, military waste, heavy metal waste and radioactive waste. 11 refs., 5 figs., 1 tab.

  12. Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Qingchuan Guo

    2014-07-01

    Full Text Available This article reports about nanocomposites, which refractive index is tuned by adding TiO2 nanoparticles. We compare in situ/ex situ preparation of nanocomposites. Preparation procedure is described, properties of nanocomposites are compared, and especially we examine the applicability of two-photon polymerization (2PP of synthesized nanocomposites. All prepared samples exhibit suitable optical transparency at specific laser wavelengths. Three-dimensional structures were generated by means of two-photon polymerization effect induced by a femtosecond laser.

  13. Getting results in bioremediation

    International Nuclear Information System (INIS)

    Konzuk, Julie

    2014-01-01

    Bioremediation can be a sustainable, low-cost solution for many contaminated sites, but it is important to know which sites are suitable and be aware of common pitfalls. Chlorinated solvents, lighter petroleum hydrocarbons, non-aqueous phase liquids have all be demonstrated to be readily biodegradable. However, the success of enhanced in situ bioremediation (EISB) depends on the successful growth and establishment of a viable, mature microbial community. Low or high pH groundwater, or high concentrations of some chemicals can inhibit microbial activity.

  14. Constraining the relationships between anaerobic oxidation of methane and sulfate reduction under in situ methane concentrations

    Science.gov (United States)

    Zhuang, G.; Wegener, G.; Joye, S. B.

    2017-12-01

    The anaerobic oxidation of methane (AOM) is an important microbial metabolism in the global carbon cycle. In marine methane seeps sediment, this process is mediated by syntrophic consortium that includes anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Stoichiometrically in AOM methane oxidation should be coupled to sulfate reduction (SR) in a 1:1 ratio. However, weak coupling of AOM and SR in seep sediments was frequently observed from the ex situ rate measurements, and the metabolic dynamics of AOM and SR under in situ conditions remain poorly understood. Here we investigated the metabolic activity of AOM and SR with radiotracers by restoring in situ methane concentrations under pressure to constrain the in situ relationships between AOM and SR in the cold seep sediments of Gulf of Mexico as well as the sediment-free AOM enrichments cultivated from cold seep of Italian Island Elba or hydrothermal vent of Guaymas Basin5. Surprisingly, we found that AOM rates strongly exceeded those of SR when high pressures and methane concentrations were applied at seep sites of GC600 and GC767 in Gulf of Mexico. With the addition of molybdate, SR was inhibited but AOM was not affected, suggesting the potential coupling of AOM with other terminal processes. Amendments of nitrate, iron, manganese and AQDS to the SR-inhibited slurries did not stimulate or inhibit the AOM activity, indicating either those electron acceptors were not limiting for AOM in the sediments or AOM was coupled to other process (e.g., organic matter). In the ANME enrichments, higher AOM rates were also observed with the addition of high concentrations of methane (10mM and 50 mM). The tracer transfer of CO2 to methane, i.e., the back reaction of AOM, increased with increasing methane concentrations and accounted for 1%-5% of the AOM rates. AOM rates at 10 mM and 50 mM methane concentration were much higher than the SR rates, suggesting those two processes were not tightly coupled

  15. A comparison of bioaugmentation and intrinsic in situ bioremediation of a PAH contaminated site

    International Nuclear Information System (INIS)

    Geddes, T.; Mortier, N.; Chaparian, M.

    1995-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most common environmental hazards, naturally occurring in petroleum and its by-products. They are encountered at nearly all UST sites, and present an impediment to the use of cost effective intrinsic in situ bioremediation due to their recalcitrant nature. Even bacteria isolated specifically for their ability to degrade PAHs in the laboratory have shown no significant degradative capabilities in the field. This is due to the unique balance that exists at every contaminated site between the microbial ecology, chemical, physical, and environmental factors. Therefore, bacteria indigenous to the site and acclimated to these environmental parameters should be well suited for use in bioaugmentation. Based on this assumption, a new and innovative approach to bioaugmentation has been developed which consists of a series of scientifically-sound, rational steps in the use of this technology. Initially, careful chemical and biological analyses of site samples are conducted using conventional analytical instrumentation and state-of-the-art microbiological, biochemical, and molecular biological techniques. Bacteria from site samples that demonstrate potential PAH degradative capability are isolated. The bacteria are then enriched in culture and re-introduced to the site with appropriate nutrients. Further, this approach encompasses the proposed guidelines for proving the efficacy of in situ bioremediation as set forth by the National Science Foundation. To demonstrate the effectiveness of this approach, data are presented here of a laboratory-scale trial of a PAH contaminated site

  16. Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 1, Final report: Final report text data in tabular form, Disk 1

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-09-01

    This project was designed to demonstrate in situ bioremediation of ground water and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade trichlorethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated aquifer and adjacent vadose zone. The principle carbon/energy source nutrient used in this demonstration was methane (natural gas). In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency, safety, and public and regulatory acceptability. This report describes the preliminary results of the demonstration and provides conclusions only for those measures that the Bioremediation Technical Support Group felt were so overwhelmingly convincing that they do not require further analyses. Though this report is necessarily superficial it does intend to provide a basis for further evaluating the technology and for practitioners to immediately apply some parts of the technology.

  17. A review on slurry bioreactors for bioremediation of soils and sediments

    Directory of Open Access Journals (Sweden)

    Poggi-Varaldo Héctor M

    2008-02-01

    Full Text Available Abstract The aim of this work is to present a critical review on slurry bioreactors (SB and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i process fundamentals of SB and analysis of advantages and disadvantages; (ii the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv recent findings on the utilization of electron acceptors other than oxygen; (v bioaugmentation and advances made on characterization of microbial communities of SB; (vi developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process. From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation, inocula (bioaugmentation, increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with

  18. A review on slurry bioreactors for bioremediation of soils and sediments.

    Science.gov (United States)

    Robles-González, Ireri V; Fava, Fabio; Poggi-Varaldo, Héctor M

    2008-02-29

    The aim of this work is to present a critical review on slurry bioreactors (SB) and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i) process fundamentals of SB and analysis of advantages and disadvantages; (ii) the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii) trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv) recent findings on the utilization of electron acceptors other than oxygen; (v) bioaugmentation and advances made on characterization of microbial communities of SB; (vi) developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process.From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation), inocula (bioaugmentation), increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with hydrocarbons and some

  19. Pattern classification by memristive crossbar circuits using ex situ and in situ training

    Science.gov (United States)

    Alibart, Fabien; Zamanidoost, Elham; Strukov, Dmitri B.

    2013-06-01

    Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks. Whereas demonstrations of the synaptic operation of memristors already exist, the implementation of even simple networks is more challenging and has yet to be reported. Here we demonstrate pattern classification using a single-layer perceptron network implemented with a memrisitive crossbar circuit and trained using the perceptron learning rule by ex situ and in situ methods. In the first case, synaptic weights, which are realized as conductances of titanium dioxide memristors, are calculated on a precursor software-based network and then imported sequentially into the crossbar circuit. In the second case, training is implemented in situ, so the weights are adjusted in parallel. Both methods work satisfactorily despite significant variations in the switching behaviour of the memristors. These results give hope for the anticipated efficient implementation of artificial neuromorphic networks and pave the way for dense, high-performance information processing systems.

  20. Introduction to In Situ Bioremediation of Groundwater

    Science.gov (United States)

    Bioremediation is an engineered technology that modifies environmental conditions (physical, chemical, biochemical, or microbiological) to encourage microorganisms to destroy or detoxify organic and inorganic contaminants in the environment.

  1. A case study of the intrinsic bioremediation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M. [and others

    1995-12-31

    Condensate liquids have been found to contaminate soil and groundwater at two gas production sites in the Denver Basin operated by Amoco Production Co. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores suggest that intrinsic bioremediation is occurring at these sites by multiple pathways including aerobic oxidation, Fe{sup 3+} reduction, and sulfate reduction. In laboratory experiments the addition of gas condensate hydrocarbons to saturated soil from the gas production site stimulated sulfate reduction under anaerobic and oxygen-limiting conditions, and nitrate and Fe{sup 3+} reduction under oxygen-limiting conditions, compared to biotic controls that lacked hydrocarbon and sterile controls. The sulfate reduction corresponded to a reduction in the amount of toluene relative to other hydrocarbons. These results confirmed that subsurface soils at the gas production site have the potential for intrinsic bioremediation of hydrocarbons.

  2. Creosote-contaminated sites: their potential for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J G; Chapman, P J; Pritchard, P H [US EPA Environmental Research Laboratory, Gulf Breeze, FL (USA)

    1989-10-01

    Coal tar creosote contamination is generally associated with surface soils, waters in treatment lagoons or evaporation areas, and groundwater contaminated with leachate from the above sources. The basic principle of bioremediation is to exploit the ability of microorganisms to catabolize a wide range of organic substrates. There are limitations which much be addressed if in situ bioremediation is to be successful: the pollutant must be in a chemical state conducive to microbial utilization, aeration and nutrient supplementation are essential elements of many in situ treatments, and there must be present an acclimated microbial population capable of degrading the pollutant. 35 refs., 3 tabs.

  3. Contaminants at DOE sites and their susceptibility to bioremediation

    International Nuclear Information System (INIS)

    Lenhard, R.J.; Skeen, R.S.; Brouns, T.M.

    1993-11-01

    Contaminants at DOE sites encompass a range of common industrial pollutants. However, the prevalence of contaminant mixtures including organics, metals, and radionuclides is relatively unique to DOE's facilities. Bioremediation has been shown to be effective for destruction of many of the organic pollutants. The technology also has promise for application to many of the metals and radionuclides; however, field demonstrations for these applications have not yet been attempted. Because of the complexity of biodegradation of even a single-compound class, little has been done to develop or demonstrate in situ bioremediation technologies for multicompound combinations. The current bioremediation demonstration on CCl 4 and nitrates within the VOC-Arid Integrated Demonstration is one the first efforts to address inorganic and organic co-contaminants simultaneously. Additional research, technology development, and field demonstrations are needed to evaluate the applicability of in situ bioremediation to DOE's most common contaminant mixtures

  4. Bioremediation of marine oil pollution

    International Nuclear Information System (INIS)

    Gutnick, D.L.

    1991-11-01

    An assessment is presented of the scientific and technological developments in the area of bioremediation and biodegradation of marine oil pollution. A number of allied technologies are also considered. The basic technology in bioremediation involves adding fertilizers to an oil spill to enhance the natural process of oil biodegradation. Bioremediation can be applied to open systems such as beach or land spills, or in closed and controlled environments such as storage containers, specially constructed or modified bioreactors, and cargo tanks. The major advantage of using closed environments is the opportunity to control the physical and nutritional parameters to optimize the rate of biodegradation. An evaluation of the state of the art of bioremediation in Canada is also included. Recommendations are made to involve the Canadian Transportation Development Centre in short-term research projects on bioremediation. These projects would include the use of a barge as a mobile bioreactor for the treatment of off-loaded oily waste products, the use of in-situ bioremediation to carry out extensive cleaning, degassing, and sludge remediation on board an oil tanker, and the use of a barge as a mobile bioreactor and facility for the bioremediation of bilges. 51 refs., 4 figs., 14 tabs

  5. Bioremediation of marine oil pollution

    Energy Technology Data Exchange (ETDEWEB)

    Gutnick, D L

    1991-11-01

    An assessment is presented of the scientific and technological developments in the area of bioremediation and biodegradation of marine oil pollution. A number of allied technologies are also considered. The basic technology in bioremediation involves adding fertilizers to an oil spill to enhance the natural process of oil biodegradation. Bioremediation can be applied to open systems such as beach or land spills, or in closed and controlled environments such as storage containers, specially constructed or modified bioreactors, and cargo tanks. The major advantage of using closed environments is the opportunity to control the physical and nutritional parameters to optimize the rate of biodegradation. An evaluation of the state of the art of bioremediation in Canada is also included. Recommendations are made to involve the Canadian Transportation Development Centre in short-term research projects on bioremediation. These projects would include the use of a barge as a mobile bioreactor for the treatment of off-loaded oily waste products, the use of in-situ bioremediation to carry out extensive cleaning, degassing, and sludge remediation on board an oil tanker, and the use of a barge as a mobile bioreactor and facility for the bioremediation of bilges. 51 refs., 4 figs., 14 tabs.

  6. Microbial activity in subsurface samples before and during nitrate-enhanced bioremediation

    International Nuclear Information System (INIS)

    Thomas, J.M.; Gordy, V.R.; Bruce, C.L.; Ward, C.H.; Hutchins, S.R.; Sinclair, J.L.

    1995-01-01

    A study was conducted to determine the microbial activity at a site contaminated with JP-4 jet fuel before and during nitrate-enhanced bioremediation. Samples at three depths from six different locations were collected aseptically under anaerobic conditions before and during treatment. Cores were located in or close to the source of contamination, downgradient of the source, or outside the zone of contamination. Parameters for microbial characterization included (1) viable counts of aerobic heterotrophic, JP-4 degrading, and oligotrophic bacteria; (2) the most probable number (MPN) of aerobic and anaerobic protozoa; (3) the MPN of total denitrifiers; and (4) the MPN of denitrifiers in hydrocarbon-amended microcosms. The results indicate that the total number of denitrifiers increased by an order of magnitude during nitrate-enhanced bioremediation in most samples. The number of total heterotrophs and JP-4-degrading microorganisms growing aerobically also increased. In addition, the first anaerobic protozoa associated with hydrocarbon-contaminated subsurface materials were detected

  7. DNA barcoding applied to ex situ tropical amphibian conservation programme reveals cryptic diversity in captive populations.

    Science.gov (United States)

    Crawford, Andrew J; Cruz, Catalina; Griffith, Edgardo; Ross, Heidi; Ibáñez, Roberto; Lips, Karen R; Driskell, Amy C; Bermingham, Eldredge; Crump, Paul

    2013-11-01

    Amphibians constitute a diverse yet still incompletely characterized clade of vertebrates, in which new species are still being discovered and described at a high rate. Amphibians are also increasingly endangered, due in part to disease-driven threats of extinctions. As an emergency response, conservationists have begun ex situ assurance colonies for priority species. The abundance of cryptic amphibian diversity, however, may cause problems for ex situ conservation. In this study we used a DNA barcoding approach to survey mitochondrial DNA (mtDNA) variation in captive populations of 10 species of Neotropical amphibians maintained in an ex situ assurance programme at El Valle Amphibian Conservation Center (EVACC) in the Republic of Panama. We combined these mtDNA sequences with genetic data from presumably conspecific wild populations sampled from across Panama, and applied genetic distance-based and character-based analyses to identify cryptic lineages. We found that three of ten species harboured substantial cryptic genetic diversity within EVACC, and an additional three species harboured cryptic diversity among wild populations, but not in captivity. Ex situ conservation efforts focused on amphibians are therefore vulnerable to an incomplete taxonomy leading to misidentification among cryptic species. DNA barcoding may therefore provide a simple, standardized protocol to identify cryptic diversity readily applicable to any amphibian community. © 2012 John Wiley & Sons Ltd.

  8. Microbial bioremediation of Uranium: an overview

    International Nuclear Information System (INIS)

    Acharya, Celin

    2015-01-01

    Uranium contamination is a worldwide problem. Preventing uranium contamination in the environment is quite challenging and requires a thorough understanding of the microbiological, ecological and biogeochemical features of the contaminated sites. Bioremediation of uranium is largely dependent on reducing its bioavailability in the environment. In situ bioremediation of uranium by microbial processes has been shown to be effective for immobilizing uranium in contaminated sites. Such microbial processes are important components of biogeochemical cycles and regulate the mobility and fate of uranium in the environment. It is therefore vital to advance our understanding of the uranium-microbe interactions to develop suitable bioremediation strategies for uranium contaminated sites. This article focuses on the fundamental mechanisms adopted by various microbes to mitigate uranium toxicity which could be utilized for developing various approaches for uranium bioremediation. (author)

  9. Bioremediation of a crude oil polluted tropical rain forest soil ...

    African Journals Online (AJOL)

    These results suggest that Biostimulation with tilling (nutrient enhanced in-situ bioremediation) and or the combination ofBiostimulation and Bioaugumentation with indigenous hydrocarbon utilizers would be effective in the remediation of crude oil polluted tropical soils. Key Words: Bioremediation, Bioaugumentation, ...

  10. Optimization of culture medium for anaerobic production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl for microbial enhanced oil recovery.

    Science.gov (United States)

    Zhao, F; Mandlaa, M; Hao, J; Liang, X; Shi, R; Han, S; Zhang, Y

    2014-08-01

    Response surface methodology was employed to enhance the anaerobic production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl. Glycerol is a promising carbon source used to anaerobically produce rhamnolipid. In a Plackett-Burman design, glycerol, KH2 PO4 and yeast extract were significant factors. The proposed optimized medium contained the following: 46·55 g l(-1) glycerol; 3 g l(-1) NaNO3 ; 5·25 g l(-1) K2 HPO4 ·3H2 O; 5·71 g l(-1) KH2 PO4 ; 0·40 g l(-1) MgSO4 ·7H2 O; 0·13 g l(-1) CaCl2 ; 1·0 g l(-1) KCl; 1·0 g l(-1) NaCl; and 2·69 g l(-1) yeast extract. Using this optimized medium, we obtained an anaerobic yield of rhamnolipid of 3·12 ± 0·11 g l(-1) with a 0·85-fold increase. Core flooding test results also revealed that Ps. stutzeri Rhl grown in an optimized medium enhanced the oil recovery efficiency by 15·7%, which was 6·6% higher than in the initial medium. Results suggested that the optimized medium is a promising nutrient source that could effectively mobilize oil by enhancing the in situ production of rhamnolipid. The ex situ application of rhamnolipid for microbial enhanced oil recovery (MEOR) is costly and complex in terms of rhamnolipid production, purification and transportation. Compared with ex situ applications, the in situ production of rhamnolipid in anaerobic oil reservoir is more advantageous for MEOR. This study is the first to report the anaerobic production optimization of rhamnolipid. Results showed that the optimized medium enhanced not only the anaerobic production of rhamnolipid but also crude oil recovery. © 2014 The Society for Applied Microbiology.

  11. Assessment of in situ and ex situ phytorestoration with grass mixtures in soils polluted with nickel, copper, and arsenic

    Science.gov (United States)

    Zacarías Salinas, Montserrat; Beltrán Villavicencio, Margarita; Bustillos, Luis Gilberto Torres; González Aragón, Abelardo

    This work shows a study of in situ and ex situ phytoextraction as a polishing step in the treatment of an industrial urban soil polluted with nickel, arsenic and copper. The soil was previously washed, and phytoextraction was performed by application of a mixture of grass (Festuca rubra, Cynodon dactylon, Lolium multiforum, Pennisetum). The soil had initial heavy metals concentrations of 131 ppm for Ni, 717 for As and 2734 for Cu (mg of metal/kg of dry soil). After seeding and emerging of grass, vegetal and soil samples were taken monthly during 4 months. Biomass generation, and concentration of Ni, As and Cu in vegetal tissue and soil were determined for every sample. Plants biomass growth in ex situ process was inhibited by 37% when compared with blank soil. Grass showed remarkable phytoextraction capability in situ, it produced 38 g of biomass every 15 days (wet weight) during a period of 3 months, but then declined in the fourth month. Concentrations of metals in grass biomass were up to 83 mg Ni/kg, 649 mg As/kg and 305 mg Cu/kg dry weight. Metal reduction of 49% for Ni, and 35% for Cu and As was observed at rhizospheric soil.

  12. Bamboo resources, utilization and ex-situ conservation in Xishuangbanna, South-eastern China

    Institute of Scientific and Technical Information of China (English)

    YANG Qing; DUAN Zhu-biao; WANG Zheng-liang; HE Kai-hong; SUN Qi-xiang; PENG Zhen-hua

    2008-01-01

    This paper describes the geographical distribution, utilization, cultural value and ex-situ conservation of bamboo resources in Xishuangbanna, Yunan Province, China. Sixty species of bamboo in 19 genera are recorded in Xishuangbanna. The area of natural bamboo forest is 14319 ha, accounting for 5.92% of whole area of Xishuangbanna. The abundant resource of bamboo plays an important role in the economics and culture of national minorities in Xishuangbanna. Xishuangbanna Tropic Botanic Garden, Chinese Academy of Sciences (CAS), started to introduce bamboo species in 1961 and established the ex-situ conservation reserve (8 ha) of bamboo in 1981. Up to now, 211 species in 27 genera collected from tropic and sub-tropic of China and South-east Asia have been planted in the bamboo reserve, of which 11 species have bloomed and seeded, and their seeds were cultivated in Xishuangbanna Tropical Botanic Gardens, CAS, China.

  13. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments

    International Nuclear Information System (INIS)

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-01-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments. - Highlights: ► Bioremediation performance was investigated on hydrocarbon contaminated sediments. ► Major changes in bacterial diversity and assemblage composition were observed. ► Temperature exerted the major effect on bacterial assemblages. ► High bacterial diversity increased significantly biodegradation performance. ► This should be considered for sediment remediation by bio-treatments. - Bioremediation strategies which can sustain high levels of bacterial diversity may significantly increase the biodegradation of hydrocarbons in contaminated marine sediments.

  14. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids.

    Science.gov (United States)

    Nikolopoulou, M; Pasadakis, N; Norf, H; Kalogerakis, N

    2013-12-15

    Mediterranean coastal regions are particularly exposed to oil pollution due to extensive industrialization, urbanization and transport of crude and refined oil to and from refineries. Bioremediation of contaminated beach sand through landfarming is both simple and cost-effective to implement compared to other treatment technologies. The purpose of the present study was to investigate the effect of alternative nutrients on biodegradation of crude oil contaminated beach sand in an effort to reduce the time required for bioremediation employing only indigenous hydrocarbon degraders. A natural sandy soil was collected from Agios Onoufrios beach (Chania, Greece) and was contaminated with weathered crude oil. The indigenous microbial population in the contaminated sand was tested alone (control treatment) or in combination with inorganic nutrients (KNO3 and K2HPO4) to investigate their effects on oil biodegradation rates. In addition, the ability of biosurfactants (rhamnolipids), in the presence of organic nutrients (uric acid and lecithin), to further stimulate biodegradation was investigated in laboratory microcosms over a 45-day period. Biodegradation was tracked by GC/MS analysis of aliphatic and polycyclic aromatic hydrocarbons components and the measured concentrations were corrected for abiotic removal by hopane normalizations. It was found that the saturated fraction of the residual oil is degraded more extensively than the aromatic fraction and the bacterial growth after an incubation period of approximately 3 weeks was much greater from the bacterial growth in the control. The results show that the treatments with inorganic or organic nutrients are equally effective over almost 30 days where C12-C35n-alkanes were degraded more than 97% and polyaromatic hydrocarbons with two or three rings were degraded more than 95% within 45 days. The results clearly show that the addition of nutrients to contaminated beach sand significantly enhanced the activity of

  15. Intrinsic bioremediation of diesel-contaminated cold groundwater in bedrock

    International Nuclear Information System (INIS)

    Cross, K.M.; Biggar, K.W.; Guigard, S.E.

    2006-01-01

    Natural attenuation refers to the natural process by which contaminants in groundwater or soil are reduced through a combination of physico-chemical processes and biodegradation by indigenous organisms. The physico chemical processes include advection, dilution, dispersion, sorption, volatilization and abiotic transformation. This study evaluated the historical contaminant and geochemical evidence of natural attenuation at a well site where groundwater had been contaminated by a diesel fuel leak in 1982. In particular, evidence of intrinsic bioremediation was evaluated. Evidence of microbial activity was determined by most probably number (MPN) and commercial biological activity reaction tests. Groundwater samples from the site were incubated in a laboratory under aerobic and anaerobic conditions with electron acceptor and nutrient amendment to assess microbial activity. Mineralization of carbon 14-dodecane was measured to determine aerobic biodegradation rates. Anaerobic biodegradation rates were calculated from the depletion of total extractable hydrocarbon over 717 days. Nutrient addition increased the anaerobic first-order biodegradation rate from 0.0005 to 0.0016 per day. It was suggested controlled nutrient addition can improve the current slow rates of intrinsic bioremediation. 33 refs., 9 tabs., 5 figs

  16. Bioremediation of soils

    International Nuclear Information System (INIS)

    Woodward, D.

    1991-01-01

    Bioremediation of hydrocarbon contaminated soils has evolved from the refinery land treatment units of thirty years ago to the modern slurry reactors of today. Modifications in the process include engineering controls designed to prevent the migration of hydrocarbons into the unsaturated zone, the saturated zone and groundwater, and the atmosphere. Engineering innovations in the area of composting and bioaugmentation that have focused on further process control and the acceleration of the treatment process will form the basis for future improvements in bioremediation technology. Case studies for established methods that have survived this development process and continue to be used as cost effective biological treatments like engineered land farms, soil heap treatment and in situ treatment will be discussed

  17. In Situ Remediation Integrated Program. In situ physical/chemical treatment technologies for remediation of contaminated sites: Applicability, developing status, and research needs

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Gates, D.D.; West, O.R.; Liang, L.; Donaldson, T.L.; Webb, O.F.; Corder, S.L.; Dickerson, K.S.

    1994-06-01

    The U.S. Department of Energy (DOE) In Situ Remediation Integrated Program (ISR IP) was established in June 1991 to facilitate the development and implementation of in situ remediation technologies for environmental restoration within the DOE complex. Within the ISR IP, four subareas of research have been identified: (1) in situ containment, (2) in situ physical/chemical treatment (ISPCT), (3) in situ bioremediation, and (4) subsurface manipulation/electrokinetics. Although set out as individual focus areas, these four are interrelated, and successful developments in one will often necessitate successful developments in another. In situ remediation technologies are increasingly being sought for environmental restoration due to the potential advantages that in situ technologies can offer as opposed to more traditional ex situ technologies. These advantages include limited site disruption, lower cost, reduced worker exposure, and treatment at depth under structures. While in situ remediation technologies can offer great advantages, many technology gaps exist in their application. This document presents an overview of ISPCT technologies and describes their applicability to DOE-complex needs, their development status, and relevant ongoing research. It also highlights research needs that the ISR IP should consider when making funding decisions

  18. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sahir, A. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Pimphan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis. Both the in situ and ex situ conceptual designs, using the underlying assumptions, project MFSPs of approximately $3.5/gallon gasoline equivalent (GGE). The performance assumptions for the ex situ process were more aggressive with higher distillate (diesel-range) products. This was based on an assumption that more favorable reaction chemistry (such as coupling) can be made possible in a separate reactor where, unlike in an in situ upgrading reactor, one does not have to deal with catalyst mixing with biomass char and ash, which pose challenges to catalyst performance and maintenance. Natural gas was used for hydrogen production, but only when off gases from the process was not sufficient to meet the needs; natural gas consumption is insignificant in both the in situ and ex situ base cases. Heat produced from the burning of char, coke, and off-gases allows for the production of surplus electricity which is sold to the grid allowing a reduction of approximately 5¢/GGE in the MFSP.

  19. Seed conservation in ex situ genebanks - genetic studies on longevity in barley

    NARCIS (Netherlands)

    Nagel, M.; Vogel, H.; Landjeva, S.; Buck-Sorlin, G.H.; Lohwasser, U.; Scholz, U.; Börner, A.

    2009-01-01

    Recognizing the danger due to a permanent risk of loss of the genetic variability of cultivated plants and their wild relatives in response to changing environmental conditions and cultural practices, plant ex situ genebank collections were created since the beginning of the last century. World-wide

  20. Potential of Rhodobacter capsulatus Grown in Anaerobic-Light or Aerobic-Dark Conditions as Bioremediation Agent for Biological Wastewater Treatments

    Directory of Open Access Journals (Sweden)

    Stefania Costa

    2017-02-01

    Full Text Available The use of microorganisms to clean up wastewater provides a cheaper alternative to the conventional treatment plant. The efficiency of this method can be improved by the choice of microorganism with the potential of removing contaminants. One such group is photosynthetic bacteria. Rhodobacter capsulatus is a purple non-sulfur bacterium (PNSB found to be capable of different metabolic activities depending on the environmental conditions. Cell growth in different media and conditions was tested, obtaining a concentration of about 108 CFU/mL under aerobic-dark and 109 CFU/mL under anaerobic-light conditions. The biomass was then used as a bioremediation agent for denitrification and nitrification of municipal wastewater to evaluate the potential to be employed as an additive in biological wastewater treatment. Inoculating a sample of mixed liquor withdrawn from the municipal wastewater treatment plant with R. capsulatus grown in aerobic-dark and anaerobic-light conditions caused a significant decrease of N-NO3 (>95%, N-NH3 (70% and SCOD (soluble chemical oxygen demand (>69%, independent of the growth conditions. A preliminary evaluation of costs indicated that R. capsulatus grown in aerobic-dark conditions could be more convenient for industrial application.

  1. Entomoremediation - A Novel In-Situ Bioremediation Approach ...

    African Journals Online (AJOL)

    In this paper entomoremediation as a novel concept was critically projected as a bioremediation technique that needs to be harnessed in line with global realities of involving organisms like microorganisms and earthworms in soil decontamination. Entomoremediation is defined as a type of remediation in which insects are ...

  2. Evaluating intrinsic bioremediation at five sour gas processing facilities in Alberta

    International Nuclear Information System (INIS)

    Armstrong, J. E.; Moore, B. J.; Sevigny, J. H.; Forrester, P. I.

    1997-01-01

    Mass attenuation through intrinsic bioremediation of the aromatic hydrocarbons benzene, toluene, ethylbenzene and xylene (BTEX) was studied at four facilities in Alberta. The objective of the study was to assess whether intrinsic bioremediation could attenuate BTEX-contaminated groundwater plumes at the four sites. The depletion of electron acceptors, and the enriched metabolic byproducts within the BTEX plumes indicate that BTEX biodegradation is occurring at all four sites. Bacterial plate counts were generally higher at three of the sites and lower at one site. At the three sites microcosm experiments indicated aerobic biodegradation, while anaerobic biodegradation was observed at only two sites after four to five months incubation. Theoretical estimates of the biodegradation potential were calculated for each site with intrinsic bioremediation appearing to have bioremediation potential at three of the sites. 13 refs., 4 tabs., 4 figs

  3. Monitoring Genetic and Metabolic Potential for In-Site Bioremediation: Mass Spectrometry

    International Nuclear Information System (INIS)

    Buchanan, M.V.

    2000-01-01

    A number of DOE sites are contaminated with mixtures of dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride, chloroform, perchloroethylene, and trichloroethylene. At many of these sites, in situ microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ without the need for pump-and-treat or soil removal procedures, and without producing toxic byproducts. A rapid screening method to determine broad range metabolic and genetic potential for contaminant degradation would greatly reduce the cost and time involved in assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. The objective of this project was the development of mass-spectrometry-based methods to screen for genetic potential for both assessment and monitoring of in situ bioremediation of DNAPLs. These methods were designed to provide more robust and routine methods for DNA-based characterization of the genetic potential of subsurface microbes for degrading pollutants. Specifically, we sought to (1) Develop gene probes that yield information equivalent to conventional probes, but in a smaller size that is more amenable to mass spectrometric detection, (2) Pursue improvements to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) methodology in order to allow its more general application to gene probe detection, and (3) Increase the throughput of microbial characterization by integrating gene probe preparation, purification, and MALDI-MS analysis

  4. Ex situ remediation of polluted soils by absorptive polymers, and a comparison of slurry and two-phase partitioning bioreactors for ultimate contaminant degradation

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, M. Concetta, E-mail: tomei@irsa.cnr.it [Water Research Institute, C.N.R., Via Salaria km 29.300, Monterotondo Scalo, 00015 Rome (Italy); Mosca Angelucci, Domenica [Water Research Institute, C.N.R., Via Salaria km 29.300, Monterotondo Scalo, 00015 Rome (Italy); Annesini, M. Cristina [Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome (Italy); Daugulis, Andrew J. [Department of Chemical Engineering, Queen' s University, Kingston, Ontario, Canada K7L 3N6 (Canada)

    2013-11-15

    Highlights: • We investigate absorptive polymers for ex-situ soil bioremediation. • We compare the performance of the novel technology with a slurry bioreactor. • The polymer is very effective in decontaminating the soil (77% removal in 4 h). • The polymer is readily regenerated in a two phase partitioning bioreactor. -- Abstract: The present study has provided a comparison between a conventional ex situ method for the treatment of contaminated soil, a soil slurry bioreactor, with a novel technology in which a contaminant is rapidly and effectively removed from the soil by means of absorptive polymer beads, which are then added to a two-phase partitioning bioreactor (TPPB) for biodegradation of the target molecule. 4-nitrophenol (4NP) was selected as a model contaminant, being representative of a large class of xenobiotics, and the DuPont thermoplastic Hytrel™ 8206 was utilized for its extraction from soil over ranges of soil contamination level, soil moisture content, and polymer:soil ratios. Since the polymers were able to rapidly (up to 77% and 85% in 4 and 24 h respectively) and selectively remove the contaminant, the soil retained its nutrient and microflora content, which is in contrast to soil washing which can remove these valuable soil resources. After 4 h of reaction time, the TPPB system demonstrated removal efficiency four times higher (77% vs 20%) than the slurry system, with expected concomitant savings in time and energy. A volumetric removal rate of 75 mg4NP h{sup −1} L{sup −1} was obtained in the TPPB, significantly greater than the value of 1.7 obtained in the slurry bioreactor. The polymers were readily regenerated for subsequent reuse, demonstrating the versatility of the polymer-based soil treatment technology.

  5. Nanoindentation studies of ex situ AlN/Al metal matrix nanocomposites

    International Nuclear Information System (INIS)

    Fale, Sandeep; Likhite, Ajay; Bhatt, Jatin

    2014-01-01

    Highlights: • Formation of in-situ phases nucleated on AlN particles strengthens the matrix. • Formation of in-situ phases increases with AlN content in nanocomposites. • Stronger in-situ phases results in increased hardness and modulus of elasticity. - Abstract: Nanocrystalline Aluminium nitride (AlN) powder is dispersed in different weight ratio in Aluminum matrix to fabricate metal matrix nanocomposite (MMNC) using ex situ melt metallurgy process. The synthesized Al–AlN nanocomposites are studied for phase analysis using high resolution scanning electron microscopy (FEG-SEM) and for hardness behavior using microindentation and nanoindentation tests. Quantitative analysis of the oxide phases is calculated from thermodynamic data and mass balance equation using elemental data obtained from energy dispersive spectroscopy (EDS) results. Role of oxide phases in association with AlN particles is investigated to understand the mechanical behavior of composites using nanoindentation tester. Load–displacement profile obtained from nanoindentation test reveals distribution of oxide phases along with AlN particle and their effect on indent penetration

  6. Transformation of a petroleum pollutant during soil bioremediation experiments

    Directory of Open Access Journals (Sweden)

    B. JOVANCICEVIC

    2008-05-01

    Full Text Available The experiment of ex situ soil bioremediation was performed at the locality of the Oil Refinery in Pančevo (alluvial formation of the Danube River, Serbia polluted with an oil type pollutant. The experiments of biostimulation, bioventilation and reinoculation of an autochthonous microbial consortium were performed during the six-month period (May–November 2006. The changes in the quantity and composition of the pollutant, or the bioremediation effect, were monitored by analysis of the samples of the polluted soil taken in time spans of two weeks. In this way, from the beginning until the end of the experiment, 12 samples were collected and marked as P1–P12 (Pančevo 1–Pančevo 12. The results obtained showed that more significant changes in the composition of the oil pollutant occurred only during the last phases of the experiment (P8–P12. The activity of microorganisms was reflected in the increase of the quantity of polar oil fractions, mainly fatty acid fractions. In this way, the quantity of total eluate increased, and the quantity of the insoluble residue was reduced to a minimum, whereby the oil pollutant was transformed to a form that could be removed more efficiently and more completely from the soil, as a segment of the environment.

  7. In situ aquifer bioremediation of organics including cyanide and carbon disulfide

    International Nuclear Information System (INIS)

    Abou-Rizk, J.A.M.; Leavitt, M.E.; Graves, D.A.

    1995-01-01

    Low levels (< 1 mg/L) of acetone, cyanide, phenol, naphthalene, 2-methylnaphthalene, and carbon disulfide from an inactive industrial landfill were found above background levels in a shallow aquifer at an eastern coastal site. In situ biodegradation was evaluated for treatment of these contaminants. Two soil samples and three groundwater samples were taken from the site for a laboratory bioassessment and a biotreatability test. The positive results of the bioassessment suggested moving forward with biotreatability testing. Biotreatability test results indicated suitable site conditions for bioremediation and that all the contaminants of concern at the site could be biodegraded to nondetect or very low levels (< 50 microg/L) with oxygen only; i.e., addition of nutrients was not required. Pilot-scale testing was undertaken on site to provide information for full-scale design, including oxygen requirements and air injection well spacing. This report describes the approach, the results, and their impact on the full-scale remediation system

  8. Assessment of natural hydrocarbon bioremediation at two gas condensate production sites

    International Nuclear Information System (INIS)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M.; Trent, G.L.; Brown, D.R.; Sublette, K.L.

    1995-01-01

    Condensate liquids are present in soil and groundwater at two gas production sites in the Denver-Julesburg Basin operated by Amoco. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores strongly suggest that intrinsic bioremediation is occurring at these sites by multiple pathways, including aerobic oxidation, Fe(III) reduction, and sulfate reduction

  9. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium

    Directory of Open Access Journals (Sweden)

    JELENA S. MILIĆ

    2009-04-01

    Full Text Available Bioremediation, a process that utilizes the capability of microorganism to degrade toxic waste, is emerging as a promising technology for the treatment of soil and groundwater contamination. The technology is very effective in dealing with petroleum hydrocarbon contamination. The aim of this study was to examine the composition of the microbial consortium during the ex situ experiment of bioremediation of soil heavily contaminated with crude oil and its products from the Oil Refinery Pančevo, Serbia. After a 5.5-month experiment with biostimulation and bioventilation, the concentration of the total petroleum hydrocarbons (TPH had been reduced from 29.80 to 3.29 g/kg (89 %. In soil, the dominant microorganism population comprised Gram-positive bacteria from actinomycete-Nocardia group. The microorganisms which decompose hydrocarbons were the dominant microbial population at the end of the process, with a share of more than 80 % (range 107 CFU/g. On the basis of the results, it was concluded that a stable microbial community had been formed after initial fluctuations.

  10. Use of a mathematical model for prediction of optimum feeding strategies for in situ bioremediation

    International Nuclear Information System (INIS)

    Shouche, M.; Petersen, J.N.

    1992-05-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy (DOE) Hanford site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCL 4 ), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of the contaminated liquids directly to the environment, and remediation of the existing contaminated groundwaters may be required. In-situ bioremediation is one technology currently being developed at the Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCL 4 , nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to develop effective in-situ remediation strategies through the use of predictive simulations. In particular, strategies for nutrient injection are developed which minimize biomass accumulation within the flow field and thus extend the life of injection wells

  11. Bioremediation of oil-contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Balba, T. [Conestoga-Rovers and Associates, Calgary, AB (Canada)

    2003-07-01

    One of the most prevalent contaminants in subsurface soil and groundwater are petroleum hydrocarbons. This paper presented bioremediation of petroleum hydrocarbons as one of the most promising treatment technologies. Petroleum hydrocarbons are categorized into four simple fractions: saturates, aromatics, resins, and asphaltenes. Bioremediation refers to the treatment process whereby contaminants are metabolized into less toxic or nontoxic compounds by naturally occurring organisms. The various strategies include: use of constitutive enzymes, enzyme induction, co-metabolism, transfer of plasmids coding for certain metabolic pathways, and production of biosurfactants to enhance bioavailability of hydrophobic compounds. Three case studies were presented: (1) bioremediation of heavy oils in soil at a locomotive maintenance yard in California, involving a multi-step laboratory treatability study followed by a field demonstration achieving up to 94 per cent removal of TPH in less than 16 weeks, (2) bioremediation of light oils in soil at an oil refinery in Germany where a dual process was applied (excavation and in-situ treatment), achieving an 84 per cent reduction within 24 weeks, and (3) bioremediation of oil-contaminated desert soil in Kuwait which involved landfarming, composting piles, and bioventing soil piles, achieving an 80 per cent reduction within 12 months. 7 refs., 1 tab., 3 figs.

  12. Two US EPA bioremediation field initiative studies: Evaluation of in-situ bioventing

    International Nuclear Information System (INIS)

    Sayles, G.D.; Brenner, R.C.; Hinchee, R.E.; Vogel, C.M.; Miller, R.N.

    1992-01-01

    Bioventing is the process of supplying oxygen in-situ to oxygen-deprived soil microbes by forcing air through contaminated soil at low air flow rates. Unlike soil venting or soil vacuum extraction technologies, bioventing attempts to stimulate biodegradative activity while minimizing stripping of volatile organics. The process destroys the toxic compounds in the ground. Bioventing technology is especially valuable for treating contaminated soils in areas where structures and utilities cannot be disturbed because the equipment needed (air injection/withdrawal wells, air blower, and soil gas monitoring wells) is relatively non-invasive. The US EPA Risk Reduction Engineering Laboratory, with resources from the US EPA Bioremediation Field Initiative, began two parallel 2-year field studies of in-situ of 1991 in collaboration with the US Air Force. The field sites are located at Eielson Air Force Base (AFB) near Fairbanks, Alaska, and Hill AFB near Salt Lake City, Utah. Each site has jet fuel JP-4 contaminated unsaturated soil where a spill has occurred in association with a fuel distribution network. With the pilot-scale experience gained in these studies and others, bioventing should be available in the very near future as an inexpensive, unobtrusive means of treating large quantities of organically contaminated soils. 5 figs

  13. Efficiency of consortium for in-situ bioremediation and CO2 evolution method of refines petroleum oil in microcosms study

    OpenAIRE

    Dutta, Shreyasri; Singh, Padma

    2017-01-01

    An in-situ bioremediation study was conducted in a laboratory by using mixed microbial consortium. An indigenous microbial consortium was developed by assemble of two Pseudomonas spp. and two Aspergillus spp. which were isolated from various oil contaminated sites of India. The laboratory feasibility study was conducted in a 225 m2 block. Six treatment options-Oil alone, Oil+Best remediater, Oil+Bacterial consortium, Oil+Fungal consortium, Oil+Mixed microbial consortium, Oil+Indigenous microf...

  14. Field test for treatment verification of an in-situ enhanced bioremediation study

    International Nuclear Information System (INIS)

    Taur, C.K.; Chang, S.C.

    1995-01-01

    Due to a leakage from a 12-inch pressurized diesel steel pipe four years ago, an area of approximately 30,000 square meters was contaminated. A pilot study applying the technology of in-situ enhanced bioremediation was conducted. In the study, a field test kit and on-site monitoring equipment were applied for site characterization and treatment verification. Physically, the enhanced bioremediation study consisted of an air extraction and air supply system, and a nutrition supply network. Certain consistent sampling methodology was employed. Progress was verified by daily monitoring and monthly verification. The objective of this study was to evaluate the capabilities of indigenous microorganisms to biodegrade the petroleum hydrocarbons with provision of oxygen and nutrients. Nine extraction wells and eight air sparging wells were installed. The air sparging wells injected the air into geoformation and the extraction wells provided the underground air circulation. The soil samples were obtained monthly for treatment verification by a Minuteman drilling machine with 2.5-foot-long hollow-stem augers. The samples were analyzed on site for TPH-diesel concentration by a field test kit manufactured by HNU-Hanby, Houston, Texas. The analytical results from the field test kit were compared with the results from an environmental laboratory. The TVPH concentrations of the air extracted from the vadose zone by a vacuum blower and the extraction wells were routinely monitored by a Foxboro FID and Cosmos XP-311A combustible air detector. The daily monitoring of TVPH concentrations provided the reliable data for assessing the remedial progress

  15. Simulation of in situ uranium bioremediation with slow-release organic amendment injection

    Science.gov (United States)

    Zhang, F.; Parker, J.; Ye, M.; Tang, G.; Wu, W.; Mehlhorn, T.; Gihring, T. M.; Schadt, C.; Watson, D. B.; Brooks, S. C.

    2010-12-01

    In situ bioremediation of a highly uranium-contaminated gravel aquifer with a slow-release electron donor (emulsified edible oil) has been investigated at the US DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site in east Tennessee. Groundwater at the study location has pH ~6.7 and contains high concentrations of U (5-6 μM), sulfate (1.0-1.2) mM and Ca (3-4 mM). Diluted emulsified oil (20% solution) was injected into three injection wells within 1.5 hrs. Geochemical analysis of site groundwater demonstrated the sequential reduction of nitrate, Mn, Fe(III) and sulfate. The oil was degraded by indigenous microorganisms with acetate as a major product. Rapid removal of U(VI) from the aqueous phase occurred concurrently with acetate production and sulfate reduction. The field test data were analyzed using a reaction network with a kinetic model for lipid hydrolysis and glycerol fermentation and equilibrium reactions representing microbial reduction of sulfate, nitrate, iron, uranium, manganese and carbon dioxide based on the thermodynamic approach of Istok et al. (2010) using the parallelized HGC5 code. Model-simulated chemical concentrations and relative abundance of functional microbial populations are compared with field measurements. Application of the thermodynamically-based modeling approach instead of the widely used multi-Monod kinetic rate law to formulate bioreduction reactions substantially reduces the number of reaction parameters that need to be calibrated thus facilitating a more comprehensive representation of microbial community dynamics. The model developed through this study is expected to aid the design of future bioremediation strategies for the site.

  16. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification

    International Nuclear Information System (INIS)

    Zhong Qi; Li Daping; Tao Yong; Wang Xiaomei; He Xiaohong; Zhang Jie; Zhang Jinlian; Guo Weiqiang; Wang Lan

    2009-01-01

    Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l -1 d -1 and 3.84 g COD l -1 d -1 , respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factors affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t -1 TS d -1 and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t -1 TS d -1 and the inhibition was enhanced with the increase of TON loading

  17. Missouri botanical garden’s support of ex-situ conservation with living collections

    Science.gov (United States)

    David Gunn; Meg Engelhardt; Derek. Lyle

    2017-01-01

    The Missouri Botanical Garden’s living collections are critical for supporting its multi-disciplinary strategy of integrated plant conservation. The Garden is increasing ex-situ collections of plants in need of conservation to build species diversity into its displays for visitor education. Current areas of focus include native Missouri species and International Union...

  18. In situ identification of the synthrophic protein fermentative Coprothermobacter spp. involved in the thermophilic anaerobic digestion process.

    Science.gov (United States)

    Gagliano, Maria Cristina; Braguglia, Camilla Maria; Rossetti, Simona

    2014-09-01

    Thermophilic bacteria have recently attracted great attention because of their potential application in improving different biochemical processes such as anaerobic digestion of various substrates, wastewater treatment or hydrogen production. In this study we report on the design of a specific 16S rRNA-targeted oligonucleotide probe for detecting members of Coprothermobacter genus characterized by a strong protease activity to degrade proteins and peptides. The newly designed CTH485 probe and helper probes hCTH429 and hCTH439 were optimized for use in fluorescence in situ hybridization (FISH) on thermophilic anaerobic sludge samples. In situ probing revealed that thermo-adaptive mechanisms shaping the 16S rRNA gene may affect the identification of thermophilic microorganisms. The novel developed FISH probe extends the possibility to study the widespread thermophilic syntrophic interaction of Coprothermobacter spp. with hydrogenotrophic methanogenic archaea, whose establishment is a great benefit for the whole anaerobic system. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Treatment of a mud pit by bioremediation.

    Science.gov (United States)

    Avdalović, Jelena; Đurić, Aleksandra; Miletić, Srdjan; Ilić, Mila; Milić, Jelena; Vrvić, Miroslav M

    2016-08-01

    The mud generated from oil and natural gas drilling, presents a considerable ecological problem. There are still insufficient remedies for the removal and minimization of these very stable emulsions. Existing technologies that are in use, more or less successfully, treat about 20% of generated waste drilling mud, while the rest is temporarily deposited in so-called mud pits. This study investigated in situ bioremediation of a mud pit. The bioremediation technology used in this case was based on the use of naturally occurring microorganisms, isolated from the contaminated site, which were capable of using the contaminating substances as nutrients. The bioremediation was stimulated through repeated inoculation with a zymogenous microbial consortium, along with mixing, watering and biostimulation. Application of these bioremediation techniques reduced the concentration of total petroleum hydrocarbons from 32.2 to 1.5 g kg(-1) (95% degradation) during six months of treatment. © The Author(s) 2016.

  20. Elucidating the fate of a mixed toluene, DHM, methanol, and i-propanol plume during in situ bioremediation

    Science.gov (United States)

    Verardo, E.; Atteia, O.; Prommer, H.

    2017-06-01

    Organic pollutants such as solvents or petroleum products are widespread contaminants in soil and groundwater systems. In-situ bioremediation is a commonly used remediation technology to clean up the subsurface to eliminate the risks of toxic substances to reach potential receptors in surface waters or drinking water wells. This study discusses the development of a subsurface model to analyse the performance of an actively operating field-scale enhanced bioremediation scheme. The study site was affected by a mixed toluene, dihydromyrcenol (DHM), methanol, and i-propanol plume. A high-resolution, time-series of data was used to constrain the model development and calibration. The analysis shows that the observed failure of the treatment system is linked to an inefficient oxygen injection pattern. Moreover, the model simulations also suggest that additional contaminant spillages have occurred in 2012. Those additional spillages and their associated additional oxygen demand resulted in a significant increase in contaminant fluxes that remained untreated. The study emphasises the important role that reactive transport modelling can play in data analyses and for enhancing remediation efficiency.

  1. Bioremediation of PCBs. CRADA final report

    International Nuclear Information System (INIS)

    Klasson, K.T.; Abramowicz, D.A.

    1996-06-01

    The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL's effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site

  2. In situ bioremediation: A network model of diffusion and flow in granular porous media

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, S.K.; Nilson, R.H.; Bradshaw, R.W.

    1997-04-01

    In situ bioremediation is a potentially expedient, permanent and cost- effective means of waste site decontamination. However, permeability reductions due to the transport and deposition of native fines or due to excessive microorganism populations may severely inhibit the injection of supplemental oxygen in the contamination zone. To help understand this phenomenon, we have developed a micro-mechanical network model of flow, diffusion and particle transport in granular porous materials. The model differs from most similar models in that the network is defined by particle positions in a numerically-generated particle array. The model is thus widely applicable to computing effective transport properties for both ordered and realistic random porous media. A laboratory-scale apparatus to measure permeability reductions has also been designed, built and tested.

  3. Diffusion Study on Dissolved Hydrogen toward Effective Bioremediation of Chlorinated Ethenes in Aquitards

    Science.gov (United States)

    Yoshikawa, M.; Zhang, M.; Takeuchi, M.; Komai, T.

    2010-12-01

    In Japan, the demand for in-situ remediation of contaminated sediments is expected to increase in the future due to the recent amendment of Soil Contamination Countermeasures Act. The Japanese law requires remediating not only contaminated groundwater but also contaminated sediments including those in aquitards. In-situ remediation of contaminated aquitards has been a challenging issue and bioremediation is considered to be one of the effective techniques. In microbial degradation of chrolinated ethenes such as tetrachloroethene and trichloroethene under anaerobic environments, dissolved hydrogen plays an important role. The dechlorinating microbes utilize hydrogen and chlorinated ethenes as an electron donor and an electron accepter, respectively. The size of hydrogen molecule is extremely small and the diffusion rate of dissolved hydrogen in an aquitard would be the key factor that controls the process of microbial dechlorination. However, the diffusion behavior of dissolved hydrogen in subsurface sediments remains unclear. The purposes of this study are to develop a practically utilizable test apparatus, carry out a series of dissolved hydrogen diffusion tests on representative samples, and illustrate the applicability of bioremediation in aquitards. A completely leak-free apparatus was developed by using aluminum alloy and gas tight rubber. This apparatus is capable of testing specimens with a diameter as large as 100 mm by a length from 5 mm to 10 mm, depending on the maximum grain size within a test specimen. Preliminary tests have been performed with glass beads as an ideal material, commercially available kaolin clay, and core samples taken from a polluted site containing clay minerals. The effective diffusion coefficients of these samples were all on the order of 10E-10 m2/s, though their coefficients of permeability varied between the orders of 10E-2 and 10E-7 cm/s. These results showed that there was no obvious relationship between the effective

  4. Can ex situ plant collections differ in effectiveness, even 1 between closely related species?

    Science.gov (United States)

    Conservation of imperiled plant species often requires ex situ (offsite) living collections. Protocols for developing these collections most often emphasize sampling depth, but little is known about the genetics of such collections. This study compares how well a single collecting protocol can captu...

  5. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  6. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery.

    Science.gov (United States)

    Zhao, F; Shi, R; Zhao, J; Li, G; Bai, X; Han, S; Zhang, Y

    2015-02-01

    The ex situ application of rhamnolipid to enhance oil recovery is costly and complex in terms of rhamnolipid production and transportation, while in situ production of rhamnolipid is restricted by the oxygen-deficient environments of oil reservoirs. To overcome the oxygen-limiting conditions and to circumvent the complex regulation of rhamnolipid biosynthesis in Pseudomonas aeruginosa, an engineered strain Pseudomonas stutzeri Rhl was constructed for heterologous production of rhamnolipid under anaerobic conditions. The rhlABRI genes for rhamnolipid biosynthesis were cloned into a facultative anaerobic strain Ps. stutzeri DQ1 to construct the engineered strain Rhl. Anaerobic production of rhamnolipid was confirmed by thin layer chromatography and Fourier transform infrared analysis. Rhamnolipid product reduced the air-water surface tension to 30.3 mN m(-1) and the oil-water interfacial tension to 0.169 mN m(-1). Rhl produced rhamnolipid of 1.61 g l(-1) using glycerol as the carbon source. Rhl anaerobic culture emulsified crude oil up to EI24 ≈ 74. An extra 9.8% of original crude oil was displaced by Rhl in the core flooding test. Strain Rhl achieved anaerobic production of rhamnolipid and worked well for enhanced oil recovery in the core flooding model. The rhamnolipid produced by Rhl was similar to that of the donor strain SQ6. This is the first study to achieve anaerobic and heterologous production of rhamnolipid. Results demonstrated the potential feasibility of Rhl as a promising strain to enhance oil recovery through anaerobic production of rhamnolipid. © 2014 The Society for Applied Microbiology.

  7. Ex-Situ Remediation Technologies for Environmental Pollutants: A Critical Perspective.

    Science.gov (United States)

    Kuppusamy, Saranya; Palanisami, Thavamani; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2016-01-01

    Pollution and the global health impacts from toxic environmental pollutants are presently of great concern. At present, more than 100 million people are at risk from exposure to a plethora of toxic organic and inorganic pollutants. This review is an exploration of the ex-situ technologies for cleaning-up the contaminated soil, groundwater and air emissions, highlighting their principles, advantages, deficiencies and the knowledge gaps. Challenges and strategies for removing different types of contaminants, mainly heavy metals and priority organic pollutants, are also described.

  8. Allochthonous bioaugmentation in ex situ treatment of crude oil-polluted sediments in the presence of an effective degrading indigenous microbiome

    KAUST Repository

    Fodelianakis, Stylianos

    2015-04-01

    Oil-polluted sediment bioremediation depends on both physicochemical and biological parameters, but the effect of the latter cannot be evaluated without the optimization of the former. We aimed in optimizing the physicochemical parameters related to biodegradation by applying an ex-situ landfarming set-up combined with biostimulation to oil-polluted sediment, in order to determine the added effect of bioaugmentation by four allochthonous oil-degrading bacterial consortia in relation to the degradation efficiency of the indigenous community. We monitored hydrocarbon degradation, sediment ecotoxicity and hydrolytic activity, bacterial population sizes and bacterial community dynamics, characterizing the dominant taxa through time and at each treatment. We observed no significant differences in total degradation, but increased ecotoxicity between the different treatments receiving both biostimulation and bioaugmentation and the biostimulated-only control. Moreover, the added allochthonous bacteria quickly perished and were rarely detected, their addition inducing minimal shifts in community structure although it altered the distribution of the residual hydrocarbons in two treatments. Therefore, we concluded that biodegradation was mostly performed by the autochthonous populations while bioaugmentation, in contrast to biostimulation, did not enhance the remediation process. Our results indicate that when environmental conditions are optimized, the indigenous microbiome at a polluted site will likely outperform any allochthonous consortium.

  9. Genetic, epigenetic, and HPLC fingerprint differentiation between natural and ex situ populations of Rhodiola sachalinensis from Changbai Mountain, China.

    Science.gov (United States)

    Zhao, Wei; Shi, Xiaozheng; Li, Jiangnan; Guo, Wei; Liu, Chengbai; Chen, Xia

    2014-01-01

    Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = -0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis.

  10. On the ex situ and in situ doping of refractory Ta by pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.L.; Lin, S.S.; Shen, P. [National Sun Yat-sen University, Department of Materials and Optoelectronic Science, Kaohsiung, Taiwan (China); Chen, S. [I-Shou University, Department of Mechanical and Automation Engineering, Kaohsiung, Taiwan (China)

    2017-06-15

    Ex situ and in situ doping processes of refractory Ta were accomplished by pulsed laser ablation of bulk Ta in vacuum with C-O-H supply from C-coated collodion film and within tetraethyl orthosilicate (TEOS), respectively. Analytical electron microscopic observations of the resultant particulates and condensates indicated that the former process involved interdiffusion in the condensed state to form two kinds of core-shell structures, i.e., C-O-H doped Ta with α-type (bcc) core and lamellar shell and O-H doped γ-TaC{sub 1-x} with amorphous Ta-C-O-H surrounding, respectively, for potential wear and lubrication applications at high temperatures. In situ TEOS mediation, however, enhanced solute trapping to form Si-C-O-H overdoped α-Ta with significant tetragonality (c/a ratio up to 1.27) and Si-O-H doped γ-TaC{sub 1-x} with {111}{sub γ} twin/fault and occasional epitaxial relationship [ anti 123]{sub α}//[ anti 112]{sub γ}; (121){sub α}//(anti 11 anti 1){sub γ} due to particle coalescence. Such Si-C-O-H mediated Ta particles may have potential optocatalytic applications. (orig.)

  11. Bioremediation of PCBs. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T. [Oak Ridge National Lab., TN (United States). Chemical Technology Div., TN (United States); Abramowicz, D.A. [General Electric Co. Corporate Research and Development, Niskayuna, NY (United States)

    1996-06-01

    The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL`s effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site.

  12. Environmental bioremediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.N.; Tripathi, R.D. (eds.) [National Botanical Research Institute, Lucknow (India). Ecotoxicology and Bioremediation

    2007-07-01

    The rapid expansion and increasing sophistication of various industries in the past century has remarkably increased the amount and complexity of toxic waste effluents, which may be bioremediated by suitable plants and microbes, either natural occurring or tailor-made for the specific purpose. This technology is termed as bioremediation. Bioremediation is an eco- friendly, cost-effective and natural technology targeted to remove heavy metals, radionuclides, xenobiotic compounds, organic waste, pesticides etc. from contaminated sites or industrial discharges through biological means. Since this technology is used in in-situ conditions, it does not physically disturb the site unlike conventional methods i.e. chemical or mechanical methods. In this technology, higher plants or microbes are used alone or in combination for phytoextraction of heavy metals from metal contaminated sites. Through microbial interventions, either the metals are immobilized or mobilized through redox conversions at contaminated sites. If mobilized, metal accumulating plants are put in place to accumulate metals in their body. Thereafter, metal-loaded plants are harvested and incinerated to reduce the volume of waste and then disposed off as hazardous materials or used for recovery of precious metals, if possible. In case of immobilization, metals are no longer available to be toxic to organisms. (orig.)

  13. Non-radioactive disposal facility-bioremediation horizontal well installation project

    International Nuclear Information System (INIS)

    Kupar, J.; Hasek, M.

    1998-01-01

    The Sanitary Landfill Corrective Action Plan proposes a two pronged approach to remediation. The first part of the total remediation strategy is the placement of a RCRA style closure cap to provide source control of contaminants into the groundwater. The second part of the proposed remediation package is a phased approach primarily using an in situ bioremediation system for groundwater clean up of the Constituents of Concern (COCs) that exceed their proposed Alternate Concentration Limits (ACL). The phased in approach of groundwater clean up will involve operation of the in situ bioremediation system, followed by evaluation of the Phase 1 system and, if necessary, additional phased remediation strategies. This document presents pertinent information on operations, well locations, anticipated capture zones, monitoring strategies, observation wells and other information which will allow a decision on the acceptability of the remedial strategy as an interim corrective action prior to permit application approval. The proposed interim phase of the remediation program will position two horizontal bioremediation wells such that the respective zones of influence will intersect the migration path for the highest concentrations of each plume

  14. Application of microbial biomass and activity measures to assess in situ bioremediation of chlorinated solvents

    International Nuclear Information System (INIS)

    Phelps, T.J.; Herbes, S.E.; Palumbo, A.V.; Pfiffner, S.M.; Mackowski, R.; Ringelberg, D.; White, D.C.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Evaluating the effectiveness of chlorinated solvent remediation in the subsurface can be a significant problem given uncertainties in estimating the total mass of contaminants present. If the remediation technique is a biological activity, information on the progress and success of the remediation may be gained by monitoring changes in the mass and activities of microbial populations. The in situ bioremediation demonstration at the US Department of Energy (DOE) Savannah River Site (SRS) is designed to test the effectiveness of methane injection for the stimulation of in sediments. Past studies have shown the potential for degradation by native microbial populations. The design and implementation of the SRS Integrated Demonstration is described in this volume. A control phase without treatment was followed by a phase withdrawing air. The next phase included vacuum extraction plus air injection into the lower horizontal well located below the water table. The next period included the injection of 1% methane in air followed by injection of 4% methane in air. Based on the literature, it was hypothesized that the injection of methane would stimulate methanotrophic populations and thus accelerate biological degradation of TCE. Measuring the success of bioremediation is a complex effort that includes monitoring of changes in microbial populations associated with TCE degradation. These monitoring efforts are described in this paper and in related papers in this volume

  15. Comparison between ex situ and in situ measurement methods for the assessment of radioactively contaminated land. Comparison between measurement methods for the characterisation of radioactively contaminated land

    International Nuclear Information System (INIS)

    Rostron, Peter D.; Ramsey, Michael H.; Heathcote, John A.

    2012-01-01

    In the UK, it is estimated that there may be 20,000,000 cubic metres of contaminated land at Sellafield alone. Harwell and Dounreay are known to have significant amounts of radioactive or nonradioactive contaminated land (NDA, 2006). It is therefore important to devise optimal methods for the characterisation of areas of land for radionuclide content, in order to enable cost-effective decommissioning. With chemical contaminants, ex situ measurements are made on a larger volume of soil than are in situ measurements, such as PXRF. However, the opposite is often true for the characterisation of radioactive contamination, when this involves the detection of penetrating radiation from γ-emitting radionuclides. This means that when investigating for hotspots of radioactive contamination at or near the ground surface, better coverage can be obtained using in situ methods. This leads to the question, what is the optimal strategy (e.g. percentage coverage, counting time) for in situ characterisation of radioactively contaminated land' Surveys on light-moderate contaminated areas of ground were conducted at Dounreay in order to compare the relative effectiveness of in situ and ex situ methods, both for the detection of radioactive hotspots and also for estimating the average radionuclide content of an area of ground. These surveys suggest that continuous coverage by in situ devices is more effective at hotspot detection, with ex situ laboratory measurements being less effective, although in one case elevated activity below 10 cm depth that was identified by ex situ measurement was not located by in situ measurement. The surveys also highlighted that careful choice of an appropriate spatial model is critical to the estimation of activity concentrations over averaging areas. Whereas continuous coverage may be considered necessary for hotspot identification, in the particular case of the detection of hot particles (where the particle is very small compared to the sampling

  16. Genetic, epigenetic, and HPLC fingerprint differentiation between natural and ex situ populations of Rhodiola sachalinensis from Changbai Mountain, China.

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    Full Text Available Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR and methylation-sensitive amplified polymorphism (MSAP markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88% was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%. UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = -0.95 for HPLC fingerprint and altitude. Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis.

  17. Potential for Methanosarcina to contribute to uranium reduction during acetate-promoted groundwater bioremediation

    DEFF Research Database (Denmark)

    Holmes, Dawn E; Orellana, Roberto; Giloteaux, Ludovic

    2018-01-01

    Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcr......Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcr......(VI) reduction was observed in inactive controls. These results demonstrate that Methanosarcina species could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest...

  18. Evaluation of in-situ methanotrophic bioremediation for contaminated groundwater, St. Joseph, Michigan. Final report, January 1989-December 1989

    International Nuclear Information System (INIS)

    McCarty, P.L.; Semprini, L.; Dolan, M.E.; Harmon, T.C.; Just, S.

    1990-09-01

    A feasibility study of utilizing indigenous bacteria that use methane as a source of cell carbon and energy (methanotrophs) for in-situ bioremediation of groundwater contaminants at the St. Joseph site is summarized. The contaminants, compounds, can be biotransformed by methanotrophic bacteria, which are found in some locations of the site in adequate populations. The process involves stimulating the growth of native populations of methanotrophs by injecting water containing dissolved methane and oxygen into the aquifer. The stimulated population of methanotrophs in turn has the capability to degrade trichloroethylene, 1,2-cis-dichloroethylene, 1,2-trans-dichloroethylene, and vinyl chloride

  19. Genome-Based Models to Optimize In Situ Bioremediation of Uranium and Harvesting Electrical Energy from Waste Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R

    2012-12-28

    The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.

  20. Contributions of Fe Minerals to Abiotic Dechlorination

    Science.gov (United States)

    Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...

  1. Performance Indicators for Uranium Bioremediation in the Subsurface: Basis and Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yabusaki, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2006-12-29

    The purpose of this letter report is to identify performance indicators for in situ engineered bioremediation of subsurface uranium (U) contamination. This report focuses on in situ treatment of groundwater by biostimulation of extant in situ microbial populations (see http://128.3.7.51/NABIR/generalinfo/primers_guides/03_NABIR_primer.pdf for background information on bioremediation of metals and radionuclides). The treatment process involves amendment of the subsurface with an electron donor such as acetate, lactate, ethanol or other organic compound such that in situ microorganisms mediate the reduction of U(VI) to U(IV). U(VI) precipitates as uraninite or other insoluble U phase. Uranium is thus immobilized in place by such processes and is subject to reoxidation that may remobilize the reduced uranium. Related processes include augmenting the extant subsurface microbial populations, addition of electron acceptors, and introduction of chemically reducing materials such as zero-valent Fe. While metrics for such processes may be similar to those for in situ biostimulation, these related processes are not directly in the scope of this letter report.

  2. Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites

    International Nuclear Information System (INIS)

    Frick, C. M.; Farrell, R. E.; Germida, J. J.

    1999-01-01

    Literature on examples of phytoremediation techniques used in the in-situ remediation of soils contaminated by petroleum hydrocarbons is reviewed. The review includes discussion of the key mechanisms involved in each case, benefits, limitations and costs compared to alternative approaches, including natural attenuation, engineering and bioremediation. Review of the literature led to the conclusion that phytoremediation is an effective method for degrading and containing petroleum hydrocarbons in soil, and confirmed the ability of plants to transfer volatile petroleum hydrocarbons, such as napthalene, from the soil to the atmosphere via transpiration. The primary loss mechanism for the degradation of petroleum hydrocarbons appears to be microorganisms in the rhizosphere of plants. The available information also suggests that plants may degrade petroleum hydrocarbons directly, although the indirect role played by plants is far more common. These roles include supplying root exudates for microbial use, releasing root-associated enzymes that degrade contaminants in the soil, and altering soil to promote phytoremediation. BTEX compounds are most easily amenable to phytoremediation; large and lipophilic compounds such as four or five-ring polyaromatic hydrocarbons are more difficult to remediate. The limited information available suggests that phytoremediation is slightly less expensive than bioremediation, and several order of magnitude less than engineering techniques. In general, phytoremediation is faster than natural attenuation, but typically slower than engineering and bioremediation. On the other hand, it is less disruptive to the site than ex-situ engineering and bioremediation that involve excavation efforts. Phytoremediation is most effective with shallow contamination. Preliminary screenings indicate that there are several plant species, native and introduced, that may be used with some success for phytoremediation in the Prairie and Boreal Plains ecozones

  3. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  4. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  5. Engineering Deinococcus geothermailis for Bioremediation of High-Temperature Radioactive Waste Environments

    International Nuclear Information System (INIS)

    Brim, Hassan; Venkateswaran, Amudhan; Kostandarithes, Heather M.; Fredrickson, Jim K.; Daly, Michael J.

    2003-01-01

    Deinococcus geothermalis is an extremely radiation-resistant thermophilic bacterium closely related to the mesophile Deinococcus radiodurans, which is being engineered for in situ bioremediation of radioactive wastes

  6. Establishment of a Methanogenic Benzene-Degrading Culture and its Implication in Bioremediation

    Science.gov (United States)

    Qiao, W.; Luo, F.; Bawa, N.; Guo, S.; Ye, S.; Edwards, E.

    2017-12-01

    Benzene is a known human carcinogen and it is a common pollutant in groundwater, mainly resulting from petrochemical industry. Anaerobic degradation of benzene has significant advantages over aerobic processes for in situ bioremediation. In this study, new methanogenic and sulfate-reducing benzene degrading cultures have been enriched. Microbial community composition was characterized with two other previously established benzene-degrading cultures, and their potential use in bioaugmentation is investigated. In this study, a lab microcosm study was conducted anaerobically with contaminated soil and groundwater from a former chemical plant. Benzene degradation was observed in the presence of co-contaminants and electron donor. Through repetitive amendment of benzene, two enrichment cultures have been developed under sulfate and methanogenic conditions. Results from DNA amplicon sequencing and qPCR analysis revealed that an organism similar to previously described benzene-degrading Deltaproteobacterium has been enriched. The microbial community of this culture was compared with other two methanogenic benzene-degrading enrichment cultures that were derived from an oil refinery and a decommissioned gasoline station, and have been maintained for decades. Deltaproteobacterium ORM2-like microbes were dominate in all enrichment cultures, which brought to light benzene-degrading microbes, ORM2 were enriched under different geological conditions distributed around the world. The relative abundance of methanogens was much lower compared to previously established cultures, although substantial amount of methane was produced. The peripheral organisms also vary. To investigate effectiveness of using ORM2-dominant enrichment cultures in bioremediation, microcosm studies were set up using contaminated materials, and a ORM2-dominating methanogenic benzene-degrading culture was used for bioaugmentation. Results revealed that benzene degradation was speeded up under methanogenic or

  7. enhanced ex-situ bioremediation of soil contaminated

    African Journals Online (AJOL)

    user

    refinery waste effluent having total organic compound (TOC) as model organic pollutant. .... the surface layer using white tissue paper. A soil .... the electrical stimulation of microbial PCB degradation in ... decrease of toxicity for bacterial action.

  8. Ex-situ and in-situ observations of the effects of gamma radiation on lithium ion battery performance

    Science.gov (United States)

    Tan, Chuting; Bashian, Nicholas H.; Hemmelgarn, Chase W.; Thio, Wesley J.; Lyons, Daniel J.; Zheng, Yuan F.; Cao, Lei R.; Co, Anne C.

    2017-07-01

    Radiation effects induced by gamma rays on battery performance were investigated by measuring the capacity and resistance of a series of battery coin cells in-situ directly under gamma radiation and ex-situ. An experimental setup was developed to charge and discharge batteries directly under gamma radiation, equipped with precise temperature control, at The Ohio State University Nuclear Reactor Lab. Latent effects induced by gamma radiation on battery components directly influence their performance. Charge and discharge capacity and overall resistance throughout a time span of several weeks post irradiation were monitored and compared to control groups. It was found that exposure to gamma radiation does not significantly alter the available capacity and the overall cell resistance immediately, however, battery performance significantly decreases with time post irradiation. Also, batteries exposed to a higher cumulative dose showed close-to-zero capacity at two-week post irradiation.

  9. Tools for Management of Chlorinated Solvent - Contaminated Sites

    Science.gov (United States)

    2009-12-03

    Movie Lee Ann Doner – (2008) MS CSU “Sandy aquifers” Image from Fred Payne /ARCADIS New Paradigm After NRC 2005 l~r SERDP. Advancing solvent plume...Situ Bioremediation Using Emulsified  Edible  Oil”   AFCEE (http://www.afcee.brooks.af.mil/products/techtrans/) - “Principles and Practices of Enhanced...Anaerobic Bioremediation of  Chlorinated Solvents”  - “Protocol for In Situ Bioremediation of Chlorinated Solvents Using  Edible  Oil” 232 Short Course

  10. A multi-objective simulation-optimization model for in situ bioremediation of groundwater contamination: Application of bargaining theory

    Science.gov (United States)

    Raei, Ehsan; Nikoo, Mohammad Reza; Pourshahabi, Shokoufeh

    2017-08-01

    In the present study, a BIOPLUME III simulation model is coupled with a non-dominating sorting genetic algorithm (NSGA-II)-based model for optimal design of in situ groundwater bioremediation system, considering preferences of stakeholders. Ministry of Energy (MOE), Department of Environment (DOE), and National Disaster Management Organization (NDMO) are three stakeholders in the groundwater bioremediation problem in Iran. Based on the preferences of these stakeholders, the multi-objective optimization model tries to minimize: (1) cost; (2) sum of contaminant concentrations that violate standard; (3) contaminant plume fragmentation. The NSGA-II multi-objective optimization method gives Pareto-optimal solutions. A compromised solution is determined using fallback bargaining with impasse to achieve a consensus among the stakeholders. In this study, two different approaches are investigated and compared based on two different domains for locations of injection and extraction wells. At the first approach, a limited number of predefined locations is considered according to previous similar studies. At the second approach, all possible points in study area are investigated to find optimal locations, arrangement, and flow rate of injection and extraction wells. Involvement of the stakeholders, investigating all possible points instead of a limited number of locations for wells, and minimizing the contaminant plume fragmentation during bioremediation are new innovations in this research. Besides, the simulation period is divided into smaller time intervals for more efficient optimization. Image processing toolbox in MATLAB® software is utilized for calculation of the third objective function. In comparison with previous studies, cost is reduced using the proposed methodology. Dispersion of the contaminant plume is reduced in both presented approaches using the third objective function. Considering all possible points in the study area for determining the optimal locations

  11. Application of sewage sludge and intermittent aeration strategy to the bioremediation of DDT- and HCH-contaminated soil.

    Science.gov (United States)

    Liang, Qi; Lei, Mei; Chen, Tongbin; Yang, Jun; Wan, Xiaoming; Yang, Sucai

    2014-08-01

    Adding organic amendments to stimulate the biodegradation of pesticides is a subject of ongoing interest. The effect of sewage sludge on the bioremediation of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) contaminated soil was investigated in bench scale experiments, and intermittent aeration strategy was also used in this study to form an anaerobic-aerobic cycle. Bioremediation of DDT and HCH was enhanced with the addition of sewage sludge and the intermittent aeration. The removal rates of HCH and DDT were raised by 16.8%-80.8% in 10 days. Sewage sludge increased the organic carbon content from 6.2 to 218 g/kg, and it could also introduce efficient degradation microbes to soil, including Pseudomonas sp., Bacillus sp. and Sphingomonas sp. The unaerated phase enhanced the anaerobic dechlorination of DDT and HCH, and anaerobic removal rates of β-HCH, o,p'-DDT and p,p'-DDT accounted for more than 50% of the total removal rates, but the content of α-HCH declined more in the aerobic phase. Copyright © 2014. Published by Elsevier B.V.

  12. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1993-01-01

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  13. Foam adsorption as an ex situ capture step for surfactants produced by fermentation.

    Science.gov (United States)

    Anic, Iva; Nath, Arijit; Franco, Pedro; Wichmann, Rolf

    2017-09-20

    In this report, a method for a simultaneous production and separation of a microbially synthesized rhamnolipid biosurfactant is presented. During the aerobic cultivation of flagella-free Pseudomonas putida EM383 in a 3.1L stirred tank reactor on glucose as a sole carbon source, rhamnolipids are produced and excreted into the fermentation liquid. Here, a strategy for biosurfactant capture from rhamnolipid enriched fermentation foam using hydrophobic-hydrophobic interaction was investigated. Five adsorbents were tested independently for the application of this capture technique and the best performing adsorbent was tested in a fermentation process. Cell-containing foam was allowed to flow out of the fermentor through the off-gas line and an adsorption packed bed. Foam was observed to collapse instantly, while the resultant liquid flow-through, which was largely devoid of the target biosurfactant, eluted towards the outlet channel of the packed bed column and was subsequently pumped back into the fermentor. After 48h of simultaneous fermentation and ex situ adsorption of rhamnolipids from the foam, 90% out of 5.5g of total rhamnolipids produced were found in ethanol eluate of the adsorbent material, indicating the suitability of this material for ex situ rhamnolipid capture from fermentation processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    Science.gov (United States)

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications.

  15. Ex situ n+ doping of GeSn alloys via non-equilibrium processing

    Science.gov (United States)

    Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Böttger, R.; Fischer, I. A.; Augel, L.; Oehme, M.; Schulze, J.; Voelskow, M.; Helm, M.; Skorupa, W.; Zhou, S.

    2018-06-01

    Full integration of Ge-based alloys like GeSn with complementary-metal-oxide-semiconductor technology would require the fabrication of p- and n-type doped regions for both planar and tri-dimensional device architectures which is challenging using in situ doping techniques. In this work, we report on the influence of ex situ doping on the structural, electrical and optical properties of GeSn alloys. n-type doping is realized by P implantation into GeSn alloy layers grown by molecular beam epitaxy (MBE) followed by flash lamp annealing. We show that effective carrier concentration of up to 1 × 1019 cm‑3 can be achieved without affecting the Sn distribution. Sn segregation at the surface accompanied with an Sn diffusion towards the crystalline/amorphous GeSn interface is found at P fluences higher than 3 × 1015 cm‑2 and electron concentration of about 4 × 1019 cm‑3. The optical and structural properties of ion-implanted GeSn layers are comparable with the in situ doped MBE grown layers.

  16. Possible developments for ex situ phytoremediation of contaminated sediments, in tropical and subtropical regions - Review.

    Science.gov (United States)

    Pittarello, Marco; Busato, Jader Galba; Carletti, Paolo; Dobbss, Leonardo Barros

    2017-09-01

    The growing problem of remediation of contaminated sediments dredged from harbor channels needs to be resolved by a cost effective and sustainable technology. Phytoremediation, by ex situ remediation plants, seems to have the potential to replace traditional methods in case of moderately contaminated sediments. On the other side, the need to mix sediments with soil and/or sand to allow an easier establishment of most employed species causes an increase of the volume of the processed substrate up to 30%. Moreover the majority of phytoremediating species are natives of temperate climate belt. Mangroves, with a special focus on the genus Avicennia - a salt secreting species - should represent an effective alternative in terms of adaptation to salty, anoxic sediments and an opportunity to develop ex situ phytoremediation plants in tropical and subtropical regions. The use of humic acid to increase root development, cell antioxidant activity and the potential attenuation of the "heavy metals exclusion strategy" to increase phytoextraction potentials of mangroves will be reviewed. Copyright © 2017. Published by Elsevier Ltd.

  17. The role of MgO content in ex situ MgB2 wires

    DEFF Research Database (Denmark)

    Kovac, P.; Hugek, I.; Meligek, T.

    2004-01-01

    An experimental study of the effect of MgO content in the MgB2 powder used for ex situ made composite wires was carried out. Two single-core MgB2/Fe/Cu wires were made using commercial MgB2 powders from Alfa Aesar containing different fraction of MgO. Critical temperature and critical currents of...

  18. Electrokinetically Emplaced Amendments for Enhanced Bioremediation of Chlorinated Solvents in Clay: a Pilot Field Test

    Science.gov (United States)

    O'Carroll, D. M.; Inglis, A.; Head, N.; Chowdhury, A. I.; Garcia, A. N.; Reynolds, D. A.; Hogberg, D.; Edwards, E.; Lomheim, L.; Austrins, L. M.; Hayman, J.; Auger, M.; Sidebottom, A.; Eimers, J.; Gerhard, J.

    2017-12-01

    Bioremediation is an increasingly popular treatment technology for contaminated sites due to the proven success of biostimulation and bioaugmentation. However, bioremediation, along with other in-situ remediation technologies, faces limitations due to challenges with amendment delivery in low permeability media. Studies have suggested that electrokinetics (EK) can enhance the delivery of amendments in low permeability soils, such as clay. A pilot field trial was conducted to evaluate the potential for electrokinetics to support anaerobic dechlorination in clay by improving the transport of lactate and microorganisms. The study was performed on a former chlorinated solvent production facility in Ontario, Canada. Five transect cells were set up within the contaminated clay test area. Different amendments were injected in three of these cells to test various remediation strategies under the influence of EK. The other two cells were used as controls, one with EK applied and the other with no EK. This study focuses on the cell that applied electrokinetics for lactate emplacement followed by bioremediation (EK-Bio). This cell had an initial single injection of KB-1 bioaugmentation culture (SiREM, Canada) followed by injection of sodium lactate as a biostimulant while direct current was applied for 45 days between two electrodes 3 m apart. EK can enhance lactate migration by electromigration, while microorganisms have the potential to be influenced by electroosmosis of the bulk fluid or by electrophoresis of the charged bacteria themselves. All monitoring well locations in the EK-Bio cell exhibited evidence of successful lactate delivery corresponding to an increase in dissolved organic carbon. Reduction in chlorinated volatile organic compound (cVOC) concentrations, in particular 1,2-dichloroethane (1,2-DCA), were evident in monitoring locations coinciding with significant lactate breakthrough. Further investigation into the influence of EK-Bio on the abundance and

  19. The Chemistry and Flow Dynamics of Molecular Biological Tools Used to Confirm In Situ Bioremediation of Benzene, TBA, and MTBE

    Science.gov (United States)

    North, K. P.; Mackay, D. M.; Scow, K. M.

    2010-12-01

    In situ bioremediation has typically been confirmed by collecting sediment and groundwater samples to directly demonstrate a degradation process in a laboratory microcosm. However, recent advances in molecular biological tools present options for demonstrating degradation processes with field-based tools that are less time-consuming. We have been investigating the capability of some of these molecular biological tools to evaluate in situ biodegradation of tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), and benzene at two field sites in California. At both sites, we have deployed Bio-Traps® (“traps”), made of Bio-Sep® beads in slotted PVC pipe, which provide ideal environments for microbial colonization. Stable Isotope Probing can be accomplished by sorbing the13C-labeled organic contaminant of concern onto Bio-Sep® beads (“baiting”); incorporation of 13C into the biomass collected by the trap would indicate that the microbial community was capable of degrading the labeled compound. In addition, we examined the chemistry and flow dynamics of these traps and present those results here. We performed a field experiment and a lab experiment to, in part, define the rate that different baits leached off various traps. At a TBA- and MTBE-contaminated site at Vandenberg AFB, Lompoc, CA, the TBA-dominant plume was effectively treated by recirculation/oxygenation of groundwater, decreasing TBA and MTBE concentrations to detection limits along predicted flowpaths created by two pairs of recirculation wells. We used the generated aerobic treatment zone to deploy traps baited with 13C-labeled MTBE or TBA in a novel, ex situ experimental setup. The groundwater flow extracted from the aerobic treatment zone was split through several chambers, each containing a trap and monitoring of influent and effluent. The chamber effluent was measured throughout a six-week deployment and analyzed for both TBA and MTBE; the majority of mass leached from the baited traps did

  20. Technical Basis for Assessing Uranium Bioremediation Performance

    International Nuclear Information System (INIS)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N'Guessan

    2008-01-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation

  1. Technical Basis for Assessing Uranium Bioremediation Performance

    Energy Technology Data Exchange (ETDEWEB)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  2. The development and application of engineered proteins for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J. [ed.

    1995-09-26

    Clean up of the toxic legacy of the Cold War is projected to be the most expensive domestic project the nation has yet undertaken. Remediation of the Department of Energy and Department of Defense toxic waste sites alone are projected to cost {approximately}$1 trillion over a 20-30 year period. New, cost effective technologies are needed to attack this enormous problem. Los Alamos has put together a cross-divisional team of scientist to develop science based bioremediation technology to work toward this goal. In the team we have expertise in: (1) molecular, ecosystem and transport modeling; (2) genetic and protein engineering; (3) microbiology and microbial ecology; (4) structural biology; and (5) bioinorganic chemistry. This document summarizes talks at a workshop of different aspects of bioremediation technology including the following: Introducing novel function into a Heme enzyme: engineering by excavation; cytochrome P-450: ideal systems for bioremediation?; selection and development of bacterial strains for in situ remediation of cholorinated solvents; genetic analysis and preparation of toluene ortho-monooxygenase for field application in remediation of trichloroethylene; microbial ecology and diversity important to bioremediation; engineering haloalkane dehalogenase for bioremediation; enzymes for oxidative biodegradation; indigenous bacteria as hosts for engineered proteins; performance of indigenous bacterial, hosting engineered proteins in microbial communities.

  3. Removal of PCB and other halogenated organic contaminants found in ex situ structures

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Coon, Christina (Inventor); Filipek, Laura B. (Inventor); Berger, Cristina M. (Inventor); Milum, Kristen M. (Inventor)

    2009-01-01

    Emulsified systems of a surfactant-stabilized, biodegradable water-in-solvent emulsion with bimetallic particles contained with the emulsion droplets are useful at removing PCBs from ex situ structures. The hydrophobic emulsion system draws PCBs through the solvent/surfactant membrane. Once inside the membrane, the PCBs diffuse into the bimetallic particles and undergo degradation. The PCBs continue to enter, diffuse, degrade, and biphenyl will exit the particle maintaining a concentration gradient across the membrane and maintaining a driving force of the reaction.

  4. Occurrence of Toxoplasma gondii antibodies in Lowland Tapirs (Tapirus terrestris) maintained ex-situ in Brazil and Paraguay

    Science.gov (United States)

    Exposure to Toxoplasma gondii, by the presence of antibodies to the parasite, was documented in 47 Brazilian tapirs (Tapirus terrestris) maintained ex-situ in 10 Brazilian and in one Paraguayan Institution. One animal had samples collected on two occasions (November 2010 and October 2011), and 19 (4...

  5. Impact of process temperature on GaSb metal-oxide-semiconductor interface properties fabricated by ex-situ process

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Masafumi, E-mail: yokoyama@mosfet.t.u-tokyo.ac.jp; Takenaka, Mitsuru; Takagi, Shinichi [Department of Electrical Engineering and Information Systems, The University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); JST-CREST, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); Asakura, Yuji [Department of Electrical Engineering and Information Systems, The University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); Yokoyama, Haruki [NTT Photonics Laboratories, NTT Corporation, Atsugi 243-0198 (Japan)

    2014-06-30

    We have studied the impact of process temperature on interface properties of GaSb metal-oxide-semiconductor (MOS) structures fabricated by an ex-situ atomic-layer-deposition (ALD) process. We have found that the ALD temperature strongly affects the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The Al{sub 2}O{sub 3}/GaSb MOS interfaces fabricated at the low ALD temperature of 150 °C have the minimum interface-trap density (D{sub it}) of ∼4.5 × 10{sup 13 }cm{sup −2} eV{sup −1}. We have also found that the post-metalization annealing at temperature higher than 200 °C degrades the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The low-temperature process is preferable in fabricating GaSb MOS interfaces in the ex-situ ALD process to avoid the high-temperature-induced degradations.

  6. Anaerobic microbial dehalogenation and its key players in the contaminated Bitterfeld-Wolfen megasite.

    Science.gov (United States)

    Nijenhuis, Ivonne; Stollberg, Reiner; Lechner, Ute

    2018-04-01

    The megasite Bitterfeld-Wolfen is highly contaminated as a result of accidents and because of dumping of wastes from local chemical industries in the last century. A variety of contaminants including chlorinated ethenes and benzenes, hexachlorohexanes and chlorinated dioxins can still be found in the groundwater and (river) sediments. Investigations of the in situ microbial transformation of organohalides have been performed only over the last two decades at this megasite. In this review, we summarise the research on the activity of anaerobic dehalogenating bacteria at the field site in Bitterfeld-Wolfen, focusing on chlorinated ethenes, monochlorobenzene and chlorinated dioxins. Various methods and concepts were applied including ex situ cultivation and isolation, and in situ analysis of hydrochemical parameters, compound-specific stable isotope analysis of contaminants, 13C-tracer studies and molecular markers. Overall, biotransformation of organohalides is ongoing at the field site and Dehalococcoides mccartyi species play an important role in the detoxification process in the Bitterfeld-Wolfen region.

  7. Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status.

    Directory of Open Access Journals (Sweden)

    Ola T Westengen

    Full Text Available Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the world's ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat, Sorghum (sorghum, Pennisetum (pearl millet, Eleusine (finger millet, Cicer (chickpea and Lens (lentil exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth, Chenopodium (quinoa, Eragrostis (teff and Abelmoschus (okra. In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity.

  8. Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status.

    Science.gov (United States)

    Westengen, Ola T; Jeppson, Simon; Guarino, Luigi

    2013-01-01

    Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the world's ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat), Sorghum (sorghum), Pennisetum (pearl millet), Eleusine (finger millet), Cicer (chickpea) and Lens (lentil) exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth), Chenopodium (quinoa), Eragrostis (teff) and Abelmoschus (okra). In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity.

  9. Transfer of Direct and Moiré Patterns by Reactive Ion Etching Through Ex Situ Fabricated Nanoporous Polymer Masks

    DEFF Research Database (Denmark)

    Shvets, Violetta; Hentschel, Thomas; Schulte, Lars

    2015-01-01

    modification, which are essential prerequisites for the conventional procedure of block copolymer directed self-assembly. The demonstrated elliptic and moire pattern transfers prove that the proposed ex situ procedure allows us to realize nanolithographic patterns that are difficult to realize...

  10. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Chakraborty, Romy; Fleming, James M.; Gregory, Ingrid R.; Bowman, John P.; Jimenez, Luis; Zhang, Dai; Pfiffner, Susan M.; Brockman, Fred J.; Sayler, Gary S.

    2009-03-15

    Gene probe hybridization was used to determine distribution and expression of co-metabolic genes at a contaminated site as it underwent in situ methanotrophic bioremediation of trichloroethylene (TCE). The bioremediation strategies tested included a series of air, air:methane, and air:methane:nutrient pulses of the test plot using horizontal injection wells. During the test period, the levels of TCE reduced drastically in almost all test samples. Sediment core samples (n = 367) taken from 0 m (surface)-43 m depth were probed for gene coding for methanotrophic soluble methane monooxygenase (sMMO) and heterotrophic toluene dioxygenase (TOD), which are known to co-metabolize TCE. The same sediment samples were also probed for genes coding for methanol dehydrogenase (MDH) (catalyzing the oxidation of methanol to formaldehyde) to assess specifically changes in methylotrophic bacterial populations in the site. Gene hybridization results showed that the frequency of detection of sMMO genes were stimulated approximately 250% following 1% methane:air (v/v) injection. Subsequent injection of 4% methane:air (v/v) resulted in an 85% decline probably due to nutrient limitations, since addition of nutrients (gaseous nitrogen and phosphorus) thereafter caused an increase in the frequency of detection of sMMO genes. Detection of TOD genes declined during the process, and eventually they were non-detectable by the final treatment, suggesting that methanotrophs displaced the TOD gene containing heterotrophs. Active transcription of sMMO and TOD was evidenced by hybridization to mRNA. These analyses combined with results showing the concomitant decline in TCE concentrations, increases in chloride concentration and increases in methanotroph viable counts, provide multiple lines of evidence that TCE remediation was caused specifically by methanotrophs. Our results suggest that sMMO genes are responsible for most, if not all, of the observed biodegradation of TCE. This study

  11. Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas.

    Directory of Open Access Journals (Sweden)

    Rachael E Antwis

    Full Text Available Amphibians support symbiotic bacterial communities on their skin that protect against a range of infectious pathogens, including the amphibian chytrid fungus. The conditions under which amphibians are maintained in captivity (e.g. diet, substrate, enrichment in ex situ conservation programmes may affect the composition of the bacterial community. In addition, ex situ amphibian populations may support different bacterial communities in comparison to in situ populations of the same species. This could have implications for the suitability of populations intended for reintroduction, as well as the success of probiotic bacterial inoculations intended to provide amphibians with a bacterial community that resists invasion by the chytrid fungus. We aimed to investigate the effect of a carotenoid-enriched diet on the culturable bacterial community associated with captive red-eyed tree frogs (Agalychnis callidryas and make comparisons to bacteria isolated from a wild population from the Chiquibul Rainforest in Belize. We successfully showed carotenoid availability influences the overall community composition, species richness and abundance of the bacterial community associated with the skin of captive frogs, with A. callidryas fed a carotenoid-enriched diet supporting a greater species richness and abundance of bacteria than those fed a carotenoid-free diet. Our results suggest that availability of carotenoids in the diet of captive frogs is likely to be beneficial for the bacterial community associated with the skin. We also found wild A. callidryas hosted more than double the number of different bacterial species than captive frogs with very little commonality between species. This suggests frogs in captivity may support a reduced and diverged bacterial community in comparison to wild populations of the same species, which could have particular relevance for ex situ conservation projects.

  12. Design and evaluation of in situ biorestoration methods for the treatment of sludges and soils at waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Berry-Spark, K L; Barker, J F; Mayfield, C I

    1990-12-31

    In-situ methods for treatment of waste sludges hold great promise for efficient remediation of sludge at waste disposal sites, such as the diverse and complex sludges from the O.E. MacDougall site near Brockville, Ontario. This report presents results of laboratory testing of natural bioremediation techniques using six representative soils and sludges obtained from the MacDougall site. Four of six samples contained concentrations of hydrocarbons typical of petroleum products and solvents. The report includes descriptions of the characterisation of the organic chemistry and microbial populations of the soils, as well as of the experiments conducted under aerobic, methane oxidising, anaerobic-denitrifying, sulphate reducing, and methanogenic conditions.

  13. Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations.

    Science.gov (United States)

    Falciglia, P P; Vagliasindi, F G A

    2014-01-01

    In this study, the remediation of diesel-polluted soils was investigated by simulating an ex situ microwave (MW) heating treatment under different conditions, including soil moisture, operating power and heating duration. Based on experimental data, a technical, energy and economic assessment for the optimization of full-scale remediation activities was carried out. Main results show that the operating power applied significantly influences the contaminant removal kinetics and the moisture content in soil has a major effect on the final temperature reachable during MW heating. The first-order kinetic model showed an excellent correlation (r2 > 0.976) with the experimental data for residual concentration at all operating powers and for all soil moistures tested. Excellent contaminant removal values up to 94.8% were observed for wet soils at power higher than 600 W for heating duration longer than 30 min. The use of MW heating with respect to a conventional ex situ thermal desorption treatment could significantly decrease the energy consumption needed for the removal of hydrocarbon contaminants from soils. Therefore, the MW treatment could represent a suitable cost-effective alternative to the conventional thermal treatment for the remediation of hydrocarbon-polluted soil.

  14. Low-temperature growth of polycrystalline Ge thin film on glass by in situ deposition and ex situ solid-phase crystallization for photovoltaic applications

    International Nuclear Information System (INIS)

    Tsao, Chao-Yang; Weber, Juergen W.; Campbell, Patrick; Widenborg, Per I.; Song, Dengyuan; Green, Martin A.

    2009-01-01

    Poly-crystalline germanium (poly-Ge) thin films have potential for lowering the manufacturing cost of photovoltaic devices especially in tandem solar cells, but high crystalline quality would be required. This work investigates the crystallinity of sputtered Ge thin films on glass prepared by in situ growth and ex situ solid-phase crystallization (SPC). Structural properties of the films were characterized by Raman, X-ray diffraction and ultraviolet-visible reflectance measurements. The results show the transition temperature from amorphous to polycrystalline is between 255 deg. C and 280 deg. C for in situ grown poly-Ge films, whereas the transition temperature is between 400 deg. C and 500 deg. C for films produced by SPC for a 20 h annealing time. The in situ growth in situ crystallized poly-Ge films at 450 deg. C exhibit significantly better crystalline quality than those formed by solid-phase crystallization at 600 deg. C. High crystalline quality at low substrate temperature obtained in this work suggests the poly-Ge films could be promising for use in thin film solar cells on glass.

  15. Impact of single anaerobic exercise on delayed activation of endothelial xanthine oxidase in men and women.

    Science.gov (United States)

    Wiecek, Magdalena; Maciejczyk, Marcin; Szymura, Jadwiga; Kantorowicz, Malgorzata; Szygula, Zbigniew

    2017-11-01

    The aim of the study was to evaluate the activity of xanthine oxidase (XO) in the blood of men and women during the first hour following a single anaerobic exercise (AN-EX), and after 24 hours of recovery, and to determine whether the changes in XO activity in the blood after AN-EX are dependent on anaerobic performance. Ten men and ten women performed a single AN-EX. Blood was collected before and five times after completion of the AN-EX. The activity of XO was determined. In both groups, a significant (P women (P work performed during the AN-EX and the power decrease. In the first hour after the single AN-EX, XO activity in the blood of women and men did not change, but after 24 hours of recovery, it was significantly higher compared to baseline levels in both sexes. Single AN-EX causes a smaller increase in XO activity in people with higher anaerobic performance.

  16. Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation.

    Science.gov (United States)

    Garg, Nidhi; Lata, Pushp; Jit, Simran; Sangwan, Naseer; Singh, Amit Kumar; Dwivedi, Vatsala; Niharika, Neha; Kaur, Jasvinder; Saxena, Anjali; Dua, Ankita; Nayyar, Namita; Kohli, Puneet; Geueke, Birgit; Kunz, Petra; Rentsch, Daniel; Holliger, Christof; Kohler, Hans-Peter E; Lal, Rup

    2016-06-01

    Hexachlorocyclohexane (HCH) contaminated soils were treated for a period of up to 64 days in situ (HCH dumpsite, Lucknow) and ex situ (University of Delhi) in line with three bioremediation approaches. The first approach, biostimulation, involved addition of ammonium phosphate and molasses, while the second approach, bioaugmentation, involved addition of a microbial consortium consisting of a group of HCH-degrading sphingomonads that were isolated from HCH contaminated sites. The third approach involved a combination of biostimulation and bioaugmentation. The efficiency of the consortium was investigated in laboratory scale experiments, in a pot scale study, and in a full-scale field trial. It turned out that the approach of combining biostimulation and bioaugmentation was most effective in achieving reduction in the levels of α- and β-HCH and that the application of a bacterial consortium as compared to the action of a single HCH-degrading bacterial strain was more successful. Although further degradation of β- and δ-tetrachlorocyclohexane-1,4-diol, the terminal metabolites of β- and δ-HCH, respectively, did not occur by the strains comprising the consortium, these metabolites turned out to be less toxic than the parental HCH isomers.

  17. Bioremediation without earth moving. Biologische Altlastensanierung ohne Erdaushub

    Energy Technology Data Exchange (ETDEWEB)

    Franz, B; Knapp, A; Mueller, D

    1992-05-01

    According to rough estimates, there are 70,000 sites in the pre-unification Federal Republic of Germany where contamination is suspected. Some 50 to 60% of the contaminated sites are suitable for bioremediation. The Bioux-S process permits in-situ cleanup without any need for complicated and expensive earth moving operations. The culture conditions of the aerobic microorganisms already present in the soil are improved by the introduction of pure oxygen and special nutrients. Such microorganisms are already ideally adapted to the contaminants present and utilise them partly as nutrients and partly to maintain their energy balance. The process has already been successfully used for bioremediation of refinery and gasworks as well as chemical production sites. (orig.).

  18. Hanford Site 100-N Area In Situ Bioremediation of UPR-100-N-17, Deep Petroleum Unplanned Release - 13245

    International Nuclear Information System (INIS)

    Saueressig, Daniel G.

    2013-01-01

    In 1965 and 1966, approximately 303 m 3 of Number 2 diesel fuel leaked from a pipeline used to support reactor operations at the Hanford Site's N Reactor. N Reactor was Hanford's longest operating reactor and served as the world's first dual purpose reactor for military and power production needs. The Interim Action Record of Decision for the 100-N Area identified in situ bioremediation as the preferred alternative to remediate the deep vadose zone contaminated by this release. A pilot project supplied oxygen into the vadose zone to stimulate microbial activity in the soil. The project monitored respiration rates as an indicator of active biodegradation. Based on pilot study results, a full-scale system is being constructed and installed to remediate the vadose zone contamination. (authors)

  19. Hollow fiber membrane based H-2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2013-01-01

    Bubbleless gas transfer through a hollow fiber membrane (HFM) module was used to supply H2 to an anaerobic reactor for in situ biogas upgrading, and it creates a novel system that could achieve a CH4 content higher than 90 % in the biogas. The increase of CH4 content and pH, and the decrease...

  20. Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation.

    Science.gov (United States)

    Sarkar, Poulomi; Roy, Ajoy; Pal, Siddhartha; Mohapatra, Balaram; Kazy, Sufia K; Maiti, Mrinal K; Sar, Pinaki

    2017-10-01

    Intrinsic biodegradation potential of bacteria from petroleum refinery waste was investigated through isolation of cultivable strains and their characterization. Pseudomonas and Bacillus spp. populated the normal cultivable taxa while prolonged enrichment with hydrocarbons and crude oil yielded hydrocarbonoclastic bacteria of genera Burkholderia, Enterobacter, Kocuria, Pandoraea, etc. Strains isolated through enrichment showed assemblages of superior metabolic properties: utilization of aliphatic (C6-C22) and polyaromatic compounds, anaerobic growth with multiple terminal electron acceptors and higher biosurfactant production. Biodegradation of dodecane was studied thoroughly by GC-MS along with detection of gene encoding alkane hydroxylase (alkB). Microcosms bioaugmented with Enterobacter, Pandoraea and Burkholderia strains showed efficient biodegradation (98% TPH removal) well fitted in first order kinetic model with low rate constants and decreased half-life. This study proves that catabolically efficient bacteria resides naturally in complex petroleum refinery wastes and those can be useful for bioaugmentation based bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer

    International Nuclear Information System (INIS)

    Gieg, L.M.; McInerney; Tanner, R.S.; Harris, S.H. Jr.; Sublette, K.L.; Suflita, J.M.; Kolhatkar, R.V.

    1999-01-01

    A study was designed to determine if the intrinsic bioremediation of gas condensate hydrocarbons represented an important fate process in a shallow aquifer underlying a natural gas production site. For over 4 yr, changes in the groundwater, sediment, and vadose zone chemistry in the contaminated portion of the aquifer were interpreted relative to a background zone. Changes included decreased dissolved oxygen and sulfate levels and increased alkalinity, Fe(II), and methane concentrations in the contaminated groundwater, suggesting that aerobic heterotrophic respiration depleted oxygen reserves leaving anaerobic conditions in the hydrocarbon-impacted subsurface. Dissolved hydrogen levels in the contaminated groundwater indicated that sulfate reduction and methanogenesis were predominant biological processes, corroborating the geochemical findings. Furthermore, 10--1000-fold higher numbers of sulfate reducers and methanogens were enumerated in the contaminated sediment relative to background. Putative metabolites were also detected in the contaminated groundwater, including methylbenzylsuccinic acid, a signature intermediate of anaerobic xylene decay. Laboratory incubations showed that benzene, toluene, ethylbenzene, and each of the xylene isomers were biodegraded under sulfate-reducing conditions as was toluene under methanogenic conditions. These results coupled with a decrease in hydrocarbon concentrations in contaminated sediment confirm that intrinsic bioremediation contributes to the attenuation of hydrocarbons in this aquifer

  2. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions

    Science.gov (United States)

    Newsome, Laura; Morris, Katherine; Lloyd, Jonathan. R.

    2015-01-01

    Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI) as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI), via reduction to nano-crystalline U(IV) uraninite. Some evidence for the reduction of solid phase uranyl(VI) phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions. PMID:26132209

  3. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

    NARCIS (Netherlands)

    Sutton, N.B.; Langenhoff, A.A.M.; Hidalgo Lasso, D.; Zaan, van der B.M.; Gaans, van P.; Maphosa, F.; Smidt, H.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in

  4. An investigation of the potential for in situ bioremediation of oil sands tailings

    International Nuclear Information System (INIS)

    Herman, D.C.; Costerton, J.W.; Fedorak, P.M.; Mackinnon, M.D.

    1993-01-01

    Oil sand tailings water has been shown to be acutely toxic to aquatic organisms. Naphthenic acids have been shown to be the primary source of this toxicity within oil sand tailings waste. The potential for in-situ bioremediation of oil sand tailings was investigated by determining the ability of indigenous bacteria to biodegrade naphthenic acids. A mixed bacterial culture enriched from oil sand tailings was found to be capable of growth on a commercially available naphthenic acid mixture. When sodium naphthenates (30 mg/l) were added to a minimal salts medium and inoculated with the mixed bacterial culture, gas chromatography revealed that many components of the naphthenic acid mixture were biodegraded within eight days of incubation. The same culture was also tested against the naphthenic acid fraction extracted directly from oil sand tailings. The tailings extract was diluted into the minimal salts medium in sealed flasks and inoculated with the enrichment culture. The production of CO 2 indicated microbial mineralization of components within the oil sands extract. Microtox analysis determined that microbial activity resulted in a reduction in the acute toxicity of the tailings extract. 5 refs., 3 figs

  5. Investigation of the reversible sodiation of Sn foil by ex-situ X-ray diffractometry and Mössbauer effect spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Zhijia [Department of Physics and Atmospheric Science, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada); Dunlap, R.A. [Department of Physics and Atmospheric Science, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada); Institute for Research in Materials, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada); College of Sustainability, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada); Obrovac, M.N., E-mail: mobrovac@dal.ca [Department of Physics and Atmospheric Science, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada); Institute for Research in Materials, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada); Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada)

    2014-12-25

    Highlights: • Mössbauer spectra of all phases formed during sodiation measured for the first time. • Center shifts correlated with metallurgically prepared samples. • Center shift correlated with Na content in Na–Sn. - Abstract: The reversible sodiation of Sn foil was investigated using ex-situ X-ray diffractometry (XRD) and Mössbauer effect spectroscopy. The measured voltage profile indicated that the sodiation process of Sn foil proceeded in three stages. Ex-situ XRD patterns demonstrated that Na{sub 4}Sn{sub 4}, Na{sub 5}Sn{sub 2} and Na{sub 15}Sn{sub 4} phases were formed at the end of each discharge plateau. Na{sub 5}Sn{sub 2}, Na{sub 4}Sn{sub 4} and β-Sn were formed at the end of each charge plateau. Three single-phase alloys, Na{sub 4}Sn{sub 4}, Na{sub 9}Sn{sub 4} and Na{sub 15}Sn{sub 4}, were prepared by annealing stoichiometric ratios of Na and Sn. The Mössbauer spectra of ex-situ samples at the end of each discharge plateau were collected and compared with the Mössbauer spectra of the three single phase alloys. The measured parameters for the Mössbauer effect spectra were consistent with an analysis of the crystal structures. The center shift became less positive with an increase of the sodium content in Na–Sn phases and this was shown to be a useful indicator of the degree of sodiation of Sn electrodes.

  6. Geochemical indicators of intrinsic bioremediation

    International Nuclear Information System (INIS)

    Borden, R.C.; Gomez, C.A.; Becker, M.T.

    1995-01-01

    A detailed field investigation has been completed at a gasoline-contaminated aquifer near Rocky Point, NC, to examine possible indicators of intrinsic bioremediation and identify factors that may significantly influence the rae and extent of bioremediation. The dissolved plume of benzene, toluene, ethylbenzene, and xylene (BTEX) in ground water is naturally degrading. Toluene and o-xylene are most rapidly degraded followed by m-, p-xylene, and benzene. Ethylbenzene appears to degrade very slowly under anaerobic conditions present in the center of the plume. The rate and extent of biodegradation appears to be strongly influenced by the type and quantity of electron acceptors present in the aquifer. At the upgradient edge of the plume, nitrate, ferric iron, and oxygen are used as terminal electron acceptors during hydrocarbon biodegradation. The equivalent of 40 to 50 mg/l of hydrocarbon is degraded based on the increase in dissolved CO 2 relative to background ground water. Immediately downgradient of the source area, sulfate and iron are the dominant electron acceptors. Toluene and o-xylene are rapidly removed in this region. Once the available oxygen, nitrate, and sulfate are consumed, biodegradation is limited and appears to be controlled by mixing and aerobic biodegradation at the plume fringes

  7. In situ production of bio-surfactants: An alternative method for dispersing and bioremediating marine oil spills

    International Nuclear Information System (INIS)

    Josefsen, K.D.; Sveum, P.; Ramstad, P.; Markussen, S.; Folkvord, K.; Krigsvoll, K.; Aune, R.; Storroe, I.

    1995-01-01

    Some oil degrading bacteria are able to produce surfactants. These biosurfactants enhance dispersion of oil droplets into the water column. A large number of surfactant producing bacterial strains have been isolated from seawater samples collected at different sites around the world. Strains isolated from seawater samples collected in cold regions generally had better properties than strains isolated from warm seawater. Many of the isolated strains were able to disperse crude oils with a large variation of composition, as well as the water-in-emulsion (chocolate mousse) formed during weathering of crude oil in the sea. The results show that in situ application of surfactant producing bacteria can be a viable tool in future oil spill contingency, and that dispersion of oil may increase the biodegradation rate. Work is in progress to examine the use of such bacteria in the bioremediation of oil contaminated shorelines. 10 refs., 3 figs., 2 tabs

  8. Anaerobic biodegradation of pentachlorophenol in a fixed-film reactor inoculated with polluted sediment from Santos-Sao Vicente Estuary, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Saia, F.T.; Damianovic, M.H.R.Z.; Cattony, E.B.M.; Brucha, G.; Foresti, E. [Sao Paulo Univ., Sao Carlos (Brazil). Lab. of Biological Processes; Vazoller, R.F. [Sao Paulo Univ., Sao Paulo (Brazil). Lab. of Environmental Microbiology

    2007-06-15

    This paper discusses the results of pentachlorophenol (PCP) anaerobic biodegradation in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor operated under methanogenic and halophylic conditions. The system was inoculated with autochthonous microorganisms taken from a site in the Santos-Sao Vicente Estuary (state of Sao Paulo, Brazil) severely contaminated with PCP, phenolic compounds, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and heavy metals. The inoculum was previously enriched for methanogenesis activity by changing glucose concentrations and under halophylic condition. PCP was added to the HAIB reactor as sodium salt (NaPCP) at an initial concentration of 5 mg l{sup -1} and increased to 13, 15, and 21 mg l{sup -1}. Organic matter removal efficiency ranged from 77 to 100%. PCP removal efficiency was 100%. Denaturing gradient gel electrophoresis profile showed changes in the structure of Bacteria domain, which was associated with NaPCP and glucose amendments. The diversity of Archaea remained unaltered during the different phases. Scanning electron microscope examinations showed that cells morphologically resembling Methanosarcina and Methanosaeta predominated in the biofilm. These cells were detected by fluorescence in situ hybridization with the Methanosarcinales (MSMX860) specific probe. The results are of great importance in planning the estuary's restoration by using anaerobic technology and autochthonous microorganisms for bioremediation. (orig.)

  9. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process.

    Science.gov (United States)

    Zhou, Qiying; Jiang, Xia; Li, Xi; Jiang, Wenju

    2016-09-01

    In this study, five kinds of iron ores, limonite, hematite, manganese ore, magnetite and lava rock, were used as the in situ desulfurizers in the anaerobic digestion reactors to investigate their effects on controlling H2S in biogas. The results show that the addition of the five iron ores could significantly control the content of H2S in biogas, with the best performance for limonite. As limonite dosages increase (10-60 g/L), the contents of H2S in biogas were evidently decreased in the digesters with different initial sulfate concentrations (0-1000 mg/L). After the anaerobic digestion, the removed sulfur was mostly deposited on the surface of limonite. A possible mechanism of H2S control in biogas by limonite was proposed preliminarily, including adsorption, FeS precipitation, and Fe (III) oxidation. The results demonstrated that limonite was a promising in situ desulfurizer for controlling H2S in biogas with low cost and high efficiency.

  10. PEDIATRIC LIVER TRANSPLANTATION WITH EX-SITU LIVER TRANSECTION AND THE APPLICATION OF THE HUMAN FIBRINOGEN AND THROMBIN SPONGE IN THE WOUND AREA.

    Science.gov (United States)

    Vicentine, Fernando Pompeu Piza; Gonzalez, Adriano Miziara; Azevedo, Ramiro Anthero de; Benini, Barbara Burza; Linhares, Marcelo Moura; Lopes-Filho, Gaspar de Jesus; Martins, Jose Luiz; Salzedas-Netto, Alcides Augusto

    2016-01-01

    Surgical strategy to increase the number of liver transplants in the pediatric population is the ex-situ liver transection (reduction or split). However, it is associated with complications such as hemorrhage and leaks. The human fibrinogen and thrombin sponge is useful for improving hemostasis in liver surgery. Compare pediatric liver transplants with ex-situ liver transection (reduction or split) with or without the human fibrinogen and thrombin sponge. Was performed a prospective analysis of 21 patients submitted to liver transplantation with ex-situ liver transection with the application of the human fibrinogen and thrombin sponge in the wound area (group A) and retrospective analysis of 59 patients without the sponge (group B). The characteristics of recipients and donors were similar. There were fewer reoperations due to bleeding in the wound area in group A (14.2%) compared to group B (41.7%, p=0.029). There was no difference in relation to the biliary leak (group A: 17.6%, group B: 5.1%, p=0.14). There was a lower number of reoperations due to bleeding of the wound area of ​​the hepatic graft when the human fibrinogen and thrombin sponge were used. Estratégia cirúrgica para aumentar o número de transplantes hepáticos na população pediátrica é a transecção hepática ex-situ (redução ou split). No entanto, ela está associada com complicações, tais como hemorragia e fístulas. A esponja de fibrinogênio e trombina humana é útil para melhorar a hemostasia nas operações hepáticas. Comparar transplantes hepáticos pediátricos com transecção hepática ex-situ (redução ou split) com ou sem a esponja de fibrinogênio e trombina humana. Foi realizada análise prospectiva de 21 pacientes submetidos ao transplante de fígado com transecção hepática ex-situ com a aplicação da esponja de fibrinogênio e trombina humana na área cruenta (grupo A) e análise retrospectiva de 59 pacientes sem a esponja (grupo B). As características dos

  11. Sperm cryopreservation in endangered felids: developing linkage of in situ-ex situ populations.

    Science.gov (United States)

    Swanson, W F; Magarey, G M; Herrick, J R

    2007-01-01

    support of field ecology studies in range countries, this reproductive strategy serves to further strengthen linkages among imperiled ex situ and in situ cat populations.

  12. Monitoring bioremediation of weathered diesel NAPL using oxygen depletion profiles

    International Nuclear Information System (INIS)

    Davis, G.B.; Johnston, C.D.; Patterson, B.M.; Barber, C.; Bennett, M.

    1995-01-01

    Semicontinuous logging of oxygen concentrations at multiple depths has been used to evaluate the progress of an in situ bioremediation trial at a site contaminated by weathered diesel nonaqueous-phase liquid (NAPL). The evaluation trial consisted of periodic addition of nutrients and aeration of a 100-m 2 trial plot. During the bioremediation trial, aeration was stopped periodically, and decreases in dissolved and gaseous oxygen concentrations were monitored using data loggers attached to in situ oxygen sensors placed at multiple depths above and within a thin NAPL-contaminated zone. Oxygen usage rate coefficients were determined by fitting zero- and first-order rate equations to the oxygen depletion curves. For nutrient-amended sites within the trial plot, estimates of oxygen usage rate coefficients were significantly higher than estimates from unamended sites. These rates also converted to NPL degradation rates, comparable to those achieved in previous studies, despite the high concentrations and weathered state of the NAPL at this test site

  13. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    Science.gov (United States)

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  14. Characterization of nano-bubbles as an oxygen carrier for in-situ bioremediation of organic pollutants in the subsurface

    Science.gov (United States)

    KIM, E.; Jung, J.; Kang, S.; Choi, Y.

    2016-12-01

    In-situ bioremediation using bubbles as an oxygen carrier has shown its applicability for aerobic biodegradation of organic pollutants in the subsurface. By recent progresses, generation of nano-sized bubbles is possible, which have enhanced oxygen transfer efficiencies due to their high interfacial area and stability. We are developing an in-situ bioremediation technique using nano-bubbles as an oxygen carrier. In this study, nano-bubbles were characterized for their size and oxygen supply capacity. Nano-bubbles were generated with pure oxygen and pure helium gas. The stable nano-bubbles suspended in water were sonicated to induce the bubbles to coalesce, making them to rise and be released out of the water. By removing the bubbles, the water volume was decreased by 0.006%. The gas released from the bubble suspension was collected to measure the amount of gas in the nano-bubbles. For sparingly soluble helium gas 17.9 mL/L was released from the bubble suspension, while for oxygen 46.2 mL/L was collected. For the oxygen nano-bubble suspension, it is likely that the release of dissolved oxygen (DO) contributed to the collected gas volume. After removing the oxygen nano-bubbles, 36.0 mg/L of DO was still present in water. Altogether, the oxygen nano-bubble suspension was estimated to have 66.2 mg/L of oxygen in a dissolved form and 25.6 mg/L as nano-bubbles. A high DO level in the water was possible because of their large Laplace pressure difference across the fluid interface. Applying Young-Laplace equation and ideal gas law, the bubble diameter was estimated to be approximately 10 nm, having an internal pressure of 323 atm. Considering the saturation DO of 8.26 mg/L for water in equilibrium with the atmosphere, the total oxygen content of 91.8 mg/L in the nano-bubble suspension suggests its great potential as an oxygen carrier. Studies are underway to verify the enhanced aerobic biodegradation of organic pollutants in soils by injecting nano-bubble suspensions.

  15. Mineral carbonation - possibilities in and ex-situ, evaluation and experiments in laboratory. Final report

    International Nuclear Information System (INIS)

    Bodenan, F.; Bailly, L.; Piantone, P.; Seron, A.; Touze, S.

    2006-01-01

    This report proposes a state of the art of the knowledge and a synthesis of the studies realized at the BRGM since many years, especially in the following domains: the possibilities of the natural minerals and alkaline wastes for the CO 2 sequestration under mineral form, a accounting analysis of the ex-situ processes called direct and indirect, the design of experimental bench scale to study the mineral carbonation at ambient conditions and at high pressure and temperature. (A.L.B.)

  16. Soil bioremediation at CFB Trenton: evaluation of bioremediation processes

    International Nuclear Information System (INIS)

    Ouellette, L.; Cathum, S.; Avotins, J.; Kokars, V.; Cooper, D.

    1996-01-01

    Bioremediation processes and their application in the cleanup of contaminated soil, were discussed. The petroleum contaminated soil at CFB Trenton, was evaluated to determine which bioremediation process or combination of processes would be most effective. The following processes were considered: (1) white hot fungus, (2) Daramend proprietary process, (3) composting, (4) bioquest proprietary bioremediation processes, (5) Hobbs and Millar proprietary bioremediation process, and (6) farming. A brief summary of each of these options was included. The project was also used as an opportunity to train Latvian and Ukrainian specialists in Canadian field techniques and laboratory analyses. Preliminary data indicated that bioremediation is a viable method for treatment of contaminated soil. 18 refs., 3 figs

  17. Fast-track aquifer characterization and bioremediation of groundwater

    International Nuclear Information System (INIS)

    Owen, S.B.; Erskine, J.A.; Adkisson, C.

    1995-01-01

    A short duration step-drawdown pumping test has been used to characterize a highly permeable aquifer contaminated with petroleum hydrocarbons in support of an in situ, closed loop extraction and reinjection bioremediation system for groundwater. The short-term pumping test produces a manageable quantity of contaminated groundwater while yielding a range of values for transmissivity and specific yield parameters. This range of aquifer coefficients is used in an analytical model to estimate a range of groundwater extraction rates that provide a suitable radius of influence for the extraction and reinjection system. A multi-enzyme complex catalyzed bioremediation process has been used to aerobically degrade petroleum hydrocarbons. Enzymes, amino acids, and biosurfactants are supplied to the extracted groundwater to significantly speed up the degradation by naturally occurring bacteria. During the process, amino acids promote the rapid growth of the microbial population while enzymes and bacteria attach to hydrocarbons forming a transformation state complex that degrades to fatty acids, carbon dioxide, and water. This paper presents a case study of a fast-track bioremediation using pumping test data, analytical modeling, and an enzyme technology

  18. Hanford Site 100-N Area In Situ Bioremediation of UPR-100-N-17, Deep Petroleum Unplanned Release - 13245

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, Daniel G. [Washington Closure Hanford, 2620 Fermi, Richland, Washington, 99354 (United States)

    2013-07-01

    In 1965 and 1966, approximately 303 m{sup 3} of Number 2 diesel fuel leaked from a pipeline used to support reactor operations at the Hanford Site's N Reactor. N Reactor was Hanford's longest operating reactor and served as the world's first dual purpose reactor for military and power production needs. The Interim Action Record of Decision for the 100-N Area identified in situ bioremediation as the preferred alternative to remediate the deep vadose zone contaminated by this release. A pilot project supplied oxygen into the vadose zone to stimulate microbial activity in the soil. The project monitored respiration rates as an indicator of active biodegradation. Based on pilot study results, a full-scale system is being constructed and installed to remediate the vadose zone contamination. (authors)

  19. The use of bench- and field-scale data for design of an in situ carbon tetrachloride bioremediation system

    International Nuclear Information System (INIS)

    Peyton, B.M.; Truex, M.J.; Skeen, R.S.

    1995-04-01

    A suite of simulation models were developed as a design tool in support of an in situ bioremediation demonstration at the Hanford site in Washington state. The design tool, calibrated with field - and bench-scale data, was used to answer four field-scale system design questions: (1) What are the important reaction processes and kinetics? (2) How will biomass distribute in the aquifer in response to injected substrate? (3) What well configuration best ensures proper nutrient transport and process control? (4) What operating and monitoring strategy should be used to confirm effective remediation? This paper does not describe the design tool itself, but describes how the design tool was used to optimize field site design parameters such as well spacing, hydraulic control, contaminant destruction, and nutrient injection strategies

  20. In situ bioremediation of the saturated zone: It can be done

    International Nuclear Information System (INIS)

    Maher, A.; Kennel, N.D.; Jaworski, C.

    1994-01-01

    Bioremediation is being used to successfully reduce contaminant levels at a site located in central Iowa. At this site, indigenous microbial populations are being stimulated by the addition of nutrients and oxygen to degrade the contaminants of interest. The site is a former service station and an automobile repair facility. Gasoline and diesel fuel stored underground and/or dispensed through pumps leaked into the subsurface over a period of forty years. A site assessment revealed that significant adsorbed, dissolved, and phase separated contamination was present beneath the surface. A pump and treat system was installed in 1990 by others to treat the ground water contamination and achieve hydraulic control. Biotreatability studies indicated that bioremediation would be an effective remedial option for this site and in May 1992, the treatment system was retrofitted in order to expedite remediation. Microbial populations, ionic nutrient concentrations, physical, and contaminant data were evaluated over time to optimize treatment

  1. BTEX AND MTBE BIOREMEDIATION: BIONETS™ CONTAINING SOS, PM1 AND ISOLITE®

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylenes) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in situ BioNets could bioremediate MTBE and BTEX contaminated groundwater. Seven BioNets w...

  2. Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies

    International Nuclear Information System (INIS)

    Babonneau, D; Abadias, G; Toudert, J; Girardeau, T; Fonda, E; Micha, J S; Petroff, F

    2008-01-01

    The comprehensive study of C/FePt granular multilayers prepared by ion-beam sputtering at room temperature and subsequent annealing is reported. The as-deposited multilayers consist of carbon-encapsulated FePt nanoparticles (average size ∼3 nm) with a disordered face-centered-cubic structure. The effects of thermal annealing on the structural and magnetic properties are investigated by using dedicated ex situ and in situ techniques, including high-resolution transmission electron microscopy, extended x-ray absorption fine structure, magnetometry, and coupled grazing incidence small-angle x-ray scattering and x-ray diffraction. Our structural data show that the particle size and interparticle distance increase slightly with annealing at temperatures below 790 K by thermally activated migration of Fe and Pt atoms. We find that thermal annealing at temperatures above 870 K results in the dramatic growth of the FePt nanoparticles by coalescence and their gradual L1 0 ordering. In addition, we observe a preferential graphitization of the carbon matrix, which provides protection against oxidation for the FePt nanoparticles. Magnetization measurements indicate that progressive magnetic hardening occurs after annealing. The dependences of the blocking temperature, saturation magnetization, coercivity, and magnetocrystalline anisotropy energy on the annealing temperature are discussed on the basis of the structural data

  3. Bioremediation of soil and groundwater contaminated with stoddard solvent and mop oil using the PetroClean bioremediation system

    International Nuclear Information System (INIS)

    Schmitt, E.K.; Lieberman, M.T.; Caplan, J.A.; Blaes, D.; Keating, P.; Richards, W.

    1991-01-01

    This paper reports that Environmental Science and Engineering Inc. (ESE) was contracted by a confidential industrial client to perform a three-phased project. Phase I involved characterizing the site and delineating the extent of subsurface contamination. Phase II included biofeasibility and pilot-scale evaluations, determining remedial requirements, and designing the full-scale treatment system. Phase III involved implementing and operating the designed in situ bioremediation system (i.e., PetroClean 4000) to achieve site closure

  4. Measuring in-vivo and in-situ ex-vivo the 3D deformation of the lamina cribrosa microstructure under elevated intraocular pressure

    Science.gov (United States)

    Wei, Junchao; Yang, Bin; Voorhees, Andrew P.; Tran, Huong; Brazile, Bryn; Wang, Bo; Schuman, Joel; Smith, Matthew A.; Wollstein, Gadi; Sigal, Ian A.

    2018-02-01

    Elevated intraocular pressure (IOP) deforms the lamina cribrosa (LC), a structure within the optic nerve head (ONH) in the back of the eye. Evidence suggests that these deformations trigger events that eventually cause irreversible blindness, and have therefore been studied in-vivo using optical coherence tomography (OCT), and ex-vivo using OCT and a diversity of techniques. To the best of our knowledge, there have been no in-situ ex-vivo studies of LC mechanics. Our goal was two-fold: to introduce a technique for measuring 3D LC deformations from OCT, and to determine whether deformations of the LC induced by elevated IOP differ between in-vivo and in-situ ex-vivo conditions. A healthy adult rhesus macaque monkey was anesthetized and IOP was controlled by inserting a 27- gauge needle into the anterior chamber of the eye. Spectral domain OCT was used to obtain volumetric scans of the ONH at normal and elevated IOPs. To improve the visibility of the LC microstructure the scans were first processed using a novel denoising technique. Zero-normalized cross-correlation was used to find paired corresponding locations between images. For each location pair, the components of the 3D strain tensor were determined using non-rigid image registration. A mild IOP elevation from 10 to 15mmHg caused LC effective strains as large as 3%, and about 50% larger in-vivo than in-situ ex-vivo. The deformations were highly heterogeneous, with substantial 3D components, suggesting that accurate measurement of LC microstructure deformation requires high-resolution volumes. This technique will help improve understanding of LC biomechanics and how IOP contributes to glaucoma.

  5. An ex situ evaluation of TBA- and MTBE-baited bio-traps.

    Science.gov (United States)

    North, Katharine P; Mackay, Douglas M; Annable, Michael D; Sublette, Kerry L; Davis, Greg; Holland, Reef B; Petersen, Daniel; Scow, Kate M

    2012-08-01

    Aquifer microbial communities can be investigated using Bio-traps(®) ("bio-traps"), passive samplers containing Bio-Sep(®) beads ("bio-beads") that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are "baited" with organic contaminants enriched in (13)C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically "sample" about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4-5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that TBA- or MTBE

  6. An ex situ evaluation of TBA- and MTBE-baited bio-traps

    Science.gov (United States)

    North, Katharine P.; Mackay, Douglas M.; Annable, Michael D.; Sublette, Kerry L.; Davis, Greg; Holland, Reef B.; Petersen, Daniel; Scow, Kate M.

    2013-01-01

    Aquifer microbial communities can be investigated using Bio-traps® (“bio-traps”), passive samplers containing Bio-Sep® beads (“bio-beads”) that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are “baited” with organic contaminants enriched in 13C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically “sample” about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4–5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that

  7. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.

    Science.gov (United States)

    Moldes, Ana Belén; Paradelo, Remigio; Rubinos, David; Devesa-Rey, Rosa; Cruz, José Manuel; Barral, María Teresa

    2011-09-14

    The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population.

  8. Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation

    Directory of Open Access Journals (Sweden)

    D. Lovley

    2012-03-01

    Full Text Available Enhancing microbial U(VI reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI-reducing Geobacter predominated and U(VI was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB predominated and U(VI reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III was depleted whereas the SRB grow more slowly and reached dominance after 30–40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

  9. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Apte, S.K.; Rao, A.S.; Appukuttan, D.; Nilgiriwala, K.S.; Acharya, C.

    2005-01-01

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  10. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant

    International Nuclear Information System (INIS)

    Rahman, K.S.M.; Banat, I.M.; Thahira, J.; Thayumanavan, T.; Lakshmanaperumalsamy, P.

    2002-01-01

    The aim of the present study was to find methods for enhancing rates of hydrocarbon biodegradation in gasoline contaminated soil by ex situ bioremediation. Red soil (RS) was treated with gasoline-spilled soil (GS) from a gasoline station and different combinations of amendments were prepared using (i) mixed bacterial consortium (MC), (ii) poultry litter (PL), (iii) coir pith (CP) and (iv) rhamnolipid biosurfactant (BS) produced by Pseudomonas sp. DS10-129. The study was conducted for a period of 90 days during which bacterial growth, hydrocarbon degradation and growth parameters of Phaseolus aureus RoxB including seed germination, chlorophyll content, shoot and root length were measured. Approximately 67% and 78% of the hydrocarbons were effectively degraded within 60 days in soil samples amended with RS + GS + MC + PL + CP + BS at 0.1% and 1%. Maximum percentage of seed germination, shoot length, root length and chlorophyll content in P. aureus were recorded after 60 days in the above amendments. Further incubation to 90 days did not exhibit significant improvements. Statistical analysis using analysis of variance (ANOVA) and Duncan's multiple range test (DMRT) revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, hydrocarbon degradation, seed germination and chlorophyll content at a 1% probability level. All tested additives MC, PL, CP and rhamnolipid BS had significant positive effects on the bioremediation of GS. (author)

  11. Bioremediation of hydrocarbon polluted soil - Improvement of in situ bioremediation by bioaugmentation with endogenous and exogenous strains

    OpenAIRE

    Tarayre, Cédric

    2010-01-01

    Petroleum pollution has now become a real problem because hydrocarbons are persistent contaminants in soils and water. Contamination problems increase when ages of relevant facilities, such as oil storage tanks and pipelines, increase over time. The evolution of Legislation concerning soil pollution has led to the need of efficient techniques able to restore the polluted ground. Unfortunately, these techniques are expensive. Bioremediation of hydrocarbon polluted soils has been recognized as...

  12. Ex situ Conservation Effort through the Inventory of Plant Diversity in Mount Seblat, Bengkulu

    Directory of Open Access Journals (Sweden)

    Imawan Wahyu Hidayat

    2017-12-01

    Full Text Available Mount Seblat, as part a of Kerinci Seblat National Park (KSNP, is a pristine and natural mountain, particularly from disturbances and destructions by human activities. Nevertheless, the richness of biological resources especially plant diversity.in this area has not been more explored. The purpose of this study was to conduct an inventory of plant diversity and to determine the plant species composition. The inventory activities were conducted by plants collection along the ascent route. The results were then be maintained through ex situ conservation method in Cibodas Botanical Garden (CBG. The study was conducted by exploratory method, from Seblat Ulu Village (641 m asl up to altitude of 1,037 m asl. There were 18 points of plant sample observation with an area of 5 x 5 square meters per point. Plant collection obtained 380 specimens. Five groups of most collected plants were Lauraceae (18 species, Rubiaceae (8 species, Anacardiaceae (6 species, Annonaceae (5 species, and Fagaceae (4 species. In order to enrich the plants collection as well as conduct the ex situ conservation effort, plants from Orchidaceae were also collected which resulted in 33 species. These results were an important initial inventory of plant diversity of Mount Seblat, considering that there was no record as well as very limited current information. When the environment disturbance tends to increase, this information may act as a reference and an initial database to develop plants conservation effort and strategy in the future.

  13. Assessment of the feasibility of anaerobic composting for treatment of perchlorate - contaminated soils in a war zone

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2015-01-01

    Full Text Available Aims: The objectives of this study were to determine the perchlorate concentrations in surface soils and assess feasibility of anaerobic bioremediation in full-scale for perchlorate-contaminated soils in a war zone. Materials and Methods: Fifteen samples of surface soil were collected using a composite sampling method in the study area. The soil samples, after extraction and preparation, were analyzed by ion chromatography. Anaerobic composting technique (soil excavation, mixing with manure, transfer into treatment cell and cover with a 6-mil high-density polyethylene liner considered to cleanup perchlorate-contaminated soil in a war zone. Results: The concentration of perchlorate in the soil surface samples ranged from 3 to 107.9 mg/kg, which is more than State advisory levels for residential and protection of domestic groundwater use pathway. This study indicates that technologies, skills, experience, raw materials (manure, lands, and machinery needed for implementation of full-scale composting, are available in the study area. Conclusions: Based on the results, anaerobic composting technique could be considered as a feasible, viable and cost-effective alternative for perchlorate bioremediation in the study area. According to the available of techniques and skills, successful experiences of anaerobic composting in other countries, and potential of study area, The application of anaerobic composting is technically feasible and can be use for perchlorate contaminated soil cleanup in a zone war.

  14. Draft Technical Protocol: A Treatability Test for Evaluating the Potential Applicability of the Reductive Anaerobic Biological in Situ Treatment Technology (Rabitt) to Remediate Chloroethenes

    National Research Council Canada - National Science Library

    Morse, Jeff

    1998-01-01

    This draft, unvalidated protocol describes a comprehensive approach for conducting a phased treatability test to determine the potential for employing the Reductive Anaerobic Biological In Situ Treatment Technology (RABITT...

  15. Non-viral ex vivo hepatic gene transfer by in situ lipofection of liver and intraperitoneal transplantation of hepatocytes.

    Science.gov (United States)

    Rangarajan, P N; Vatsala, P G; Ashok, M S; Srinivas, V K; Habibullah, C M; Padmanaban, G

    1997-04-29

    Perfusion of liver with plasmid DNA-lipofectin complexes via the portal vein results in efficient accumulation of the vector in hepatocytes. Such hepatocytes, when administered intraperitoneally into a hepatectomized rat, repopulate the liver and express the transgene efficiently. This procedure obviates the need for large-scale hepatocyte culture for ex vivo gene transfer. Further, intraperitoneal transplantation is a simple and cost-effective strategy of introducing genetically modified hepatocytes into liver. Thus, in situ lipofection of liver and intraperitoneal transfer of hepatocytes can be developed into a novel method of non-viral ex vivo gene transfer technique that has applications in the treatment of metabolic disorders of liver and hepatic gene therapy.

  16. Dehalogenation of chlorinated ethenes and immobilization of nickel in anaerobic sediment columns under sulfidogenic conditions

    NARCIS (Netherlands)

    Drzyzga, O; EL Mamouni, R; Agathos, SN; Gottschal, JC

    2002-01-01

    A sediment column study was carried out to demonstrate the bioremediation of chloroethene- and nickel-contaminated sediment in a single anaerobic step under sulfate-reducing conditions. Four columns (one untreated control column and three experimental columns) with sediment from a chloroethene- and

  17. Experimental research on electric field jump in low magnetic fields: Detection of damage in new ex-situ MgB{sub 2} barriers in MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Gajda, D., E-mail: dangajda@op.pl [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wroclaw (Poland); Morawski, A. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warszawa (Poland); Zaleski, A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw (Poland); Hossain, M.S.A. [Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong, North Wollongong, NSW 2519 (Australia); Rindfleisch, M. [Hyper Tech Research, Inc, 1275 Kinnear Road, Columbus, OH 43212 (United States); Cetner, T. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warszawa (Poland)

    2015-10-25

    We explored the incorporation of field sweep (constant current and rapidly increasing magnetic field) into the four-probe method as a new technique to detect defects in barrier layers in superconducting MgB{sub 2} wires. This method allows us to observe jumps in the electric field in low magnetic fields. The scanning electron microscopy results indicate that such a jump originates from cracks in Nb barriers and ex-situ MgB{sub 2} barriers. Our research indicates that the field sweep allows us to detect damage to barriers that are made of superconducting materials. This method can be the basis for an industrial method for detecting damages in MgB{sub 2} wires. These defects reduce the critical current of MgB{sub 2} wire. Detection and removal of these defects will allow us to produce MgB{sub 2} wires with ex-situ MgB{sub 2} and Nb barriers that will have improved critical current density. Manufacturing of MgB{sub 2} wires with new ex-situ MgB{sub 2} barriers is a new technological concept. This type of barrier is cheaper and easier to manufacture, leading to cheaper MgB{sub 2} wires. Moreover, we show that critical current can be measured by two methods: current sweep (constant magnetic field and quickly increasing current) and field sweep. - Graphical abstract: Our results indicate that the jump electric field low magnetic fields. This jump indicates damage in Nb and ex situ MgB{sub 2} barrier. Detection and removal of defects will increase J{sub c} in MgB{sub 2} wires and will increase the applicability of MgB{sub 2} wire. - Highlights: • Jump electric field in the 1 T indicates damage to the Nb barrier. • Jump resistance at 9 K indicates damage to the Nb barrier. • Jump electric field in low magnetic field indicates damage to ex situ MgB{sub 2} barrier. • Damage Nb and ex situ MgB{sub 2} barrier significantly reduces the critical current density in the MgB{sub 2} wire.

  18. Reduction and immobilization of uranium in the subsurface: controls, mechanisms, and implications for in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Stylo, M. A.

    2015-07-01

    Decades of uranium (U) mining, milling and military use left a legacy of U contamination around the world. The radioactivity and chemical toxicity of U at contaminated sites pose an acute and long-term hazard to human health and the surrounding environment. In order to diminish the risk, in situ bioremediation methods, which contribute to contaminant immobilization, are proposed. Nevertheless, the reported prevalent formation of labile and non-crystalline U(IV) species as a result of microbial U(VI) reduction, in contrast to more stable and crystalline uraninite, undermines the effectiveness of the applied bioremediation. Therefore, a holistic understanding of the controls and mechanisms that govern the formation of non-crystalline U(IV) in the environment is at the core of this thesis. Presence of common groundwater solutes (sulfate, silicate and phosphate) were shown to induce the production of bacterial extracellular polymeric substances (biofilm matrix components), which in turn increases the formation of non-crystalline U(IV) as a result of microbial U reduction. In contrast, a field study suggested that non-crystalline U(IV) was a product of abiotic U reduction followed by the sequestration of U(IV) ions by the biofilm matrix. Those contrasting theories, motivated us to look for an indicator capable of differentiating between biotic and abiotic U reduction in the environment. Uranium isotope fractionation proved to be an excellent tool. Based on our results, the isotopic signature of biotic U reduction (accumulation of {sup 238}U in the reduced phase) is easily distinguishable from the abiotic U reduction signature (either no isotopic fractionation or fractionation in the opposite direction). When contrasted with U isotope signatures recorded in the sediments, the findings of this study indicated that biological activity contributed to the formation of many ancient and modern U(IV) deposits. Equipped with a tool capable of assessing the origin of the U

  19. Reduction and immobilization of uranium in the subsurface: controls, mechanisms, and implications for in situ bioremediation

    International Nuclear Information System (INIS)

    Stylo, M. A.

    2015-01-01

    Decades of uranium (U) mining, milling and military use left a legacy of U contamination around the world. The radioactivity and chemical toxicity of U at contaminated sites pose an acute and long-term hazard to human health and the surrounding environment. In order to diminish the risk, in situ bioremediation methods, which contribute to contaminant immobilization, are proposed. Nevertheless, the reported prevalent formation of labile and non-crystalline U(IV) species as a result of microbial U(VI) reduction, in contrast to more stable and crystalline uraninite, undermines the effectiveness of the applied bioremediation. Therefore, a holistic understanding of the controls and mechanisms that govern the formation of non-crystalline U(IV) in the environment is at the core of this thesis. Presence of common groundwater solutes (sulfate, silicate and phosphate) were shown to induce the production of bacterial extracellular polymeric substances (biofilm matrix components), which in turn increases the formation of non-crystalline U(IV) as a result of microbial U reduction. In contrast, a field study suggested that non-crystalline U(IV) was a product of abiotic U reduction followed by the sequestration of U(IV) ions by the biofilm matrix. Those contrasting theories, motivated us to look for an indicator capable of differentiating between biotic and abiotic U reduction in the environment. Uranium isotope fractionation proved to be an excellent tool. Based on our results, the isotopic signature of biotic U reduction (accumulation of 238 U in the reduced phase) is easily distinguishable from the abiotic U reduction signature (either no isotopic fractionation or fractionation in the opposite direction). When contrasted with U isotope signatures recorded in the sediments, the findings of this study indicated that biological activity contributed to the formation of many ancient and modern U(IV) deposits. Equipped with a tool capable of assessing the origin of the U(IV) product

  20. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    International Nuclear Information System (INIS)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    Highlights: • A new UASB configuration was developed by coupling with degassing membrane. • In-situ biogas upgrading was achieved with high methane content (>90%). • Decrease of dissolved methane in the anaerobic effluent was achieved. - Abstract: A new technology for in-situ biogas upgrading and recovery of CH 4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO 2 from the liquid phase of a biogas reactor. The degassing membrane was submerged into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO 2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH 4 content was only 51.7% without desorption of CO 2 , while it increased when the liquid of UASB was recycled through the DU. The CH 4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63 L/h, respectively. The loss of methane due to dissolution in the effluent was reduced by directly pumping the reactor effluent through the DU. In this way, the dissolved CH 4 concentration in the effluent decreased from higher than 0.94 mM to around 0.13 mM, and thus efficient recovery of CH 4 from the anaerobic effluent was achieved. In the whole operational period, the COD removal efficiency and CH 4 yield were not obviously affected by the gas desorption

  1. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes

    Science.gov (United States)

    Robinson, Georgina; Caldwell, Gary S.; Wade, Matthew J.; Free, Andrew; Jones, Clifford L. W.; Stead, Selina M.

    2016-12-01

    Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated.

  2. An assessment of African lion Panthera leo sociality via social network analysis: prerelease monitoring for an ex situ reintroduction program.

    Science.gov (United States)

    Dunston, Emma J; Abell, Jackie; Doyle, Rebecca E; Kirk, Jacqui; Hilley, Victoria B; Forsyth, Andrew; Jenkins, Emma; Freire, Rafael

    2017-06-01

    The wild population of the African lion Panthera leo continues to decline, requiring alternate conservation programs to be considered. One such program is ex situ reintroduction. Prior to release, long-term monitoring and assessment of behavior is required to determine whether prides and coalitions behave naturally and are sufficiently adapted to a wild environment. Social network analysis (SNA) can be used to provide insight into how the pride as a whole and individuals within it, function. Our study was conducted upon 2 captive-origin prides who are part of an ex situ reintroduction program, and 1 wild pride of African lion. Social interactions were collected at all occurrence for each pride and categorized into greet, social grooming, play, and aggression. Betweenness centrality showed that offspring in each pride were central to the play network, whereas degree indicated that adults received (indegree) the greatest number of overall social interactions, and the adult males of each pride were least likely to initiate (outdegree) any interactions. Through the assessment of individual centrality and degree values, a social keystone adult female was identified for each pride. Social network results indicated that the 2 captive-origin prides had formed cohesive social units and possessed relationships and behaviors comparable with the wild pride for the studied behaviors. This study provided the first SNA comparison between captive-bred origin and a wild pride of lions, providing valuable information on individual and pride sociality, critical for determining the success of prides within an ex situ reintroduction program.

  3. An assessment of African lion Panthera leo sociality via social network analysis: prerelease monitoring for an ex situ reintroduction program

    Science.gov (United States)

    Abell, Jackie; Doyle, Rebecca E.; Kirk, Jacqui; Hilley, Victoria B.; Forsyth, Andrew; Jenkins, Emma; Freire, Rafael

    2017-01-01

    Abstract The wild population of the African lion Panthera leo continues to decline, requiring alternate conservation programs to be considered. One such program is ex situ reintroduction. Prior to release, long-term monitoring and assessment of behavior is required to determine whether prides and coalitions behave naturally and are sufficiently adapted to a wild environment. Social network analysis (SNA) can be used to provide insight into how the pride as a whole and individuals within it, function. Our study was conducted upon 2 captive-origin prides who are part of an ex situ reintroduction program, and 1 wild pride of African lion. Social interactions were collected at all occurrence for each pride and categorized into greet, social grooming, play, and aggression. Betweenness centrality showed that offspring in each pride were central to the play network, whereas degree indicated that adults received (indegree) the greatest number of overall social interactions, and the adult males of each pride were least likely to initiate (outdegree) any interactions. Through the assessment of individual centrality and degree values, a social keystone adult female was identified for each pride. Social network results indicated that the 2 captive-origin prides had formed cohesive social units and possessed relationships and behaviors comparable with the wild pride for the studied behaviors. This study provided the first SNA comparison between captive-bred origin and a wild pride of lions, providing valuable information on individual and pride sociality, critical for determining the success of prides within an ex situ reintroduction program. PMID:29491989

  4. Keystone conference on environmental biotechnology. Summary -- Results of conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This symposium brought together a unique mix of scientists, engineers and policy makers to discuss the latest applications of biotechnology to in situ bioremediation and ex situ biodegradation of pollutants and industrial wastes. Several new topics were prominent in the discussions. Chief among these were issues related to environmentally acceptable endpoints, command and control versus incentive driven regulations, bioavailability of pollutants to microbial action, delivery of biodegrading organisms to pollutant plumes, value added production, and genetic probes for monitoring the status of soil consortia. These new issues gave a new perspective to the more traditional topics of the molecular genetics of microorganisms, marine bioremediation, bioprocessing of industrial and agricultural wastes, and engineered bioremediation systems which were featured.

  5. MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS CONTAINING PM1, SOS, ISOLITE.

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediation MTBE and BTEX contaminated groundwater. Seven BioNets were ...

  6. MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS CONTAINING PM1, SOS, ISOLITE�

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediate MTBE and BTEX contaminated groundwater. Seven BioNets were plac...

  7. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil

    NARCIS (Netherlands)

    Sutton, N.B.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton’s

  8. Ex-situ X-ray computed tomography data for a non-crimp fabric based glass fibre composite under fatigue loading

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

    2017-01-01

    The data published with this article are high resolution X-ray computed tomography (CT) data obtained during an ex-situ fatigue test of a coupon test specimen made from a non-crimp fabric based glass fibre composite similar to those used for wind turbine blades. The fatigue test was interrupted...

  9. Image analyzing method to evaluate in situ bioluminescence from an obligate anaerobe cultivated under various dissolved oxygen concentrations.

    Science.gov (United States)

    Ninomiya, Kazuaki; Yamada, Ryuji; Matsumoto, Masami; Fukiya, Satoru; Katayama, Takane; Ogino, Chiaki; Shimizu, Nobuaki

    2013-02-01

    An image analyzing method was developed to evaluate in situ bioluminescence expression, without exposing the culture sample to the ambient oxygen atmosphere. Using this method, we investigated the effect of dissolved oxygen concentration on bioluminescence from an obligate anaerobe Bifidobacterium longum expressing bacterial luciferase which catalyzes an oxygen-requiring bioluminescent reaction. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Design and optimization of hybrid ex situ/in situ steam generation recovery processes for heavy oil and bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Gates, I.D. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Larter, S.R. [Calgary Univ., AB (Canada). Dept. of Geoscience]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2008-10-15

    Hybrid steam-air based oil recovery techniques were investigated using advanced 3-D reactive thermal reservoir simulations. The hybrid techniques combined ex situ steam and in situ steam generation processes in order to raise efficiency, lower natural gas consumption, and reduce gas emissions. The steam-air based processes used 70 per cent of the energy of conventional steam assisted gravity drainage (SAGD) techniques to recover the same amount of oil. The process used an SAGD wellpair arrangement, where steam and air were injected through the top injection well. The kinetic parameters used in the study were developed by history matching a combustion tube experiments with Athabasca bitumen conducted to predict cumulative bitumen and gas production volumes and compositions. A total of 6 SAGD and 6 in situ combustion simulations were conducted with steam oxygen volume ratios set at 50 per cent steam and 50 per cent oxygen. Various case studies were considered over a 5 year period. Carbon dioxide (CO{sub 2}) emissions were also measured as well as cumulative water and methane consumption rates. Results of the study were used to develop an optimized hybrid operation that consisted of a SAGD well pair arrangement operating with cyclic steam-oxygen injection at high pressures. It was concluded that the high pressure operation increased the steam partial pressure within the reservoir and enhanced combustion performance. A 29 per cent improvement in the cumulative energy to oil ratio was obtained. 23 refs., 2 tabs., 9 figs.

  11. In situ and ex situ electron microscopy and X-ray diffraction characterization of the evolution of a catalytic system - from synthesis to deactivation

    DEFF Research Database (Denmark)

    Gardini, Diego

    Heterogeneous catalysis represents a research field of undeniable importance for a multitude of technological and industrial processes. Supported catalysts are nowadays at the base of the large-scale production of most chemicals and are used for the removal of air pollutants from automotive engines...... the understanding of the structural properties and mechanisms at the origin of catalytic activity. This thesis presents the potential and uniqueness of ex situ and in situ transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques in the characterization of several supported material systems...... TEM (HRTEM) and electron energy loss spectroscopy (EELS) revealed the degradation of the supported carbide particles probably due to the formation of volatile molybdenum hydroxide species. The activity of silver nanoparticles as catalyst for soot oxidation was studied in operative conditions...

  12. Bioremediation: Effective treatment of petroleum-fuel-contaminated soil, a common environmental problem at industrial and governmental agency sites

    International Nuclear Information System (INIS)

    Jolley, R.L.; Donaldson, T.L.; Siegrist, R.L.; Walker, J.F.; MacNeill, J.J.; Ott, D.W.; Machanoff, R.A.; Adler, H.I.; Phelps, T.J.

    1992-01-01

    Bioremediation methods are receiving increased attention for degradation of petroleum-fuel-hydrocarbon contamination in soils. An in situ bioremediation demonstration is being conducted on petroleum-fuel-contaminated soil at Kwajalein Island, a remote Pacific site. Bioreaction parameters studied include water, air, nutrient, and microorganism culture addition. This paper presents planning and design aspects of the demonstration that is scheduled to be completed in 1993

  13. Estimation of Anaerobic Debromination Rate Constants of PBDE Pathways Using an Anaerobic Dehalogenation Model.

    Science.gov (United States)

    Karakas, Filiz; Imamoglu, Ipek

    2017-04-01

    This study aims to estimate anaerobic debromination rate constants (k m ) of PBDE pathways using previously reported laboratory soil data. k m values of pathways are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model. Debromination activities published in the literature in terms of bromine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The range of estimated k m values is between 0.0003 and 0.0241 d -1 . The median and maximum of k m values are found to be comparable to the few available biologically confirmed rate constants published in the literature. The estimated k m values can be used as input to numerical fate and transport models for a better and more detailed investigation of the fate of individual PBDEs in contaminated sediments. Various remediation scenarios such as monitored natural attenuation or bioremediation with bioaugmentation can be handled in a more quantitative manner with the help of k m estimated in this study.

  14. Ex-situ biogas upgrading and enhancement in different reactor systems.

    Science.gov (United States)

    Kougias, Panagiotis G; Treu, Laura; Benavente, Daniela Peñailillo; Boe, Kanokwan; Campanaro, Stefano; Angelidaki, Irini

    2017-02-01

    Biogas upgrading is envisioned as a key process for clean energy production. The current study evaluates the efficiency of different reactor configurations for ex-situ biogas upgrading and enhancement, in which externally provided hydrogen and carbon dioxide were biologically converted to methane by the action of hydrogenotrophic methanogens. The methane content in the output gas of the most efficient configuration was >98%, allowing its exploitation as substitute to natural gas. Additionally, use of digestate from biogas plants as a cost efficient method to provide all the necessary nutrients for microbial growth was successful. High-throughput 16S rRNA sequencing revealed that the microbial community was resided by novel phylotypes belonging to the uncultured order MBA08 and to Bacteroidales. Moreover, only hydrogenotrophic methanogens were identified belonging to Methanothermobacter and Methanoculleus genera. Methanothermobacter thermautotrophicus was the predominant methanogen in the biofilm formed on top of the diffuser surface in the bubble column reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cometabolic bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-15

    Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantage of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.

  16. Bioremediation via Methanotrophy: Overview of Recent Findings and Suggestions for Future Research

    Directory of Open Access Journals (Sweden)

    Jeremy eSemrau

    2011-10-01

    Full Text Available Microbially-mediated bioremediation of polluted sites has been a subject of much research over the past 30 years, with many different compounds shown to be degraded under both aerobic and anaerobic conditions. Aerobic-mediated bioremediation commonly examines the use of methanotrophs, microorganisms that consume methane as their sole source of carbon and energy. Given the diverse environments in which methanotrophs have been found, the range of substrates they can degrade and the fact that they can be easily stimulated with the provision of methane and oxygen, these microorganisms in particular have been examined for aerobic degradation of chlorinated hydrocarbons. The physiological and phylogenetic diversity of methanotrophy, however, has increased substantially in just the past five years. Here in this review, the current state of knowledge of methanotrophy, particularly as it applies to pollutant degradation is summarized, and suggestions for future research provided.

  17. In-Situ Air Sparaing: Engineering and Design

    Science.gov (United States)

    2008-01-31

    removal (Adams and Reddy 2000). The potential for remediation of less volatile LNAPLs (e.g., diesel or fuel oils) is less promising, relying more on...pure nitrogen, or nitrous oxide) may enhance the speed at which bioremediation proceeds or alter the conditions under which it occurs. The USDOE Sa...region below the water table is directly related to in- situ bioremediation . IAS can be an alternative to other means of introducing oxygen into the

  18. Influence of a precepitator on bioremedial processes

    Directory of Open Access Journals (Sweden)

    Nježić Zvonko B.

    2010-01-01

    Full Text Available Natural environment represents a dynamic bioreactor with numerous chemical, biochemical and microbiological processes through which harmful materials are destroyed, so that living organisms and human beings are not endanger. Controlled anthropogenic actions can assist the natural ecosystem to become an efficient bioremedial unit and to reduce the level of effluents produced in the biotechnological transformations during massive food production. In this study, a monitoring system for the chemical oxygen demand (COD and the heavy metal levels in water was established, followed by construction and building of a precipitator in order to prevent discharging of sludge. The results contribute to the hypothesis of existence of in situ bioremedial processes in the observed ecosystem. The significant influence of the precipitator on the decrease of pollution was demonstrated: a decrease of both the COD value and the heavy metal levels downstream from the precipitator for about 15%. Therefore it can be concluded that the precipitator significantly contributes to the ecosystem by the reduction of pollutant level.

  19. Bioremediation of petroleum hydrocarbons in soil environments

    International Nuclear Information System (INIS)

    Rowell, M.J.; Ashworth, J.; Qureshi, A.A.

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs

  20. Bioremediation of petroleum hydrocarbons in soil environments

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, M J; Ashworth, J; Qureshi, A A

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs.

  1. In-situ treatment of a mixed hydrocarbon plume through enhanced bio-remediation and a PRB system

    International Nuclear Information System (INIS)

    Aglietto, I.; Bargoni, G.; Bretti, L.L.

    2005-01-01

    (especially aerobic biodegradation), whereas fully-chlorinated compounds are only biodegradable via reductive pathways. Therefore, a mixed plume of both types of contaminants requires a combined approach with the application of different treatment technologies. The remediation strategy elaborated combines an enhanced bio-remediation of the hot spots with a permeable reactive barrier (PRB) in a funnel and gate configuration for the down-gradient plume containment. Pilot tests were carried out in order to assess the efficiency and feasibility of such technologies in the site of interest. The enhanced bio-remediation is going to be carried out by means of injections of hydrogen release compounds (HRC) and oxygen release compounds (ORC) for the biodegradation of chlorinated solvents and petroleum hydrocarbons respectively. A pilot test was conducted to determine the degradation rates of the different contaminants. The pilot test was monitored with a periodic sampling and analysis of the groundwater and with a continuous monitoring of the physical-chemical parameters (temperature, pH, conductivity, redox potential and dissolved oxygen) in the monitoring wells placed immediately down-gradient of the injection points. The tests showed the possibility to use the enhanced bio-remediation with the double aim to reduce the hot spot concentrations, in order to lower the contaminant load on the PRB, and to control the lateral spreading of the plume in the side regions. Permeable reactive barriers are passive groundwater treatment systems that are able to decontaminate groundwater as it flows through a permeable treatment medium under natural gradients. The main advantage of this technology over ex-situ and other in-situ groundwater remediation approaches is the reduced operation- and maintenance costs. For the permeable reactive barrier, a funnel and gate configuration was selected. This system uses low permeability materials (funnel) to direct groundwater towards a permeable treatment

  2. In-situ treatment of a mixed hydrocarbon plume through enhanced bio-remediation and a PRB system

    Energy Technology Data Exchange (ETDEWEB)

    Aglietto, I.; Bargoni, G.; Bretti, L.L. [Studio aglietto s.r.l. (Italy)

    2005-07-01

    (especially aerobic biodegradation), whereas fully-chlorinated compounds are only biodegradable via reductive pathways. Therefore, a mixed plume of both types of contaminants requires a combined approach with the application of different treatment technologies. The remediation strategy elaborated combines an enhanced bio-remediation of the hot spots with a permeable reactive barrier (PRB) in a funnel and gate configuration for the down-gradient plume containment. Pilot tests were carried out in order to assess the efficiency and feasibility of such technologies in the site of interest. The enhanced bio-remediation is going to be carried out by means of injections of hydrogen release compounds (HRC) and oxygen release compounds (ORC) for the biodegradation of chlorinated solvents and petroleum hydrocarbons respectively. A pilot test was conducted to determine the degradation rates of the different contaminants. The pilot test was monitored with a periodic sampling and analysis of the groundwater and with a continuous monitoring of the physical-chemical parameters (temperature, pH, conductivity, redox potential and dissolved oxygen) in the monitoring wells placed immediately down-gradient of the injection points. The tests showed the possibility to use the enhanced bio-remediation with the double aim to reduce the hot spot concentrations, in order to lower the contaminant load on the PRB, and to control the lateral spreading of the plume in the side regions. Permeable reactive barriers are passive groundwater treatment systems that are able to decontaminate groundwater as it flows through a permeable treatment medium under natural gradients. The main advantage of this technology over ex-situ and other in-situ groundwater remediation approaches is the reduced operation- and maintenance costs. For the permeable reactive barrier, a funnel and gate configuration was selected. This system uses low permeability materials (funnel) to direct groundwater towards a permeable treatment

  3. Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale

    OpenAIRE

    Germaine, Kieran J.; Byrne, John; Liu, Xuemei; Keohane, Jer; Culhane, John; Lally, Richard D.; Kiwanuka, Samuel; Ryan, David; Dowling, David N.

    2015-01-01

    Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumu...

  4. Reduction of Bacterial Pathogenic Risk during Ex-situ Stabilization of Previously Buried Foot-and-Mouth Disease Carcasses in a Pilot-scale Bio-augmented Aerobic Composting

    Science.gov (United States)

    Kim, S.; Park, J.; Park, J. K.; Park, S.; Jeon, H.; Kwon, H.

    2017-12-01

    Foot and mouth disease outbreaks globally occur. Although livestock suspected to be infected or actually infected by animal infectious diseases is typically treated with various methods including burial, burning, incineration, rendering, and composting, burial into soil is currently the major treatment method in Korea. However, buried carcasses are often found to remain undecomposed or incompletely decomposed even after the legal burial period (3 years). To reuse the land used for the burial purposes, Korea government is considering a novel approach to conduct in-situ burial treatment and then to move remaining carcasses from the burial sites to other sites designated for further ex-situ stabilization treatment (burial-composting sequential treatment). In this work, the feasibility of the novel approach was evaluated at a pilot scale facility. For the ex-situ stabilization, we tested the validity of use of a bio-augmented aerobic composting with carcass-degrading microorganisms, with emphasis on examining if the novel aerobic composting has reducing effects on potential pathogenic bacteria. As results, the decreased chemical oxygen demand (COD, 160,000 mg/kg to 40,000 mg/kg) and inorganic nitrogen species (total nitrogen, 5,000 mg/kg to 2,000 mg/kg) indicated effective bio-stabilization of carcasses. During the stabilization, bacterial community structure and dynamics determined by bacterial 16S rRNA sequencing were significantly changed. The prediction of potential pathogenic bacteria showed that bacterial pathogenic risk was significantly reduced up to a normal soil level during the ex-situ stabilization. The conclusion was confirmed by the following functional analysis of dominant bacteria using PICRUST. The findings support the microbiological safety of the ex-site use of the novel burial-composting sequential treatment. Acknowledgement : This study is supported by Korea Ministry of Environmental as "The GAIA Project"

  5. Effectiveness of bioremediation for the Prestige fuel spill : a summary of case studies

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, J.R. [Oviedo Univ., Asturias (Spain); Gonzalez-Rojas, E.; Pelaez, A.I.; Sanchez, J [Oviedo Univ., Asturias (Spain). Inst. de Biotecnologia de Asturias; Garcia-Martinez, M.J.; Llamas, J.F. [Univ. Polictenica de Madrid, Madrid (Spain). Laboratorio de Estratigrafia Biomolecular

    2006-07-01

    This paper described novel bioremediation strategies used to remediate coastal areas in Spain impacted by the Prestige fuel oil spill in 2002. The bioremediation techniques were applied after hot pressurized water washing was used to remove hydrocarbons adhering to shorelines and rocks. Bioremediation strategies included monitored natural attenuation as well as accelerating biodegradation by stimulating indigenous populations through the addition of exogenous microbial populations. The sites selected for bioremediation were rocky shorelines of heterogenous granitic sediments with grain sizes ranging from sands to huge boulders; limestone-sandstone pebbles and cobbles; and fuel-coated limestone cliffs. Total surface area covered by the fuel was determined through the use of image analysis calculations. A statistical measurement of the fuel layer thickness was calculated by averaging the weights of multiple-fuel sampling increments. Bioremediation products included the use of oleophilic fertilizers; a biodegradable surfactant; and a microbial seeding agent. Determinations of saturate, aromatic, resins, and asphaltene (SARA) were performed using maltenes extraction and liquid chromatography. Microbial plating and selective enrichment with fuel as the sole carbon source were used to monitor the evolution of microbial populations in a variety of experiments. It was concluded that the biostimulation technique enhanced the efficiency of the in situ oleophilic fertilizers. 17 refs., 2 tabs., 6 figs.

  6. Effectiveness of bioremediation for the Prestige fuel spill : a summary of case studies

    International Nuclear Information System (INIS)

    Gallego, J.R.; Gonzalez-Rojas, E.; Pelaez, A.I.; Sanchez, J; Garcia-Martinez, M.J.; Llamas, J.F.

    2006-01-01

    This paper described novel bioremediation strategies used to remediate coastal areas in Spain impacted by the Prestige fuel oil spill in 2002. The bioremediation techniques were applied after hot pressurized water washing was used to remove hydrocarbons adhering to shorelines and rocks. Bioremediation strategies included monitored natural attenuation as well as accelerating biodegradation by stimulating indigenous populations through the addition of exogenous microbial populations. The sites selected for bioremediation were rocky shorelines of heterogenous granitic sediments with grain sizes ranging from sands to huge boulders; limestone-sandstone pebbles and cobbles; and fuel-coated limestone cliffs. Total surface area covered by the fuel was determined through the use of image analysis calculations. A statistical measurement of the fuel layer thickness was calculated by averaging the weights of multiple-fuel sampling increments. Bioremediation products included the use of oleophilic fertilizers; a biodegradable surfactant; and a microbial seeding agent. Determinations of saturate, aromatic, resins, and asphaltene (SARA) were performed using maltenes extraction and liquid chromatography. Microbial plating and selective enrichment with fuel as the sole carbon source were used to monitor the evolution of microbial populations in a variety of experiments. It was concluded that the biostimulation technique enhanced the efficiency of the in situ oleophilic fertilizers. 17 refs., 2 tabs., 6 figs

  7. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    Science.gov (United States)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; hide

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  8. A study of chlorinated solvent contamination of the aquifers of an industrial area in central Italy: a possibility of bioremediation

    Directory of Open Access Journals (Sweden)

    FEDERICA eMATTEUCCI

    2015-09-01

    Full Text Available Perchloroethene, Trichloroethene, and other chlorinated solvents are widespread groundwater pollutants. They form Dense Non Aqueous Phase Liquids (DNAPLs that sink through permeable groundwater aquifers until non-permeable zone is reached. In Italy there are many situations of serious contamination of groundwater that might compromise their use in industry, agriculture, private, as the critical case of a Central Italy valley located in the province of Teramo (Val Vibrata, characterized by a significant chlorinated solvents contamination. Data from the various monitoring campaigns that have taken place over time were collected, and new samplings were carried out, resulting in a complete database. The data matrix was processed with a multivariate statistic analysis (in particular Principal Components Analysis, PCA and was then imported into Geographic Information System (GIS, to obtain a model of the contamination. A microcosm anaerobic study was utilized to assess the potential for in situ natural or enhanced bioremediation. Most of the microcosms were positive for dechlorination, particularly those inoculated with a mineral medium. This indicate the presence of an active native dechlorinating population in the subsurface, probably inhibited by co-contaminants in the groundwater, or more likely by the absence or lack of nutritional factors. Among the tested electron donors (i.e., yeast extract, lactate, and butyrate lactate and butyrate enhanced dechlorination of chlorinated compounds. PCA and GIS studies allowed delimiting the contamination; the microcosm study helped to identify the conditions to promote the bioremediation of the area.

  9. Bioremediation of soil and water: application to chemical and nuclear pollutions

    International Nuclear Information System (INIS)

    Vavasseur, Alain

    2014-06-01

    Bioremediation is a branch of biotechnology that uses natural or diverted biological mechanisms to address environmental problems. The biological agents can be simple organic molecules, such as DNA or antibodies, or live or dead organisms (bacteria, microalgae, fungi, higher algae and plants). Phyto-remediation refers more specifically to using plants to decontaminate polluted soil, water, or air. Unlike organic pollutants such as PCBs1, TNT2, TCE3, which can be metabolized by soil microorganisms and plant roots, radionuclides - like most heavy metals - cannot be degraded. Thus, bioremediation strategies for radionuclides will consist into: - stabilization/mineralization to reduce their bioavailability through a change in their redox state; - for soil, their extraction using the plant nutrition mechanisms; - for polluted solutions, their extraction using the 'cation traps' properties of plant cell walls. Compared to physicochemical methods conventionally used to decontaminate soils but which lead to a sharp decline in fertility and productivity, bioremediation is considered a friendly environmental technology. An important advantage of this technique is its cost, much lower than traditional remediation techniques. By cons, bioremediation cannot be applied in an emergency, because processing times are spread over several years - even decades - depending on the degree of pollution. Therefore current research focuses on optimizing the processing time. We present in this paper several examples of in situ bioremediation of heavy metals and radionuclides, and we discuss in conclusion the negative and positive aspects of this technique. (author)

  10. Degradation of BTEX by anaerobic bacteria: physiology and application

    NARCIS (Netherlands)

    Weelink, S.A.B.; Eekert, van M.H.A.; Stams, A.J.M.

    2010-01-01

    Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and

  11. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, P.J.; N' Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  12. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  13. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  14. MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS(TM) CONTAINING PM1, SOS, ISOLITE (R)

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediation MTBE and BTEX contaminated groundwater. Seven BioNets were ...

  15. Identification of electrode respiring, hydrocarbonoclastic bacterial strain Stenotrophomonas maltophilia MK2 highlights the untapped potential for environmental bioremediation

    Directory of Open Access Journals (Sweden)

    Krishnaveni Venkidusamy

    2016-12-01

    Full Text Available Electrode respiring bacteria (ERB possess a great potential for many biotechnological applications such as microbial electrochemical remediation systems (MERS because of their exoelectrogenic capabilities to degrade xenobiotic pollutants. Very few ERB have been isolated from MERS, those exhibited a bioremediation potential towards organic contaminants. Here we report once such bacterial strain, Stenotrophomonas maltophilia MK2, a facultative anaerobic bacterium isolated from a hydrocarbon fed MERS, showed a potent hydrocarbonoclastic behavior under aerobic and anaerobic environments. Distinct properties of the strain MK2 were anaerobic fermentation of the amino acids, electrode respiration, anaerobic nitrate reduction and the ability to metabolize n-alkane components (C8-C36 of petroleum hydrocarbons including the biomarkers, pristine and phytane. The characteristic of diazoic dye decolorization was used as a criterion for pre-screening the possible electrochemically active microbial candidates. Bioelectricity generation with concomitant dye decolorization in MERS showed that the strain is electrochemically active. In acetate fed microbial fuel cells, maximum current density of 273±8 mA/m2 (1000Ω was produced (power density 113±7 mW/m2 by strain MK2 with a coulombic efficiency of 34.8 %. Further, the presence of possible alkane hydroxylase genes (alkB and rubA in the strain MK2 indicated that the genes involved in hydrocarbon degradation are of diverse origin. Such observations demonstrated the potential of facultative hydrocarbon degradation in contaminated environments. Identification of such a novel petrochemical hydrocarbon degrading ERB is likely to offer a new route to the sustainable bioremedial process of source zone contamination with simultaneous energy generation through MERS.

  16. Prion structure investigated in situ, ex vivo, and in vitro by FTIR spectroscopy

    Science.gov (United States)

    Kneipp, Janina; Miller, Lisa M.; Spassov, Sashko; Sokolowski, Fabian; Lasch, Peter; Beekes, Michael; Naumann, Dieter

    2004-07-01

    Syrian hamster nervous tissue was investigated by FTIR microspectroscopy with conventional and synchrotron infrared light sources. Various tissue structures from the cerebellum and medulla oblongata of scrapie-infected and control hamsters were investigated at a spatial resolution of 50 μm. Single neurons in dorsal root ganglia of scrapie-infected hamsters were analyzed by raster scan mapping at 6 μm spatial resolution. These measurements enabled us to (i) scrutinize structural differences between infected and non-infected tissue and (ii) analyze for the first time the distribution of different protein structures in situ within single nerve cells. Single nerve cells exhibited areas of increased β-sheet content, which co-localized consistently with accumulations of the pathological prion protein (PrPSc). Spectral data were also obtained from purified, partly proteinase K digested PrPSc isolated from scrapie-infected nervous tissue of hamsters to elucidate similarities/dissimilarities between prion structure in situ and ex vivo. A further comparison is drawn to the recombinant Syrian hamster prion protein SHaPrP90-232, whose in vitro transition from the predominantly a-helical isoform to β-sheet rich oligomeric structures was also investigated by FTIR spectroscopy.

  17. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor.

    Science.gov (United States)

    Rusi; Chan, P Y; Majid, S R

    2015-01-01

    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.

  18. ADAPTATION OF THE OBTAINED in vitro Gentiana lutea L. PLANTS TO ex vitro AND in situ CONDITIONS

    Directory of Open Access Journals (Sweden)

    О. Yu.

    2015-12-01

    Full Text Available The objective of the research was to develop the technology of introduction of the obtained by microclonal propagation Gentiana lutea L. plants into conditions in situ. Methods of cultivation of plant objects in vitro were used. There were chosen optimal conditions for rooting G. lutea shoots obtained through microclonal propagation in vitro: МS/2 medium with twice decreased concentration of NH4NO3 without vitamins and sucrose supplemented with 3 g/l of mannite and 0.05 mg/l kinetin, and agar (4 mg/l in combination with perlite (16 g/l used as a maintaining substrate; or the nutrient medium (MS/2 without vitamins and smaller concentration of N4NO3 with gradual decrease of carbohydrates from 10 g/l to 2 g/l, and further rooting experimental shoots in tap water. Rooted plants were adapted to conditions ex vitro through planting them into flowerpots with soil and gradual changing hothouse regime for exposed one. The share of adapted to in situ conditions plants (21% after a year of planting proves the suggested method to be efficient and promising. There was suggested this technology is the most efficient ones for revival of disturbed G. lutea populations that includes repatriation of rooted and adapted to ex vitro conditions plants obtained through microclonal propagation in vitro.

  19. Electrochemical lithiation/delithiation of SnP₂O₇ observed by in situ XRD and ex situ⁷Li/³¹P NMR, and ¹¹⁹Sn Mössbauer spectroscopy.

    Science.gov (United States)

    Bezza, Ilham; Kaus, Maximilian; Riekehr, Lars; Pfaffmann, Lukas; Doyle, Stephen; Indris, Sylvio; Ehrenberg, Helmut; Solhy, Abderrahim; Saadoune, Ismael

    2016-04-21

    SnP2O7 was prepared by a sol-gel route. The structural changes of tin pyrophosphate during the electrochemical lithiation were followed by using in situ XRD measurements that reveal the existence of a crystalline phase at the beginning of the discharge process. Nevertheless, it becomes amorphous after the full discharge as a result of a conversion reaction leading to the formation of LixSny alloys. The electrochemical tests show a high capacity with high retention upon cycling. To better understand the reaction mechanism of SnP2O7 with Li, several techniques were applied, such as ex situ(119)Sn Mössbauer and ex situ(7)Li and (31)P NMR spectroscopies with which we can follow the changes in the local environment of each element during cycling.

  20. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Development of the integrated in situ Lasagna process

    International Nuclear Information System (INIS)

    Ho, S.; Athmer, C.; Sheridan, P.

    1995-01-01

    Contamination in deep, low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in uniform delivery of treatment reagents have rendered existing in-situ methods such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites

  2. Literature review and assessment of various approaches to bioremediation of oil and associated hydrocarbons in soil and groundwater

    International Nuclear Information System (INIS)

    1993-08-01

    A study was conducted of available techniques for the biological treatment of oil and associated hydrocarbon contamination in soil and groundwater. The study involved a detailed literature search and review, as well as discussions with the users and developers of a number of the bioremediation techniques assessed. The result is a compendium of selected state-of-the-art bioremediation technologies which can serve to guide the selection process for treatment technology for a particular site subject to remediation. Background is provided on the various classes of sites on which petroleum-related contamination could occur, and the nature of contaminants typical of such sites. The mechanisms of hydrocarbon biodegradation are outlined along with various approaches to bioremediation such as in-situ, on-site, bioreactors, landfarming, composting, and physical/chemical treatments. Field trials required to characterize the site and provide an indication of the suitability of bioremediation and the most appropriate bioremediation approach are described. Commercially available bioremediation technologies are briefly discussed. A number of the bioremedial techniques reviewed are compared to more conventional treatment processes in terms of such criteria as operating cost, effectiveness, advantages, risks, applicability, equipment and manpower requirements, and considerations regarding usage in Canadian conditions. 15 figs., 17 tabs

  3. Literature review and assessment of various approaches to bioremediation of oil and associated hydrocarbons in soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    A study was conducted of available techniques for the biological treatment of oil and associated hydrocarbon contamination in soil and groundwater. The study involved a detailed literature search and review, as well as discussions with the users and developers of a number of the bioremediation techniques assessed. The result is a compendium of selected state-of-the-art bioremediation technologies which can serve to guide the selection process for treatment technology for a particular site subject to remediation. Background is provided on the various classes of sites on which petroleum-related contamination could occur, and the nature of contaminants typical of such sites. The mechanisms of hydrocarbon biodegradation are outlined along with various approaches to bioremediation such as in-situ, on-site, bioreactors, landfarming, composting, and physical/chemical treatments. Field trials required to characterize the site and provide an indication of the suitability of bioremediation and the most appropriate bioremediation approach are described. Commercially available bioremediation technologies are briefly discussed. A number of the bioremedial techniques reviewed are compared to more conventional treatment processes in terms of such criteria as operating cost, effectiveness, advantages, risks, applicability, equipment and manpower requirements, and considerations regarding usage in Canadian conditions. 15 figs., 17 tabs.

  4. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  5. Investigation of In-situ Biogeochemical Reduction of Chlorinated Solvents in Groundwater by Reduced Iron Minerals

    Science.gov (United States)

    Biogeochemical transformation is a process in which chlorinated solvents are degraded abiotically by reactive minerals formed by, at least in part or indirectly from, anaerobic biological processes. Five mulch biowall and/or vegetable oil-based bioremediation applications for tr...

  6. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  7. Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis accessions from two ex situ genebanks.

    Directory of Open Access Journals (Sweden)

    Eltohamy A A Yousef

    Full Text Available Cauliflower (Brassica oleracea var. botrytis is an important vegetable crop for human nutrition. We characterized 192 cauliflower accessions from the USDA and IPK genebanks with genotyping by sequencing (GBS. They originated from 26 different countries and represent about 44% of all cauliflower accessions in both genebanks. The analysis of genetic diversity revealed that accessions formed two major groups that represented the two genebanks and were not related to the country of origin. This differentiation was robust with respect to the analysis methods that included principal component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was higher in the USDA collection and significant phenotypic differences between the two genebanks were found in three out of six traits investigated. GBS data have a high proportion of missing data, but we observed that the exclusion of single nucleotide polymorphisms (SNPs with missing data or the imputation of missing SNP alleles produced very similar results. The results indicate that the composition and type of accessions have a strong effect on the structure of genetic diversity of ex situ collections, although regeneration procedures and local adaptation to regeneration conditions may also contribute to a divergence. Fst-based outlier tests of genetic differentiation identified only a small proportion (<1% of SNPs that are highly differentiated between the two genebanks, which indicates that selection during seed regeneration is not a major cause of differentiation between genebanks. Seed regeneration procedures of both genebanks do not result in different levels of genetic drift and loss of genetic variation. We therefore conclude that the composition and type of accessions mainly influence the level of genetic diversity and explain the strong genetic differentiation between the two ex situ collections. In summary, GBS is a useful method for characterizing genetic diversity in cauliflower

  8. Analysis of methanogenic activity in a thermophilic-dry anaerobic reactor: Use of fluorescent in situ hybridization

    International Nuclear Information System (INIS)

    Montero, B.; Garcia-Morales, J.L.; Sales, D.; Solera, R.

    2009-01-01

    Methanogenic activity in a thermophilic-dry anaerobic reactor was determined by comparing the amount of methane generated for each of the organic loading rates with the size of the total and specific methanogenic population, as determined by fluorescent in situ hybridization. A high correlation was evident between the total methanogenic activity and retention time [-0.6988Ln(x) + 2.667] (R 2 0.8866). The total methanogenic activity increased from 0.04 x 10 -8 mLCH 4 cell -1 day -1 to 0.38 x 10 -8 mLCH 4 cell -1 day -1 while the retention time decreased, augmenting the organic loading rates. The specific methanogenic activities of H 2 -utilizing methanogens and acetate-utilizing methanogens increased until they stabilised at 0.64 x 10 -8 mLCH 4 cell -1 day -1 and 0.33 x 10 -8 mLCH 4 cell -1 day -1 , respectively. The methanogenic activity of H 2 -utilizing methanogens was higher than acetate-utilizing methanogens, indicating that maintaining a low partial pressure of hydrogen does not inhibit the acetoclastic methanogenesis or the anaerobic process

  9. Electron transport chains in organohalide-respiring bacteria and bioremediation implications.

    Science.gov (United States)

    Wang, Shanquan; Qiu, Lan; Liu, Xiaowei; Xu, Guofang; Siegert, Michael; Lu, Qihong; Juneau, Philippe; Yu, Ling; Liang, Dawei; He, Zhili; Qiu, Rongliang

    2018-04-06

    In situ remediation employing organohalide-respiring bacteria represents a promising solution for cleanup of persistent organohalide pollutants. The organohalide-respiring bacteria conserve energy by utilizing H 2 or organic compounds as electron donors and organohalides as electron acceptors. Reductive dehalogenase (RDase), a terminal reductase of the electron transport chain in organohalide-respiring bacteria, is the key enzyme that catalyzes halogen removal. Accumulating experimental evidence thus far suggests that there are distinct models for respiratory electron transfer in organohalide-respirers of different lineages, e.g., Dehalococcoides, Dehalobacter, Desulfitobacterium and Sulfurospirillum. In this review, to connect the knowledge in organohalide-respiratory electron transport chains to bioremediation applications, we first comprehensively review molecular components and their organization, together with energetics of the organohalide-respiratory electron transport chains, as well as recent elucidation of intramolecular electron shuttling and halogen elimination mechanisms of RDases. We then highlight the implications of organohalide-respiratory electron transport chains in stimulated bioremediation. In addition, major challenges and further developments toward understanding the organohalide-respiratory electron transport chains and their bioremediation applications are identified and discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Engineered in situ bioremediation of a petroleum hydrocarbon-contaminated aquifer: assessment of mineralization based on alkalinity, inorganic carbon and stable carbon isotope balances

    Science.gov (United States)

    Hunkeler, Daniel; Höhener, Patrick; Bernasconi, Stefano; Zeyer, Josef

    1999-04-01

    A concept is proposed to assess in situ petroleum hydrocarbon mineralization by combining data on oxidant consumption, production of reduced species, CH 4, alkalinity and dissolved inorganic carbon (DIC) with measurements of stable isotope ratios. The concept was applied to a diesel fuel contaminated aquifer in Menziken, Switzerland, which was treated by engineered in situ bioremediation. In the contaminated aquifer, added oxidants (O 2 and NO 3-) were consumed, elevated concentrations of Fe(II), Mn(II), CH 4, alkalinity and DIC were detected and the DIC was generally depleted in 13C compared to the background. The DIC production was larger than expected based on the consumption of dissolved oxidants and the production of reduced species. Stable carbon isotope balances revealed that the DIC production in the aquifer originated mainly from microbial petroleum hydrocarbon mineralization, and that geochemical reactions such as carbonate dissolution produced little DIC. This suggests that petroleum hydrocarbon mineralization can be underestimated if it is determined based on concentrations of dissolved oxidants and reduced species.

  11. Integrated electrochemical treatment systems for facilitating the bioremediation of oil spill contaminated soil.

    Science.gov (United States)

    Cheng, Ying; Wang, Liang; Faustorilla, Vilma; Megharaj, Mallavarapu; Naidu, Ravi; Chen, Zuliang

    2017-05-01

    Bioremediation plays an important role in oil spill management and bio-electrochemical treatment systems are supposed to represent a new technology for both effective remediation and energy recovery. Diesel removal rate increased by four times in microbial fuel cells (MFCs) since the electrode served as an electron acceptor, and high power density (29.05 W m -3 ) at current density 72.38 A m -3 was achieved using diesel (v/v 1%) as the sole substrate. As revealed by Scanning electron microscope images, carbon fibres in the anode electrode were covered with biofilm and the bacterial colloids which build the link between carbon fibres and enhance electron transmission. Trace metabolites produced during the anaerobic biodegradation were identified by gas chromatography-mass spectrometry. These metabolites may act as emulsifying agents that benefit oil dispersion and play a vital role in bioremediation of oil spills in field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.

    Science.gov (United States)

    Wang, Xiaonan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong; Al-Misned, Fahad A; Mortuza, M Golam; Gadd, Geoffrey Michael

    2017-03-01

    Selenium (Se) nanoparticles are often synthesized by anaerobes. However, anaerobic bacteria cannot be directly applied for bioremediation of contaminated top soil which is generally aerobic. In this study, a selenite-reducing bacterium, Citrobacter freundii Y9, demonstrated high selenite reducing power and produced elemental nano-selenium nanoparticles (nano-Se 0 ) under both aerobic and anaerobic conditions. The biogenic nano-Se 0 converted 45.8-57.1% and 39.1-48.6% of elemental mercury (Hg 0 ) in the contaminated soil to insoluble mercuric selenide (HgSe) under anaerobic and aerobic conditions, respectively. Addition of sodium dodecyl sulfonate enhanced Hg 0 remediation, probably owing to the release of intracellular nano-Se 0 from the bacterial cells for Hg fixation. The reaction product after remediation was identified as non-reactive HgSe that was formed by amalgamation of nano-Se 0 and Hg 0 . Biosynthesis of nano-Se 0 both aerobically and anaerobically therefore provides a versatile and cost-effective remediation approach for Hg 0 -contaminated surface and subsurface soils, where the redox potential often changes dramatically. Copyright © 2016. Published by Elsevier Ltd.

  13. Evaluation of anaerobic in-situ bioremediation of chlorinated hydrocarbons and BTEX with laboratory microcosm and PCR

    Energy Technology Data Exchange (ETDEWEB)

    Gemoets, J.; Lookman, R.; Borremans, B.; Ceuster, T. de [VITO, Mol (Belgium)

    2003-07-01

    The results of a number of microcosm studies are presented for contaminated aquifer materials which were collected from a variety of industrial sites. These represent the following contaminant situations: perchloro-ethylene, trichloro-ethylene and their degradation products, 1,1,1-TCA and DCA and a site with a complex mixture of trichloro-ethene, cDCE, dichloro-methane, 1,1,1-TCA, 1,1-DCA, 1,2-dichloropropane, toluene, xylenes, 1,24-trimethylbenzene and mineral oil. The following electron donors were evaluated for their ability to stimulate halorespiration: lactate, methanol, ethanol, molasses and yeast extract. All of these carbon sources were found to stimulate biodegradation of chlorinated ethenes, but their relative performance was found to be site specific. For a number of sites, stagnation was observed at cDCE, for other sites complete conversion of PER and TRI to ethene was observed. Some aquifer materials were screened for the presence of genetic material of Dehalococcoides sp. by means of the polymerase chain reaction. Dehalococcoides sp. are believed to be required for complete reduction of perchloro-ethylene or trichloro-ethylene to ethene. A positive signal was found for aquifer material which exhibited formation of ethene, while soil material from another area at the same site which did not exhibit formation of ethene gave a negative PCR-signal. For two sites anaerobic biodegradation of 1,1,1-TCA could not be stimulated by addition of various carbon sources and it was also persistent under aerobic conditions for one site. Reductive dehalogenation of 1,1,1-TCA to DCA was rapid when zerovalent iron was used, but conversion of DCA was much slower. (orig.)

  14. pH and Organic Carbon Dose Rates Control Microbially Driven Bioremediation Efficacy in Alkaline Bauxite Residue.

    Science.gov (United States)

    Santini, Talitha C; Malcolm, Laura I; Tyson, Gene W; Warren, Lesley A

    2016-10-18

    Bioremediation of alkaline tailings, based on fermentative microbial metabolisms, is a novel strategy for achieving rapid pH neutralization and thus improving environmental outcomes associated with mining and refining activities. Laboratory-scale bioreactors containing bauxite residue (an alkaline, saline tailings material generated as a byproduct of alumina refining), to which a diverse microbial inoculum was added, were used in this study to identify key factors (pH, salinity, organic carbon supply) controlling the rates and extent of microbially driven pH neutralization (bioremediation) in alkaline tailings. Initial tailings pH and organic carbon dose rates both significantly affected bioremediation extent and efficiency with lower minimum pHs and higher extents of pH neutralization occurring under low initial pH or high organic carbon conditions. Rates of pH neutralization (up to 0.13 mM H + produced per day with pH decreasing from 9.5 to ≤6.5 in three days) were significantly higher in low initial pH treatments. Representatives of the Bacillaceae and Enterobacteriaceae, which contain many known facultative anaerobes and fermenters, were identified as key contributors to 2,3-butanediol and/or mixed acid fermentation as the major mechanism(s) of pH neutralization. Initial pH and salinity significantly influenced microbial community successional trajectories, and microbial community structure was significantly related to markers of fermentation activity. This study provides the first experimental demonstration of bioremediation in bauxite residue, identifying pH and organic carbon dose rates as key controls on bioremediation efficacy, and will enable future development of bioreactor technologies at full field scale.

  15. CHARACTERIZATION OF SURFACE OF THE (010 FACE OF BORAX CRYSTALS USING EX SITU ATOMIC FORCE MICROSCOPY (AFM:

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The surface topology of borax crystals grown at a relative supersaturation of 0.21 has been investigated using ex situ atomic force microscopy (AFM. It was found that the cleavage of borax crystals along the (010 face planes has features of the cleavage of layered compounds, exhibiting cleavage steps of low heights. The step heights of the cleavage of the (010 face of borax crystal are from one unit cell to three unit cells of this face.   Keywords: AFM, cleavage, borax.

  16. Active ex situ protection and reestablishment of Dianthus gratianopolitanus Vill. in the “Goździk siny w Grzybnie” reserve (Wielkopolska Province

    Directory of Open Access Journals (Sweden)

    Jańczyk-Węglarska Jolanta

    2013-12-01

    Full Text Available The following paper presents the results of observations of the size and condition of cheddar pink (Dianthus gratianopolitanus Vill. population in the “Goździk siny w Grzybnie” reserve (Wielkopolska Province, as well as active cultivation of the species in ex situ controlled conditions and its reestablishment supporting the natural, endangered population in the reserve

  17. Health of an ex situ population of raptors (Falconiformes and Strigiformes in Mexico: diagnosis of internal parasites

    Directory of Open Access Journals (Sweden)

    Tiziano Santos

    2011-09-01

    Full Text Available Successful programs for ex situ and in situ conservation and management of raptors require detailed knowledge about their pathogens. The purpose of this study was to identify the internal parasites of some captive raptors in Mexico, as well as to verify their impact in the health status of infected birds. Birds of prey were confiscated and kept in captivity at the Centro de Investigación y Conservación de Vida Silvestre (CIVS in Los Reyes La Paz, Mexico State. For this, fecal and blood samples from 74 birds of prey (66 Falconiformes and eight Strigiformes of 15 species, juveniles and adults from both sexes (39 males and 35 female, were examined for the presence of gastrointestinal and blood parasites. Besides, the oropharyngeal cavity was macroscopically examined for the presence of lesions compatible with trichomoniasis. Among our results we found that lesions compatible with Trichomonas gallinae infection were detected only in two Red-tailed hawks (Buteo jamaicensis (2.7%; nevertheless, infected birds were in good physical condition. Overall, gastrointestinal parasites were found in 10 (13.5% raptors: nine falconiforms (13.6% and one strigiform (12.5%, which mainly presented a single type of gastrointestinal parasite (90%. Eimeria spp. was detected in Harris’s hawk (Parabuteo unicinctus, Swainson’s hawk (Buteo swainsoni, Red-tailed hawk (B. jamaicensis and Great horned owl (Bubo virginianus; whereas trematodes eggs were found in Peregrine falcon (Falco peregrinus and Swainson’s hawk (B. swainsoni. Furthermore, eggs of Capillaria spp. were found in one Swainson’s hawk (B. swainsoni, which was also infected by trematodes. Hemoprotozoarian were detected in five (6.7% falconiforms: Haemoproteus spp. in American kestrel (F. sparverius and Leucocytozoon spp. in Red-tailed hawk (B. jamaicencis. Despite this, no clinical signs referable to gastrointestinal or blood parasite infection were observed in any birds. All parasites identified were

  18. Bioreactor configurations for ex-situ treatment of perchlorate: a review.

    Science.gov (United States)

    Sutton, Paul M

    2006-12-01

    The perchlorate anion has been detected in the drinking water of millions of people living in the United States. At perchlorate levels equal to or greater than 1 mg/L and where the water is not immediately used for household purposes, ex-situ biotreatment has been widely applied. The principal objective of this paper was to compare the technical and economic advantages and disadvantages of various bioreactor configurations in the treatment of low- and medium-strength perchlorate-contaminated aqueous streams. The ideal bioreactor configuration for this application should be able to operate efficiently while achieving a long solids retention time, be designed to promote physical-chemical adsorption in addition to biodegradation, and operate under plug-flow hydraulic conditions. To date, the granular activated carbon (GAC) or sand-media-based fluidized bed reactors (FBRs) and GAC, sand-, or plastic-media-based packed bed reactors (PBRs) have been the reactor configurations most widely applied for perchlorate treatment. Only the FBR configuration has been applied commercially. Commercial-scale cost information presented implies no economic advantage for the PBR relative to the FBR configuration. Full-scale application information provides evidence that the FBR is a good choice for treating perchlorate-contaminated aqueous streams.

  19. Ex situ investigation of the step bunching on crystal surfaces by atomic force microscopy

    Science.gov (United States)

    Krasinski, Mariusz J.

    1997-07-01

    We are describing ex situ observation of step bunching on the surfaces of solution grown potassium dihydrogen phosphate (KDP) and sodium chlorate monocrystals. The measurements have been done with the use of atomic force microscope. The use of this equipment allowed us to see directly the structure of macrosteps. Observation confirmed the existence of step pinning which is one of the proposed mechanisms of step bunching. Despite the very high resolution of AFM it was not possible to determine the nature of pinning point. The monatomic steps on KDP and sodium chlorate crystal surfaces are mainly one unit cell high what seems to be the result of the steps pairing. The origin of observed step pattern is discussed in frames of existing theories.

  20. In situ capping for size control of monochalcogenide (ZnS, CdS and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    International Nuclear Information System (INIS)

    Jang, Gyoung Gug; Datskos, Panos G; Jacobs, Christopher B; Ivanov, Ilia N; Joshi, Pooran C; Meyer, Harry M III; Armstrong, Beth L; Kidder, Michelle; Graham, David E; Moon, Ji-Won

    2015-01-01

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. The capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm. (paper)

  1. Responses of nutrients and mobile carbohydrates in Quercus variabilis seedlings to environmental variations using in situ and ex situ experiments.

    Directory of Open Access Journals (Sweden)

    Jing-Pin Lei

    Full Text Available Forest tree species distributed across a wide range of geographical areas are subjected to differential climatic and edaphic conditions and long-term selection, leading to genotypes with morphological and physiological adaptation to the local environment. To test the ability of species to cope with changing environmental conditions, we studied the ecophysiological features of Quercus variabilis using seedlings grown in geographically widely isolated populations (Exp. I, in situ and in a common garden (Exp. II, ex situ using seedlings originating from those populations. We found that Q. variabilis plants grown in different locations along a south-north gradient had different levels of nutrients (N, P, K and carbon-physiological performance (photosynthesis, non-structural carbohydrates, such as soluble sugars and starch, and that these physiological differences were not correlated with local soil properties. These geographic variations of plant physiology disappeared when plants from different locations were grown in the same environment. Our results indicate that the physiological performance of Q. variabilis plants is mainly determined by the climatic variations across latitude rather than by their soils or by genetic differentiation. The adaptive ability of Q. variabilis found in the present study suggests that this species has the potential to cope, at least to some extent, with changing environmental conditions.

  2. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.

    Science.gov (United States)

    Amani, Hossein; Müller, Markus Michael; Syldatk, Christoph; Hausmann, Rudolf

    2013-07-01

    Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g(-1), respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a

  3. Risk-based approach for bioremediation of fuel hydrocarbons at a major airport

    International Nuclear Information System (INIS)

    Wiedemeier, T.H.; Guest, P.R.; Blicker, B.R.

    1994-01-01

    This paper describes a risk-based approach for bioremediation of fuel-hydrocarbon-contaminated soil and ground water at a major airport in Colorado. In situ bioremediation pilot testing, natural attenuation modeling, and full-scale remedial action planning and implementation for soil and ground water contamination has conducted at four airport fuel farms. The sources of fuel contamination were leaking underground storage tanks (USTs) or pipelines transporting Jet A fuel and aviation gasoline. Continuing sources of contamination were present in several small cells of free-phase product and in fuel residuals trapped within the capillary fringe at depths 15 to 20 feet below ground surface. Bioventing pilot tests were conducted to assess the feasibility of using this technology to remediate contaminated soils. The pilot tests included measurement of initial soil gas chemistry at the site, determination of subsurface permeability, and in situ respiration tests to determine fuel biodegradation rates. A product recovery test was also conducted. ES designed and installed four full-scale bioventing systems to remediate the long-term sources of continuing fuel contamination. Benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) were detected in ground water at concentrations slightly above regulatory guidelines

  4. An enhanced aerobic bioremediation system at a central production facility -- system design and data analysis

    International Nuclear Information System (INIS)

    Chiang, C.; Petkovsky, P.; Beltz, M.; Rouse, S.; Boyd, T.; Newell, C.; McHugh, T.

    1993-01-01

    A successful field demonstration of the enhanced in-situ aerobic bioremediation with remarkable results took place during the period of August 1, 1991 through year-end 1992 at a central production facility in Michigan. The in-situ soil logging and groundwater sampling by the cone penetrometer/porous probe system provided a real-time definition of the groundwater flow ''channel'' and a clear delineation of the plume extent. That facilitated the design of the closed-loop bioremediation system, consisting of two downgradient pumping wells to completely capture the plume and two pairs of bi-level injection wells located upgradient of the plume. The purged groundwater from the two pumping wells after amending with dissolved oxygen is directly reinjected to the two pairs of upgradient bi-level injection wells. In addition, the performance of the system is monitored by 17 multilevel piezometers. Each piezometer consists of four vertical sampling levels, providing a total of 68 sampling points to fully define the three-dimensional characteristics of the BTEX and DO plumes. Based on a hydrograph analysis of the groundwater data, the closed-loop bioremediation system has been operating properly. In addition, a particle tracking analysis showed groundwater flowlines converge to the pumping wells demonstrating the effectiveness of the plume capture. The trend analysis showed a consistent decline of BTEX concentrations at all of the 68 sampling points

  5. Health of an ex situ population of raptors (Falconiformes and Strigiformes) in Mexico: diagnosis of internal parasites.

    Science.gov (United States)

    Santos, Tiziano; de Oliveira, Jaqueline B; Vaughan, Christopher; Santiago, Heber

    2011-09-01

    Successful programs for ex situ and in situ conservation and management of raptors require detailed knowledge about their pathogens. The purpose of this study was to identify the internal parasites of some captive raptors in Mexico, as well as to verify their impact in the health status of infected birds. Birds of prey were confiscated and kept in captivity at the Centro de Investigación y Conservación de Vida Silvestre (CIVS) in Los Reyes La Paz, Mexico State. For this, fecal and blood samples from 74 birds of prey (66 Falconiformes and eight Strigiformes) of 15 species, juveniles and adults from both sexes (39 males and 35 female), were examined for the presence of gastrointestinal and blood parasites. Besides, the oropharyngeal cavity was macroscopically examined for the presence of lesions compatible with trichomoniasis. Among our results we found that lesions compatible with Trichomonas gallinae infection were detected only in two Red-tailed hawks (Buteo jamaicensis) (2.7%); nevertheless, infected birds were in good physical condition. Overall, gastrointestinal parasites were found in 10 (13.5%) raptors: nine falconiforms (13.6%) and one strigiform (12.5%), which mainly presented a single type of gastrointestinal parasite (90%). Eimeria spp. was detected in Harris's hawk (Parabuteo unicinctus), Swainson's hawk (Buteo swainsoni), Red-tailed hawk (B. jamaicensis) and Great horned owl (Bubo virginianus); whereas trematodes eggs were found in Peregrine falcon (Falco peregrinus) and Swainson's hawk (B. swainsoni). Furthermore, eggs of Capillaria spp. were found in one Swainson's hawk (B. swainsoni), which was also infected by trematodes. Hemoprotozoarian were detected in five (6.7%) falconiforms: Haemoproteus spp. in American kestrel (F. sparverius) and Leucocytozoon spp. in Red-tailed hawk (B. jamaicencis). Despite this, no clinical signs referable to gastrointestinal or blood parasite infection were observed in any birds. All parasites identified were recorded

  6. Two Pilot Plant Reactors Designed for the In Situ Bioremediation of Chlorobenzene-contaminated Ground Water: Hydrogeological and Chemical Characteristics and Bacterial Consortia

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten, E-mail: vogt@umb.ufz.de; Alfreider, Albin [UFZ Centre for Environmental Research, Department of Environmental Microbiology (Germany); Lorbeer, Helmut [University of Technology Dresden, Institute of Waste Management and Contaminated Site Treatment (Germany); Ahlheim, Joerg; Feist, Bernd [UFZ Centre for Environmental Research, Department of Industrial and Mining Landscapes (Germany); Boehme, Olaf [GFE GmbH Halle (Germany); Weiss, Holger [UFZ Centre for Environmental Research, Department of Industrial and Mining Landscapes (Germany); Babel, Wolfgang; Wuensche, Lothar [UFZ Centre for Environmental Research, Department of Environmental Microbiology (Germany)

    2002-05-15

    The SAFIRA in situ pilot plant in Bitterfeld, Saxonia-Anhalt, Germany, currently serves as the test site for eight different in situ approaches to remediate anoxic chlorobenzene (CB)-contaminated ground water. Two reactors, both filled with original lignite-containing aquifer material, are designed for the microbiological in situ remediation of the ground water by the indigenous microbial consortia. In this study, the hydrogeological, chemical and microbiological conditions of the in flowing ground water and reactor filling material are presented,in order to establish the scientific basis for the start of the bioremediation process itself. The reactors were put into operation in June 1999. In the following, inflow CB concentrations in the ground water varied between 22 and 33 mg L{sup -1}; a chemical steady state for CB in both reactors was reached after 210 till 260 days operation time. The sediments were colonized by high numbers of aerobic, iron-reducing and denitrifying bacteria, as determined after 244 and 285 days of operation time. Furthermore, aerobic CB-degrading bacteria were detected in all reactor zones. Comparative sequence analysis of16S rDNA gene clone libraries suggest the dominance of Proteobacteria (Comamonadaceae, Alcaligenaceae, Gallionella group, Acidithiobacillus) and members of the class of low G+C gram-positive bacteria in the reactor sediments. In the inflowing ground water, sequences with phylogenetic affiliation to sulfate-reducing bacteria and sequences not affiliated with the known phyla of Bacteria, were found.

  7. Two Pilot Plant Reactors Designed for the In Situ Bioremediation of Chlorobenzene-contaminated Ground Water: Hydrogeological and Chemical Characteristics and Bacterial Consortia

    International Nuclear Information System (INIS)

    Vogt, Carsten; Alfreider, Albin; Lorbeer, Helmut; Ahlheim, Joerg; Feist, Bernd; Boehme, Olaf; Weiss, Holger; Babel, Wolfgang; Wuensche, Lothar

    2002-01-01

    The SAFIRA in situ pilot plant in Bitterfeld, Saxonia-Anhalt, Germany, currently serves as the test site for eight different in situ approaches to remediate anoxic chlorobenzene (CB)-contaminated ground water. Two reactors, both filled with original lignite-containing aquifer material, are designed for the microbiological in situ remediation of the ground water by the indigenous microbial consortia. In this study, the hydrogeological, chemical and microbiological conditions of the in flowing ground water and reactor filling material are presented,in order to establish the scientific basis for the start of the bioremediation process itself. The reactors were put into operation in June 1999. In the following, inflow CB concentrations in the ground water varied between 22 and 33 mg L -1 ; a chemical steady state for CB in both reactors was reached after 210 till 260 days operation time. The sediments were colonized by high numbers of aerobic, iron-reducing and denitrifying bacteria, as determined after 244 and 285 days of operation time. Furthermore, aerobic CB-degrading bacteria were detected in all reactor zones. Comparative sequence analysis of16S rDNA gene clone libraries suggest the dominance of Proteobacteria (Comamonadaceae, Alcaligenaceae, Gallionella group, Acidithiobacillus) and members of the class of low G+C gram-positive bacteria in the reactor sediments. In the inflowing ground water, sequences with phylogenetic affiliation to sulfate-reducing bacteria and sequences not affiliated with the known phyla of Bacteria, were found

  8. Bioremediation of fossil fuel contaminated soils

    International Nuclear Information System (INIS)

    Atlas, R.M.

    1991-01-01

    Bioremediation involves the use of microorganisms and their biodegradative capacity to remove pollutants. The byproducts of effective bioremediation, such as water and carbon dioxide, are nontoxic and can be accommodated without harm to the environment and living organisms. This paper reports that using bioremediation to remove pollutants has many advantages. This method is cheap, whereas physical methods for decontaminating the environment are extraordinarily expensive. Neither government nor private industry can afford the cost to clean up physically the nation's known toxic waste sites. Therefore, a renewed interest in bioremediation has developed. Whereas current technologies call for moving large quantities of toxic waste and its associated contaminated soil to incinerators, bioremediation can be done on site and requires simple equipment that is readily available. Bioremediation, though, is not the solution for all environmental pollution problems. Like other technologies, bioremediation has limitations

  9. Bioremediation of ground water contaminants at a uranium mill tailings site

    International Nuclear Information System (INIS)

    Barton, L.L.; Nuttall, H.E.; Thomson, B.M.; Lutze, W.

    1995-01-01

    Ground water contaminated with uranium from milling operations must be remediated to reduce the migration of soluble toxic compounds. At the mill tailings site near Tuba City, Arizona (USA) the approach is to employ bioremediation for in situ immobilization of uranium by bacterial reduction of uranyl, U(VI), compounds to uraninite, U(IV). In this initial phase of remediation, details are provided to indicate the magnitude of the contamination problem and to present preliminary evidence supporting the proposition that bacterial immobilization of uranium is possible. Additionally, consideration is given to contaminating cations and anions that may be at toxic levels in ground water at this uranium mill tailing site and detoxification strategies using bacteria are addressed. A model concept is employed so that results obtained at the Tuba City site could contribute to bioremediation of ground water at other uranium mill tailings sites

  10. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; Obiora, S. C.

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  11. Stochastic, goal-oriented rapid impact modeling of uncertainty and environmental impacts in poorly-sampled sites using ex-situ priors

    Science.gov (United States)

    Li, Xiaojun; Li, Yandong; Chang, Ching-Fu; Tan, Benjamin; Chen, Ziyang; Sege, Jon; Wang, Changhong; Rubin, Yoram

    2018-01-01

    Modeling of uncertainty associated with subsurface dynamics has long been a major research topic. Its significance is widely recognized for real-life applications. Despite the huge effort invested in the area, major obstacles still remain on the way from theory and applications. Particularly problematic here is the confusion between modeling uncertainty and modeling spatial variability, which translates into a (mis)conception, in fact an inconsistency, in that it suggests that modeling of uncertainty and modeling of spatial variability are equivalent, and as such, requiring a lot of data. This paper investigates this challenge against the backdrop of a 7 km, deep underground tunnel in China, where environmental impacts are of major concern. We approach the data challenge by pursuing a new concept for Rapid Impact Modeling (RIM), which bypasses altogether the need to estimate posterior distributions of model parameters, focusing instead on detailed stochastic modeling of impacts, conditional to all information available, including prior, ex-situ information and in-situ measurements as well. A foundational element of RIM is the construction of informative priors for target parameters using ex-situ data, relying on ensembles of well-documented sites, pre-screened for geological and hydrological similarity to the target site. The ensembles are built around two sets of similarity criteria: a physically-based set of criteria and an additional set covering epistemic criteria. In another variation to common Bayesian practice, we update the priors to obtain conditional distributions of the target (environmental impact) dependent variables and not the hydrological variables. This recognizes that goal-oriented site characterization is in many cases more useful in applications compared to parameter-oriented characterization.

  12. Characterization of the Aerobic Oxidation of cis-Dichloroethene and Vinyl Chloride in Support of Bioremediation of Chloroethene-Contaminated Sites

    National Research Council Canada - National Science Library

    Gossett, James M; Mattes, Timothy E; Sills, Deborah L; Spain, Jim C; Nishino, Shirley F; Coleman, Nicholas V

    2004-01-01

    ...) and trichloroethene (TCE). Accumulation of VC and cDCE under anaerobic conditions limits the application of natural attenuation and enhanced reductive anaerobic biological in-situ treatment technologies (RABITT...

  13. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingming, E-mail: sunmingming@njau.edu.cn [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Key Laboratory of Soil Environmental and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Ye, Mao [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Feng, E-mail: fenghu@njau.edu.cn [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li, Huixin [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Teng, Ying [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Jiang, Xin [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Kengara, Fredrick Orori [Department of Chemistry, Maseno University, Private Bag, Maseno 40105 (Kenya)

    2014-01-15

    Highlights: • Enhanced anaerobic bioremediation of a red paddy soil polluted with PAHs. • 1% (w/w) methyl-β-cyclodextrin (MCD) and 20 mM nitrate addition acted as solubility-enhancing agent and electron acceptor respectively. • Tenax extraction and a first-three-compartment modeling were applicable to explore the rate-limiting factors in the biodegradation. • Lack of PAH-degraders hindered biodegradation in control and MCD addition treatments. • Inadequate bioaccessible PAHs was vital rate-limiting factor in nitrate addition treatments. -- Abstract: The effectiveness of anaerobic bioremediation systems for PAH-contaminated soil may be constrained by low contaminants bioaccessibility due to limited aqueous solubility and lack of suitable electron acceptors. Information on what is the rate-limiting factor in bioremediation process is of vital importance in the decision in what measures can be taken to assist the biodegradation efficacy. In the present study, four different microcosms were set to study the effect of methyl-β-cyclodextrin (MCD) and nitrate addition (N) on PAHs biodegradation under anaerobic conditions in a red paddy soil. Meanwhile, sequential Tenax extraction combined with a first-three-compartment model was employed to evaluate the rate-limiting factors in MCD enhanced anaerobic biodegradation of PAHs. Microcosms with both 1% (w/w) MCD and 20 mM N addition produced maximum biodegradation of total PAHs of up to 61.7%. It appears rate-limiting factors vary with microcosms: low activity of degrading microorganisms is the vital rate-limiting factor for control and MCD addition treatments (CK and M treatments); and lack of bioaccessible PAHs is the main rate-limiting factor for nitrate addition treatments (N and MN treatments). These results have practical implications for site risk assessment and cleanup strategies.

  14. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil

    International Nuclear Information System (INIS)

    Sun, Mingming; Ye, Mao; Hu, Feng; Li, Huixin; Teng, Ying; Luo, Yongming; Jiang, Xin; Kengara, Fredrick Orori

    2014-01-01

    Highlights: • Enhanced anaerobic bioremediation of a red paddy soil polluted with PAHs. • 1% (w/w) methyl-β-cyclodextrin (MCD) and 20 mM nitrate addition acted as solubility-enhancing agent and electron acceptor respectively. • Tenax extraction and a first-three-compartment modeling were applicable to explore the rate-limiting factors in the biodegradation. • Lack of PAH-degraders hindered biodegradation in control and MCD addition treatments. • Inadequate bioaccessible PAHs was vital rate-limiting factor in nitrate addition treatments. -- Abstract: The effectiveness of anaerobic bioremediation systems for PAH-contaminated soil may be constrained by low contaminants bioaccessibility due to limited aqueous solubility and lack of suitable electron acceptors. Information on what is the rate-limiting factor in bioremediation process is of vital importance in the decision in what measures can be taken to assist the biodegradation efficacy. In the present study, four different microcosms were set to study the effect of methyl-β-cyclodextrin (MCD) and nitrate addition (N) on PAHs biodegradation under anaerobic conditions in a red paddy soil. Meanwhile, sequential Tenax extraction combined with a first-three-compartment model was employed to evaluate the rate-limiting factors in MCD enhanced anaerobic biodegradation of PAHs. Microcosms with both 1% (w/w) MCD and 20 mM N addition produced maximum biodegradation of total PAHs of up to 61.7%. It appears rate-limiting factors vary with microcosms: low activity of degrading microorganisms is the vital rate-limiting factor for control and MCD addition treatments (CK and M treatments); and lack of bioaccessible PAHs is the main rate-limiting factor for nitrate addition treatments (N and MN treatments). These results have practical implications for site risk assessment and cleanup strategies

  15. Arctic bioremediation

    International Nuclear Information System (INIS)

    Lidell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  16. TREATMENT TESTS FOR EX SITU REMOVAL OF CHROMATE & NITRATE & URANIUM (VI) FROM HANFORD (100-HR-3) GROUNDWATER FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    BECK MA; DUNCAN JB

    1994-01-03

    This report describes batch and ion exchange column laboratory scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}{sup -}) and uranium (present as uranium [VI]) from contaminated Hanford site groundwaters. The technologies investigated include: chemical precipitation or coprecipitation to remove chromate and uranium; and anion exchange to remove chromate, uranium and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan. The method suggested for future study is anion exchange.

  17. Comparative Intradermal Tuberculin Testing of Free-Ranging African Buffaloes (Syncerus caffer Captured for Ex Situ Conservation in the Kafue Basin Ecosystem in Zambia

    Directory of Open Access Journals (Sweden)

    Hetron Mweemba Munang'andu

    2011-01-01

    Full Text Available Bovine tuberculosis (BTB is endemic in African buffaloes (Syncerus caffer in some National Parks in Southern Africa, whilst no studies have been conducted on BTB on buffalo populations in Zambia. The increased demand for ecotourism and conservation of the African buffalo on private owned game ranches has prompted the Zambian Wildlife Authority (ZAWA and private sector in Zambia to generate a herd of “BTB-free buffaloes” for ex situ conservation. In the present study, 86 African buffaloes from four different herds comprising a total of 530 animals were investigated for the presence of BTB for the purpose of generating “BTB free” buffalo for ex-situ conservation. Using the comparative intradermal tuberculin test (CIDT the BTB status at both individual animal and herd level was estimated to be 0.0% by the CIDT technique. Compared to Avian reactors only, a prevalence of 5.8% was determined whilst for Bovine-only reactors a prevalence of 0.0% was determined. These results suggest the likelihood of buffalo herds in the Kafue National Park being free of BTB.

  18. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514.

    Science.gov (United States)

    Varjani, Sunita J; Upasani, Vivek N

    2016-11-01

    The aim of this work was to study the Microbial Enhanced Oil Recovery (MEOR) employing core field model ex-situ bioaugmenting a thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa. Thin Layer Chromatography (TLC) revealed that the biosurfactant produced was rhamnolipid type. Nuclear Magnetic Resonance analysis showed that the purified rhamnolipids comprised two principal rhamnolipid homologues, i.e., Rha-Rha-C10-C14:1 and Rha-C8-C10. The rhamnolipid was stable under wide range of temperature (4°C, 30-100°C), pH (2.0-10.0) and NaCl concentration (0-18%, w/v). Core Flood model was designed for oil recovery operations using rhamnolipid. The oil recovery enhancement over Residual Oil Saturation was 8.82% through ex-situ bioaugmentation with rhamnolipid. The thermal stability of rhamnolipid shows promising scope for its application at conditions where high temperatures prevail in oil recovery processes, whereas its halo-tolerant nature increases its application in marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. In silico Analysis for Laccase-mediated Bioremediation of the Emerging Pharmaceutical Pollutants

    Directory of Open Access Journals (Sweden)

    Anjali Singh

    2015-12-01

    Full Text Available Laccases, a copper oxidase enzyme, has been employed for bioremediation of anthropogenic pollutants in the recent past. Laccase has a broad range of substrate specificity which offers the prospect for screening in numerable xenobiotics. The present study was aimed to use protein-ligand docking as a tool for prediction of biodegradation of selected pharmaceutical pollutants. A comparative study was also done to determine the binding efficacy of bacterial and fungal laccase for those selected pollutants. The laccase-pollutant docking was carried out using HEX software. The docking scores of bacterial and fungal laccase for predefined pollutants were comparable to ABTS, a substrate for laccase, which suggested that laccase might be able to degrade emerging pharmaceutical pollutants. The docking analysis approach can be useful in prediction of binding competence of pharmaceutical pollutants with laccase for in situ laccase-mediated bioremediation.

  20. An evaluation of bioremediation of oiled sediments buried within a mudflat environment

    International Nuclear Information System (INIS)

    Swannell, R. P. J.; Mitchell, D. J.; Jones, D. M.; Willis, A. L.; Lee, K.

    1997-01-01

    An investigation was carried out to determine the potential of bioremediation to treat an oil-contaminated shoreline sediment in the southwest of England. The specific objective was to determine whether periodic additions of inorganic nitrate and phosphate could be used to enhance the biodegradation rate of weathered and emulsified Arabian Light crude oil-contaminated sediment stranded on the beach at a depth of about 15 cm. To measure the potential for successful treatment, changes in the chemical composition and concentration of residual hydrocarbons, microbial carbon dioxide production rates in situ and in the hydrocarbon-degrading microbial community, were monitored. Results showed that regular additions of inorganic nutrients significantly enhanced the rate of oil biodegradation in comparison with unfertilized oil sediments, indicating that bioremediation could be successful in treating buried oil in aerobic fine sediments.17 refs., 4 tabs., 4 figs

  1. APPLICATION, PERFORMANCE, AND COSTS OF ...

    Science.gov (United States)

    A critical review of biological treatment processes for remediation of contaminated soils is presented. The focus of the review is on documented cost and performance of biological treatment technologies demonstrated at full- or field-scale. Some of the data were generated by the U.S. Environmental Protection Agency's (EPA's) Bioremediation in the Field Program, jointly supported by EPA's Office of Research and Development, EPA's Office of Solid Waste and Emergency Waste, and the EPA Regions through the Superfund Innovative Technology Evaluation Program (SITE) Program. Military sites proved to be another fertile data source. Technologies reviewed in this report include both ex-situ processes, (land treatment, biopile/biocell treatment, composting, and bioslurry reactor treatment) and in-situ alternatives (conventional bioventing, enhanced or cometabolic bioventing, anaerobic bioventing, bioslurping, phytoremediation, and natural attenuation). Targeted soil contaminants at the documented sites were primarily organic chemicals, including BTEX, petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), chlorinated aliphatic hydrocarbons (CAHs), organic solvents, polychlorinated biphenyls (PCBs), pesticides, dioxin, and energetics. The advantages, limitations, and major cost drivers for each technology are discussed. Box and whisker plots are used to summarize before and after concentrations of important contaminant groups for those technologies consider

  2. Site characterization for the in situ bioremediation of the vadose zone

    International Nuclear Information System (INIS)

    Montemagno, C.D.; Leo, A.; Craig, J.

    1993-01-01

    Studies were conducted to determine whether bioremediation can be used to treat a diesel fuel spill in the deep vadose zone (>30 m). After laboratory studies confirmed the ability of the natural population of organisms to degrade the diesel fuel, the technological issue of transporting the required mass of nutrients to the contaminated soils was addressed. Laboratory studies demonstrated that nutrient and oxygen transport can be enhanced by the addition of divalent cations to injected waters. This addition of minerals caused the observed hydraulic conductivity to be maintained at elevated levels that allowed the macronutrient nitrogen, provided as ammonium ion, to be more uniformly distributed to target soil domains

  3. Health of an ex situ population of raptors (Falconiformes and Strigiformes in Mexico: diagnosis of internal parasites

    Directory of Open Access Journals (Sweden)

    Tiziano Santos

    2011-09-01

    Full Text Available Successful programs for ex situ and in situ conservation and management of raptors require detailed knowledge about their pathogens. The purpose of this study was to identify the internal parasites of some captive raptors in Mexico, as well as to verify their impact in the health status of infected birds. Birds of prey were confiscated and kept in captivity at the Centro de Investigación y Conservación de Vida Silvestre (CIVS in Los Reyes La Paz, Mexico State. For this, fecal and blood samples from 74 birds of prey (66 Falconiformes and eight Strigiformes of 15 species, juveniles and adults from both sexes (39 males and 35 female, were examined for the presence of gastrointestinal and blood parasites. Besides, the oropharyngeal cavity was macroscopically examined for the presence of lesions compatible with trichomoniasis. Among our results we found that lesions compatible with Trichomonas gallinae infection were detected only in two Red-tailed hawks (Buteo jamaicensis (2.7%; nevertheless, infected birds were in good physical condition. Overall, gastrointestinal parasites were found in 10 (13.5% raptors: nine falconiforms (13.6% and one strigiform (12.5%, which mainly presented a single type of gastrointestinal parasite (90%. Eimeria spp. was detected in Harris’s hawk (Parabuteo unicinctus, Swainson’s hawk (Buteo swainsoni, Red-tailed hawk (B. jamaicensis and Great horned owl (Bubo virginianus; whereas trematodes eggs were found in Peregrine falcon (Falco peregrinus and Swainson’s hawk (B. swainsoni. Furthermore, eggs of Capillaria spp. were found in one Swainson’s hawk (B. swainsoni, which was also infected by trematodes. Hemoprotozoarian were detected in five (6.7% falconiforms: Haemoproteus spp. in American kestrel (F. sparverius and Leucocytozoon spp. in Red-tailed hawk (B. jamaicencis. Despite this, no clinical signs referable to gastrointestinal or blood parasite infection were observed in any birds. All parasites identified were

  4. Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Koutsokeras, L. E.; Abadias, G.

    2012-01-01

    Low-mobility materials, like transition metal nitrides, usually undergo large residual stress when sputter-deposited as thin films. While the origin of stress development has been an active area of research for high-mobility materials, atomistic processes are less understood for low-mobility systems. In the present work, the contribution of grain boundary to intrinsic stress in reactively magnetron-sputtered ZrN films is evaluated by combining in situ wafer curvature measurements, providing information on the overall biaxial stress, and ex situ x-ray diffraction, giving information on elastic strain (and related stress) inside crystallites. The thermal stress contribution was also determined from the in situ stress evolution during cooling down, after deposition was stopped. The stress data are correlated with variations in film microstructure and growth energetics, in the 0.13-0.42 Pa working pressure range investigated, and discussed based on existing stress models. At low pressure (high energetic bombardment conditions), a large compressive stress is observed due to atomic peening, which induces defects inside crystallites but also promotes incorporation of excess atoms in the grain boundary. Above 0.3-0.4 Pa, the adatom surface mobility is reduced, leading to the build-up of tensile stress resulting from attractive forces between under-dense neighbouring column boundary and possible void formation, while crystallites can still remain under compressive stress.

  5. Biosurfactant-enhanced soil bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Lu, G.; Velikonja, J. [Univ. of Western Ontario, London, Ontario (Canada)

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  6. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Sahir, A.; Tan, E.; Humbird, D.; Snowden-Swan, L. J.; Meyer, P.; Ross, J.; Sexton, D.; Yap, R.; Lukas, J.

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.

  7. Ex-situ bioremediation of polycyclic aromatic hydrocarbons in sewage sludge

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Larsen, S.B.; Karakashev, Dimitar Borisov

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) are naturally occurring organic compounds. As a result of anthropogenic activities, PAH concentration has increased in the environment considerably. PAH are regarded as environmental pollutants because they have toxic, mutagenic and carcinogenic effects on l...

  8. Ex-situ bioremediation of polycyclic aromatic hydrocarbons in sewage sludge

    DEFF Research Database (Denmark)

    Larsen, Sille Bendix; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAH) are regarded as environmental pollutants. A promising approach to reduce PAH pollution is based on the implementation of the natural potential of some microorganisms to utilize hydrocarbons. In this study Proteiniphilum acetatigenes was used for bioaugmentat...

  9. Arctic bioremediation

    International Nuclear Information System (INIS)

    Liddell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  10. Ex-situ activation of magnesium acceptors in InGaN/LED-structures

    Energy Technology Data Exchange (ETDEWEB)

    Kusch, Gunnar; Frentrup, Martin; Stellmach, Joachim; Kolbe, Tim; Wernicke, Tim; Pristovsek, Markus; Kneissl, Michael [Technische Universitaet Berlin, Institut fuer Festkoerperphysik, Hardenbergstr. 36, 10623 Berlin (Germany)

    2011-07-01

    One of the main problems limiting the output power of group-III-nitride compound light emitting diodes (LEDs) and laser diodes (LD) is the p-doping of nitrides with magnesium (Mg). During metal-organic vapor phase epitaxy (MOVPE) growth of (Al)GaN:Mg magnesium acceptors are passivated by hydrogen (H). By thermal annealing under nitrogen atmosphere the Mg-H bond can be cracked, thus activating the Mg acceptor. We have investigated ex-situ Mg-activation of the p-GaN layer and p-AlGaN electron blocking layer (EBL) in LEDs grown by MOVPE. Especially the activation of the AlGaN EBL is crucial. Simulations show, that a high doping level is required for effective electron blocking and a high injection efficiency. Additionally the acceptor activation energy is expected to increase with increasing Al-content, reducing the free hole concentration in the EBL. Electroluminescence spectroscopy (EL) was performed to determine the influence of the activation on the external quantum efficiency of the LED structure. Furthermore we used CV measurements to determine the Mg-acceptor concentration.

  11. Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution

    International Nuclear Information System (INIS)

    Li, Yingbo; Liu, Jie; Deng, Yida; Han, Xiaopeng; Hu, Wenbin; Zhong, Cheng

    2016-01-01

    The initiation of corrosion pits in pipeline steels plays an important role in the development of stress corrosion cracking. In order to reveal the effect of inclusions on corrosion initiation sites and also to clarify contradictory results from previous literature, we proposed an ex situ characterization method that is allowed to characterize exactly the same inclusion or location of the surface of steel before and after corrosion tests. The time-dependent corrosion behaviour of the inclusions and the surrounding X100 steel matrix at the same area before and after early stage immersion in a near-neutral pH bicarbonate solution was investigated by ex situ scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and localized electrochemical impedance spectroscopy (LEIS). The sizes of most inclusions in X100 steel are below 3 μm. The results challenge the long-held opinion of previous work that corrosion pit initiations are related with the inclusions. It has been found that most of the inclusions remain stable (intact) during the whole testing time although severe corrosion occurs on the matrix of the steel. The chemical composition of the inclusion greatly affects the chemical stability of the inclusion. SiO_2 inclusions and complex inclusions with a high SiO_2 content remain intact although obvious general corrosion occurs on the steel matrix under the investigated immersion period. Inclusions with little Si, such as Al–Mg–Ca–O enriched inclusions, totally disappear after certain immersion time. During the immersion, the corrosion product tends to deposit at the interstice between the inclusion and steel matrix. - Highlights: • Ex situ characterization of metallurgical inclusions in X100 pipeline steel. • The pipeline steel was immersed in neutral pH bicarbonate solution. • Majority of inclusions remain stable during the whole testing time. • The chemical stability of metallurgical inclusions depends on the SiO_2 content.

  12. Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingbo; Liu, Jie [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Deng, Yida [Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Han, Xiaopeng [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Hu, Wenbin [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Zhong, Cheng, E-mail: cheng.zhong@tju.edu.cn [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-07-15

    The initiation of corrosion pits in pipeline steels plays an important role in the development of stress corrosion cracking. In order to reveal the effect of inclusions on corrosion initiation sites and also to clarify contradictory results from previous literature, we proposed an ex situ characterization method that is allowed to characterize exactly the same inclusion or location of the surface of steel before and after corrosion tests. The time-dependent corrosion behaviour of the inclusions and the surrounding X100 steel matrix at the same area before and after early stage immersion in a near-neutral pH bicarbonate solution was investigated by ex situ scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and localized electrochemical impedance spectroscopy (LEIS). The sizes of most inclusions in X100 steel are below 3 μm. The results challenge the long-held opinion of previous work that corrosion pit initiations are related with the inclusions. It has been found that most of the inclusions remain stable (intact) during the whole testing time although severe corrosion occurs on the matrix of the steel. The chemical composition of the inclusion greatly affects the chemical stability of the inclusion. SiO{sub 2} inclusions and complex inclusions with a high SiO{sub 2} content remain intact although obvious general corrosion occurs on the steel matrix under the investigated immersion period. Inclusions with little Si, such as Al–Mg–Ca–O enriched inclusions, totally disappear after certain immersion time. During the immersion, the corrosion product tends to deposit at the interstice between the inclusion and steel matrix. - Highlights: • Ex situ characterization of metallurgical inclusions in X100 pipeline steel. • The pipeline steel was immersed in neutral pH bicarbonate solution. • Majority of inclusions remain stable during the whole testing time. • The chemical stability of metallurgical inclusions depends on the SiO{sub 2

  13. Bioremediation protocols

    National Research Council Canada - National Science Library

    Sheehan, David

    1997-01-01

    ... . . .. .. . . . .. . . .. . . . . . .. . . . . . .. . . . .. . .. . . . . . . .. . . . .., . .. . . . . *... *.. . . . . . . .. . .. . . . . . . . .. .. .. . . . . . v IX PART I. OVERVIEW ., .,... . ,.. .. . . . . . . .. .. . . ., 7 1 Uses Emer of Bacteria Colleran in Bioremediation...

  14. Bioclogging Effects Relevant to In-Situ Bioremediation of Organic Contaminants

    Science.gov (United States)

    Bielefeldt, A. R.; Illangasekare, T.

    2002-05-01

    environments. The implications of ignoring bioclogging effects of the magnitude measured in the experimental systems when predicting contaminant plumes in the subsurface will be illustrated using simple models that incorporate biokinetics and hydrodynamic effects. The models will show the importance of including bioclogging effects when designing enhanced in-situ bioremediation systems.

  15. Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis) accessions from two ex situ genebanks.

    Science.gov (United States)

    Yousef, Eltohamy A A; Müller, Thomas; Börner, Andreas; Schmid, Karl J

    2018-01-01

    Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop for human nutrition. We characterized 192 cauliflower accessions from the USDA and IPK genebanks with genotyping by sequencing (GBS). They originated from 26 different countries and represent about 44% of all cauliflower accessions in both genebanks. The analysis of genetic diversity revealed that accessions formed two major groups that represented the two genebanks and were not related to the country of origin. This differentiation was robust with respect to the analysis methods that included principal component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was higher in the USDA collection and significant phenotypic differences between the two genebanks were found in three out of six traits investigated. GBS data have a high proportion of missing data, but we observed that the exclusion of single nucleotide polymorphisms (SNPs) with missing data or the imputation of missing SNP alleles produced very similar results. The results indicate that the composition and type of accessions have a strong effect on the structure of genetic diversity of ex situ collections, although regeneration procedures and local adaptation to regeneration conditions may also contribute to a divergence. Fst-based outlier tests of genetic differentiation identified only a small proportion (cauliflower genebank material and our results suggest that it may be useful to incorporate routine genotyping into accession management and seed regeneration to monitor the diversity present in ex situ collections and to reduce the loss of genetic diversity during seed regeneration.

  16. Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil.

    Science.gov (United States)

    Kis, Ágnes Erdeiné; Laczi, Krisztián; Zsíros, Szilvia; Kós, Péter; Tengölics, Roland; Bounedjoum, Naila; Kovács, Tamás; Rákhely, Gábor; Perei, Katalin

    2017-12-01

    Petroleum hydrocarbons and derivatives are widespread contaminants in both aquifers and soil, their elimination is in the primary focus of environmental studies. Microorganisms are key components in biological removal of pollutants. Strains capable to utilize hydrocarbons usually appear at the contaminated sites, but their metabolic activities are often restricted by the lack of nutrients and/or they can only utilize one or two components of a mixture. We isolated a novel Rhodococcus sp. MK1 strain capable to degrade the components of diesel oil simultaneously. The draft genome of the strain was determined and besides the chromosome, the presence of one plasmid could be revealed. Numerous routes for oxidation of aliphatic and aromatic compounds were identified. The strain was tested in ex situ applications aiming to compare alternative solutions for microbial degradation of hydrocarbons. The results of bioaugmentation and biostimulation experiments clearly demonstrated that - in certain cases - the indigenous microbial community could be exploited for bioremediation of oil-contaminated soils. Biostimulation seems to be efficient for removal of aged contaminations at lower concentration range, whereas bioaugmentation is necessary for the treatment of freshly and highly polluted sites.

  17. Postremediation bioremediation

    International Nuclear Information System (INIS)

    Brown, R.A.; Hicks, P.M.; Hicks, R.J.; Leahy, M.C.

    1995-01-01

    In applying remediation technology, an important question is when to stop operations. Conventional wisdom states that each site has a limit of treatability. Beyond a point, the site conditions limit access to residual contaminants and, therefore, treatment effectiveness. In the treatment of petroleum hydrocarbons, the issue in ceasing remedial operations is not what is the limit of treatment, but what should be the limit of effort. Because hydrocarbons are inherently biodegradable, there is a point in remediation where natural or intrinsic bioremediation is adequate to complete the remedial process. This point is reached when the rate of residual carbon release is the limiting factor, not the rate of oxygen or nutrient supply. At such a point, the rate and degree of remediation is the same whether an active system is being applied or whether nothing is being actively done. This paper presents data from several bioremediation projects where active remediation was terminated above the desired closure levels. These site data illustrate that intrinsic bioremediation is as effective in site closure as continued active remediation

  18. Quantifying Temporal Autocorrelations for the Expression of Geobacter species mRNA Gene Transcripts at Variable Ammonium Levels during in situ U(VI) Bioremediation

    Science.gov (United States)

    Mouser, P. J.

    2010-12-01

    In order to develop decision-making tools for the prediction and optimization of subsurface bioremediation strategies, we must be able to link the molecular-scale activity of microorganisms involved in remediation processes with biogeochemical processes observed at the field-scale. This requires the ability to quantify changes in the in situ metabolic condition of dominant microbes and associate these changes to fluctuations in nutrient levels throughout the bioremediation process. It also necessitates a need to understand the spatiotemporal variability of the molecular-scale information to develop meaningful parameters and constraint ranges in complex bio-physio-chemical models. The expression of three Geobacter species genes (ammonium transporter (amtB), nitrogen fixation (nifD), and a housekeeping gene (recA)) were tracked at two monitoring locations that differed significantly in ammonium (NH4+) concentrations during a field-scale experiment where acetate was injected into the subsurface to simulate Geobacteraceae in a uranium-contaminated aquifer. Analysis of amtB and nifD mRNA transcript levels indicated that NH4+ was the primary form of fixed nitrogen during bioremediation. Overall expression levels of amtB were on average 8-fold higher at NH4+ concentrations of 300 μM or more than at lower NH4+ levels (average 60 μM). The degree of temporal correlation in Geobacter species mRNA expression levels was calculated at both locations using autocorrelation methods that describe the relationship between sample semi-variance and time lag. At the monitoring location with lower NH4+, a temporal correlation lag of 8 days was observed for both amtB and nifD transcript patterns. At the location where higher NH4+ levels were observed, no discernable temporal correlation lag above the sampling frequency (approximately every 2 days) was observed for amtB or nifD transcript fluctuations. Autocorrelation trends in recA expression levels at both locations indicated that

  19. Effectiveness of bioremediation in reducing toxicity in oiled intertidal sediments

    International Nuclear Information System (INIS)

    Lee, K.; Tremblay, G.H.

    1995-01-01

    A 123-day field study was conducted with in situ enclosures to compare the effectiveness of bioremediation strategies based in inorganic and organic fertilizer additions to accelerate the biodegradation rates and reduce the toxicity of Venture trademark condensate stranded within sand-beach sediments. Comparison of the two fertilizer formulations with identical nitrogen and phosphorus concentrations showed that the organic fertilizer stimulated bacterial productivity within the oiled sediments to the greatest extent. However, detailed chemical analysis indicated that inorganic fertilizer additions were the most effective in enhancing condensate biodegradation rates. The Microtox reg-sign Solid-Phase Test (SPT) bioassay was determined to be sensitive to Venture Condensate in laboratory tests. Subsequent application of this procedure to oiled sediment in the field showed a reduction in sediment toxicity over time. However, the Microtox reg-sign bioassay procedure did not identify significant reductions in sediment toxicity following bioremediation treatment. An observed increase in toxicity following periodic additions of the organic fertilizer was attributed to rapid biodegradation rates of the fertilizer, which resulted in the production of toxic metabolic products

  20. Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison

    Science.gov (United States)

    This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practica...

  1. Assessing the Potential Consequences of Subsurface Bioremediation: Fe-oxide Bioreductive Processes and the Propensity for Contaminant-colloid Co-transport and Media Structural Breakdown

    Science.gov (United States)

    2017-05-12

    clay particles together into aggregates ( Goldberg and Glaubig, 1987; Goldberg et al., 1990). Reduction of Fe(III)-oxide under anaerobic conditions...cryptic Phylum. To confirm that the changes in the relative abundance of the Phylum Proteobacteria was likely due variation in the abundance and...bioremediation. Environmental Science and Technology 34 (11), 2254–2260. DOI: 10.1021/es990638e 10. Goldberg , S., and R.A. Glaubig. 1987. Effect of saturating

  2. In situ biorestauratie van een met olie verontreinigde bodem: Resultaten van het onderzoek in ongestoorde grondkolommen

    NARCIS (Netherlands)

    Scheuter AJ; Berg R van den; LBG

    1996-01-01

    Column experiments were carried out for the project "in situ bioremediation of an oil-polluted subsoil". The experiments were aimed at examining the possibility of remediating soil in situ with the help of microorganisms. The six undisturbed columns were filled at a location contaminated with petrol

  3. Bioremediation protocols

    National Research Council Canada - National Science Library

    Sheehan, David

    1997-01-01

    ..., .. . . . . .. ,. . . .. . . . . . . . .. . . . . .. . . .. . .. 3 2 Granular Nina Sludge Christiansen, Consortia lndra for Bioremediation, M. Mathrani, and Birgitte K. Ahring . 23 PART II PROTOCOLS...

  4. Serosurvey of ex situ giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus fulgens) in China with implications for species conservation.

    Science.gov (United States)

    Loeffler, I Kati; Howard, JoGayle; Montali, Richard J; Hayek, Lee-Ann; Dubovi, Edward; Zhang, Zhihe; Yan, Qigui; Guo, Wanzhu; Wildt, David E

    2007-12-01

    Conservation strategies for the giant panda (Ailuropoda melanoleuca) include the development of a self-sustaining ex situ population. This study examined the potential significance of infectious pathogens in giant pandas ex situ. Serologic antibody titers against canine distemper virus (CDV), canine parvovirus (CPV), canine adenovirus (CAV), canine coronavirus (CCV), canine herpesvirus, canine parainfluenza virus (CPIV), Toxoplasma gondii, Neospora caninum, and Leptospira interrogans were measured in 44 samples taken from 19 giant pandas between 1998 and 2003 at the Chengdu Research Base of Giant Panda Breeding in Sichuan, China. Seroassays also included samples obtained in 2003 from eight red pandas (Ailurus fulgens) housed at the same institution. All individuals had been vaccinated with a Chinese canine vaccine that included modified live CDV, CPV, CAV, CCV, and CPIV. Positive antibody titers were found only against CDV, CPV, and T. gondii. Sera were negative for antibodies against the other six pathogens. Results indicate that the quality of the vaccine may not be reliable and that it should not be considered protective or safe in giant pandas and red pandas. Positive antibody titers against T. gondii were found in seven of the 19 giant pandas. The clinical, subclinical, or epidemiologic significance of infection with these pathogens via natural exposure or from modified live vaccines in giant pandas is unknown. Research in this area is imperative to sustaining a viable population of giant pandas and other endangered species.

  5. A study of computational dosimetry and boron biodistribution for exsitu lung BNCT at RA-3 Reactor

    International Nuclear Information System (INIS)

    Garabalino, M.A.; Trivillin, V. A.; Monti Hughes, A.; Pozzi, E.C.C.; Thorp, S.; Curotto, P; Miller, M.; Santa Cruz, G.A.; Saint Martin, G.; Schwint, A.E.; González, S.J.; Farías, R.O; Portu, A.; Ferraris, S.; Santa María, J.; Lange, F.; Bortolussi, S.; Altieri, S.

    2013-01-01

    Within the context of the preclinical ex-situ BNCT Project for the treatment of diffuse lung metastases, we performed boron biodistribution studies in a sheep model and computational dosimetry studies in human lung to evaluate the potential therapeutic efficacy of the proposed technique. Herein we report preliminary data that supports the use of the sheep model as an adequate human surrogate in terms of boron kinetics and uptake in clinically relevant tissues. Furthermore, the estimation of the potential therapeutic efficacy of the proposed treatment in humans, based on boron uptake values in the large animal model, yields promising tumor control probability values even in the most conservative scenario considered. (author)

  6. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives.

    Science.gov (United States)

    Passatore, Laura; Rossetti, Simona; Juwarkar, Asha A; Massacci, Angelo

    2014-08-15

    This review summarizes the bioremediation and phytoremediation technologies proposed so far to detoxify PCB-contaminated sites. A critical analysis about the potential and limits of the PCB pollution treatment strategies by means of plants, fungi and bacteria are elucidated, including the new insights emerged from recent studies on the rhizosphere potential and on the implementation of simultaneous aerobic and anaerobic biodegradation processes. The review describes the biodegradation and phytoremediation processes and elaborates on the environmental variables affecting contaminant degradation rates, summarizing the amendments recommended to enhance PCB degradation. Additionally, issues connected with PCB toxicology, actual field remediation strategies and economical evaluation are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Using contaminated plants involved in phytoremediation for anaerobic digestion.

    Science.gov (United States)

    Cao, Zewei; Wang, Shengxiao; Wang, Ting; Chang, Zhizhou; Shen, Zhenguo; Chen, Yahua

    2015-01-01

    This study investigated the anaerobic digestion capability of five plants and the effects of copper (Cu) and S,S'-ethylenediaminedisuccinic acid (EDDS, a chelator widely used in chelant-assisted phytoremediation) on biogas production to determine a feasible disposal method for plants used in remediation. The results showed that in addition to Phytolacca americana L., plants such as Zea mays L., Brassica napus L., Elsholtzia splendens Nakai ex F. Maekawa, and Oenothera biennis L. performed well in biogas production. Among these, O. biennis required the shortest period to finish anaerobic digestion. Compared to normal plants with low Cu content, the plants used in remediation with increased Cu levels (100 mg kg(-1)) not only promoted anaerobic digestion and required a shorter anaerobic digestion time, but also increased the methane content in biogas. When the Cu content in plants increased to 500, 1000, and 5000 mg kg(-1), the cumulative biogas production decreased by 12.3%, 14.6%, and 41.2%, respectively. Studies also found that EDDS conspicuously restrained biogas production from anaerobic digestion. The results suggest that anaerobic digestion has great potential for the disposal of contaminated plants and may provide a solution for the resource utilization of plants used in remediation.

  8. Tolerance of anaerobic bacteria to chlorinated solvents.

    Science.gov (United States)

    Koenig, Joanna C; Groissmeier, Kathrin D; Manefield, Mike J

    2014-01-01

    The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation.

  9. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Farías, R. O.; Trivillin, V. A.; Portu, A. M.; Schwint, A. E.; González, S. J., E-mail: srgonzal@cnea.gov.ar [Comisión Nacional de Energía Atómica (CNEA), San Martín 1650, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033 (Argentina); Garabalino, M. A.; Monti Hughes, A.; Pozzi, E. C. C.; Thorp, S. I.; Curotto, P.; Miller, M. E.; Santa Cruz, G. A.; Saint Martin, G. [Comisión Nacional de Energía Atómica (CNEA), San Martín 1650 (Argentina); Ferraris, S.; Santa María, J.; Rovati, O.; Lange, F. [CIDME, Universidad Maimónides, Buenos Aires 1405 (Argentina); Bortolussi, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia 27100 (Italy); Altieri, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia 27100, Italy and Dipartimento di Fisica, Università di Pavia, Pavia 27100 (Italy)

    2015-07-15

    Purpose: Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (L)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Methods: Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Results: Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect

  10. Bioremediation case study: Fuel-contaminated soil cleanup in the Marshall Islands

    International Nuclear Information System (INIS)

    Machanoff, R.

    1992-01-01

    Using microbes to degrade fuels in contaminated soils is becoming increasingly more attractive as an approach to environmental restoration. Removing contamination by traditional methods is costly, does not always eliminate the problem, and often just moves it somewhere else. Biodegradation of contaminants can often be accomplished in situ, resulting in the actual destruction of the contaminants by microbial conversion to harmless by-products. Bioremediation is not applicable to all forms of environmental contamination but has been demonstrated to be particularly effective on petroleum hydrocarbon based fuels. Bioremediation can offer a cost-effective means for site cleanup, particularly where challenging logistical considerations have to be factored into cleanup projects. Logistical considerations have made bioremediation the method of choice for the decontamination of fuel-containing soils on Kwajalein Island, Republic of the Marshall Islands. Kwajalein is located more than 2,100 miles west of Hawaii in the southernmost part of the North Pacific. The site of a major missile range of the Strategic Defense Command (SDC), Kwajalein has been the center of US defense activities for almost 50 years. The island is part of a typical coral atoll and is only 2.5 miles long and 0.5 miles wide. Mission-related activities over the past 5 decades have resulted in about 10% of the island being contaminated with diesel, gasoline, and jet fuels. SDC has executed an agreement with the Department of Energy for the Hazardous Waste Remedial Actions Program (HAZWRAP), a division of Martin Marietta Energy Systems, Inc., to assist the US Army Kwajalein Atoll (USAKA) in the management of the Base restoration activities on Kwajalein Atoll. HAZWRAP initiated sampling and feasibility studies to determine whether bioremediation was a viable choice for site cleanup at USAKA

  11. Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: ex-situ LCM and in-situ SECM

    Science.gov (United States)

    Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang

    2018-05-01

    The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.

  12. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    Science.gov (United States)

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation.

    Science.gov (United States)

    Sun, Weimin; Li, Jiwei; Jiang, Lei; Sun, Zhilei; Fu, Meiyan; Peng, Xiaotong

    2015-10-01

    Successful bioremediation of oil pollution is based on a comprehensive understanding of the in situ physicochemical conditions and indigenous microbial communities as well as the interaction between microorganisms and geochemical variables. Nineteen oil-contaminated soil samples and five uncontaminated controls were taken from six major oilfields across different geoclimatic regions in China to investigate the spatial distribution of the microbial ecosystem. Microbial community analysis revealed remarkable variation in microbial diversity between oil-contaminated soils taken from different oilfields. Canonical correspondence analysis (CCA) further demonstrated that a suite of in situ geochemical parameters, including soil moisture and sulfate concentrations, were among the factors that influenced the overall microbial community structure and composition. Phylogenetic analysis indicated that the vast majority of sequences were related to the genera Arthrobacter, Dietzia, Pseudomonas, Rhodococcus, and Marinobacter, many of which contain known oil-degrading or oil-emulsifying species. Remarkably, a number of archaeal genera including Halalkalicoccus, Natronomonas, Haloterrigena, and Natrinema were found in relatively high abundance in some of the oil-contaminated soil samples, indicating that these Euryarchaeota may play an important ecological role in some oil-contaminated soils. This study offers a direct and reliable reference of the diversity of the microbial community in various oil-contaminated soils and may influence strategies for in situ bioremediation of oil pollution.

  14. Parameter Sensitivity and Laboratory Benchmarking of a Biogeochemical Process Model for Enhanced Anaerobic Dechlorination

    Science.gov (United States)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.

    2008-12-01

    A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems

  15. Treatability testing of intrinsic bioremediation, biostimulation, and bioaugmentation of diesel-oil contaminated soil at 5 degrees C

    International Nuclear Information System (INIS)

    Wilson, J. J.

    1997-01-01

    The likely success of in-situ bioremediation on diesel-contaminated soil was studied at 5 degrees C under four conditions of soil amendments. The four conditions were: (1) intrinsic bioremediation where the soil received only water, (2) biostimulation with one application of slow-release fertilizer, (3) bioaugmentation with one application of fertilizer and a cold-adapted hydrocarbon-degrading bacterial culture, and (4) surfactant enhanced bioavailability, where the soil received one application of fertilizer and treatment with a biodegradable surfactant solution. All tests showed significant reduction in diesel range under aerobic conditions after a 40-day incubation. The intrinsic control (No.1) was least effective, with 66 per cent of extractable hydrocarbons (TEH) at 5 degrees C. The biostimulated soil (No.2) was most effective, allowing a reduction in TEH of 86 per cent. The bioaugmented soil and surfactant treated soil allowed TEH reduction of about 75 per cent. Based on these results, biostimulation with slow-release fertilizer will be implemented as the most cost-effective means of bioremediation, combined with appropriate monitoring of results. 2 refs., 3 tabs., 4 figs

  16. Assessing TCE source bioremediation by geostatistical analysis of a flux fence.

    Science.gov (United States)

    Cai, Zuansi; Wilson, Ryan D; Lerner, David N

    2012-01-01

    Mass discharge across transect planes is increasingly used as a metric for performance assessment of in situ groundwater remediation systems. Mass discharge estimates using concentrations measured in multilevel transects are often made by assuming a uniform flow field, and uncertainty contributions from spatial concentration and flow field variability are often overlooked. We extend our recently developed geostatistical approach to estimate mass discharge using transect data of concentration and hydraulic conductivity, so accounting for the spatial variability of both datasets. The magnitude and uncertainty of mass discharge were quantified by conditional simulation. An important benefit of the approach is that uncertainty is quantified as an integral part of the mass discharge estimate. We use this approach for performance assessment of a bioremediation experiment of a trichloroethene (TCE) source zone. Analyses of dissolved parent and daughter compounds demonstrated that the engineered bioremediation has elevated the degradation rate of TCE, resulting in a two-thirds reduction in the TCE mass discharge from the source zone. The biologically enhanced dissolution of TCE was not significant (~5%), and was less than expected. However, the discharges of the daughter products cis-1,2, dichloroethene (cDCE) and vinyl chloride (VC) increased, probably because of the rapid transformation of TCE from the source zone to the measurement transect. This suggests that enhancing the biodegradation of cDCE and VC will be crucial to successful engineered bioremediation of TCE source zones. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  17. Bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Autry, A.R.; Ellis, G.M.

    1992-01-01

    This paper reports on bioremediation, which offers a cost-competitive, effective remediation alternative for soil contaminated with petroleum products. These technologies involve using microorganisms to biologically degrade organic constituents in contaminated soil. All bioremediation applications must mitigate various environmental rate limiting factors so that the biodegradation rates for petroleum hydrocarbons are optimized in field-relevant situations. Traditional bioremediation applications include landfarming, bioreactors, and composting. A more recent bioremediation application that has proven successful involves excavation of contaminated soil. The process involves the placement of the soils into a powerscreen, where it is screened to remove rocks and larger debris. The screened soil is then conveyed to a ribbon blender, where it is mixed in batch with nutrient solution containing nitrogen, phosphorus, water, and surfactants. Each mixed soil batch is then placed in a curing pile, where it remains undisturbed for the remainder of the treatment process, during which time biodegradation by naturally occurring microorganisms, utilizing biochemical pathways mediated by enzymes, will occur

  18. A Novel 3D Skin Explant Model to Study Anaerobic Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Grazieli Maboni

    2017-09-01

    Full Text Available Skin infection studies are often limited by financial and ethical constraints, and alternatives, such as monolayer cell culture, do not reflect many cellular processes limiting their application. For a more functional replacement, 3D skin culture models offer many advantages such as the maintenance of the tissue structure and the cell types present in the host environment. A 3D skin culture model can be set up using tissues acquired from surgical procedures or post slaughter, making it a cost effective and attractive alternative to animal experimentation. The majority of 3D culture models have been established for aerobic pathogens, but currently there are no models for anaerobic skin infections. Footrot is an anaerobic bacterial infection which affects the ovine interdigital skin causing a substantial animal welfare and financial impact worldwide. Dichelobacter nodosus is a Gram-negative anaerobic bacterium and the causative agent of footrot. The mechanism of infection and host immune response to D. nodosus is poorly understood. Here we present a novel 3D skin ex vivo model to study anaerobic bacterial infections using ovine skin explants infected with D. nodosus. Our results demonstrate that D. nodosus can invade the skin explant, and that altered expression of key inflammatory markers could be quantified in the culture media. The viability of explants was assessed by tissue integrity (histopathological features and cell death (DNA fragmentation over 76 h showing the model was stable for 28 h. D. nodosus was quantified in all infected skin explants by qPCR and the bacterium was visualized invading the epidermis by Fluorescent in situ Hybridization. Measurement of pro-inflammatory cytokines/chemokines in the culture media revealed that the explants released IL1β in response to bacteria. In contrast, levels of CXCL8 production were no different to mock-infected explants. The 3D skin model realistically simulates the interdigital skin and has

  19. Bioremediation--Why doesn't it work sometimes?

    International Nuclear Information System (INIS)

    Block, R.; Stroo, H.; Swett, G.H.

    1993-01-01

    Biological treatment has rapidly become the technology of choice for remediation of soils contaminated by petroleum constituents. Since the mid-1980s, bioremediation has been used at more than 100 locations to cost-effectively remediate hundreds of thousands of cubic yards of contaminated soil. However, despite the excellent track record of bioremediation, during the past few years bioremediation was not successful at several sites. The same type of contaminated soils has been treated successfully at numerous other sites. The treatment process was the same, but bioremediation was not effective. Testing identified other sites where bioremediation was unsuccessful for remediating petroleum constituents, and the factors that contributed to the failures were explored in greater depth. This article outlines a quick and inexpensive screening technique that allows one to determine whether bioremediation is practical and also provides an assessment of the time and cost factors. It involves four steps: (1) Site study; (2) Regulatory analysis; (3) Biological screening; (4) Treatability testing. The methodology can be reduced to a set of decision trees to simplify the screening process

  20. KAJIAN PERILAKU BEKANTAN (Nasalis larvatus PADA KONSERVASI EKS SITU DI PT INDOCEMENT TARJUN

    Directory of Open Access Journals (Sweden)

    Teguh Iman Basoeki

    2016-06-01

    Full Text Available Research was aimed to study the behavior of Bekantan (Nasalis larvatus in ex-situ conservation at PT Indocement Tarjun. The research of Bekantan’s behavior used several methodology. Firstly, it was observed several kinds and compositions of daily food which was consumed by Bekantan. Secondly, it was also observed the average daily behavior such as : the movement, the visual body condition and the growth in weight and height of Bekantan. The Observations were done for 2 months in 4 sample of the research. The results were compared to the Bekantan’s behavior which lived in its nature habitat. The results showed that there was no difference of its behavior in the study of food composition between the  Bekantan in ex-situ conservation compare to the Bekantan in its nature habitat. In average,  Bekantan in ex-situ conservation ate 76% leaves’tip. It was also investigated that several kinds of food eaten by Bekantan in ex-situ conservation, such as : “balaran” leaf ( Ipomea sp , “kacangan” leaf ( Calopogonium caerulium, which are usually planted as cover crop, and “ketapang’s” tip of leaf ( T. catappa . The daily activity of Bekantan’s behavior in ex-situ conservation was shown that there was no difference of its behavior compare to the Bekantan in its nature habitat. The Bekantan in its nature habit was mainly doing no activity, except resting and sleeping. The Bekantan in ex-situ conservation had more activity of movement. They moved, jumped, swinged, and walking using 2 or 4 feet. The conclusion of this research was found a similar eating habits of Bekantan in ex-situ conservation at PT Indocement Tarjun and Bekantan which lived in its habit. The investigation of food compositions showed that about 76% of both Bekantan ate leaves. The leaves’s tip could get from both tips of tree leaf or vegetables. There was a changing of Bekantan’s behavior in term of its movement. Bekantan in ex-situ conservation moved with jumping

  1. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  2. Anaerobic in situ biodegradation of TNT using whey as an electron donor: a case study

    Czech Academy of Sciences Publication Activity Database

    Innemanová, P.; Velebová, R.; Filipová, Alena; Čvančarová, Monika; Pokorný, P.; Němeček, J.; Cajthaml, Tomáš

    2015-01-01

    Roč. 32, č. 6 (2015), s. 701-709 ISSN 1871-6784 Institutional support: RVO:61388971 Keywords : CONTAMINATED SOIL * BIOTRANSFORMATION * BIOREMEDIATION Subject RIV: EE - Microbiology, Virology Impact factor: 3.199, year: 2015

  3. Adhesion of biodegradative anaerobic bacteria to solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schie, P.M. van; Fletcher, M.

    1999-11-01

    In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, the authors need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. They studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. The authors studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe{sup 3+} on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electro-static-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments.

  4. Ex Situ Generation of Stoichiometric and Substoichiometric 12CO and 13CO and Its Efficient Incorporation in Palladium Catalyzed Aminocarbonylations

    DEFF Research Database (Denmark)

    Hermange, Philippe; Lindhardt, Anders Thyboe; Taaning, Rolf Hejle

    2011-01-01

    to the development of a new solid, stable, and easy to handle source of CO for chemical transformations. The synthesis of this CO-precursor also provided an entry point for the late installment of an isotopically carbon-labeled acid chloride for the subsequent release of gaseous [13C]CO. In combination with studies...... is safely handled and stored. Furthermore, since the CO is generated ex situ, excellent functional group tolerance is secured in the carbonylation chamber. Finally, CO is only generated and released in minute amounts, hence, eliminating the need for specialized equipment such as CO-detectors and equipment...

  5. In situ diesel fuel bioremediation: A case history

    International Nuclear Information System (INIS)

    Rhodes, D.K.; Burke, G.K.; Smith, N.; Clark, D.

    1995-01-01

    As a result of a ruptured fuel line, the study site had diesel fuel soil contamination and free product more than 2 ft (0.75 m) thick on the groundwater surface. Diesel fuel, which is composed of a high percentage of nonvolatile compounds, has proven difficult to remediate using conventional extraction remediation techniques. A number of remedial alternatives were reviewed, and the patented in situ biodegradation BioSparge SM technology was selected for the site and performed under license by a specialty contractor. BioSparge SM is a field-proven closed-loop (no vapor emissions) system that supplies a continuous, steady supply of oxygen, moisture, and additional heat to enhance microorganism activity. The system injects an enriched airstream beneath the groundwater surface elevation and/or within the contaminant plume and removes residual vapors from vadose zone soil within and above the contaminant plume. The technology has no air discharge, which is critical in areas where strict air discharge regulations apply. The focus of this paper is the viability of in situ biodegradation as an effective remediation alternative for reducing nonvolatile petroleum products

  6. Microbial dynamics during and after in situ chemical oxidation of chlorinated solvents

    NARCIS (Netherlands)

    Sutton, N.B.; Atashgahi, S.; Wal, van der J.; Wijn, G.; Grotenhuis, J.T.C.; Smidt, H.; Rijnaarts, H.

    2015-01-01

    In situ chemical oxidation (ISCO) followed by a bioremediation step is increasingly being considered as an effective biphasic technology. Information on the impact of chemical oxidants on organohalide respiring bacteria (OHRB), however, is largely lacking. Therefore, we used quantitative PCR (qPCR)

  7. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Pous, Narcis [Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, C/Maria Aurèlia Capmany, 69 E-17071 Girona (Spain); Casentini, Barbara; Rossetti, Simona; Fazi, Stefano [Water Research Institute (IRSA-CNR), National Research Council, Via Salaria Km 29.300, 00015 Monterotondo (Italy); Puig, Sebastià [Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, C/Maria Aurèlia Capmany, 69 E-17071 Girona (Spain); Aulenta, Federico, E-mail: aulenta@irsa.cnr.it [Water Research Institute (IRSA-CNR), National Research Council, Via Salaria Km 29.300, 00015 Monterotondo (Italy)

    2015-02-11

    Highlights: • As(III) was oxidized to As(V) in a bioelectrochemical system. • A polarized graphite electrode served as electron acceptor. • Gammaproteobacteria were the dominating organisms at the electrode. - Abstract: Arsenic contamination of soil and groundwater is a serious problem worldwide. Here we show that anaerobic oxidation of As(III) to As(V), a form which is more extensively and stably adsorbed onto metal-oxides, can be achieved by using a polarized (+497 mV vs. SHE) graphite anode serving as terminal electron acceptor in the microbial metabolism. The characterization of the microbial populations at the electrode, by using in situ detection methods, revealed the predominance of gammaproteobacteria. In principle, the proposed bioelectrochemical oxidation process would make it possible to provide As(III)-oxidizing microorganisms with a virtually unlimited, low-cost and low-maintenance electron acceptor as well as with a physical support for microbial attachment.

  8. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater

    International Nuclear Information System (INIS)

    Pous, Narcis; Casentini, Barbara; Rossetti, Simona; Fazi, Stefano; Puig, Sebastià; Aulenta, Federico

    2015-01-01

    Highlights: • As(III) was oxidized to As(V) in a bioelectrochemical system. • A polarized graphite electrode served as electron acceptor. • Gammaproteobacteria were the dominating organisms at the electrode. - Abstract: Arsenic contamination of soil and groundwater is a serious problem worldwide. Here we show that anaerobic oxidation of As(III) to As(V), a form which is more extensively and stably adsorbed onto metal-oxides, can be achieved by using a polarized (+497 mV vs. SHE) graphite anode serving as terminal electron acceptor in the microbial metabolism. The characterization of the microbial populations at the electrode, by using in situ detection methods, revealed the predominance of gammaproteobacteria. In principle, the proposed bioelectrochemical oxidation process would make it possible to provide As(III)-oxidizing microorganisms with a virtually unlimited, low-cost and low-maintenance electron acceptor as well as with a physical support for microbial attachment

  9. Macroinvertebrates and fishes in the part of the Danube flowing through the Iron Gate national park and possibilities of their protection under in situ and ex situ conditions

    Directory of Open Access Journals (Sweden)

    Simić Vladica M.

    2004-01-01

    Full Text Available Comparison of the results of later investigations of the Danube in the part flowing through in the Iron Gate (Đerdap National Park with those of research conducted earlier (20 to 40 years ago shows that changes have occurred in regard to the presence and especially the abundance of certain hydrobionts on this sector of the river, a finding that applies to all groups examined. The paper discusses the potential and results of conservation measures realized through both legal regulations and medium-term plans for the advancement of fishing in this region. In addition to in situ study during the period from 1999 to 2003, a large number of species (especially of macroinvertebrates and fish were also investigated under artificial conditions (in the Kragujevac Aquarium in order to gain a better understanding of their ecological characteristics, especially their sensitivity to various environmental stress factors. The presented results indicate that weight of specimens and success of culturing under ex situ conditions are correlated with their sensitivity under natural conditions.

  10. Bioremediation of soil and ground water impacted with organic contaminants

    International Nuclear Information System (INIS)

    Woods, W.B.

    1991-01-01

    Two case studies demonstrate the controlled use of micro-organisms to degrade organic contaminants under aerobic and anaerobic conditions. The aerobic study illustrates the degradation of hydrocarbons in a soil matrix. Data are presented that show a two-phase degradation of total petroleum hydrocarbons (TPH) from about 1,300 ppm TPH to cleanup levels of 100 ppm or less in two months. Total aerobic microorganism and substate-specific degrader counts were tracked throughout the study. Typical total aerobic counts of 10 6 colony forming units (CFU)/g and hydrocarbon degrader counts of 10 4 CFU/g were observed. Hydrocarbon degraders were enumerated on minimal salts media incubated in the presence of hydrocarbon vapors. The anaerobic study documents the successful use of a supplemental carbon source and fertilizers to stimulate indigenous microbe to degrade ketones. A nutrient mix of s polysaccharide, a nitrate electron acceptor and an inorganic orthophosphate was used to augment 100,000 yd 3 of soil contaminated with ketones at about 1,000 ppm. The key elements of a biotreatment project are discussed (i.e., site characterization, treatability studies, biotreatment design, site construction, system maintenance, final disposal and site closure). Lastly, the benefits of bioremediation vs. other remediation alternatives such as landfill disposal, incineration, and stabilization/fixation are discussed in terms of cost and liability

  11. Anaerobic biological treatment of in-situ retort water

    Energy Technology Data Exchange (ETDEWEB)

    Ossio, E.; Fox, P.

    1980-03-01

    Anaerobic fermentation was successfully used in a laboratory-scale batch digester to remove soluble organics from retort water. Required pretreatment includes reduction of ammonia levels to 360 mg-N/l, pH adjustment to 7.0, sulfide control, and the addition of the nutrients, calcium, magnesium, and phoshorus. If the prescribed pretreatment is used, BOD/sub 5/ and COD removal efficiencies of 89 to 90% and 65 to 70% are achieved, respectively.

  12. Bioremediation potential of the Sava river water polluted by oil refinery wastewater

    International Nuclear Information System (INIS)

    Jaksic, B.; Matavulj, M.; Vukic, Lj.; Radnovic, D.

    2002-01-01

    Microbial enumeration is a screening-level tool which can be used to evaluate in-situ response of water microorganisms to petroleum hydrocarbon contamination as well as for evaluating enhanced bioremediation potential of petroleum hydrocarbon contamination. In this investigations the increase between 17- and 44-fold of number of heterotrophs in hydrocarbon contaminated the Sava River water when compared with the no contaminated river water have been recorded. The significant increase of number of facultative oligotrophs in the river Sava water downstream of wastewater discharge (between 70- and almost 100-fold higher number) direct to the conclusion that oligotrophic bacteria (adapted to the environments with low amount of easy-to-degrade nutrients, oligocarbophilic microorganisms) could be better indicator of water bioremediation potential than number of heterotrophic (THR) bacteria. Quantitative composition of heterotrophic, facultative oligotrophic, crude oil degrading, and other physiological groups of bacteria, being, as a rule, higher in samples taken downstream of the waste-water discharge, testify about high biodegradative potential of the River Sava microbial community, if the oil refinery wastewater is taken into consideration. (author)

  13. Bioremediation of soils containing petroleum hydrocarbons, chlorinated phenols, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    Bench-scale treatability investigations, pilot-scale and full-scale bioremediation projects were conducted to evaluate Daramend trademark bioremediation of soils containing petroleum hydrocarbons, heavy oils, paraffins, chlorinated phenols and polycyclic aromatic hydrocarbons (PAHs). Bench-scale investigations were conducted using glass microcosms. Pilot-scale and full-scale demonstrations were conducted at industrial sites and included treatment of excavated soils and sediments in on-site cells constructed using synthetic liners and covered by steel/polyethylene structures as well as in-situ treatment. A total of approximately 5,000 tons of soil was treated. The soil treatment included organic soil amendments, specialized tillage/aeration apparatus, and strict control of soil moisture. The amendments are composed of naturally-occurring organic materials prepared to soil-specific particle size distributions, nutrient profiles, and nutrient-release kinetics. Bench-scale work indicated that in refinery soil containing high concentrations of heavy oils, extractable hydrocarbon concentrations could be rapidly reduced to industrial clean-up criteria, and that the hydrocarbons were fully mineralized with release of CO 2

  14. In-situ treatment of hydrocarbons contamination through enhanced bio-remediation and two phase extraction system

    International Nuclear Information System (INIS)

    Aglietto, I.; Brunero Bronzin, M.

    2005-01-01

    It happens frequently to find industrial site affected by contamination of subsoil and groundwater with consequent presence of free phase product floating on the water table. The remediation technologies in this case shall be properly selected and coordinated in a way that the interactions between each activities will help to decontaminate the site. The case study deals with an industrial site located near Turin, in Italy, of about 50 hectares of extension where has been found an area of about 4000 square meters with contamination of subsoil and groundwater. The compounds with higher concentrations are petroleum hydrocarbons found both in soil and in groundwater. Another big problem is represented by the presence of a layer of free product floating on the water table with a maximum measured thickness of 70 cm; this situation can be considered in fact one of the major difficulty in management of selected remediation technologies because the complete recover of the free phase is a priority for any kind of remediation system to apply subsequently. The present work is based upon the selection and implementation of a multiple treatment for definitive remediation of subsoil and groundwater. Free product recovery has been faced with a two-phase extraction technology, then for the remediation of subsoil we implemented a bio-venting system to improve biodegradation processes and finally for groundwater treatment we apply an enhanced in situ bio-remediation injecting oxygen release compounds directly into the aquifer. To reach these choices we have to pass through a complex activity of investigation of the site made up of more than 40 sampling point, 8 monitoring wells, about 140 analysis on subsoil samples and 10 on groundwater samples and one well used for an aquifer test. The preliminary design of the remediation system was therefore based on an extensive site characterization that included geological and geochemical, microbiological and hydrological data, together with

  15. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale.

    Science.gov (United States)

    Linville, Jessica L; Shen, Yanwen; Ignacio-de Leon, Patricia A; Schoene, Robin P; Urgun-Demirtas, Meltem

    2017-06-01

    A modified version of an in-situ CO 2 removal process was applied during anaerobic digestion of food waste with two types of walnut shell biochar at bench scale under batch operating mode. Compared with the coarse walnut shell biochar, the fine walnut shell biochar has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96-3.83 g biochar (g VS added ) -1 fine walnut shell biochar amended digesters produced biogas with 77.5%-98.1% CH 4 content by removing 40%-96% of the CO 2 compared with the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VS added ) -1 , the fine walnut shell biochar amended digesters (85.7% CH 4 content and 61% CO 2 removal) outperformed the coarse walnut shell biochar amended digesters (78.9% CH 4 content and 51% CO 2 removal). Biochar addition also increased alkalinity as CaCO 3 from 2800 mg L -1 in the control digesters to 4800-6800 mg L -1 , providing process stability for food waste anaerobic digestion.

  16. The reproductive biology of Calligonum L. in relation to ex situ conservation in a botanical garden

    Directory of Open Access Journals (Sweden)

    Xiaoshan Kang

    2011-01-01

    Full Text Available In this study, we observed the flowering phenology, breeding system, pollination and seed germination of four species of Calligonum (C. calliphysa, C. rubicundum, C. densum and C. ebinuricum in the Turpan Eremophytes Botanic Garden, China. Our results showed that the species had overlapping flowering phenologies and were pollinated by similar pollination agents. Their breeding systems were self-compatible, and with signs of outbreeding, but not of hybridization with each other; the main isolation mechanism was post-zygotic isolation and they also had high seed germination rates. Therefore, they are suited to ex situ conservation in the Turpan Eremophytes Botanic Garden, and can supply sufficient seeds for renewal populations and the conservation of germplasm resources. Furthermore, these results provide theoretical support for the construction of a national germplasm resource garden of Calligonum, and for the introduction to the garden of other eremophyteplants and their conservation.

  17. Use of bioremediation and treatment of wetland for remediation of the accidental crude-oil spill of July 16, 2000 at the Petrobras Refinery Refinaria Presidente Getulio Vargas (REPAR), Araucaria, PR, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Millette, D. [Hydrogeo Plus Inc., Montreal, PQ (Canada); Falkiewicz, F.; Zamberlan, E. [Petrobras-REPAR, Araucaria (Brazil); Campos Carvalho, F.J.P. de [Universidade Federal do Parana, Curifiba (Brazil). Dept. de Solos; Neto, A.C.B.; Caicedo, N.O.L.; Motta Marques, D. [Universidad Federal do Rio Grande do Sul, Porto Alegre (Brazil). Instituto de pesquisas hidraulicas; Linhares, M. [Petrobras, Rio de Janeiro (Brazil)

    2003-07-01

    On July 16, 2000, a pipeline supplying oil to the PETROBRAS refinery Refinaria Presidente Getulio Vargas-REPAR, located in Araucaria, Brazil, ruptured. The resulting oil spill involved approximately 4 million litres of crude oil. Workers managed to retain a vast quantity of oil within a two-kilometre area called Ponto O. The banks and floodplain of a small stream, the Arroio Saldanha, were contaminated, as well as the soil of four small wetlands. The authors presented an overview of the remediation program implemented. They focused on the soil bioremediation and treatment of wetland programs. Some of the remediation technologies used were: in situ bioremediation, injection and recovery trenches, and treatment of wetland in the vicinity of the discharge. Most of the free product from the sector adjacent to the spill site seems to have been removed by the recovery trenches. The preliminary data obtained from soil monitoring points to the efficiency of in situ bioremediation. Wetland vegetation was successfully restored and hydrocarbons appear to have been removed from the groundwater. 2 figs.

  18. Hydroformylation of olefins and reductive carbonylation of aryl halides with syngas formed ex situ from dehydrogenative decarbonylation of hexane-1,6-diol

    DEFF Research Database (Denmark)

    Christensen, Stig Holden; Olsen, Esben Paul Krogh; Rosenbaum, Jascha

    2014-01-01

    A variety of primary alcohols have been investigated as convenient substrates for the ex situ delivery of carbon monoxide and molecular hydrogen in a two-chamber reactor. The gaseous mixture is liberated in one chamber by an iridium-catalysed dehydrogenative decarbonylation of the alcohol...... and then consumed in the other chamber in either a rhodium-catalysed hydroformylation of olefins or a palladium-catalysed reductive carbonylation of aryl halides. Hexane-1,6-diol was found to be the optimum alcohol for both reactions where moderate to excellent yields were obtained of the product aldehydes...

  19. Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants

    Science.gov (United States)

    Awais Salman, Chaudhary; Schwede, Sebastian; Thorin, Eva; Yan, Jinyue

    2017-11-01

    Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.

  20. Bioremediation of Bunker C

    International Nuclear Information System (INIS)

    Emery, D.D.

    1992-01-01

    In the states of Washington and Oregon, the highest priority for waste management is now given to recycling, reuse and permanent solutions as opposed to landfill disposal. Bioremediation is recognized as a treatment of choice over other technologies that do not provide permanent solutions. From a business point of view, it is usually the most cost-effective. Bioremediation works extremely well for most common hydrocarbons including aviation fuel, heating oil and diesel oil. Bunker C, a high boiling point distillate, is the most recalcitrant hydrocarbon for treatment and is the topic of this paper. Bunker C lives up to its reputation of being a very recalcitrant hydrocarbon to biodegrade. The authors have demonstrated, however, that the soil matrix standards at industrial sites in Washington and Oregon can be achieved using new bioremediation techniques. These techniques are necessary over those typically used to biodegrade jet fuel, heating oil and diesel oil. These extra steps have been developed for our own use in our treatability laboratory

  1. Bioremediation of bunker C

    International Nuclear Information System (INIS)

    Emery, D.D.

    1992-01-01

    Bioremediation works extremely well for most common hydrocarbons including aviation fuel, heating oil and diesel oil. Bunker C, a high boiling point distillate, is the most recalcitrant hydrocarbon for treatment and is the topic of this paper. Bioremediation, Inc. has had an opportunity to perform two projects involving soil contaminated with bunker C. One was at a bulk terminal site which involved predominantly diesel, but also had bunker C contamination; the other was a paper-mill site which had exclusively bunker C contamination. This paper will address the authors' experiences at the paper-mill site. Bunker C lives up to its reputation of being a very recalcitrant hydrocarbon to biodegrade. They have demonstrated, however, that the soil matrix standards at industrial sites in Washington and Oregon can be achieved using new bioremediation techniques. These techniques are necessary over those typically used to biodegrade jet fuel, heating oil and diesel oil. These extra steps, as discussed later, have been developed for their own use in their treatability laboratory

  2. Soil and brownfield bioremediation.

    Science.gov (United States)

    Megharaj, Mallavarapu; Naidu, Ravi

    2017-09-01

    Soil contamination with petroleum hydrocarbons, persistent organic pollutants, halogenated organic chemicals and toxic metal(loid)s is a serious global problem affecting the human and ecological health. Over the past half-century, the technological and industrial advancements have led to the creation of a large number of brownfields, most of these located in the centre of dense cities all over the world. Restoring these sites and regeneration of urban areas in a sustainable way for beneficial uses is a key priority for all industrialized nations. Bioremediation is considered a safe economical, efficient and sustainable technology for restoring the contaminated sites. This brief review presents an overview of bioremediation technologies in the context of sustainability, their applications and limitations in the reclamation of contaminated sites with an emphasis on brownfields. Also, the use of integrated approaches using the combination of chemical oxidation and bioremediation for persistent organic pollutants is discussed. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Bioremediation, regulatory agencies and public acceptance of this technology

    International Nuclear Information System (INIS)

    Westlake, D. W. S.

    1997-01-01

    The technology of bioremediation, i.e. the utilization of microorganisms to degrade environmental pollutants, the dangers and consequences inherent in the large-scale use of microbial organisms in such processes, and the role of regulatory agencies in the utilization and exploitation of bioremediation technologies, were discussed. Factors influencing public acceptance of bioremediation as a satisfactory tool for cleaning up the environment vis-a-vis other existing and potential rehabilitation techniques were also reviewed. The ambiguity of regulatory agencies in the matter of bioremediation was noted. For example, there are many regulatory hurdles relative to the testing, use and approval of transgenic microorganisms for use in bioremediation. On the other hand, the use and release of engineered plants is considered merely another form of hybrid and their endorsement is proceeding rapidly. With regard to public acceptance, the author considered bioremediation technology as too recent, with not enough successful applications to attract public attention. Although the evidence suggests that bioremediation is environmentally safe, the efficacy, reliability and predictability of the various technologies have yet to be demonstrated. 25 refs

  4. DNAPL Bioremediation-RTDF. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    None

    2002-01-01

    The Bioremediation Working Group of the Remediation Technologies Development Forum is a consortium including General Electric, Beak International, Ciba-Geigy, Dow, DuPont, ICI Americas, Novartis, Zeneca, DOE, the U.S. Air Force and the EPA. Each partner in the consortium brings expertise as well as resources to conduct studies on the effectiveness of bioremediation in degrading contaminants in soil. Reactive Transport in Three Dimensions (RT3D) software is based on the premise that bioremediation processes can be designed and controlled like other chemical processes and is now being using for natural attenuation evaluation at several government and industrial chlorinated ethenes contaminated sites. Users simply enter the site-specific information to simulate the contaminant plume in the ground water and can then evaluate various bioremediation options

  5. Using a Consensus Conference to Characterize Regulatory Concerns Regarding Bioremediation of Radionuclides and Heavy Metals in Mixed Waste at DOE Sites

    International Nuclear Information System (INIS)

    Denise Lach; Stephanie Sanford

    2006-01-01

    A consensus workshop was developed and convened with ten state regulators to characterize concerns regarding emerging bioremediation technology to be used to clean-up radionuclides and heavy metals in mixed wastes at US DOE sites. Two questions were explored: integrated questions: (1) What impact does participation in a consensus workshop have on the knowledge, attitudes, and practices of state regulators regarding bioremediation technology? (2) How effective is a consensus workshop as a strategy for eliciting and articulating regulators concerns regarding the use of bioremediation to clean up radionuclides and heavy metals in mixed wastes at U.S. Department of Energy Sites around the county? State regulators met together for five days over two months to learn about bioremediation technology and develop a consensus report of their recommendations regarding state regulatory concerns. In summary we found that panel members: quickly grasped the science related to bioremediation and were able to effectively interact with scientists working on complicated issues related to the development and implementation of the technology; are generally accepting of in situ bioremediation, but concerned about costs, implementation (e.g., institutional controls), and long-term effectiveness of the technology; are concerned equally about technological and implementation issues; and believed that the consensus workshop approach to learning about bioremediation was appropriate and useful. Finally, regulators wanted decision makers at US DOE to know they are willing to work with DOE regarding innovative approaches to clean-up at their sites, and consider a strong relationship between states and the DOE as critical to any effective clean-up. They do not want perceive themselves to be and do not want others to perceive them as barriers to successful clean-up at their sites

  6. Enhanced biotic and abiotic transformation of Cr(vi) by quinone-reducing bacteria/dissolved organic matter/Fe(iii) in anaerobic environment.

    Science.gov (United States)

    Huang, Bin; Gu, Lipeng; He, Huan; Xu, Zhixiang; Pan, Xuejun

    2016-09-14

    This study investigated the simultaneous transformation of Cr(vi) via a closely coupled biotic and abiotic pathway in an anaerobic system of quinone-reducing bacteria/dissolved organic matters (DOM)/Fe(iii). Batch studies were conducted with quinone-reducing bacteria to assess the influences of sodium formate (NaFc), electron shuttling compounds (DOM) and the Fe(iii) on Cr(vi) reduction rates as these chemical species are likely to be present in the environment during in situ bioremediation. Results indicated that the concentration of sodium formate and anthraquinone-2-sodium sulfonate (AQS) had apparently an effect on Cr(vi) reduction. The fastest decrease in rate for incubation supplemented with 5 mM sodium formate and 0.8 mM AQS showed that Fe(iii)/DOM significantly promoted the reduction of Cr(vi). Presumably due to the presence of more easily utilizable sodium formate, DOM and Fe(iii) have indirect Cr(vi) reduction capability. The coexisting cycles of Fe(ii)/Fe(iii) and DOM(ox)/DOM(red) exhibited a higher redox function than the individual cycle, and their abiotic coupling action can significantly enhance Cr(vi) reduction by quinone-reducing bacteria.

  7. In situ air sparging for bioremediation of groundwater and soils

    International Nuclear Information System (INIS)

    Lord, D.; Lei, J.; Chapdelaine, M.C.; Sansregret, J.L.; Cyr, B.

    1995-01-01

    Activities at a former petroleum products depot resulted in the hydrocarbon contamination of soil and groundwater over a 30,000-m 2 area. Site remediation activities consisted of three phases: site-specific characterization and treatability study, pilot-scale testing, and full-scale bioremediation. During Phase 1, a series of site/soil/waste characterizations was undertaken to ascertain the degree of site contamination and to determine soil physical/chemical and microbiological characteristics. Treatability studies were carried out to simulate an air sparging process in laboratory-scale columns. Results indicated 42% mineral oil and grease removal and 94% benzene, toluene, ethylbenzene, and xylenes (BTEX) removal over an 8-week period. The removal rate was higher in the unsaturated zone than in the saturated zone. Phase 2 involved pilot-scale testing over a 550-m 2 area. The radius of influence of the air sparge points was evaluated through measurements of dissolved oxygen concentrations in the groundwater and of groundwater mounding. A full-scale air sparging system (Phase 3) was installed on site and has been operational since early 1994. Physical/chemical and microbiological parameters, and contaminants were analyzed to evaluate the system performance

  8. Petroleum biodegradation and oil spill bioremediation

    International Nuclear Information System (INIS)

    Atlas, R.M.

    1995-01-01

    Hydrocarbon-utilizing microorganisms are ubiquitously distributed in the marine environment following oil spills. These microorganisms naturally biodegrade numerous contaminating petroleum hydrocarbons, thereby cleansing the oceans of oil pullutants. Bioremediation, which is accomplished by adding exogenous microbial populations or stimulating indigenous ones, attempts to raise the rates of degradation found naturally to significantly higher rates. Seeding with oil degraders has not been demonstrated to be effective, but addition of nitrogenous fertilizers has been shown to increase rates of petroleum biodegradation. In the case of the Exxon Valdez spill, the largest and most thoroughly studied application of bioremediation, the application of fertilizer (slow release or oleophilic) increased rates of biodegradation 3-5 times. Because of the patchiness of oil, an internally conserved compound, hopane, was critical for demonstrating the efficacy of bioremediation. Multiple regression models showed that the effectiveness of bioremediation depended upon the amount of nitrogen delivered, the concentration of oil, and time. (author)

  9. Bioremediation of marine oil pollution

    Energy Technology Data Exchange (ETDEWEB)

    Gutnick, D L

    1991-01-01

    This report presents an assessment of the scientific and technological developments in the area of bioremediation and biodegradation of marine oil pollution, as well as a number of allied technologies. Many of the topics discussed are presented in a summary of a workshop on bioremediation of marine oil pollution. The summary includes an overview of the formal presentations as well as the results of the working groups.

  10. Physiologically anaerobic microorganisms of the deep subsurface. Progress report, June 1, 1990--May 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  11. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-03-01

    . Objectives of the research included: (1) defining the range of concerns of the public toward different bioremediation strategies and long-term stewardship; (2) creating materials and delivery methods that address bioremediation issues; and (3) assessing the effectiveness of the consensus workshop in identifying concerns about bioremediation and involving the public in a dialogue about their use. After a brief description of the Idaho workshop, we discuss the range of concerns articulated by the participants about bioremediation, discuss the materials and delivery methods used to communicate information about bioremediation, and assess the effectiveness of the consensus workshop. In summary we found that panel members in general: understood complex technical issues, especially when given enough time in a facilitated discussion with experts; are generally accepting of in situ bioremediation, but concerned about costs, safety, and effectiveness of the technology; are concerned equally about technology and decision processes; and liked the consensus workshop approach to learning about bioremediation.

  12. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    International Nuclear Information System (INIS)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-01-01

    ) defining the range of concerns of the public toward different bioremediation strategies and long-term stewardship; (2) creating materials and delivery methods that address bioremediation issues; and (3) assessing the effectiveness of the consensus workshop in identifying concerns about bioremediation and involving the public in a dialogue about their use. After a brief description of the Idaho workshop, we discuss the range of concerns articulated by the participants about bioremediation, discuss the materials and delivery methods used to communicate information about bioremediation, and assess the effectiveness of the consensus workshop. In summary we found that panel members in general: understood complex technical issues, especially when given enough time in a facilitated discussion with experts; are generally accepting of in situ bioremediation, but concerned about costs, safety, and effectiveness of the technology; are concerned equally about technology and decision processes; and liked the consensus workshop approach to learning about bioremediation

  13. Bio-remediation of aquifers polluted by chlorinated solvents

    International Nuclear Information System (INIS)

    Fayolle, F.

    1996-01-01

    Numerous cases of contamination of aquifers by chlorinated aliphatic solvents, largely utilized during the last decades, constitute a public health problem, because of the toxic effect of such compounds. Different types of aerobic or anaerobic bacteria are able to degrade these molecules. Processes of bio remediation are now experimented in order to restore polluted aquifers. We present here the microorganisms and the enzymatic reactions involved in the biodegradation of chlorinated solvents, and different examples of in situ bio remediation operations are described. (author)

  14. Enhanced anaerobic dechlorination of polychlorinated biphenyl in sediments by bioanode stimulation

    International Nuclear Information System (INIS)

    Yu, Hui; Feng, Chunhua; Liu, Xiaoping; Yi, Xiaoyun; Ren, Yuan; Wei, Chaohai

    2016-01-01

    The application of a low-voltage electric field as an electron donor or acceptor to promote the bioremediation of chlorinated organic compounds represents a promising technology meeting the demand of developing an efficient and cost-effective strategy for in situ treatment of PCB-contaminated sediments. Here, we reported that bioanode stimulation with an anodic potential markedly enhanced dechlorination of 2,3,4,5-tetrachlorobiphenyl (PCB 61) contained in the sediment at an electronic waste recycling site of Qingyuan, Guangdong, China. The 110-day incubation of the bioanode with a potential poised at 0.2 V relative to saturated calomel electrode enabled 58% transformation of the total PCB 61 at the initial concentration of 100 μmol kg"−"1, while only 23% was reduced in the open-circuit reference experiment. The introduction of acetate to the bioelectrochemical reactor (BER) further improved PCB 61 transformation to 82%. Analysis of the bacterial composition showed significant community shifts in response to variations in treatment. At phylum level, the bioanode stimulation resulted in substantially increased abundance of Actinobacteria, Bacteroidetes, and Chloroflexi either capable of PCB dechlorination, or detected in the PCB-contaminated environment. At genus level, the BER contained two types of microorganisms: electrochemically active bacteria (EAB) represented by Geobacter, Ignavibacterium, and Dysgonomonas, and dechlorinating bacteria including Hydrogenophaga, Alcanivorax, Sedimentibacter, Dehalogenimonas, Comamonas and Vibrio. These results suggest that the presence of EAB can promote the population of dechlorinating bacteria which are responsible for PCB 61 transformation. - Highlights: • A bioelectrochemical reactor (BER) was constructed for anaerobic PCB dechlorination. • Bioanode stimulation substantially enhanced dechlorination of PCB 61. • Electrochemically active bacteria and dechlorinating bacteria coexisted in the BER. - Bioanode

  15. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    Science.gov (United States)

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  16. Office of Technology Development integrated program for development of in situ remediation technologies

    International Nuclear Information System (INIS)

    Peterson, M.

    1992-08-01

    The Department of Energy's Office of Technology Development has instituted an integrated program focused on development of in situ remediation technologies. The development of in situ remediation technologies will focus on five problem groups: buried waste, contaminated soils, contaminated groundwater, containerized wastes and underground detonation sites. The contaminants that will be included in the development program are volatile and non volatile organics, radionuclides, inorganics and highly explosive materials as well as mixtures of these contaminants. The In Situ Remediation Integrated Program (ISR IP) has defined the fiscal year 1993 research and development technology areas for focusing activities, and they are described in this paper. These R ampersand D topical areas include: nonbiological in situ treatment, in situ bioremediation, electrokinetics, and in situ containment

  17. Soil mesocosm studies on atrazine bioremediation.

    Science.gov (United States)

    Sagarkar, Sneha; Nousiainen, Aura; Shaligram, Shraddha; Björklöf, Katarina; Lindström, Kristina; Jørgensen, Kirsten S; Kapley, Atya

    2014-06-15

    Accumulation of pesticides in the environment causes serious issues of contamination and toxicity. Bioremediation is an ecologically sound method to manage soil pollution, but the bottleneck here, is the successful scale-up of lab-scale experiments to field applications. This study demonstrates pilot-scale bioremediation in tropical soil using atrazine as model pollutant. Mimicking field conditions, three different bioremediation strategies for atrazine degradation were explored. 100 kg soil mesocosms were set-up, with or without atrazine application history. Natural attenuation and enhanced bioremediation were tested, where augmentation with an atrazine degrading consortium demonstrated best pollutant removal. 90% atrazine degradation was observed in six days in soil previously exposed to atrazine, while soil without history of atrazine use, needed 15 days to remove the same amount of amended atrazine. The bacterial consortium comprised of 3 novel bacterial strains with different genetic atrazine degrading potential. The progress of bioremediation was monitored by measuring the levels of atrazine and its intermediate, cyanuric acid. Genes from the atrazine degradation pathway, namely, atzA, atzB, atzD, trzN and trzD were quantified in all mesocosms for 60 days. The highest abundance of all target genes was observed on the 6th day of treatment. trzD was observed in the bioaugmented mesocosms only. The bacterial community profile in all mesocosms was monitored by LH-PCR over a period of two months. Results indicate that the communities changed rapidly after inoculation, but there was no drastic change in microbial community profile after 1 month. Results indicated that efficient bioremediation of atrazine using a microbial consortium could be successfully up-scaled to pilot scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Case study: Bioremediation in the Aleutian Islands

    International Nuclear Information System (INIS)

    Steward, K.J.; Laford, H.D.

    1995-01-01

    This case study describes the design, construction, and operation of a bioremediation pile on Adak Island, which is located in the Aleutian Island chain. Approximately 1,900 m 3 of petroleum-contaminated soil were placed in the bioremediation pile. The natural bioremediation process was enhanced by an oxygen and nutrient addition system to stimulate microbial activity. Despite the harsh weather on the island, after the first 6 months of operation, laboratory analyses of soil samples indicated a significant (80%) reduction in diesel concentrations

  19. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Brigmon, R.L.; Fliermans, C.B.

    1997-01-01

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  20. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  1. Comparison of Natural and Engineered Chlorophenol Bioremediation Enzymes

    Science.gov (United States)

    2015-02-26

    herein addresses the urgent need to incorporate biological strategies into environmental restoration efforts ( bioremediation ) that focus on the catalytic... Bioremediation Enzymes The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 dehaloperoxidase, bioremediation , halophenol, Amphitrite ornata, marine

  2. Biotransformation involved in sustained reductive removal of uranium in contaminant aquifers

    International Nuclear Information System (INIS)

    Lovley, Derek R.

    2005-01-01

    percentage of the uranium in sediments was recovered as U(VI). In order to evaluate this further, studies were conducted in which sediments from the Rifle site were incubated under strict anaerobic conditions. This permitted accurate monitoring of the uranium speciation in the sediments as well as in the groundwater over time. When acetate was added to simulate the in situ uranium bioremediation strategy, U(VI) in the groundwater was reduced with a corresponding increase in U(IV) in the sediments. However, the U(VI) in the sediments was not reduced, even after long-term incubations. The resistance of U(VI) adsorbed to sediments to microbial reduction was not previously suspected and has important implications for in situ uranium bioremediation

  3. Ex situ integration of iron oxide nanoparticles onto the exfoliated expanded graphite flakes in water suspension

    Directory of Open Access Journals (Sweden)

    Jović Nataša

    2014-01-01

    Full Text Available Hybrid structures composed of exfoliated expanded graphite (EG and iron oxide nanocrystals have been produced by an ex situ process. The iron oxide nanoparticles coated with meso-2,3-dimercaptosuccinic acid (DMSA, or poly(acrylic acid (PAA were integrated onto the exfoliated EG flakes by mixing their aqueous suspensions at room temperature under support of 1-ethyl-3-(3-dimethylaminopropylcarbodiimide (EDC and N-hydroxysuccin-nimide (NHS. EG flakes have been used both, naked and functionalized with branched polyethylenimine (PEI. Complete integration of two constituents has been achieved and mainteined stable for more than 12 months. No preferential spatial distribution of anchoring sites for attachement of iron oxide nanoparticles has been observed, regardless EG flakes have been used naked or functionalized with PEI molecules. The structural and physico-chemical characteristics of the exfoliated expanded graphite and its hybrids nanostructures has been investigated by SEM, TEM, FTIR and Raman techniques. [Projekat Ministarstva nauke Republike Srbije, br. 45015

  4. Cleaning up with genomics: applying molecular biology to bioremediation.

    Science.gov (United States)

    Lovley, Derek R

    2003-10-01

    Bioremediation has the potential to restore contaminated environments inexpensively yet effectively, but a lack of information about the factors controlling the growth and metabolism of microorganisms in polluted environments often limits its implementation. However, rapid advances in the understanding of bioremediation are on the horizon. Researchers now have the ability to culture microorganisms that are important in bioremediation and can evaluate their physiology using a combination of genome-enabled experimental and modelling techniques. In addition, new environmental genomic techniques offer the possibility for similar studies on as-yet-uncultured organisms. Combining models that can predict the activity of microorganisms that are involved in bioremediation with existing geochemical and hydrological models should transform bioremediation from a largely empirical practice into a science.

  5. Emerging technologies in bioremediation: constraints and opportunities.

    Science.gov (United States)

    Rayu, Smriti; Karpouzas, Dimitrios G; Singh, Brajesh K

    2012-11-01

    Intensive industrialisation, inadequate disposal, large-scale manufacturing activities and leaks of organic compounds have resulted in long-term persistent sources of contamination of soil and groundwater. This is a major environmental, policy and health issue because of adverse effects of contaminants on humans and ecosystems. Current technologies for remediation of contaminated sites include chemical and physical remediation, incineration and bioremediation. With recent advancements, bioremediation offers an environmentally friendly, economically viable and socially acceptable option to remove contaminants from the environment. Three main approaches of bioremediation include use of microbes, plants and enzymatic remediation. All three approaches have been used with some success but are limited by various confounding factors. In this paper, we provide a brief overview on the approaches, their limitations and highlights emerging technologies that have potential to revolutionise the enzymatic and plant-based bioremediation approaches.

  6. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  7. Critical current density analysis of ex situ MgB2 wire by in-field and temperature Hall probe imaging

    International Nuclear Information System (INIS)

    Bartolome, E; Granados, X; Cambel, V; Fedor, J; Kovac, P; Husek, I

    2005-01-01

    The irreversible magnetic behaviour at different temperatures of an ex situ Fe-alloy/MgB 2 wire, exhibiting a granular compositional distribution, was studied using an in-field, high resolution Hall probe imaging system. Quantitative information about the local current density was obtained by solving the Biot-Savart inversion problem. The flux penetration and current distribution maps obtained can be attributed to a inhomogeneous compositional 'plum-cake-like' system, consisting of large, isolated MgB 2 agglomerations embedded in a matrix of finely distributed MgB 2 +MgO. The critical current densities within the grains and their evolution with the applied magnetic field and temperature have been obtained, and compared to the mean J c (H,T) in the matrix

  8. Exposure to contaminated sediments induces alterations in the gill epithelia in juvenile Solea senegalensis: a comparative in situ and ex situ study

    Directory of Open Access Journals (Sweden)

    Carla Martins

    2014-06-01

    Full Text Available The loss of biodiversity in aquatic ecosystems is a major problem for society, with very significant ecological and economic deleterious effects. Estuaries, as the Sado Estuary (SW Portugal, are fragile ecosystems always associated to multiple anthropogenic stressors, such as heavy industry, shipping and agricultural activities, which can affect biodiversity and, therefore, environmental health, as well as the local economy, through its impact on fisheries. In the Sado Estuary there are many important commercial fish species that support a significant part of the local communities. As such, fish population are continuously exposed to pollutants that can have repercussions in the animals’ physiology and survival. This estuary is characterized by its multiple sources of toxicants, which is reflected onto a complex pattern of sediment contamination. In order to evaluate the physiological effects onto an important commercial species in the Sado Estuary, juvenile Solea senegalensis were subjected to a series of in and ex situ sediment-based bioassays, since this flatfish, being benthic, is particularly exposed to sediment-bound pollutants. Histological alterations in gill epithelia were taken as the main endpoint, since this is the main apical entry organ of toxicants. Sediment contaminants, mostly adsorbed to fine particles and organic matter, namely organochlorides, PAHs and same metals, presented a relation with alterations in gill epithelia. Even though no significant gross histopathological lesions were found, the animals exposed to sediments from the most polluted sites presented physiological alterations, when compared to those exposed to sediments from a reference site. These alterations were particularly related to the number of mucous cells and hypertrophied chloride cells per interlamellar space. These changes imply physiological hampering of normal gill functions and, therefore, affect the health status of animals exposed to

  9. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    A new technology for in-situ biogas upgrading and recovery of CH4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO2 from the liquid phase of a biogas reactor. The degassing membrane was submerged...... into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH4...... content was only 51.7% without desorption of CO2, while it increased when the liquid of UASB was recycled through the DU. The CH4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63L/h, respectively. The loss of methane due to dissolution...

  10. Endophytic microorganisms--promising applications in bioremediation of greenhouse gases.

    Science.gov (United States)

    Stępniewska, Z; Kuźniar, A

    2013-11-01

    Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other pollutants, for instance, volatile organic compounds, crude oils, and radionuclides. The mechanisms of bioremediation depend on the mobility, solubility, degradability, and bioavailability of contaminants. Biodegradation of pollutions is associated with microbial growth and metabolism, i.e., factors that have an impact on the process. Moreover, these factors have a great influence on degradation. As a result, recognition of natural microbial processes is indispensable for understanding the mechanisms of effective bioremediation. In this review, we have emphasized the occurrence of endophytic microorganisms and colonization of plants by endophytes. In addition, the role of enhanced bioremediation by endophytic bacteria and especially of phytoremediation is presented.

  11. Arctic bioremediation -- A case study

    International Nuclear Information System (INIS)

    Smallbeck, D.R.; Ramert, P.C.; Liddell, B.V.

    1994-01-01

    This paper discusses the use of bioremediation as an effective method to clean up diesel-range hydrocarbon spills in northern latitudes. The results of a laboratory study of microbial degradation of hydrocarbons under simulated arctic conditions showed that bioremediation can be effective in cold climates and led to the implementation of a large-scale field program. The results of 3 years of field testing have led to a significant reduction in diesel-range hydrocarbon concentrations in the contaminated area

  12. Microbial hydrocarbon degradation - bioremediation of oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Atlas, R M [Louisville Univ., KY (United States). Dept. of Biology

    1991-01-01

    Bioremediation has become a major method employed in restoration of oil-polluted environments that makes use of natural microbial biodegradative activities. Bioremediation of petroleum pollutants overcomes the factors limiting rates of microbial hydrocarbon biodegradation. Often this involves using the enzymatic capabilities of the indigenous hydrocarbon-degrading microbial populations and modifying environmental factors, particularly concentrations of molecular oxygen, fixed forms of nitrogen and phosphate to achieve enhanced rates of hydrocarbon biodegradation. Biodegradation of oily sludges and bioremediation of oil-contaminated sites has been achieved by oxygen addition-e.g. by tilling soils in landfarming and by adding hydrogen peroxide or pumping oxygen into oiled aquifers along with addition of nitrogen- and phosphorous-containing fertilizers. The success of seeding oil spills with microbial preparations is ambiguous. Successful bioremediation of a major marine oil spill has been achieved based upon addition of nitrogen and phosphorus fertilizers. (author).

  13. Bioremediating silty soil contaminated by phenanthrene, pyrene ...

    African Journals Online (AJOL)

    ... followed in the order of their increasing molecular weight. The synergy of the bacterial isolates and the biosurfactant produced from B. vulgaris agrowaste could be used in environmental bioremediation of PAHs even in silty soil. Keywords: Benz(a)anthracene, benzo(a)pyrene, bioremediation, biosurfactant, Beta vulgaris, ...

  14. States' attitudes on the use of bioremediation

    International Nuclear Information System (INIS)

    Devine, K.; Graham, L.L.

    1995-01-01

    Results from a telephone survey of state government program coordinators and representatives from companies performing full-scale bioremediation shows differences among states in the use and degree of acceptance of bioremediation for environmental cleanup. The survey also found that states vary in the potential future direction of regulatory activity concerning bioremediation. The survey focused primarily on underground storage tank (UST) cleanups. Diminishing state UST cleanup funds have provided the impetus for many states to consider alternative cost-effective measures in order to continue with cleanups. In recent years, more than 30 states have either implemented programs that consider the cost-effectiveness of various cleanup measures, or are considering adoption of programs that are founded on risk-based corrective action. Less than a dozen states were considered as having made significant strides in innovative technology utilization. Forums whereby state groups can exchange ideas and experiences associated with the practical application of bioremediation will facilitate this nationwide movement towards cost-effective cleanup

  15. Predicting bioremediation of hydrocarbons: Laboratory to field scale

    International Nuclear Information System (INIS)

    Diplock, E.E.; Mardlin, D.P.; Killham, K.S.; Paton, G.I.

    2009-01-01

    There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions. - Detailed biological, chemical and physical characterisation reduces uncertainty in predicting bioremediation.

  16. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    Lynn, J.

    2001-01-01

    The conversion of oil to environmentally benign chemicals such as water and carbon dioxide by 'hydrocarbon-eating' bacteria is described. The emphasis is on a new process to selectively increase the population of 'oil eating' bacteria, a development that became the foundation for the second-generation bioremediation accelerator, Inipol EAP-22. Second-generation bioremediation products focus on providing nitrogen and phosphorus, chemicals that are not present in crude oil in readily available form, but are essential for the synthesis of proteins, nucleic acids, phospholipids and the energy metabolism of the bacteria. Providing these chemicals in the proper amounts encourages the preferential growth of oil-degrading microbes already present in the local biomass, thus overcoming the major limiting factor for biodegradation. These second-generation bioremediation products also have strong oleophilic properties engineered into them, to assure that the nutrients essential for the bacteria are in contact with the oil. The first major test for second-generation bioremediation accelerators came with the clean-up of the oil spill from the Exxon Valdez, a disaster that contaminated more than 120 kilometres of Alaskan beaches along the shores of Prince William Sound. The Inipol EAP-22 successfully held the nutrients in contact with the oil for the duration of the treatment period, despite constant exposure to the washing action of the surf and occasional heavy rainstorms. Today, the accelerator is routinely used in cleaning up all types of ordinary spills including diesel fuel spills along railway right-of-ways, truck yards and refinery sludge. Conditions under which the application of the accelerator is likely to be most successful are described

  17. Engineering Deinococcus radiodurans R1 for bioremediation of non radioactive and radioactive wastes facilitated by comparative genomics with Cupriavidus metallidurans CH34

    International Nuclear Information System (INIS)

    Badri, Hanene; Sghaier, Haitham; Barkallah, Insaf; Ben Salem, Issam; Wafa; Essouiss, Imen; Saied, Nadia; Saidi, M.; Gatri, Faten; Gatri, Maher; Boadabous, Abdellatifs; Leys, Natalie

    2009-01-01

    Deinococcus radiodurans R1 is a poly-extremophile for which a system of genetic transformation and manipulation has been developed and it is being engineered for in situ bioremediation of wastes particularly for cleanup of radioactive waste sites. In this study, additional attempts have been made to evaluate ''bioremediation determinants'' in the genome of D. radiodurans using a comparative-genomic approach with Cupriavidus metallidurans CH34, a multiple metal resistant bacterium. This resulted in the delineation of a set of ORFs that are common or peculiar to C. metallidurans and D. radiodurans. We identified 12 ORFs related to multidrug resistance efflux pumps as a special feature of C. metallidurans compared to D. radiodurans, which is the subject of further experimental work

  18. Bioremediation of hydrocarbon contaminated surface water, groundwater, and soils

    International Nuclear Information System (INIS)

    Piotrowski, M.R.

    1991-01-01

    Bioremediation is currently receiving considerable attention as a remediation option for sites contaminated with hazardous organic compounds. There is an enormous amount of interest in bioremediation, and numerous journals now publish research articles concerning some aspect of the remediation approach. A review of the literature indicates that two basic forms of bioremediation are currently being practiced: the microbiological approach and the microbial ecology approach. Each form has its advocates and detractors, and the microbiological approach is generally advocated by most of the firms that practice bioremediation. In this paper, the merits and disadvantages of these forms are reviewed and a conceptual approach is presented for assessing which form may be most useful for a particular contaminant situation. I conclude that the microbial ecology form of bioremediation may be the most useful for the majority of contaminant situations, and I will present two case histories in support of this hypothesis

  19. Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies.

    Science.gov (United States)

    Nijenhuis, Ivonne; Kuntze, Kevin

    2016-04-01

    Contamination and remediation of groundwater with halogenated organics and understanding of involved microbial reactions still poses a challenge. Over the last years, research in anaerobic microbial dehalogenation has advanced in many aspects providing information about the reaction, physiology of microorganisms as well as approaches to investigate the activity of microorganisms in situ. Recently published crystal structures of reductive dehalogenases (Rdh), heterologous expression systems and advanced analytical, proteomic and stable isotope approaches allow addressing the overall reaction and specific enzymes as well as co-factors involved during anaerobic microbial dehalogenation. In addition to Dehalococcoides spp., Dehalobacter and Dehalogenimonas strains have been recognized as important and versatile organohalide respirers. Together, these provide perspectives for integrated concepts allowing to improve and monitor in situ biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Bioremediation of oil-contaminated soils: A recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbach, S.A.

    1995-12-31

    Bioremediation of land crude oil and lube oil spills is an effective and economical option. Other options include road spreading (where permitted), thermal desorption, and off-site disposal. The challenge for environment and operations managers is to select the best approach for each remediation site. Costs and liability for off-site disposal are ever increasing. Kerr-McGee`s extensive field research in eastern and western Texas provides the data to support bioremediation as a legitimate and valid option. Both practical and economical bioremediation as a legitimate and valid option. Both practical and economical, bioremediation also offers a lower risk of, for example, Superfund clean-up exposure than off-site disposal.