WorldWideScience

Sample records for evolving cell models

  1. Evolving cell models for systems and synthetic biology.

    Science.gov (United States)

    Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio

    2010-03-01

    This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.

  2. A neighbourhood evolving network model

    International Nuclear Information System (INIS)

    Cao, Y.J.; Wang, G.Z.; Jiang, Q.Y.; Han, Z.X.

    2006-01-01

    Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development

  3. Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks

    International Nuclear Information System (INIS)

    Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A.

    2008-01-01

    Over the past 15 years there have been several research efforts to capture the stall inception nature in axial flow compressors. However previous analytical models could not explain the formation of short-length-scale stall cells. This paper provides a new model based on evolved GMDH neural network for transient evolution of multiple short-length-scale stall cells in an axial compressor. Genetic Algorithms (GAs) are also employed for optimal design of connectivity configuration of such GMDH-type neural networks. In this way, low-pass filter (LPF) pressure trace near the rotor leading edge is modelled with respect to the variation of pressure coefficient, flow rate coefficient, and number of rotor rotations which are defined as inputs

  4. Marshal: Maintaining Evolving Models, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SIFT proposes to design and develop the Marshal system, a mixed-initiative tool for maintaining task models over the course of evolving missions. Marshal-enabled...

  5. A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis.

    Science.gov (United States)

    MacDonald, G; Mackenzie, J A; Nolan, M; Insall, R H

    2016-03-15

    In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk-surface reaction-diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulk-surface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane.

  6. EVOLVE

    CERN Document Server

    Deutz, André; Schütze, Oliver; Legrand, Pierrick; Tantar, Emilia; Tantar, Alexandru-Adrian

    2017-01-01

    This book comprises nine selected works on numerical and computational methods for solving multiobjective optimization, game theory, and machine learning problems. It provides extended versions of selected papers from various fields of science such as computer science, mathematics and engineering that were presented at EVOLVE 2013 held in July 2013 at Leiden University in the Netherlands. The internationally peer-reviewed papers include original work on important topics in both theory and applications, such as the role of diversity in optimization, statistical approaches to combinatorial optimization, computational game theory, and cell mapping techniques for numerical landscape exploration. Applications focus on aspects including robustness, handling multiple objectives, and complex search spaces in engineering design and computational biology.

  7. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  8. An evolving model of online bipartite networks

    Science.gov (United States)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  9. An evolving network model with modular growth

    International Nuclear Information System (INIS)

    Zou Zhi-Yun; Liu Peng; Lei Li; Gao Jian-Zhi

    2012-01-01

    In this paper, we propose an evolving network model growing fast in units of module, according to the analysis of the evolution characteristics in real complex networks. Each module is a small-world network containing several interconnected nodes and the nodes between the modules are linked by preferential attachment on degree of nodes. We study the modularity measure of the proposed model, which can be adjusted by changing the ratio of the number of inner-module edges and the number of inter-module edges. In view of the mean-field theory, we develop an analytical function of the degree distribution, which is verified by a numerical example and indicates that the degree distribution shows characteristics of the small-world network and the scale-free network distinctly at different segments. The clustering coefficient and the average path length of the network are simulated numerically, indicating that the network shows the small-world property and is affected little by the randomness of the new module. (interdisciplinary physics and related areas of science and technology)

  10. A local-world evolving hypernetwork model

    International Nuclear Information System (INIS)

    Yang Guang-Yong; Liu Jian-Guo

    2014-01-01

    Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mechanisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is γ = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypernetwork model shares the scale-free and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems. (interdisciplinary physics and related areas of science and technology)

  11. Homophyly/Kinship Model: Naturally Evolving Networks

    Science.gov (United States)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  12. An Evolving Asymmetric Game for Modeling Interdictor-Smuggler Problems

    Science.gov (United States)

    2016-06-01

    ASYMMETRIC GAME FOR MODELING INTERDICTOR-SMUGGLER PROBLEMS by Richard J. Allain June 2016 Thesis Advisor: David L. Alderson Second Reader: W...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE AN EVOLVING ASYMMETRIC GAME FOR MODELING INTERDICTOR- SMUGGLER PROBLEMS 5. FUNDING NUMBERS 6...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited AN EVOLVING

  13. Infrared Model Spectra for Evolving Red Supergiants

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    1993-06-01

    Full Text Available The space and ground based infrared spectra of red supergiants are modeled and arranged in order of their evolutionary status with their theoretical model parameters. The chemical compositions of the dust shells around red supergiants are affected by the nuclear reaction and dredge-up processes of the cental stars. The processes are sensitively dependent on the initial mass, the initial chemical composition, and the evolutionary status. Miras, infrared carbon stars, and OH/IR stars have close link in their evolution in manu aspects, i,e., the chemical composition, the optical depths and the mass loss rates. The evolutionary tracks for the three classes of red supergiants on infrared two-color diagrams have been made from model calculations and IRAS observational data.

  14. Evolving the structure of hidden Markov Models

    DEFF Research Database (Denmark)

    won, K. J.; Prugel-Bennett, A.; Krogh, A.

    2006-01-01

    A genetic algorithm (GA) is proposed for finding the structure of hidden Markov Models (HMMs) used for biological sequence analysis. The GA is designed to preserve biologically meaningful building blocks. The search through the space of HMM structures is combined with optimization of the emission...... and transition probabilities using the classic Baum-Welch algorithm. The system is tested on the problem of finding the promoter and coding region of C. jejuni. The resulting HMM has a superior discrimination ability to a handcrafted model that has been published in the literature....

  15. Modeling and Understanding Time-Evolving Scenarios

    Directory of Open Access Journals (Sweden)

    Riccardo Melen

    2015-08-01

    Full Text Available In this paper, we consider the problem of modeling application scenarios characterized by variability over time and involving heterogeneous kinds of knowledge. The evolution of distributed technologies creates new and challenging possibilities of integrating different kinds of problem solving methods, obtaining many benefits from the user point of view. In particular, we propose here a multilayer modeling system and adopt the Knowledge Artifact concept to tie together statistical and Artificial Intelligence rule-based methods to tackle problems in ubiquitous and distributed scenarios.

  16. Modeling promoter grammars with evolving hidden Markov models

    DEFF Research Database (Denmark)

    Won, Kyoung-Jae; Sandelin, Albin; Marstrand, Troels Torben

    2008-01-01

    MOTIVATION: Describing and modeling biological features of eukaryotic promoters remains an important and challenging problem within computational biology. The promoters of higher eukaryotes in particular display a wide variation in regulatory features, which are difficult to model. Often several...... factors are involved in the regulation of a set of co-regulated genes. If so, promoters can be modeled with connected regulatory features, where the network of connections is characteristic for a particular mode of regulation. RESULTS: With the goal of automatically deciphering such regulatory structures......, we present a method that iteratively evolves an ensemble of regulatory grammars using a hidden Markov Model (HMM) architecture composed of interconnected blocks representing transcription factor binding sites (TFBSs) and background regions of promoter sequences. The ensemble approach reduces the risk...

  17. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng

    2012-09-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users\\' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users\\' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  18. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng; Masseglia, Florent; Zhang, Xiangliang

    2012-01-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  19. Degree distribution of a new model for evolving networks

    Indian Academy of Sciences (India)

    on intuitive but realistic consideration that nodes are added to the network with both preferential and random attachments. The degree distribution of the model is between a power-law and an exponential decay. Motivated by the features of network evolution, we introduce a new model of evolving networks, incorporating the ...

  20. A novel evolving scale-free model with tunable attractiveness

    International Nuclear Information System (INIS)

    Xuan, Liu; Tian-Qi, Liu; Xing-Yuan, Li; Hao, Wang

    2010-01-01

    In this paper, a new evolving model with tunable attractiveness is presented. Based on the Barabasi–Albert (BA) model, we introduce the attractiveness of node which can change with node degree. Using the mean-field theory, we obtain the analytical expression of power-law degree distribution with the exponent γ in (3, ∞). The new model is more homogeneous and has a lower clustering coefficient and bigger average path length than the BA model. (general)

  1. AUTOMOTIVE APPLICATIONS OF EVOLVING TAKAGI-SUGENO-KANG FUZZY MODELS

    Directory of Open Access Journals (Sweden)

    Radu-Emil Precup

    2017-08-01

    Full Text Available This paper presents theoretical and application results concerning the development of evolving Takagi-Sugeno-Kang fuzzy models for two dynamic systems, which will be viewed as controlled processes, in the field of automotive applications. The two dynamic systems models are nonlinear dynamics of the longitudinal slip in the Anti-lock Braking Systems (ABS and the vehicle speed in vehicles with the Continuously Variable Transmission (CVT systems. The evolving Takagi-Sugeno-Kang fuzzy models are obtained as discrete-time fuzzy models by incremental online identification algorithms. The fuzzy models are validated against experimental results in the case of the ABS and the first principles simulation results in the case of the vehicle with the CVT.

  2. Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Renata Toczyłowska-Mamińska

    2018-01-01

    Full Text Available The abundance of cellulosic wastes make them attractive source of energy for producing electricity in microbial fuel cells (MFCs. However, electricity production from cellulose requires obligate anaerobes that can degrade cellulose and transfer electrons to the electrode (exoelectrogens, and thus most previous MFC studies have been conducted using two-chamber systems to avoid oxygen contamination of the anode. Single-chamber, air-cathode MFCs typically produce higher power densities than aqueous catholyte MFCs and avoid energy input for the cathodic reaction. To better understand the bacterial communities that evolve in single-chamber air-cathode MFCs fed cellulose, we examined the changes in the bacterial consortium in an MFC fed cellulose over time. The most predominant bacteria shown to be capable electron generation was Firmicutes, with the fermenters decomposing cellulose Bacteroidetes. The main genera developed after extended operation of the cellulose-fed MFC were cellulolytic strains, fermenters and electrogens that included: Parabacteroides, Proteiniphilum, Catonella and Clostridium. These results demonstrate that different communities evolve in air-cathode MFCs fed cellulose than the previous two-chamber reactors.

  3. Exploring, exploiting and evolving diversity of aquatic ecosystem models

    DEFF Research Database (Denmark)

    Janssen, Annette B G; Arhonditsis, George B.; Beusen, Arthur

    2015-01-01

    Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality...... management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity...... available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5–10 years...

  4. Adaptive inferential sensors based on evolving fuzzy models.

    Science.gov (United States)

    Angelov, Plamen; Kordon, Arthur

    2010-04-01

    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can address the

  5. Evolvable mathematical models: A new artificial Intelligence paradigm

    Science.gov (United States)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  6. Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell.

    Science.gov (United States)

    Neilson, Matthew P; Mackenzie, John A; Webb, Steven D; Insall, Robert H

    2010-11-01

    In this paper we present a computational tool that enables the simulation of mathematical models of cell migration and chemotaxis on an evolving cell membrane. Recent models require the numerical solution of systems of reaction-diffusion equations on the evolving cell membrane and then the solution state is used to drive the evolution of the cell edge. Previous work involved moving the cell edge using a level set method (LSM). However, the LSM is computationally very expensive, which severely limits the practical usefulness of the algorithm. To address this issue, we have employed the parameterised finite element method (PFEM) as an alternative method for evolving a cell boundary. We show that the PFEM is far more efficient and robust than the LSM. We therefore suggest that the PFEM potentially has an essential role to play in computational modelling efforts towards the understanding of many of the complex issues related to chemotaxis.

  7. A general evolving model for growing bipartite networks

    International Nuclear Information System (INIS)

    Tian, Lixin; He, Yinghuan; Liu, Haijun; Du, Ruijin

    2012-01-01

    In this Letter, we propose and study an inner evolving bipartite network model. Significantly, we prove that the degree distribution of two different kinds of nodes both obey power-law form with adjustable exponents. Furthermore, the joint degree distribution of any two nodes for bipartite networks model is calculated analytically by the mean-field method. The result displays that such bipartite networks are nearly uncorrelated networks, which is different from one-mode networks. Numerical simulations and empirical results are given to verify the theoretical results. -- Highlights: ► We proposed a general evolving bipartite network model which was based on priority connection, reconnection and breaking edges. ► We prove that the degree distribution of two different kinds of nodes both obey power-law form with adjustable exponents. ► The joint degree distribution of any two nodes for bipartite networks model is calculated analytically by the mean-field method. ► The result displays that such bipartite networks are nearly uncorrelated networks, which is different from one-mode networks.

  8. Stem cells and the evolving notion of cellular identity

    OpenAIRE

    Daley, George Q.

    2015-01-01

    Stem cells are but one class of the myriad types of cells within an organism. With potential to self-renew and capacity to differentiate, stem cells play essential roles at multiple stages of development. In the early embryo, pluripotent stem cells represent progenitors for all tissues while later in development, tissue-restricted stem cells give rise to cells with highly specialized functions. As best understood in the blood, skin and gut, stem cells are the seeds that sustain tissue homeost...

  9. A Markovian model of evolving world input-output network.

    Directory of Open Access Journals (Sweden)

    Vahid Moosavi

    Full Text Available The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.

  10. A Markovian model of evolving world input-output network.

    Science.gov (United States)

    Moosavi, Vahid; Isacchini, Giulio

    2017-01-01

    The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.

  11. Evolving Hematopoietic Stem Cell Transplantation Strategies in Severe Aplastic Anemia

    Science.gov (United States)

    Dietz, Andrew C.; Lucchini, Giovanna; Samarasinghe, Sujith; Pulsipher, Michael A.

    2016-01-01

    Purpose of Review Significant improvements in unrelated donor hematopoietic stem cell transplantation (HSCT) in recent years has solidified its therapeutic role in severe aplastic anemia (SAA) and led to evolution of treatment algorithms, particularly for children. Recent Findings Advances in understanding genetics of inherited bone marrow failure syndromes (IBMFS) have allowed more confidence in accurately diagnosing SAA and avoiding treatments that could be dangerous and ineffective in individuals with IBMFS, which can be diagnosed in 10–20% of children presenting with a picture of SAA. Additionally long-term survival after matched sibling donor (MSD) and matched unrelated donor (MUD) HSCT now exceed 90% in children. Late effects after HSCT for SAA are minimal with current strategies and compare favorably to late effects after up-front immunosuppressive therapy (IST), except for patients with chronic graft versus host disease (GVHD). Summary 1) Careful assessment for signs or symptoms of IBMFS along with genetic screening for these disorders is of major importance. 2) MSD HSCT is already considered standard of care for up-front therapy and some groups are evaluating MUD HSCT as primary therapy. 3) Ongoing studies will continue to challenge treatment algorithms and may lead to an even more expanded role for HSCT in SAA. PMID:26626557

  12. Genetic programming for evolving due-date assignment models in job shop environments.

    Science.gov (United States)

    Nguyen, Su; Zhang, Mengjie; Johnston, Mark; Tan, Kay Chen

    2014-01-01

    Due-date assignment plays an important role in scheduling systems and strongly influences the delivery performance of job shops. Because of the stochastic and dynamic nature of job shops, the development of general due-date assignment models (DDAMs) is complicated. In this study, two genetic programming (GP) methods are proposed to evolve DDAMs for job shop environments. The experimental results show that the evolved DDAMs can make more accurate estimates than other existing dynamic DDAMs with promising reusability. In addition, the evolved operation-based DDAMs show better performance than the evolved DDAMs employing aggregate information of jobs and machines.

  13. Challenges for fuel cells as stationary power resource in the evolving energy enterprise

    Science.gov (United States)

    Rastler, Dan

    The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.

  14. Evolving Four Part Harmony Using a Multiple Worlds Model

    DEFF Research Database (Denmark)

    Scirea, Marco; Brown, Joseph Alexander

    2015-01-01

    This application of the Multiple Worlds Model examines a collaborative fitness model for generating four part harmonies. In this model we have multiple populations and the fitness of the individuals is based on the ability of a member from each population to work with the members of other...

  15. Tumorigenic Heterogeneity in Cancer Stem Cells Evolved from Long-term Cultures of Telomerase-Immortalized

    DEFF Research Database (Denmark)

    Burns, Jorge S; Abdallah, Basem M; Guldberg, Per

    2005-01-01

    Long-term cultures of telomerase-transduced adult human mesenchymal stem cells (hMSC) may evolve spontaneous genetic changes leading to tumorigenicity in immunodeficient mice (e.g., hMSC-TERT20). We wished to clarify whether this unusual phenotype reflected a rare but dominant subpopulation or if...

  16. Modeling in the Classroom: An Evolving Learning Tool

    Science.gov (United States)

    Few, A. A.; Marlino, M. R.; Low, R.

    2006-12-01

    Among the early programs (early 1990s) focused on teaching Earth System Science were the Global Change Instruction Program (GCIP) funded by NSF through UCAR and the Earth System Science Education Program (ESSE) funded by NASA through USRA. These two programs introduced modeling as a learning tool from the beginning, and they provided workshops, demonstrations and lectures for their participating universities. These programs were aimed at university-level education. Recently, classroom modeling is experiencing a revival of interest. Drs John Snow and Arthur Few conducted two workshops on modeling at the ESSE21 meeting in Fairbanks, Alaska, in August 2005. The Digital Library for Earth System Education (DLESE) at http://www.dlese.org provides web access to STELLA models and tutorials, and UCAR's Education and Outreach (EO) program holds workshops that include training in modeling. An important innovation to the STELLA modeling software by isee systems, http://www.iseesystems.com, called "isee Player" is available as a free download. The Player allows users to view and run STELLA models, change model parameters, share models with colleagues and students, and make working models available on the web. This is important because the expert can create models, and the user can learn how the modeled system works. Another aspect of this innovation is that the educational benefits of modeling concepts can be extended throughout most of the curriculum. The procedure for building a working computer model of an Earth Science System follows this general format: (1) carefully define the question(s) for which you seek the answer(s); (2) identify the interacting system components and inputs contributing to the system's behavior; (3) collect the information and data that will be required to complete the conceptual model; (4) construct a system diagram (graphic) of the system that displays all of system's central questions, components, relationships and required inputs. At this stage

  17. Model for the Evolving Bed Surface around an Offshore Monopile

    DEFF Research Database (Denmark)

    Hartvig, Peres Akrawi

    2012-01-01

    This paper presents a model for the bed surface around an offshore monopile. The model has been designed from measured laboratory bed surfaces and is shown to reproduce these satisfactorily for both scouring and backfilling. The local rate of the bed elevation is assumed to satisfy a certain...... general parametrized surface. The model also accounts for sliding of sediment particles when the angle of the local bed slope exceeds the angle of repose....

  18. Open Science and Open Data: Evolving Business Models

    OpenAIRE

    Melero, Remedios

    2013-01-01

    The rise of ICT has changed the way scientific inputs and outputs are disseminated and diffused. As a consequence, new business models for open access to Scientific publications and datasets are emerging. This session will explore the new features of the business models for open access and open data as well as the associated benefits and risks.

  19. Our evolving conceptual model of the coastal eutrophication problem

    Science.gov (United States)

    Cloern, James E.

    2001-01-01

    A primary focus of coastal science during the past 3 decades has been the question: How does anthropogenic nutrient enrichment cause change in the structure or function of nearshore coastal ecosystems? This theme of environmental science is recent, so our conceptual model of the coastal eutrophication problem continues to change rapidly. In this review, I suggest that the early (Phase I) conceptual model was strongly influenced by limnologists, who began intense study of lake eutrophication by the 1960s. The Phase I model emphasized changing nutrient input as a signal, and responses to that signal as increased phytoplankton biomass and primary production, decomposition of phytoplankton-derived organic matter, and enhanced depletion of oxygen from bottom waters. Coastal research in recent decades has identified key differences in the responses of lakes and coastal-estuarine ecosystems to nutrient enrichment. The contemporary (Phase II) conceptual model reflects those differences and includes explicit recognition of (1) system-specific attributes that act as a filter to modulate the responses to enrichment (leading to large differences among estuarine-coastal systems in their sensitivity to nutrient enrichment); and (2) a complex suite of direct and indirect responses including linked changes in: water transparency, distribution of vascular plants and biomass of macroalgae, sediment biogeochemistry and nutrient cycling, nutrient ratios and their regulation of phytoplankton community composition, frequency of toxic/harmful algal blooms, habitat quality for metazoans, reproduction/growth/survival of pelagic and benthic invertebrates, and subtle changes such as shifts in the seasonality of ecosystem functions. Each aspect of the Phase II model is illustrated here with examples from coastal ecosystems around the world. In the last section of this review I present one vision of the next (Phase III) stage in the evolution of our conceptual model, organized around 5

  20. An Agent-Based Model of Evolving Community Flood Risk.

    Science.gov (United States)

    Tonn, Gina L; Guikema, Seth D

    2017-11-17

    Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent-based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near-miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high-risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in-depth behavioral and decision rules at the individual and community level. © 2017 Society for Risk Analysis.

  1. "Open Access" Requires Clarification: Medical Journal Publication Models Evolve.

    Science.gov (United States)

    Lubowitz, James H; Brand, Jefferson C; Rossi, Michael J; Provencher, Matthew T

    2017-03-01

    While Arthroscopy journal is a traditional subscription model journal, our companion journal Arthroscopy Techniques is "open access." We used to believe open access simply meant online and free of charge. However, while open-access journals are free to readers, in 2017 authors must make a greater sacrifice in the form of an article-processing charge (APC). Again, while this does not apply to Arthroscopy, the APC will apply to Arthroscopy Techniques. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. Empirical Models of Social Learning in a Large, Evolving Network.

    Directory of Open Access Journals (Sweden)

    Ayşe Başar Bener

    Full Text Available This paper advances theories of social learning through an empirical examination of how social networks change over time. Social networks are important for learning because they constrain individuals' access to information about the behaviors and cognitions of other people. Using data on a large social network of mobile device users over a one-month time period, we test three hypotheses: 1 attraction homophily causes individuals to form ties on the basis of attribute similarity, 2 aversion homophily causes individuals to delete existing ties on the basis of attribute dissimilarity, and 3 social influence causes individuals to adopt the attributes of others they share direct ties with. Statistical models offer varied degrees of support for all three hypotheses and show that these mechanisms are more complex than assumed in prior work. Although homophily is normally thought of as a process of attraction, people also avoid relationships with others who are different. These mechanisms have distinct effects on network structure. While social influence does help explain behavior, people tend to follow global trends more than they follow their friends.

  3. Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective

    NARCIS (Netherlands)

    Janssen, A.B.G.; Gerla, D.J.

    2015-01-01

    Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality

  4. Gaian bottlenecks and planetary habitability maintained by evolving model biospheres: the ExoGaia model

    Science.gov (United States)

    Nicholson, Arwen E.; Wilkinson, David M.; Williams, Hywel T. P.; Lenton, Timothy M.

    2018-06-01

    The search for habitable exoplanets inspires the question - how do habitable planets form? Planet habitability models traditionally focus on abiotic processes and neglect a biotic response to changing conditions on an inhabited planet. The Gaia hypothesis postulates that life influences the Earth's feedback mechanisms to form a self-regulating system, and hence that life can maintain habitable conditions on its host planet. If life has a strong influence, it will have a role in determining a planet's habitability over time. We present the ExoGaia model - a model of simple `planets' host to evolving microbial biospheres. Microbes interact with their host planet via consumption and excretion of atmospheric chemicals. Model planets orbit a `star' that provides incoming radiation, and atmospheric chemicals have either an albedo or a heat-trapping property. Planetary temperatures can therefore be altered by microbes via their metabolisms. We seed multiple model planets with life while their atmospheres are still forming and find that the microbial biospheres are, under suitable conditions, generally able to prevent the host planets from reaching inhospitable temperatures, as would happen on a lifeless planet. We find that the underlying geochemistry plays a strong role in determining long-term habitability prospects of a planet. We find five distinct classes of model planets, including clear examples of `Gaian bottlenecks' - a phenomenon whereby life either rapidly goes extinct leaving an inhospitable planet or survives indefinitely maintaining planetary habitability. These results suggest that life might play a crucial role in determining the long-term habitability of planets.

  5. Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks

    Science.gov (United States)

    Steiner, Christopher F.

    2012-01-01

    The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934

  6. An evolving user-oriented model of Internet health information seeking.

    Science.gov (United States)

    Gaie, Martha J

    2006-01-01

    This paper presents an evolving user-oriented model of Internet health information seeking (IS) based on qualitative data collected from 22 lung cancer (LC) patients and caregivers. This evolving model represents information search behavior as more highly individualized, complex, and dynamic than previous models, including pre-search psychological activity, use of multiple heuristics throughout the process, and cost-benefit evaluation of search results. This study's findings suggest that IS occurs in four distinct phases: search initiation/continuation, selective exposure, message processing, and message evaluation. The identification of these phases and the heuristics used within them suggests a higher order of complexity in the decision-making processes that underlie IS, which could lead to the development of a conceptual framework that more closely reflects the complex nature of contextualized IS. It also illustrates the advantages of using qualitative methods to extract more subtle details of the IS process and fill in the gaps in existing models.

  7. SPATIO-TEMPORAL DATA MODEL FOR INTEGRATING EVOLVING NATION-LEVEL DATASETS

    Directory of Open Access Journals (Sweden)

    A. Sorokine

    2017-10-01

    Full Text Available Ability to easily combine the data from diverse sources in a single analytical workflow is one of the greatest promises of the Big Data technologies. However, such integration is often challenging as datasets originate from different vendors, governments, and research communities that results in multiple incompatibilities including data representations, formats, and semantics. Semantics differences are hardest to handle: different communities often use different attribute definitions and associate the records with different sets of evolving geographic entities. Analysis of global socioeconomic variables across multiple datasets over prolonged time is often complicated by the difference in how boundaries and histories of countries or other geographic entities are represented. Here we propose an event-based data model for depicting and tracking histories of evolving geographic units (countries, provinces, etc. and their representations in disparate data. The model addresses the semantic challenge of preserving identity of geographic entities over time by defining criteria for the entity existence, a set of events that may affect its existence, and rules for mapping between different representations (datasets. Proposed model is used for maintaining an evolving compound database of global socioeconomic and environmental data harvested from multiple sources. Practical implementation of our model is demonstrated using PostgreSQL object-relational database with the use of temporal, geospatial, and NoSQL database extensions.

  8. Spatio-Temporal Data Model for Integrating Evolving Nation-Level Datasets

    Science.gov (United States)

    Sorokine, A.; Stewart, R. N.

    2017-10-01

    Ability to easily combine the data from diverse sources in a single analytical workflow is one of the greatest promises of the Big Data technologies. However, such integration is often challenging as datasets originate from different vendors, governments, and research communities that results in multiple incompatibilities including data representations, formats, and semantics. Semantics differences are hardest to handle: different communities often use different attribute definitions and associate the records with different sets of evolving geographic entities. Analysis of global socioeconomic variables across multiple datasets over prolonged time is often complicated by the difference in how boundaries and histories of countries or other geographic entities are represented. Here we propose an event-based data model for depicting and tracking histories of evolving geographic units (countries, provinces, etc.) and their representations in disparate data. The model addresses the semantic challenge of preserving identity of geographic entities over time by defining criteria for the entity existence, a set of events that may affect its existence, and rules for mapping between different representations (datasets). Proposed model is used for maintaining an evolving compound database of global socioeconomic and environmental data harvested from multiple sources. Practical implementation of our model is demonstrated using PostgreSQL object-relational database with the use of temporal, geospatial, and NoSQL database extensions.

  9. Renal cell carcinoma: evolving approaches to advanced non-clear cell carcinoma

    Directory of Open Access Journals (Sweden)

    Daniel Y.C. Heng

    2011-12-01

    Full Text Available The treatment of metastatic renal cell carcinoma (RCC has changed dramatically with the introduction of targeted therapies including sunitinib, sorafenib, and temsirolimus. Because patients with conventional clear cell histology account for 75- 80% of all patients with RCC, there has been little accumulated evidence on the treatment of patients with non-clear cell histologies. Most clinical trials have excluded them from enrolment, except for randomized studies investigating temsirolimus. Many retrospective studies on the use of all three of these targeted therapies in patients with non-clear cell histology have demonstrated response rates ranging from 3.7%–16%. Although response rates may not be as high compared to patients with clear cell histologies, targeted therapy does provide a clinically meaningful response.

  10. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton.

    Science.gov (United States)

    Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu

    2018-03-19

    To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human-robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human-robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility.

  11. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton

    Directory of Open Access Journals (Sweden)

    Likun Wang

    2018-03-01

    Full Text Available To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human–robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human–robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility.

  12. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton

    Science.gov (United States)

    Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu

    2018-01-01

    To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human–robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human–robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility. PMID:29562684

  13. Modeling growth and dissemination of lymphoma in a co-evolving lymph node: a diffuse-domain approach

    Science.gov (United States)

    Chuang, Yao-Li; Cristini, Vittorio; Chen, Ying; Li, Xiangrong; Frieboes, Hermann; Lowengrub, John

    2013-03-01

    While partial differential equation models of tumor growth have successfully described various spatiotemporal phenomena observed for in-vitro tumor spheroid experiments, one challenge towards taking these models to further study in-vivo tumors is that instead of relatively static tissue culture with regular boundary conditions, in-vivo tumors are often confined in organ tissues that co-evolve with the tumor growth. Here we adopt a recently developed diffuse-domain method to account for the co-evolving domain boundaries, adapting our previous in-vitro tumor model for the development of lymphoma encapsulated in a lymph node, which may swell or shrink due to proliferation and dissemination of lymphoma cells and treatment by chemotherapy. We use the model to study the induced spatial heterogeneity, which may arise as an emerging phenomenon in experimental observations and model analysis. Spatial heterogeneity is believed to lead to tumor infiltration patterns and reduce the efficacy of chemotherapy, leaving residuals that cause cancer relapse after the treatment. Understanding the spatiotemporal evolution of in-vivo tumors can be an essential step towards more effective strategies of curing cancer. Supported by NIH-PSOC grant 1U54CA143907-01.

  14. Modeling misidentification errors in capture-recapture studies using photographic identification of evolving marks

    Science.gov (United States)

    Yoshizaki, J.; Pollock, K.H.; Brownie, C.; Webster, R.A.

    2009-01-01

    Misidentification of animals is potentially important when naturally existing features (natural tags) are used to identify individual animals in a capture-recapture study. Photographic identification (photoID) typically uses photographic images of animals' naturally existing features as tags (photographic tags) and is subject to two main causes of identification errors: those related to quality of photographs (non-evolving natural tags) and those related to changes in natural marks (evolving natural tags). The conventional methods for analysis of capture-recapture data do not account for identification errors, and to do so requires a detailed understanding of the misidentification mechanism. Focusing on the situation where errors are due to evolving natural tags, we propose a misidentification mechanism and outline a framework for modeling the effect of misidentification in closed population studies. We introduce methods for estimating population size based on this model. Using a simulation study, we show that conventional estimators can seriously overestimate population size when errors due to misidentification are ignored, and that, in comparison, our new estimators have better properties except in cases with low capture probabilities (<0.2) or low misidentification rates (<2.5%). ?? 2009 by the Ecological Society of America.

  15. When everything is not everywhere but species evolve: an alternative method to model adaptive properties of marine ecosystems.

    Science.gov (United States)

    Sauterey, Boris; Ward, Ben A; Follows, Michael J; Bowler, Chris; Claessen, David

    2015-01-01

    The functional and taxonomic biogeography of marine microbial systems reflects the current state of an evolving system. Current models of marine microbial systems and biogeochemical cycles do not reflect this fundamental organizing principle. Here, we investigate the evolutionary adaptive potential of marine microbial systems under environmental change and introduce explicit Darwinian adaptation into an ocean modelling framework, simulating evolving phytoplankton communities in space and time. To this end, we adopt tools from adaptive dynamics theory, evaluating the fitness of invading mutants over annual timescales, replacing the resident if a fitter mutant arises. Using the evolutionary framework, we examine how community assembly, specifically the emergence of phytoplankton cell size diversity, reflects the combined effects of bottom-up and top-down controls. When compared with a species-selection approach, based on the paradigm that "Everything is everywhere, but the environment selects", we show that (i) the selected optimal trait values are similar; (ii) the patterns emerging from the adaptive model are more robust, but (iii) the two methods lead to different predictions in terms of emergent diversity. We demonstrate that explicitly evolutionary approaches to modelling marine microbial populations and functionality are feasible and practical in time-varying, space-resolving settings and provide a new tool for exploring evolutionary interactions on a range of timescales in the ocean.

  16. Evolving T-cell vaccine strategies for HIV, the virus with a thousand faces

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory

    2009-01-01

    HIV's rapid global spread and the human suffering it has left in its wake have made AIDS a global heath priority for the 25 years since its discovery. Yet its capacity to rapidly evolve has made combating this virus a tremendous challenge. The obstacles to creating an effective HIV vaccine are formidable, but there are advances in the field on many fronts, in terms of novel vectors, adjuvants, and antigen design strategies. SIV live attenuated vaccine models are able to confer protection against heterologous challenge, and this continues to provide opportunities to explore the biological underpinnings of a protective effect (9). More indirect, but equally important, is new understanding regarding the biology of acute infection (43), the role of immune response in long-term non-progression (6,62, 81), and defining characteristics of broadly neutralizing antibodies (4). In this review we will focus on summarizing strategies directed towards a single issue, that of contending with HIV variation in terms of designing aT-cell vaccine. The strategies that prove most effective in this area can ultimately be combined with the best strategies under development in other areas, with the hope of ultimately converging on a viable vaccine candidate. Only two large HIV vaccine efficacy trials have been completed and both have failed to prevent infection or confer a benefit to infected individual (23,34), but there is ample reason to continue our efforts. A historic breakthrough came in 1996, when it was realized that although the virus could escape from a single antiretroviral (ARV) therapy, it could be thwarted by a combination of medications that simultaneously targeted different parts of the virus (HAART) (38). This revelation came after 15 years of research, thought, and clinical testing; to enable that vital progress the research and clinical communities had to first define and understand, then develop a strategy to counter, the remarkable evolutionary potential of the

  17. The General Evolving Model for Energy Supply-Demand Network with Local-World

    Science.gov (United States)

    Sun, Mei; Han, Dun; Li, Dandan; Fang, Cuicui

    2013-10-01

    In this paper, two general bipartite network evolving models for energy supply-demand network with local-world are proposed. The node weight distribution, the "shifting coefficient" and the scaling exponent of two different kinds of nodes are presented by the mean-field theory. The numerical results of the node weight distribution and the edge weight distribution are also investigated. The production's shifted power law (SPL) distribution of coal enterprises and the installed capacity's distribution of power plants in the US are obtained from the empirical analysis. Numerical simulations and empirical results are given to verify the theoretical results.

  18. Statistical models for brain signals with properties that evolve across trials.

    Science.gov (United States)

    Ombao, Hernando; Fiecas, Mark; Ting, Chee-Ming; Low, Yin Fen

    2017-12-07

    Most neuroscience cognitive experiments involve repeated presentations of various stimuli across several minutes or a few hours. It has been observed that brain responses, even to the same stimulus, evolve over the course of the experiment. These changes in brain activation and connectivity are believed to be associated with learning and/or habituation. In this paper, we present two general approaches to modeling dynamic brain connectivity using electroencephalograms (EEGs) recorded across replicated trials in an experiment. The first approach is the Markovian regime-switching vector autoregressive model (MS-VAR) which treats EEGs as realizations of an underlying brain process that switches between different states both within a trial and across trials in the entire experiment. The second is the slowly evolutionary locally stationary process (SEv-LSP) which characterizes the observed EEGs as a mixture of oscillatory activities at various frequency bands. The SEv-LSP model captures the dynamic nature of the amplitudes of the band-oscillations and cross-correlations between them. The MS-VAR model is able to capture abrupt changes in the dynamics while the SEv-LSP directly gives interpretable results. Moreover, it is nonparametric and hence does not suffer from model misspecification. For both of these models, time-evolving connectivity metrics in the frequency domain are derived from the model parameters for both functional and effective connectivity. We illustrate these two models for estimating cross-trial connectivity in selective attention using EEG data from an oddball paradigm auditory experiment where the goal is to characterize the evolution of brain responses to target stimuli and to standard tones presented randomly throughout the entire experiment. The results suggest dynamic changes in connectivity patterns over trials with inter-subject variability. Copyright © 2017. Published by Elsevier Inc.

  19. Statistical models for brain signals with properties that evolve across trials

    KAUST Repository

    Ombao, Hernando

    2017-12-07

    Most neuroscience cognitive experiments involve repeated presentations of various stimuli across several minutes or a few hours. It has been observed that brain responses, even to the same stimulus, evolve over the course of the experiment. These changes in brain activation and connectivity are believed to be associated with learning and/or habituation. In this paper, we present two general approaches to modeling dynamic brain connectivity using electroencephalograms (EEGs) recorded across replicated trials in an experiment. The first approach is the Markovian regime-switching vector autoregressive model (MS-VAR) which treats EEGs as realizations of an underlying brain process that switches between different states both within a trial and across trials in the entire experiment. The second is the slowly evolutionary locally stationary process (SEv-LSP) which characterizes the observed EEGs as a mixture of oscillatory activities at various frequency bands. The SEv-LSP model captures the dynamic nature of the amplitudes of the band-oscillations and cross-correlations between them. The MS-VAR model is able to capture abrupt changes in the dynamics while the SEv-LSP directly gives interpretable results. Moreover, it is nonparametric and hence does not suffer from model misspecification. For both of these models, time-evolving connectivity metrics in the frequency domain are derived from the model parameters for both functional and effective connectivity. We illustrate these two models for estimating cross-trial connectivity in selective attention using EEG data from an oddball paradigm auditory experiment where the goal is to characterize the evolution of brain responses to target stimuli and to standard tones presented randomly throughout the entire experiment. The results suggest dynamic changes in connectivity patterns over trials with inter-subject variability.

  20. Evolving Non-Dominated Parameter Sets for Computational Models from Multiple Experiments

    Science.gov (United States)

    Lane, Peter C. R.; Gobet, Fernand

    2013-03-01

    Creating robust, reproducible and optimal computational models is a key challenge for theorists in many sciences. Psychology and cognitive science face particular challenges as large amounts of data are collected and many models are not amenable to analytical techniques for calculating parameter sets. Particular problems are to locate the full range of acceptable model parameters for a given dataset, and to confirm the consistency of model parameters across different datasets. Resolving these problems will provide a better understanding of the behaviour of computational models, and so support the development of general and robust models. In this article, we address these problems using evolutionary algorithms to develop parameters for computational models against multiple sets of experimental data; in particular, we propose the `speciated non-dominated sorting genetic algorithm' for evolving models in several theories. We discuss the problem of developing a model of categorisation using twenty-nine sets of data and models drawn from four different theories. We find that the evolutionary algorithms generate high quality models, adapted to provide a good fit to all available data.

  1. Evolving chemometric models for predicting dynamic process parameters in viscose production

    Energy Technology Data Exchange (ETDEWEB)

    Cernuda, Carlos [Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz (Austria); Lughofer, Edwin, E-mail: edwin.lughofer@jku.at [Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz (Austria); Suppan, Lisbeth [Kompetenzzentrum Holz GmbH, St. Peter-Str. 25, 4021 Linz (Austria); Roeder, Thomas; Schmuck, Roman [Lenzing AG, 4860 Lenzing (Austria); Hintenaus, Peter [Software Research Center, Paris Lodron University Salzburg (Austria); Maerzinger, Wolfgang [i-RED Infrarot Systeme GmbH, Linz (Austria); Kasberger, Juergen [Recendt GmbH, Linz (Austria)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer Quality assurance of process parameters in viscose production. Black-Right-Pointing-Pointer Automatic prediction of spin-bath concentrations based on FTNIR spectra. Black-Right-Pointing-Pointer Evolving chemometric models for efficiently handling changing system dynamics over time (no time-intensive re-calibration needed). Black-Right-Pointing-Pointer Significant reduction of huge errors produced by statistical state-of-the-art calibration methods. Black-Right-Pointing-Pointer Sufficient flexibility achieved by gradual forgetting mechanisms. - Abstract: In viscose production, it is important to monitor three process parameters in order to assure a high quality of the final product: the concentrations of H{sub 2}SO{sub 4}, Na{sub 2}SO{sub 4} and Z{sub n}SO{sub 4}. During on-line production these process parameters usually show a quite high dynamics depending on the fiber type that is produced. Thus, conventional chemometric models, which are trained based on collected calibration spectra from Fourier transform near infrared (FT-NIR) measurements and kept fixed during the whole life-time of the on-line process, show a quite imprecise and unreliable behavior when predicting the concentrations of new on-line data. In this paper, we are demonstrating evolving chemometric models which are able to adapt automatically to varying process dynamics by updating their inner structures and parameters in a single-pass incremental manner. These models exploit the Takagi-Sugeno fuzzy model architecture, being able to model flexibly different degrees of non-linearities implicitly contained in the mapping between near infrared spectra (NIR) and reference values. Updating the inner structures is achieved by moving the position of already existing local regions and by evolving (increasing non-linearity) or merging (decreasing non-linearity) new local linear predictors on demand, which are guided by distance-based and similarity criteria. Gradual

  2. A model for the emergence of cooperation, interdependence, and structure in evolving networks

    Science.gov (United States)

    Jain, Sanjay; Krishna, Sandeep

    2001-01-01

    Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.

  3. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    Science.gov (United States)

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  4. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    Directory of Open Access Journals (Sweden)

    C. K. Kwong

    2013-01-01

    Full Text Available Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1 the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS failed to run due to a large number of inputs; (2 the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  5. Evolving and energy dependent optical model description of heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Michaelian, K.

    1996-01-01

    We present the application of a genetic algorithm to the problem of determining an energy dependent optical model description of heavy-ion elastic scattering. The problem requires a search for the global best optical model potential and its energy dependence in a very rugged 12 dimensional parameter space of complex topographical features with many local minima. Random solutions are created in the first generation. The fitness of a solution is related to the χ 2 fit of the calculated differential cross sections with the experimental data. Best fit solutions are evolved through cross over and mutation following the biological example. This genetic algorithm approach combined with local gradient minimization is shown to provide a global, complete and extremely efficient search method, well adapted to complex fitness landscapes. These characteristics, combined with the facility of application, should make it the search method of choice for a wide variety of problems from nuclear physics. (Author)

  6. Selective Advantage of Recombination in Evolving Protein Populations:. a Lattice Model Study

    Science.gov (United States)

    Williams, Paul D.; Pollock, David D.; Goldstein, Richard A.

    Recent research has attempted to clarify the contributions of several mutational processes, such as substitutions or homologous recombination. Simplistic, tractable protein models, which determine the compact native structure phenotype from the sequence genotype, are well-suited to such studies. In this paper, we use a lattice-protein model to examine the effects of point mutation and homologous recombination on evolving populations of proteins. We find that while the majority of mutation and recombination events are neutral or deleterious, recombination is far more likely to be beneficial. This results in a faster increase in fitness during evolution, although the final fitness level is not significantly changed. This transient advantage provides an evolutionary advantage to subpopulations that undergo recombination, allowing fixation of recombination to occur in the population.

  7. Emerging trends in evolving networks: Recent behaviour dominant and non-dominant model

    Science.gov (United States)

    Abbas, Khushnood; Shang, Mingsheng; Luo, Xin; Abbasi, Alireza

    2017-10-01

    Novel phenomenon receives similar attention as popular one. Therefore predicting novelty is as important as popularity. Emergence is the side effect of competition and ageing in evolving systems. Recent behaviour or recent link gain in networks plays an important role in emergence. We exploited this wisdom and came up with two models considering different scenarios and systems. Where recent behaviour dominates over total behaviour (total link gain) in the first one, and recent behaviour is as important as total behaviour for future link gain in the second one. It supposes that random walker walks on a network and can jump to any node, the probability of jumping or making a connection to other node is based on which node is recently more active or receiving more links. In our assumption, the random walker can also jump to the node which is already popular but recently not popular. We are able to predict emerging nodes which are generally suppressed under preferential attachment effect. To show the performance of our model we have conducted experiments on four real data sets namely, MovieLens, Netflix, Facebook and Arxiv High Energy Physics paper citation. For testing our model we used four information retrieval indices namely Precision, Novelty, Area Under Receiving Operating Characteristic (AUC) and Kendal's rank correlation coefficient. We have used four benchmark models for validating our proposed models. Although our model does not perform better in all the cases but, it has theoretical significance in working better for recent behaviour dominated systems.

  8. How Preclinical Models Evolved to Resemble the Diagnostic Criteria of Drug Addiction.

    Science.gov (United States)

    Belin-Rauscent, Aude; Fouyssac, Maxime; Bonci, Antonello; Belin, David

    2016-01-01

    Drug addiction is a complex neuropsychiatric disorder that affects a subset of the individuals who take drugs. It is characterized by maladaptive drug-seeking habits that are maintained despite adverse consequences and intense drug craving. The pathophysiology and etiology of addiction is only partially understood despite extensive research because of the gap between current preclinical models of addiction and the clinical criteria of the disorder. This review presents a brief overview, based on selected methodologies, of how behavioral models have evolved over the last 50 years to the development of recent preclinical models of addiction that more closely mimic diagnostic criteria of addiction. It is hoped that these new models will increase our understanding of the complex neurobiological mechanisms whereby some individuals switch from controlled drug use to compulsive drug-seeking habits and relapse to these maladaptive habits. Additionally, by paving the way to bridge the gap that exists between biobehavioral research on addiction and the human situation, these models may provide new perspectives for the development of novel and effective therapeutic strategies for drug addiction. Published by Elsevier Inc.

  9. Universe in the theoretical model «Evolving matter»

    Directory of Open Access Journals (Sweden)

    Bazaluk Oleg

    2013-04-01

    Full Text Available The article critically examines modern model of the Universe evolution constructed by efforts of a group of scientists (mathematicians, physicists and cosmologists from the world's leading universities (Oxford and Cambridge Universities, Yale, Columbia, New York, Rutgers and the UC Santa Cruz. The author notes its strengths, but also points to shortcomings. Author believes that this model does not take into account the most important achievements in the field of biochemistry and biology (molecular, physical, developmental, etc., as well as neuroscience and psychology. Author believes that in the construction of model of the Universe evolution, scientists must take into account (with great reservations the impact of living and intelligent matter on space processes. As an example, the author gives his theoretical model "Evolving matter". In this model, he shows not only the general dependence of the interaction of cosmic processes with inert, living and intelligent matter, but also he attempts to show the direct influence of systems of living and intelligent matter on the acceleration of the Universe's expansion.

  10. Evolving software products, the design of a water-related modeling software ecosystem

    DEFF Research Database (Denmark)

    Manikas, Konstantinos

    2017-01-01

    more than 50 years ago. However, a radical change of software products to evolve both in the software engineering as much as the organizational and business aspects in a disruptive manner are rather rare. In this paper, we report on the transformation of one of the market leader product series in water......-related calculation and modeling from a traditional business-as-usual series of products to an evolutionary software ecosystem. We do so by relying on existing concepts on software ecosystem analysis to analyze the future ecosystem. We report and elaborate on the main focus points necessary for this transition. We...... argue for the generalization of our focus points to the transition from traditional business-as-usual software products to software ecosystems....

  11. Cell Growth Rate Dictates the Onset of Glass to Fluidlike Transition and Long Time Superdiffusion in an Evolving Cell Colony

    Science.gov (United States)

    Malmi-Kakkada, Abdul N.; Li, Xin; Samanta, Himadri S.; Sinha, Sumit; Thirumalai, D.

    2018-04-01

    Collective migration dominates many phenomena, from cell movement in living systems to abiotic self-propelling particles. Focusing on the early stages of tumor evolution, we enunciate the principles involved in cell dynamics and highlight their implications in understanding similar behavior in seemingly unrelated soft glassy materials and possibly chemokine-induced migration of CD 8+T cells. We performed simulations of tumor invasion using a minimal three-dimensional model, accounting for cell elasticity and adhesive cell-cell interactions, as well as cell birth and death, to establish that cell-growth-rate-dependent tumor expansion results in the emergence of distinct topological niches. Cells at the periphery move with higher velocity perpendicular to the tumor boundary, while the motion of interior cells is slower and isotropic. The mean-square displacement Δ (t ) of cells exhibits glassy behavior at times comparable to the cell cycle time, while exhibiting superdiffusive behavior, Δ (t )≈tα (α >1 ), at longer times. We derive the value of α ≈1.33 using a field theoretic approach based on stochastic quantization. In the process, we establish the universality of superdiffusion in a class of seemingly unrelated nonequilibrium systems. Superdiffusion at long times arises only if there is an imbalance between cell birth and death rates. Our findings for the collective migration, which also suggest that tumor evolution occurs in a polarized manner, are in quantitative agreement with in vitro experiments. Although set in the context of tumor invasion, the findings should also hold in describing the collective motion in growing cells and in active systems, where creation and annihilation of particles play a role.

  12. Evolving provider payment models and patient access to innovative medical technology.

    Science.gov (United States)

    Long, Genia; Mortimer, Richard; Sanzenbacher, Geoffrey

    2014-12-01

    Abstract Objective: To investigate the evolving use and expected impact of pay-for-performance (P4P) and risk-based provider reimbursement on patient access to innovative medical technology. Structured interviews with leading private payers representing over 110 million commercially-insured lives exploring current and planned use of P4P provider payment models, evidence requirements for technology assessment and new technology coverage, and the evolving relationship between the two topics. Respondents reported rapid increases in the use of P4P and risk-sharing programs, with roughly half of commercial lives affected 3 years ago, just under two-thirds today, and an expected three-quarters in 3 years. All reported well-established systems for evaluating new technology coverage. Five of nine reported becoming more selective in the past 3 years in approving new technologies; four anticipated that in the next 3 years there will be a higher evidence requirement for new technology access. Similarly, four expected it will become more difficult for clinically appropriate but costly technologies to gain coverage. All reported planning to rely more on these types of provider payment incentives to control costs, but didn't see them as a substitute for payer technology reviews and coverage limitations; they each have a role to play. Interviews limited to nine leading payers with models in place; self-reported data. Likely implications include a more uncertain payment environment for providers, and indirectly for innovative medical technology and future investment, greater reliance on quality and financial metrics, and increased evidence requirements for favorable coverage and utilization decisions. Increasing provider financial risk may challenge the traditional technology adoption paradigm, where payers assumed a 'gatekeeping' role and providers a countervailing patient advocacy role with regard to access to new technology. Increased provider financial risk may result in an

  13. Can We Recognize an Innovation? Perspective from an Evolving Network Model

    Science.gov (United States)

    Jain, Sanjay; Krishna, Sandeep

    "Innovations" are central to the evolution of societies and the evolution of life. But what constitutes an innovation? We can often agree after the event, when its consequences and impact over a long term are known, whether something was an innovation, and whether it was a "big" innovation or a "minor" one. But can we recognize an innovation "on the fly" as it appears? Successful entrepreneurs often can. Is it possible to formalize that intuition? We discuss this question in the setting of a mathematical model of evolving networks. The model exhibits self-organization , growth, stasis, and collapse of a complex system with many interacting components, reminiscent of real-world phenomena. A notion of "innovation" is formulated in terms of graph-theoretic constructs and other dynamical variables of the model. A new node in the graph gives rise to an innovation, provided it links up "appropriately" with existing nodes; in this view innovation necessarily depends upon the existing context. We show that innovations, as defined by us, play a major role in the birth, growth, and destruction of organizational structures. Furthermore, innovations can be categorized in terms of their graph-theoretic structure as they appear. Different structural classes of innovation have potentially different qualitative consequences for the future evolution of the system, some minor and some major. Possible general lessons from this specific model are briefly discussed.

  14. Particle-Resolved Modeling of Aerosol Mixing State in an Evolving Ship Plume

    Science.gov (United States)

    Riemer, N. S.; Tian, J.; Pfaffenberger, L.; Schlager, H.; Petzold, A.

    2011-12-01

    The aerosol mixing state is important since it impacts the particles' optical and CCN properties and thereby their climate impact. It evolves continuously during the particles' residence time in the atmosphere as a result of coagulation with other particles and condensation of secondary aerosol species. This evolution is challenging to represent in traditional aerosol models since they require the representation of a multi-dimensional particle distribution. While modal or sectional aerosol representations cannot practically resolve the aerosol mixing state for more than a few species, particle-resolved models store the composition of many individual aerosol particles directly. They thus sample the high-dimensional composition state space very efficiently and so can deal with tens of species, fully resolving the mixing state. Here we use the capabilities of the particle-resolved model PartMC-MOSAIC to simulate the evolution of particulate matter emitted from marine diesel engines and compare the results to aircraft measurements made in the English Channel in 2007 as part of the European campaign QUANTIFY. The model was initialized with values of gas concentrations and particle size distributions and compositions representing fresh ship emissions. These values were obtained from a test rig study in the European project HERCULES in 2006 using a serial four-stroke marine diesel engine operating on high-sulfur heavy fuel oil. The freshly emitted particles consisted of sulfate, black carbon, organic carbon and ash. We then tracked the particle population for several hours as it evolved undergoing coagulation, dilution with the background air, and chemical transformations in the aerosol and gas phase. This simulation was used to compute the evolution of CCN properties and optical properties of the plume on a per-particle basis. We compared our results to size-resolved data of aged ship plumes from the QUANTIFY Study in 2007 and showed that the model was able to reproduce

  15. An evolving model for the lodging-service network in a tourism destination

    Science.gov (United States)

    Hernández, Juan M.; González-Martel, Christian

    2017-09-01

    Tourism is a complex dynamic system including multiple actors which are related each other composing an evolving social network. This paper presents a growing model that explains how part of the supply components in a tourism system forms a social network. Specifically, the lodgings and services in a destination are the network nodes and a link between them appears if a representative tourist hosted in the lodging visits/consumes the service during his/her stay. The specific link between both categories are determined by a random and preferential attachment rule. The analytic results show that the long-term degree distribution of services follows a shifted power-law distribution. The numerical simulations show slight disagreements with the theoretical results in the case of the one-mode degree distribution of services, due to the low order of convergence to zero of X-motifs. The model predictions are compared with real data coming from a popular tourist destination in Gran Canaria, Spain, showing a good agreement between analytical and empirical data for the degree distribution of services. The theoretical model was validated assuming four type of perturbations in the real data.

  16. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    Science.gov (United States)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  17. Analysis of recent type Ia supernova data based on evolving dark energy models

    International Nuclear Information System (INIS)

    Park, Jaehong; Park, Chan-Gyung; Hwang, Jai-chan

    2011-01-01

    We study characters of recent type Ia supernova data using evolving dark energy models with changing equation-of-state parameter w. We consider a sudden-jump approximation of w for some chosen redshift spans with double transitions and constrain these models based on the Markov chain Monte Carlo method using the type Ia supernova data (Constitution, Union, Union2), together with the baryon acoustic oscillation A parameter and the cosmic microwave background shift parameter in a flat background. In the double-transition model, the Constitution data shows deviation outside 1σ from the Λ cold dark matter (ΛCDM) model at low (z < or approx. 0.2) and middle (0.2 < or approx. z < or approx. 0.4) redshift bins, whereas no such deviations are noticeable in the Union and Union2 data. By analyzing the Union members in the Constitution set, however, we show that the same difference is actually due to different calibration of the same Union sample in the Constitution set and is not due to new data added in the Constitution set. All detected deviations are within 2σ from the ΛCDM world model. From the ΛCDM mock data analysis, we quantify biases in the dark energy equation-of-state parameters induced by insufficient data with inhomogeneous distribution of data points in the redshift space and distance modulus errors. We demonstrate that the location of the peak in the distribution of arithmetic means (computed from the Markov chain Monte Carlo chain for each mock data) behaves as an unbiased estimator for the average bias, which is valid even for nonsymmetric likelihood distributions.

  18. A reproductive threat-based model of evolved sex differences in jealousy.

    Science.gov (United States)

    Sagarin, Brad J; Becker, D Vaughn; Guadagno, Rosanna E; Wilkinson, Wayne W; Nicastle, Lionel D

    2012-08-10

    Although heterosexual women and men consistently demonstrate sex differences in jealousy, these differences disappear among lesbians and gay men as well as among heterosexual women and men contemplating same-sex infidelities (infidelities in which the partner and rival are the same sex). Synthesizing these past findings, the present paper offers a reproductive threat-based model of evolved sex differences in jealousy that predicts that the sexes will differ only when the jealous perceivers' reproductive outcomes are differentially at risk. This model is supported by data from a web-based study in which lesbians, gay men, bisexual women and men, and heterosexual women and men responded to a hypothetical infidelity scenario with the sex of the rival randomly determined. After reading the scenario, participants indicated which type of infidelity (sexual versus emotional) would cause greater distress. Consistent with predictions, heterosexual women and men showed a sex difference when contemplating opposite-sex infidelities but not when contemplating same-sex infidelities, whereas lesbians and gay men showed no sex difference regardless of whether the infidelity was opposite-sex or same-sex.

  19. A Reproductive Threat-Based Model of Evolved Sex Differences in Jealousy

    Directory of Open Access Journals (Sweden)

    Brad J. Sagarin

    2012-07-01

    Full Text Available Although heterosexual women and men consistently demonstrate sex differences in jealousy, these differences disappear among lesbians and gay men as well as among heterosexual women and men contemplating same-sex infidelities (infidelities in which the partner and rival are the same sex. Synthesizing these past findings, the present paper offers a reproductive threat-based model of evolved sex differences in jealousy that predicts that the sexes will differ only when the jealous perceivers' reproductive outcomes are differentially at risk. This model is supported by data from a web-based study in which lesbians, gay men, bisexual women and men, and heterosexual women and men responded to a hypothetical infidelity scenario with the sex of the rival randomly determined. After reading the scenario, participants indicated which type of infidelity (sexual versus emotional would cause greater distress. Consistent with predictions, heterosexual women and men showed a sex difference when contemplating opposite-sex infidelities but not when contemplating same-sex infidelities, whereas lesbians and gay men showed no sex difference regardless of whether the infidelity was opposite-sex or same-sex.

  20. Impact of evolving greenhouse gas forcing on the warming signal in regional climate model experiments.

    Science.gov (United States)

    Jerez, S; López-Romero, J M; Turco, M; Jiménez-Guerrero, P; Vautard, R; Montávez, J P

    2018-04-03

    Variations in the atmospheric concentrations of greenhouse gases (GHG) may not be included as external forcing when running regional climate models (RCMs); at least, this is a non-regulated, non-documented practice. Here we investigate the so far unexplored impact of considering the rising evolution of the CO 2 , CH 4 , and N 2 O atmospheric concentrations on near-surface air temperature (TAS) trends, for both the recent past and the near future, as simulated by a state-of-the-art RCM over Europe. The results show that the TAS trends are significantly affected by 1-2 K century -1 , which under 1.5 °C global warming translates into a non-negligible impact of up to 1 K in the regional projections of TAS, similarly affecting projections for maximum and minimum temperatures. In some cases, these differences involve a doubling signal, laying further claim to careful reconsideration of the RCM setups with regard to the inclusion of GHG concentrations as an evolving external forcing which, for the sake of research reproducibility and reliability, should be clearly documented in the literature.

  1. Statistical models for brain signals with properties that evolve across trials

    KAUST Repository

    Ombao, Hernando; Fiecas, Mark; Ting, Chee-Ming; Low, Yin Fen

    2017-01-01

    Most neuroscience cognitive experiments involve repeated presentations of various stimuli across several minutes or a few hours. It has been observed that brain responses, even to the same stimulus, evolve over the course of the experiment

  2. Evolving models for medical physics education and training: a global perspective.

    Science.gov (United States)

    Sprawls, P

    2008-01-01

    There is a significant need for high-quality medical physics education and training in all countries to support effective and safe use of modern medical technology for both diagnostic and treatment purposes. This is, and will continue to be, achieved using appropriate technology to increase both the effectiveness and efficiency of educational activities everywhere in the world. While the applications of technology to education and training are relatively new, the successful applications are based on theories and principles of the learning process developed by two pioneers in the field, Robert Gagne and Edgar Dale.The work of Gagne defines the different levels of learning that can occur and is used to show the types and levels of learning that are required for the application of physics and engineering principles to achieve appropriate diagnostic and therapeutic results from modern technology. The learning outcomes are determined by the effectiveness of the learning activity or experience. The extensive work of Dale as formulated in his Cone of Experience relates the effectiveness to the efficiency of educational activities. A major challenge in education is the development and conduction of learning activities (classroom discussions, laboratory and applied experiences, individual study, etc) that provide an optimum balance between effectiveness and efficiency. New and evolving models of the educational process use technology as the infrastructure to support education that is both more effective and efficient.The goal is to use technology to enhance human performance for both learners (students) and learning facilitators (teachers). A major contribution to global education is the trend in the development of shared educational resources. Two models of programs to support this effort with open and free shared resources are Physical Principles of Medical Imaging Online (http://www.sprawls.org/resources) and AAPM Continuing Education Courses (http://www.aapm.org/international).

  3. Integration of Life Cycle Assessment Into Agent-Based Modeling : Toward Informed Decisions on Evolving Infrastructure Systems

    NARCIS (Netherlands)

    Davis, C.B.; Nikoli?, I.; Dijkema, G.P.J.

    2009-01-01

    A method is presented that allows for a life cycle assessment (LCA) to provide environmental information on an energy infrastructure system while it evolves. Energy conversion facilities are represented in an agent-based model (ABM) as distinct instances of technologies with owners capable of making

  4. Precision toxicology based on single cell sequencing: an evolving trend in toxicological evaluations and mechanism exploration.

    Science.gov (United States)

    Zhang, Boyang; Huang, Kunlun; Zhu, Liye; Luo, Yunbo; Xu, Wentao

    2017-07-01

    In this review, we introduce a new concept, precision toxicology: the mode of action of chemical- or drug-induced toxicity can be sensitively and specifically investigated by isolating a small group of cells or even a single cell with typical phenotype of interest followed by a single cell sequencing-based analysis. Precision toxicology can contribute to the better detection of subtle intracellular changes in response to exogenous substrates, and thus help researchers find solutions to control or relieve the toxicological effects that are serious threats to human health. We give examples for single cell isolation and recommend laser capture microdissection for in vivo studies and flow cytometric sorting for in vitro studies. In addition, we introduce the procedures for single cell sequencing and describe the expected application of these techniques to toxicological evaluations and mechanism exploration, which we believe will become a trend in toxicology.

  5. DNA aptamer evolved by cell-SELEX for recognition of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Wang

    Full Text Available Morbidity and mortality of prostate cancer (PCa have increased in recent years worldwide. Currently existing methods for diagnosis and treatment do not make the situation improve, especially for hormone refractory prostate cancer (HRPC. The lack of molecular probes for PCa hindered the early diagnosis of metastasis and accurate staging for PCa. In this work, we have developed a new aptamer probe Wy-5a against PCa cell line PC-3 by cell-SELEX technique. Wy-5a shows high specificity to the target cells with dissociation constants in the nanomolar range, and does not recognize other tested PCa cell lines and other tested tumor cell lines. The staining of clinical tissue sections with fluorescent dye labeled Wy-5a shows that sections from high risk group with metastasis exhibited stronger fluorescence and sections from Benign Prostatic Hyperplasia (BPH did not exhibit notable fluorescence, which suggests that aptamer Wy-5a may bind to protein related to the progression of PCa. The high affinity and specificity of Wy-5a makes this aptamer hold potential for application in diagnosis and target therapy of PCa.

  6. Fatal Metastatic Cutaneous Squamous Cell Carcinoma Evolving from a Localized Verrucous Epidermal Nevus

    Directory of Open Access Journals (Sweden)

    Hassan Riad

    2013-10-01

    Full Text Available A malignant transformation is known to occur in many nevi such as a sebaceous nevus or a basal cell nevus, but a verrucous epidermal nevus has only rarely been associated with neoplastic changes. Keratoacanthoma, multifocal papillary apocrine adenoma, multiple malignant eccrine poroma, basal cell carcinoma and cutaneous squamous cell carcinoma (CSCC have all been reported to develop from a verrucous epidermal nevus. CSCC has also been reported to arise from other nevoid lesions like a nevus comedonicus, porokeratosis, a sebaceous nevus, an oral sponge nevus and an ichthyosiform nevus with CHILD syndrome. Here we report a case of progressive poorly differentiated CSCC arising from a localized verrucous epidermal nevus, which caused both spinal cord and brain metastasis.

  7. The Evolving Landscape of Neurotoxicity by Unconjugated Bilirubin: Role of Glial Cells and Inflammation

    Directory of Open Access Journals (Sweden)

    Dora eBrites

    2012-05-01

    Full Text Available Unconjugated hyperbilirubinemia is a common condition in the first week of postnatal life. Although generally harmless, some neonates may develop very high levels of unconjugated bilirubin (UCB, which may surpass the protective mechanisms of the brain at preventing UCB accumulation. In this case, both short-term and long-term neurodevelopmental disabilities, such as acute and chronic UCB encephalopathy, known as kernicterus, or more subtle alterations designed as bilirubin-induced neurological dysfunction (BIND may be produced. There is a tremendous variability in babies’ vulnerability towards UCB for reasons not yet explained, but preterm birth, sepsis, hypoxia and haemolytic disease are comprised as risk factors. Therefore, UCB levels and neurological abnormalities are not strictly correlated. Even nowadays, the mechanisms of UCB neurotoxicity are still unclear, as are specific biomarkers, and little is known about lasting sequelae attributable to hyperbilirubinemia. On autopsy, UCB was shown to be within neurons, neuronal processes and microglia, and to produce loss of neurons, demyelination and gliosis. In isolated cell cultures, UCB was shown to impair neuronal arborization and to induce the release of proinflammatory cytokines from microglia and astrocytes. However, cell dependent-sensitivity to UCB toxicity and the role of each nerve cell type remain understood. This review provides a comprehensive insight into cell susceptibilities and molecular targets of UCB in neurons, astrocytes, and oligodendrocytes, and on phenotypic and functional responses of microglia to UCB. Interplay among glia elements and cross-talk with neurons, with a special emphasis in the UCB-induced immunostimulation, and the role of sepsis in BIND pathogenesis are highlighted. New and interesting data on the anti-inflammatory and antioxidant activities of different pharmacological agents are also presented, as novel and promising additional therapeutic approaches to

  8. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Directory of Open Access Journals (Sweden)

    Mariya Tarazanova

    2017-09-01

    Full Text Available Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities.

  9. The Ever-Evolving Concept of the Cancer Stem Cell in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sandra Valle

    2018-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC, the most common type of pancreatic cancer, is the 4th most frequent cause of cancer-related death worldwide, primarily due to the inherent chemoresistant nature and metastatic capacity of this tumor. The latter is believed to be mainly due to the existence of a subpopulation of highly plastic “stem”-like cells within the tumor, known as cancer stem cells (CSCs, which have been shown to have unique metabolic, autophagic, invasive, and chemoresistance properties that allow them to continuously self-renew and escape chemo-therapeutic elimination. As such, current treatments for the majority of PDAC patients are not effective and do not significantly impact overall patient survival (<7 months as they do not affect the pancreatic CSC (PaCSC population. In this context, it is important to highlight the need to better understand the characteristics of the PaCSC population in order to develop new therapies to target these cells. In this review, we will provide the latest updates and knowledge on the inherent characteristics of PaCSCs, particularly their unique biological properties including chemoresistance, epithelial to mesenchymal transition, plasticity, metabolism and autophagy.

  10. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Science.gov (United States)

    Tarazanova, Mariya; Huppertz, Thom; Beerthuyzen, Marke; van Schalkwijk, Saskia; Janssen, Patrick; Wels, Michiel; Kok, Jan; Bachmann, Herwig

    2017-01-01

    Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities. PMID:28936202

  11. Radiobilogical cell survival models

    International Nuclear Information System (INIS)

    Zackrisson, B.

    1992-01-01

    A central issue in clinical radiobiological research is the prediction of responses to different radiation qualities. The choice of cell survival and dose-response model greatly influences the results. In this context the relationship between theory and model is emphasized. Generally, the interpretations of experimental data depend on the model. Cell survival models are systematized with respect to their relations to radiobiological theories of cell kill. The growing knowlegde of biological, physical, and chemical mechanisms is reflected in the formulation of new models. The present overview shows that recent modelling has been more oriented towards the stochastic fluctuations connected to radiation energy deposition. This implies that the traditional cell surivival models ought to be complemented by models of stochastic energy deposition processes and repair processes at the intracellular level. (orig.)

  12. Cytokinesis-block micronucleus assay evolves into a 'cytome' assay of chromosomal instability, mitotic dysfunction and cell death

    International Nuclear Information System (INIS)

    Fenech, Michael

    2006-01-01

    The cytokinesis-block micronucleus (CBMN) assay was originally developed as an ideal system for measuring micronuclei (MNi) however it can also be used to measure nucleoplasmic bridges (NPBs), nuclear buds (NBUDs), cell death (necrosis or apoptosis) and nuclear division rate. Current evidence suggests that (a) NPBs originate from dicentric chromosomes in which the centromeres have been pulled to the opposite poles of the cell at anaphase and are therefore indicative of DNA mis-repair, chromosome rearrangement or telomere end-fusions, (b) NPBs may break to form MNi, (c) the nuclear budding process is the mechanism by which cells remove amplified and/or excess DNA and is therefore a marker of gene amplification and/or altered gene dosage, (d) cell cycle checkpoint defects result in micronucleus formation and (e) hypomethylation of DNA, induced nutritionally or by inhibition of DNA methyl transferase can lead to micronucleus formation either via chromosome loss or chromosome breakage. The strong correlation between micronucleus formation, nuclear budding and NPBs (r = 0.75-0.77, P < 0.001) induced by either folic acid deficiency or exposure to ionising radiation is supportive of the hypothesis that folic acid deficiency and/or ionising radiation cause genomic instability and gene amplification by the initiation of breakage-fusion-bridge cycles. In its comprehensive mode, the CBMN assay measures all cells including necrotic and apoptotic cells as well as number of nuclei per cell to provide a measure of cytotoxicity and mitotic activity. The CBMN assay has in fact evolved into a 'cytome' method for measuring comprehensively chromosomal instability phenotype and altered cellular viability caused by genetic defects and/or nutrional deficiencies and/or exogenous genotoxins thus opening up an exciting future for the use of this methodology in the emerging fields of nutrigenomics and toxicogenomics and their combinations

  13. Generation of predictive price and trading volume patterns in a model of dynamically evolving free market supply and demand

    Directory of Open Access Journals (Sweden)

    J. K. Wang

    2001-01-01

    Full Text Available I present a model of stock market price fluctuations incorporating effects of share supply as a history-dependent function of previous purchases and share demand as a function of price deviation from moving averages. Price charts generated show intervals of oscillations switching amplitude and frequency suddenly in time, forming price and trading volume patterns well-known in market technical analysis. Ultimate price trends agree with traditional predictions for specific patterns. The consideration of dynamically evolving supply and demand in this model resolves the apparent contradiction with the Efficient Market Hypothesis: perceptions of imprecise equity values by a world of investors evolve over non-negligible periods of time, with dependence on price history.

  14. Myelodysplastic syndrome evolving from aplastic anemia treated with immunosuppressive therapy: efficacy of hematopoietic stem cell transplantation.

    Science.gov (United States)

    Kim, Sung-Yong; Le Rademacher, Jennifer; Antin, Joseph H; Anderlini, Paolo; Ayas, Mouhab; Battiwalla, Minoo; Carreras, Jeanette; Kurtzberg, Joanne; Nakamura, Ryotaro; Eapen, Mary; Deeg, H Joachim

    2014-12-01

    A proportion of patients with aplastic anemia who are treated with immunosuppressive therapy develop clonal hematologic disorders, including post-aplastic anemia myelodysplastic syndrome. Many will proceed to allogeneic hematopoietic stem cell transplantation. We identified 123 patients with post-aplastic anemia myelodysplastic syndrome who from 1991 through 2011 underwent allogeneic hematopoietic stem cell transplantation, and in a matched-pair analysis compared outcome to that in 393 patients with de novo myelodysplastic syndrome. There was no difference in overall survival. There were no significant differences with regard to 5-year probabilities of relapse, non-relapse mortality, relapse-free survival and overall survival; these were 14%, 40%, 46% and 49% for post-aplastic anemia myelodysplastic syndrome, and 20%, 33%, 47% and 49% for de novo myelodysplastic syndrome, respectively. In multivariate analysis, relapse (hazard ratio 0.71; P=0.18), non-relapse mortality (hazard ratio 1.28; P=0.18), relapse-free survival (hazard ratio 0.97; P=0.80) and overall survival (hazard ratio 1.02; P=0.88) of post-aplastic anemia myelodysplastic syndrome were similar to those of patients with de novo myelodysplastic syndrome. Cytogenetic risk was independently associated with overall survival in both groups. Thus, transplant success in patients with post-aplastic anemia myelodysplastic syndrome was similar to that in patients with de novo myelodysplastic syndrome, and cytogenetics was the only significant prognostic factor for post-aplastic anemia myelodysplastic syndrome patients. Copyright© Ferrata Storti Foundation.

  15. Spatiotemporal impacts of LULC changes on hydrology from the perspective of runoff generation mechanism using SWAT model with evolving parameters

    Science.gov (United States)

    Li, Y.; Chang, J.; Luo, L.

    2017-12-01

    It is of great importance for water resources management to model the truly hydrological process under changing environment, especially under significant changes of underlying surfaces like the Wei River Bain (WRB) where the subsurface hydrology is highly influenced by human activities, and to systematically investigate the interactions among LULC change, streamflow variation and changes in runoff generation process. Therefore, we proposed the idea of evolving parameters in hydrological model (SWAT) to reflect the changes in physical environment with different LULC conditions. Then with these evolving parameters, the spatiotemporal impacts of LULC changes on streamflow were quantified, and qualitative analysis was conducted to further explore how LULC changes affect the streamflow from the perspective of runoff generation mechanism. Results indicate the following: 1) evolving parameter calibration is not only effective but necessary to ensure the validity of the model when dealing with significant changes in underlying surfaces due to human activities. 2) compared to the baseline period, the streamflow in wet seasons increased in the 1990s but decreased in the 2000s. While at yearly and dry seasonal scales, the streamflow decreased in both two decades; 3) the expansion of cropland is the major contributor to the reduction of surface water component, thus causing the decline in streamflow at yearly and dry seasonal scales. While compared to the 1990s, the expansions of woodland in the middle stream and grassland in the downstream are the main stressors that increased the soil water component, thus leading to the more decline of the streamflow in the 2000s.

  16. Strategic optimisation of microgrid by evolving a unitised regenerative fuel cell system operational criterion

    Science.gov (United States)

    Bhansali, Gaurav; Singh, Bhanu Pratap; Kumar, Rajesh

    2016-09-01

    In this paper, the problem of microgrid optimisation with storage has been addressed in an unaccounted way rather than confining it to loss minimisation. Unitised regenerative fuel cell (URFC) systems have been studied and employed in microgrids to store energy and feed it back into the system when required. A value function-dependent on line losses, URFC system operational cost and stored energy at the end of the day are defined here. The function is highly complex, nonlinear and multi dimensional in nature. Therefore, heuristic optimisation techniques in combination with load flow analysis are used here to resolve the network and time domain complexity related with the problem. Particle swarm optimisation with the forward/backward sweep algorithm ensures optimal operation of microgrid thereby minimising the operational cost of the microgrid. Results are shown and are found to be consistently improving with evolution of the solution strategy.

  17. Evolving radiological features of hypothalamo-pituitary lesions in adult patients with Langerhans cell histiocytosis (LCH)

    International Nuclear Information System (INIS)

    Makras, P.; Samara, C.; Antoniou, M.; Nikolakopoulou, Z.; Zetos, A.; Papadogias, D.; Piaditis, G.; Kaltsas, G.A.; Toloumis, G.; Andreakos, E.; Kontogeorgos, G.

    2006-01-01

    Langerhans cell histiocytosis (LCH) is a rare, systemic disease caused by monoclonal expansion of dendritic cells that shows a particular predilection for the hypothalamic-pituitary system (HPS). We studied the function (anterior and posterior pituitary hormonal secretion) and morphology using magnetic resonance imaging (MRI) of the HPS in 17 adult patients (seven males, median age 35 years, range 18-59 years) with multisystem LCH. We also evaluated the evolution of structural HPS abnormalities in relation to pituitary function and response to treatment in 12 of these patients during a median follow-up period of 3.75 years (range 1.5-10 years). Of the 17 patients, 14 (82%) had abnormal HPS imaging, and 12 (70%) had more than one area involved. Lack of the bright spot of the posterior pituitary lobe was typically found in all patients with the diagnosis of diabetes insipidus (DI). Eight patients (47%) had infundibular enlargement, six (35%) pituitary infiltration, four (24%) partially or completely empty sella, three (18%) hypothalamic involvement, and two (12%) infundibular atrophy. DI was found in 16 patients (94%) and anterior pituitary hormonal deficiency (APHD) in 10 patients (59%); two patients had single (12%) and 8 (47%) multiple APHD. During the follow-up period there was improvement of the initially demonstrated HPS pathology in seven (47%) patients, and five (33%) of them had received at least one form of treatment. APHD and DI persisted in all patients except in one in whom established gonadotrophin deficiency recovered. In summary, DI and APHD are very common in patients with multisystem LCH and are almost always associated with abnormal HPS imaging. (orig.)

  18. Hematopoietic cell crisis: An early stage of evolving myeloid leukemia following radiation exposure

    International Nuclear Information System (INIS)

    Seed, T.M.

    1990-01-01

    Under select radiological conditions, chronic radiation exposure elicits a high incidence of myeloproliferative disease, principally myeloid leukemia (ML), in beagles. Previously we demonstrated that for full ML expression, a four-stage preclinical sequence is required, namely (1) suppression, (2) recovery, (3) accommodation, and (4) preleukemic transition. Within this pathological sequence, a critical early event has been identified as the acquisition of radioresistance by hematopoietic progenitors that serves to mediate a newfound regenerative hematopoietic capacity. As such, this event ''sets the stage'' for preleukemic progression by initiating progression from preclinical phase 1 to 2. Due to the nature of target cell suppression, the induction of crisis, and the outgrowth of progenitors with altered phenotypes, this preleukemic event resembles the ''immortalization'' step of the in vitro transformation sequence following induction with either physical and chemical carcinogens. The radiological, temporal, and biological dictates governing this event have been extensively evaluated and will be discussed in light of their role in the induction and progression of chronic radiation leukemia. 35 refs., 2 tabs

  19. Hematopoietic cell crisis: An early stage of evolving myeloid leukemia following radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Seed, T.M.

    1990-01-01

    Under select radiological conditions, chronic radiation exposure elicits a high incidence of myeloproliferative disease, principally myeloid leukemia (ML), in beagles. Previously we demonstrated that for full ML expression, a four-stage preclinical sequence is required, namely (1) suppression, (2) recovery, (3) accommodation, and (4) preleukemic transition. Within this pathological sequence, a critical early event has been identified as the acquisition of radioresistance by hematopoietic progenitors that serves to mediate a newfound regenerative hematopoietic capacity. As such, this event sets the stage'' for preleukemic progression by initiating progression from preclinical phase 1 to 2. Due to the nature of target cell suppression, the induction of crisis, and the outgrowth of progenitors with altered phenotypes, this preleukemic event resembles the immortalization'' step of the in vitro transformation sequence following induction with either physical and chemical carcinogens. The radiological, temporal, and biological dictates governing this event have been extensively evaluated and will be discussed in light of their role in the induction and progression of chronic radiation leukemia. 35 refs., 2 tabs.

  20. Partially satisfied to fully satisfied transitions in co-evolving inverse voter model and possible scaling behavior

    International Nuclear Information System (INIS)

    Choi, C.W.; Xu, C.; Hui, P.M.

    2015-01-01

    Understanding co-evolving networks characterized by the mutual influence of agents' actions and network structure remains a challenge. We study a co-evolving inverse voter model in which agents adapt to achieve a preferred environment with more opposite-opinion neighbors by rewiring their connections and switching opinion. Numerical studies reveal a transition from a dynamic partially satisfied phase to a frozen fully satisfied phase as the rewiring probability is varied. A simple mean field theory is shown to capture the behavior only qualitatively. An improved mean field theory carrying a longer spatial correlation gives better results. Motivated by numerical results in networks of different degrees and mean field results, we propose a scaling variable that combines the rewiring probability and mean degree in a special form. The scaling variable is shown to work well in analyzing data corresponding to different networks and different rewiring probabilities. An application is to predict the results for networks of different degrees based solely on results obtained from networks of one degree. Studying scaling behavior provides an alternative path for understanding co-evolving agent-based dynamical systems, especially in light of the trade-off between complexity of a theory and its accuracy. - Highlights: • Identified key features and phase transitions in coevolving inverse voter model. • Constructed a better theory incorporating longer spatial correlation. • Proposed scaling variable and illustrated possible scaling behavior. • Used scaling behavior to predict results of IVM in a different network.

  1. A genetic polymorphism evolving in parallel in two cell compartments and in two clades

    Directory of Open Access Journals (Sweden)

    Watt Ward B

    2013-01-01

    Full Text Available Abstract Background The enzyme phosphoenolpyruvate carboxykinase, PEPCK, occurs in its guanosine-nucleotide-using form in animals and a few prokaryotes. We study its natural genetic variation in Colias (Lepidoptera, Pieridae. PEPCK offers a route, alternative to pyruvate kinase, for carbon skeletons to move between cytosolic glycolysis and mitochondrial Krebs cycle reactions. Results PEPCK is expressed in both cytosol and mitochondrion, but differently in diverse animal clades. In vertebrates and independently in Drosophila, compartment-specific paralogous genes occur. In a contrasting expression strategy, compartment-specific PEPCKs of Colias and of the silkmoth, Bombyx, differ only in their first, 5′, exons; these are alternatively spliced onto a common series of following exons. In two Colias species from distinct clades, PEPCK sequence is highly variable at nonsynonymous and synonymous sites, mainly in its common exons. Three major amino acid polymorphisms, Gly 335 ↔ Ser, Asp 503 ↔ Glu, and Ile 629 ↔ Val occur in both species, and in the first two cases are similar in frequency between species. Homology-based structural modelling shows that the variants can alter hydrogen bonding, salt bridging, or van der Waals interactions of amino acid side chains, locally or at one another′s sites which are distant in PEPCK′s structure, and thus may affect its enzyme function. We ask, using coalescent simulations, if these polymorphisms′ cross-species similarities are compatible with neutral evolution by genetic drift, but find the probability of this null hypothesis is 0.001 ≤ P ≤ 0.006 under differing scenarios. Conclusion Our results make the null hypothesis of neutrality of these PEPCK polymorphisms quite unlikely, but support an alternative hypothesis that they are maintained by natural selection in parallel in the two species. This alternative can now be justifiably tested further via studies of PEPCK genotypes′ effects

  2. Maintaining evolvability.

    Science.gov (United States)

    Crow, James F

    2008-12-01

    Although molecular methods, such as QTL mapping, have revealed a number of loci with large effects, it is still likely that the bulk of quantitative variability is due to multiple factors, each with small effect. Typically, these have a large additive component. Conventional wisdom argues that selection, natural or artificial, uses up additive variance and thus depletes its supply. Over time, the variance should be reduced, and at equilibrium be near zero. This is especially expected for fitness and traits highly correlated with it. Yet, populations typically have a great deal of additive variance, and do not seem to run out of genetic variability even after many generations of directional selection. Long-term selection experiments show that populations continue to retain seemingly undiminished additive variance despite large changes in the mean value. I propose that there are several reasons for this. (i) The environment is continually changing so that what was formerly most fit no longer is. (ii) There is an input of genetic variance from mutation, and sometimes from migration. (iii) As intermediate-frequency alleles increase in frequency towards one, producing less variance (as p --> 1, p(1 - p) --> 0), others that were originally near zero become more common and increase the variance. Thus, a roughly constant variance is maintained. (iv) There is always selection for fitness and for characters closely related to it. To the extent that the trait is heritable, later generations inherit a disproportionate number of genes acting additively on the trait, thus increasing genetic variance. For these reasons a selected population retains its ability to evolve. Of course, genes with large effect are also important. Conspicuous examples are the small number of loci that changed teosinte to maize, and major phylogenetic changes in the animal kingdom. The relative importance of these along with duplications, chromosome rearrangements, horizontal transmission and polyploidy

  3. Role of chemotherapy in the treatment of lung cancer: evolving strategies for non-small cell histologies

    Energy Technology Data Exchange (ETDEWEB)

    Muggia, F.M. (NYU Medical Center, New York); Blum, R.H.; Foreman, J.D.

    1984-01-01

    Lung cancer treatment has been considered to have made little progress except for advances in small cell carcinoma. For other histologies an attitude of nihilism has prevailed principally because of lack of effective systemic therapy and of no persuasive evidence that results could be improved by combined modality treatment. On the other hand, favorable results from surgery are confined to a small percent of all patients with this disease. This review emphasizes possibilities for progress in evolving new therapeutic strategies. Although improvement over other systemic therapies is modest, cisplatin-containing regimens yield more consistent response rates and apparent survival advantage relative to single agents. Immediate progression occurs in the minority of patients. In addition, regimens combining cisplatin with vinca alkaloids have no substantial deleterious effects on the lung, marrow or esophagus to aggravate radiation-induced complications. These features encourage the evolution of strategies which begin with chemotherapy and then use consolidation with radiation therapy. Clinical trials using these and newer strategies must be instituted if progress is to occur in the treatment of non-small cell histologies at all stages.

  4. Role of chemotherapy in the treatment of lung cancer: evolving strategies for non-small cell histologies

    International Nuclear Information System (INIS)

    Muggia, F.M.; Blum, R.H.; Foreman, J.D.

    1984-01-01

    Lung cancer treatment has been considered to have made little progress except for advances in small cell carcinoma. For other histologies an attitude of nihilism has prevailed principally because of lack of effective systemic therapy and of no persuasive evidence that results could be improved by combined modality treatment. On the other hand, favorable results from surgery are confined to a small percent of all patients with this disease. This review emphasizes possibilities for progress in evolving new therapeutic strategies. Although improvement over other systemic therapies is modest, cisplatin-containing regimens yield more consistent response rates and apparent survival advantage relative to single agents. Immediate progression occurs in the minority of patients. In addition, regimens combining cisplatin with vinca alkaloids have no substantial deleterious effects on the lung, marrow or esophagus to aggravate radiation-induced complications. These features encourage the evolution of strategies which begin with chemotherapy and then use consolidation with radiation therapy. Clinical trials using these and newer strategies must be instituted if progress is to occur in the treatment of non-small cell histologies at all stages

  5. Mentoring: An Evolving Relationship.

    Science.gov (United States)

    Block, Michelle; Florczak, Kristine L

    2017-04-01

    The column concerns itself with mentoring as an evolving relationship between mentor and mentee. The collegiate mentoring model, the transformational transcendence model, and the humanbecoming mentoring model are considered in light of a dialogue with mentors at a Midwest university and conclusions are drawn.

  6. Effects of Orbital Lifetime Reduction on the Long-Term Earth Satellite Population as Modeled by EVOLVE 4.0

    Science.gov (United States)

    Krisko, Paula H.; Opiela, John N.; Liou, Jer-Chyi; Anz-Meador, Phillip D.; Theall, Jeffrey R.

    1999-01-01

    The latest update of the NASA orbital debris environment model, EVOLVE 4.0, has been used to study the effect of various proposed debris mitigation measures, including the NASA 25-year guideline. EVOLVE 4.0, which includes updates of the NASA breakup, solar activity, and the orbit propagator models, a GEO analysis option, and non-fragmentation debris source models, allows for the statistical modeling and predicted growth of the particle population >1 mm in characteristic length in LEO and GEO orbits. The initial implementation of this &odel has been to study the sensitivity of the overall LEO debris environment to mitigation measures designed to limit the lifetime of intact objects in LEO orbits. The mitigation measures test matrix for this study included several commonly accepted testing schemes, i.e., the variance of the maximum LEO lifetime from 10 to 50 years, the date of the initial implementation of this policy, the shut off of all explosions at some specified date, and the inclusion of disposal orbits. All are timely studies in that all scenarios have been suggested by researchers and satellite operators as options for the removal of debris from LEO orbits.

  7. Scalable geocomputation: evolving an environmental model building platform from single-core to supercomputers

    Science.gov (United States)

    Schmitz, Oliver; de Jong, Kor; Karssenberg, Derek

    2017-04-01

    There is an increasing demand to run environmental models on a big scale: simulations over large areas at high resolution. The heterogeneity of available computing hardware such as multi-core CPUs, GPUs or supercomputer potentially provides significant computing power to fulfil this demand. However, this requires detailed knowledge of the underlying hardware, parallel algorithm design and the implementation thereof in an efficient system programming language. Domain scientists such as hydrologists or ecologists often lack this specific software engineering knowledge, their emphasis is (and should be) on exploratory building and analysis of simulation models. As a result, models constructed by domain specialists mostly do not take full advantage of the available hardware. A promising solution is to separate the model building activity from software engineering by offering domain specialists a model building framework with pre-programmed building blocks that they combine to construct a model. The model building framework, consequently, needs to have built-in capabilities to make full usage of the available hardware. Developing such a framework providing understandable code for domain scientists and being runtime efficient at the same time poses several challenges on developers of such a framework. For example, optimisations can be performed on individual operations or the whole model, or tasks need to be generated for a well-balanced execution without explicitly knowing the complexity of the domain problem provided by the modeller. Ideally, a modelling framework supports the optimal use of available hardware whichsoever combination of model building blocks scientists use. We demonstrate our ongoing work on developing parallel algorithms for spatio-temporal modelling and demonstrate 1) PCRaster, an environmental software framework (http://www.pcraster.eu) providing spatio-temporal model building blocks and 2) parallelisation of about 50 of these building blocks using

  8. Characteristics of evolving models of care for arthritis: A key informant study

    Directory of Open Access Journals (Sweden)

    Veinot Paula

    2008-07-01

    Full Text Available Abstract Background The burden of arthritis is increasing in the face of diminishing health human resources to deliver care. In response, innovative models of care delivery are developing to facilitate access to quality care. Most models have developed in response to local needs with limited evaluation. The primary objective of this study is to a examine the range of models of care that deliver specialist services using a medical/surgical specialist and at least one other health care provider and b document the strengths and challenges of the identified models. A secondary objective is to identify key elements of best practice models of care for arthritis. Methods Semi-structured interviews were conducted with a sample of key informants with expertise in arthritis from jurisdictions with primarily publicly-funded health care systems. Qualitative data were analyzed using a constant comparative approach to identify common types of models of care, strengths and challenges of models, and key components of arthritis care. Results Seventy-four key informants were interviewed from six countries. Five main types of models of care emerged. 1 Specialized arthritis programs deliver comprehensive, multidisciplinary team care for arthritis. Two models were identified using health care providers (e.g. nurses or physiotherapists in expanded clinical roles: 2 triage of patients with musculoskeletal conditions to the appropriate services including specialists; and 3 ongoing management in collaboration with a specialist. Two models promoting rural access were 4 rural consultation support and 5 telemedicine. Key informants described important components of models of care including knowledgeable health professionals and patients. Conclusion A range of models of care for arthritis have been developed. This classification can be used as a framework for discussing care delivery. Areas for development include integration of care across the continuum, including primary

  9. Combating Weapons of Mass Destruction: Models, Complexity, and Algorithms in Complex Dynamic and Evolving Networks

    Science.gov (United States)

    2015-11-01

    Gholamreza, and Ester, Martin. “Modeling the Temporal Dynamics of Social Rating Networks Using Bidirectional Effects of Social Relations and Rating...1.1.2 β-disruptor Problems Besides the homogeneous network model consisting of uniform nodes and bidirectional links, the heterogeneous network model... neural and metabolic networks .” Biological Cybernetics 90 (2004): 311–317. 10.1007/s00422-004-0479-1. URL http://dx.doi.org/10.1007/s00422-004-0479-1 [51

  10. Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice

    Directory of Open Access Journals (Sweden)

    Michiel M. ten Brinke

    2015-12-01

    Full Text Available Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs. However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS-related complex spike responses, and molecular layer interneuron (MLI activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval.

  11. Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: lessons from simple models.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi

    2011-01-01

    The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Comparison of two turbulence models in simulating an axisymmetric jet evolving into a tank

    Energy Technology Data Exchange (ETDEWEB)

    Kendil, F Zidouni [Nuclear research Center of Birine, Ain-Oussara (Algeria); Danciu, D-V; Lucas, D [Institute of Safety Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Salah, A Bousbia [Theoretical and Applied Fluid Mechanics Laboratory, Faculty of Physics - USTHB, Algiers (Algeria); Mataoui, A, E-mail: zidounifaiza@yahoo.fr, E-mail: d.danciu@hzdr.de [Department of mechanical and Nuclear Engineering University of Pisa-2, Pisa (Italy)

    2011-12-22

    Experiments and computational fluid dynamics (CFD) simulations have been carried out to investigate a turbulent water jet plunging into a tank filled with the same liquid. To avoid air bubble entrainment which may be caused by surface instabilities, the free falling length of the jet is set to zero. For both impinging region and recirculation zone, measurements are made using Particle Image Velocimetry (PIV). Instantaneous- and time-averaged velocity fields are obtained. Numerical data is obtained on the basis of both {kappa} - {epsilon} and SSG (Speziale, Sarkar and Gatski) of Reynolds Stresses Turbulent Model (RSM) in three dimensional frame and compared to experimental results via the axial velocity and turbulent kinetic energy. For axial distances lower than 5cm from the jet impact point, the axial velocity matches well the measurements, using both models. A progressive difference is found near the jet for higher axial distances from the jet impact point. Nevertheless, the turbulence kinetic energy agrees very well with the measurements when applying the SSG-RSM model for the lower part of the tank, whereas it is underestimated in the upper region. Inversely, the {kappa} - {epsilon} model shows better results in the upper part of the water tank and underestimates results for the lower part of the water tank. From the overall results, it can be concluded that, for single phase flow, the {kappa} - {epsilon} model describes well the average axial velocity, whereas the turbulence kinetic energy is better represented by the SSG-RSM model.

  13. A Plate Tectonic Model for the Neoproterozoic with Evolving Plate Boundaries

    Science.gov (United States)

    Merdith, Andrew; Collins, Alan; Williams, Simon; Pisarevsky, Sergei; Müller, Dietmar

    2017-04-01

    The Neoproterozoic was dominated by the formation of the supercontinent Rodinia, its break-up and the subsequent amalgamation of Gondwana, during which, the planet experienced large climatic variations and the emergence of complex life. Here we present a topological plate model of the Neoproterozoic based on a synthesis of available geological and palaeomagnetic data. Subduction zones, which are well preserved in the geological record, are used as a proxy for convergent margins; evidence for mid-ocean ridges and transform motion is less clearly preserved, though passive margins are used as a proxy for spreading centres, and evidence for strike-slip motions are used to model transform boundaries. We find that the model presented here only predicts 70% of the total length of subduction active today, though it models similar lengths of both transform and divergent boundaries, suggesting that we have produced a conservative model and are probably underestimating the amount of subduction. Where evidence for convergent, divergent or transform motion is not preserved, we interpret the locations of plate boundaries based on the relative motions of cratonic crust as suggested through either palaeomagnetic data or the geological record. Using GPlates, we tie these boundaries together to generate a plate model that depicts the motion of tectonic plates through the Neoproterozoic. We omit India and South China from Rodinia completely, due to long-lived subduction preserved on margins of India and conflicting palaeomagnetic data for the Cryogenian, but tie them together due to similar Tonian aged accretionary patterns along their respective (present-day) north-western and northern margins, such that these two cratons act as a "lonely wanderer" for much of the Neoproterozoic, and form their own tectonic plate. We also introduce a Tonian-Cryogenian aged rotation of the Congo-São Francisco Craton relative to Rodinia to better fit palaeomagnetic data and account for thick passive

  14. A model study of mixing and entrainment in the horizontally evolving atmospheric convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorovich, E.; Kaiser, R. [Univ. Karlsruhe, Inst. fuer Hydrologie und Wasserwirtschaft (Germany)

    1997-10-01

    We present results from a parallel wind-tunnel/large-eddy simulation (LES) model study of mixing and entrainment in the atmospheric convective boundary layer (CBL) longitudinally developing over a heated surface. The advection-type entrainment of warmer air from upper turbulence-free layers into the growing CBL has been investigated. Most of numerical and laboratory model studies of the CBL carried out so far dealt with another type of entrainment, namely the non-steady one, regarding the CBL growth as a non-stationary process. In the atmosphere, both types of the CBL development can take place, often being superimposed. (au)

  15. A Survey: Time Travel in Deep Learning Space: An Introduction to Deep Learning Models and How Deep Learning Models Evolved from the Initial Ideas

    OpenAIRE

    Wang, Haohan; Raj, Bhiksha

    2015-01-01

    This report will show the history of deep learning evolves. It will trace back as far as the initial belief of connectionism modelling of brain, and come back to look at its early stage realization: neural networks. With the background of neural network, we will gradually introduce how convolutional neural network, as a representative of deep discriminative models, is developed from neural networks, together with many practical techniques that can help in optimization of neural networks. On t...

  16. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun; Peng, Chengbin; Li, Yue

    2016-01-01

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  17. Evolving an Accelerated School Model through Student Perceptions and Student Outcome Data

    Science.gov (United States)

    Braun, Donna L.; Gable, Robert K.; Billups, Felice D.; Vieira, Mary; Blasczak, Danielle

    2016-01-01

    A mixed methods convergent evaluation informed the redesign of an innovative public school that uses an accelerated model to serve grades 7-9 students who have been retained in grade level and are at risk for dropping out of school. After over 25 years in operation, a shift of practices/policies away from grade retention and toward social…

  18. Power and Vision: Group-Process Models Evolving from Social-Change Movements.

    Science.gov (United States)

    Morrow, Susan L.; Hawxhurst, Donna M.

    1988-01-01

    Explores evolution of group process in social change movements, including the evolution of the new left, the cooperative movement,and the women's liberation movement. Proposes a group-process model that encourages people to share power and live their visions. (Author/NB)

  19. Evolving dynamical regimes during secular cooling of terrestrial planets : insights and inferences from numerical models

    NARCIS (Netherlands)

    Thienen, Peter van

    2003-01-01

    Although plate tectonics is the present-day mode of geodynamics on Earth, it is not so on Mars and Venus, and probably also not during the early history of the Earth. In this thesis, the conditions under which plate tectonics may operate on terrestrial planets are investigated. Numerical model

  20. Evolving Approaches and Technologies to Enhance the Role of Ecological Modeling in Decision Making

    Science.gov (United States)

    Eric Gustafson; John Nestler; Louis Gross; Keith M. Reynolds; Daniel Yaussy; Thomas P. Maxwell; Virginia H. Dale

    2002-01-01

    Understanding the effects of management activities is difficult for natural resource managers and decision makers because ecological systems are highly complex and their behavior is difficult to predict. Furthermore, the empirical studies necessary to illuminate all management questions quickly become logistically complicated and cost prohibitive. Ecological models...

  1. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  2. Microphysical characteristics of squall-line stratiform precipitation and transition zones inferred using an ice particle property-evolving model

    Science.gov (United States)

    Jensen, A. A.; Harrington, J. Y.; Morrison, H.

    2017-12-01

    A quasi-idealized 3D squall line (based on a June 2007 Oklahoma case) is simulated using a novel bulk microphysics scheme called the Ice-Spheroids Habit Model with Aspect-ratio Evolution (ISHMAEL). In ISHMAEL, the evolution of ice particle properties, such as mass, shape, maximum diameter, density, and fall speed, are tracked as these properties evolve from vapor growth, sublimation, riming, and melting. Thus, ice properties evolve from various microphysical processes without needing separate unrimed and rimed ice categories. Simulation results show that ISHMAEL produces both a squall-line transition zone and an enhanced stratiform precipitation region. The ice particle properties produced in this simulation are analyzed and compared to observations to determine the characteristics of ice that lead to the development of these squall-line features. It is shown that rimed particles advected rearward from the convective region produce the enhanced stratiform precipitation region. The development of the transition zone results from hydrometer sorting: the evolution of ice particle properties in the convective region produces specific fall speeds that favor significant ice advecting rearward of the transition zone before reaching the melting level, causing a local minimum in precipitation rate and reflectivity there. Microphysical sensitivity studies, for example turning rime splintering off, that lead to changes in ice particle properties reveal that the fall speed of ice particles largely determines both the location of the enhanced stratiform precipitation region and whether or not a transition zone forms.

  3. An updated conceptual model of Delta Smelt biology: Our evolving understanding of an estuarine fish

    Science.gov (United States)

    Baxter, Randy; Brown, Larry R.; Castillo, Gonzalo; Conrad, Louise; Culberson, Steven D.; Dekar, Matthew P.; Dekar, Melissa; Feyrer, Frederick; Hunt, Thaddeus; Jones, Kristopher; Kirsch, Joseph; Mueller-Solger, Anke; Nobriga, Matthew; Slater, Steven B.; Sommer, Ted; Souza, Kelly; Erickson, Gregg; Fong, Stephanie; Gehrts, Karen; Grimaldo, Lenny; Herbold, Bruce

    2015-01-01

    The main purpose of this report is to provide an up-to-date assessment and conceptual model of factors affecting Delta Smelt (Hypomesus transpacificus) throughout its primarily annual life cycle and to demonstrate how this conceptual model can be used for scientific and management purposes. The Delta Smelt is a small estuarine fish that only occurs in the San Francisco Estuary. Once abundant, it is now rare and has been protected under the federal and California Endangered Species Acts since 1993. The Delta Smelt listing was related to a step decline in the early 1980s; however, population abundance decreased even further with the onset of the “pelagic organism decline” (POD) around 2002. A substantial, albeit short-lived, increase in abundance of all life stages in 2011 showed that the Delta Smelt population can still rebound when conditions are favorable for spawning, growth, and survival. In this report, we update previous conceptual models for Delta Smelt to reflect new data and information since the release of the last synthesis report about the POD by the Interagency Ecological Program for the San Francisco Estuary (IEP) in 2010. Specific objectives include:

  4. Integrating Spanish language training across a Doctor of Physical Therapy curriculum: a case report of one program's evolving model.

    Science.gov (United States)

    Pechak, Celia; Diaz, Deborah; Dillon, Loretta

    2014-12-01

    As the Hispanic population continues to expand in the United States, health professionals increasingly may encounter people who speak Spanish and have limited English proficiency. Responding to these changes, various health profession educators have incorporated Spanish language training into their curricula. Of 12 doctor of physical therapy (DPT) programs identified as including elective or required Spanish courses, the program at The University of Texas at El Paso is the only one integrating required Spanish language training across the curriculum. The purpose of this case report is to describe the development, implementation, and preliminary outcomes of the evolving educational model at The University of Texas at El Paso. The University of Texas at El Paso is situated immediately across the border from Mexico. Responding to the large population with limited English proficiency in the community, faculty began to integrate required Spanish language training during a transition from a master-level to a DPT curriculum. The Spanish language curriculum pillar includes a Spanish medical terminology course, language learning opportunities threaded throughout the clinical courses, clinical education courses, and service-learning. Forty-five DPT students have completed the curriculum. Assessment methods were limited for early cohorts. Clinically relevant Spanish verbal proficiency was assessed with a practical examination in the Spanish course, a clinical instructor-rated instrument, and student feedback. Preliminary data suggested that the model is improving Spanish language proficiency. The model still is evolving. Spanish language learning opportunities in the curriculum are being expanded. Also, problems with the clinical outcome measure have been recognized. Better definition of intended outcomes and validation of a revised tool are needed. This report should promote opportunities for collaboration with others who are interested in linguistic competence. © 2014

  5. Remote patient management: technology-enabled innovation and evolving business models for chronic disease care.

    Science.gov (United States)

    Coye, Molly Joel; Haselkorn, Ateret; DeMello, Steven

    2009-01-01

    Remote patient management (RPM) is a transformative technology that improves chronic care management while reducing net spending for chronic disease. Broadly deployed within the Veterans Health Administration and in many small trials elsewhere, RPM has been shown to support patient self-management, shift responsibilities to non-clinical providers, and reduce the use of emergency department and hospital services. Because transformative technologies offer major opportunities to advance national goals of improved quality and efficiency in health care, it is important to understand their evolution, the experiences of early adopters, and the business models that may support their deployment.

  6. POET: A Model for Planetary Orbital Evolution Due to Tides on Evolving Stars

    Science.gov (United States)

    Penev, Kaloyan; Zhang, Michael; Jackson, Brian

    2014-06-01

    We make publicly available an efficient, versatile, easy to use and extend tool for calculating the evolution of circular aligned planetary orbits due to the tidal dissipation in the host star. This is the first model to fully account for the evolution of the angular momentum of the stellar convective envelope by the tidal coupling, the transfer of angular momentum between the stellar convective and radiative zones, the effects of the stellar evolution on the tidal dissipation efficiency and stellar core and envelope spins, the loss of stellar convective zone angular momentum to a magnetically launched wind and frequency dependent tidal dissipation. This is only a first release and further development is under way to allow calculating the evolution of inclined and eccentric orbits, with the latter including the tidal dissipation in the planet and its feedback on planetary structure. Considerable effort has been devoted to providing extensive documentation detailing both the usage and the complete implementation details, in order to make it as easy as possible for independent groups to use and/or extend the code for their purposes. POET represents a significant improvement over some previous models for planetary tidal evolution and so has many astrophysical applications. In this article, we describe and illustrate several key examples.

  7. Modeling the effects of evolving redox conditions on the corrosion of copper containers

    International Nuclear Information System (INIS)

    Kng, F.; LeNeveu, D.M.; Jobe, D.J.

    1994-01-01

    The corrosive environment around the containers in a Canadian nuclear fuel waste disposal vault will change over time from open-quotes warm and oxidizingclose quotes to open-quotes cool and anoxic.close quotes As the conditions change, so too will the corrosion behaviour of the containers. For copper containers, uniform corrosion and, possibly, pitting will occur during the initial aggressive phase, to be replaced by slow uniform corrosion during the long-term anoxic period. The corrosion behaviour of copper has been studied over a range of conditions representing all phases in the evolution of the vault environment. The results of these studies are summarized and used to illustrate how a model can be developed to predict the corrosion behaviour and container lifetimes over long periods of time. Lifetimes in excess of 10 6 a are predicted for 25-mm-thick copper containers under Canadian disposal conditions

  8. Endogenous retroviruses of sheep: a model system for understanding physiological adaptation to an evolving ruminant genome.

    Science.gov (United States)

    Spencer, Thomas E; Palmarini, Massimo

    2012-01-01

    Endogenous retroviruses (ERVs) are present in the genome of all vertebrates and are remnants of ancient exogenous retroviral infections of the host germline transmitted vertically from generation to generation. Sheep betaretroviruses offer a unique model system to study the complex interaction between retroviruses and their host. The sheep genome contains 27 endogenous betaretroviruses (enJSRVs) related to the exogenous and pathogenic Jaagsiekte sheep retrovirus (JSRV), the causative agent of a transmissible lung cancer in sheep. The enJSRVs can protect their host against JSRV infection by blocking early and late steps of the JSRV replication cycle. In the female reproductive tract, enJSRVs are specifically expressed in the uterine luminal and glandular epithelia as well as in the conceptus (embryo and associated extraembryonic membranes) trophectoderm and in utero loss-of-function experiments found the enJSRVs envelope (env) to be essential for conceptus elongation and trophectoderm growth and development. Collectively, available evidence in sheep and other mammals indicate that ERVs coevolved with their hosts for millions of years and were positively selected for biological roles in genome plasticity and evolution, protection of the host against infection of related pathogenic and exogenous retroviruses, and placental development.

  9. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Science.gov (United States)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  10. An evolved ribosome-inactivating protein targets and kills human melanoma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Green David E

    2010-02-01

    Full Text Available Abstract Background Few treatment options exist for patients with metastatic melanoma, resulting in poor prognosis. One standard treatment, dacarbazine (DTIC, shows low response rates ranging from 15 to 25 percent with an 8-month median survival time. The development of targeted therapeutics with novel mechanisms of action may improve patient outcome. Ribosome-inactivating proteins (RIPs such as Shiga-like Toxin 1 (SLT-1 represent powerful scaffolds for developing selective anticancer agents. Here we report the discovery and properties of a single chain ribosome-inactivating protein (scRIP derived from the cytotoxic A subunit of SLT-1 (SLT-1A, harboring the 7-amino acid peptide insertion IYSNKLM (termed SLT-1AIYSNKLM allowing the toxin variant to selectively target and kill human melanoma cells. Results SLT-1AIYSNKLM was able to kill 7 of 8 human melanoma cell lines. This scRIP binds to 518-A2 human melanoma cells with a dissociation constant of 18 nM, resulting in the blockage of protein synthesis and apoptosis in such cells. Biodistribution and imaging studies of radiolabeled SLT-1AIYSNKLM administered intravenously into SCID mice bearing a human melanoma xenograft indicate that SLT-1AIYSNKLM readily accumulates at the tumor site as opposed to non-target tissues. Furthermore, the co-administration of SLT-1AIYSNKLM with DTIC resulted in tumor regression and greatly increased survival in this mouse xenograft model in comparison to DTIC or SLT-1AIYSNKLM treatment alone (115 day median survival versus 46 and 47 days respectively; P values IYSNKLM is stable in serum and its intravenous administration resulted in modest immune responses following repeated injections in CD1 mice. Conclusions These results demonstrate that the evolution of a scRIP template can lead to the discovery of novel cancer cell-targeted compounds and in the case of SLT-1AIYSNKLM can specifically kill human melanoma cells in vitro and in vivo.

  11. Simulations of living cell origins using a cellular automata model.

    Science.gov (United States)

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  12. Consideration of time-evolving capacity distributions and improved degradation models for seismic fragility assessment of aging highway bridges

    International Nuclear Information System (INIS)

    Ghosh, Jayadipta; Sood, Piyush

    2016-01-01

    This paper presents a methodology to develop seismic fragility curves for deteriorating highway bridges by uniquely accounting for realistic pitting corrosion deterioration and time-dependent capacity distributions for reinforced concrete columns under chloride attacks. The proposed framework offers distinct improvements over state-of-the-art procedures for fragility assessment of degrading bridges which typically assume simplified uniform corrosion deterioration model and pristine limit state capacities. Depending on the time in service life and deterioration mechanism, this study finds that capacity limit states for deteriorating bridge columns follow either lognormal distribution or generalized extreme value distributions (particularly for pitting corrosion). Impact of column degradation mechanism on seismic response and fragility of bridge components and system is assessed using nonlinear time history analysis of three-dimensional finite element bridge models reflecting the uncertainties across structural modeling parameters, deterioration parameters and ground motion. Comparisons are drawn between the proposed methodology and traditional approaches to develop aging bridge fragility curves. Results indicate considerable underestimations of system level fragility across different damage states using the traditional approach compared to the proposed realistic pitting model for chloride induced corrosion. Time-dependent predictive functions are provided to interpolate logistic regression coefficients for continuous seismic reliability evaluation along the service life with reasonable accuracy. - Highlights: • Realistic modeling of chloride induced corrosion deterioration in the form of pitting. • Time-evolving capacity distribution for aging bridge columns under chloride attacks. • Time-dependent seismic fragility estimation of highway bridges at component and system level. • Mathematical functions for continuous tracking of seismic fragility along service

  13. Final Report for Award #0006731. Modeling, Patterning and Evolving Syntrophic Communities that Link Fermentation to Metal Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Marx, Christopher J. [Harvard Univ., Cambridge, MA (United States)

    2015-07-17

    This project has developed and combined mathematical models, multi-species consortia, and spatially structured environments as an approach for studying metabolic exchange in communities like the ones between fermenters and metal reducers. We have developed novel, broadly-applicable tools for following community dynamics, come to a better understanding of both sugar and lactate-utilization in S. oneidensis, the interactions between carbon and mineral availability, and have a methodology for cell printing to match with spatiotemporal models of consortia metabolism.

  14. Evolving Procurement Organizations

    DEFF Research Database (Denmark)

    Bals, Lydia; Laine, Jari; Mugurusi, Godfrey

    Procurement has to find further levers and advance its contribution to corporate goals continuously. This places pressure on its organization in order to facilitate its performance. Therefore, procurement organizations constantly have to evolve in order to match these demands. A conceptual model...... and external contingency factors and having a more detailed look at the structural dimensions chosen, beyond the well-known characteristics of centralization, formalization, participation, specialization, standardization and size. From a theoretical perspective, it opens up insights that can be leveraged...

  15. Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.

    Science.gov (United States)

    Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-01-19

    We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.

  16. Microscopic Colitis Evolved Into Inflammatory Bowel Diseases Is Characterized by Increased Th1/Tc1 Cells in Colonic Mucosal Lamina Propria.

    Science.gov (United States)

    Li, Ji; Yan, Yuchu; Meng, Ziran; Liu, Shuhong; Beck, Paul L; Ghosh, Subrata; Qian, Jiaming; Gui, Xianyong

    2017-10-01

    An association between microscopic colitis (MC), i.e., lymphocytic colitis (LC) and collagenous colitis (CC), and inflammatory bowel diseases (IBD) has been noticed. A subset of MC cases may evolve into IBD, and IBD in remission may present as MC in a histologic pattern. Moreover, MC and IBD may coexist in different regions of the bowel. A link between MC and IBD in their pathogenesis is, therefore, suggested. Abnormal mucosal immunity is likely the key. We reviewed 2324 MC cases in Calgary over 14 years and identified 20 cases evolved into IBD (IBD transformers). 13 of them were further investigated for colonic mucosal lamina propria mononuclear cells (LPMNCs), as opposed to 22 cases whose MC resolved. On their index colonic biopsy immunohistochemistry was performed to detect major T cell subsets characterized by key cytokines and master transcription factors (IFNγ and T-bet for Th1/Tc1, GATA-3 for Th2/Tc2, IL-17 and RORc for Th17/Tc17, FoxP3 for Treg/Tcreg) as well as TNFα + cells (partly representing Th1). LPMNCs positive for each marker were counted (average number per high-power field). IBD transformers had increased IFNγ + , T-bet + , TNF-α + , and GATA-3 + LPMNCs compared to the MC-resolved cases. The LC-to-IBD subgroup had increased IFNγ + and GATA-3 + cells compared to the LC-resolved subgroup. The CC-to-IBD subgroup had increased T-bet + , TNF-α + , and GATA-3 + cells compared to the CC-resolved subgroup. Among MC-resolved patients, more TNF-α + and RORc + cells were seen in LC than in CC. Th1/Tc1- and TNFα-producing cells, and likely a subset of Th2/Tc2 cells as well, may be involved in the MC-to-IBD transformation.

  17. Evolving lithospheric flexure and paleotopography of the Pyrenean Orogen from 3D flexural modeling and basin analysis

    Science.gov (United States)

    Curry, M. E.; van der Beek, P.; Huismans, R. S.; Muñoz, J. A.

    2017-12-01

    The Pyrenees are an asymmetric, doubly-vergent orogen with retro- and pro- foreland basins that preserve a record of deformation since the Mesozoic. The extensive research and exploration efforts on the mountain belt and flanking foreland basins provide an exceptional dataset for investigating geodynamics and surface processes over large spatial and temporal scales in western Europe. We present the results of a numerical modeling study investigating the spatio-temporal variation in lithospheric flexure in response to the developing orogen. We employ a finite element method to model the 3D flexural deformation of the lithosphere beneath the Pyrenean orogen since the onset of convergence in the late Cretaceous. Using subsurface, geophysical, and structural data, we describe the evolving geometry of both the French Aquitaine and Spanish Ebro foreland basins at the present (post-orogenic), the mid-Eocene (peak orogenic), the Paleocene (early orogenic), and the end of the Cretaceous (pre- to early orogenic). The flexural modeling provides insight into how both the rigidity of the lithosphere and the paleotopographic load have varied over the course of orogenesis to shape the basin geometry. We find that the overriding European plate has higher rigidity than the subducting Iberian plate, with modern Effective Elastic Thickness (EET) values of 20 ± 2 and 12 ± 2 km, respectively. Modeling indicates that the modern rigidity of both plates decreases westward towards the Bay of Biscay. The lithospheric rigidity has increased by 50% since the Mesozoic with early Cenozoic EET values of 13 ± 2 and 8 ± 1 km for the European and Iberian plates, respectively. The topographic load began increasing with convergence in the late Cretaceous, reaching modern levels in the central and eastern Pyrenees by the Eocene. In contrast, the topographic load in the western Pyrenees was 70% of the modern value in the Eocene, and experienced topographic growth through the Oligo-Miocene. The

  18. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions.

    Science.gov (United States)

    Smith, Eric E; Malik, Harmit S

    2009-05-01

    Apolipoprotein L1 (APOL1) is a human protein that confers immunity to Trypanosoma brucei infections but can be countered by a trypanosome-encoded antagonist SRA. APOL1 belongs to a family of programmed cell death genes whose proteins can initiate host apoptosis or autophagic death. We report here that all six members of the APOL gene family (APOL1-6) present in humans have rapidly evolved in simian primates. APOL6, furthermore, shows evidence of an adaptive sweep during recent human evolution. In each APOL gene tested, we found rapidly evolving codons in or adjacent to the SRA-interacting protein domain (SID), which is the domain of APOL1 that interacts with SRA. In APOL6, we also found a rapidly changing 13-amino-acid cluster in the membrane-addressing domain (MAD), which putatively functions as a pH sensor and regulator of cell death. We predict that APOL genes are antagonized by pathogens by at least two distinct mechanisms: SID antagonists, which include SRA, that interact with the SID of various APOL proteins, and MAD antagonists that interact with the MAD hinge base of APOL6. These antagonists either block or prematurely cause APOL-mediated programmed cell death of host cells to benefit the infecting pathogen. These putative interactions must occur inside host cells, in contrast to secreted APOL1 that trafficks to the trypanosome lysosome. Hence, the dynamic APOL gene family appears to be an important link between programmed cell death of host cells and immunity to pathogens.

  19. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  20. Mice divergently selected for high and low basal metabolic rates evolved different cell size and organ mass.

    Science.gov (United States)

    Maciak, S; Bonda-Ostaszewska, E; Czarnołęski, M; Konarzewski, M; Kozłowski, J

    2014-03-01

    Evolution of metabolic rates of multicellular organisms is hypothesized to reflect the evolution of their cell architecture. This is likely to stem from a tight link between the sizes of cells and nuclei, which are expected to be inversely related to cell metabolism. Here, we analysed basal metabolic rate (BMR), internal organ masses and the cell/nucleus size in different tissues of laboratory mice divergently selected for high/low mass-corrected BMR and four random-bred mouse lines. Random-bred lines had intermediate levels of BMR as compared to low- and high-BMR lines. Yet, this pattern was only partly consistent with the between-line differences in cell/nucleus sizes. Erythrocytes and skin epithelium cells were smaller in the high-BMR line than in other lines, but the cells of low-BMR and random-bred mice were similar in size. On the other hand, the size of hepatocytes, kidney proximal tubule cells and duodenum enterocytes were larger in high-BMR mice than other lines. All cell and nucleus sizes were positively correlated, which supports the role of the nucleus in cell size regulation. Our results suggest that the evolution of high BMR involves a reduction in cell size in specialized tissues, whose functions are primarily dictated by surface-to-volume ratios, such as erythrocytes. High BMR may, however, also incur an increase in cell size in tissues with an intense transcription and translation, such as hepatocytes. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  1. A PACS maturity model: a systematic meta-analytic review on maturation and evolvability of PACS in the hospital enterprise.

    NARCIS (Netherlands)

    Wetering, R. van de; Batenburg, R.

    2009-01-01

    INTRODUCTION: With PACS and medical imaging technology maturing, the importance of organizational maturity and effective deployment of PACS in the hospital enterprise are becoming significant. OBJECTIVE: The objective of this paper is twofold. Firstly, PACS literature on maturity and evolvability in

  2. From Learning Object to Learning Cell: A Resource Organization Model for Ubiquitous Learning

    Science.gov (United States)

    Yu, Shengquan; Yang, Xianmin; Cheng, Gang; Wang, Minjuan

    2015-01-01

    This paper presents a new model for organizing learning resources: Learning Cell. This model is open, evolving, cohesive, social, and context-aware. By introducing a time dimension into the organization of learning resources, Learning Cell supports the dynamic evolution of learning resources while they are being used. In addition, by introducing a…

  3. Evolving Identification of Blood Cells Associated with Clinically Isolated Syndrome: Importance of Time since Clinical Presentation and Diagnostic MRI.

    Science.gov (United States)

    Trend, Stephanie; Jones, Anderson P; Geldenhuys, Sian; Byrne, Scott N; Fabis-Pedrini, Marzena J; Nolan, David; Booth, David R; Carroll, William M; Lucas, Robyn M; Kermode, Allan G; Hart, Prue H

    2017-06-15

    It is not clear how the profile of immune cells in peripheral blood differs between patients with clinically isolated syndrome (CIS) and healthy controls (HC). This study aimed to identify a CIS peripheral blood signature that may provide clues for potential immunomodulatory approaches early in disease. Peripheral blood mononuclear cells (PBMCs) were collected from 18 people with CIS, 19 HC and 13 individuals with other demyelinating conditions (ODC) including multiple sclerosis (MS). Individuals with CIS separated into two groups, namely those with early (≤14 days post-diagnostic magnetic resonance imaging (MRI); n = 6) and late (≥27 days; n = 12) blood sampling. Transitional B cells were increased in the blood of CIS patients independently of when blood was taken. However, there were two time-dependent effects found in the late CIS group relative to HC, including decreased CD56bright NK cells, which correlated significantly with time since MRI, and increased CD141+ myeloid dendritic cell (mDC2) frequencies. Higher CD1c+ B cells and lower non-classical monocyte frequencies were characteristic of more recent demyelinating disease activity (ODC and early CIS). Analysing cell populations by time since symptoms (subjective) and diagnostic MRI (objective) may contribute to understanding CIS.

  4. An artemisinin-mediated ROS evolving and dual protease light-up nanocapsule for real-time imaging of lysosomal tumor cell death.

    Science.gov (United States)

    Huang, Liwei; Luo, Yingping; Sun, Xian; Ju, Huangxian; Tian, Jiangwei; Yu, Bo-Yang

    2017-06-15

    Lysosomes are critical organelles for cellular homeostasis and can be used as potential targets to kill tumor cells from inside. Many photo-therapeutic methods have been developed to overproduce reactive oxygen species (ROS) to trigger lysosomal membrane permeabilization (LMP)-associated cell death pathway. However, these technologies rely on extra irradiation to activate the photosensitizers, which limits the applications in treating deep seated tumors and widespread metastatic lesions. This work reports a multifunctional nanocapsule to achieve targeted lysosomal tumor cell death without irradiation and real-time monitoring of drug effect through encapsulating artemisinin and dual protease light-up nanoprobe in a folate-functionalized liposome. The nanocapsule can be specifically uptaken by tumor cells via folate receptor-mediated endocytosis to enter lysosomes, in which artemisinin reacts with ferrous to generate ROS for LMP-associated cell death. By virtue of confocal fluorescence imaging, the artemisinin location in lysosome, ROS-triggered LMP and ultimate cell apoptosis can be visualized with the cathepsin B and caspase-3 activatable nanoprobe. Notably, the artemisinin-mediated ROS evolving for tumor therapy and real-time therapeutic monitoring were successfully implemented by living imaging in tumor-bearing mice, which broaden the nanocapsule for in vivo theranostics and may offer new opportunities for precise medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Non-Fourier conduction model with thermal source term of ultra short high power pulsed laser ablation and temperature evolvement before melting

    International Nuclear Information System (INIS)

    Zhang Duanming; Li, Li; Li Zhihua; Guan Li; Tan Xinyu

    2005-01-01

    A non-Fourier conduction model with heat source term is presented to study the target temperature evolvement when the target is radiated by high power (the laser intensity is above 10 9 w/cm 2 ) and ultra short (the pulse width is less than 150 ps) pulsed laser. By Laplace transform, the analytical expression of the space- and time-dependence of temperature is derived. Then as an example of aluminum target, the target temperature evolvement is simulated. Compared with the results of Fourier conduction model and non-Fourier model without heat source term, it is found that the effect of non-Fourier conduction is notable and the heat source plays an important role during non-Fourier conduction which makes surface temperature ascending quickly with time. Meanwhile, the corresponding physical mechanism is analyzed theoretically

  6. Modeling fuel cell stack systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H [Los Alamos National Lab., Los Alamos, NM (United States); Lalk, T R [Dept. of Mech. Eng., Texas A and M Univ., College Station, TX (United States)

    1998-06-15

    A technique for modeling fuel cell stacks is presented along with the results from an investigation designed to test the validity of the technique. The technique was specifically designed so that models developed using it can be used to determine the fundamental thermal-physical behavior of a fuel cell stack for any operating and design configuration. Such models would be useful tools for investigating fuel cell power system parameters. The modeling technique can be applied to any type of fuel cell stack for which performance data is available for a laboratory scale single cell. Use of the technique is demonstrated by generating sample results for a model of a Proton Exchange Membrane Fuel Cell (PEMFC) stack consisting of 125 cells each with an active area of 150 cm{sup 2}. A PEMFC stack was also used in the verification investigation. This stack consisted of four cells, each with an active area of 50 cm{sup 2}. Results from the verification investigation indicate that models developed using the technique are capable of accurately predicting fuel cell stack performance. (orig.)

  7. Evolving role of 2B4/CD244 in T and NK cell responses during virus infection

    Directory of Open Access Journals (Sweden)

    Stephen Noel Waggoner

    2012-12-01

    Full Text Available The signaling lymphocyte activation molecule (SLAM family receptor, 2B4/CD244, was first implicated in anti-viral immunity by the discovery that mutations of the SLAM-associated protein, SAP/SH2D1A, impaired 2B4-dependent stimulation of T and natural killer (NK cell anti-viral functions in X-linked lymphoproliferative (XLP syndrome patients with uncontrolled Epstein-Barr virus (EBV infections. Engagement of 2B4 has been variably shown to either activate or inhibit lymphocytes which express this receptor. While SAP expression is required for stimulatory functions of 2B4 on lymphocytes, it remains unclear whether inhibitory signals derived from 2B4 can predominate even in the presence of SAP. Regardless, mounting evidence suggests that 2B4 expression by NK and CD8 T cells is altered by virus infection in mice as well as in humans, and 2B4-mediated signaling may be an important determinant of effective immune control of chronic virus infections. In this review, recent findings regarding the expression and function of 2B4 as well as SAP on T and NK cells during virus infection is discussed, with a focus on the role of 2B4-CD48 interactions in crosstalk between innate and adaptive immunity.

  8. Evolved osmotolerant Escherichia coli mutants frequently exhibit defective N-acetylglucosamine catabolism and point mutations in cell shape-regulating protein MreB.

    Science.gov (United States)

    Winkler, James D; Garcia, Carlos; Olson, Michelle; Callaway, Emily; Kao, Katy C

    2014-06-01

    Biocatalyst robustness toward stresses imposed during fermentation is important for efficient bio-based production. Osmotic stress, imposed by high osmolyte concentrations or dense populations, can significantly impact growth and productivity. In order to better understand the osmotic stress tolerance phenotype, we evolved sexual (capable of in situ DNA exchange) and asexual Escherichia coli strains under sodium chloride (NaCl) stress. All isolates had significantly improved growth under selection and could grow in up to 0.80 M (47 g/liter) NaCl, a concentration that completely inhibits the growth of the unevolved parental strains. Whole genome resequencing revealed frequent mutations in genes controlling N-acetylglucosamine catabolism (nagC, nagA), cell shape (mrdA, mreB), osmoprotectant uptake (proV), and motility (fimA). Possible epistatic interactions between nagC, nagA, fimA, and proV deletions were also detected when reconstructed as defined mutations. Biofilm formation under osmotic stress was found to be decreased in most mutant isolates, coupled with perturbations in indole secretion. Transcriptional analysis also revealed significant changes in ompACGL porin expression and increased transcription of sulfonate uptake systems in the evolved mutants. These findings expand our current knowledge of the osmotic stress phenotype and will be useful for the rational engineering of osmotic tolerance into industrial strains in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  10. Natural selection promotes antigenic evolvability.

    Directory of Open Access Journals (Sweden)

    Christopher J Graves

    Full Text Available The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish

  11. A clade in the QUASIMODO2 family evolved with vascular plants and supports a role for cell wall composition in adaptation to environmental changes.

    Science.gov (United States)

    Fuentes, Sara; Pires, Nuno; Østergaard, Lars

    2010-08-01

    The evolution of plant vascular tissue is tightly linked to the evolution of specialised cell walls. Mutations in the QUASIMODO2 (QUA2) gene from Arabidopsis thaliana were previously shown to result in cell adhesion defects due to reduced levels of the cell wall component homogalacturonic acid. In this study, we provide additional information about the role of QUA2 and its closest paralogues, QUASIMODO2 LIKE1 (QUL1) and QUL2. Within the extensive QUA2 family, our phylogenetic analysis shows that these three genes form a clade that evolved with vascular plants. Consistent with a possible role of this clade in vasculature development, QUA2 is highly expressed in the vascular tissue of embryos and inflorescence stems and overexpression of QUA2 resulted in temperature-sensitive xylem collapse. Moreover, in-depth characterisation of qua2 qul1 qul2 triple mutant and 35S::QUA2 overexpression plants revealed contrasting temperature-dependent stem development with dramatic effects on stem width. Taken together, our results suggest that the QUA2-specific clade contributed to the evolution of vasculature and illustrate the important role that modification of cell wall composition plays in the adaptation to changing environmental conditions, including changes in temperature.

  12. Stochastic models of cell motility

    DEFF Research Database (Denmark)

    Gradinaru, Cristian

    2012-01-01

    Cell motility and migration are central to the development and maintenance of multicellular organisms, and errors during this process can lead to major diseases. Consequently, the mechanisms and phenomenology of cell motility are currently under intense study. In recent years, a new...... interdisciplinary field focusing on the study of biological processes at the nanoscale level, with a range of technological applications in medicine and biological research, has emerged. The work presented in this thesis is at the interface of cell biology, image processing, and stochastic modeling. The stochastic...... models introduced here are based on persistent random motion, which I apply to real-life studies of cell motility on flat and nanostructured surfaces. These models aim to predict the time-dependent position of cell centroids in a stochastic manner, and conversely determine directly from experimental...

  13. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: Implications in targeted cancer therapies

    Science.gov (United States)

    Yang, Ke; Wang, Xin; Zhang, Hongmei; Wang, Zhongliang; Nan, Guoxin; Li, Yasha; Zhang, Fugui; Mohammed, Maryam K.; Haydon, Rex C.; Luu, Hue H.; Bi, Yang; He, Tong-Chuan

    2015-01-01

    The canonical WNT/β-catenin signaling pathway governs a myriad of biological processes underlying development and maintenance of adult tissue homeostasis, including regulation of stem cell self-renewal, cell proliferation, differentiation, and apoptosis. WNTs are secreted lipid-modified glycoproteins that act as short-range ligands to activate receptor-mediated signaling pathways. The hallmark of the canonical pathway is the activation of β-catenin mediated transcriptional activity. Canonical WNTs control the β-catenin dynamics as the cytoplasmic level of β-catenin is tightly regulated via phosphorylation by the ‘destruction complex’, consisting of glycogen synthase kinase 3β (GSK3β), casein kinase 1α (CK1α), the scaffold protein AXIN, and the tumor suppressor adenomatous polyposis coli (APC). Aberrant regulation of this signaling cascade is associated with varieties of human diseases, especially cancers. Over the past decade, significant progress has been made in understanding the mechanisms of canonical WNT signaling. In this review, we focus on the current understanding of WNT signaling at the extracellular, cytoplasmic membrane, and intracellular/nuclear levels, including the emerging knowledge of crosstalk with other pathways. Recent progresses in developing novel WNT pathway-targeted therapies will also be reviewed. Thus, this review is intended to serve as a refresher of the current understanding about the physiologic and pathogenic roles of WNT/β-catenin signaling pathway, and to outline potential therapeutic opportunities by targeting the canonical WNT pathway. PMID:26618721

  14. Evolving Ecological Social Dilemmas: A Spatial Individual-Based Model for the Evolution of Cooperation with a Minimal Number of Parameters

    International Nuclear Information System (INIS)

    Fort, H.

    2007-01-01

    Cooperation, both intraspecific and interspecific, is a well-documented phenomenon in nature that is not well understood. Evolutionary game theory is a powerful tool to approach this problem. However, it has important limitations. First, very often it is not obvious which game is more appropriate to use. Second, in general, identical payoff matrices are assumed for all players, a situation that is highly unlikely in nature. Third, slight changes in these payoff values can dramatically alter the outcomes. Here, I use an evolutionary spatial model in which players do not have a universal payoff matrix, so no payoff parameters are required. Instead, each is equipped with random values for the payoffs, fulfilling the constraints that define the game(s). These payoff matrices evolve by natural selection. Two versions of this model are studied. First is a simpler one, with just one evolving payoff. Second is the full version, with all the four payoffs evolving. The fraction of cooperator agents converges in both versions to nonzero values. In the case of the full version, the initial heterogeneity disappears and the selected game is the stag Hunt

  15. Evolving Procurement Organizations

    DEFF Research Database (Denmark)

    Bals, Lydia; Laiho, Aki; Laine, Jari

    Procurement has to find further levers and advance its contribution to corporate goals continuously. This places pressure on its organization in order to facilitate its performance. Therefore, Procurement organizations constantly have to evolve in order to match these demands. A conceptual model...... is presented and results of a first case study discussed. The findings highlight the importance of taking a contingency perspective on Procurement organization, understanding the internal and internal contingency factors. From a theoretical perspective, it opens up insights that can be furthermore leveraged...... in future studies in the fields of hybrid procurement organizations, global sourcing organizations as well as international procurement offices (IPOs). From a practical standpoint, an assessment of external and internal contingencies provides the opportunity to consciously match organization to its...

  16. Diffusion between evolving interfaces

    International Nuclear Information System (INIS)

    Juntunen, Janne; Merikoski, Juha

    2010-01-01

    Diffusion in an evolving environment is studied by continuous-time Monte Carlo simulations. Diffusion is modeled by continuous-time random walkers on a lattice, in a dynamic environment provided by bubbles between two one-dimensional interfaces driven symmetrically towards each other. For one-dimensional random walkers constrained by the interfaces, the bubble size distribution dominates diffusion. For two-dimensional random walkers, it is also controlled by the topography and dynamics of the interfaces. The results of the one-dimensional case are recovered in the limit where the interfaces are strongly driven. Even with simple hard-core repulsion between the interfaces and the particles, diffusion is found to depend strongly on the details of the dynamical rules of particles close to the interfaces.

  17. The evolving role of chemotherapy and hematopoietic cell transplants in Ph-positive acute lymphoblastic leukemia in adults.

    Science.gov (United States)

    Litzow, M R; Fielding, A K; Luger, S M; Paietta, E; Ofran, Y; Rowe, J M; Goldstone, A H; Tallman, M S; Lazarus, H M

    2017-12-01

    The introduction of the tyrosine kinase inhibitors (TKI) into the treatment of patients with Ph or BCR-ABL1-positive acute lymphoblastic leukemia has revolutionized the treatment of this poor prognosis acute leukemia. The combination of TKI with chemotherapy has improved response rates and allowed more patients to proceed to allogeneic hematopoietic cell transplant (alloHCT). Older patients have excellent responses to TKI and corticosteroids or in combination with minimal chemotherapy. This raises the question as to whether patients require full-intensity chemotherapy with TKI to achieve molecular remissions. The pediatricians have proposed that cure is achievable without alloHCT in children. These results have suggested that many patients may not require traditional chemotherapy in addition to TKI to achieve remission, and that patients who achieve a negative minimal residual disease state may not require alloHCT. The data in support of these questions is presented here and a suggested future clinical trial design based on these data is proposed.

  18. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... partial pressure range 0.028-1.00 atm. The recorded impedance spectra were successfully analyzed using the developed impedance model in the investigated temperature and oxygen partial pressure range. It is also demonstrated that the model can be used to predict how impedance spectra evolve with different...

  19. Physical models of cell motility

    CERN Document Server

    2016-01-01

    This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force ...

  20. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  1. Environmental challenges and opportunities of the evolving North American electricity market : Modeling techniques and estimating environmental outcomes

    International Nuclear Information System (INIS)

    Patterson, Z.

    2002-06-01

    Background information and results of the different models publicly available used for the evaluation of environmental effects of electricity market restructuring in the various jurisdictions in North America were included in this working paper. It comprised the description of eleven models and twelve modeling exercises. The information on each model varied greatly, as it is proprietary. The models described were: (1) the Energy Information Administration's (EIA) National Energy Modeling System (NEMS), (2) the Department of Energy's Policy Office Electricity Modeling System (POEMS), (3) the Integrated Planning Model (IPM) utilized by the United States Environmental Protection Agency (US EPA), (4) Resources for the Future's (RFF) Haiku model, (5) the Canadian Energy Research Institute's Energy 2020 Model, (6) the Federal Energy Regulatory Commission's (FERC) use of ICF's Coal and Electric Utilities Model, (7) the Center for Clean Air Policy's use of General Electric's Market Assessment and Portfolio Strategies (GE MAPS) model, (8) the Center for Clean Air Policy's use of GE MAPS in combination with New Energy Associates' Proscreen II, (9) the Commission for Environmental Cooperation use of the Front of Envelope Model, (10) Ontario Power Generation's use of the Utility Fuel Economics Model and National Power Model, and (11) New York State Department of Public Service's (NYDPS) Final Generic Environmental Impact Statement using New Energy Associates' PROMOD. Also included in this working paper was a comparison of the results of models and modeling exercises on which the estimation of the environmental effects of electricity market restructuring in the United States was based. 18 refs., 5 tabs

  2. Using Stem Cells to Model Diseases of the Outer Retina

    Directory of Open Access Journals (Sweden)

    Camille Yvon

    2015-01-01

    Full Text Available Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE. It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP, Usher syndrome (USH, Leber congenital amaurosis (LCA, gyrate atrophy (GA, juvenile neuronal ceroid lipofuscinosis (NCL, Best vitelliform macular dystrophy (BVMD and age related macular degeneration (AMD.

  3. Using Stem Cells to Model Diseases of the Outer Retina.

    Science.gov (United States)

    Yvon, Camille; Ramsden, Conor M; Lane, Amelia; Powner, Michael B; da Cruz, Lyndon; Coffey, Peter J; Carr, Amanda-Jayne F

    2015-01-01

    Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE). It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC)-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP), Usher syndrome (USH), Leber congenital amaurosis (LCA), gyrate atrophy (GA), juvenile neuronal ceroid lipofuscinosis (NCL), Best vitelliform macular dystrophy (BVMD) and age related macular degeneration (AMD).

  4. Targeted disruption in mice of a neural stem cell-maintaining, KRAB-Zn finger-encoding gene that has rapidly evolved in the human lineage.

    Directory of Open Access Journals (Sweden)

    Huan-Chieh Chien

    Full Text Available Understanding the genetic basis of the physical and behavioral traits that separate humans from other primates is a challenging but intriguing topic. The adaptive functions of the expansion and/or reduction in human brain size have long been explored. From a brain transcriptome project we have identified a KRAB-Zn finger protein-encoding gene (M003-A06 that has rapidly evolved since the human-chimpanzee separation. Quantitative RT-PCR analysis of different human tissues indicates that M003-A06 expression is enriched in the human fetal brain in addition to the fetal heart. Furthermore, analysis with use of immunofluorescence staining, neurosphere culturing and Western blotting indicates that the mouse ortholog of M003-A06, Zfp568, is expressed mainly in the embryonic stem (ES cells and fetal as well as adult neural stem cells (NSCs. Conditional gene knockout experiments in mice demonstrates that Zfp568 is both an NSC maintaining- and a brain size-regulating gene. Significantly, molecular genetic analyses show that human M003-A06 consists of 2 equilibrated allelic types, H and C, one of which (H is human-specific. Combined contemporary genotyping and database mining have revealed interesting genetic associations between the different genotypes of M003-A06 and the human head sizes. We propose that M003-A06 is likely one of the genes contributing to the uniqueness of the human brain in comparison to other higher primates.

  5. Favorable Response of Metastatic Merkel Cell Carcinoma to Targeted 177Lu-DOTATATE Therapy: Will PRRT Evolve to Become an Important Approach in Receptor-Positive Cases?

    Science.gov (United States)

    Basu, Sandip; Ranade, Rohit

    2016-06-01

    This report illustrates an excellent partial response of Merkel cell carcinoma with multiple bilobar hepatic metastases to a single cycle of peptide receptor radionuclide therapy (PRRT) with (177)Lu-DOTATATE. This response, coupled with minimal side effects, warrants consideration of this therapy early in the disease course (rather than at an advanced stage after failure of other therapies) if the metastatic lesions exhibit adequate tracer avidity on somatostatin receptor-based imaging. Our patient showed progression of systemic disease after having undergone a second surgery and adjuvant radiotherapy to the head and neck, as well as chemotherapy, and hence was considered a candidate for PRRT. In a pretreatment study, the metastatic lesions demonstrated avidity to both somatostatin receptors and (18)F-FDG. Three months after the first cycle of treatment, when the patient was being evaluated for a second cycle, both imaging parameters showed evidence of a partial response that included nearly complete resolution of the two previously seen lesions. In view of the relatively good tolerability, minimal side effects, and targeted nature of the treatment, PRRT may evolve to become the first-line therapy for metastatic Merkel cell carcinoma and should be examined further in a larger number of patients. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. Computational Genetic Regulatory Networks Evolvable, Self-organizing Systems

    CERN Document Server

    Knabe, Johannes F

    2013-01-01

    Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting fr...

  7. A modeling and control framework for operating large-scale electric power systems under present and newly evolving competitive industry structures

    Directory of Open Access Journals (Sweden)

    Marija D. Ilić

    1995-01-01

    Full Text Available This paper introduces a systematic, structure-based modeling framework for analysis and control of electric power systems for processes evolving over the mid-term and long-term time horizons. Much simpler models than the detailed dynamics specifically for control design at different hierarchical levels are obtained by applying both temporal and spatial separation. These simple models, or the aggregate models, represent the net effect of interactions among interconnected regions on specific hierarchical levels. They are exact, since no assumptions on weak interconnections among the subsystems are made. Moreover they are easily understood in terms of power flows among the regions. The approach is essential for improving present performance of the system. It is also potentially useful in a competitive utility environment in which it is critical to study the interplay between technical and economic processes.

  8. Why did heterospory evolve?

    Science.gov (United States)

    Petersen, Kurt B; Burd, Martin

    2017-08-01

    The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation-resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation - an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life-history patterns - suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm-producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency-dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex

  9. An oscillating dynamic model of collective cells in a monolayer

    Science.gov (United States)

    Lin, Shao-Zhen; Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao

    2018-03-01

    Periodic oscillations of collective cells occur in the morphogenesis and organogenesis of various tissues and organs. In this paper, an oscillating cytodynamic model is presented by integrating the chemomechanical interplay between the RhoA effector signaling pathway and cell deformation. We show that both an isolated cell and a cell aggregate can undergo spontaneous oscillations as a result of Hopf bifurcation, upon which the system evolves into a limit cycle of chemomechanical oscillations. The dynamic characteristics are tailored by the mechanical properties of cells (e.g., elasticity, contractility, and intercellular tension) and the chemical reactions involved in the RhoA effector signaling pathway. External forces are found to modulate the oscillation intensity of collective cells in the monolayer and to polarize their oscillations along the direction of external tension. The proposed cytodynamic model can recapitulate the prominent features of cell oscillations observed in a variety of experiments, including both isolated cells (e.g., spreading mouse embryonic fibroblasts, migrating amoeboid cells, and suspending 3T3 fibroblasts) and multicellular systems (e.g., Drosophila embryogenesis and oogenesis).

  10. An individual-based evolving predator-prey ecosystem simulation using a fuzzy cognitive map as the behavior model

    OpenAIRE

    Gras , Robin; Devaurs , Didier; Wozniak , Adrianna; Aspinall , Adam

    2009-01-01

    International audience; This paper presents an individual-based predator-prey model with, for the first time, each agent behavior being modeled by a Fuzzy Cognitive Map (FCM), allowing the evolution of the agent behavior through the epochs of the simulation. The FCM enables the agent to evaluate its environment (e.g., distance to predator/prey, distance to potential breeding partner, distance to food, energy level), its internal state (e.g., fear, hunger, curiosity) with memory and choosing s...

  11. The Alpha Stem Cell Clinic: a model for evaluating and delivering stem cell-based therapies.

    Science.gov (United States)

    Trounson, Alan; DeWitt, Natalie D; Feigal, Ellen G

    2012-01-01

    Cellular therapies require the careful preparation, expansion, characterization, and delivery of cells in a clinical environment. There are major challenges associated with the delivery of cell therapies and high costs that will limit the companies available to fully evaluate their merit in clinical trials, and will handicap their application at the present financial environment. Cells will be manufactured in good manufacturing practice or near-equivalent facilities with prerequisite safety practices in place, and cell delivery systems will be specialized and require well-trained medical and nursing staff, technicians or nurses trained to handle cells once delivered, patient counselors, as well as statisticians and database managers who will oversee the monitoring of patients in relatively long-term follow-up studies. The model proposed for Alpha Stem Cell Clinics will initially use the capacities and infrastructure that exist in the most advanced tertiary medical clinics for delivery of established bone marrow stem cell therapies. As the research evolves, they will incorporate improved procedures and cell preparations. This model enables commercialization of medical devices, reagents, and other products required for cell therapies. A carefully constructed cell therapy clinical infrastructure with the requisite scientific, technical, and medical expertise and operational efficiencies will have the capabilities to address three fundamental and critical functions: 1) fostering clinical trials; 2) evaluating and establishing safe and effective therapies, and 3) developing and maintaining the delivery of therapies approved by the Food and Drug Administration, or other regulatory agencies.

  12. Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion

    Science.gov (United States)

    Ochsner, Kevin N.; Silvers, Jennifer A.; Buhle, Jason T.

    2014-01-01

    This paper reviews and synthesizes functional imaging research that over the past decade has begun to offer new insights into the brain mechanisms underlying emotion regulation. Towards that end, the first section of the paper outlines a model of the processes and neural systems involved in emotion generation and regulation. The second section surveys recent research supporting and elaborating the model, focusing primarily on studies of the most commonly investigated strategy, which is known as reappraisal. At its core, the model specifies how prefrontal and cingulate control systems modulate activity in perceptual, semantic and affect systems as a function of one's regulatory goals, tactics, and the nature of the stimuli and emotions being regulated. This section also shows how the model can be generalized to understand the brain mechanisms underlying other emotion regulation strategies as well as a range of other allied phenomena. The third and last section considers directions for future research, including how basic models of emotion regulation can be translated to understand changes in emotion across the lifespan and in clinical disorders. PMID:23025352

  13. Evolving MCDM Applications Using Hybrid Expert-Based ISM and DEMATEL Models: An Example of Sustainable Ecotourism

    Directory of Open Access Journals (Sweden)

    Huan-Ming Chuang

    2013-01-01

    Full Text Available Ecological degradation is an escalating global threat. Increasingly, people are expressing awareness and priority for concerns about environmental problems surrounding them. Environmental protection issues are highlighted. An appropriate information technology tool, the growing popular social network system (virtual community, VC, facilitates public education and engagement with applications for existent problems effectively. Particularly, the exploration of related involvement behavior of VC member engagement is an interesting topic. Nevertheless, member engagement processes comprise interrelated sub-processes that reflect an interactive experience within VCs as well as the value co-creation model. To address the top-focused ecotourism VCs, this study presents an application of a hybrid expert-based ISM model and DEMATEL model based on multi-criteria decision making tools to investigate the complex multidimensional and dynamic nature of member engagement. Our research findings provide insightful managerial implications and suggest that the viral marketing of ecotourism protection is concerned with practitioners and academicians alike.

  14. Evolving MCDM Applications Using Hybrid Expert-Based ISM and DEMATEL Models: An Example of Sustainable Ecotourism

    Science.gov (United States)

    Chuang, Huan-Ming

    2013-01-01

    Ecological degradation is an escalating global threat. Increasingly, people are expressing awareness and priority for concerns about environmental problems surrounding them. Environmental protection issues are highlighted. An appropriate information technology tool, the growing popular social network system (virtual community, VC), facilitates public education and engagement with applications for existent problems effectively. Particularly, the exploration of related involvement behavior of VC member engagement is an interesting topic. Nevertheless, member engagement processes comprise interrelated sub-processes that reflect an interactive experience within VCs as well as the value co-creation model. To address the top-focused ecotourism VCs, this study presents an application of a hybrid expert-based ISM model and DEMATEL model based on multi-criteria decision making tools to investigate the complex multidimensional and dynamic nature of member engagement. Our research findings provide insightful managerial implications and suggest that the viral marketing of ecotourism protection is concerned with practitioners and academicians alike. PMID:24453902

  15. Evolving MCDM applications using hybrid expert-based ISM and DEMATEL models: an example of sustainable ecotourism.

    Science.gov (United States)

    Chuang, Huan-Ming; Lin, Chien-Ku; Chen, Da-Ren; Chen, You-Shyang

    2013-01-01

    Ecological degradation is an escalating global threat. Increasingly, people are expressing awareness and priority for concerns about environmental problems surrounding them. Environmental protection issues are highlighted. An appropriate information technology tool, the growing popular social network system (virtual community, VC), facilitates public education and engagement with applications for existent problems effectively. Particularly, the exploration of related involvement behavior of VC member engagement is an interesting topic. Nevertheless, member engagement processes comprise interrelated sub-processes that reflect an interactive experience within VCs as well as the value co-creation model. To address the top-focused ecotourism VCs, this study presents an application of a hybrid expert-based ISM model and DEMATEL model based on multi-criteria decision making tools to investigate the complex multidimensional and dynamic nature of member engagement. Our research findings provide insightful managerial implications and suggest that the viral marketing of ecotourism protection is concerned with practitioners and academicians alike.

  16. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. physical basis

    Science.gov (United States)

    Iverson, Richard M.; George, David L.

    2014-01-01

    To simulate debris-flow behaviour from initiation to deposition, we derive a depth-averaged, two-phase model that combines concepts of critical-state soil mechanics, grain-flow mechanics and fluid mechanics. The model's balance equations describe coupled evolution of the solid volume fraction, m, basal pore-fluid pressure, flow thickness and two components of flow velocity. Basal friction is evaluated using a generalized Coulomb rule, and fluid motion is evaluated in a frame of reference that translates with the velocity of the granular phase, vs. Source terms in each of the depth-averaged balance equations account for the influence of the granular dilation rate, defined as the depth integral of ∇⋅vs. Calculation of the dilation rate involves the effects of an elastic compressibility and an inelastic dilatancy angle proportional to m−meq, where meq is the value of m in equilibrium with the ambient stress state and flow rate. Normalization of the model equations shows that predicted debris-flow behaviour depends principally on the initial value of m−meq and on the ratio of two fundamental timescales. One of these timescales governs downslope debris-flow motion, and the other governs pore-pressure relaxation that modifies Coulomb friction and regulates evolution of m. A companion paper presents a suite of model predictions and tests.

  17. Analysis of Effects of Organizational Behavior on Evolving System of Systems Acquisition Programs Through Agent Based Modeling

    Science.gov (United States)

    2013-03-01

    function is based on how individualistic or collectivistic a system is. Low individualism values mean the system is more collective and is less likely...Hofstede’s cultural dimensions, integrated with a modified version of the Bak- Sneppen biological evolutionary model, this research highlights which set...14 Hofstede’s Cultural Dimensions

  18. The evolving role of Tier2s in ATLAS with the new Computing and Data Distribution model

    International Nuclear Information System (INIS)

    González de la Hoz, S

    2012-01-01

    Originally the ATLAS Computing and Data Distribution model assumed that the Tier-2s should keep on disk collectively at least one copy of all “active” AOD and DPD datasets. Evolution of ATLAS Computing and Data model requires changes in ATLAS Tier-2s policy for the data replication, dynamic data caching and remote data access. Tier-2 operations take place completely asynchronously with respect to data taking. Tier-2s do simulation and user analysis. Large-scale reprocessing jobs on real data are at first taking place mostly at Tier-1s but will progressively be shared with Tier-2s as well. The availability of disk space at Tier-2s is extremely important in the ATLAS Computing model as it allows more data to be readily accessible for analysis jobs to all users, independently of their geographical location. The Tier-2s disk space has been reserved for real, simulated, calibration and alignment, group, and user data. A buffer disk space is needed for input and output data for simulations jobs. Tier-2s are going to be used more efficiently. In this way Tier-1s and Tier-2s are becoming more equivalent for the network and the hierarchy of Tier-1, 2 is less strict. This paper presents the usage of Tier-2s resources in different Grid activities, caching of data at Tier-2s, and their role in the analysis in the new ATLAS Computing and Data model.

  19. Beyond anaemia management: evolving role of erythropoietin therapy in neurological disorders, multiple myeloma and tumour hypoxia models.

    Science.gov (United States)

    Boogaerts, Marc; Mittelman, Moshe; Vaupel, Peter

    2005-01-01

    Recombinant human erythropoietin (epoetin) has become the standard of care in the treatment of anaemia resulting from cancer and its treatment, and chronic kidney disease. The discovery that erythropoietin and its receptor are located in regions outside the erythropoietic system has led to interest in the potential role of epoetin in other tissues, such as the central nervous system. Animal studies have shown that systemically applied epoetin can cross the blood-brain barrier, where it reduces tissue injury associated with stroke, blunt trauma and experimental autoimmune encephalomyelitis. Pilot studies in humans have shown that epoetin treatment given within 8 h of stroke reduces infarct size and results in a significantly better outcome when compared with placebo treatment. Studies also suggest that epoetin has the potential to improve cognitive impairment associated with adjuvant chemotherapy in patients with cancer. Anaemia is a major factor causing tumour hypoxia, a condition that can promote changes within neoplastic cells that further tumour survival and malignant progression and also reduces the effectiveness of several anticancer therapies including radiotherapy and oxygen-dependent cytotoxic agents. Use of epoetin to prevent or correct anaemia has the potential to reduce tumour hypoxia and improve treatment outcome. Several therapeutic studies in anaemic animals with experimental tumours have shown a beneficial effect of epoetin on delaying tumour growth. Furthermore, clinical observations in patients with multiple myeloma and animal studies have suggested that epoetin has an antimyeloma effect, mediated via the immune system through activation of CD8+ T cells. Therefore, the role of epoetin may go well beyond that of increasing haemoglobin levels in anaemic patients, although additional studies are required to confirm these promising results. Copyright 2005 S. Karger AG, Basel.

  20. The Battlefield Health and Trauma Research Institute Scientific Ethics Committee: An Evolving Model for Fostering a Culture of Integrity

    Science.gov (United States)

    2012-01-01

    grants and contracts.8 The ORI defines research misconduct as ‘‘fabrication, falsification, or plagiarism in proposing, performing, or reviewing research...fabrication, falsification, or plagiarism (FFP) is only 1% to 2%, based on self-reporting.10,11 However, approx- imately 33% of scientists admitted...provide investigators training and guidance? THE ACADEMIC MODEL Just as regulations governing the ethical use of human and animal research subjects grew

  1. The Evolving role of Tier2s in ATLAS with the new Computing and Data Distribution Model

    CERN Document Server

    Gonzalez de la Hoz, S; The ATLAS collaboration

    2012-01-01

    Originally the ATLAS computing model assumed that the Tier2s of each of the 10 clouds should keep on disk collectively at least one copy of all "active" AOD and DPD datasets. Evolution of ATLAS computing and data models requires changes in ATLAS Tier2s policy for the data replication, dynamic data caching and remote data access. Tier2 operations take place completely asynchronously with respect to data taking. Tier2s do simulation and user analysis. Large-scale reprocessing jobs on real data are at first taking place mostly at Tier1s but will progressively move to Tier2s as well. The availability of disk space at Tier2s is extremely important in the ATLAS computing model as it allows more data to be readily accessible for analysis jobs to all users, independently of their geographical location. The Tier2s disk space has been reserved for real, simulated, calibration and alignment, group, and user data. A buffer disk space is needed for input and output data for simulations jobs. Tier2s are going to be used mo...

  2. The evolving role of Tier2s in ATLAS with the new Computing and Data Distribution model

    CERN Document Server

    Gonzalez de la Hoz, S

    2012-01-01

    Originally the ATLAS computing model assumed that the Tier2s of each of the 10 clouds should keep on disk collectively at least one copy of all "active" AOD and DPD datasets. Evolution of ATLAS computing and data models requires changes in ATLAS Tier2s policy for the data replication, dynamic data caching and remote data access. Tier2 operations take place completely asynchronously with respect to data taking. Tier2s do simulation and user analysis. Large-scale reprocessing jobs on real data are at first taking place mostly at Tier1s but will progressively move to Tier2s as well. The availability of disk space at Tier2s is extremely important in the ATLAS computing model as it allows more data to be readily accessible for analysis jobs to all users, independently of their geographical location. The Tier2s disk space has been reserved for real, simulated, calibration and alignment, group, and user data. A buffer disk space is needed for input and output data for simulations jobs. Tier2s are going to be used mo...

  3. Modeling Kidney Disease with iPS Cells

    Science.gov (United States)

    Freedman, Benjamin S.

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are somatic cells that have been transcriptionally reprogrammed to an embryonic stem cell (ESC)-like state. iPSCs are a renewable source of diverse somatic cell types and tissues matching the original patient, including nephron-like kidney organoids. iPSCs have been derived representing several kidney disorders, such as ADPKD, ARPKD, Alport syndrome, and lupus nephritis, with the goals of generating replacement tissue and ‘disease in a dish’ laboratory models. Cellular defects in iPSCs and derived kidney organoids provide functional, personalized biomarkers, which can be correlated with genetic and clinical information. In proof of principle, disease-specific phenotypes have been described in iPSCs and ESCs with mutations linked to polycystic kidney disease or focal segmental glomerulosclerosis. In addition, these cells can be used to model nephrotoxic chemical injury. Recent advances in directed differentiation and CRISPR genome editing enable more specific iPSC models and present new possibilities for diagnostics, disease modeling, therapeutic screens, and tissue regeneration using human cells. This review outlines growth opportunities and design strategies for this rapidly expanding and evolving field. PMID:26740740

  4. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  5. A Non-Linear Force-Free Field Model for the Evolving Magnetic Structure of Solar Filaments

    Science.gov (United States)

    Mackay, Duncan H.; van Ballegooijen, A. A.

    2009-12-01

    In this paper the effect of a small magnetic element approaching the main body of a solar filament is considered through non-linear force-free field modeling. The filament is represented by a series of magnetic dips. Once the dips are calculated, a simple hydrostatic atmosphere model is applied to determine which structures have sufficient column mass depth to be visible in Hα. Two orientations of the bipole are considered, either parallel or anti-parallel to the overlying arcade. The magnetic polarity that lies closest to the filament is then advected towards the filament. Initially for both the dominant and minority polarity advected elements, right/left bearing barbs are produced for dextral/sinsitral filaments. The production of barbs due to dominant polarity elements is a new feature. In later stages the filament breaks into two dipped sections and takes a highly irregular, non-symmetrical form with multiple pillars. The two sections are connected by field lines with double dips even though the twist of the field is less than one turn. Reconnection is not found to play a key role in the break up of the filament. The non-linear force-free fields produce very different results to extrapolated linear-force free fields. For the cases considered here the linear force-free field does not produce the break up of the filament nor the production of barbs as a result of dominant polarity elements.

  6. Evolving electrical SCLM models of the Australian continent - results of the South Australia AusLAMP deployment

    Science.gov (United States)

    Robertson, K. E.; Thiel, S.; Heinson, G. S.

    2017-12-01

    The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is an Australian initiative to map the Australian continental lithosphere using magnetotelluric (MT) stations to obtain a resistivity model of the subsurface. It is a joint project between Geoscience Australia, state surveys, and Universities. We present new MT 3D inversion results of the largest coherent array of the AusLAMP MT deployments to date covering two-thirds of South Australia, funded largely by the Geological Survey of South Australia with additional funding by Geoscience Australia and The University of Adelaide. The model extends across the South Australian Gawler Craton, including the Eucla Basin to the west of the craton and the Flinders Ranges and Curnamona Province to the east. The MT array covers parts of the Australian lithosphere, which has been largely unexplored with seismic tomography methods and provide a unique insight into the tectonic evolution of the continent. We incorporate 284 long-period (10s-10,000s) MT stations separated roughly every half degree latitude and longitude across an area spanning 1200 km x 800 km, south of latitude -28.5 degrees and from longitude 129 degrees to 141 degrees. We invert 24 discrete periods of the impedance tenor between 7 s and 13,000 s, and 22 different periods of the tipper data between 7s-8000 s period. The results show a heterogeneous lower crust and mantle lithosphere with a primarily resistive mantle (>1000 Ωm) lithosphere in the central and western part of the Gawler Craton and Eucla Domain. The model shows a generally NS oriented electric LAB offset from deeper cratonic lithosphere in the west to a shallow lithosphere along the eastern margin of the Gawler Craton extending further east towards the Proterozoic and Phanerozoic eastern part of Australia. The lower crust is generally resistive with elongated lower crustal conductivity anomalies, which are associated with major translithospheric shear zones likely existent

  7. A comparative study on the forming limit diagram prediction between Marciniak-Kuczynski model and modified maximum force criterion by using the evolving non-associated Hill48 plasticity model

    Science.gov (United States)

    Shen, Fuhui; Lian, Junhe; Münstermann, Sebastian

    2018-05-01

    Experimental and numerical investigations on the forming limit diagram (FLD) of a ferritic stainless steel were performed in this study. The FLD of this material was obtained by Nakajima tests. Both the Marciniak-Kuczynski (MK) model and the modified maximum force criterion (MMFC) were used for the theoretical prediction of the FLD. From the results of uniaxial tensile tests along different loading directions with respect to the rolling direction, strong anisotropic plastic behaviour was observed in the investigated steel. A recently proposed anisotropic evolving non-associated Hill48 (enHill48) plasticity model, which was developed from the conventional Hill48 model based on the non-associated flow rule with evolving anisotropic parameters, was adopted to describe the anisotropic hardening behaviour of the investigated material. In the previous study, the model was coupled with the MMFC for FLD prediction. In the current study, the enHill48 was further coupled with the MK model. By comparing the predicted forming limit curves with the experimental results, the influences of anisotropy in terms of flow rule and evolving features on the forming limit prediction were revealed and analysed. In addition, the forming limit predictive performances of the MK and the MMFC models in conjunction with the enHill48 plasticity model were compared and evaluated.

  8. Genomic, RNAseq, and Molecular Modeling Evidence Suggests That the Major Allergen Domain in Insects Evolved from a Homodimeric Origin

    Science.gov (United States)

    Randall, Thomas A.; Perera, Lalith; London, Robert E.; Mueller, Geoffrey A.

    2013-01-01

    The major allergen domain (MA) is widely distributed in insects. The crystal structure of a single Bla g 1 MA revealed a novel protein fold in which the fundamental structure was a duplex of two subsequences (monomers), which had diverged over time. This suggested that the evolutionary origin of the MA structure may have been a homodimer of this smaller subsequence. Using publicly available genomic data, the distribution of the basic unit of this class of proteins was determined to better understand its evolutionary history. The duplication and divergence is examined at three distinct levels of resolution: 1) within the orders Diptera and Hymenoptera, 2) within one genus Drosophila, and 3) within one species Aedes aegypti. Within the family Culicidae, we have found two separate occurrences of monomers as independent genes. The organization of the gene family in A. aegypti shows a common evolutionary origin for its monomer and several closely related MAs. Molecular modeling of the A. aegypti monomer with the unique Bla g 1 fold confirms the distant evolutionary relationship and supports the feasibility of homodimer formation from a single monomer. RNAseq data for A. aegypti confirms that the monomer is expressed in the mosquito similar to other A. aegypti MAs after a blood meal. Together, these data support the contention that the detected monomer shares similar functional characteristics to related MAs in other insects. An extensive search for this domain outside of Insecta confirms that the MAs are restricted to insects. PMID:24253356

  9. SU-B-BRF-01: Professional Council Symposium: The Evolving US Healthcare Delivery Model, How Will the Medical Physics Profession Be Impacted and How Should We Respond?

    International Nuclear Information System (INIS)

    Halvorsen, P; Shine, K; White, G

    2014-01-01

    The United States' healthcare delivery model is undergoing significant change. Insurance and reimbursement models are rapidly evolving, federal allocations are shifting from specialty services to preventive and generalpractice services, and Accountable Care Organizations are gaining in prominence. One area of focus is on the perceived over-utilization of expensive services such as advanced imaging and, in some cases, radiation therapy. Reimbursement incentives are increasingly aimed at quality metrics, leading to an increased interest in the core concepts of High Reliability Organizations. With the shift in federal resources away from specialty services and the increasing prominence of Accountable Care Organizations, we will likely be challenged to re-assess our traditional model for delivering medical physics services. Medical physicists have a unique combination of education and training in physics principles, radiation physics applications in medicine, human anatomy, as well as safety analysis and quality control methods. An effective medical physicist recognizes that to advance the institution's mission, the medical physicist must join other professional leaders within the institution to provide clear direction and perspective for the entire team. To do that, we must first recognize the macro changes in our healthcare delivery system and candidly assess how the medical physics practice model can evolve in a prudent way to support the institution's objectives while maintaining the traditionally high level of quality and safety. This year's Professional Council Symposium will explore the many facets of the changing healthcare system and its potential impact on medical physics. Dr. Shine will provide an overview of the developing healthcare delivery and reimbursement models, with a focus on how the physician community has adapted to the changing objectives. Mr. White will describe recent changes in the reimbursement patterns for both imaging

  10. SU-B-BRF-01: Professional Council Symposium: The Evolving US Healthcare Delivery Model, How Will the Medical Physics Profession Be Impacted and How Should We Respond?

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, P [Lahey Clinic, Burlington, MA (United States); Shine, K [Austin, TX (United States); White, G [Colorado Associates in Medical Phys, Colorado Springs, CO (United States)

    2014-06-15

    The United States' healthcare delivery model is undergoing significant change. Insurance and reimbursement models are rapidly evolving, federal allocations are shifting from specialty services to preventive and generalpractice services, and Accountable Care Organizations are gaining in prominence. One area of focus is on the perceived over-utilization of expensive services such as advanced imaging and, in some cases, radiation therapy. Reimbursement incentives are increasingly aimed at quality metrics, leading to an increased interest in the core concepts of High Reliability Organizations. With the shift in federal resources away from specialty services and the increasing prominence of Accountable Care Organizations, we will likely be challenged to re-assess our traditional model for delivering medical physics services. Medical physicists have a unique combination of education and training in physics principles, radiation physics applications in medicine, human anatomy, as well as safety analysis and quality control methods. An effective medical physicist recognizes that to advance the institution's mission, the medical physicist must join other professional leaders within the institution to provide clear direction and perspective for the entire team. To do that, we must first recognize the macro changes in our healthcare delivery system and candidly assess how the medical physics practice model can evolve in a prudent way to support the institution's objectives while maintaining the traditionally high level of quality and safety. This year's Professional Council Symposium will explore the many facets of the changing healthcare system and its potential impact on medical physics. Dr. Shine will provide an overview of the developing healthcare delivery and reimbursement models, with a focus on how the physician community has adapted to the changing objectives. Mr. White will describe recent changes in the reimbursement patterns for both imaging

  11. Methods Evolved by Observation

    Science.gov (United States)

    Montessori, Maria

    2016-01-01

    Montessori's idea of the child's nature and the teacher's perceptiveness begins with amazing simplicity, and when she speaks of "methods evolved," she is unveiling a methodological system for observation. She begins with the early childhood explosion into writing, which is a familiar child phenomenon that Montessori has written about…

  12. In silico characterization of cell-cell interactions using a cellular automata model of cell culture.

    Science.gov (United States)

    Kihara, Takanori; Kashitani, Kosuke; Miyake, Jun

    2017-07-14

    Cell proliferation is a key characteristic of eukaryotic cells. During cell proliferation, cells interact with each other. In this study, we developed a cellular automata model to estimate cell-cell interactions using experimentally obtained images of cultured cells. We used four types of cells; HeLa cells, human osteosarcoma (HOS) cells, rat mesenchymal stem cells (MSCs), and rat smooth muscle A7r5 cells. These cells were cultured and stained daily. The obtained cell images were binarized and clipped into squares containing about 10 4 cells. These cells showed characteristic cell proliferation patterns. The growth curves of these cells were generated from the cell proliferation images and we determined the doubling time of these cells from the growth curves. We developed a simple cellular automata system with an easily accessible graphical user interface. This system has five variable parameters, namely, initial cell number, doubling time, motility, cell-cell adhesion, and cell-cell contact inhibition (of proliferation). Within these parameters, we obtained initial cell numbers and doubling times experimentally. We set the motility at a constant value because the effect of the parameter for our simulation was restricted. Therefore, we simulated cell proliferation behavior with cell-cell adhesion and cell-cell contact inhibition as variables. By comparing growth curves and proliferation cell images, we succeeded in determining the cell-cell interaction properties of each cell. Simulated HeLa and HOS cells exhibited low cell-cell adhesion and weak cell-cell contact inhibition. Simulated MSCs exhibited high cell-cell adhesion and positive cell-cell contact inhibition. Simulated A7r5 cells exhibited low cell-cell adhesion and strong cell-cell contact inhibition. These simulated results correlated with the experimental growth curves and proliferation images. Our simulation approach is an easy method for evaluating the cell-cell interaction properties of cells.

  13. EVOLVE 2014 International Conference

    CERN Document Server

    Tantar, Emilia; Sun, Jian-Qiao; Zhang, Wei; Ding, Qian; Schütze, Oliver; Emmerich, Michael; Legrand, Pierrick; Moral, Pierre; Coello, Carlos

    2014-01-01

    This volume encloses research articles that were presented at the EVOLVE 2014 International Conference in Beijing, China, July 1–4, 2014.The book gathers contributions that emerged from the conference tracks, ranging from probability to set oriented numerics and evolutionary computation; all complemented by the bridging purpose of the conference, e.g. Complex Networks and Landscape Analysis, or by the more application oriented perspective. The novelty of the volume, when considering the EVOLVE series, comes from targeting also the practitioner’s view. This is supported by the Machine Learning Applied to Networks and Practical Aspects of Evolutionary Algorithms tracks, providing surveys on new application areas, as in the networking area and useful insights in the development of evolutionary techniques, from a practitioner’s perspective. Complementary to these directions, the conference tracks supporting the volume, follow on the individual advancements of the subareas constituting the scope of the confe...

  14. Symbiotic Composition and Evolvability

    OpenAIRE

    Watson, Richard A.; Pollack, Jordan B.

    2001-01-01

    Several of the Major Transitions in natural evolution, such as the symbiogenic origin of eukaryotes from prokaryotes, share the feature that existing entities became the components of composite entities at a higher level of organisation. This composition of pre-adapted extant entities into a new whole is a fundamentally different source of variation from the gradual accumulation of small random variations, and it has some interesting consequences for issues of evolvability. In this paper we p...

  15. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  16. Evolved H II regions

    International Nuclear Information System (INIS)

    Churchwell, E.

    1975-01-01

    A probable evolutionary sequence of H II regions based on six distinct types of observed objects is suggested. Two examples which may deviate from this idealized sequence, are discussed. Even though a size-mean density relation of H II regions can be used as a rough indication of whether a nebula is very young or evolved, it is argued that such a relation is not likely to be useful for the quantitative assignment of ages to H II regions. Evolved H II regions appear to fit into one of four structural types: rings, core-halos, smooth structures, and irregular or filamentary structures. Examples of each type are given with their derived physical parameters. The energy balance in these nebulae is considered. The mass of ionized gas in evolved H II regions is in general too large to trace the nebula back to single compact H II regions. Finally, the morphological type of the Galaxy is considered from its H II region content. 2 tables, 2 figs., 29 refs

  17. A discrete event simulation to model the cost-utility of fingolimod and natalizumab in rapidly evolving severe relapsing-remitting multiple sclerosis in the UK.

    Science.gov (United States)

    Montgomery, Stephen M; Maruszczak, Maciej J; Slater, David; Kusel, Jeanette; Nicholas, Richard; Adlard, Nicholas

    2017-05-01

    Two disease-modifying therapies are licensed in the EU for use in rapidly-evolving severe (RES) relapsing-remitting multiple sclerosis (RRMS), fingolimod and natalizumab. Here a discrete event simulation (DES) model to analyze the cost-effectiveness of natalizumab and fingolimod in the RES population, from the perspective of the National Health Service (NHS) in the UK, is reported. A DES model was developed to track individual RES patients, based on Expanded Disability Status Scale scores. Individual patient characteristics were taken from the RES sub-groups of the pivotal trials for fingolimod. Utility data were in line with previous models. Published costs were inflated to NHS cost year 2015. Owing to the confidential patient access scheme (PAS) discount applied to fingolimod in the UK, a range of discount levels were applied to the fingolimod list price, to capture the likelihood of natalizumab being cost-effective in a real-world setting. At the lower National Institute of Health and Care Excellence (NICE) threshold of £20,000/quality-adjusted life year (QALY), fingolimod only required a discount greater than 0.8% of list price to be cost-effective. At the upper threshold of £30,000/QALY employed by the NICE, fingolimod was cost-effective if the confidential discount is greater than 2.5%. Sensitivity analyses conducted using fingolimod list-price showed the model to be most sensitive to changes in the cost of each drug, particularly fingolimod. The DES model shows that only a modest discount to the UK fingolimod list-price is required to make fingolimod a more cost-effective option than natalizumab in RES RRMS.

  18. Evolving phenotypic networks in silico.

    Science.gov (United States)

    François, Paul

    2014-11-01

    Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  19. Ranking in evolving complex networks

    Science.gov (United States)

    Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang

    2017-05-01

    Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.

  20. Fractionation and current time trends of PCB congeners: evolvement of distributions 1950–2010 studied using a global atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    G. Lammel

    2012-08-01

    Full Text Available PCBs are ubiquitous environmental pollutants expected to decline in abiotic environmental media in response to decreasing primary emissions since the 1970s. A coupled atmosphere-ocean general circulation model with embedded dynamic sub-models for atmospheric aerosols and the marine biogeochemistry and air-surface exchange processes with soils, vegetation and the cryosphere is used to study the transport and fate of four PCB congeners covering a range of 3–7 chlorine atoms.

    The change of the geographic distribution of the PCB mixture reflects the sources and sinks' evolvement over time. Globally, secondary emissions (re-volatilisation from surfaces are on the long term increasingly gaining importance over primary emissions. Secondary emissions are most important for the congeners with 5–6 chlorine atoms. Correspondingly, the levels of these congeners are predicted to decrease slowest. Changes in congener mixture composition (fractionation are characterized both geographically and temporally. In high latitudes enrichment of the lighter, less persistent congeners and more delayed decreasing levels in response to decreasing emissions are found. The delivery of the contaminants to high latitudes is predicted to be more efficient than previously suggested. The results suggest furthermore that the effectiveness of emission control measures may significantly vary among substances. The trends of decline of organic contaminant levels in the abiotic environmental media do not only vary with latitude (slow in high latitudes, but do also show longitudinal gradients.

  1. In situ characterization of cofacial Co(IV) centers in Co4O4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts.

    Science.gov (United States)

    Brodsky, Casey N; Hadt, Ryan G; Hayes, Dugan; Reinhart, Benjamin J; Li, Nancy; Chen, Lin X; Nocera, Daniel G

    2017-04-11

    The Co 4 O 4 cubane is a representative structural model of oxidic cobalt oxygen-evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all-Co(III) resting state. This doubly oxidized Co(IV) 2 state may be captured in a Co(III) 2 (IV) 2 cubane. We demonstrate that the Co(III) 2 (IV) 2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge-transfer (IVCT) bands in the near-IR are observed for the Co(III) 2 (IV) 2 cubane, and spectroscopic analysis together with electrochemical kinetics measurements reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV) 2 dimer. The exchange coupling in the cofacial Co(IV) 2 site allows for parallels to be drawn between the electronic structure of the Co 4 O 4 cubane model system and the high-valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV) 2 center on O-O bond formation.

  2. EVOLVE : International Conference

    CERN Document Server

    Deutz, Andre; Schuetze, Oliver; Bäck, Thomas; Tantar, Emilia; Tantar, Alexandru-Adrian; Moral, Pierre; Legrand, Pierrick; Bouvry, Pascal; Coello, Carlos

    2013-01-01

    Numerical and computational methods are nowadays used in a wide range of contexts in complex systems research, biology, physics, and engineering.  Over the last decades different methodological schools have emerged with emphasis on different aspects of computation, such as nature-inspired algorithms, set oriented numerics, probabilistic systems and Monte Carlo methods. Due to the use of different terminologies and emphasis on different aspects of algorithmic performance there is a strong need for a more integrated view and opportunities for cross-fertilization across particular disciplines. These proceedings feature 20 original publications from distinguished authors in the cross-section of computational sciences, such as machine learning algorithms and probabilistic models, complex networks and fitness landscape analysis, set oriented numerics and cell mapping, evolutionary multiobjective optimization, diversity-oriented search, and the foundations of genetic programming algorithms. By presenting cutting ed...

  3. Modeling population dynamics of mitochondria in mammalian cells

    Science.gov (United States)

    Kornick, Kellianne; Das, Moumita

    Mitochondria are organelles located inside eukaryotic cells and are essential for several key cellular processes such as energy (ATP) production, cell signaling, differentiation, and apoptosis. All organisms are believed to have low levels of variation in mitochondrial DNA (mtDNA), and alterations in mtDNA are connected to a range of human health conditions, including epilepsy, heart failure, Parkinsons disease, diabetes, and multiple sclerosis. Therefore, understanding how changes in mtDNA accumulate over time and are correlated to changes in mitochondrial function and cell properties can have a profound impact on our understanding of cell physiology and the origins of some diseases. Motivated by this, we develop and study a mathematical model to determine which cellular parameters have the largest impact on mtDNA population dynamics. The model consists of coupled ODEs to describe subpopulations of healthy and dysfunctional mitochondria subject to mitochondrial fission, fusion, autophagy, and mutation. We study the time evolution and stability of each sub-population under specific selection biases and pressures by tuning specific terms in our model. Our results may provide insights into how sub-populations of mitochondria survive and evolve under different selection pressures. This work was supported by a Grant from the Moore Foundation.

  4. Modeling the Shapes of Cells

    Science.gov (United States)

    Garimella, Umadevi I.; Robertson, Belinda M.

    2015-01-01

    A solid understanding of the structure and function of cells can help establish the foundation for learning advanced concepts in the biological sciences. The concept of the cell is introduced in middle school life science courses and is continued at the undergraduate level in college (NRC 2012; Reece et al. 2014). Cells are introduced to students…

  5. Simplified fuel cell system model identification

    Energy Technology Data Exchange (ETDEWEB)

    Caux, S.; Fadel, M. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, Toulouse (France); Hankache, W. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, Toulouse (France)]|[Laboratoire de recherche en Electronique, Electrotechnique et Systemes, Belfort (France); Hissel, D. [Laboratoire de recherche en Electronique, Electrotechnique et Systemes, Belfort (France)

    2006-07-01

    This paper discussed a simplified physical fuel cell model used to study fuel cell and supercap energy applications for vehicles. Anode, cathode, membrane, and electrode elements of the cell were modelled. A quasi-static Amphlett model was used to predict voltage responses of the fuel cell as a function of the current, temperature, and partial pressures of the reactive gases. The potential of each cell was multiplied by the number of cells in order to model a fuel cell stack. The model was used to describe the main phenomena associated with current voltage behaviour. Data were then compared with data from laboratory tests conducted on a 20 cell stack subjected to a current and time profile developed using speed data from a vehicle operating in an urban environment. The validated model was used to develop iterative optimization algorithms for an energy management strategy that linked 3 voltage sources with fuel cell parameters. It was concluded that classic state and dynamic measurements using a simple least square algorithm can be used to identify the most important parameters for optimal fuel cell operation. 9 refs., 1 tab., 6 figs.

  6. Modelling collective cell migration of neural crest.

    Science.gov (United States)

    Szabó, András; Mayor, Roberto

    2016-10-01

    Collective cell migration has emerged in the recent decade as an important phenomenon in cell and developmental biology and can be defined as the coordinated and cooperative movement of groups of cells. Most studies concentrate on tightly connected epithelial tissues, even though collective migration does not require a constant physical contact. Movement of mesenchymal cells is more independent, making their emergent collective behaviour less intuitive and therefore lending importance to computational modelling. Here we focus on such modelling efforts that aim to understand the collective migration of neural crest cells, a mesenchymal embryonic population that migrates large distances as a group during early vertebrate development. By comparing different models of neural crest migration, we emphasize the similarity and complementary nature of these approaches and suggest a future direction for the field. The principles derived from neural crest modelling could aid understanding the collective migration of other mesenchymal cell types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Extinction models for cancer stem cell therapy

    Science.gov (United States)

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  8. Evolving a photosynthetic organelle

    Directory of Open Access Journals (Sweden)

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  9. Fat: an evolving issue

    Directory of Open Access Journals (Sweden)

    John R. Speakman

    2012-09-01

    Work on obesity is evolving, and obesity is a consequence of our evolutionary history. In the space of 50 years, we have become an obese species. The reasons why can be addressed at a number of different levels. These include separating between whether the primary cause lies on the food intake or energy expenditure side of the energy balance equation, and determining how genetic and environmental effects contribute to weight variation between individuals. Opinion on whether increased food intake or decreased energy expenditure drives the obesity epidemic is still divided, but recent evidence favours the idea that food intake, rather than altered expenditure, is most important. There is more of a consensus that genetics explains most (probably around 65% of weight variation between individuals. Recent advances in genome-wide association studies have identified many polymorphisms that are linked to obesity, yet much of the genetic variance remains unexplained. Finding the causes of this unexplained variation will be an impetus of genetic and epigenetic research on obesity over the next decade. Many environmental factors – including gut microbiota, stress and endocrine disruptors – have been linked to the risk of developing obesity. A better understanding of gene-by-environment interactions will also be key to understanding obesity in the years to come.

  10. Evolving a photosynthetic organelle.

    Science.gov (United States)

    Nakayama, Takuro; Archibald, John M

    2012-04-24

    The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles.The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis--the conversion of solar energy into chemical energy--and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  11. Communicability across evolving networks.

    Science.gov (United States)

    Grindrod, Peter; Parsons, Mark C; Higham, Desmond J; Estrada, Ernesto

    2011-04-01

    Many natural and technological applications generate time-ordered sequences of networks, defined over a fixed set of nodes; for example, time-stamped information about "who phoned who" or "who came into contact with who" arise naturally in studies of communication and the spread of disease. Concepts and algorithms for static networks do not immediately carry through to this dynamic setting. For example, suppose A and B interact in the morning, and then B and C interact in the afternoon. Information, or disease, may then pass from A to C, but not vice versa. This subtlety is lost if we simply summarize using the daily aggregate network given by the chain A-B-C. However, using a natural definition of a walk on an evolving network, we show that classic centrality measures from the static setting can be extended in a computationally convenient manner. In particular, communicability indices can be computed to summarize the ability of each node to broadcast and receive information. The computations involve basic operations in linear algebra, and the asymmetry caused by time's arrow is captured naturally through the noncommutativity of matrix-matrix multiplication. Illustrative examples are given for both synthetic and real-world communication data sets. We also discuss the use of the new centrality measures for real-time monitoring and prediction.

  12. Evolving Concepts of Asthma

    Science.gov (United States)

    Ray, Anuradha; Wenzel, Sally E.

    2015-01-01

    Our understanding of asthma has evolved over time from a singular disease to a complex of various phenotypes, with varied natural histories, physiologies, and responses to treatment. Early therapies treated most patients with asthma similarly, with bronchodilators and corticosteroids, but these therapies had varying degrees of success. Similarly, despite initial studies that identified an underlying type 2 inflammation in the airways of patients with asthma, biologic therapies targeted toward these type 2 pathways were unsuccessful in all patients. These observations led to increased interest in phenotyping asthma. Clinical approaches, both biased and later unbiased/statistical approaches to large asthma patient cohorts, identified a variety of patient characteristics, but they also consistently identified the importance of age of onset of disease and the presence of eosinophils in determining clinically relevant phenotypes. These paralleled molecular approaches to phenotyping that developed an understanding that not all patients share a type 2 inflammatory pattern. Using biomarkers to select patients with type 2 inflammation, repeated trials of biologics directed toward type 2 cytokine pathways saw newfound success, confirming the importance of phenotyping in asthma. Further research is needed to clarify additional clinical and molecular phenotypes, validate predictive biomarkers, and identify new areas for possible interventions. PMID:26161792

  13. UKAEA'S evolving contract philosophy

    International Nuclear Information System (INIS)

    Nicol, R. D.

    2003-01-01

    The United Kingdom Atomic Energy Authority (UKAEA) has gone through fundamental change over the last ten years. At the heart of this change has been UKAEA's relationship with the contracting and supply market. This paper describes the way in which UKAEA actively developed the market to support the decommissioning programme, and how the approach to contracting has evolved as external pressures and demands have changed. UKAEA's pro-active approach to industry has greatly assisted the development of a healthy, competitive market for services supporting decommissioning in the UK. There have been difficult changes and many challenges along the way, and some retrenchment was necessary to meet regulatory requirements. Nevertheless, UKAEA has sustained a high level of competition - now measured in terms of competed spend as a proportion of competable spend - with annual out-turns consistently over 80%. The prime responsibility for market development will pass to the new Nuclear Decommissioning Authority (NDA) in 2005, as the owner, on behalf of the Government, of the UK's civil nuclear liabilities. The preparatory work for the NDA indicates that the principles established by UKAEA will be carried forward. (author)

  14. Thinking Through Computational Exposure as an Evolving Paradign Shift for Exposure Science: Development and Application of Predictive Models from Big Data

    Science.gov (United States)

    Symposium Abstract: Exposure science has evolved from a time when the primary focus was on measurements of environmental and biological media and the development of enabling field and laboratory methods. The Total Exposure Assessment Method (TEAM) studies of the 1980s were class...

  15. Retinal Cell Degeneration in Animal Models

    Directory of Open Access Journals (Sweden)

    Masayuki Niwa

    2016-01-01

    Full Text Available The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced, autoimmune (experimental autoimmune encephalomyelitis, mechanical stress (optic nerve crush-induced, light-induced and ischemia (transient retinal ischemia-induced. The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.

  16. On a poroviscoelastic model for cell crawling

    KAUST Repository

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2014-01-01

    -convected Maxwell model and demonstrate that even the simplest of two-phase, viscoelastic models displays features relevant to cell motility. We also show care must be exercised in choosing parameters for such models as a poor choice can lead to an ill-posed problem

  17. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  18. On a poroviscoelastic model for cell crawling

    KAUST Repository

    Kimpton, L. S.

    2014-02-08

    In this paper a minimal, one-dimensional, two-phase, viscoelastic, reactive, flow model for a crawling cell is presented. Two-phase models are used with a variety of constitutive assumptions in the literature to model cell motility. We use an upper-convected Maxwell model and demonstrate that even the simplest of two-phase, viscoelastic models displays features relevant to cell motility. We also show care must be exercised in choosing parameters for such models as a poor choice can lead to an ill-posed problem. A stability analysis reveals that the initially stationary, spatially uniform strip of cytoplasm starts to crawl in response to a perturbation which breaks the symmetry of the network volume fraction or network stress. We also demonstrate numerically that there is a steady travelling-wave solution in which the crawling velocity has a bell-shaped dependence on adhesion strength, in agreement with biological observation.

  19. PERFORMANCE - AN EVOLVING CONCEPT

    OpenAIRE

    Assist. Mirela-Oana Pintea Ph.D Student; Lect. Monica-Violeta Achim

    2010-01-01

    The concept of performance is a problematic concept and will remain so as long as the definition of company performance varies depending on the interests of users of information. On this consideration, no consensus was reached regarding the definition, methodology and performance models used. Defining this concept is realized in accordance with its objectives of users of information, while the methodology and models used are influenced by legal regulations and management policies. The approac...

  20. A MODEL FOR POSTRADIATION STEM CELL KINETICS,

    Science.gov (United States)

    In polycythemic rats observed for 17 days postradiation (300 R, 250 KVP X-rays) it was noted that stem cell release diminished to 8 percent of the...correlate these findings with a kinetic model of erythropoiesis. It was suggested that the initial depression in stem cell release might be due to cellular

  1. Glucose transport machinery reconstituted in cell models.

    Science.gov (United States)

    Hansen, Jesper S; Elbing, Karin; Thompson, James R; Malmstadt, Noah; Lindkvist-Petersson, Karin

    2015-02-11

    Here we demonstrate the production of a functioning cell model by formation of giant vesicles reconstituted with the GLUT1 glucose transporter and a glucose oxidase and hydrogen peroxidase linked fluorescent reporter internally. Hence, a simplified artificial cell is formed that is able to take up glucose and process it.

  2. Modeling collective cell migration in geometric confinement

    Science.gov (United States)

    Tarle, Victoria; Gauquelin, Estelle; Vedula, S. R. K.; D'Alessandro, Joseph; Lim, C. T.; Ladoux, Benoit; Gov, Nir S.

    2017-06-01

    Monolayer expansion has generated great interest as a model system to study collective cell migration. During such an expansion the culture front often develops ‘fingers’, which we have recently modeled using a proposed feedback between the curvature of the monolayer’s leading edge and the outward motility of the edge cells. We show that this model is able to explain the puzzling observed increase of collective cellular migration speed of a monolayer expanding into thin stripes, as well as describe the behavior within different confining geometries that were recently observed in experiments. These comparisons give support to the model and emphasize the role played by the edge cells and the edge shape during collective cell motion.

  3. Spatial Modeling Tools for Cell Biology

    National Research Council Canada - National Science Library

    Przekwas, Andrzej; Friend, Tom; Teixeira, Rodrigo; Chen, Z. J; Wilkerson, Patrick

    2006-01-01

    .... Scientific potentials and military relevance of computational biology and bioinformatics have inspired DARPA/IPTO's visionary BioSPICE project to develop computational framework and modeling tools for cell biology...

  4. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    is an important aspect of cell modelling. ... 1Supercomputer Education and Research Centreand 2Bioinformatics Centre, Indian Institute ... Important aspects in each panel are listed. ... subsumption relationship, in which the child term is a more.

  5. Disgust: Evolved function and structure

    NARCIS (Netherlands)

    Tybur, J.M.; Lieberman, D.; Kurzban, R.; DeScioli, P.

    2013-01-01

    Interest in and research on disgust has surged over the past few decades. The field, however, still lacks a coherent theoretical framework for understanding the evolved function or functions of disgust. Here we present such a framework, emphasizing 2 levels of analysis: that of evolved function and

  6. Natural selection promotes antigenic evolvability

    NARCIS (Netherlands)

    Graves, C.J.; Ros, V.I.D.; Stevenson, B.; Sniegowski, P.D.; Brisson, D.

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide

  7. Managing evolving services

    NARCIS (Netherlands)

    Papazoglou, M.; Andrikopoulos, V.; Benbernou, S.

    2011-01-01

    Services are subject to constant change and variation, leading to continuous redesign and improvement. However, service changes shouldn't be disruptive by requiring radical modifications or by altering the way that business is conducted. In this article, we discuss a causal model of service changes

  8. Mathematical modeling of solid oxide fuel cells

    Science.gov (United States)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  9. EVOLVING AN EMPIRICAL METHODOLOGY DOR DETERMINING ...

    African Journals Online (AJOL)

    The uniqueness of this approach, is that it can be applied to any forest or dynamic feature on the earth, and can enjoy universal application as well. KEY WORDS: Evolving empirical methodology, innovative mathematical model, appropriate interval, remote sensing, forest environment planning and management. Global Jnl ...

  10. Mathematical modeling of a thermovoltaic cell

    Science.gov (United States)

    White, Ralph E.; Kawanami, Makoto

    1992-01-01

    A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.

  11. Evolving Capabilities for Virtual Globes

    Science.gov (United States)

    Glennon, A.

    2006-12-01

    Though thin-client spatial visualization software like Google Earth and NASA World Wind enjoy widespread popularity, a common criticism is their general lack of analytical functionality. This concern, however, is rapidly being addressed; standard and advanced geographic information system (GIS) capabilities are being developed for virtual globes--though not centralized into a single implementation or software package. The innovation is mostly originating from the user community. Three such capabilities relevant to the earth science, education, and emergency management communities are modeling dynamic spatial phenomena, real-time data collection and visualization, and multi-input collaborative databases. Modeling dynamic spatial phenomena has been facilitated through joining virtual globe geometry definitions--like KML--to relational databases. Real-time data collection uses short scripts to transform user-contributed data into a format usable by virtual globe software. Similarly, collaborative data collection for virtual globes has become possible by dynamically referencing online, multi-person spreadsheets. Examples of these functions include mapping flows within a karst watershed, real-time disaster assessment and visualization, and a collaborative geyser eruption spatial decision support system. Virtual globe applications will continue to evolve further analytical capabilities, more temporal data handling, and from nano to intergalactic scales. This progression opens education and research avenues in all scientific disciplines.

  12. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    Science.gov (United States)

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  13. Evolving production network structures

    DEFF Research Database (Denmark)

    Grunow, Martin; Gunther, H.O.; Burdenik, H.

    2007-01-01

    When deciding about future production network configurations, the current structures have to be taken into account. Further, core issues such as the maturity of the products and the capacity requirements for test runs and ramp-ups must be incorporated. Our approach is based on optimization...... modelling and assigns products and capacity expansions to production sites under the above constraints. It also considers the production complexity at the individual sites and the flexibility of the network. Our implementation results for a large manufacturing network reveal substantial possible cost...

  14. Radiobiological modelling with MarCell software

    International Nuclear Information System (INIS)

    Hasan, J.S.; Jones, T.D.

    1996-01-01

    Jones introduced a bone marrow radiation cell kinetics model with great potential for application in the fields of health physics, radiation research, and medicine. However, until recently, only the model developers have been able to apply it because of the complex array of biological and physical assignments needed for evaluation of a particular radiation exposure protocol. The purpose of this article is to illustrate the use of MarCell (MARrow CELL Kinetics) software for MS-DOS, a user-friendly computer implementation of that mathematical model that allows almost anyone with an elementary knowledge of radiation physics and/or medical procedures to apply the model. A hands-on demonstration of the software will be given by guiding the user through evaluation of a medical total body irradiation protocol and a nuclear fallout scenario. A brief overview of the software is given in the Appendix

  15. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  16. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems.

    Directory of Open Access Journals (Sweden)

    Sophie S Abby

    2012-09-01

    Full Text Available Type 3 secretion systems (T3SSs are essential components of two complex bacterial machineries: the flagellum, which drives cell motility, and the non-flagellar T3SS (NF-T3SS, which delivers effectors into eukaryotic cells. Yet the origin, specialization, and diversification of these machineries remained unclear. We developed computational tools to identify homologous components of the two systems and to discriminate between them. Our analysis of >1,000 genomes identified 921 T3SSs, including 222 NF-T3SSs. Phylogenomic and comparative analyses of these systems argue that the NF-T3SS arose from an exaptation of the flagellum, i.e. the recruitment of part of the flagellum structure for the evolution of the new protein delivery function. This reconstructed chronology of the exaptation process proceeded in at least two steps. An intermediate ancestral form of NF-T3SS, whose descendants still exist in Myxococcales, lacked elements that are essential for motility and included a subset of NF-T3SS features. We argue that this ancestral version was involved in protein translocation. A second major step in the evolution of NF-T3SSs occurred via recruitment of secretins to the NF-T3SS, an event that occurred at least three times from different systems. In rhizobiales, a partial homologous gene replacement of the secretin resulted in two genes of complementary function. Acquisition of a secretin was followed by the rapid adaptation of the resulting NF-T3SSs to multiple, distinct eukaryotic cell envelopes where they became key in parasitic and mutualistic associations between prokaryotes and eukaryotes. Our work elucidates major steps of the evolutionary scenario leading to extant NF-T3SSs. It demonstrates how molecular evolution can convert one complex molecular machine into a second, equally complex machine by successive deletions, innovations, and recruitment from other molecular systems.

  17. Cell-Oriented Modeling of Angiogenesis

    Directory of Open Access Journals (Sweden)

    Diego Guidolin

    2011-01-01

    Full Text Available Due to its significant involvement in various physiological and pathological conditions, angiogenesis (the development of new blood vessels from an existing vasculature represents an important area of the actual biological research and a field in which mathematical modeling proved particularly useful in supporting the experimental work. In this paper, we focus on a specific modeling strategy, known as “cell-centered” approach. This type of mathematical models work at a “mesoscopic scale,” assuming the cell as the natural level of abstraction for computational modeling of development. They treat cells phenomenologically, considering their essential behaviors to study how tissue structure and organization emerge from the collective dynamics of multiple cells. The main contributions of the cell-oriented approach to the study of the angiogenic process will be described. From one side, they have generated “basic science understanding” about the process of capillary assembly during development, growth, and pathology. On the other side, models were also developed supporting “applied biomedical research” for the purpose of identifying new therapeutic targets and clinically relevant approaches for either inhibiting or stimulating angiogenesis.

  18. Cell-oriented modeling of angiogenesis.

    Science.gov (United States)

    Guidolin, Diego; Rebuffat, Piera; Albertin, Giovanna

    2011-01-01

    Due to its significant involvement in various physiological and pathological conditions, angiogenesis (the development of new blood vessels from an existing vasculature) represents an important area of the actual biological research and a field in which mathematical modeling proved particularly useful in supporting the experimental work. In this paper, we focus on a specific modeling strategy, known as "cell-centered" approach. This type of mathematical models work at a "mesoscopic scale," assuming the cell as the natural level of abstraction for computational modeling of development. They treat cells phenomenologically, considering their essential behaviors to study how tissue structure and organization emerge from the collective dynamics of multiple cells. The main contributions of the cell-oriented approach to the study of the angiogenic process will be described. From one side, they have generated "basic science understanding" about the process of capillary assembly during development, growth, and pathology. On the other side, models were also developed supporting "applied biomedical research" for the purpose of identifying new therapeutic targets and clinically relevant approaches for either inhibiting or stimulating angiogenesis.

  19. Recommendation in evolving online networks

    Science.gov (United States)

    Hu, Xiao; Zeng, An; Shang, Ming-Sheng

    2016-02-01

    Recommender system is an effective tool to find the most relevant information for online users. By analyzing the historical selection records of users, recommender system predicts the most likely future links in the user-item network and accordingly constructs a personalized recommendation list for each user. So far, the recommendation process is mostly investigated in static user-item networks. In this paper, we propose a model which allows us to examine the performance of the state-of-the-art recommendation algorithms in evolving networks. We find that the recommendation accuracy in general decreases with time if the evolution of the online network fully depends on the recommendation. Interestingly, some randomness in users' choice can significantly improve the long-term accuracy of the recommendation algorithm. When a hybrid recommendation algorithm is applied, we find that the optimal parameter gradually shifts towards the diversity-favoring recommendation algorithm, indicating that recommendation diversity is essential to keep a high long-term recommendation accuracy. Finally, we confirm our conclusions by studying the recommendation on networks with the real evolution data.

  20. A minimal physical model for crawling cells

    Science.gov (United States)

    Tiribocchi, Adriano; Tjhung, Elsen; Marenduzzo, Davide; Cates, Michael E.

    Cell motility in higher organisms (eukaryotes) is fundamental to biological functions such as wound healing or immune response, and is also implicated in diseases such as cancer. For cells crawling on solid surfaces, considerable insights into motility have been gained from experiments replicating such motion in vitro. Such experiments show that crawling uses a combination of actin treadmilling (polymerization), which pushes the front of a cell forward, and myosin-induced stress (contractility), which retracts the rear. We present a simplified physical model of a crawling cell, consisting of a droplet of active polar fluid with contractility throughout, but treadmilling connected to a thin layer near the supporting wall. The model shows a variety of shapes and/or motility regimes, some closely resembling cases seen experimentally. Our work supports the view that cellular motility exploits autonomous physical mechanisms whose operation does not need continuous regulatory effort.

  1. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S; Wang, Y; Wang, X-n

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ?entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  2. Spacetimes containing slowly evolving horizons

    International Nuclear Information System (INIS)

    Kavanagh, William; Booth, Ivan

    2006-01-01

    Slowly evolving horizons are trapping horizons that are ''almost'' isolated horizons. This paper reviews their definition and discusses several spacetimes containing such structures. These include certain Vaidya and Tolman-Bondi solutions as well as (perturbatively) tidally distorted black holes. Taking into account the mass scales and orders of magnitude that arise in these calculations, we conjecture that slowly evolving horizons are the norm rather than the exception in astrophysical processes that involve stellar-scale black holes

  3. Robustness to Faults Promotes Evolvability: Insights from Evolving Digital Circuits.

    Science.gov (United States)

    Milano, Nicola; Nolfi, Stefano

    2016-01-01

    We demonstrate how the need to cope with operational faults enables evolving circuits to find more fit solutions. The analysis of the results obtained in different experimental conditions indicates that, in absence of faults, evolution tends to select circuits that are small and have low phenotypic variability and evolvability. The need to face operation faults, instead, drives evolution toward the selection of larger circuits that are truly robust with respect to genetic variations and that have a greater level of phenotypic variability and evolvability. Overall our results indicate that the need to cope with operation faults leads to the selection of circuits that have a greater probability to generate better circuits as a result of genetic variation with respect to a control condition in which circuits are not subjected to faults.

  4. A bistable model of cell polarity.

    Directory of Open Access Journals (Sweden)

    Matteo Semplice

    Full Text Available Ultrasensitivity, as described by Goldbeter and Koshland, has been considered for a long time as a way to realize bistable switches in biological systems. It is not as well recognized that when ultrasensitivity and reinforcing feedback loops are present in a spatially distributed system such as the cell plasmamembrane, they may induce bistability and spatial separation of the system into distinct signaling phases. Here we suggest that bistability of ultrasensitive signaling pathways in a diffusive environment provides a basic mechanism to realize cell membrane polarity. Cell membrane polarization is a fundamental process implicated in several basic biological phenomena, such as differentiation, proliferation, migration and morphogenesis of unicellular and multicellular organisms. We describe a simple, solvable model of cell membrane polarization based on the coupling of membrane diffusion with bistable enzymatic dynamics. The model can reproduce a broad range of symmetry-breaking events, such as those observed in eukaryotic directional sensing, the apico-basal polarization of epithelium cells, the polarization of budding and mating yeast, and the formation of Ras nanoclusters in several cell types.

  5. Evolvability Is an Evolved Ability: The Coding Concept as the Arch-Unit of Natural Selection.

    Science.gov (United States)

    Janković, Srdja; Ćirković, Milan M

    2016-03-01

    Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection.

  6. Voronoi cell patterns: Theoretical model and applications

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2011-11-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We use our model to describe the Voronoi cell patterns of several systems. Specifically, we study the island nucleation with irreversible attachment, the 1D car-parking problem, the formation of second-level administrative divisions, and the pattern formed by the Paris Métro stations.

  7. Modeling human infertility with pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Di Chen

    2017-05-01

    Full Text Available Human fertility is dependent upon the correct establishment and differentiation of the germline. This is because no other cell type in the body is capable of passing a genome and epigenome from parent to child. Terminally differentiated germline cells in the adult testis and ovary are called gametes. However, the initial specification of germline cells occurs in the embryo around the time of gastrulation. Most of our knowledge regarding the cell and molecular events that govern human germline specification involves extrapolating scientific principles from model organisms, most notably the mouse. However, recent work using next generation sequencing, gene editing and differentiation of germline cells from pluripotent stem cells has revealed that the core molecular mechanisms that regulate human germline development are different from rodents. Here, we will discuss the major molecular pathways required for human germline differentiation and how pluripotent stem cells have revolutionized our ability to study the earliest steps in human embryonic lineage specification in order to understand human fertility.

  8. Development and the evolvability of human limbs

    OpenAIRE

    Young, Nathan M.; Wagner, Günter P.; Hallgrímsson, Benedikt

    2010-01-01

    The long legs and short arms of humans are distinctive for a primate, the result of selection acting in opposite directions on each limb at different points in our evolutionary history. This mosaic pattern challenges our understanding of the relationship of development and evolvability because limbs are serially homologous and genetic correlations should act as a significant constraint on their independent evolution. Here we test a developmental model of limb covariation in anthropoid primate...

  9. Repair-misrepair model of cell survival

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.

    1980-01-01

    During the last three years a new model, the repair-misrepair model (RMR) has been proposed, to interpret radiobiological experiments with heavy ions. In using the RMR model it became apparent that some of its features are suitable for handling the effects produced by a variety of environmental agents in addition to ionizing radiation. Two separate sequences of events are assumed to take place in an irradiated cell. The first sequence begins with an initial energy transfer consisting of ionizations and excitations, culminating via fast secondary physical and chemical processes in established macromolecular lesions in essential cell structures. The second sequence contains the responses of the cell to the lesions and consists of the processes of recognition and molecular repair. In normal cells there exists one repair process or at most a few enzymatic repair processes for each essential macromolecular lesion. The enzymatic repair processes may last for hours and minutes, and can be separated in time from the initial physicochemical and later genetic phases

  10. Functional Identification of Dendritic Cells in the Teleost Model, Rainbow Trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Bassity, Elizabeth; Clark, Theodore G.

    2012-01-01

    Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro. PMID:22427987

  11. Machine Learning Optimization of Evolvable Artificial Cells

    DEFF Research Database (Denmark)

    Caschera, F.; Rasmussen, S.; Hanczyc, M.

    2011-01-01

    can be explored. A machine learning approach (Evo-DoE) could be applied to explore this experimental space and define optimal interactions according to a specific fitness function. Herein an implementation of an evolutionary design of experiments to optimize chemical and biochemical systems based...... on a machine learning process is presented. The optimization proceeds over generations of experiments in iterative loop until optimal compositions are discovered. The fitness function is experimentally measured every time the loop is closed. Two examples of complex systems, namely a liposomal drug formulation...

  12. Modelling fuel cell performance using artificial intelligence

    Science.gov (United States)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  13. Modelling fuel cell performance using artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Ogaji, S.O.T.; Singh, R.; Pilidis, P.; Diacakis, M. [Power Propulsion and Aerospace Engineering Department, Centre for Diagnostics and Life Cycle Costs, Cranfield University (United Kingdom)

    2006-03-09

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed. (author)

  14. Radiobiological analyse based on cell cluster models

    International Nuclear Information System (INIS)

    Lin Hui; Jing Jia; Meng Damin; Xu Yuanying; Xu Liangfeng

    2010-01-01

    The influence of cell cluster dimension on EUD and TCP for targeted radionuclide therapy was studied using the radiobiological method. The radiobiological features of tumor with activity-lack in core were evaluated and analyzed by associating EUD, TCP and SF.The results show that EUD will increase with the increase of tumor dimension under the activity homogeneous distribution. If the extra-cellular activity was taken into consideration, the EUD will increase 47%. Under the activity-lack in tumor center and the requirement of TCP=0.90, the α cross-fire influence of 211 At could make up the maximum(48 μm)3 activity-lack for Nucleus source, but(72 μm)3 for Cytoplasm, Cell Surface, Cell and Voxel sources. In clinic,the physician could prefer the suggested dose of Cell Surface source in case of the future of local tumor control for under-dose. Generally TCP could well exhibit the effect difference between under-dose and due-dose, but not between due-dose and over-dose, which makes TCP more suitable for the therapy plan choice. EUD could well exhibit the difference between different models and activity distributions,which makes it more suitable for the research work. When the user uses EUD to study the influence of activity inhomogeneous distribution, one should keep the consistency of the configuration and volume of the former and the latter models. (authors)

  15. Interaction of Defensins with Model Cell Membranes

    Science.gov (United States)

    Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.

    2009-03-01

    Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.

  16. Modeling of SONOS Memory Cell Erase Cycle

    Science.gov (United States)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  17. Reply to comment by Tan et al. on "Sandbox modeling of evolving thrust wedges with different preexisting topographic relief: Implications for the Longmen Shan thrust belt, eastern Tibet"

    Science.gov (United States)

    Sun, Chuang; Jia, Dong; Yin, Hongwei; Chen, Zhuxin; Li, Zhigang; Li, Shen; Wei, Dongtao; Li, Yiquan; Yan, Bin; Wang, Maomao; Fang, Shaozhi; Cui, Jian

    2017-02-01

    Tan et al. comment that the preexisting topographic relief in our sandbox is opposed to its prototype in the central Longmen Shan. Therefore, the comparison between our sandbox modeling and the natural topography is questionable and does not agree with our conclusion that the Xiaoyudong fault is a tear fault. First, we are grateful to the authors for their approval of our sandbox modeling and its contribution to understanding fault behavior within thrust wedges. However, after reading the comment carefully, we found that they misunderstood the meaning of topographic relief we conveyed. In response, we would like to address the differences between the topography in their comment and the orogen-scale topography we investigated in our modeling to defend our conclusion.

  18. CMIP6 Data Citation of Evolving Data

    Directory of Open Access Journals (Sweden)

    Martina Stockhause

    2017-06-01

    Full Text Available Data citations have become widely accepted. Technical infrastructures as well as principles and recommendations for data citation are in place but best practices or guidelines for their implementation are not yet available. On the other hand, the scientific climate community requests early citations on evolving data for credit, e.g. for CMIP6 (Coupled Model Intercomparison Project Phase 6. The data citation concept for CMIP6 is presented. The main challenges lie in limited resources, a strict project timeline and the dependency on changes of the data dissemination infrastructure ESGF (Earth System Grid Federation to meet the data citation requirements. Therefore a pragmatic, flexible and extendible approach for the CMIP6 data citation service was developed, consisting of a citation for the full evolving data superset and a data cart approach for citing the concrete used data subset. This two citation approach can be implemented according to the RDA recommendations for evolving data. Because of resource constraints and missing project policies, the implementation of the second part of the citation concept is postponed to CMIP7.

  19. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.

    Directory of Open Access Journals (Sweden)

    Yilun Shang

    Full Text Available Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

  20. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.

    Science.gov (United States)

    Shang, Yilun

    2015-01-01

    Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

  1. Structural and numerical modeling of fluid flow and evolving stress fields at a transtensional stepover: A Miocene Andean porphyry copper system as a case study.

    Science.gov (United States)

    Nuñez, R. C.; Griffith, W. A.; Mitchell, T. M.; Marquardt, C.; Iturrieta, P. C.; Cembrano, J. M.

    2017-12-01

    Obliquely convergent subduction orogens show both margin-parallel and margin-oblique fault systems that are spatially and temporally associated with ore deposits and geothermal systems within the volcanic arc. Fault orientation and mechanical interaction among different fault systems influence the stress field in these arrangements, thus playing a first order control on the regional to local-scale fluid migration paths as documented by the spatial distribution of fault-vein arrays. Our selected case study is a Miocene porphyry copper-type system that crops out in the precordillera of the Maule region along the Teno river Valley (ca. 35°S). Several regional to local faults were recognized in the field: (1) Two first-order, N-striking subvertical dextral faults overlapping at a right stepover; (2) Second-order, N60°E-striking steeply-dipping, dextral-normal faults located at the stepover, and (3) N40°-60°W striking subvertical, sinistral faults crossing the stepover zone. The regional and local scale geology is characterized by volcano-sedimentary rocks (Upper Eocene- Lower Miocene), intruded by Miocene granodioritic plutons (U-Pb zircon age of 18.2 ± 0.11 Ma) and coeval dikes. We implement a 2D boundary element displacement discontinuity method (BEM) model to test the mechanical feasibility of kinematic model of the structural development of the porphyry copper-type system in the stepover between N-striking faults. The model yields the stress field within the stepover region and shows slip and potential opening distribution along the N-striking master faults under a regionally imposed stress field. The model shows that σ1 rotates clockwise where the main faults approach each other, becoming EW when they overlap. This, in turn leads to the generation of both NE- and NW-striking faults within the stepover area. Model results are consistent with the structural and kinematic data collected in the field attesting for enhanced permeability and fluid flow transport

  2. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. IV. CONSTRUCTION AND VALIDATION OF A GRID OF MODELS FOR OXYGEN-RICH AGB STARS, RED SUPERGIANTS, AND EXTREME AGB STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Srinivasan, S.

    2011-01-01

    To measure the mass loss from dusty oxygen-rich (O-rich) evolved stars in the Large Magellanic Cloud (LMC), we have constructed a grid of models of spherically symmetric dust shells around stars with constant mass-loss rates using 2Dust. These models will constitute the O-rich model part of the 'Grid of Red supergiant and Asymptotic giant branch star ModelS' (GRAMS). This model grid explores four parameters-stellar effective temperature from 2100 K to 4700 K; luminosity from 10 3 to 10 6 L sun ; dust shell inner radii of 3, 7, 11, and 15 R star ; and 10.0 μm optical depth from 10 -4 to 26. From an initial grid of ∼1200 2Dust models, we create a larger grid of ∼69,000 models by scaling to cover the luminosity range required by the data. These models are available online to the public. The matching in color-magnitude diagrams and color-color diagrams to observed O-rich asymptotic giant branch (AGB) and red supergiant (RSG) candidate stars from the SAGE and SAGE-Spec LMC samples and a small sample of OH/IR stars is generally very good. The extreme AGB star candidates from SAGE are more consistent with carbon-rich (C-rich) than O-rich dust composition. Our model grid suggests lower limits to the mid-infrared colors of the dustiest AGB stars for which the chemistry could be O-rich. Finally, the fitting of GRAMS models to spectral energy distributions of sources fit by other studies provides additional verification of our grid and anticipates future, more expansive efforts.

  3. Universal Capacitance Model for Real-Time Biomass in Cell Culture

    Directory of Open Access Journals (Sweden)

    Viktor Konakovsky

    2015-09-01

    Full Text Available Capacitance probes have the potential to revolutionize bioprocess control due to their safe and robust use and ability to detect even the smallest capacitors in the form of biological cells. Several techniques have evolved to model biomass statistically, however, there are problems with model transfer between cell lines and process conditions. Errors of transferred models in the declining phase of the culture range for linear models around +100% or worse, causing unnecessary delays with test runs during bioprocess development. The goal of this work was to develop one single universal model which can be adapted by considering a potentially mechanistic factor to estimate biomass in yet untested clones and scales. The novelty of this work is a methodology to select sensitive frequencies to build a statistical model which can be shared among fermentations with an error between 9% and 38% (mean error around 20% for the whole process, including the declining phase. A simple linear factor was found to be responsible for the transferability of biomass models between cell lines, indicating a link to their phenotype or physiology.

  4. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  5. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    Directory of Open Access Journals (Sweden)

    Maciej H Swat

    Full Text Available Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution. Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  6. The 'E' factor -- evolving endodontics.

    Science.gov (United States)

    Hunter, M J

    2013-03-01

    Endodontics is a constantly developing field, with new instruments, preparation techniques and sealants competing with trusted and traditional approaches to tooth restoration. Thus general dental practitioners must question and understand the significance of these developments before adopting new practices. In view of this, the aim of this article, and the associated presentation at the 2013 British Dental Conference & Exhibition, is to provide an overview of endodontic methods and constantly evolving best practice. The presentation will review current preparation techniques, comparing rotary versus reciprocation, and question current trends in restoration of the endodontically treated tooth.

  7. Modelling study on the three-dimensional neutron depolarisation response of the evolving ferrite particle size distribution during the austenite-ferrite phase transformation in steels

    Science.gov (United States)

    Fang, H.; van der Zwaag, S.; van Dijk, N. H.

    2018-07-01

    The magnetic configuration of a ferromagnetic system with mono-disperse and poly-disperse distribution of magnetic particles with inter-particle interactions has been computed. The analysis is general in nature and applies to all systems containing magnetically interacting particles in a non-magnetic matrix, but has been applied to steel microstructures, consisting of a paramagnetic austenite phase and a ferromagnetic ferrite phase, as formed during the austenite-to-ferrite phase transformation in low-alloyed steels. The characteristics of the computational microstructures are linked to the correlation function and determinant of depolarisation matrix, which can be experimentally obtained in three-dimensional neutron depolarisation (3DND). By tuning the parameters in the model used to generate the microstructure, we studied the effect of the (magnetic) particle size distribution on the 3DND parameters. It is found that the magnetic particle size derived from 3DND data matches the microstructural grain size over a wide range of volume fractions and grain size distributions. A relationship between the correlation function and the relative width of the particle size distribution was proposed to accurately account for the width of the size distribution. This evaluation shows that 3DND experiments can provide unique in situ information on the austenite-to-ferrite phase transformation in steels.

  8. Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

    Directory of Open Access Journals (Sweden)

    Ajioka Itsuki

    2007-09-01

    Full Text Available Abstract Background Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model

  9. Interactions of Model Cell Membranes with Nanoparticles

    Science.gov (United States)

    D'Angelo, S. M.; Camesano, T. A.; Nagarajan, R.

    2011-12-01

    The same properties that give nanoparticles their enhanced function, such as high surface area, small size, and better conductivity, can also alter the cytotoxicity of nanomaterials. Ultimately, many of these nanomaterials will be released into the environment, and can cause cytotoxic effects to environmental bacteria, aquatic organisms, and humans. Previous results from our laboratory suggest that nanoparticles can have a detrimental effect on cells, depending on nanoparticle size. It is our goal to characterize the properties of nanomaterials that can result in membrane destabilization. We tested the effects of nanoparticle size and chemical functionalization on nanoparticle-membrane interactions. Gold nanoparticles at 2, 5,10, and 80 nm were investigated, with a concentration of 1.1x1010 particles/mL. Model cell membranes were constructed of of L-α-phosphatidylcholine (egg PC), which has negatively charged lipid headgroups. A quartz crystal microbalance with dissipation (QCM-D) was used to measure frequency changes at different overtones, which were related to mass changes corresponding to nanoparticle interaction with the model membrane. In QCM-D, a lipid bilayer is constructed on a silicon dioxide crystal. The crystals, oscillate at different harmonic frequencies depending upon changes in mass or energy dissipation. When mass is added to the crystal surface, such as through addition of a lipid vesicle solution, the frequency change decreases. By monitoring the frequency and dissipation, we could verify that a supported lipid bilayer (SLB) formed on the silica surface. After formation of the SLB, the nanoparticles can be added to the system, and the changes in frequency and dissipation are monitored in order to build a mechanistic understanding of nanoparticle-cell membrane interactions. For all of the smaller nanoparticles (2, 5, and 10 nm), nanoparticle addition caused a loss of mass from the lipid bilayer, which appears to be due to the formation of holes

  10. Jordan cells of periodic loop models

    International Nuclear Information System (INIS)

    Morin-Duchesne, Alexi; Saint-Aubin, Yvan

    2013-01-01

    Jordan cells in transfer matrices of finite lattice models are a signature of the logarithmic character of the conformal field theories that appear in their thermodynamical limit. The transfer matrix of periodic loop models, T N , is an element of the periodic Temperley–Lieb algebra EPTL N (β,α), where N is the number of sites on a section of the cylinder, and β = −q − q −1 = 2cos λ and α the weights of contractible and non-contractible loops. The thermodynamic limit of T N is believed to describe a conformal field theory of central charge c = 1 − 6λ 2 /(π(λ − π)). The abstract element T N acts naturally on (a sum of) spaces V-tilde N d , similar to those upon which the standard modules of the (classical) Temperley–Lieb algebra act. These spaces known as sectors are labeled by the numbers of defects d and depend on a twist parameter v that keeps track of the winding of defects around the cylinder. Criteria are given for non-trivial Jordan cells of T N both between sectors with distinct defect numbers and within a given sector. (paper)

  11. Revisiting Robustness and Evolvability: Evolution in Weighted Genotype Spaces

    Science.gov (United States)

    Partha, Raghavendran; Raman, Karthik

    2014-01-01

    Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these properties determines how biological systems are able to withstand mutations and show variation in response to them. Computational studies have explored the relationship between these two properties using neutral networks of RNA sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations, and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network), underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80% or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations evolving on neutral networks of phenotypes, can access less phenotypic variation compared to

  12. Modeling Degradation in Solid Oxide Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Anil V. Virkar; Sergey N. Rashkeev; Michael V. Glazoff

    2010-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic no equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, , within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, no equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  13. Macroscopic Theory for Evolving Biological Systems Akin to Thermodynamics.

    Science.gov (United States)

    Kaneko, Kunihiko; Furusawa, Chikara

    2018-05-20

    We present a macroscopic theory to characterize the plasticity, robustness, and evolvability of biological responses and their fluctuations. First, linear approximation in intracellular reaction dynamics is used to demonstrate proportional changes in the expression of all cellular components in response to a given environmental stress, with the proportion coefficient determined by the change in growth rate as a consequence of the steady growth of cells. We further demonstrate that this relationship is supported through adaptation experiments of bacteria, perhaps too well as this proportionality is held even across cultures of different types of conditions. On the basis of simulations of cell models, we further show that this global proportionality is a consequence of evolution in which expression changes in response to environmental or genetic perturbations are constrained along a unique one-dimensional curve, which is a result of evolutionary robustness. It then follows that the expression changes induced by environmental changes are proportionally reduced across different components of a cell by evolution, which is akin to the Le Chatelier thermodynamics principle. Finally, with the aid of a fluctuation-response relationship, this proportionality is shown to hold between fluctuations caused by genetic changes and those caused by noise. Overall, these results and support from the theoretical and experimental literature suggest a formulation of cellular systems akin to thermodynamics, in which a macroscopic potential is given by the growth rate (or fitness) represented as a function of environmental and evolutionary changes.

  14. (N+1)-dimensional Lorentzian evolving wormholes supported by polytropic matter

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Arostica, Fernanda; Bahamonde, Sebastian [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile)

    2013-08-15

    In this paper we study (N+1)-dimensional evolving wormholes supported by energy satisfying a polytropic equation of state. The considered evolving wormhole models are described by a constant redshift function and generalizes the standard flat Friedmann-Robertson-Walker spacetime. The polytropic equation of state allows us to consider in (3+1)-dimensions generalizations of the phantom energy and the generalized Chaplygin gas sources. (orig.)

  15. Modeling Emerging Solar Cell Materials and Devices

    Science.gov (United States)

    Thongprong, Non

    Organic photovoltaics (OPVs) and perovskite solar cells are emerging classes of solar cell that are promising for clean energy alternatives to fossil fuels. Understanding fundamental physics of these materials is crucial for improving their energy conversion efficiencies and promoting them to practical applications. Current density-voltage (JV) curves; which are important indicators of OPV efficiency, have direct connections to many fundamental properties of solar cells. They can be described by the Shockley diode equation, resulting in fitting parameters; series and parallel resistance (Rs and Rp), diode saturation current ( J0) and ideality factor (n). However, the Shockley equation was developed specifically for inorganic p-n junction diodes, so it lacks physical meanings when it is applied to OPVs. Hence, the puRposes of this work are to understand the fundamental physics of OPVs and to develop new diode equations in the same form as the Shockley equation that are based on OPV physics. We develop a numerical drift-diffusion simulation model to study bilayer OPVs, which will be called the drift-diffusion for bilayer interface (DD-BI) model. The model solves Poisson, drift-diffusion and current-continuity equations self-consistently for charge densities and potential profiles of a bilayer device with an organic heterojunction interface described by the GWWF model. We also derive new diode equations that have JV curves consistent with the DD-BI model and thus will be called self-consistent diode (SCD) equations. Using the DD-BI and the SCD model allows us to understand working principles of bilayer OPVs and physical definitions of the Shockley parameters. Due to low carrier mobilities in OPVs, space charge accumulation is common especially near the interface and electrodes. Hence, quasi-Fermi levels (i.e. chemical potentials), which depend on charge densities, are modified around the interface, resulting in a splitting of quasi-Fermi levels that works as a driving

  16. Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Wang, Liang; Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.

    2015-01-01

    We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed

  17. A dynamical model for plant cell wall architecture formation.

    NARCIS (Netherlands)

    Mulder, B.M.; Emons, A.M.C.

    2001-01-01

    We discuss a dynamical mathematical model to explain cell wall architecture in plant cells. The highly regular textures observed in cell walls reflect the spatial organisation of the cellulose microfibrils (CMFs), the most important structural component of cell walls. Based on a geometrical theory

  18. Modelling electrolyte conductivity in a water electrolyzer cell

    DEFF Research Database (Denmark)

    Caspersen, Michael; Kirkegaard, Julius Bier

    2012-01-01

    An analytical model describing the hydrogen gas evolution under natural convection in an electrolyzer cell is developed. Main purpose of the model is to investigate the electrolyte conductivity through the cell under various conditions. Cell conductivity is calculated from a parallel resistor...

  19. Modelling solar cells with thermal phenomena taken into account

    International Nuclear Information System (INIS)

    Górecki, K; Górecki, P; Paduch, K

    2014-01-01

    The paper is devoted to modelling properties of solar cells. The authors' electrothermal model of such cells is described. This model takes into account the influence of temperature on its characteristics. Some results of calculations and measurements of selected solar cells are presented and discussed. The good agreement between the results of calculations and measurements was obtained, which proves the correctness of the elaborated model.

  20. Peripartum hysterectomy: an evolving picture.

    LENUS (Irish Health Repository)

    Turner, Michael J

    2012-02-01

    Peripartum hysterectomy (PH) is one of the obstetric catastrophes. Evidence is emerging that the role of PH in modern obstetrics is evolving. Improving management of postpartum hemorrhage and newer surgical techniques should decrease PH for uterine atony. Rising levels of repeat elective cesarean deliveries should decrease PH following uterine scar rupture in labor. Increasing cesarean rates, however, have led to an increase in the number of PHs for morbidly adherent placenta. In the case of uterine atony or rupture where PH is required, a subtotal PH is often sufficient. In the case of pathological placental localization involving the cervix, however, a total hysterectomy is required. Furthermore, the involvement of other pelvic structures may prospectively make the diagnosis difficult and the surgery challenging. If resources permit, PH for pathological placental localization merits a multidisciplinary approach. Despite advances in clinical practice, it is likely that peripartum hysterectomy will be more challenging for obstetricians in the future.

  1. Infrared spectroscopy of evolved objects

    International Nuclear Information System (INIS)

    Aitken, D.K.; Roche, P.F.

    1984-01-01

    In this review, the authors are concerned with spectroscopic observations of evolved objects made in the wavelength range 1-300μm. Spectroscopic observations can conveniently be divided into studies of narrow lines, bands and broader continua. The vibrational frequencies of molecular groups fall mainly in this spectral region and appear as vibration-rotation bands from the gas phase, and as less structured, but often broader, features from the solid state. Many ionic lines, including recombination lines of abundant species and fine structure lines of astrophysically important ions also appear in this region. The continuum can arise from a number of mechanisms - photospheric emission, radiation from dust, free-free transitions in ionized gas and non-thermal processes. (Auth.)

  2. Cell sources for in vitro human liver cell culture models

    Science.gov (United States)

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  3. Human Lipoproteins at Model Cell Membranes

    DEFF Research Database (Denmark)

    Browning, K L; Lind, T K; Maric, S

    2017-01-01

    High and low density lipoproteins (HDL and LDL) are thought to play vital roles in the onset and development of atherosclerosis; the biggest killer in the western world. Key issues of initial lipoprotein (LP) interactions at cellular membranes need to be addressed including LP deposition and lipid...... exchange. Here we present a protocol for monitoring the in situ kinetics of lipoprotein deposition and lipid exchange/removal at model cellular membranes using the non-invasive, surface sensitive methods of neutron reflection and quartz crystal microbalance with dissipation. For neutron reflection, lipid...... support the notion of HDL acting as the 'good' cholesterol, removing lipid material from lipid-loaded cells, whereas LDL acts as the 'bad' cholesterol, depositing lipid material into the vascular wall....

  4. Computer support for physiological cell modelling using an ontology on cell physiology.

    Science.gov (United States)

    Takao, Shimayoshi; Kazuhiro, Komurasaki; Akira, Amano; Takeshi, Iwashita; Masanori, Kanazawa; Tetsuya, Matsuda

    2006-01-01

    The development of electrophysiological whole cell models to support the understanding of biological mechanisms is increasing rapidly. Due to the complexity of biological systems, comprehensive cell models, which are composed of many imported sub-models of functional elements, can get quite complicated as well, making computer modification difficult. Here, we propose a computer support to enhance structural changes of cell models, employing the markup languages CellML and our original PMSML (physiological model structure markup language), in addition to a new ontology for cell physiological modelling. In particular, a method to make references from CellML files to the ontology and a method to assist manipulation of model structures using markup languages together with the ontology are reported. Using these methods three software utilities, including a graphical model editor, are implemented. Experimental results proved that these methods are effective for the modification of electrophysiological models.

  5. Modelling spatio-temporal interactions within the cell

    Indian Academy of Sciences (India)

    Prakash

    Cell signalling pathways make up the regulatory systems of mammalian cells. ... This organization makes it possible to study the signalling networks in a modelling ..... energy transfer (FRET) and fluorescence recovery after photobleaching ...

  6. Modelling cell population growth with applications to cancer therapy in human tumour cell lines.

    Science.gov (United States)

    Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N

    2004-01-01

    In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.

  7. A new level set model for cell image segmentation

    Science.gov (United States)

    Ma, Jing-Feng; Hou, Kai; Bao, Shang-Lian; Chen, Chun

    2011-02-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.

  8. Action potential conduction between a ventricular cell model and an isolated ventricular cell

    NARCIS (Netherlands)

    Wilders, R.; Kumar, R.; Joyner, R. W.; Jongsma, H. J.; Verheijck, E. E.; Golod, D.; van Ginneken, A. C.; Goolsby, W. N.

    1996-01-01

    We used the Luo and Rudy (LR) mathematical model of the guinea pig ventricular cell coupled to experimentally recorded guinea pig ventricular cells to investigate the effects of geometrical asymmetry on action potential propagation. The overall correspondence of the LR cell model with the recorded

  9. Track structure model of cell damage in space flight

    Science.gov (United States)

    Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.

    1992-01-01

    The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.

  10. CERN internal communication is evolving

    CERN Multimedia

    2016-01-01

    CERN news will now be regularly updated on the CERN People page (see here).      Dear readers, All over the world, communication is becoming increasingly instantaneous, with news published in real time on websites and social networks. In order to keep pace with these changes, CERN's internal communication is evolving too. From now on, you will be informed of what’s happening at CERN more often via the “CERN people” page, which will frequently be updated with news. The Bulletin is following this trend too: twice a month, we will compile the most important articles published on the CERN site, with a brand-new layout. You will receive an e-mail every two weeks as soon as this new form of the Bulletin is available. If you have interesting news or stories to share, tell us about them through the form at: https://communications.web.cern.ch/got-story-cern-website​. You can also find out about news from CERN in real time...

  11. Economies Evolve by Energy Dispersal

    Directory of Open Access Journals (Sweden)

    Stanley Salthe

    2009-10-01

    Full Text Available Economic activity can be regarded as an evolutionary process governed by the 2nd law of thermodynamics. The universal law, when formulated locally as an equation of motion, reveals that a growing economy develops functional machinery and organizes hierarchically in such a way as to tend to equalize energy density differences within the economy and in respect to the surroundings it is open to. Diverse economic activities result in flows of energy that will preferentially channel along the most steeply descending paths, leveling a non-Euclidean free energy landscape. This principle of 'maximal energy dispersal‘, equivalent to the maximal rate of entropy production, gives rise to economic laws and regularities. The law of diminishing returns follows from the diminishing free energy while the relation between supply and demand displays a quest for a balance among interdependent energy densities. Economic evolution is dissipative motion where the driving forces and energy flows are inseparable from each other. When there are multiple degrees of freedom, economic growth and decline are inherently impossible to forecast in detail. Namely, trajectories of an evolving economy are non-integrable, i.e. unpredictable in detail because a decision by a player will affect also future decisions of other players. We propose that decision making is ultimately about choosing from various actions those that would reduce most effectively subjectively perceived energy gradients.

  12. Comparative modeling of InP solar cell structures

    Science.gov (United States)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1991-01-01

    The comparative modeling of p(+)n and n(+)p indium phosphide solar cell structures is studied using a numerical program PC-1D. The optimal design study has predicted that the p(+)n structure offers improved cell efficiencies as compared to n(+)p structure, due to higher open-circuit voltage. The various cell material and process parameters to achieve the maximum cell efficiencies are reported. The effect of some of the cell parameters on InP cell I-V characteristics was studied. The available radiation resistance data on n(+)p and p(+)p InP solar cells are also critically discussed.

  13. Mathematical models in cell biology and cancer chemotherapy

    CERN Document Server

    Eisen, Martin

    1979-01-01

    The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...

  14. The mathematical cell model reconstructed from interference microscopy data

    Science.gov (United States)

    Rogotnev, A. A.; Nikitiuk, A. S.; Naimark, O. B.; Nebogatikov, V. O.; Grishko, V. V.

    2017-09-01

    The mathematical model of cell dynamics is developed to link the dynamics of the phase cell thickness with the signs of the oncological pathology. The measurements of irregular oscillations of cancer cells phase thickness were made with laser interference microscope MIM-340 in order to substantiate this model. These data related to the dynamics of phase thickness for different cross-sections of cells (nuclei, nucleolus, and cytoplasm) allow the reconstruction of the attractor of dynamic system. The attractor can be associated with specific types of collective modes of phase thickness responsible for the normal and cancerous cell dynamics. Specific type of evolution operator was determined using an algorithm of designing of the mathematical cell model and temporal phase thickness data for cancerous and normal cells. Qualitative correspondence of attractor types to the cell states was analyzed in terms of morphological signs associated with maximum value of mean square irregular oscillations of phase thickness dynamics.

  15. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  16. Stem Cell Models: A Guide to Understand and Mitigate Aging?

    Science.gov (United States)

    Brunauer, Regina; Alavez, Silvestre; Kennedy, Brian K

    2017-01-01

    Aging is studied either on a systemic level using life span and health span of animal models, or on the cellular level using replicative life span of yeast or mammalian cells. While useful in identifying general and conserved pathways of aging, both approaches provide only limited information about cell-type specific causes and mechanisms of aging. Stem cells are the regenerative units of multicellular life, and stem cell aging might be a major cause for organismal aging. Using the examples of hematopoietic stem cell aging and human pluripotent stem cell models, we propose that stem cell models of aging are valuable for studying tissue-specific causes and mechanisms of aging and can provide unique insights into the mammalian aging process that may be inaccessible in simple model organisms. © 2016 S. Karger AG, Basel.

  17. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2016-01-01

    Neurodegenerative diseases are being modelled in-vitro using human patient-specific, induced pluripotent stem cells and transgenic embryonic stem cells to determine more about disease mechanisms, as well as to discover new treatments for patients. Current research in modelling Alzheimer’s disease......, frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... that includes studying more complex 3D cell cultures, as well as accelerating aging of the neurons, may help to yield stronger phenotypes in the cultured cells. Thus, the use and application of pluripotent stem cells for modelling disease have already shown to be a powerful approach for discovering more about...

  18. Development and the evolvability of human limbs.

    Science.gov (United States)

    Young, Nathan M; Wagner, Günter P; Hallgrímsson, Benedikt

    2010-02-23

    The long legs and short arms of humans are distinctive for a primate, the result of selection acting in opposite directions on each limb at different points in our evolutionary history. This mosaic pattern challenges our understanding of the relationship of development and evolvability because limbs are serially homologous and genetic correlations should act as a significant constraint on their independent evolution. Here we test a developmental model of limb covariation in anthropoid primates and demonstrate that both humans and apes exhibit significantly reduced integration between limbs when compared to quadrupedal monkeys. This result indicates that fossil hominins likely escaped constraints on independent limb variation via reductions to genetic pleiotropy in an ape-like last common ancestor (LCA). This critical change in integration among hominoids, which is reflected in macroevolutionary differences in the disparity between limb lengths, facilitated selection for modern human limb proportions and demonstrates how development helps shape evolutionary change.

  19. Idiopathic pulmonary fibrosis: evolving concepts.

    Science.gov (United States)

    Ryu, Jay H; Moua, Teng; Daniels, Craig E; Hartman, Thomas E; Yi, Eunhee S; Utz, James P; Limper, Andrew H

    2014-08-01

    Idiopathic pulmonary fibrosis (IPF) occurs predominantly in middle-aged and older adults and accounts for 20% to 30% of interstitial lung diseases. It is usually progressive, resulting in respiratory failure and death. Diagnostic criteria for IPF have evolved over the years, and IPF is currently defined as a disease characterized by the histopathologic pattern of usual interstitial pneumonia occurring in the absence of an identifiable cause of lung injury. Understanding of the pathogenesis of IPF has shifted away from chronic inflammation and toward dysregulated fibroproliferative repair in response to alveolar epithelial injury. Idiopathic pulmonary fibrosis is likely a heterogeneous disorder caused by various interactions between genetic components and environmental exposures. High-resolution computed tomography can be diagnostic in the presence of typical findings such as bilateral reticular opacities associated with traction bronchiectasis/bronchiolectasis in a predominantly basal and subpleural distribution, along with subpleural honeycombing. In other circumstances, a surgical lung biopsy may be needed. The clinical course of IPF can be unpredictable and may be punctuated by acute deteriorations (acute exacerbation). Although progress continues in unraveling the mechanisms of IPF, effective therapy has remained elusive. Thus, clinicians and patients need to reach informed decisions regarding management options including lung transplant. The findings in this review were based on a literature search of PubMed using the search terms idiopathic pulmonary fibrosis and usual interstitial pneumonia, limited to human studies in the English language published from January 1, 2000, through December 31, 2013, and supplemented by key references published before the year 2000. Copyright © 2014 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  20. From cells to tissue: A continuum model of epithelial mechanics

    Science.gov (United States)

    Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru

    2017-08-01

    A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.

  1. Minority games, evolving capitals and replicator dynamics

    International Nuclear Information System (INIS)

    Galla, Tobias; Zhang, Yi-Cheng

    2009-01-01

    We discuss a simple version of the minority game (MG) in which agents hold only one strategy each, but in which their capitals evolve dynamically according to their success and in which the total trading volume varies in time accordingly. This feature is known to be crucial for MGs to reproduce stylized facts of real market data. The stationary states and phase diagram of the model can be computed, and we show that the ergodicity breaking phase transition common for MGs, and marked by a divergence of the integrated response, is present also in this simplified model. An analogous majority game turns out to be relatively void of interesting features, and the total capital is found to diverge in time. Introducing a restraining force leads to a model akin to the replicator dynamics of evolutionary game theory, and we demonstrate that here a different type of phase transition is observed. Finally we briefly discuss the relation of this model with one strategy per player to more sophisticated minority games with dynamical capitals and several trading strategies per agent

  2. Numerical modelling of CIGS/CdS solar cell

    Science.gov (United States)

    Devi, Nisha; Aziz, Anver; Datta, Shouvik

    2018-05-01

    In this work, we design and analyze the Cu(In,Ga)Se2 (CIGS) solar cell using simulation software "Solar Cell Capacitance Simulator in One Dimension (SCAPS-1D)". The conventional CIGS solar cell uses various layers, like intrinsic ZnO/Aluminium doped ZnO as transparent oxide, antireflection layer MgF2, and electron back reflection (EBR) layer at CIGS/Mo interface for good power conversion efficiency. We replace this conventional model by a simple model which is easy to fabricate and also reduces the cost of this cell because of use of lesser materials. The new designed model of CIGS solar cell is ITO/CIGS/OVC/CdS/Metal contact, where OVC is ordered vacancy compound. From this simple structure, even at very low illumination we are getting good results. We simulate this CIGS solar cell model by varying various physical parameters of CIGS like thickness, carrier density, band gap and temperature.

  3. Evolving expectations from international organisations

    International Nuclear Information System (INIS)

    Ruiz Lopez, C.

    2008-01-01

    The author stated that implementation of the geological disposal concept requires a strategy that provides national decision makers with sufficient confidence in the level of long-term safety and protection ultimately achieved. The concept of protection against harm has a broader meaning than radiological protection in terms of risk and dose. It includes the protection of the environment and socio-economic interests of communities. She recognised that a number of countries have established regulatory criteria already, and others are now discussing what constitutes a proper regulatory test and suitable time frame for judging the safety of long-term disposal. Each regulatory programme seeks to define reasonable tests of repository performance, using protection criteria and safety approaches consistent with the culture, values and expectations of the citizens of the country concerned. This means that there are differences in how protection and safety are addressed in national approaches to regulation and in the bases used for that. However, as was recognised in the Cordoba Workshop, it would be important to reach a minimum level of consistency and be able to explain the differences. C. Ruiz-Lopez presented an overview of the development of international guidance from ICRP, IAEA and NEA from the Cordoba workshop up to now, and positions of independent National Advisory Bodies. The evolution of these guidelines over time demonstrates an evolving understanding of long-term implications, with the recognition that dose and risk constraints should not be seen as measures of detriment beyond a few hundred years, the emphasis on sound engineering practices, and the introduction of new concepts and approaches which take into account social and economical aspects (e.g. constrained optimisation, BAT, managerial principles). In its new recommendations, ICRP (draft 2006) recognizes. in particular, that decision making processes may depend on other societal concerns and considers

  4. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells.

    Science.gov (United States)

    Rydahl, Maja G; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Johansen, I Elisabeth; Andreas, Amanda; Harholt, Jesper; Ulvskov, Peter; Jørgensen, Bodil; Domozych, David S; Willats, William G T

    2015-01-01

    The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.

  5. Electrical equivalent model of intermediate band solar cell using ...

    Indian Academy of Sciences (India)

    presents a structure of IBSC based on ZnTe:O. The proposed model uses irradiance and temperature as ... of solar cells. They are based on different processes and properties such as photon recycling, ... The MATLAB interface was used .... ioral model of an arbitrary solar cell to amend the PSPICE simulation performance.

  6. A novel xenograft model of cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn; Kopp, Katharina; Ralfkiaer, Elisabeth

    2010-01-01

    Cutaneous T-cell lymphomas (CTCLs) are characterized by accumulation of malignant T cells in the skin. Early disease resembles benign skin disorders but during disease progression cutaneous tumors develop, and eventually the malignant T cells can spread to lymph nodes and internal organs. However...... and lymphatic tumors, originated from the transplanted malignant T cells. In conclusion, we describe a novel mouse model of tumor stage CTCL for future studies of disease dissemination and preclinical evaluations of new therapeutic strategies....

  7. Modelling of tandem cell temperature coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, D.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper discusses the temperature dependence of the basic solar-cell operating parameters for a GaInP/GaAs series-connected two-terminal tandem cell. The effects of series resistance and of different incident solar spectra are also discussed.

  8. Device and materials modeling in PEM fuel cells

    CERN Document Server

    Promislow, Keith

    2009-01-01

    Device and Materials Modeling in PEM Fuel Cells is a specialized text that compiles the mathematical details and results of both device and materials modeling in a single volume. Proton exchange membrane (PEM) fuel cells will likely have an impact on our way of life similar to the integrated circuit. The potential applications range from the micron scale to large scale industrial production. Successful integration of PEM fuel cells into the mass market will require new materials and a deeper understanding of the balance required to maintain various operational states. This book contains articles from scientists who contribute to fuel cell models from both the materials and device perspectives. Topics such as catalyst layer performance and operation, reactor dynamics, macroscopic transport, and analytical models are covered under device modeling. Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, an...

  9. Chimeric animal models in human stem cell biology.

    Science.gov (United States)

    Glover, Joel C; Boulland, Jean-Luc; Halasi, Gabor; Kasumacic, Nedim

    2009-01-01

    The clinical use of stem cells for regenerative medicine is critically dependent on preclinical studies in animal models. In this review we examine some of the key issues and challenges in the use of animal models to study human stem cell biology-experimental standardization, body size, immunological barriers, cell survival factors, fusion of host and donor cells, and in vivo imaging and tracking. We focus particular attention on the various imaging modalities that can be used to track cells in living animals, comparing their strengths and weaknesses and describing technical developments that are likely to lead to new opportunities for the dynamic assessment of stem cell behavior in vivo. We then provide an overview of some of the most commonly used animal models, their advantages and disadvantages, and examples of their use for xenotypic transplantation of human stem cells, with separate reviews of models involving rodents, ungulates, nonhuman primates, and the chicken embryo. As the use of human somatic, embryonic, and induced pluripotent stem cells increases, so too will the range of applications for these animal models. It is likely that increasingly sophisticated uses of human/animal chimeric models will be developed through advances in genetic manipulation, cell delivery, and in vivo imaging.

  10. Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Ivanov

    2010-04-01

    Full Text Available Enzymatic fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes as catalysts. This fuel cell type can be used as an implantable power source for a variety of medical devices used in modern medicine to administer drugs, treat ailments and monitor bodily functions. Some advantages in comparison to conventional fuel cells include a simple fuel cell design and lower cost of the main fuel cell components, however they suffer from severe kinetic limitations mainly due to inefficiency in electron transfer between the enzyme and the electrode surface. In this review article, the major research activities concerned with the enzymatic fuel cells (anode and cathode development, system design, modeling by highlighting the current problems (low cell voltage, low current density, stability will be presented.

  11. Modeling human neurological disorders with induced pluripotent stem cells.

    Science.gov (United States)

    Imaizumi, Yoichi; Okano, Hideyuki

    2014-05-01

    Human induced pluripotent stem (iPS) cells obtained by reprogramming technology are a source of great hope, not only in terms of applications in regenerative medicine, such as cell transplantation therapy, but also for modeling human diseases and new drug development. In particular, the production of iPS cells from the somatic cells of patients with intractable diseases and their subsequent differentiation into cells at affected sites (e.g., neurons, cardiomyocytes, hepatocytes, and myocytes) has permitted the in vitro construction of disease models that contain patient-specific genetic information. For example, disease-specific iPS cells have been established from patients with neuropsychiatric disorders, including schizophrenia and autism, as well as from those with neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. A multi-omics analysis of neural cells originating from patient-derived iPS cells may thus enable investigators to elucidate the pathogenic mechanisms of neurological diseases that have heretofore been unknown. In addition, large-scale screening of chemical libraries with disease-specific iPS cells is currently underway and is expected to lead to new drug discovery. Accordingly, this review outlines the progress made via the use of patient-derived iPS cells toward the modeling of neurological disorders, the testing of existing drugs, and the discovery of new drugs. The production of human induced pluripotent stem (iPS) cells from the patients' somatic cells and their subsequent differentiation into specific cells have permitted the in vitro construction of disease models that contain patient-specific genetic information. Furthermore, innovations of gene-editing technologies on iPS cells are enabling new approaches for illuminating the pathogenic mechanisms of human diseases. In this review article, we outlined the current status of neurological diseases-specific iPS cell research and described recently obtained

  12. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  13. Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches

    Science.gov (United States)

    Wu, Jincheng; Tzanakakis, Emmanuel S.

    2014-01-01

    Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives. PMID:24035899

  14. An Improved Model for FE Modeling and Simulation of Closed Cell Al-Alloy Foams

    OpenAIRE

    Hasan, MD. Anwarul

    2010-01-01

    Cell wall material properties of Al-alloy foams have been derived by a combination of nanoindentation experiment and numerical simulation. Using the derived material properties in FE (finite element) modeling of foams, the existing constitutive models of closed-cell Al-alloy foams have been evaluated against experimental results. An improved representative model has been proposed for FE analysis of closed-cell Al-alloy foams. The improved model consists of a combination of spherical and cruci...

  15. Running and rotating: modelling the dynamics of migrating cell clusters

    Science.gov (United States)

    Copenhagen, Katherine; Gov, Nir; Gopinathan, Ajay

    Collective motion of cells is a common occurrence in many biological systems, including tissue development and repair, and tumor formation. Recent experiments have shown cells form clusters in a chemical gradient, which display three different phases of motion: translational, rotational, and random. We present a model for cell clusters based loosely on other models seen in the literature that involves a Vicsek-like alignment as well as physical collisions and adhesions between cells. With this model we show that a mechanism for driving rotational motion in this kind of system is an increased motility of rim cells. Further, we examine the details of the relationship between rim and core cells, and find that the phases of the cluster as a whole are correlated with the creation and annihilation of topological defects in the tangential component of the velocity field.

  16. A Model of Dendritic Cell Therapy for Melanoma

    Directory of Open Access Journals (Sweden)

    Ami eRadunskaya

    2013-03-01

    Full Text Available Dendritic cells are a promising immunotherapy tool for boosting an individual's antigen specific immune response to cancer. We develop a mathematical model using differential and delay-differential equations to describe the interactions between dendritic cells, effector-immune cells and tumor cells. We account for the trafficking of immune cells between lymph, blood, and tumor compartments. Our model reflects experimental results both for dendritic-cell trafficking and for immune suppression of tumor growth in mice. In addition, in silico experiments suggest more effective immunotherapy treatment protocols can be achieved by modifying dose location and schedule. A sensitivity analysis of the model reveals which patient-specific parameters have the greatest impact on treatment efficacy.

  17. An Improved Model of Nonuniform Coleochaete Cell Division.

    Science.gov (United States)

    Wang, Yuandi; Cong, Jinyu

    2016-08-01

    Cell division is a key biological process in which cells divide forming new daughter cells. In the present study, we investigate continuously how a Coleochaete cell divides by introducing a modified differential equation model in parametric equation form. We discuss both the influence of "dead" cells and the effects of various end-points on the formation of the new cells' boundaries. We find that the boundary condition on the free end-point is different from that on the fixed end-point; the former has a direction perpendicular to the surface. It is also shown that the outer boundaries of new cells are arc-shaped. The numerical experiments and theoretical analyses for this model to construct the outer boundary are given.

  18. Evolving Technologies: A View to Tomorrow

    Science.gov (United States)

    Tamarkin, Molly; Rodrigo, Shelley

    2011-01-01

    Technology leaders must participate in strategy creation as well as operational delivery within higher education institutions. The future of higher education--the view to tomorrow--is irrevocably integrated and intertwined with evolving technologies. This article focuses on two specific evolving technologies: (1) alternative IT sourcing; and (2)…

  19. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  20. A new level set model for cell image segmentation

    International Nuclear Information System (INIS)

    Ma Jing-Feng; Chen Chun; Hou Kai; Bao Shang-Lian

    2011-01-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. (cross-disciplinary physics and related areas of science and technology)

  1. Behaviour of and mass transfer at gas-evolving electrodes

    NARCIS (Netherlands)

    Janssen, L.J.J.

    1989-01-01

    A completes set of models for the mass transfer of indicator ions to gas-evolving electrodes with different behaviour of bubbles is described theoretically. Sliding bubbles, rising detached single bubbles, jumping detached coalescence bubbles and ensembles of these types of bubbles are taken into

  2. Thermal modelling of an AMTEC recirculating cell

    International Nuclear Information System (INIS)

    Suitor, J.W.; Williams, R.M.; Underwood, M.L.; Ryan, M.A.; Jeffries-Nakamura, B.; O'Connor, D.

    1992-01-01

    A modeling program was developed to determine the impact of various design parameters on the operation of an AMTEC system. Temperature profiles generated by the modeling program were compared to actual experimental data to verify the model accuracy. The model was then extended to predict the impact of device design on operational performance. The effect of heat loss form the liquid sodium supply end was studied for this paper

  3. Evolvability Search: Directly Selecting for Evolvability in order to Study and Produce It

    DEFF Research Database (Denmark)

    Mengistu, Henok; Lehman, Joel Anthony; Clune, Jeff

    2016-01-01

    of evolvable digital phenotypes. Although some types of selection in evolutionary computation indirectly encourage evolvability, one unexplored possibility is to directly select for evolvability. To do so, we estimate an individual's future potential for diversity by calculating the behavioral diversity of its...... immediate offspring, and select organisms with increased offspring variation. While the technique is computationally expensive, we hypothesized that direct selection would better encourage evolvability than indirect methods. Experiments in two evolutionary robotics domains confirm this hypothesis: in both...... domains, such Evolvability Search produces solutions with higher evolvability than those produced with Novelty Search or traditional objective-based search algorithms. Further experiments demonstrate that the higher evolvability produced by Evolvability Search in a training environment also generalizes...

  4. Agent-Based Computational Modeling of Cell Culture ...

    Science.gov (United States)

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assumed a “fried egg shape” but became increasingly cuboidal with increasing confluency. The surface area presented by each cell to the overlying medium varies from cell-to-cell and is a determinant of diffusional flux of toxicant from the medium into the cell. Thus, dose varies among cells for a given concentration of toxicant in the medium. Computer code describing diffusion of H2O2 from medium into each cell and clearance of H2O2 was calibrated against H2O2 time-course data (25, 50, or 75 uM H2O2 for 60 min) obtained with the Amplex Red assay for the medium and the H2O2-sensitive fluorescent reporter, HyPer, for cytosol. Cellular H2O2 concentrations peaked at about 5 min and were near baseline by 10 min. The model predicted a skewed distribution of surface areas, with between cell variation usually 2 fold or less. Predicted variability in cellular dose was in rough agreement with the variation in the HyPer data. These results are preliminary, as the model was not calibrated to the morphology of a specific cell type. Future work will involve morphology model calibration against human bronchial epithelial (BEAS-2B) cells. Our results show, however, the potential of agent-based modeling

  5. An efficient descriptor model for designing materials for solar cells

    Science.gov (United States)

    Alharbi, Fahhad H.; Rashkeev, Sergey N.; El-Mellouhi, Fedwa; Lüthi, Hans P.; Tabet, Nouar; Kais, Sabre

    2015-11-01

    An efficient descriptor model for fast screening of potential materials for solar cell applications is presented. It works for both excitonic and non-excitonic solar cells materials, and in addition to the energy gap it includes the absorption spectrum (α(E)) of the material. The charge transport properties of the explored materials are modelled using the characteristic diffusion length (Ld) determined for the respective family of compounds. The presented model surpasses the widely used Scharber model developed for bulk heterojunction solar cells. Using published experimental data, we show that the presented model is more accurate in predicting the achievable efficiencies. To model both excitonic and non-excitonic systems, two different sets of parameters are used to account for the different modes of operation. The analysis of the presented descriptor model clearly shows the benefit of including α(E) and Ld in view of improved screening results.

  6. THP-1 cell line: an in vitro cell model for immune modulation approach.

    Science.gov (United States)

    Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J

    2014-11-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. Copyright © 2013. Published by Elsevier B.V.

  7. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  8. B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model.

    Science.gov (United States)

    Da Rosa, Larissa C; Boldison, Joanne; De Leenheer, Evy; Davies, Joanne; Wen, Li; Wong, F Susan

    2018-06-01

    Type 1 diabetes is a T cell-mediated autoimmune disease characterised by the destruction of beta cells in the islets of Langerhans, resulting in deficient insulin production. B cell depletion therapy has proved successful in preventing diabetes and restoring euglycaemia in animal models of diabetes, as well as in preserving beta cell function in clinical trials in the short term. We aimed to report a full characterisation of B cell kinetics post B cell depletion, with a focus on pancreatic islets. Transgenic NOD mice with a human CD20 transgene expressed on B cells were injected with an anti-CD20 depleting antibody. B cells were analysed using multivariable flow cytometry. There was a 10 week delay in the onset of diabetes when comparing control and experimental groups, although the final difference in the diabetes incidence, following prolonged observation, was not statistically significant (p = 0.07). The co-stimulatory molecules CD80 and CD86 were reduced on stimulation of B cells during B cell depletion and repopulation. IL-10-producing regulatory B cells were not induced in repopulated B cells in the periphery, post anti-CD20 depletion. However, the early depletion of B cells had a marked effect on T cells in the local islet infiltrate. We demonstrated a lack of T cell activation, specifically with reduced CD44 expression and effector function, including IFN-γ production from both CD4 + and CD8 + T cells. These CD8 + T cells remained altered in the pancreatic islets long after B cell depletion and repopulation. Our findings suggest that B cell depletion can have an impact on T cell regulation, inducing a durable effect that is present long after repopulation. We suggest that this local effect of reducing autoimmune T cell activity contributes to delay in the onset of autoimmune diabetes.

  9. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells

    DEFF Research Database (Denmark)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya

    2017-01-01

    patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide...... the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models....

  10. Integrative Modeling of Electrical Properties of Pacemaker Cardiac Cells

    Science.gov (United States)

    Grigoriev, M.; Babich, L.

    2016-06-01

    This work represents modeling of electrical properties of pacemaker (sinus) cardiac cells. Special attention is paid to electrical potential arising from transmembrane current of Na+, K+ and Ca2+ ions. This potential is calculated using the NaCaX model. In this respect, molar concentration of ions in the intercellular space which is calculated on the basis of the GENTEX model is essential. Combined use of two different models allows referring this approach to integrative modeling.

  11. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro; Fangel, Jonatan Ulrik; Mikkelsen, Maria Dalgaard

    2015-01-01

    organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion...... have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying......The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise...

  12. Modeling base excision repair in Escherichia coli bacterial cells

    International Nuclear Information System (INIS)

    Belov, O.V.

    2011-01-01

    A model describing the key processes in Escherichia coli bacterial cells during base excision repair is developed. The mechanism is modeled of damaged base elimination involving formamidopyrimidine DNA glycosylase (the Fpg protein), which possesses several types of activities. The modeling of the transitions between DNA states is based on a stochastic approach to the chemical reaction description

  13. Cell kinetic modelling and the chemotherapy of cancer

    CERN Document Server

    Knolle, Helmut

    1988-01-01

    During the last 30 years, many chemical compounds that are active against tumors have been discovered or developed. At the same time, new methods of testing drugs for cancer therapy have evolved. nefore 1964, drug testing on animal tumors was directed to observation of the incfease in life span of the host after a single dose. A new approach, in which the effects of multiple doses on the proliferation kinetics of the tumor in vivo as well as of cell lines in vitro are investigated, has been outlined by Skipper and his co-workers in a series of papers beginning in 1964 (Skipper, Schabel and Wilcox, 1964 and 1965). They also investigated the influence of the time schedule in the treatment of experimental tumors. Since the publication of those studies, cell population kinetics cannot be left out of any discussion of the rational basis of chemotherapy. When clinical oncologists began to apply cell kinetic concepts in practice about 15 years ago, the theoretical basis was still very poor, in spite of Skipper's pro...

  14. UML as a cell and biochemistry modeling language.

    Science.gov (United States)

    Webb, Ken; White, Tony

    2005-06-01

    The systems biology community is building increasingly complex models and simulations of cells and other biological entities, and are beginning to look at alternatives to traditional representations such as those provided by ordinary differential equations (ODE). The lessons learned over the years by the software development community in designing and building increasingly complex telecommunication and other commercial real-time reactive systems, can be advantageously applied to the problems of modeling in the biology domain. Making use of the object-oriented (OO) paradigm, the unified modeling language (UML) and Real-Time Object-Oriented Modeling (ROOM) visual formalisms, and the Rational Rose RealTime (RRT) visual modeling tool, we describe a multi-step process we have used to construct top-down models of cells and cell aggregates. The simple example model described in this paper includes membranes with lipid bilayers, multiple compartments including a variable number of mitochondria, substrate molecules, enzymes with reaction rules, and metabolic pathways. We demonstrate the relevance of abstraction, reuse, objects, classes, component and inheritance hierarchies, multiplicity, visual modeling, and other current software development best practices. We show how it is possible to start with a direct diagrammatic representation of a biological structure such as a cell, using terminology familiar to biologists, and by following a process of gradually adding more and more detail, arrive at a system with structure and behavior of arbitrary complexity that can run and be observed on a computer. We discuss our CellAK (Cell Assembly Kit) approach in terms of features found in SBML, CellML, E-CELL, Gepasi, Jarnac, StochSim, Virtual Cell, and membrane computing systems.

  15. Numerical simulation model of multijunction solar cell

    NARCIS (Netherlands)

    Babar, M.; Al-Ammar, E.A.; Malik, N.H.

    2012-01-01

    Multi-junction solar cells play an important and significant role in the Concentrated Photovoltaic (CPV) Systems. Recent developments in Concentrated Photovoltaic concerning high power production and cost effective- ness along with better efficiency are due to the advancements in multi-junction

  16. Thermal radiation modelling in a tubular solid oxide fuel cell

    International Nuclear Information System (INIS)

    Austin, M.E.; Pharoah, J.G.; Vandersteen, J.D.J.

    2004-01-01

    Solid Oxide Fuel Cells (SOFCs) are becoming the fuel cell of choice among companies and research groups interested in small power generation units. Questions still exist, however, about the operating characteristics of these devices; in particular the temperature distribution in the fuel cell. Using computational fluid dynamics (CFD) a model is proposed that incorporates conduction, convection and radiation. Both surface-to-surface and participating media are considered. It is hoped that a more accurate account of the temperature field in the various flow channels and cell components will be made to assist work on design of fuel cell components and reaction mechanisms. The model, when incorporating radiative heat transfer with participating media, predicts substantially lower operating temperatures and smaller temperature gradients than it does without these equations. It also shows the importance of the cathode air channel in cell cooling. (author)

  17. A mathematical model of cancer cells with phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Da Zhou

    2015-12-01

    Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phenotypic mixture and maintaining the cancer stem cells proportion. In particular, the phenotypic plasticity model shows decided advantages over the hierarchical model in predicting the phenotypic equilibrium and cancer stem cells’ overshoot reported in previous biological experiments in cancer cell lines.Conclusion: Since the validity of the phenotypic plasticity paradigm and the conventional cancer stem cell theory is still debated in experimental biology, it is worthy of theoretically searching for good indicators to distinguish the two models through quantitative methods. According to our study, the phenotypic equilibrium and overshoot

  18. Mathematical modeling of cell adhesion in shear flow: application to targeted drug delivery in inflammation and cancer metastasis.

    Science.gov (United States)

    Jadhav, Sameer; Eggleton, Charles D; Konstantopoulos, Konstantinos

    2007-01-01

    Cell adhesion plays a pivotal role in diverse biological processes that occur in the dynamic setting of the vasculature, including inflammation and cancer metastasis. Although complex, the naturally occurring processes that have evolved to allow for cell adhesion in the vasculature can be exploited to direct drug carriers to targeted cells and tissues. Fluid (blood) flow influences cell adhesion at the mesoscale by affecting the mechanical response of cell membrane, the intercellular contact area and collisional frequency, and at the nanoscale level by modulating the kinetics and mechanics of receptor-ligand interactions. Consequently, elucidating the molecular and biophysical nature of cell adhesion requires a multidisciplinary approach involving the synthesis of fundamentals from hydrodynamic flow, molecular kinetics and cell mechanics with biochemistry/molecular cell biology. To date, significant advances have been made in the identification and characterization of the critical cell adhesion molecules involved in inflammatory disorders, and, to a lesser degree, in cancer metastasis. Experimental work at the nanoscale level to determine the lifetime, interaction distance and strain responses of adhesion receptor-ligand bonds has been spurred by the advent of atomic force microscopy and biomolecular force probes, although our current knowledge in this area is far from complete. Micropipette aspiration assays along with theoretical frameworks have provided vital information on cell mechanics. Progress in each of the aforementioned research areas is key to the development of mathematical models of cell adhesion that incorporate the appropriate biological, kinetic and mechanical parameters that would lead to reliable qualitative and quantitative predictions. These multiscale mathematical models can be employed to predict optimal drug carrier-cell binding through isolated parameter studies and engineering optimization schemes, which will be essential for developing

  19. Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network

    Directory of Open Access Journals (Sweden)

    Adam ePonzi

    2012-03-01

    Full Text Available The striatal medium spiny neuron (MSNs network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri stimulus time histograms (PSTH of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioural task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviourally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would in when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and delineate the range of parameters where this behaviour is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response

  20. Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.

    Science.gov (United States)

    Ponzi, Adam; Wickens, Jeff

    2012-01-01

    The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.

  1. Human neuronal cell based assay: A new in vitro model for toxicity evaluation of ciguatoxin.

    Science.gov (United States)

    Coccini, Teresa; Caloni, Francesca; De Simone, Uliana

    2017-06-01

    Ciguatoxins (CTXs) are emerging marine neurotoxins representing the main cause of ciguatera fish poisoning, an intoxication syndrome which configures a health emergency and constitutes an evolving issue constantly changing due to new vectors and derivatives of CTXs, as well as their presence in new non-endemic areas. The study applied the neuroblastoma cell model of human origin (SH-SY5Y) to evaluate species-specific mechanistic information on CTX toxicity. Metabolic functionality, cell morphology, cytosolic Ca 2+ i responses, neuronal cell growth and proliferation were assessed after short- (4-24h) and long-term exposure (10days) to P-CTX-3C. In SH-SY5Y, P-CTX-3C displayed a powerful cytotoxicity requiring the presence of both Veratridine and Ouabain. SH-SY5Y were very sensitive to Ouabain: 10 and 0.25nM appeared the optimal concentrations, for short- and long-term toxicity studies, respectively, to be used in co-incubation with Veratridine (25μM), simulating the physiological and pathological endogenous Ouabain levels in humans. P-CTX-3C cytotoxic effect, on human neurons co-incubated with OV (Ouabain+Veratridine) mix, was expressed starting from 100pM after short- and 25pM after long-term exposure. Notably, P-CTX-3C alone at 25nM induced cytotoxicity after 24h and prolonged exposure. This human brain-derived cell line appears a suitable cell-based-model to evaluate cytotoxicity of CTX present in marine food contaminated at low toxic levels and to characterize the toxicological profile of other/new congeners. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Birthdating studies reshape models for pituitary gland cell specification.

    Science.gov (United States)

    Davis, Shannon W; Mortensen, Amanda H; Camper, Sally A

    2011-04-15

    The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke's pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the postnatal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke's pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke's pouch are necessary for cell specification between e11.5 and e13.5 and that cell-cell communication likely plays an important role in regulating this process. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. How can cells sense the elasticity of a substrate? An analysis using a cell tensegrity model

    Directory of Open Access Journals (Sweden)

    G De Santis

    2011-10-01

    Full Text Available A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation.

  4. Modeling of Complex Life Cycle Prediction Based on Cell Division

    Directory of Open Access Journals (Sweden)

    Fucheng Zhang

    2017-01-01

    Full Text Available Effective fault diagnosis and reasonable life expectancy are of great significance and practical engineering value for the safety, reliability, and maintenance cost of equipment and working environment. At present, the life prediction methods of the equipment are equipment life prediction based on condition monitoring, combined forecasting model, and driven data. Most of them need to be based on a large amount of data to achieve the problem. For this issue, we propose learning from the mechanism of cell division in the organism. We have established a moderate complexity of life prediction model across studying the complex multifactor correlation life model. In this paper, we model the life prediction of cell division. Experiments show that our model can effectively simulate the state of cell division. Through the model of reference, we will use it for the equipment of the complex life prediction.

  5. Integrated delivery systems. Evolving oligopolies.

    Science.gov (United States)

    Malone, T A

    1998-01-01

    The proliferation of Integrated Delivery Systems (IDSs) in regional health care markets has resulted in the movement of these markets from a monopolistic competitive model of behavior to an oligopoly. An oligopoly is synonymous with competition among the few, as a small number of firms supply a dominant share of an industry's total output. The basic characteristics of a market with competition among the few are: (1) A mutual interdependence among the actions and behaviors of competing firms; (2) competition tends to rely on the differentiation of products; (3) significant barriers to entering the market exist; (4) the demand curve for services may be kinked; and (5) firms can benefit from economies of scale. An understanding of these characteristics is essential to the survival of IDSs as regional managed care markets mature.

  6. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    2007-07-06

    Jul 6, 2007 ... The different issues that have been addressed are ontologies, feature description and model building. The framework describes dotted representations and tree data structures to integrate diverse pieces of data and parametric models enabling size, shape and location descriptions. The framework serves ...

  7. Details Matter: Noise and Model Structure Set the Relationship between Cell Size and Cell Cycle Timing

    Directory of Open Access Journals (Sweden)

    Felix Barber

    2017-11-01

    Full Text Available Organisms across all domains of life regulate the size of their cells. However, the means by which this is done is poorly understood. We study two abstracted “molecular” models for size regulation: inhibitor dilution and initiator accumulation. We apply the models to two settings: bacteria like Escherichia coli, that grow fully before they set a division plane and divide into two equally sized cells, and cells that form a bud early in the cell division cycle, confine new growth to that bud, and divide at the connection between that bud and the mother cell, like the budding yeast Saccharomyces cerevisiae. In budding cells, delaying cell division until buds reach the same size as their mother leads to very weak size control, with average cell size and standard deviation of cell size increasing over time and saturating up to 100-fold higher than those values for cells that divide when the bud is still substantially smaller than its mother. In budding yeast, both inhibitor dilution or initiator accumulation models are consistent with the observation that the daughters of diploid cells add a constant volume before they divide. This “adder” behavior has also been observed in bacteria. We find that in bacteria an inhibitor dilution model produces adder correlations that are not robust to noise in the timing of DNA replication initiation or in the timing from initiation of DNA replication to cell division (the C+D period. In contrast, in bacteria an initiator accumulation model yields robust adder correlations in the regime where noise in the timing of DNA replication initiation is much greater than noise in the C + D period, as reported previously (Ho and Amir, 2015. In bacteria, division into two equally sized cells does not broaden the size distribution.

  8. Models to Study NK Cell Biology and Possible Clinical Application.

    Science.gov (United States)

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  9. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    Science.gov (United States)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  10. Design, Modeling, and Development of Microbial Cell Factories

    KAUST Repository

    Kodzius, Rimantas

    2014-03-26

    Using Metagenomic analysis, computational modeling, single cell and genome editing technologies, we will express desired microbial genes and their networks in suitable hosts for mass production of energy, food, and fine chemicals.

  11. Design, Modeling, and Development of Microbial Cell Factories

    KAUST Repository

    Kodzius, Rimantas; Behzad, H.; Archer, John A.C.; Bajic, Vladimir B.; Gojobori, Takashi

    2014-01-01

    Using Metagenomic analysis, computational modeling, single cell and genome editing technologies, we will express desired microbial genes and their networks in suitable hosts for mass production of energy, food, and fine chemicals.

  12. Inhibition of BACE1 Activity by a DNA Aptamer in an Alzheimer's Disease Cell Model.

    Directory of Open Access Journals (Sweden)

    Huiyu Liang

    Full Text Available An initial step in amyloid-β (Aβ production includes amyloid precursor protein (APP cleavage via β-Site amyloid precursor protein cleaving enzyme 1 (BACE1. Increased levels of brain Aβ have been implicated in the pathogenesis of Alzheimer's disease (AD. Thus, β-secretase represents a primary target for inhibitor drug development in AD. In this study, aptamers were obtained from combinatorial oligonucleotide libraries using a technology referred to as systematic evolution of ligands by exponential enrichment (SELEX. A purified human BACE1 extracellular domain was used as a target to conduct an in vitro selection process using SELEX. Two DNA aptamers were capable of binding to BACE1 with high affinity and good specificity, with Kd values in the nanomolar range. We subsequently confirmed that one aptamer, A1, exhibited a distinct inhibitory effect on BACE1 activity in an AD cell model. We detected the effects of M17-APPsw cells that stably expressed Swedish mutant APP after aptamer A1 treatment. Aβ40 and Aβ42 concentrations secreted by M17-APPsw cells decreased intracellularly and in culture media. Furthermore, Western blot analysis indicated that sAPPβ expression significantly decreased in the A1 treated versus control groups. These findings support the preliminary feasibility of an aptamer evolved from a SELEX strategy to function as a potential BACE1 inhibitor. To our knowledge, this is the first study to acquire a DNA aptamer that exhibited binding specificity to BACE1 and inhibited its activity.

  13. Modeling universal dynamics of cell spreading on elastic substrates.

    Science.gov (United States)

    Fan, Houfu; Li, Shaofan

    2015-11-01

    A three-dimensional (3D) multiscale moving contact line model is combined with a soft matter cell model to study the universal dynamics of cell spreading over elastic substrates. We have studied both the early stage and the late stage cell spreading by taking into account the actin tension effect. In this work, the cell is modeled as an active nematic droplet, and the substrate is modeled as a St. Venant Kirchhoff elastic medium. A complete 3D simulation of cell spreading has been carried out. The simulation results show that the spreading area versus spreading time at different stages obeys specific power laws, which is in good agreement with experimental data and theoretical prediction reported in the literature. Moreover, the simulation results show that the substrate elasticity may affect force dipole distribution inside the cell. The advantage of this approach is that it combines the hydrodynamics of actin retrograde flow with moving contact line model so that it can naturally include actin tension effect resulting from actin polymerization and actomyosin contraction, and thus it might be capable of simulating complex cellular scale phenomenon, such as cell spreading or even crawling.

  14. Cell reprogramming modelled as transitions in a hierarchy of cell cycles

    International Nuclear Information System (INIS)

    Hannam, Ryan; Annibale, Alessia; Kühn, Reimer

    2017-01-01

    We construct a model of cell reprogramming (the conversion of fully differentiated cells to a state of pluripotency, known as induced pluripotent stem cells, or iPSCs) which builds on key elements of cell biology viz. cell cycles and cell lineages. Although reprogramming has been demonstrated experimentally, much of the underlying processes governing cell fate decisions remain unknown. This work aims to bridge this gap by modelling cell types as a set of hierarchically related dynamical attractors representing cell cycles. Stages of the cell cycle are characterised by the configuration of gene expression levels, and reprogramming corresponds to triggering transitions between such configurations. Two mechanisms were found for reprogramming in a two level hierarchy: cycle specific perturbations and a noise induced switching. The former corresponds to a directed perturbation that induces a transition into a cycle-state of a different cell type in the potency hierarchy (mainly a stem cell) whilst the latter is a priori undirected and could be induced, e.g. by a (stochastic) change in the cellular environment. These reprogramming protocols were found to be effective in large regimes of the parameter space and make specific predictions concerning reprogramming dynamics which are broadly in line with experimental findings. (paper)

  15. A quantitative and dynamic model for plant stem cell regulation.

    Directory of Open Access Journals (Sweden)

    Florian Geier

    Full Text Available Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.

  16. Random Walk Model for Cell-To-Cell Misalignments in Accelerator Structures

    International Nuclear Information System (INIS)

    Stupakov, Gennady

    2000-01-01

    Due to manufacturing and construction errors, cells in accelerator structures can be misaligned relative to each other. As a consequence, the beam generates a transverse wakefield even when it passes through the structure on axis. The most important effect is the long-range transverse wakefield that deflects the bunches and causes growth of the bunch train projected emittance. In this paper, the effect of the cell-to-cell misalignments is evaluated using a random walk model that assumes that each cell is shifted by a random step relative to the previous one. The model is compared with measurements of a few accelerator structures

  17. Theoretical cell alteration model in the context of carcinogenesis

    International Nuclear Information System (INIS)

    Walsh, P.J.

    1976-01-01

    A model incorporating cell survival and alteration is used to discuss the general nature of cellular response to a toxic agent. Cell division and repair are discussed as regards their influence on dose-response relationships to bone-seeking radionuclides. The application of the model in its present form to specific biologic end points depends on the assumption that such end points are the result of some initial alteration

  18. PEM fuel cell model suitable for energy optimization purposes

    International Nuclear Information System (INIS)

    Caux, S.; Hankache, W.; Fadel, M.; Hissel, D.

    2010-01-01

    Many fuel cell stack models or fuel cell system models exist. A model must be built with a main objective, sometimes for accurate electro-chemical behavior description, sometimes for optimization procedure at a system level. In this paper, based on the fundamental reactions present in a fuel cell stack, an accurate model and identification procedure is presented for future energy management in a Hybrid Electrical Vehicle (HEV). The proposed approach extracts all important state variables in such a system and based on the control of the fuel cell's gas flows and temperature, simplification arises to a simple electrical model. Assumptions verified due to the control of the stack allow simplifying the relationships within keeping accuracy in the description of a global fuel cell stack behavior from current demand to voltage. Modeled voltage and current dynamic behaviors are compared with actual measurements. The obtained accuracy is sufficient and less time-consuming (versus other previously published system-oriented models) leading to a suitable model for optimization iterative off-line algorithms.

  19. PEM fuel cell model suitable for energy optimization purposes

    Energy Technology Data Exchange (ETDEWEB)

    Caux, S.; Hankache, W.; Fadel, M. [LAPLACE/CODIASE: UMR CNRS 5213, Universite de Toulouse - INPT, UPS, - ENSEEIHT: 2 rue Camichel BP7122, 31071 Toulouse (France); CNRS, LAPLACE, F-31071 Toulouse (France); Hissel, D. [FEMTO-ST ENISYS/FCLAB, UMR CNRS 6174, University of Franche-Comte, Rue Thierry Mieg, 90010 Belfort (France)

    2010-02-15

    Many fuel cell stack models or fuel cell system models exist. A model must be built with a main objective, sometimes for accurate electro-chemical behavior description, sometimes for optimization procedure at a system level. In this paper, based on the fundamental reactions present in a fuel cell stack, an accurate model and identification procedure is presented for future energy management in a Hybrid Electrical Vehicle (HEV). The proposed approach extracts all important state variables in such a system and based on the control of the fuel cell's gas flows and temperature, simplification arises to a simple electrical model. Assumptions verified due to the control of the stack allow simplifying the relationships within keeping accuracy in the description of a global fuel cell stack behavior from current demand to voltage. Modeled voltage and current dynamic behaviors are compared with actual measurements. The obtained accuracy is sufficient and less time-consuming (versus other previously published system-oriented models) leading to a suitable model for optimization iterative off-line algorithms. (author)

  20. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  1. The fastest evolving white dwarfs

    International Nuclear Information System (INIS)

    D'antona, F.; Mazzitelli, I.

    1989-01-01

    The evolution of white dwarfs (WDs) at their lowest luminosities is investigated by computing a reference track with solar metal and helium abundances down to the beginning of WD evolution. The main characteristics of the cooling tracks are described, including the onset of crystallization and its completion, and the differentiation in the relation T(c) - T(eff) is shown for the tracks. It is shown why the evolutionary times do not shorten abruptly at a given luminosity as a result of Debye cooling. The structure of the coolest models is shown to consist of dense atmospheres, with photospheres lying at the boundary of pressure ionization. A study of the resulting luminosity functions (LFs) shows that fast cooling never occurs, and that the LF in the crucial region log L/L(solar) between -4 and -6 is either flat or slowly decreasing. Comparisons with the observed LFs explains well the peak or flattening of the LF at log L/L(solar) = -3 or less but fails to reproduce the drop at log L/L(solar) = -4.5. 48 refs

  2. Evolving autonomous learning in cognitive networks.

    Science.gov (United States)

    Sheneman, Leigh; Hintze, Arend

    2017-12-01

    There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.

  3. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory. There are two technologies for the microfluidic biochips: droplet-based and flow-based. In this paper we are interested in flow-based microfluidic biochips, where the liquid flows continuously through pre......-defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...

  4. Sex determination: ways to evolve a hermaphrodite.

    OpenAIRE

    Braendle , Christian; Félix , Marie-Anne

    2006-01-01

    Most species of the nematode genus Caenorhabditis reproduce through males and females; C. elegans and C. briggsae, however, produce self-fertile hermaphrodites instead of females. These transitions to hermaphroditism evolved convergently through distinct modifications of germline sex determination mechanisms.

  5. WSC-07: Evolving the Web Services Challenge

    NARCIS (Netherlands)

    Blake, M. Brian; Cheung, William K.W.; Jaeger, Michael C.; Wombacher, Andreas

    Service-oriented architecture (SOA) is an evolving architectural paradigm where businesses can expose their capabilities as modular, network-accessible software services. By decomposing capabilities into modular services, organizations can share their offerings at multiple levels of granularity

  6. Satcom access in the Evolved Packet Core

    NARCIS (Netherlands)

    Cano Soveri, M.D.; Norp, A.H.J.; Popova, M.P.

    2011-01-01

    Satellite communications (Satcom) networks are increasingly integrating with terrestrial communications networks, namely Next Generation Networks (NGN). In the area of NGN the Evolved Packet Core (EPC) is a new network architecture that can support multiple access technologies. When Satcom is

  7. Satcom access in the evolved packet core

    NARCIS (Netherlands)

    Cano, M.D.; Norp, A.H.J.; Popova, M.P.

    2012-01-01

    Satellite communications (Satcom) networks are increasingly integrating with terrestrial communications networks, namely Next Generation Networks (NGN). In the area of NGN the Evolved Packet Core (EPC) is a new network architecture that can support multiple access technologies. When Satcom is

  8. Incorporating pushing in exclusion-process models of cell migration.

    Science.gov (United States)

    Yates, Christian A; Parker, Andrew; Baker, Ruth E

    2015-05-01

    The macroscale movement behavior of a wide range of isolated migrating cells has been well characterized experimentally. Recently, attention has turned to understanding the behavior of cells in crowded environments. In such scenarios it is possible for cells to interact, inducing neighboring cells to move in order to make room for their own movements or progeny. Although the behavior of interacting cells has been modeled extensively through volume-exclusion processes, few models, thus far, have explicitly accounted for the ability of cells to actively displace each other in order to create space for themselves. In this work we consider both on- and off-lattice volume-exclusion position-jump processes in which cells are explicitly allowed to induce movements in their near neighbors in order to create space for themselves to move or proliferate into. We refer to this behavior as pushing. From these simple individual-level representations we derive continuum partial differential equations for the average occupancy of the domain. We find that, for limited amounts of pushing, comparison between the averaged individual-level simulations and the population-level model is nearly as good as in the scenario without pushing. Interestingly, we find that, in the on-lattice case, the diffusion coefficient of the population-level model is increased by pushing, whereas, for the particular off-lattice model that we investigate, the diffusion coefficient is reduced. We conclude, therefore, that it is important to consider carefully the appropriate individual-level model to use when representing complex cell-cell interactions such as pushing.

  9. Evolved Representation and Computational Creativity

    Directory of Open Access Journals (Sweden)

    Ashraf Fouad Hafez Ismail

    2001-01-01

    Full Text Available Advances in science and technology have influenced designing activity in architecture throughout its history. Observing the fundamental changes to architectural designing due to the substantial influences of the advent of the computing era, we now witness our design environment gradually changing from conventional pencil and paper to digital multi-media. Although designing is considered to be a unique human activity, there has always been a great dependency on design aid tools. One of the greatest aids to architectural design, amongst the many conventional and widely accepted computational tools, is the computer-aided object modeling and rendering tool, commonly known as a CAD package. But even though conventional modeling tools have provided designers with fast and precise object handling capabilities that were not available in the pencil-and-paper age, they normally show weaknesses and limitations in covering the whole design process.In any kind of design activity, the design worked on has to be represented in some way. For a human designer, designs are for example represented using models, drawings, or verbal descriptions. If a computer is used for design work, designs are usually represented by groups of pixels (paintbrush programs, lines and shapes (general-purpose CAD programs or higher-level objects like ‘walls’ and ‘rooms’ (purpose-specific CAD programs.A human designer usually has a large number of representations available, and can use the representation most suitable for what he or she is working on. Humans can also introduce new representations and thereby represent objects that are not part of the world they experience with their sensory organs, for example vector representations of four and five dimensional objects. In design computing on the other hand, the representation or representations used have to be explicitly defined. Many different representations have been suggested, often optimized for specific design domains

  10. Spontaneous transformation of human granulosa cell tumours into an aggressive phenotype: a metastasis model cell line

    International Nuclear Information System (INIS)

    Imai, Misa; Muraki, Miho; Takamatsu, Kiyoshi; Saito, Hidekazu; Seiki, Motoharu; Takahashi, Yuji

    2008-01-01

    Granulosa cell tumours (GCTs) are frequently seen in menopausal women and are relatively indolent. Although the physiological properties of normal granulosa cells have been studied extensively, little is known about the molecular mechanism of GCT progression. Here, we characterise the unique behavioural properties of a granulosa tumour cell line, KGN cells, for the molecular analysis of GCT progression. Population doubling was carried out to examine the proliferation capacity of KGN cells. Moreover, the invasive capacity of these cells was determined using the in vitro invasion assay. The expression level of tumour markers in KGN cells at different passages was then determined by Western blot analysis. Finally, the growth and metastasis of KGN cells injected subcutaneously (s.c.) into nude mice was observed 3 months after injection. During in vitro culture, the advanced passage KGN cells grew 2-fold faster than the early passage cells, as determined by the population doubling assay. Moreover, we found that the advanced passage cells were 2-fold more invasive than the early passage cells. The expression pattern of tumour markers, such as p53, osteopontin, BAX and BAG-1, supported the notion that with passage, KGN cells became more aggressive. Strikingly, KGN cells at both early and advanced passages metastasized to the bowel when injected s.c. into nude mice. In addition, more tumour nodules were formed when the advanced passage cells were implanted. KGN cells cultured in vitro acquire an aggressive phenotype, which was confirmed by the analysis of cellular activities and the expression of biomarkers. Interestingly, KGN cells injected s.c. are metastatic with nodule formation occurring mostly in the bowel. Thus, this cell line is a good model for analysing GCT progression and the mechanism of metastasis in vivo

  11. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells.

    Science.gov (United States)

    Scoville, Steven D; Freud, Aharon G; Caligiuri, Michael A

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development.

  12. Evolving effective incremental SAT solvers with GP

    OpenAIRE

    Bader, Mohamed; Poli, R.

    2008-01-01

    Hyper-Heuristics could simply be defined as heuristics to choose other heuristics, and it is a way of combining existing heuristics to generate new ones. In a Hyper-Heuristic framework, the framework is used for evolving effective incremental (Inc*) solvers for SAT. We test the evolved heuristics (IncHH) against other known local search heuristics on a variety of benchmark SAT problems.

  13. THE PROGRAMED CELL DEATH REGULATORS OF ISOLATED MODEL SYSTEMS

    Directory of Open Access Journals (Sweden)

    D. V. Vatlitsov

    2016-06-01

    Full Text Available The technology evolution creates the prerequisites for the emergence of new informational concept and approaches to the formation of a fundamentally new principles of biological objects understanding. The aim was to study the activators of the programmed cell death in an isolated system model. Cell culture aging parameters were performed on flow cytometer. It had formed the theory that the changes in the concentrations of metal ions and increase their extracellular concentration had formed a negative gradient into the cells.regulation of cell death. It was shown that the metals ions concentrations.

  14. A flexible multipurpose model for normal and transient cell kinetics

    International Nuclear Information System (INIS)

    Toivonen, Harri.

    1979-07-01

    The internal hypothetical compartments within the different phases of the cell cycle have been adopted as the basis of models dealing with various specific problems in cell kinetics. This approach was found to be of more general validity, extending from expanding cell populations to complex maturation processes. The differential equations describing the system were solved with an effective, commercially available library subroutine. Special attention was devoted to analysis of transient and feedback kinetics of cell populations encountered in diverse environmental and exposure conditions, for instance in cases of wounding and radiation damage. (author)

  15. PEM fuel cell modeling and simulation using Matlab

    CERN Document Server

    Spiegel, Colleen

    2011-01-01

    Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money.Easy to read and understand, this book provides design and modelling tips for

  16. Advanced impedance modeling of solid oxide electrochemical cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Hjelm, Johan

    2014-01-01

    Impedance spectroscopy is a powerful technique for detailed study of the electrochemical and transport processes that take place in fuel cells and electrolysis cells, including solid oxide cells (SOCs). Meaningful analysis of impedance measurements is nontrivial, however, because a large number...... techniques to provide good guesses for the modeling parameters, like transforming the impedance data to the distribution of relaxation times (DRT), together with experimental parameter sensitivity studies, is the state-of-the-art approach to achieve good EC model fits. Here we present new impedance modeling...... electrode and 2-D gas transport models which have fewer unknown parameters for the same number of processes, (ii) use of a new model fitting algorithm, “multi-fitting”, in which multiple impedance spectra are fit simultaneously with parameters linked based on the variation of measurement conditions, (iii...

  17. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.

    Science.gov (United States)

    Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2011-11-23

    Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Recent developments in the modeling of molten carbonate fuel cells

    International Nuclear Information System (INIS)

    Wilemski, G.

    1984-01-01

    Modeling of porous electrodes and overall performance of molten carbonate fuel cells is reviewed. Aspects needing improvement are discussed. Some preliminary results on internal methane reforming cells are presented. Successful modeling of molten carbonate fuel cells has been carried out at two levels. The first concerns the prediction of overall cell performance and performance decay, i.e., the calculation of current-voltage curves and their decay rates for various cell operating conditions. The second involves the determination of individual porous electrode performance, i.e., how the electrode overpotential is affected by pore structure, gas composition, degree of electrolyte fill, etc. Both levels are treated mechanistically, as opposed to empirically, using fundamental mathematical descriptions of the relevant physical and chemical phenomena, in order to provide quantitative predictive capability

  19. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  20. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  1. Genome engineering of stem cell organoids for disease modeling.

    Science.gov (United States)

    Sun, Yingmin; Ding, Qiurong

    2017-05-01

    Precision medicine emerges as a new approach that takes into account individual variability. Successful realization of precision medicine requires disease models that are able to incorporate personalized disease information and recapitulate disease development processes at the molecular, cellular and organ levels. With recent development in stem cell field, a variety of tissue organoids can be derived from patient specific pluripotent stem cells and adult stem cells. In combination with the state-of-the-art genome editing tools, organoids can be further engineered to mimic disease-relevant genetic and epigenetic status of a patient. This has therefore enabled a rapid expansion of sophisticated in vitro disease models, offering a unique system for fundamental and biomedical research as well as the development of personalized medicine. Here we summarize some of the latest advances and future perspectives in engineering stem cell organoids for human disease modeling.

  2. Analyses of critical target cell responses during preclinical phases of evolving chronic radiation-induced myeloproliferative disease-exploitation of a unique canine model

    International Nuclear Information System (INIS)

    Seed, T.M.; Kaspar, L.V.; Tolle, D.V.; Fritz, T.E.; Frazier, M.E.

    1988-01-01

    This document briefly summarizes and highlights ongoing studies on the cellular and molecular processes involved in the induction and progression of myeloid leukemia in dogs chronically exposed to low daily doses of wholebody gamma irradiation. Under such conditions, select groups of dogs exhibit extremely high frequencies of myeloproliferative disease (MPD) (i.e., /congruent/50%) of which myeloid leukemia is most prominent. 2 figs

  3. Analyses of critical target cell responses during preclinical phases of evolving chronic radiation-induced myeloproliferative disease-exploitation of a unique canine model

    Energy Technology Data Exchange (ETDEWEB)

    Seed, T.M.; Kaspar, L.V.; Tolle, D.V.; Fritz, T.E.; Frazier, M.E.

    1988-01-01

    This document briefly summarizes and highlights ongoing studies on the cellular and molecular processes involved in the induction and progression of myeloid leukemia in dogs chronically exposed to low daily doses of wholebody gamma irradiation. Under such conditions, select groups of dogs exhibit extremely high frequencies of myeloproliferative disease (MPD) (i.e., /congruent/50%) of which myeloid leukemia is most prominent. 2 figs.

  4. cellGPU: Massively parallel simulations of dynamic vertex models

    Science.gov (United States)

    Sussman, Daniel M.

    2017-10-01

    Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation

  5. Odor supported place cell model and goal navigation in rodents

    DEFF Research Database (Denmark)

    Kulvicius, Tomas; Tamosiunaite, Minija; Ainge, James

    2008-01-01

    Experiments with rodents demonstrate that visual cues play an important role in the control of hippocampal place cells and spatial navigation. Nevertheless, rats may also rely on auditory, olfactory and somatosensory stimuli for orientation. It is also known that rats can track odors or self......-generated scent marks to find a food source. Here we model odor supported place cells by using a simple feed-forward network and analyze the impact of olfactory cues on place cell formation and spatial navigation. The obtained place cells are used to solve a goal navigation task by a novel mechanism based on self......-marking by odor patches combined with a Q-learning algorithm. We also analyze the impact of place cell remapping on goal directed behavior when switching between two environments. We emphasize the importance of olfactory cues in place cell formation and show that the utility of environmental and self...

  6. Engineering models and methods for industrial cell control

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1997-01-01

    This paper is concerned with the engineering, i.e. the designing and making, of industrial cell control systems. The focus is on automated robot welding cells in the shipbuilding industry. The industrial research project defines models and methods for design and implemen-tation of computer based...... SHIPYARD.It is concluded that cell control technology provides for increased performance in production systems, and that the Cell Control Engineering concept reduces the effort for providing and operating high quality and high functionality cell control solutions for the industry....... control and monitor-ing systems for production cells. The project participants are The Danish Academy of Technical Sciences, the Institute of Manufacturing Engineering at the Technical University of Denmark and ODENSE STEEL SHIPYARD Ltd.The manufacturing environment and the current practice...

  7. Design, Modeling, Fabrication & Characterization of Industrial Si Solar Cells

    Science.gov (United States)

    Chowdhury, Ahrar Ahmed

    Photovoltaic is a viable solution towards meeting the energy demand in an ecofriendly environment. To ensure the mass access in photovoltaic electricity, cost effective approach needs to be adapted. This thesis aims towards substrate independent fabrication process in order to achieve high efficiency cost effective industrial Silicon (Si) solar cells. Most cost-effective structures, such as, Al-BSF (Aluminum Back Surface Field), FSF (Front Surface Field) and bifacial cells are investigated in detail to exploit the efficiency potentials. First off, we introduced two-dimensional simulation model to design and modeling of most commonly used Si solar cells in today's PV arena. Best modelled results of high efficiency Al-BSF, FSF and bifacial cells are 20.50%, 22% and 21.68% respectively. Special attentions are given on the metallization design on all the structures in order to reduce the Ag cost. Furthermore, detail design and modeling were performed on FSF and bifacial cells. The FSF cells has potentials to gain 0.42%abs efficiency by combining the emitter design and front surface passivation. The prospects of bifacial cells can be revealed with the optimization of gridline widths and gridline numbers. Since, bifacial cells have metallization on both sides, a double fold cost saving is possible via innovative metallization design. Following modeling an effort is undertaken to reach the modelled result in fabrication the process. We proposed substrate independent fabrication process aiming towards establishing simultaneous processing sequences for both monofacial and bifacial cells. Subsequently, for the contact formation cost effective screen-printed technology is utilized throughout this thesis. The best Al-BSF cell attained efficiency ˜19.40%. Detail characterization was carried out to find a roadmap of achieving >20.50% efficiency Al-BSF cell. Since, n-type cell is free from Light Induced degradation (LID), recently there is a growing interest on FSF cell. Our

  8. Evolving R Coronae Borealis Stars with MESA

    Science.gov (United States)

    Clayton, Geoffrey C.; Lauer, Amber; Chatzopoulos, Emmanouil; Frank, Juhan

    2018-01-01

    R Coronae Borealis (RCB) stars form a small class of cool, carbon-rich supergiants that have almost no hydrogen. They undergo extreme, irregular declines in brightness of up to 8 magnitudes due to the formation of thick clouds of carbon dust. Two scenarios have been proposed for the origin of an RCB star: the merger of a CO/He white dwarf (WD) binary and a final helium-shell flash. We are using a combination of 3D hydrodynamics codes and the 1D MESA (Modules for Experiments in Stellar Astrophysics) stellar evolution code including nucleosynthesis to construct post-merger spherical models based on realistic merger progenitor models and on our hydrodynamical simulations, and then following the evolution into the region of the HR diagram where RCB stars are located. We are investigating nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed.Our MESA modeling consists of two steps: first mimicking the WD merger event using two different techniques, (a) by choosing a very high mass accretion rate with appropriate abundances and (b) by applying "stellar engineering" to an initial CO WD model to account for the newly merged material by applying an entropy adjusting procedure. Second, we follow the post-merger evolution using a large nuclear reaction network including the effects of convective and rotational instabilities to the mixing of material in order to match the observed RCB abundances. MESA follows the evolution of the merger product as it expands and cools to become an RCB star. We then examine the surface abundances and compare them to the observed RCB abundances. We also investigate how long fusion continues in the He shell near the core and how this processed material is mixed up to the surface of the star. We then model the later evolution of RCB stars to determine their likely lifetimes and endpoints when they have returned to

  9. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  10. Social networks: Evolving graphs with memory dependent edges

    Science.gov (United States)

    Grindrod, Peter; Parsons, Mark

    2011-10-01

    The plethora of digital communication technologies, and their mass take up, has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the existence or otherwise of certain infinite products and series involving age dependent model parameters. We show how to differentiate between the alternatives based on a finite set of observations. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.

  11. Mobile Applications in Cell Biology Present New Approaches for Cell Modelling

    Science.gov (United States)

    de Oliveira, Mayara Lustosa; Galembeck, Eduardo

    2016-01-01

    Cell biology apps were surveyed in order to identify whether there are new approaches for modelling cells allowed by the new technologies implemented in tablets and smartphones. A total of 97 apps were identified in 3 stores surveyed (Apple, Google Play and Amazon), they are presented as: education 48.4%, games 26.8% and medicine 15.4%. The apps…

  12. Empirical membrane lifetime model for heavy duty fuel cell systems

    Science.gov (United States)

    Macauley, Natalia; Watson, Mark; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-12-01

    Heavy duty fuel cells used in transportation system applications such as transit buses expose the fuel cell membranes to conditions that can lead to lifetime-limiting membrane failure via combined chemical and mechanical degradation. Highly durable membranes and reliable predictive models are therefore needed in order to achieve the ultimate heavy duty fuel cell lifetime target of 25,000 h. In the present work, an empirical membrane lifetime model was developed based on laboratory data from a suite of accelerated membrane durability tests. The model considers the effects of cell voltage, temperature, oxygen concentration, humidity cycling, humidity level, and platinum in the membrane using inverse power law and exponential relationships within the framework of a general log-linear Weibull life-stress statistical distribution. The obtained model is capable of extrapolating the membrane lifetime from accelerated test conditions to use level conditions during field operation. Based on typical conditions for the Whistler, British Columbia fuel cell transit bus fleet, the model predicts a stack lifetime of 17,500 h and a membrane leak initiation time of 9200 h. Validation performed with the aid of a field operated stack confirmed the initial goal of the model to predict membrane lifetime within 20% of the actual operating time.

  13. A simplified model for dynamics of cell rolling and cell-surface adhesion

    International Nuclear Information System (INIS)

    Cimrák, Ivan

    2015-01-01

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells

  14. System level modeling and component level control of fuel cells

    Science.gov (United States)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  15. Modelling cell cycle synchronisation in networks of coupled radial glial cells.

    Science.gov (United States)

    Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R

    2015-07-21

    Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients.

    Science.gov (United States)

    Muller, Nicolas; Piel, Matthieu; Calvez, Vincent; Voituriez, Raphaël; Gonçalves-Sá, Joana; Guo, Chin-Lin; Jiang, Xingyu; Murray, Andrew; Meunier, Nicolas

    2016-04-01

    Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predictive model of yeast polarization towards a pheromone gradient. We found that cells make a sharp transition between budding cycles and mating induced polarization and that they detect pheromone gradients accurately only over a narrow range of pheromone concentrations corresponding to this transition. We fit all the parameters of the mathematical model by using quantitative data on spontaneous polarization in uniform pheromone concentration. Once these parameters have been computed, and without any further fit, our model quantitatively predicts the yeast cell response to pheromone gradient providing an important step toward understanding how cells communicate with each other.

  17. A probabilistic cell model in background corrected image sequences for single cell analysis

    Directory of Open Access Journals (Sweden)

    Fieguth Paul

    2010-10-01

    Full Text Available Abstract Background Methods of manual cell localization and outlining are so onerous that automated tracking methods would seem mandatory for handling huge image sequences, nevertheless manual tracking is, astonishingly, still widely practiced in areas such as cell biology which are outside the influence of most image processing research. The goal of our research is to address this gap by developing automated methods of cell tracking, localization, and segmentation. Since even an optimal frame-to-frame association method cannot compensate and recover from poor detection, it is clear that the quality of cell tracking depends on the quality of cell detection within each frame. Methods Cell detection performs poorly where the background is not uniform and includes temporal illumination variations, spatial non-uniformities, and stationary objects such as well boundaries (which confine the cells under study. To improve cell detection, the signal to noise ratio of the input image can be increased via accurate background estimation. In this paper we investigate background estimation, for the purpose of cell detection. We propose a cell model and a method for background estimation, driven by the proposed cell model, such that well structure can be identified, and explicitly rejected, when estimating the background. Results The resulting background-removed images have fewer artifacts and allow cells to be localized and detected more reliably. The experimental results generated by applying the proposed method to different Hematopoietic Stem Cell (HSC image sequences are quite promising. Conclusion The understanding of cell behavior relies on precise information about the temporal dynamics and spatial distribution of cells. Such information may play a key role in disease research and regenerative medicine, so automated methods for observation and measurement of cells from microscopic images are in high demand. The proposed method in this paper is capable

  18. Using Human Induced Pluripotent Stem Cells to Model Skeletal Diseases.

    Science.gov (United States)

    Barruet, Emilie; Hsiao, Edward C

    2016-01-01

    Musculoskeletal disorders affecting the bones and joints are major health problems among children and adults. Major challenges such as the genetic origins or poor diagnostics of severe skeletal disease hinder our understanding of human skeletal diseases. The recent advent of human induced pluripotent stem cells (human iPS cells) provides an unparalleled opportunity to create human-specific models of human skeletal diseases. iPS cells have the ability to self-renew, allowing us to obtain large amounts of starting material, and have the potential to differentiate into any cell types in the body. In addition, they can carry one or more mutations responsible for the disease of interest or be genetically corrected to create isogenic controls. Our work has focused on modeling rare musculoskeletal disorders including fibrodysplasia ossificans progressive (FOP), a congenital disease of increased heterotopic ossification. In this review, we will discuss our experiences and protocols differentiating human iPS cells toward the osteogenic lineage and their application to model skeletal diseases. A number of critical challenges and exciting new approaches are also discussed, which will allow the skeletal biology field to harness the potential of human iPS cells as a critical model system for understanding diseases of abnormal skeletal formation and bone regeneration.

  19. Voronoi Cell Patterns: theoretical model and application to submonolayer growth

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2012-02-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.

  20. Bioengineered Liver Models for Drug Testing and Cell Differentiation Studies

    Directory of Open Access Journals (Sweden)

    Gregory H. Underhill

    2018-01-01

    Full Text Available In vitro models of the human liver are important for the following: (1 mitigating the risk of drug-induced liver injury to human beings, (2 modeling human liver diseases, (3 elucidating the role of single and combinatorial microenvironmental cues on liver cell function, and (4 enabling cell-based therapies in the clinic. Methods to isolate and culture primary human hepatocytes (PHHs, the gold standard for building human liver models, were developed several decades ago; however, PHHs show a precipitous decline in phenotypic functions in 2-dimensional extracellular matrix–coated conventional culture formats, which does not allow chronic treatment with drugs and other stimuli. The development of several engineering tools, such as cellular microarrays, protein micropatterning, microfluidics, biomaterial scaffolds, and bioprinting, now allow precise control over the cellular microenvironment for enhancing the function of both PHHs and induced pluripotent stem cell–derived human hepatocyte-like cells; long-term (4+ weeks stabilization of hepatocellular function typically requires co-cultivation with liver-derived or non–liver-derived nonparenchymal cell types. In addition, the recent development of liver organoid culture systems can provide a strategy for the enhanced expansion of therapeutically relevant cell types. Here, we discuss advances in engineering approaches for constructing in vitro human liver models that have utility in drug screening and for determining microenvironmental determinants of liver cell differentiation/function. Design features and validation data of representative models are presented to highlight major trends followed by the discussion of pending issues that need to be addressed. Overall, bioengineered liver models have significantly advanced our understanding of liver function and injury, which will prove useful for drug development and ultimately cell-based therapies.

  1. A mathematical model of calcium dynamics in HSY cells.

    Directory of Open Access Journals (Sweden)

    Jung Min Han

    2017-02-01

    Full Text Available Saliva is an essential part of activities such as speaking, masticating and swallowing. Enzymes in salivary fluid protect teeth and gums from infectious diseases, and also initiate the digestion process. Intracellular calcium (Ca2+ plays a critical role in saliva secretion and regulation. Experimental measurements of Ca2+ and inositol trisphosphate (IP3 concentrations in HSY cells, a human salivary duct cell line, show that when the cells are stimulated with adenosine triphosphate (ATP or carbachol (CCh, they exhibit coupled oscillations with Ca2+ spike peaks preceding IP3 spike peaks. Based on these data, we construct a mathematical model of coupled Ca2+ and IP3 oscillations in HSY cells and perform model simulations of three different experimental settings to forecast Ca2+ responses. The model predicts that when Ca2+ influx from the extracellular space is removed, oscillations gradually slow down until they stop. The model simulation of applying a pulse of IP3 predicts that photolysis of caged IP3 causes a transient increase in the frequency of the Ca2+ oscillations. Lastly, when Ca2+-dependent activation of PLC is inhibited, we see an increase in the oscillation frequency and a decrease in the amplitude. These model predictions are confirmed by experimental data. We conclude that, although concentrations of Ca2+ and IP3 oscillate, Ca2+ oscillations in HSY cells are the result of modulation of the IP3 receptor by intracellular Ca2+, and that the period is modulated by the accompanying IP3 oscillations.

  2. Analysis of motility in multicellular Chlamydomonas reinhardtii evolved under predation.

    Directory of Open Access Journals (Sweden)

    Margrethe Boyd

    Full Text Available The advent of multicellularity was a watershed event in the history of life, yet the transition from unicellularity to multicellularity is not well understood. Multicellularity opens up opportunities for innovations in intercellular communication, cooperation, and specialization, which can provide selective advantages under certain ecological conditions. The unicellular alga Chlamydomonas reinhardtii has never had a multicellular ancestor yet it is closely related to the volvocine algae, a clade containing taxa that range from simple unicells to large, specialized multicellular colonies. Simple multicellular structures have been observed to evolve in C. reinhardtii in response to predation or to settling rate-based selection. Structures formed in response to predation consist of individual cells confined within a shared transparent extracellular matrix. Evolved isolates form such structures obligately under culture conditions in which their wild type ancestors do not, indicating that newly-evolved multicellularity is heritable. C. reinhardtii is capable of photosynthesis, and possesses an eyespot and two flagella with which it moves towards or away from light in order to optimize input of radiant energy. Motility contributes to C. reinhardtii fitness because it allows cells or colonies to achieve this optimum. Utilizing phototaxis to assay motility, we determined that newly evolved multicellular strains do not exhibit significant directional movement, even though the flagellae of their constituent unicells are present and active. In C. reinhardtii the first steps towards multicellularity in response to predation appear to result in a trade-off between motility and differential survivorship, a trade-off that must be overcome by further genetic change to ensure long-term success of the new multicellular organism.

  3. All-trans retinoic acid inhibits craniopharyngioma cell growth: study on an explant cell model.

    Science.gov (United States)

    Li, Qiang; You, Chao; Zhou, Liangxue; Sima, Xiutian; Liu, Zhiyong; Liu, Hao; Xu, Jianguo

    2013-05-01

    The ratio between FABP5 and CRABPII determines cellular response to physiological level of retinoic acid; tumor cells undergo proliferation with high level of FABP5 and apoptosis with high level of CRABPII. We intended to study FABP5 and CRABPII expression in craniopharyngiomas, to establish craniopharyngioma cell model using explants method, and to study the effect of pharmacological dose of retinoic acid on craniopharyngioma cells. Expression of FABP5 and CRABPII in craniopharyngioma tissue from 20 patients was studied using immunohistochemistry. Primary craniopharyngioma cell cultures were established using tissue explants method. Craniopharyngioma cells were treated using various concentrations of all-trans retinoic acid, and cell growth curve, apoptosis, expression of FABP5, CRABPII and NF-κB were assayed in different groups. FABP5/CRABPII ratio was significantly higher in adamatinomatous group than that in papillary group. Cell cultures were established in 19 cases (95 %). Pharmacological level retinoic acid inhibited cell growth and induced cellular apoptosis in dose dependent manner, and apoptosis rate cells treated with 30 μM retinoic acid for 24 h was 43 %. Also, retinoic acid increased CRABPII, and decreased FABP5 and NF-κB expression in craniopharyngioma cells. High FABP5/CRABPII ratio is observed in adamatinomatous craniopharyngioma. Retinoic acid at pharmacological level induced craniopharyngioma cell apoptosis via increasing FABP5/CRABPII ratio and inhibiting NF-κB signaling pathway. Our study demonstrated that all-trans retinoic acid might be a candidate for craniopharyngioma adjuvant chemotherapy in future.

  4. Multiway modeling and analysis in stem cell systems biology

    Directory of Open Access Journals (Sweden)

    Vandenberg Scott L

    2008-07-01

    Full Text Available Abstract Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.. A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a

  5. Computational model for squamous cells characterization during cervical smear cytology

    Directory of Open Access Journals (Sweden)

    Víctor Eduardo Martínez Abaunza

    2005-07-01

    Full Text Available The main goal of the work done by the Biomedical Engineering Research Group (GIIB, and the Structural, Functional and Clinical Pathology Research Group of the Industrial University of Santander (UIS, with Autonomous University of Bucaramanga (UNAB, was to construct a computational model allowing squamous cells characterization of cervical smear cytology to classify them as being either normal or abnormal cells. Slides containing the cell samples were colleted by the pathologist and the images were digitalized by a video-camera coupled to a microscope and connected to a frame acquisition device. Three thresholding algorithms were used, in image segmentation, allowing cell nuclei detection; manual thresholding was used when these algorithms failed to detect cytoplasm. Cell texture was described by the distribution of histogram in each color level, and the borders using Fourier descriptors. The results of the first phase are presented, implementing them in classifying and identifying normal cells. Later stages will involve characterizing each cells stage initially classified as presenting some reactive change or due to infection, to distinguish the reactive cells of intraepithelial lesion cells. Key words: image processing, mathematical morphology, cervical smear cytology, dysplasia, cancer of cervix.

  6. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... surpasses batteries in important areas, fundamental research is still required to improve durability and performance. Particularly the transport of methanol and water within the cell structure is difficult to study in-situ. A demand therefore exist for the fundamental development of mathematical models...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...

  7. Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma.

    Science.gov (United States)

    Alcantara Llaguno, Sheila R; Xie, Xuanhua; Parada, Luis F

    2016-01-01

    The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM. © 2016 Alcantara Llaguno et al; Published by Cold Spring Harbor Laboratory Press.

  8. Cancer Stem Cells of Differentiated B-Cell Malignancies: Models and Consequences

    International Nuclear Information System (INIS)

    Gross, Emilie; Quillet-Mary, Anne; Ysebaert, Loic; Laurent, Guy; Fournie, Jean-Jacques

    2011-01-01

    The concept of cancer stem cells has revolutionized our current vision of cancer development and was validated in solid tumors and cancers of the primitive hematopoietic compartment. Proof of the principle is still lacking, however, in malignancies of differentiated B-cells. We review here the current literature, which nevertheless suggests hierarchical organizations of the tumor clone for mostly incurable B-cell cancers such as multiple myeloma, lymphomas and B-chronic lymphocytic leukemia. We propose two models accounting for cancer stem cells in these contexts: a “top-to-bottom” clonal hierarchy from memory B-cells and a “bottom-to-top” model of clonal reprogramming. Selection pressure on the growing tumor can drive such reprogramming and increase its genetic diversity

  9. Cancer Stem Cells of Differentiated B-Cell Malignancies: Models and Consequences

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Fournie

    2011-03-01

    Full Text Available The concept of cancer stem cells has revolutionized our current vision of cancer development and was validated in solid tumors and cancers of the primitive hematopoietic compartment. Proof of the principle is still lacking, however, in malignancies of differentiated B-cells. We review here the current literature, which nevertheless suggests hierarchical organizations of the tumor clone for mostly incurable B-cell cancers such as multiple myeloma, lymphomas and B-chronic lymphocytic leukemia. We propose two models accounting for cancer stem cells in these contexts: a “top-to-bottom” clonal hierarchy from memory B-cells and a “bottom-to-top” model of clonal reprogramming. Selection pressure on the growing tumor can drive such reprogramming and increase its genetic diversity.

  10. Мodification of Mechanical Limbal Stem Cell Deficiency Model

    Directory of Open Access Journals (Sweden)

    A. V. Bezushko

    2018-01-01

    Full Text Available Introduction. Ocular surface diseases related with limbal epithelial stem cells dysfunction were united in term “limbal stem cell  deficiency” (LSCD. For experimental study of the regenerative processes and evaluation of the success of new LSCD treatingmethods LSCD model is required. Various LSCD models were proposed in the experiment to study: mechanical, thermal, chemical,medicamental. The main lack of these models were the relative high cost and complexity of execution. The mechanical model allows forthe guaranteed removal of tissues containing LESCs, and therefore seems to be the most acceptable. We offered a modification of themechanical LSCD model in rabbits. Purpose to create a standardized modification of the mechanical limbal stem cell deficiency modelin the experiment. Material and methods. The experimental study was performed in 10 mature Chinchilla rabbits (20 eyes with anaverage weight 2.5–3.5 kg. With the local anesthesia, after a 40-second application of the filter paper impregnated with 20% ethanol,the corneal epithelium was removed. With microsurgical diamond blade we metered limb portion of 4 mm width, 0.2 mm deep, andit was removed along the 360° rim. Results. On the 30th day we discovered corneal opacity and neovascularization with conjunctivalpannus extending to the optical zone of the cornea. Histological examination revealed tissue edema, inflammatory infiltration, andnewly formed vessels. In some places, thinning of epithelium to one row of flattened cells was observed. The Bowman membrane wasdeformed and practically not detected. Histological examination and impression cytology confirmed the presence of goblet cells in thecorneal epithelium. Conclusions. Our modification of the mechanical limbal stem cell deficiency model is devoid of the main lacks ofprevious models, such as the high cost and complexity of execution, provides intraoperative limbal tissue resection depth control andexcludes the possibility of the

  11. Modeling photocurrent transients in organic solar cells

    International Nuclear Information System (INIS)

    Hwang, I; Greenham, N C

    2008-01-01

    We investigate the transient photocurrents of organic photovoltaic devices in response to a sharp turn-on of illumination, by numerical modeling of the drift-diffusion equations. We show that the photocurrent turn-on dynamics are determined not only by the transport dynamics of free charges, but also by the time required for the population of geminate charge pairs to reach its steady-state value. The dissociation probability of a geminate charge pair is found to be a key parameter in determining the device performance, not only by controlling the efficiency at low intensities, but also in determining the fate of charge pairs formed by bimolecular recombination at high intensities. Bimolecular recombination is shown to reduce the turn-on time at high intensities, since the typical distance traveled by a charge pair is reduced.

  12. Cell-free DNA in a three-dimensional spheroid cell culture model

    DEFF Research Database (Denmark)

    Aucamp, Janine; Calitz, Carlemi; Bronkhorst, Abel J.

    2017-01-01

    Background Investigating the biological functions of cell-free DNA (cfDNA) is limited by the interference of vast numbers of putative sources and causes of DNA release into circulation. Utilization of three-dimensional (3D) spheroid cell cultures, models with characteristics closer to the in vivo...... cultures can serve as effective, simplified in vivo-simulating “closed-circuit” models since putative sources of cfDNA are limited to only the targeted cells. In addition, cfDNA can also serve as an alternative or auxiliary marker for tracking spheroid growth, development and culture stability. Biological...... significance 3D cell cultures can be used to translate “closed-circuit” in vitro model research into data that is relevant for in vivo studies and clinical applications. In turn, the utilization of cfDNA during 3D culture research can optimize sample collection without affecting the stability of the growth...

  13. Peltier cells as temperature control elements: Experimental characterization and modeling

    International Nuclear Information System (INIS)

    Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio

    2014-01-01

    The use of Peltier cells to realize compact and precise temperature controlled devices is under continuous extension in recent years. In order to support the design of temperature control systems, a simplified modeling of heat transfer dynamics for thermoelectric devices is presented. By following a macroscopic approach, the heat flux removed at the cold side of Peltier cell can be expressed as Q . c =γ(T c −T c eq ), where γ is a coefficient dependent on the electric current, T c and T c eq are the actual and steady state cold side temperature, respectively. On the other hand, a microscopic modeling approach was pursued via finite element analysis software packages. To validate the models, an experimental apparatus was designed and build-up, consisting in a sample vial with the surfaces in direct contact with Peltier cells. Both modeling approaches led to reliable prediction of transient and steady state sample temperature. -- Highlights: • Simplified modeling of heat transfer dynamics in Peltier cells. • Coupled macroscopic and microscopic approach. • Experimental apparatus: temperature control of a sample vial. • Both modeling approaches predict accurately the transient and steady state sample temperature

  14. Stem cell models of polyglutamine diseases and their use in cell-based therapies

    Directory of Open Access Journals (Sweden)

    Evangelia eSiska

    2015-07-01

    Full Text Available Polyglutamine diseases are fatal neurological disorders that affect the central nervous system. They are caused by mutations in disease genes that contain CAG trinucleotide expansions in their coding regions. These mutations are translated into expanded glutamine chains in pathological proteins. Mutant proteins induce cytotoxicity, form intranuclear aggregates and cause neuronal cell death in specific brain regions. At the moment there is no cure for these diseases and only symptomatic treatments are available. Here, we discuss novel therapeutic approaches that aim in neuronal cell replacement using induced pluripotent or adult stem cells. Additionally, we present the beneficial effect of genetically engineered mesenchymal stem cells and their use as disease models or RNAi/gene delivery vehicles. In combination with their paracrine and cell-trophic properties, such cells may prove useful for the development of novel therapies against polyglutamine diseases.

  15. Modeling two-phase flow in PEM fuel cell channels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)

  16. Model for cadmium transport and distribution in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, T.L.; Turner, J.E.; Williams, M.W.; Cook, J.S.; Hsie, A.W.

    1982-01-01

    A compartmental model is developed to study the transport and distribution of cadmium in Chinese hamster ovary (CHO) cells. Of central importance to the model is the role played by sequestering components which bind free Cd/sup 2 +/ ions. The most important of these is a low-molecular-weight protein, metallothionein, which is produced by the cells in response to an increase in the cellular concentration of Cd/sup 2 +/. Monte Carlo techniques are used to generate a stochastic model based on existing experimental data describing the intracellular transport of cadmium between different compartments. This approach provides an alternative to the usual numerical solution of differential-delay equations that arise in deterministic models. Our model suggests subcellular structures which may be responsible for the accumulation of cadmium and, hence, could account for cadmium detoxification. 4 figures, 1 table.

  17. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells.

    Science.gov (United States)

    LaMarca, Elizabeth A; Powell, Samuel K; Akbarian, Schahram; Brennand, Kristen J

    2018-01-01

    Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.

  18. Modeling and Simulation of the Direct Methanol Fuel Cell

    Science.gov (United States)

    Wohr, M.; Narayanan, S. R.; Halpert, G.

    1996-01-01

    From intro.: The direct methanol liquid feed fuel cell uses aqueous solutions of methanol as fuel and oxygen or air as the oxidant and uses an ionically conducting polymer membrane such as Nafion(sup r)117 and the electrolyte. This type of direct oxidation cell is fuel versatile and offers significant advantages in terms of simplicity of design and operation...The present study focuses on the results of a phenomenological model based on current understanding of the various processed operating in these cells.

  19. Complex Systems Analysis of Cell Cycling Models in Carcinogenesis:II. Cell Genome and Interactome, Neoplastic Non-random Transformation Models in Topoi with Lukasiewicz-Logic and MV Algebras

    CERN Document Server

    Baianu, I C

    2004-01-01

    Quantitative Biology, abstract q-bio.OT/0406045 From: I.C. Baianu Dr. [view email] Date (v1): Thu, 24 Jun 2004 02:45:13 GMT (164kb) Date (revised v2): Fri, 2 Jul 2004 00:58:06 GMT (160kb) Complex Systems Analysis of Cell Cycling Models in Carcinogenesis: II. Authors: I.C. Baianu Comments: 23 pages, 1 Figure Report-no: CC04 Subj-class: Other Carcinogenesis is a complex process that involves dynamically inter-connected modular sub-networks that evolve under the influence of micro-environmentally induced perturbations, in non-random, pseudo-Markov chain processes. An appropriate n-stage model of carcinogenesis involves therefore n-valued Logic treatments of nonlinear dynamic transformations of complex functional genomes and cell interactomes. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous, Boolean or "fuzzy", logic models of genetic activities in vivo....

  20. Human pluripotent stem cells: an emerging model in developmental biology.

    Science.gov (United States)

    Zhu, Zengrong; Huangfu, Danwei

    2013-02-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.

  1. New paradigms for metabolic modeling of human cells

    DEFF Research Database (Denmark)

    Mardinoglu, Adil; Nielsen, Jens

    2015-01-01

    review recent work on reconstruction of GEMs for human cell/tissue types and cancer, and the use of GEMs for identification of metabolic changes occurring in response to disease development. We further discuss how GEMs can be used for the development of efficient therapeutic strategies. Finally......, challenges in integration of cell/tissue models for simulation of whole body functions as well as integration of GEMs with other biological networks for generating complete cell/tissue models are presented.......Abnormalities in cellular functions are associated with the progression of human diseases, often resulting in metabolic reprogramming. GEnome-scale metabolic Models (GEMs) have enabled studying global metabolic reprogramming in connection with disease development in a systematic manner. Here we...

  2. Evolving Intelligent Systems Methodology and Applications

    CERN Document Server

    Angelov, Plamen; Kasabov, Nik

    2010-01-01

    From theory to techniques, the first all-in-one resource for EIS. There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on th

  3. Interactively Evolving Compositional Sound Synthesis Networks

    DEFF Research Database (Denmark)

    Jónsson, Björn Þór; Hoover, Amy K.; Risi, Sebastian

    2015-01-01

    the space of potential sounds that can be generated through such compositional sound synthesis networks (CSSNs). To study the effect of evolution on subjective appreciation, participants in a listener study ranked evolved timbres by personal preference, resulting in preferences skewed toward the first......While the success of electronic music often relies on the uniqueness and quality of selected timbres, many musicians struggle with complicated and expensive equipment and techniques to create their desired sounds. Instead, this paper presents a technique for producing novel timbres that are evolved...

  4. Artificial cell mimics as simplified models for the study of cell biology.

    Science.gov (United States)

    Salehi-Reyhani, Ali; Ces, Oscar; Elani, Yuval

    2017-07-01

    Living cells are hugely complex chemical systems composed of a milieu of distinct chemical species (including DNA, proteins, lipids, and metabolites) interconnected with one another through a vast web of interactions: this complexity renders the study of cell biology in a quantitative and systematic manner a difficult task. There has been an increasing drive towards the utilization of artificial cells as cell mimics to alleviate this, a development that has been aided by recent advances in artificial cell construction. Cell mimics are simplified cell-like structures, composed from the bottom-up with precisely defined and tunable compositions. They allow specific facets of cell biology to be studied in isolation, in a simplified environment where control of variables can be achieved without interference from a living and responsive cell. This mini-review outlines the core principles of this approach and surveys recent key investigations that use cell mimics to address a wide range of biological questions. It will also place the field in the context of emerging trends, discuss the associated limitations, and outline future directions of the field. Impact statement Recent years have seen an increasing drive to construct cell mimics and use them as simplified experimental models to replicate and understand biological phenomena in a well-defined and controlled system. By summarizing the advances in this burgeoning field, and using case studies as a basis for discussion on the limitations and future directions of this approach, it is hoped that this minireview will spur others in the experimental biology community to use artificial cells as simplified models with which to probe biological systems.

  5. A stochastic model of epigenetic dynamics in somatic cell reprogramming

    Directory of Open Access Journals (Sweden)

    Max eFloettmann

    2012-06-01

    Full Text Available Somatic cell reprogramming has dramatically changed stem cell research inrecent years. The high pace of new findings in the field and an ever increasingamount of data from new high throughput techniques make it challengingto isolate core principles of the process. In order to analyze suchmechanisms, we developed an abstract mechanistic model of a subset of theknown regulatory processes during cell differentiation and production of inducedpluripotent stem cells. This probabilistic Boolean network describesthe interplay between gene expression, chromatin modifications and DNAmethylation. The model incorporates recent findings in epigenetics and reproducesexperimentally observed reprogramming efficiencies and changes inmethylation and chromatin remodeling. It enables us to investigate in detail,how the temporal progression of the process is regulated. It also explicitlyincludes the transduction of factors using viral vectors and their silencing inreprogrammed cells, since this is still a standard procedure in somatic cellreprogramming. Based on the model we calculate an epigenetic landscape.Simulation results show good reproduction of experimental observations duringreprogramming, despite the simple stucture of the model. An extensiveanalysis and introduced variations hint towards possible optimizations of theprocess, that could push the technique closer to clinical applications. Fasterchanges in DNA methylation increase the speed of reprogramming at theexpense of efficiency, while accelerated chromatin modifications moderatelyimprove efficiency.

  6. Basics elements for modelling the dynamics of cell migration in cell culture

    International Nuclear Information System (INIS)

    FarIas, Ro; Vidal, Cs; Rapacioli, M; Flores, V

    2007-01-01

    This paper introduces some basic elements for modelling the dynamics of cell migration activity over a bi-dimensional substratum. A square matrix, representing the substratum, is implemented in order to generate virtual cells with an initial random uniform distribution, with the ability to freely move within the matrix and to interact with each others by mean of adhesive forces. Two different conditions were examined: A) cells can freely move and after contacting with another cell they both completely inhibit their migration; B) cells that come into contact have the ability to rotate respect to each other without losing their contacts and retaining the ability to move together but at a slower rate, being the decrease in the rate of movement proportional to the number of contacting cells. The dynamics of the migration process in these two conditions was evaluated by recording the evolution of several parameters as a function of time. Minor modifications in some parameters (mobility, intensity of cell-cell and cell-substratum adhesiveness) significantly change the dynamics and the final result of the virtual migrating cells

  7. Wires in the soup: quantitative models of cell signaling

    Science.gov (United States)

    Cheong, Raymond; Levchenko, Andre

    2014-01-01

    Living cells are capable of extracting information from their environments and mounting appropriate responses to a variety of associated challenges. The underlying signal transduction networks enabling this can be quite complex, necessitating for their unraveling by sophisticated computational modeling coupled with precise experimentation. Although we are still at the beginning of this process, some recent examples of integrative analysis of cell signaling are very encouraging. This review highlights the case of the NF-κB pathway in order to illustrate how a quantitative model of a signaling pathway can be gradually constructed through continuous experimental validation, and what lessons one might learn from such exercises. PMID:18291655

  8. Gravity Effects on Information Filtering and Network Evolving

    Science.gov (United States)

    Liu, Jin-Hu; Zhang, Zi-Ke; Chen, Lingjiao; Liu, Chuang; Yang, Chengcheng; Wang, Xueqi

    2014-01-01

    In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model. PMID:24622162

  9. Multivariable control system for dynamic PEM fuel cell model

    International Nuclear Information System (INIS)

    Tanislav, Vasile; Carcadea, Elena; Capris, Catalin; Culcer, Mihai; Raceanu, Mircea

    2010-01-01

    Full text: The main objective of this work was to develop a multivariable control system of robust type for a PEM fuel cells assembly. The system will be used in static and mobile applications for different values of power, generated by a fuel cell assembly of up to 10 kW. Intermediate steps were accomplished: a study of a multivariable control strategy for a PEM fuel cell assembly; a mathematic modeling of mass and heat transfer inside of fuel cell assembly, defining the response function to hydrogen and oxygen/air mass flow and inlet pressure changes; a testing stand for fuel cell assembly; experimental determinations of transient response for PEM fuel cell assembly, and more others. To define the multivariable control system for a PEM fuel cell assembly the parameters describing the system were established. Also, there were defined the generic mass and energy balance equations as functions of derivative of m i , in and m i , out , representing the mass going into and out from the fuel cell, while Q in is the enthalpy and Q out is the enthalpy of the unused reactant gases and heat produced by the product, Q dis is the heat dissipated to the surroundings, Q c is the heat taken away from the stack by active cooling and W el is the electricity generated. (authors)

  10. Sickle cell vaso-occlusion in an animal model

    International Nuclear Information System (INIS)

    Kurantsin-Mills, J.; Jacobs, H.M.; Lessin, L.S.

    1987-01-01

    Sickle cell disease is clinically characterized with vaso-occlusive painful crisis which is pleomorphic in terms of frequency of occurrence. The intracellular polymerization of deoxygenated hemoglobin S increases the internal viscosity of the sickle cells exponentially, concurrent with binding of hemoglobin S to the membrane and discocyte-drepanocyte transformation. As a result, the red cells in sickle cell disease are heterogenous with cells of varying density and mean corpuscular hemoglobin concentration which alter the rheological features of the blood in the microcirculation. The cellular, physiological, biochemical and rheological factors that contribute to the vaso-occlusive events are not completely understood. Nonetheless, recent clinical studies have demonstrated that a certain fraction of the dense cells disappear during sickle cell painful crisis. In an attempt to elucidate some of the cellular and rheological factors involved in the initiation of vaso-occlusion, the authors have employed intravital videomicroscopy and radionuclide imaging of indium-III labeled sickle cells to determine the dynamics and sites of vaso-occlusion using the rat exchanged-transfused with sickle (HbSS) erythrocytes as a model

  11. On the Benefits of Divergent Search for Evolved Representations

    DEFF Research Database (Denmark)

    Lehman, Joel; Risi, Sebastian; Stanley, Kenneth O

    2012-01-01

    Evolved representations in evolutionary computation are often fragile, which can impede representation-dependent mechanisms such as self-adaptation. In contrast, evolved representations in nature are robust, evolvable, and creatively exploit available representational features. This paper provide...

  12. Stochastic modeling of oligodendrocyte generation in cell culture: model validation with time-lapse data

    Directory of Open Access Journals (Sweden)

    Noble Mark

    2006-05-01

    Full Text Available Abstract Background The purpose of this paper is two-fold. The first objective is to validate the assumptions behind a stochastic model developed earlier by these authors to describe oligodendrocyte generation in cell culture. The second is to generate time-lapse data that may help biomathematicians to build stochastic models of cell proliferation and differentiation under other experimental scenarios. Results Using time-lapse video recording it is possible to follow the individual evolutions of different cells within each clone. This experimental technique is very laborious and cannot replace model-based quantitative inference from clonal data. However, it is unrivalled in validating the structure of a stochastic model intended to describe cell proliferation and differentiation at the clonal level. In this paper, such data are reported and analyzed for oligodendrocyte precursor cells cultured in vitro. Conclusion The results strongly support the validity of the most basic assumptions underpinning the previously proposed model of oligodendrocyte development in cell culture. However, there are some discrepancies; the most important is that the contribution of progenitor cell death to cell kinetics in this experimental system has been underestimated.

  13. Preface: evolving rotifers, evolving science: Proceedings of the XIV International Rotifer Symposium

    Czech Academy of Sciences Publication Activity Database

    Devetter, Miloslav; Fontaneto, D.; Jersabek, Ch.D.; Welch, D.B.M.; May, L.; Walsh, E.J.

    2017-01-01

    Roč. 796, č. 1 (2017), s. 1-6 ISSN 0018-8158 Institutional support: RVO:60077344 Keywords : evolving rotifers * 14th International Rotifer Symposium * evolving science Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.056, year: 2016

  14. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Directory of Open Access Journals (Sweden)

    Joseph A. Wayman

    2015-03-01

    Full Text Available Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data starting from an unbiased collection of possible allosteric structures using particle swarm optimization. However, when starting with an initial population that was heavily enriched with incorrect structures, our particle swarm approach could converge

  15. Mechanics of evolving thin film structures

    Science.gov (United States)

    Liang, Jim

    In the Stranski-Krastanov system, the lattice mismatch between the film and the substrate causes the film to break into islands. During annealing, both the surface energy and the elastic energy drive the islands to coarsen. Motivated by several related studies, we suggest that stable islands should form when a stiff ceiling is placed at a small gap above the film. We show that the role of elasticity is reversed: with the ceiling, the total elastic energy stored in the system increases as the islands coarsen laterally. Consequently, the islands select an equilibrium size to minimize the combined elastic energy and surface energy. In lithographically-induced self-assembly, when a two-phase fluid confined between parallel substrates is subjected to an electric field, one phase can self-assemble into a triangular lattice of islands in another phase. We describe a theory of the stability of the island lattice. The islands select the equilibrium diameter to minimize the combined interface energy and electrostatic energy. Furthermore, we study compressed SiGe thin film islands fabricated on a glass layer, which itself lies on a silicon wafer. Upon annealing, the glass flows, and the islands relax. A small island relaxes by in-plane expansion. A large island, however, wrinkles at the center before the in-plane relaxation arrives. The wrinkles may cause significant tensile stress in the island, leading to fracture. We model the island by the von Karman plate theory and the glass layer by the Reynolds lubrication theory. Numerical simulations evolve the in-plane expansion and the wrinkles simultaneously. We determine the critical island size, below which in-plane expansion prevails over wrinkling. Finally, in devices that integrate dissimilar materials in small dimensions, crack extension in one material often accompanies inelastic deformation in another. We analyze a channel crack advancing in an elastic film under tension, while an underlayer creeps. We use a two

  16. Discrete dynamic modeling of T cell survival signaling networks

    Science.gov (United States)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  17. Parameter resolution in two models for cell survival after radiation

    International Nuclear Information System (INIS)

    Di Cera, E.; Andreasi Bassi, F.; Arcovito, G.

    1989-01-01

    The resolvability of model parameters for the linear-quadratic and the repair-misrepair models for cell survival after radiation has been studied by Monte Carlo simulations as a function of the number of experimental data points collected in a given dose range and the experimental error. Statistical analysis of the results reveals the range of experimental conditions under which the model parameters can be resolved with sufficient accuracy, and points out some differences in the operational aspects of the two models. (orig.)

  18. Modelling real solar cell using PSCAD/MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Sergio; Silva, Marco; Fernandes, Filipe; Vale, Zita [Polytechnic of Porto (Portugal). GECAD - Knowledge Engineering and Decision Support Research Center

    2012-07-01

    This paper presents the development of a solar photovoltaic (PV) model based on PSCAD/EMTDC - Power System Computer Aided Design - including a mathematical model study. An additional algorithm has been implemented in MATLAB software in order to calculate several parameters required by the PSCAD developed model. All the simulation study has been performed in PSCAD/MATLAB software simulation tool. A real data base concerning irradiance, cell temperature and PV power generation was used in order to support the evaluation of the implemented PV model. (orig.)

  19. Comparison of Perturbed Pathways in Two Different Cell Models for Parkinson's Disease with Structural Equation Model.

    Science.gov (United States)

    Pepe, Daniele; Do, Jin Hwan

    2015-12-16

    Increasing evidence indicates that different morphological types of cell death coexist in the brain of patients with Parkinson's disease (PD), but the molecular explanation for this is still under investigation. In this study, we identified perturbed pathways in two different cell models for PD through the following procedures: (1) enrichment pathway analysis with differentially expressed genes and the Reactome pathway database, and (2) construction of the shortest path model for the enriched pathway and detection of significant shortest path model with fitting time-course microarray data of each PD cell model to structural equation model. Two PD cell models constructed by the same neurotoxin showed different perturbed pathways. That is, one showed perturbation of three Reactome pathways, including cellular senescence, chromatin modifying enzymes, and chromatin organization, while six modules within metabolism pathway represented perturbation in the other. This suggests that the activation of common upstream cell death pathways in PD may result in various down-stream processes, which might be associated with different morphological types of cell death. In addition, our results might provide molecular clues for coexistence of different morphological types of cell death in PD patients.

  20. Triple co-culture cell model as an in vitro model for oral particulate vaccine systems

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; De Rossi, C.; Lehr, C-M.

    ; this was not observed with ovalbumin and blank solution. An example of the results is shown in Figure 2 for IL-17A. An established co-culture of Caco-2, THP-1 and MUTZ-3 cells showed promise as an in vitro model for testing of oral vaccine formulations. Mobility of co-culture immune cells as well as cytokine production......A triple co-culture cell model of Caco-2 cells, dendritic cells and macrophages (Figure 1) has previously been developed for studying intestinal permeability in a state of inflammation [1],[2]. The aim of this study was to investigate the applicability of this cell model for testing...... the model antigen ovalbumin was spray dried to obtain a particulate vaccine model system for testing in the cell model. The precursors were shown to form cubosomes when dispersed in aqueous medium, and was therefore used as the vaccine formulation for testing on the co-cultures. After 11 days, the TEER...

  1. Views on Evolvability of Embedded Systems

    NARCIS (Netherlands)

    Laar, P. van de; Punter, T.

    2011-01-01

    Evolvability, the ability to respond effectively to change, represents a major challenge to today's high-end embedded systems, such as those developed in the medical domain by Philips Healthcare. These systems are typically developed by multi-disciplinary teams, located around the world, and are in

  2. Views on evolvability of embedded systems

    NARCIS (Netherlands)

    Laar, van de P.J.L.J.; Punter, H.T.

    2011-01-01

    Evolvability, the ability to respond effectively to change, represents a major challenge to today's high-end embedded systems, such as those developed in the medical domain by Philips Healthcare. These systems are typically developed by multi-disciplinary teams, located around the world, and are in

  3. Designing Garments to Evolve Over Time

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Grose, Lynda

    2017-01-01

    This paper proposes a REDO of the current fashion paradigm by investigating how garments might be designed to evolve over time. The purpose is to discuss ways of expanding the traditional role of the designer to include temporal dimensions of creating, producing and using clothes and to suggest...... to a REDO of design education, to further research and the future fashion and textile industry....

  4. Continual Learning through Evolvable Neural Turing Machines

    DEFF Research Database (Denmark)

    Lüders, Benno; Schläger, Mikkel; Risi, Sebastian

    2016-01-01

    Continual learning, i.e. the ability to sequentially learn tasks without catastrophic forgetting of previously learned ones, is an important open challenge in machine learning. In this paper we take a step in this direction by showing that the recently proposed Evolving Neural Turing Machine (ENTM...

  5. Did Language Evolve Like the Vertebrate Eye?

    Science.gov (United States)

    Botha, Rudolf P.

    2002-01-01

    Offers a critical appraisal of the way in which the idea that human language or some of its features evolved like the vertebrate eye by natural selection is articulated in Pinker and Bloom's (1990) selectionist account of language evolution. Argues that this account is less than insightful because it fails to draw some of the conceptual…

  6. Spatial organization of mesenchymal stem cells in vitro--results from a new individual cell-based model with podia.

    Directory of Open Access Journals (Sweden)

    Martin Hoffmann

    Full Text Available Therapeutic application of mesenchymal stem cells (MSC requires their extensive in vitro expansion. MSC in culture typically grow to confluence within a few weeks. They show spindle-shaped fibroblastoid morphology and align to each other in characteristic spatial patterns at high cell density. We present an individual cell-based model (IBM that is able to quantitatively describe the spatio-temporal organization of MSC in culture. Our model substantially improves on previous models by explicitly representing cell podia and their dynamics. It employs podia-generated forces for cell movement and adjusts cell behavior in response to cell density. At the same time, it is simple enough to simulate thousands of cells with reasonable computational effort. Experimental sheep MSC cultures were monitored under standard conditions. Automated image analysis was used to determine the location and orientation of individual cells. Our simulations quantitatively reproduced the observed growth dynamics and cell-cell alignment assuming cell density-dependent proliferation, migration, and morphology. In addition to cell growth on plain substrates our model captured cell alignment on micro-structured surfaces. We propose a specific surface micro-structure that according to our simulations can substantially enlarge cell culture harvest. The 'tool box' of cell migratory behavior newly introduced in this study significantly enhances the bandwidth of IBM. Our approach is capable of accommodating individual cell behavior and collective cell dynamics of a variety of cell types and tissues in computational systems biology.

  7. Automated Physico-Chemical Cell Model Development through Information Theory

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Ortoleva

    2005-11-29

    The objective of this project was to develop predictive models of the chemical responses of microbial cells to variations in their surroundings. The application of these models is optimization of environmental remediation and energy-producing biotechnical processes.The principles on which our project is based are as follows: chemical thermodynamics and kinetics; automation of calibration through information theory; integration of multiplex data (e.g. cDNA microarrays, NMR, proteomics), cell modeling, and bifurcation theory to overcome cellular complexity; and the use of multiplex data and information theory to calibrate and run an incomplete model. In this report we review four papers summarizing key findings and a web-enabled, multiple module workflow we have implemented that consists of a set of interoperable systems biology computational modules.

  8. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  9. Bayesian parameter estimation for stochastic models of biological cell migration

    Science.gov (United States)

    Dieterich, Peter; Preuss, Roland

    2013-08-01

    Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.

  10. Cell physiology based pharmacodynamic modeling of antimicrobial drug combinations

    OpenAIRE

    Hethey, Christoph Philipp

    2017-01-01

    Mathematical models of bacterial growth have been successfully applied to study the relationship between antibiotic drug exposure and the antibacterial effect. Since these models typically lack a representation of cellular processes and cell physiology, the mechanistic integration of drug action is not possible on the cellular level. The cellular mechanisms of drug action, however, are particularly relevant for the prediction, analysis and understanding of interactions between antibiotics. In...

  11. Artificial Neural Network Based Model of Photovoltaic Cell

    Directory of Open Access Journals (Sweden)

    Messaouda Azzouzi

    2017-03-01

    Full Text Available This work concerns the modeling of a photovoltaic system and the prediction of the sensitivity of electrical parameters (current, power of the six types of photovoltaic cells based on voltage applied between terminals using one of the best known artificial intelligence technique which is the Artificial Neural Networks. The results of the modeling and prediction have been well shown as a function of number of iterations and using different learning algorithms to obtain the best results. 

  12. The curvature calculation mechanism based on simple cell model.

    Science.gov (United States)

    Yu, Haiyang; Fan, Xingyu; Song, Aiqi

    2017-07-20

    A conclusion has not yet been reached on how exactly the human visual system detects curvature. This paper demonstrates how orientation-selective simple cells can be used to construct curvature-detecting neural units. Through fixed arrangements, multiple plurality cells were constructed to simulate curvature cells with a proportional output to their curvature. In addition, this paper offers a solution to the problem of narrow detection range under fixed resolution by selecting an output value under multiple resolution. Curvature cells can be treated as concrete models of an end-stopped mechanism, and they can be used to further understand "curvature-selective" characteristics and to explain basic psychophysical findings and perceptual phenomena in current studies.

  13. Theories and models on the biological of cells in space

    Science.gov (United States)

    Todd, P.; Klaus, D. M.

    1996-01-01

    A wide variety of observations on cells in space, admittedly made under constraining and unnatural conditions in may cases, have led to experimental results that were surprising or unexpected. Reproducibility, freedom from artifacts, and plausibility must be considered in all cases, even when results are not surprising. The papers in symposium on 'Theories and Models on the Biology of Cells in Space' are dedicated to the subject of the plausibility of cellular responses to gravity -- inertial accelerations between 0 and 9.8 m/sq s and higher. The mechanical phenomena inside the cell, the gravitactic locomotion of single eukaryotic and prokaryotic cells, and the effects of inertial unloading on cellular physiology are addressed in theoretical and experimental studies.

  14. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes

    Directory of Open Access Journals (Sweden)

    Yuan Xie

    2015-10-01

    Full Text Available Glioblastoma (GBM is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs. To meet the present shortage of relevant GBM cell (GC lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.

  15. Experimental Characterization and Modeling of PEM Fuel Cells

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk

    fundamental knowledge of the transport and electrochemical processes of PEM fuel cells and to provide methods for obtaining high quality data for PEM fuel cell simulation model validation. In this thesis three different areas of experimental characterization techniques was investigated, they include: Stack...... for obtaining very detailed data of the manifold flow. Moreover, the tools complement each other well, as high quality validation data can be obtained from PIV measurements to verify CFD models. AC Impedance Spectroscopy was used to thoroughly characterize a HTPEM single cell. The measurement method...... was furthermore transferred onto a Labview platform, which signiffcantly improves the exibility and lowers the cost of using this method. This technique is expected to bea very important future tool, used both for material characterization, celldiagnostic, system optimization and as a control input parameter...

  16. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  17. Pluripotent stem cells: An in vitro model for nanotoxicity assessments.

    Science.gov (United States)

    Handral, Harish K; Tong, Huei Jinn; Islam, Intekhab; Sriram, Gopu; Rosa, Vinicus; Cao, Tong

    2016-10-01

    The advent of technology has led to an established range of engineered nanoparticles that are used in diverse applications, such as cell-cell interactions, cell-material interactions, medical therapies and the target modulation of cellular processes. The exponential increase in the utilization of nanomaterials and the growing number of associated criticisms has highlighted the potential risks of nanomaterials to human health and the ecosystem. The existing in vivo and in vitro platforms show limitations, with fluctuations being observed in the results of toxicity assessments. Pluripotent stem cells (PSCs) are viable source of cells that are capable of developing into specialized cells of the human body. PSCs can be efficiently used to screen new biomaterials/drugs and are potential candidates for studying impairments of biophysical morphology at both the cellular and tissue levels during interactions with nanomaterials and for diagnosing toxicity. Three-dimensional in vitro models obtained using PSC-derived cells would provide a realistic, patient-specific platform for toxicity assessments and in drug screening applications. The current review focuses on PSCs as an alternative in vitro platform for assessing the hazardous effects of nanomaterials on health systems and highlights the importance of PSC-derived in vitro platforms. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Modeling single cell antibody excretion on a biosensor

    NARCIS (Netherlands)

    Stojanovic, Ivan; Baumgartner, W.; van der Velden, T.J.G.; Terstappen, Leonardus Wendelinus Mathias Marie; Schasfoort, Richardus B.M.

    2016-01-01

    We simulated, using Comsol Multiphysics, the excretion of antibodies by single hybridoma cells and their subsequent binding on a surface plasmon resonance imaging (SPRi) sensor. The purpose was to confirm that SPRi is suitable to accurately quantify antibody (anti-EpCAM) excretion. The model showed

  19. Improving Perovskite Solar Cells: Insights From a Validated Device Model

    NARCIS (Netherlands)

    Sherkar, Tejas S.; Momblona, Cristina; Gil-Escrig, Lidon; Bolink, Henk J.; Koster, L. Jan Anton

    2017-01-01

    To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of

  20. Stem Cells as In Vitro Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Patricia L. Martínez-Morales

    2012-01-01

    Full Text Available Progress in understanding neurodegenerative cell biology in Parkinson's disease (PD has been hampered by a lack of predictive and relevant cellular models. In addition, the lack of an adequate in vitro human neuron cell-based model has been an obstacle for the uncover of new drugs for treating PD. The ability to generate induced pluripotent stem cells (iPSCs from PD patients and a refined capacity to differentiate these iPSCs into DA neurons, the relevant disease cell type, promises a new paradigm in drug development that positions human disease pathophysiology at the core of preclinical drug discovery. Disease models derived from iPSC that manifest cellular disease phenotypes have been established for several monogenic diseases, but iPSC can likewise be used for phenotype-based drug screens in complex diseases for which the underlying genetic mechanism is unknown. Here, we highlight recent advances as well as limitations in the use of iPSC technology for modelling PD “in a dish” and for testing compounds against human disease phenotypes in vitro. We discuss how iPSCs are being exploited to illuminate disease pathophysiology, identify novel drug targets, and enhance the probability of clinical success of new drugs.

  1. Clustering impact regime with shocks in freely evolving granular gas

    Science.gov (United States)

    Isobe, Masaharu

    2017-06-01

    A freely cooling granular gas without any external force evolves from the initial homogeneous state to the inhomogeneous clustering state, at which the energy decay deviates from the Haff's law. The asymptotic behavior of energy in the inelastic hard sphere model have been predicted by several theories, which are based on the mode coupling theory or extension of inelastic hard rods gas. In this study, we revisited the clustering regime of freely evolving granular gas via large-scale molecular dynamics simulation with up to 16.7 million inelastic hard disks. We found novel regime regarding on collisions between "clusters" spontaneously appearing after clustering regime, which can only be identified more than a few million particles system. The volumetric dilatation pattern of semicircular shape originated from density shock propagation are well characterized on the appearing of "cluster impact" during the aggregation process of clusters.

  2. Models for Microbial Fuel Cells: A critical review

    Science.gov (United States)

    Xia, Chengshuo; Zhang, Daxing; Pedrycz, Witold; Zhu, Yingmin; Guo, Yongxian

    2018-01-01

    Microbial fuel cells (MFCs) have been widely viewed as one of the most promising alternative sources of renewable energy. A recognition of needs of efficient development methods based on multidisciplinary research becomes crucial for the optimization of MFCs. Modeling of MFCs is an effective way for not only gaining a thorough understanding of the effects of operation conditions on the performance of power generation but also becomes of essential interest to the successful implementation of MFCs. The MFC models encompass the underlying reaction process and limiting factors of the MFC. The models come in various forms, such as the mathematical equations or the equivalent circuits. Different modeling focuses and approaches of the MFC have emerged. In this study, we present a state of the art of MFCs modeling; the past modeling methods are reviewed as well. Models and modeling methods are elaborated on based on the classification provided by Mechanism-based models and Application-based models. Mechanisms, advantages, drawbacks, and application fields of different models are illustrated as well. We exhibit a complete and comprehensive exposition of the different models for MFCs and offer further guidance to promote the performance of MFCs.

  3. In vitro activation of retinal cells: estimating location of stimulated cell by using a mathematical model

    Science.gov (United States)

    Ziv, Ofer R.; Rizzo, Joseph F., III; Jensen, Ralph J.

    2005-03-01

    Activation of neurons at different depths within the retina and at various eccentricities from the stimulating electrode will presumably influence the visual percepts created by a retinal prosthesis. With an electrical prosthesis, neurons will be activated in relation to the stimulating charge that impacts their cell membranes. The common model used to predict charge density is Coulomb's law, also known as the square law. We propose a modified model that can be used to predict neuronal depth that takes into account: (1) finite dimensions related to the position and size of the stimulating and return electrodes and (2) two-dimensional displacements of neurons with respect to the electrodes, two factors that are not considered in the square law model. We tested our model by using in vitro physiological threshold data that we had obtained previously for eight OFF-center brisk-transient rabbit retinal ganglion cells. For our most spatially dense threshold data (25 µm increments up to 100 µm from the cell body), our model estimated the depth of one RGC to be 76 ± 76 µm versus 87 ± 62 µm (median: SD) for the square law model, respectively. This difference was not statistically significant. For the seven other RGCs for which we had obtained threshold data up to 800 µm from the cell body, the estimate of the RGC depth (using data obtained along the X axis) was 96 ± 74 versus 20 ± 20 µm for the square law and our modified model, respectively. Although this difference was not statistically significant (Student t-test: p = 0.12), our model provided median values much closer to the estimated depth of these RGCs (Gt25 µm). This more realistic estimate of cell depth predicted by our model is not unexpected in this latter data set because of the more spatially distributed threshold data points that were evaluated. Our model has theoretical advantages over the traditional square law model under certain conditions, especially when considering neurons that are

  4. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines.

    Directory of Open Access Journals (Sweden)

    Andreas Krieg

    Full Text Available Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN according to their proliferation index into G1- or G2-neuroendocrine tumors (NET and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC. Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1 or lymph node metastases (NEC-DUE2 from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.

  5. Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells

    KAUST Repository

    Black, J. P.

    2013-10-22

    In screen-printed silicon-crystalline solar cells, the contact resistance of a thin interfacial glass layer between the silicon and the silver electrode plays a limiting role for electron transport. We analyze a simple model for electron transport across this layer, based on the driftdiffusion equations. We utilize the size of the current/Debye length to conduct asymptotic techniques to simplify the model; we solve the model numerically to find that the effective contact resistance may be a monotonic increasing, monotonic decreasing, or nonmonotonic function of the electron flux, depending on the values of the physical parameters. © 2013 Society for Industrial and Applied Mathematics.

  6. Experimental Human Cell and Tissue Models of Pemphigus

    Science.gov (United States)

    van der Wier, Gerda; Pas, Hendri H.; Jonkman, Marcel F.

    2010-01-01

    Pemphigus is a chronic mucocutaneous autoimmune bullous disease that is characterized by loss of cell-cell contact in skin and/or mucous membranes. Past research has successfully identified desmosomes as immunological targets and has demonstrated that acantholysis is initiated through direct binding of IgG. The exact mechanisms of acantholysis, however, are still missing. Experimental model systems have contributed considerably to today's knowledge and are still a favourite tool of research. In this paper we will describe to what extent human cell and tissue models represent the in vivo situation, for example, organ cultures of human skin, keratinocyte cultures, and human skin grafted on mice and, furthermore, how suitable they are to study the pathogenesis of pemphigus. Organ cultures closely mimic the architecture of the epidermis but are less suitable to answer posed biochemical questions. Cultured keratinocyte monolayers are convenient in this respect, but their desmosomal make-up in terms of adhesion molecules does not exactly reflect the in vivo situation. Reconstituted skin is a relatively new model that approaches organ culture. In models of human skin grafted on mice, acantholysis can be studied in actual human skin but now with all the advantages of an animal model. PMID:20585596

  7. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Yang, Chunbo; Al-Aama, Jumana; Stojkovic, Miodrag; Keavney, Bernard; Trafford, Andrew; Lako, Majlinda; Armstrong, Lyle

    2015-09-01

    Genetic cardiac diseases are major causes of morbidity and mortality. Although animal models have been created to provide some useful insights into the pathogenesis of genetic cardiac diseases, the significant species differences and the lack of genetic information for complex genetic diseases markedly attenuate the application values of such data. Generation of induced pluripotent stem cells (iPSCs) from patient-specific specimens and subsequent derivation of cardiomyocytes offer novel avenues to study the mechanisms underlying cardiac diseases, to identify new causative genes, and to provide insights into the disease aetiology. In recent years, the list of human iPSC-based models for genetic cardiac diseases has been expanding rapidly, although there are still remaining concerns on the level of functionality of iPSC-derived cardiomyocytes and their ability to be used for modeling complex cardiac diseases in adults. This review focuses on the development of cardiomyocyte induction from pluripotent stem cells, the recent progress in heart disease modeling using iPSC-derived cardiomyocytes, and the challenges associated with understanding complex genetic diseases. To address these issues, we examine the similarity between iPSC-derived cardiomyocytes and their ex vivo counterparts and how this relates to the method used to differentiate the pluripotent stem cells into a cardiomyocyte phenotype. We progress to examine categories of congenital cardiac abnormalities that are suitable for iPSC-based disease modeling. © AlphaMed Press.

  8. A Weighted Evolving Network with Community Size Preferential Attachment

    International Nuclear Information System (INIS)

    Zhuo Zhiwei; Shan Erfang

    2010-01-01

    Community structure is an important characteristic in real complex network. It is a network consists of groups of nodes within which links are dense but among which links are sparse. In this paper, the evolving network include node, link and community growth and we apply the community size preferential attachment and strength preferential attachment to a growing weighted network model and utilize weight assigning mechanism from BBV model. The resulting network reflects the intrinsic community structure with generalized power-law distributions of nodes' degrees and strengths.

  9. f(R) gravity solutions for evolving wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Subhra [Presidency University, Department of Mathematics, Kolkata (India); Chakraborty, Subenoy [Jadavpur University, Department of Mathematics, Kolkata (India)

    2017-08-15

    The scalar-tensor f(R) theory of gravity is considered in the framework of a simple inhomogeneous space-time model. In this research we use the reconstruction technique to look for possible evolving wormhole solutions within viable f(R) gravity formalism. These f(R) models are then constrained so that they are consistent with existing experimental data. Energy conditions related to the matter threading the wormhole are analyzed graphically and are in general found to obey the null energy conditions (NEC) in regions around the throat, while in the limit f(R) = R, NEC can be violated at large in regions around the throat. (orig.)

  10. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.

    Science.gov (United States)

    Garijo, N; Manzano, R; Osta, R; Perez, M A

    2012-12-07

    Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Cancer Modeling: From Optimal Cell Renewal to Immunotherapy

    Science.gov (United States)

    Alvarado Alvarado, Cesar Leonardo

    Cancer is a disease caused by mutations in normal cells. According to the National Cancer Institute, in 2016, an estimated 1.6 million people were diagnosed and approximately 0.5 million people died from the disease in the United States. There are many factors that shape cancer at the cellular and organismal level, including genetic, immunological, and environmental components. In this thesis, we show how mathematical modeling can be used to provide insight into some of the key mechanisms underlying cancer dynamics. First, we use mathematical modeling to investigate optimal homeostatic cell renewal in tissues such as the small intestine with an emphasis on division patterns and tissue architecture. We find that the division patterns that delay the accumulation of mutations are strictly associated with the population sizes of the tissue. In particular, patterns with long chains of differentiation delay the time to observe a second-hit mutant, which is important given that for many cancers two mutations are enough to initiate a tumor. We also investigated homeostatic cell renewal under a selective pressure and find that hierarchically organized tissues act as suppressors of selection; we find that an architecture with a small number of stem cells and larger pools of transit amplifying cells and mature differentiated cells, together with long chains of differentiation, form a robust evolutionary strategy to delay the time to observe a second-hit mutant when mutations acquire a fitness advantage or disadvantage. We also formulate a model of the immune response to cancer in the presence of costimulatory and inhibitory signals. We demonstrate that the coordination of such signals is crucial to initiate an effective immune response, and while immunotherapy has become a promising cancer treatment over the past decade, these results offer some explanations for why it can fail.

  12. Perspectives for computational modeling of cell replacement for neurological disorders

    Directory of Open Access Journals (Sweden)

    James B Aimone

    2013-11-01

    Full Text Available Mathematical modeling of anatomically-constrained neural networks has provided significant insights regarding the response of networks to neurological disorders or injury. A logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons can impact circuit behavior in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.

  13. Local stem cell depletion model for radiation myelitis

    International Nuclear Information System (INIS)

    Yaes, R.J.; Kalend, A.

    1988-01-01

    We propose a model for normal tissue damage based on the assumption that adult mammalian stem cells have limited mobility and, consequently, for each organ, there is a maximum volume (the critical volume, Vc), that can be repopulated and repaired by a single surviving stem cell. This concept is applied to a simple, 1-dimensional model of the spinal cord, where the critical volume is a slice of thickness, t, assumed to be small compared to lengths of spinal cord usually irradiated clinically. The probability of myelitis is explicitly obtained as a function of the dose, dose per fraction, length of cord irradiated, slice thickness, number of stem cells per slice and parameters alpha and beta of the stem cell survival curve. The complication probability is expressed as a triple negative exponential function of dose analogous to the double negative exponential function for tumor control, resulting in a steep dose-response curve with short tails in both the high dose and low dose regions. We show that the model predictions are compatible with the experimental data for radiation myelitis in the rat. We discuss how this concept can be applied to other organs such as skin and to organs composed of structurally and functionally distinct subunits, such as the kidney

  14. A system identification approach for developing model predictive controllers of antibody quality attributes in cell culture processes.

    Science.gov (United States)

    Downey, Brandon; Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey

    2017-11-01

    As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed-batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647-1661, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  15. A quality risk management model approach for cell therapy manufacturing.

    Science.gov (United States)

    Lopez, Fabio; Di Bartolo, Chiara; Piazza, Tommaso; Passannanti, Antonino; Gerlach, Jörg C; Gridelli, Bruno; Triolo, Fabio

    2010-12-01

    International regulatory authorities view risk management as an essential production need for the development of innovative, somatic cell-based therapies in regenerative medicine. The available risk management guidelines, however, provide little guidance on specific risk analysis approaches and procedures applicable in clinical cell therapy manufacturing. This raises a number of problems. Cell manufacturing is a poorly automated process, prone to operator-introduced variations, and affected by heterogeneity of the processed organs/tissues and lot-dependent variability of reagent (e.g., collagenase) efficiency. In this study, the principal challenges faced in a cell-based product manufacturing context (i.e., high dependence on human intervention and absence of reference standards for acceptable risk levels) are identified and addressed, and a risk management model approach applicable to manufacturing of cells for clinical use is described for the first time. The use of the heuristic and pseudo-quantitative failure mode and effect analysis/failure mode and critical effect analysis risk analysis technique associated with direct estimation of severity, occurrence, and detection is, in this specific context, as effective as, but more efficient than, the analytic hierarchy process. Moreover, a severity/occurrence matrix and Pareto analysis can be successfully adopted to identify priority failure modes on which to act to mitigate risks. The application of this approach to clinical cell therapy manufacturing in regenerative medicine is also discussed. © 2010 Society for Risk Analysis.

  16. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  17. Giant Glial Cell: New Insight Through Mechanism-Based Modeling

    DEFF Research Database (Denmark)

    Postnov, D. E.; Ryazanova, L. S.; Brazhe, Nadezda

    2008-01-01

    The paper describes a detailed mechanism-based model of a tripartite synapse consisting of P- and R-neurons together with a giant glial cell in the ganglia of the medical leech (Hirudo medicinalis), which is a useful object for experimental studies in situ. We describe the two main pathways...... of the glial cell activation: (1) via IP3 production and Ca2+ release from the endoplasmic reticulum and (2) via increase of the extracellular potassium concentration, glia depolarization, and opening of voltage-dependent Ca2+ channels. We suggest that the second pathway is the more significant...

  18. Photon absorption models in nanostructured semiconductor solar cells and devices

    CERN Document Server

    Luque, Antonio

    2015-01-01

    This book is intended to be used by materials and device physicists and also solar cells researchers. It models the performance characteristics of nanostructured solar cells and resolves the dynamics of transitions between several levels of these devices. An outstanding insight into the physical behaviour of these devices is provided, which complements experimental work. This therefore allows a better understanding of the results, enabling the development of new experiments and optimization of new devices. It is intended to be accessible to researchers, but also to provide engineering tools w

  19. A probabilistic model for cell population phenotyping using HCS data.

    Directory of Open Access Journals (Sweden)

    Edouard Pauwels

    Full Text Available High Content Screening (HCS platforms allow screening living cells under a wide range of experimental conditions and give access to a whole panel of cellular responses to a specific treatment. The outcome is a series of cell population images. Within these images, the heterogeneity of cellular response to the same treatment leads to a whole range of observed values for the recorded cellular features. Consequently, it is difficult to compare and interpret experiments. Moreover, the definition of phenotypic classes at a cell population level remains an open question, although this would ease experiments analyses. In the present work, we tackle these two questions. The input of the method is a series of cell population images for which segmentation and cellular phenotype classification has already been performed. We propose a probabilistic model to represent and later compare cell populations. The model is able to fully exploit the HCS-specific information: "dependence structure of population descriptors" and "within-population variability". The experiments we carried out illustrate how our model accounts for this specific information, as well as the fact that the model benefits from considering them. We underline that these features allow richer HCS data analysis than simpler methods based on single cellular feature values averaged over each well. We validate an HCS data analysis method based on control experiments. It accounts for HCS specificities that were not taken into account by previous methods but have a sound biological meaning. Biological validation of previously unknown outputs of the method constitutes a future line of work.

  20. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  1. The evolving definition of systemic arterial hypertension.

    Science.gov (United States)

    Ram, C Venkata S; Giles, Thomas D

    2010-05-01

    Systemic hypertension is an important risk factor for premature cardiovascular disease. Hypertension also contributes to excessive morbidity and mortality. Whereas excellent therapeutic options are available to treat hypertension, there is an unsettled issue about the very definition of hypertension. At what level of blood pressure should we treat hypertension? Does the definition of hypertension change in the presence of co-morbid conditions? This article covers in detail the evolving concepts in the diagnosis and management of hypertension.

  2. The evolving epidemiology of inflammatory bowel disease.

    LENUS (Irish Health Repository)

    Shanahan, Fergus

    2009-07-01

    Epidemiologic studies in inflammatory bowel disease (IBD) include assessments of disease burden and evolving patterns of disease presentation. Although it is hoped that sound epidemiologic studies provide aetiological clues, traditional risk factor-based epidemiology has provided limited insights into either Crohn\\'s disease or ulcerative colitis etiopathogenesis. In this update, we will summarize how the changing epidemiology of IBD associated with modernization can be reconciled with current concepts of disease mechanisms and will discuss studies of clinically significant comorbidity in IBD.

  3. Quantum games on evolving random networks

    OpenAIRE

    Pawela, Łukasz

    2015-01-01

    We study the advantages of quantum strategies in evolutionary social dilemmas on evolving random networks. We focus our study on the two-player games: prisoner's dilemma, snowdrift and stag-hunt games. The obtained result show the benefits of quantum strategies for the prisoner's dilemma game. For the other two games, we obtain regions of parameters where the quantum strategies dominate, as well as regions where the classical strategies coexist.

  4. The Evolving Leadership Path of Visual Analytics

    Energy Technology Data Exchange (ETDEWEB)

    Kluse, Michael; Peurrung, Anthony J.; Gracio, Deborah K.

    2012-01-02

    This is a requested book chapter for an internationally authored book on visual analytics and related fields, coordianted by a UK university and to be published by Springer in 2012. This chapter is an overview of the leadship strategies that PNNL's Jim Thomas and other stakeholders used to establish visual analytics as a field, and how those strategies may evolve in the future.

  5. MarCell trademark software for modeling bone marrow radiation cell kinetics

    International Nuclear Information System (INIS)

    Hasan, J.S.; Jones, T.D.; Morris, M.D.

    1997-01-01

    Differential equations were used to model cellular injury, repair, and compensatory proliferation in the irradiated bone marrow. Recently, that model was implemented as MarCell trademark, a user-friendly MS-DOS computer program that allows users from a variety of technical disciplines to evaluate complex radiation exposure. The software allows menu selections for different sources of ionizing radiation. Choices for cell lineages include progenitor, stroma, and malignant, and the available species include mouse, rat, dog, sheep, swine, burro, and man. An attractive feature is that any protracted irradiation can be compared with an equivalent prompt dose (EPD) in terms of cell kinetics for either the source used or for a reference such as 250 kVp x rays or 60 Co. EPD is used to mean a dose rate for which no meaningful biological recovery occurs during the period of irradiation. For human as species, output from MarCell trademark includes: risk of 30-day mortality; risk of whole-body cancer and leukemia based either on radiation-induced cytopenia or compensatory cell proliferation; cell survival and repopulation plots as functions of time or dose; and 4-week recovery following treatment. copyright 1997 American Association of Physicists in Medicine

  6. Good Cell Culture Practice for stem cells and stem-cell-derived models.

    Science.gov (United States)

    Pamies, David; Bal-Price, Anna; Simeonov, Anton; Tagle, Danilo; Allen, Dave; Gerhold, David; Yin, Dezhong; Pistollato, Francesca; Inutsuka, Takashi; Sullivan, Kristie; Stacey, Glyn; Salem, Harry; Leist, Marcel; Daneshian, Mardas; Vemuri, Mohan C; McFarland, Richard; Coecke, Sandra; Fitzpatrick, Suzanne C; Lakshmipathy, Uma; Mack, Amanda; Wang, Wen Bo; Yamazaki, Daiju; Sekino, Yuko; Kanda, Yasunari; Smirnova, Lena; Hartung, Thomas

    2017-01-01

    The first guidance on Good Cell Culture Practice (GCCP) dates back to 2005. This document expands this to include aspects of quality assurance for in vitro cell culture focusing on the increasingly diverse cell types and culture formats used in research, product development, testing and manufacture of biotechnology products and cell-based medicines. It provides a set of basic principles of best practice that can be used in training new personnel, reviewing and improving local procedures, and helping to assure standard practices and conditions for the comparison of data between laboratories and experimentation performed at different times. This includes recommendations for the documentation and reporting of culture conditions. It is intended as guidance to facilitate the generation of reliable data from cell culture systems, and is not intended to conflict with local or higher level legislation or regulatory requirements. It may not be possible to meet all recommendations in this guidance for practical, legal or other reasons. However, when it is necessary to divert from the principles of GCCP, the risk of decreasing the quality of work and the safety of laboratory staff should be addressed and any conclusions or alternative approaches justified. This workshop report is considered a first step toward a revised GCCP 2.0.

  7. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  8. Evolving artificial metalloenzymes via random mutagenesis

    Science.gov (United States)

    Yang, Hao; Swartz, Alan M.; Park, Hyun June; Srivastava, Poonam; Ellis-Guardiola, Ken; Upp, David M.; Lee, Gihoon; Belsare, Ketaki; Gu, Yifan; Zhang, Chen; Moellering, Raymond E.; Lewis, Jared C.

    2018-03-01

    Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N-H, S-H and Si-H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.

  9. Induced pluripotent stem cells (iPSC)-derived retinal cells in disease modeling and regenerative medicine.

    Science.gov (United States)

    Rathod, Reena; Surendran, Harshini; Battu, Rajani; Desai, Jogin; Pal, Rajarshi

    2018-02-12

    Retinal degenerative disorders are a leading cause of the inherited, irreversible and incurable vision loss. While various rodent model systems have provided crucial information in this direction, lack of disease-relevant tissue availability and species-specific differences have proven to be a major roadblock. Human induced pluripotent stem cells (iPSC) have opened up a whole new avenue of possibilities not just in understanding the disease mechanism but also potential therapeutic approaches towards a cure. In this review, we have summarized recent advances in the methods of deriving retinal cell types from iPSCs which can serve as a renewable source of disease-relevant cell population for basic as well as translational studies. We also provide an overview of the ongoing efforts towards developing a suitable in vitro model for modeling retinal degenerative diseases. This basic understanding in turn has contributed to advances in translational goals such as drug screening and cell-replacement therapies. Furthermore we discuss gene editing approaches for autologous repair of genetic disorders and allogeneic transplantation of stem cell-based retinal derivatives for degenerative disorders with an ultimate goal to restore vision. It is pertinent to note however, that these exciting new developments throw up several challenges that need to be overcome before their full clinical potential can be realized. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Computer modeling describes gravity-related adaptation in cell cultures.

    Science.gov (United States)

    Alexandrov, Ludmil B; Alexandrova, Stoyana; Usheva, Anny

    2009-12-16

    Questions about the changes of biological systems in response to hostile environmental factors are important but not easy to answer. Often, the traditional description with differential equations is difficult due to the overwhelming complexity of the living systems. Another way to describe complex systems is by simulating them with phenomenological models such as the well-known evolutionary agent-based model (EABM). Here we developed an EABM to simulate cell colonies as a multi-agent system that adapts to hyper-gravity in starvation conditions. In the model, the cell's heritable characteristics are generated and transferred randomly to offspring cells. After a qualitative validation of the model at normal gravity, we simulate cellular growth in hyper-gravity conditions. The obtained data are consistent with previously confirmed theoretical and experimental findings for bacterial behavior in environmental changes, including the experimental data from the microgravity Atlantis and the Hypergravity 3000 experiments. Our results demonstrate that it is possible to utilize an EABM with realistic qualitative description to examine the effects of hypergravity and starvation on complex cellular entities.

  11. Modeling plasma behavior in a plasma electrode Pockels cell

    International Nuclear Information System (INIS)

    Boley, C.D.; Rhodes, M.A.

    1999-01-01

    The authors present three interrelated models of plasma behavior in a plasma electrode Pockels cell (PEPC). In a PEPC, plasma discharges are formed on both sides of a thin, large-aperture electro-optic crystal (typically KDP). The plasmas act as optically transparent, highly conductive electrodes, allowing uniform application of a longitudinal field to induce birefringence in the crystal. First, they model the plasma in the thin direction, perpendicular to the crystal, via a one-dimensional fluid model. This yields the electron temperature and the density and velocity profiles in this direction as functions of the neutral pressure, the plasma channel width, and the discharge current density. Next, they model the temporal response of the crystal to the charging process, combining a circuit model with a model of the sheath which forms near the crystal boundary. This model gives the time-dependent voltage drop across the sheath as a function of electron density at the sheath entrance. Finally, they develop a two-dimensional MHD model of the planar plasma, in order to calculate the response of the plasma to magnetic fields. They show how the plasma uniformity is affected by the design of the current return, by the longitudinal field from the cathode magnetron, and by fields from other sources. This model also gives the plasma sensitivity to the boundary potential at which the top and bottom of the discharge are held. They validate these models by showing how they explain observations in three large Pockels cells built at Lawrence Livermore National Laboratory

  12. EVOLVE : a Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II

    CERN Document Server

    Coello, Carlos; Tantar, Alexandru-Adrian; Tantar, Emilia; Bouvry, Pascal; Moral, Pierre; Legrand, Pierrick; EVOLVE 2012

    2013-01-01

    This book comprises a selection of papers from the EVOLVE 2012 held in Mexico City, Mexico. The aim of the EVOLVE is to build a bridge between probability, set oriented numerics and evolutionary computing, as to identify new common and challenging research aspects. The conference is also intended to foster a growing interest for robust and efficient methods with a sound theoretical background. EVOLVE is intended to unify theory-inspired methods and cutting-edge techniques ensuring performance guarantee factors. By gathering researchers with different backgrounds, a unified view and vocabulary can emerge where the theoretical advancements may echo in different domains. Summarizing, the EVOLVE focuses on challenging aspects arising at the passage from theory to new paradigms and aims to provide a unified view while raising questions related to reliability,  performance guarantees and modeling. The papers of the EVOLVE 2012 make a contribution to this goal. 

  13. Impact of the spatial distribution of morphological pattern on the efficiency of electrocatalytic gas evolving reactions

    Directory of Open Access Journals (Sweden)

    Žerađanin Aleksandar R.

    2014-01-01

    Full Text Available The efficiency of electrocatalytic gas evolving reactions (hydrogen, chlorine and oxygen evolution is a key challenge for the important industrial processes, such as chlor-alkali electrolysis or water electrolysis. Central issue for the aforementioned electrocatalytic processes is huge power consumption. Experimental results accumulated in the past, as well as some predictive models ("volcano" plots indicate that altering the nature of the electrode material cannot significantly increase the activity of mentioned reactions. Consequently, it is necessary to find a qualitatively different strategy for improving the energy efficiency of electrocatalytic gas evolving reactions. Usually disregarded fact is that the gas evolution is an oscillatory phenomenon. Given the oscillatory behavior, a key parameter of macrokinetics of gas electrode is the frequency of gas-bubble detachment. Bearing in mind that the gas evolution greatly depends on the surface morphology, a methodology is proposed that establishes a rational link between the morphological pattern of electrode with electrode activity and stability. Characterization was performed using advanced analytical tools. Frequency of gas-bubble detachment is obtained in the configuration of scanning electrochemical microscopy (SECM while the corrosion stability is analyzed using miniaturized scanning flow electrochemical cell connected to the mass spectrometer (SFC-ICPMS.

  14. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth A. LaMarca

    2018-04-01

    Full Text Available Human-induced pluripotent stem cells (hiPSCs have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional “mini-brains” and clustered, regularly interspersed short palindromic repeats (CRISPR-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson’s disease, and consider the future of this groundbreaking research.

  15. Antisense downregulation of mutant huntingtin in a cell model

    DEFF Research Database (Denmark)

    Hasholt, L.; Abell, K.; Norremolle, A.

    2003-01-01

    or by addition to the culture medium. Results Expression of the fusion protein containing the mutant huntingtin fragment resulted in diffuse green fluorescence in the cytoplasm and formation of aggregates in some of the NT2 cells and NT2-N neurons. We obtained antisense sequence-specific inhibition of expression...... of the fusion protein and/or suppression of the aggregate formation in both cell types. In the NT2 cells the antisense effect was dependent on the way of administration of the oligo. Conclusions The PS-antisense oligo is effective in downregulation of mutant huntingtin, and the reduction of aggregate formation...... is a sensitive biological marker. The findings suggest that antisense knockdown of huntingtin could be a useful strategy for treatment of HD, and could also be suitable for studies of the normal and pathological function of huntingtin in different cellular model systems....

  16. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  17. Dynamical analysis of uterine cell electrical activity model.

    Science.gov (United States)

    Rihana, S; Santos, J; Mondie, S; Marque, C

    2006-01-01

    The uterus is a physiological system consisting of a large number of interacting smooth muscle cells. The uterine excitability changes remarkably with time, generally quiescent during pregnancy, the uterus exhibits forceful synchronized contractions at term leading to fetus expulsion. These changes characterize thus a dynamical system susceptible of being studied through formal mathematical tools. Multiple physiological factors are involved in the regulation process of this complex system. Our aim is to relate the physiological factors to the uterine cell dynamic behaviors. Taking into account a previous work presented, in which the electrical activity of a uterine cell is described by a set of ordinary differential equations, we analyze the impact of physiological parameters on the response of the model, and identify the main subsystems generating the complex uterine electrical activity, with respect to physiological data.

  18. A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction.

    Science.gov (United States)

    Heck, T A M; Wilson, W; Foolen, J; Cilingir, A C; Ito, K; van Donkelaar, C C

    2015-03-18

    Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Transport Studies and Modeling in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney K. [Giner, Inc., Auburndale, MA (United States); Xu, Hui [Giner, Inc., Auburndale, MA (United States); Brawn, Shelly [Giner, Inc., Auburndale, MA (United States)

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  20. Evolving insights on metabolism, autophagy and epigenetics in liver myofibroblasts

    Directory of Open Access Journals (Sweden)

    Zeribe Chike Nwosu

    2016-06-01

    Full Text Available Liver myofibroblasts (MFB are crucial mediators of extracellular matrix (ECM deposition in liver fibrosis. They arise mainly from hepatic stellate cells (HSCs upon a process termed activation. To a lesser extent, and depending on the cause of liver damage, portal fibroblasts, mesothelial cells and fibrocytes may also contribute to the MFB population. Targeting MFB to reduce liver fibrosis is currently an area of intense research. Unfortunately, a clog in the wheel of antifibrotic therapies is the fact that although MFB are known to mediate scar formation, and participate in liver inflammatory response, many of their molecular portraits are currently unknown. In this review, we discuss recent understanding of MFB in health and diseases, focusing specifically on three evolving research fields: metabolism, autophagy and epigenetics. We have emphasized on therapeutic prospects where applicable and mentioned techniques for use in MFB studies. Subsequently, we highlighted uncharted territories in MFB research to help direct future efforts aimed at bridging gaps in current knowledge.