WorldWideScience

Sample records for evolutionary biology perspective

  1. Evolutionary perspectives into placental biology and disease.

    Science.gov (United States)

    Chuong, Edward B; Hannibal, Roberta L; Green, Sherril L; Baker, Julie C

    2013-12-01

    In all mammals including humans, development takes place within the protective environment of the maternal womb. Throughout gestation, nutrients and waste products are continuously exchanged between mother and fetus through the placenta. Despite the clear importance of the placenta to successful pregnancy and the health of both mother and offspring, relatively little is understood about the biology of the placenta and its role in pregnancy-related diseases. Given that pre- and peri-natal diseases involving the placenta affect millions of women and their newborns worldwide, there is an urgent need to understand placenta biology and development. Here, we suggest that the placenta is an organ under unique selective pressures that have driven its rapid diversification throughout mammalian evolution. The high divergence of the placenta complicates the use of non-human animal models and necessitates an evolutionary perspective when studying its biology and role in disease. We suggest that diversifying evolution of the placenta is primarily driven by intraspecies evolutionary conflict between mother and fetus, and that many pregnancy diseases are a consequence of this evolutionary force. Understanding how maternal-fetal conflict shapes both basic placental and reproductive biology - in all species - will provide key insights into diseases of pregnancy.

  2. Evolutionary perspectives into placental biology and disease

    Directory of Open Access Journals (Sweden)

    Edward B. Chuong

    2013-12-01

    Full Text Available In all mammals including humans, development takes place within the protective environment of the maternal womb. Throughout gestation, nutrients and waste products are continuously exchanged between mother and fetus through the placenta. Despite the clear importance of the placenta to successful pregnancy and the health of both mother and offspring, relatively little is understood about the biology of the placenta and its role in pregnancy-related diseases. Given that pre- and peri-natal diseases involving the placenta affect millions of women and their newborns worldwide, there is an urgent need to understand placenta biology and development. Here, we suggest that the placenta is an organ under unique selective pressures that have driven its rapid diversification throughout mammalian evolution. The high divergence of the placenta complicates the use of non-human animal models and necessitates an evolutionary perspective when studying its biology and role in disease. We suggest that diversifying evolution of the placenta is primarily driven by intraspecies evolutionary conflict between mother and fetus, and that many pregnancy diseases are a consequence of this evolutionary force. Understanding how maternal–fetal conflict shapes both basic placental and reproductive biology – in all species – will provide key insights into diseases of pregnancy.

  3. A Philosophical Perspective on Evolutionary Systems Biology.

    Science.gov (United States)

    O'Malley, Maureen A; Soyer, Orkun S; Siegal, Mark L

    2015-03-01

    Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB's progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology.

  4. Indoor Thermal Comfort, an Evolutionary Biology Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, John L.

    2006-04-15

    As is becoming increasingly clear, the human species evolvedin the East African savannah. Details of the precise evolutionary chainremain unresolved however it appears that the process lasted severalmillion years, culminating with the emergence of modern Homo sapiensroughly 200,000 years ago. Following that final evolutionary developmentmodern Homo sapiens relatively quickly populated the entire world.Clearly modern Homo sapiens is a successful, resourceful and adaptablespecies. In the developed societies, modern humans live an existence farremoved from our evolutionary ancestors. As we have learned over the lastcentury, this "new" lifestyle can often result in unintendedconsequences. Clearly, our modern access to food, shelter, transportationand healthcare has resulted in greatly expanded expected lifespan butthis new lifestyle can also result in the emergence of different kinds ofdiseases and health problems. The environment in modern buildings haslittle resemblance to the environment of the savannah. We strive tocreate environments with little temperature, air movement and lightvariation. Building occupants often express great dissatisfaction withthese modern created environments and a significant fraction even developsomething akin to allergies to specific buildings (sick buildingsyndrome). Are the indoor environments we are creating fundamentallyunhealthy -- when examined from an evolutionary perspective?

  5. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective

    Directory of Open Access Journals (Sweden)

    Amrendra Kumar

    2017-12-01

    Full Text Available Type I natural killer T (NKT cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo perspective.

  6. Pancreatic cancer biology and genetics from an evolutionary perspective.

    Science.gov (United States)

    Makohon-Moore, Alvin; Iacobuzio-Donahue, Christine A

    2016-09-01

    Cancer is an evolutionary disease, containing the hallmarks of an asexually reproducing unicellular organism subject to evolutionary paradigms. Pancreatic ductal adenocarcinoma (hereafter referred to as pancreatic cancer) is a particularly robust example of this phenomenon. Genomic features indicate that pancreatic cancer cells are selected for fitness advantages when encountering the geographic and resource-depleted constraints of the microenvironment. Phenotypic adaptations to these pressures help disseminated cells to survive in secondary sites, a major clinical problem for patients with this disease. In this Review we gather the wide-ranging aspects of pancreatic cancer research into a single concept rooted in Darwinian evolution, with the goal of identifying novel insights and opportunities for study.

  7. Pancreatic cancer biology and genetics from an evolutionary perspective

    Science.gov (United States)

    Makohon-Moore, Alvin; Iacobuzio-Donahue, Christine A.

    2017-01-01

    Cancer is an evolutionary disease, containing the hallmarks of an asexually reproducing unicellular organism subject to evolutionary paradigms. Pancreatic ductal adenocarcinoma (hereafter referred to as pancreatic cancer) is a particularly robust example of this phenomenon. Genomic features indicate that pancreatic cancer cells are selected for fitness advantages when encountering the geographic and resource-depleted constraints of the microenvironment. Phenotypic adaptations to these pressures help disseminated cells to survive in secondary sites, a major clinical problem for patients with this disease. In this Review we gather the wide-ranging aspects of pancreatic cancer research into a single concept rooted in Darwinian evolution, with the goal of identifying novel insights and opportunities for study. PMID:27444064

  8. Never in neutral: a systems biology and evolutionary perspective on how aneuploidy contributes to human diseases.

    Science.gov (United States)

    Pavelka, N; Rancati, G

    2013-01-01

    Whereas germline-inherited whole-chromosome aneuploidy has long been known to cause miscarriages and developmental abnormalities, somatically acquired aneuploidies have been observed in cancer cells and more recently also in cells of the normal liver and brain. Furthermore, aneuploidy is being increasingly reported in clinical isolates of pathogenic microbes such as fungi and parasites. Whereas many efforts have been devoted to the dissection of the molecular mechanisms that lead to aneuploidy, we have only recently started to investigate how aneuploidy alters the phenotypic makeup of a cell. Here we review recent evidence supporting the idea that aneuploidy is a large-effect mutation that introduces large changes in the cellular phenome. From a systems biology perspective, this can be explained by the extensive changes that aneuploidy brings about in both the transcriptome and the proteome of a cell. We further provide an evolutionary perspective on how aneuploidy-induced phenotypic variation may contribute to the exacerbation of human pathologies such as cancer and infectious diseases, by conferring selectable traits such as increased virulence and drug resistance. Copyright © 2013 S. Karger AG, Basel.

  9. Marine mammals: evolutionary biology

    National Research Council Canada - National Science Library

    Berta, Annalisa; Sumich, James L; Kovacs, Kit M

    2015-01-01

    The third edition of Marine Mammals: Evolutionary Biology provides a comprehensive and current assessment of the diversity, evolution, and biology of marine mammals, while highlighting the latest tools and techniques for their study...

  10. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 11. Evolutionary Biology Today - The Domain of Evolutionary Biology. Amitabh Joshi. Series Article Volume 7 Issue 11 November 2002 pp 8-17. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Evolutionary biology redux.

    Science.gov (United States)

    Torday, John S

    2013-01-01

    This article offers a novel, enlightened concept for determining the mechanism of evolution. It is based on homeostasis, which distinguishes life from non-life and as such is the universal mechanism for the evolution of all living organisms. This view of evolution is logical, mechanistic, non-scalar, predictive, testable, and falsifiable, and it illuminates the epistemological relationships between physics and biology, ontogeny and phylogeny, development and aging, ultimate and proximate causation, health and disease. In addition to validating Haeckel's biogenetic law and Lamarckian epigenetics, reflecting the enabling value of the cellular approach, this perspective also expresses the evolutionary process at the cell-molecular level, since the mechanism of cell communication itself is universal in biology, in keeping with a Kuhnian paradigm shift. This approach may even elucidate the nature and evolution of consciousness as a manifestation of the cellular continuum from unicellular to multicellular life. We need such a functional genomic mechanism for the process of evolution if we are to make progress in biology and medicine. Like Copernican heliocentrism, a cellular approach to evolution may fundamentally change humankind's perceptions about our place in the universe.

  12. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Amitabh Joshi studies and teaches evolutionary ' genetics and population ecology at the Jawaharlal. Nehru Centre for Advanced. Scientific Research,. Bangalore. His current research interests are in life- history, evolution, the evolutionary genetics of biological clocks, the evolution of ecological specialization dynamics. He.

  13. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 2. Evolutionary Biology Today - What do Evolutionary Biologists do? Amitabh Joshi. Series Article Volume 8 Issue 2 February 2003 pp 6-18. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Evolutionary systems biology: historical and philosophical perspectives on an emerging synthesis.

    Science.gov (United States)

    O'Malley, Maureen A

    2012-01-01

    Systems biology (SB) is at least a decade old now and maturing rapidly. A more recent field, evolutionary systems biology (ESB), is in the process of further developing system-level approaches through the expansion of their explanatory and potentially predictive scope. This chapter will outline the varieties of ESB existing today by tracing the diverse roots and fusions that make up this integrative project. My approach is philosophical and historical. As well as examining the recent origins of ESB, I will reflect on its central features and the different clusters of research it comprises. In its broadest interpretation, ESB consists of five overlapping approaches: comparative and correlational ESB; network architecture ESB; network property ESB; population genetics ESB; and finally, standard evolutionary questions answered with SB methods. After outlining each approach with examples, I will examine some strong general claims about ESB, particularly that it can be viewed as the next step toward a fuller modern synthesis of evolutionary biology (EB), and that it is also the way forward for evolutionary and systems medicine. I will conclude with a discussion of whether the emerging field of ESB has the capacity to combine an even broader scope of research aims and efforts than it presently does.

  15. The cell biology of the endocytic system from an evolutionary perspective.

    Science.gov (United States)

    Wideman, Jeremy G; Leung, Ka Fai; Field, Mark C; Dacks, Joel B

    2014-04-01

    Evolutionary cell biology can afford an interdisciplinary comparative view that gives insights into both the functioning of modern cells and the origins of cellular systems, including the endocytic organelles. Here, we explore several recent evolutionary cell biology studies, highlighting investigations into the origin and diversity of endocytic systems in eukaryotes. Beginning with a brief overview of the eukaryote tree of life, we show how understanding the endocytic machinery in a select, but diverse, array of organisms provides insights into endocytic system origins and predicts the likely configuration in the last eukaryotic common ancestor (LECA). Next, we consider three examples in which a comparative approach yielded insight into the function of modern cellular systems. First, using ESCRT-0 as an example, we show how comparative cell biology can discover both lineage-specific novelties (ESCRT-0) as well as previously ignored ancient proteins (Tom1), likely of both evolutionary and functional importance. Second, we highlight the power of comparative cell biology for discovery of previously ignored but potentially ancient complexes (AP5). Finally, using examples from ciliates and trypanosomes, we show that not all organisms possess canonical endocytic pathways, but instead likely evolved lineage-specific mechanisms. Drawing from these case studies, we conclude that a comparative approach is a powerful strategy for advancing knowledge about the general mechanisms and functions of endocytic systems.

  16. Teaching evolutionary biology

    Directory of Open Access Journals (Sweden)

    Rosana Tidon

    2004-01-01

    Full Text Available Evolutionary Biology integrates several disciplines of Biology in a complex and interactive manner, where a deep understanding of the subject demands knowledge in diverse areas. Since this knowledge is often inaccessible to the majority of specialized professionals, including the teachers, we present some reflections in order to stimulate discussions aimed at the improvement of the conditions of education in this area. We examine the profile of evolutionary teaching in Brazil, based on questionnaires distributed to teachers in Secondary Education in the Federal District, on data provided by the "National Institute for Educational Studies and Research", and on information collected from teachers working in various regions of this country. Issues related to biological misconceptions, curriculum and didactic material are discussed, and some proposals are presented with the objective of aiding discussions aimed at the improvement of the teaching of evolutionary biology.

  17. Evolutionary synthetic biology.

    Science.gov (United States)

    Peisajovich, Sergio G

    2012-06-15

    Signaling networks process vast amounts of environmental information to generate specific cellular responses. As cellular environments change, signaling networks adapt accordingly. Here, I will discuss how the integration of synthetic biology and directed evolution approaches is shedding light on the molecular mechanisms that guide the evolution of signaling networks. In particular, I will review studies that demonstrate how different types of mutations, from the replacement of individual amino acids to the shuffling of modular domains, lead to markedly different evolutionary trajectories and consequently to diverse network rewiring. Moreover, I will argue that intrinsic evolutionary properties of signaling proteins, such as the robustness of wild type functions, the promiscuous nature of evolutionary intermediates, and the modular decoupling between binding and catalysis, play important roles in the evolution of signaling networks. Finally, I will argue that rapid advances in our ability to synthesize DNA will radically alter how we study signaling network evolution at the genome-wide level.

  18. Altruism, egoism, or neither: A cognitive-efficiency-based evolutionary biological perspective on helping behavior.

    Science.gov (United States)

    Schulz, Armin W

    2016-04-01

    I argue for differences in the cognitive efficiency of different psychologies underlying helping behavior, and present an account of the adaptive pressures that result from these differences. Specifically, I argue that organisms often face pressure to move away from only being egoistically motivated to help: non-egoistic organisms are often able to determine how to help other organisms more quickly and with less recourse to costly cognitive resources like concentration and attention. Furthermore, I also argue that, while these pressures away from pure egoism can lead to the evolution of altruists, they can also lead to the evolution of reciprocation-focused behaviorist helpers or even of reflex-driven helpers (who are neither altruists nor egoists). In this way, I seek to broaden the set of considerations typically taken into account when assessing the evolution of the psychology of helping behavior-which tend to be restricted to matters of reliability-and also try to make clearer the role of evolutionary biological considerations in the discussion of this apparently straightforwardly psychological phenomenon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Microfoundations of Macroeconomics: An Evolutionary Perspective

    NARCIS (Netherlands)

    Bergh, van den Jeroen C.J.M.; Gowdy, John M.

    2000-01-01

    We consider the microfoundations controversy from the perspective ofeconomic evolution and show that the debate can benefit from lessons learned in evolutionary biology. Although the analogy between biology and economics has been noted before, it has rarely focused on clarifying the micro-macro

  20. Evolutionary cell biology: two origins, one objective.

    Science.gov (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  1. Evolutionary perspectives on human personality. Comment on "Personality from a cognitive-biological perspective" by Y. Neuman

    Science.gov (United States)

    Southard, Ashton C.; Zeigler-Hill, Virgil; Shackelford, Todd K.

    2014-12-01

    Yair Neuman [6] presents many provocative ideas in his interdisciplinary approach to human personality. In this commentary, we focus on his ideas regarding (1) the evolutionary basis of personality and (2) human sperm competition.

  2. Comparative genomics and evolutionary biology.

    Science.gov (United States)

    Kondrashov, A S

    1999-12-01

    Data of large-scale DNA sequencing are relevant to some of the most fundamental issues in evolutionary biology: suboptimality, homology, hierarchy, ancestry, novelties, the role of natural selection, and the relative importance of directional versus stabilizing selection. Already, these data provided the best available evidence for some evolutionary phenomena, and in several cases led to refinement of old concepts. Still, the Darwinian evolutionary paradigm will successfully accommodate comparative genomics.

  3. LA CONSERVACIÓN BIOLÓGICA Y SU PERSPECTIVA EVOLUTIVA Biological Conservation and its Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    OLGA L MONTENEGRO

    Full Text Available Este artículo revisa tres de las principales causas de amenaza a la diversidad biológica, como son la fragmentación y pérdida del hábitat, así como la invasión de especies exóticas, principalmente en lo que compete a sus implicaciones evolutivas. Los efectos de la fragmentación y/o pérdida del hábitat pueden revisarse a la luz de la sinergia entre factores demográficos y genéticos que moldean cambios evolutivos o que llevan a las poblaciones al vórtice de la extinción. Las invasiones biológicas, aunque han generado pérdidas considerables en la diversidad biológica, ofrecen un escenario interesante para estudiar procesos evolutivos contemporáneos.This paper reviews three of the main threats to biological diversity, such as habitat fragmentation /habitat loss, and invasion of exotic species, mainly from their evolutionary implications. Effects of habitat fragmentation/habitat loss could be addressed by looking at the synergy between demographic and genetic factors that together shape evolutionary changes or otherwise bring populations to extinction vortex. Biological invasions, in spite of their strong negative effects on biological diversity, offer an interesting scenario to study contemporary evolutionary processes.

  4. Evolutionary Dynamics of Biological Games

    Science.gov (United States)

    Nowak, Martin A.; Sigmund, Karl

    2004-02-01

    Darwinian dynamics based on mutation and selection form the core of mathematical models for adaptation and coevolution of biological populations. The evolutionary outcome is often not a fitness-maximizing equilibrium but can include oscillations and chaos. For studying frequency-dependent selection, game-theoretic arguments are more appropriate than optimization algorithms. Replicator and adaptive dynamics describe short- and long-term evolution in phenotype space and have found applications ranging from animal behavior and ecology to speciation, macroevolution, and human language. Evolutionary game theory is an essential component of a mathematical and computational approach to biology.

  5. Evolutionary Biology Research in India

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. Evolutionary Biology Research in India. Information and Announcements Volume 5 Issue 10 October 2000 pp 102-104. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/005/10/0102-0104 ...

  6. Is evolutionary biology strategic science?

    Science.gov (United States)

    Meagher, Thomas R

    2007-01-01

    There is a profound need for the scientific community to be better aware of the policy context in which it operates. To address this need, Evolution has established a new Outlook feature section to include papers that explore the interface between society and evolutionary biology. This first paper in the series considers the strategic relevance of evolutionary biology. Support for scientific research in general is based on governmental or institutional expenditure that is an investment, and such investment is based on strategies designed to achieve particular outcomes, such as advance in particular areas of basic science or application. The scientific community can engage in the development of scientific strategies on a variety of levels, including workshops to explicitly develop research priorities and targeted funding initiatives to help define emerging scientific areas. Better understanding and communication of the scientific achievements of evolutionary biology, emphasizing immediate and potential societal relevance, are effective counters to challenges presented by the creationist agenda. Future papers in the Outlook feature section should assist the evolutionary biology community in achieving a better collective understanding of the societal relevance of their field.

  7. Quantum Mechanics predicts evolutionary biology.

    Science.gov (United States)

    Torday, J S

    2018-01-11

    Nowhere are the shortcomings of conventional descriptive biology more evident than in the literature on Quantum Biology. In the on-going effort to apply Quantum Mechanics to evolutionary biology, merging Quantum Mechanics with the fundamentals of evolution as the First Principles of Physiology-namely negentropy, chemiosmosis and homeostasis-offers an authentic opportunity to understand how and why physics constitutes the basic principles of biology. Negentropy and chemiosmosis confer determinism on the unicell, whereas homeostasis constitutes Free Will because it offers a probabilistic range of physiologic set points. Similarly, on this basis several principles of Quantum Mechanics also apply directly to biology. The Pauli Exclusion Principle is both deterministic and probabilistic, whereas non-localization and the Heisenberg Uncertainty Principle are both probabilistic, providing the long-sought after ontologic and causal continuum from physics to biology and evolution as the holistic integration recognized as consciousness for the first time. Copyright © 2018. Published by Elsevier Ltd.

  8. Human compulsivity: A perspective from evolutionary medicine.

    Science.gov (United States)

    Stein, Dan J; Hermesh, Haggai; Eilam, David; Segalas, Cosi; Zohar, Joseph; Menchon, Jose; Nesse, Randolph M

    2016-05-01

    Biological explanations address not only proximal mechanisms (for example, the underlying neurobiology of obsessive-compulsive disorder), but also distal mechanisms (that is, a consideration of how particular neurobiological mechanisms evolved). Evolutionary medicine has emphasized a series of explanations for vulnerability to disease, including constraints, mismatch, and tradeoffs. The current paper will consider compulsive symptoms in obsessive-compulsive and related disorders and behavioral addictions from this evolutionary perspective. It will argue that while obsessive-compulsive disorder (OCD) is typically best conceptualized as a dysfunction, it is theoretically and clinically valuable to understand some symptoms of obsessive-compulsive and related disorders in terms of useful defenses. The symptoms of behavioral addictions can also be conceptualized in evolutionary terms (for example, mismatch), which in turn provides a sound foundation for approaching assessment and intervention. Copyright © 2016. Published by Elsevier B.V.

  9. Evolutionary foundations for cancer biology.

    Science.gov (United States)

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.

  10. What's wrong with evolutionary biology?

    Science.gov (United States)

    Welch, John J

    2017-01-01

    There have been periodic claims that evolutionary biology needs urgent reform, and this article tries to account for the volume and persistence of this discontent. It is argued that a few inescapable properties of the field make it prone to criticisms of predictable kinds, whether or not the criticisms have any merit. For example, the variety of living things and the complexity of evolution make it easy to generate data that seem revolutionary (e.g. exceptions to well-established generalizations, or neglected factors in evolution), and lead to disappointment with existing explanatory frameworks (with their high levels of abstraction, and limited predictive power). It is then argued that special discontent stems from misunderstandings and dislike of one well-known but atypical research programme: the study of adaptive function, in the tradition of behavioural ecology. To achieve its goals, this research needs distinct tools, often including imaginary agency, and a partial description of the evolutionary process. This invites mistaken charges of narrowness and oversimplification (which come, not least, from researchers in other subfields), and these chime with anxieties about human agency and overall purpose. The article ends by discussing several ways in which calls to reform evolutionary biology actively hinder progress in the field.

  11. Evolutionary Biology Needs Wild Microbiomes.

    Science.gov (United States)

    Hird, Sarah M

    2017-01-01

    The microbiome is a vital component to the evolution of a host and much of what we know about the microbiome derives from studies on humans and captive animals. But captivity alters the microbiome and mammals have unique biological adaptations that affect their microbiomes (e.g., milk). Birds represent over 30% of known tetrapod diversity and possess their own suite of adaptations relevant to the microbiome. In a previous study, we showed that 59 species of birds displayed immense variation in their microbiomes and host (bird) taxonomy and ecology were most correlated with the gut microbiome. In this Frontiers Focused Review, I put those results in a broader context by discussing how collecting and analyzing wild microbiomes contributes to the main goals of evolutionary biology and the specific ways that birds are unique microbial hosts. Finally, I outline some of the methodological considerations for adding microbiome sampling to the research of wild animals and urge researchers to do so. To truly understand the evolution of a host, we need to understand the millions of microorganisms that inhabit it as well: evolutionary biology needs wild microbiomes.

  12. Michael Akam and the rise of evolutionary developmental biology.

    Science.gov (United States)

    Stern, David L; Dawes-Hoang, Rachel E

    2010-01-01

    Michael Akam has been awarded the 2007 Kowalevsky medal for his many research accomplishments in the area of evolutionary developmental biology. We highlight three tributaries of Michaels contribution to evolutionary developmental biology. First, he has made major contributions to our understanding of development of the fruit fly, Drosophila melanogaster. Second, he has maintained a consistent focus on several key problems in evolutionary developmental biology, including the evolving role of Hox genes in arthropods and, more recently, the evolution of segmentation mechanisms. Third, Michael has written a series of influential reviews that have integrated progress in developmental biology into an evolutionary perspective. Michael has also made a large impact on the field through his effective mentorship style, his selfless promotion of younger colleagues, and his leadership of the University Museum of Zoology at Cambridge and the European community of evolutionary developmental biologists.

  13. Evolutionary developmental biology its roots and characteristics.

    Science.gov (United States)

    Morange, Michel

    2011-09-01

    The rise of evolutionary developmental biology was not the progressive isolation and characterization of developmental genes and gene networks. Many obstacles had to be overcome: the idea that all genes were more or less involved in development; the evidence that developmental processes in insects had nothing in common with those of vertebrates. Different lines of research converged toward the creation of evolutionary developmental biology, giving this field of research its present heterogeneity. This does not prevent all those working in the field from sharing the conviction that a precise characterization of evolutionary variations is required to fully understand the evolutionary process. Some evolutionary developmental biologists directly challenge the Modern Synthesis. I propose some ways to reconcile these apparently opposed visions of evolution. The turbulence seen in evolutionary developmental biology reflects the present entry of history into biology. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Evolutionary Biology in the Medical School Curriculum.

    Science.gov (United States)

    Neese, Randolph M.; Schiffman, Joshua D.

    2003-01-01

    Presents a study in which a questionnaire was given to deans at North American medical schools to determine which aspects of evolutionary biology are included in the curricula and the factors that influence this. Suggests that most future physicians should learn evolutionary biology as undergraduates if they are to learn it at all. (Author/NB)

  15. Human adoption in evolutionary perspective.

    Science.gov (United States)

    Silk, J B

    1990-03-01

    Exploitation is a fundamental element of the parental strategies of many species of birds. Cuckoos, for example, lay their eggs in the nest of other birds, who often unwittingly rear the alien nestlings as their own. Nest parasitism is an efficient reproductive strategy for cuckoos, who do not have to worry about building a nest, incubating their eggs, or feeding their nestlings. But not all hosts respond passively to such intrusions. In response to parasitic cowbirds, for example, robins have evolved the ability to detect and selectively eject alien young from their nests. Human parenting strategies differ sharply from the strategies of cuckoos and robins. Unlike cuckoos, we are reluctant to allow our children to be raised by others. Unlike robins, we knowingly rear strange young. What makes human behavior toward children so different from that of cuckoos and robins? Humans seem to share a number of predispositions that facilitate successful adoptive relationships, and the desire to raise children seems to be pervasive among modern humans. Despite these commonalities, patterns of adoption transactions vary greatly among contemporary human societies. This paper considers the origins and causes of cross-cultural variation in human adoptive behavior from an evolutionary perspective.

  16. Colour spaces in ecology and evolutionary biology.

    Science.gov (United States)

    Renoult, Julien P; Kelber, Almut; Schaefer, H Martin

    2017-02-01

    The recognition that animals sense the world in a different way than we do has unlocked important lines of research in ecology and evolutionary biology. In practice, the subjective study of natural stimuli has been permitted by perceptual spaces, which are graphical models of how stimuli are perceived by a given animal. Because colour vision is arguably the best-known sensory modality in most animals, a diversity of colour spaces are now available to visual ecologists, ranging from generalist and basic models allowing rough but robust predictions on colour perception, to species-specific, more complex models giving accurate but context-dependent predictions. Selecting among these models is most often influenced by historical contingencies that have associated models to specific questions and organisms; however, these associations are not always optimal. The aim of this review is to provide visual ecologists with a critical perspective on how models of colour space are built, how well they perform and where their main limitations are with regard to their most frequent uses in ecology and evolutionary biology. We propose a classification of models based on their complexity, defined as whether and how they model the mechanisms of chromatic adaptation and receptor opponency, the nonlinear association between the stimulus and its perception, and whether or not models have been fitted to experimental data. Then, we review the effect of modelling these mechanisms on predictions of colour detection and discrimination, colour conspicuousness, colour diversity and diversification, and for comparing the perception of colour traits between distinct perceivers. While a few rules emerge (e.g. opponent log-linear models should be preferred when analysing very distinct colours), in general model parameters still have poorly known effects. Colour spaces have nonetheless permitted significant advances in ecology and evolutionary biology, and more progress is expected if ecologists

  17. Evolutionary biology and life histories

    Directory of Open Access Journals (Sweden)

    Brown, C. R.

    2004-06-01

    Full Text Available The demographic processes that drive the spread of populations through environments and in turn determine the abundance of organisms are the same demographic processes that drive the spread of genes through populations and in turn determine gene frequencies and fitness. Conceptually, marked similarities exist in the dynamic processes underlying population ecology and those underlying evolutionary biology. Central to an understanding of both disciplines is life history and its component demographic rates, such as survival, fecundity, and age of first breeding, and biologists from both fields have a vested interest in good analytical machinery for the estimation and analysis of these demographic rates. In the EURING conferences, we have been striving since the mid 1980s to promote a quantitative understanding of demographic rates through interdisciplinary collaboration between ecologists and statisticians. From the ecological side, the principal impetus has come from population biology, and in particular from wildlife biology, but the importance of good quantitative insights into demographic processes has long been recognized by a number of evolutionary biologists (e.g., Nichols & Kendall, 1995; Clobert, 1995; Cooch et al., 2002. In organizing this session, we have aimed to create a forum for those committed to gaining the best possible understanding of evolutionary processes through the application of modern quantitative methods for the collection and interpretation of data on marked animal populations. Here we present a short overview of the material presented in the session on evolutionary biology and life histories. In a plenary talk, Brown & Brown (2004 explored how mark–recapture methods have allowed a better understanding of the evolution of group–living and alternative reproductive tactics in colonial cliff swallows (Petrochelidon pyrrhonota. By estimating the number of transient birds passing through colonies of different sizes, they

  18. Entrepreneurs and Evolutionary Biology: The Relationship between Testosterone and New Venture Creation

    Science.gov (United States)

    White, Roderick E.; Thornhill, Stewart; Hampson, Elizabeth

    2006-01-01

    Biological evolutionary processes select for heritable behaviors providing a survival and reproductive advantage. Accordingly, how we behave is, at least in part, affected by the evolutionary history of our species. This research uses evolutionary psychology as the theoretical perspective for exploring the relationship between a heritable…

  19. Genomes, Phylogeny, and Evolutionary Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica

    2005-03-25

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics and computer science are now known as systems biology. Here I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting comparative approaches that go beyond comparisons among model organisms to shape the nascent field of evolutionary systems biology.

  20. Women in evolution - highlighting the changing face of evolutionary biology.

    Science.gov (United States)

    Wellenreuther, Maren; Otto, Sarah

    2016-01-01

    The face of science has changed. Women now feature alongside men at the forefront of many fields, and this is particularly true in evolutionary biology. This special issue celebrates the outstanding achievements and contributions of women in evolutionary biology, by highlighting a sample of their research and accomplishments. In addition to original research contributions, this collection of articles contains personal reflections to provide perspective and advice on succeeding as a woman in science. By showcasing the diversity and research excellence of women and drawing on their experiences, we wish to enhance the visibility of female scientists and provide inspiration as well as role models. These are exciting times for evolutionary biology, and the field is richer and stronger for the diversity of voices contributing to the field.

  1. the evolutionary biology and biotechnology applications of ...

    Indian Academy of Sciences (India)

    play a significant biological role in the maintainance of genome integrity and providing novel regulatoty networks. These ... [Bonchev G. N. 2016 Useful parasites: the evolutionary biology and biotechnology applications of transposable elements. J. Genet. ... update of the plant genome size database containing data for.

  2. Evolutionary Biology Instruction: What Students Gain from Learning through Inquiry.

    Science.gov (United States)

    Dremock, Fae, Ed.

    2002-01-01

    This bulletin features articles on real world evolutionary biology, revolutionary classroom science, a review of new curricula in evolutionary biology, and the use of case studies to illustrate points in evolutionary biology. The articles are: (1) "'Real World' Evolutionary Biology: A Pragmatic Quest. Interview with BioQUEST's John Jungck" (Harvey…

  3. A framework for evolutionary systems biology.

    Science.gov (United States)

    Loewe, Laurence

    2009-02-24

    Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.

  4. A framework for evolutionary systems biology

    Directory of Open Access Journals (Sweden)

    Loewe Laurence

    2009-02-01

    Full Text Available Abstract Background Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Results Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. Conclusion EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.

  5. Evolutionary biology of centipedes (Myriapoda: Chilopoda).

    Science.gov (United States)

    Edgecombe, Gregory D; Giribet, Gonzalo

    2007-01-01

    New insights into the anatomy, systematics, and biogeography of centipedes have put these predatory terrestrial arthropods at the forefront of evolutionary studies. Centipedes have also played a pivotal role in understanding high-level arthropod relationships. Their deep evolutionary history, with a fossil record spanning 420 million years, explains their current worldwide distribution. Recent analyses of combined morphological and molecular data provide a stable phylogeny that underpins evolutionary interpretations of their biology. The centipede trunk, with its first pair of legs modified into a venom-delivering organ followed by 15 to 191 leg pairs, is a focus of arthropod segmentation studies. Gene expression studies and phylogenetics shed light on key questions in evolutionary developmental biology concerning the often group-specific fixed number of trunk segments, how some centipedes add segments after hatching whereas others hatch with the complete segment count, the addition of segments through evolution, and the invariably odd number of leg-bearing trunk segments.

  6. Bergmann's Rule, Adaptation, and Thermoregulation in Arctic Animals: Conflicting Perspectives from Physiology, Evolutionary Biology, and Physical Anthropology After World War II.

    Science.gov (United States)

    Hagen, Joel B

    2017-05-01

    Bergmann's rule and Allen's rule played important roles in mid-twentieth century discussions of adaptation, variation, and geographical distribution. Although inherited from the nineteenth-century natural history tradition these rules gained significance during the consolidation of the modern synthesis as evolutionary theorists focused attention on populations as units of evolution. For systematists, the rules provided a compelling rationale for identifying geographical races or subspecies, a function that was also picked up by some physical anthropologists. More generally, the rules provided strong evidence for adaptation by natural selection. Supporters of the rules tacitly, or often explicitly, assumed that the clines described by the rules reflected adaptations for thermoregulation. This assumption was challenged by the physiologists Laurence Irving and Per Scholander based on their arctic research conducted after World War II. Their critique spurred a controversy played out in a series of articles in Evolution, in Ernst Mayr's Animal Species and Evolution, and in the writings of other prominent evolutionary biologists and physical anthropologists. Considering this episode highlights the complexity and ambiguity of important biological concepts such as adaptation, homeostasis, and self-regulation. It also demonstrates how different disciplinary orientations and styles of scientific research influenced evolutionary explanations, and the consequent difficulties of constructing a truly synthetic evolutionary biology in the decades immediately following World War II.

  7. Hauke Brunkhorst: Critical Theory of Legal Revolutions: Evolutionary Perspectives

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    2015-01-01

    Book review of: Critical Theory of Legal Revolutions. Evolutionary Perspective / by Hauke Brunkhorst (London: Bloomsbury, 2014, 471 pp.)......Book review of: Critical Theory of Legal Revolutions. Evolutionary Perspective / by Hauke Brunkhorst (London: Bloomsbury, 2014, 471 pp.)...

  8. Food Sharing: An Evolutionary Perspective.

    Science.gov (United States)

    Feinman, Saul

    Food altruism and the consumption of food are examined from a sociological perspective which assumes that humans share food as inclusive fitness actors. Inclusive fitness implies the representation of an individual's genes in future generations through his own or others' offspring. The discussion includes characteristics of food sharing among kin…

  9. Evolutionary biology of harvestmen (Arachnida, Opiliones).

    Science.gov (United States)

    Giribet, Gonzalo; Sharma, Prashant P

    2015-01-07

    Opiliones are one of the largest arachnid orders, with more than 6,500 species in 50 families. Many of these families have been erected or reorganized in the last few years since the publication of The Biology of Opiliones. Recent years have also seen an explosion in phylogenetic work on Opiliones, as well as in studies using Opiliones as test cases to address biogeographic and evolutionary questions more broadly. Accelerated activity in the study of Opiliones evolution has been facilitated by the discovery of several key fossils, including the oldest known Opiliones fossil, which represents a new, extinct suborder. Study of the group's biology has also benefited from rapid accrual of genomic resources, particularly with respect to transcriptomes and functional genetic tools. The rapid emergence and utility of Phalangium opilio as a model for evolutionary developmental biology of arthropods serve as demonstrative evidence of a new area of study in Opiliones biology, made possible through transcriptomic data.

  10. Bacterial Actins? An Evolutionary Perspective

    Science.gov (United States)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  11. Evolutionary Biology: Its Value to Society

    Science.gov (United States)

    Carson, Hampton L.

    1972-01-01

    Cites examples of the contribution of basic research in evolutionary biology to the solution of problems facing society (1) by dispelling myths about human origins, the nature of the individual, and the nature of race (2) by providing basic data concerning the effects of overpopulation, the production of improved sources of food, resistance of…

  12. An Evolutionary Perspective on Mate Rejection.

    Science.gov (United States)

    Kelly, Ashleigh J; Dubbs, Shelli L; Barlow, Fiona Kate

    2016-01-01

    We argue that mate rejection and ex-partner relationships are important, multifaceted topics that have been underresearched in social and evolutionary psychology. Mate rejection and relationship dissolution are ubiquitous and form integral parts of the human experience. Both also carry with them potential risks and benefits to our fitness and survival. Hence, we expect that mate rejection would have given rise to evolved behavioral and psychological adaptations. Herein, we outline some of the many unanswered questions in evolutionary psychology on these topics, at each step presenting novel hypotheses about how men and women should behave when rejecting a mate or potential mate or in response to rejection. We intend these hypotheses and suggestions for future research to be used as a basis for enriching our understanding of human mating from an evolutionary perspective.

  13. Evolutionary problems in centrosome and centriole biology.

    Science.gov (United States)

    Ross, L; Normark, B B

    2015-05-01

    Centrosomes have been an enigma to evolutionary biologists. Either they have been the subject of ill-founded speculation or they have been ignored. Here, we highlight evolutionary paradoxes and problems of centrosome and centriole evolution and seek to understand them in the light of recent advances in centrosome biology. Most evolutionary accounts of centrosome evolution have been based on the hypothesis that centrosomes are replicators, independent of the nucleus and cytoplasm. It is now clear, however, that this hypothesis is not tenable. Instead, centrosomes are formed de novo each cell division, with the presence of an old centrosome regulating, but not essential for, the assembly of a new one. Centrosomes are the microtubule-organizing centres of cells. They can potentially affect sensory and motor characters (as the basal body of cilia), as well as the movements of chromosomes during cell division. This latter role does not seem essential, however, except in male meiosis, and the reasons for this remain unclear. Although the centrosome is absent in some taxa, when it is present, its structure is extraordinarily conserved: in most taxa across eukaryotes, it does not appear to evolve at all. And yet a few insect groups display spectacular hypertrophy of the centrioles. We discuss how this might relate to the unusual reproductive system found in these insects. Finally, we discuss why the fate of centrosomes in sperm and early embryos might differ between different groups of animals. © 2015 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  14. The future of evolutionary developmental biology.

    Science.gov (United States)

    Holland, P W

    1999-12-02

    Combining fields as diverse as comparative embryology, palaeontology, molecular phylogenetics and genome analysis, the new discipline of evolutionary developmental biology aims at explaining how developmental processes and mechanisms become modified during evolution, and how these modifications produce changes in animal morphology and body plans. In the next century this should give us far greater mechanistic insight into how evolution has produced the vast diversity of living organisms, past and present.

  15. Robust design of biological circuits: evolutionary systems biology approach.

    Science.gov (United States)

    Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia

    2011-01-01

    Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise.

  16. Social traits, social networks and evolutionary biology.

    Science.gov (United States)

    Fisher, D N; McAdam, A G

    2017-12-01

    effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  17. Is Exercise Really Medicine? An Evolutionary Perspective.

    Science.gov (United States)

    Lieberman, Daniel E

    2015-01-01

    An evolutionary perspective helps evaluate the extent to which exercise is medicine and to explain the exercise paradox: why people tend to avoid exercise despite its benefits. Many lines of evidence indicate that humans evolved to be adapted for regular, moderate amounts of endurance physical activity into late age. However, because energy from food was limited, humans also were selected to avoid unnecessary exertion, and most anatomical and physiological systems evolved to require stimuli from physical activity to adjust capacity to demand. Consequently, selection never operated to cope with the long-term effects of chronic inactivity. However, because all adaptations involve trade-offs, there is no evolutionary-determined dose or type of physical activity that will optimize health. Furthermore, because humans evolved to be active for play or necessity, efforts to promote exercise will require altering environments in ways that nudge or even compel people to be active and to make exercise fun.

  18. Evidence Combination From an Evolutionary Game Theory Perspective.

    Science.gov (United States)

    Deng, Xinyang; Han, Deqiang; Dezert, Jean; Deng, Yong; Shyr, Yu

    2016-09-01

    Dempster-Shafer evidence theory is a primary methodology for multisource information fusion because it is good at dealing with uncertain information. This theory provides a Dempster's rule of combination to synthesize multiple evidences from various information sources. However, in some cases, counter-intuitive results may be obtained based on that combination rule. Numerous new or improved methods have been proposed to suppress these counter-intuitive results based on perspectives, such as minimizing the information loss or deviation. Inspired by evolutionary game theory, this paper considers a biological and evolutionary perspective to study the combination of evidences. An evolutionary combination rule (ECR) is proposed to help find the most biologically supported proposition in a multievidence system. Within the proposed ECR, we develop a Jaccard matrix game to formalize the interaction between propositions in evidences, and utilize the replicator dynamics to mimick the evolution of propositions. Experimental results show that the proposed ECR can effectively suppress the counter-intuitive behaviors appeared in typical paradoxes of evidence theory, compared with many existing methods. Properties of the ECR, such as solution's stability and convergence, have been mathematically proved as well.

  19. Space Politics and Policy: An Evolutionary Perspective

    Science.gov (United States)

    Sadeh, Eligar

    2002-01-01

    This paper offers an evolutionary perspective of space policy. It is argued that (1) space policy is evolutionary in that it has responded to dramatic political events, such as the launching of Sputnik and the Cold War, and has undergone dynamic and evolutionary policy changes over the course of the past fifty years of the space-age; and that (2) space policy is an integral part of and interacts with public policy processes in the United States and abroad. To this end, the paper analyzes space policy at several levels of analysis. This includes: (1) historical context, political actors and institutions, political processes, and policy outcomes; (2) the symbiotic relationships between policy and space technology; and (3) future space policy trends and developments likely to occur in the 21st century. A "Space Politics and Policy Framework" is developed in this paper to represent the evolution of space policy. Space policy involves both the process of policy formation and policy change over time (e.g., emergence of commercialization) and the courses of action taken to achieve political (and technological) determined outcomes. The evolution of space policy over time takes place through policy change. On this basis, public policy processes over the course of the space-age have involved the mobilization of governmental resources, actors, and institutions. Concomitantly, nongovernmental actors, such as private corporations and commercial enterprises, increasingly play a role in space. As a result, market factors in addition to political forces influence space policy.

  20. Special Issue: Evolutionary perspectives on salmonid conservation and management

    OpenAIRE

    Waples, Robin S; Hendry, Andrew P

    2008-01-01

    This special issue of Evolutionary Applications comprises 15 papers that illustrate how evolutionary principles can inform the conservation and management of salmonid fishes. Several papers address the past evolutionary history of salmonids to gain insights into their likely plastic and genetic responses to future environmental change. The remaining papers consider potential evolutionary responses to climate warming, biological invasions, artificial propagation, habitat alteration, and harves...

  1. An extended synthesis for evolutionary biology.

    Science.gov (United States)

    Pigliucci, Massimo

    2009-06-01

    Evolutionary theory is undergoing an intense period of discussion and reevaluation. This, contrary to the misleading claims of creationists and other pseudoscientists, is no harbinger of a crisis but rather the opposite: the field is expanding dramatically in terms of both empirical discoveries and new ideas. In this essay I briefly trace the conceptual history of evolutionary theory from Darwinism to neo-Darwinism, and from the Modern Synthesis to what I refer to as the Extended Synthesis, a more inclusive conceptual framework containing among others evo-devo, an expanded theory of heredity, elements of complexity theory, ideas about evolvability, and a reevaluation of levels of selection. I argue that evolutionary biology has never seen a paradigm shift, in the philosophical sense of the term, except when it moved from natural theology to empirical science in the middle of the 19th century. The Extended Synthesis, accordingly, is an expansion of the Modern Synthesis of the 1930s and 1940s, and one that--like its predecessor--will probably take decades to complete.

  2. The origins of pedagogy: developmental and evolutionary perspectives.

    Science.gov (United States)

    Skerry, Amy E; Lambert, Enoch; Powell, Lindsey J; McAuliffe, Katherine

    2013-07-18

    The question of whether and how information is actively transferred from knowledgeable to ignorant individuals has received much attention in psychology and evolutionary biology. Research in these fields has proceeded largely independently, with studies of nonhuman animals focusing on knowledgeable individuals and whether or not they meet a functional definition of teaching, while studies of children focus on the learner's assumptions and inferences. We argue that a comprehensive theory of teaching will benefit from integrating perspectives and empirical phenomena from evolutionary and developmental disciplines. In this review, we identify cases of seemingly purposeful information transfer (i.e. teaching) in human and nonhuman animals, discuss what is known about the cognitive processes that support teaching in different species, and highlight ways in which each discipline might be informed by extant theories and empirical tools from the other.

  3. Making evolutionary biology a basic science for medicine

    Science.gov (United States)

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  4. Evolutionary biology in biodiversity science, conservation, and policy: a call to action.

    Science.gov (United States)

    Hendry, Andrew P; Lohmann, Lúcia G; Conti, Elena; Cracraft, Joel; Crandall, Keith A; Faith, Daniel P; Häuser, Christoph; Joly, Carlos A; Kogure, Kazuhiro; Larigauderie, Anne; Magallón, Susana; Moritz, Craig; Tillier, Simon; Zardoya, Rafael; Prieur-Richard, Anne-Hélène; Walther, Bruno A; Yahara, Tetsukazu; Donoghue, Michael J

    2010-05-01

    Evolutionary biologists have long endeavored to document how many species exist on Earth, to understand the processes by which biodiversity waxes and wanes, to document and interpret spatial patterns of biodiversity, and to infer evolutionary relationships. Despite the great potential of this knowledge to improve biodiversity science, conservation, and policy, evolutionary biologists have generally devoted limited attention to these broader implications. Likewise, many workers in biodiversity science have underappreciated the fundamental relevance of evolutionary biology. The aim of this article is to summarize and illustrate some ways in which evolutionary biology is directly relevant. We do so in the context of four broad areas: (1) discovering and documenting biodiversity, (2) understanding the causes of diversification, (3) evaluating evolutionary responses to human disturbances, and (4) implications for ecological communities, ecosystems, and humans. We also introduce bioGENESIS, a new project within DIVERSITAS launched to explore the potential practical contributions of evolutionary biology. In addition to fostering the integration of evolutionary thinking into biodiversity science, bioGENESIS provides practical recommendations to policy makers for incorporating evolutionary perspectives into biodiversity agendas and conservation. We solicit your involvement in developing innovative ways of using evolutionary biology to better comprehend and stem the loss of biodiversity.

  5. An evolutionary perspective on health psychology: New approaches and applications

    OpenAIRE

    Tybur, Joshua M; Bryan, Angela D.; Caldwell Hooper, Ann E.

    2012-01-01

    Although health psychologists' efforts to understand and promote health are most effective when guided by theory, health psychology has not taken full advantage of theoretical insights provided by evolutionary psychology. Here, we argue that evolutionary perspectives can fruitfully inform strategies for addressing some of the challenges facing health psychologists. Evolutionary psychology's emphasis on modular, functionally specialized psychological systems can inform approaches to understand...

  6. An evolutionary perspective on health psychology: new approaches and applications.

    Science.gov (United States)

    Tybur, Joshua M; Bryan, Angela D; Hooper, Ann E Caldwell

    2012-12-20

    Although health psychologists' efforts to understand and promote health are most effective when guided by theory, health psychology has not taken full advantage of theoretical insights provided by evolutionary psychology. Here, we argue that evolutionary perspectives can fruitfully inform strategies for addressing some of the challenges facing health psychologists. Evolutionary psychology's emphasis on modular, functionally specialized psychological systems can inform approaches to understanding the myriad behaviors grouped under the umbrella of "health," as can theoretical perspectives used by evolutionary anthropologists, biologists, and psychologists (e.g., Life History Theory). We detail some early investigations into evolutionary health psychology, and we provide suggestions for directions for future research.

  7. An Evolutionary Perspective on Health Psychology: New Approaches and Applications

    Directory of Open Access Journals (Sweden)

    Joshua M. Tybur

    2012-12-01

    Full Text Available Although health psychologists' efforts to understand and promote health are most effective when guided by theory, health psychology has not taken full advantage of theoretical insights provided by evolutionary psychology. Here, we argue that evolutionary perspectives can fruitfully inform strategies for addressing some of the challenges facing health psychologists. Evolutionary psychology's emphasis on modular, functionally specialized psychological systems can inform approaches to understanding the myriad behaviors grouped under the umbrella of “health,” as can theoretical perspectives used by evolutionary anthropologists, biologists, and psychologists (e.g., Life History Theory. We detail some early investigations into evolutionary health psychology, and we provide suggestions for directions for future research.

  8. Behavioural endocrinology and reproduction: an evolutionary perspective.

    Science.gov (United States)

    Crews, D

    1992-01-01

    It is a fact that those interested in immediate causation tend to be unaware of the great advances in evolutionary biology. Similarly, most scientists interested in ecological and evolutionary questions ignore advances in neurobiology and molecular biology. Quite simply, 'reductionists see little to be gained from holistic studies, and whole organism biologists do not recognize the value of molecular analysis' (Prosser 1986). This philosophical gap and lack of communication between molecular and physiological biologists with organismal and evolutionary biologists makes it difficult to be a generalist. Yet if we are to understand past, present, and perhaps even future behaviour, we must study how the different levels of biological organization are integrated. If done with foresight, it can lead to new discoveries not only in evolution and ecology, but also in physiology and even molecular biology. One of the first things we are impressed by is the great variety of animals, particularly their behaviours and their physiologies. With so many differences, are there any generalities? With the establishment of evolutionary theory, evidence that there is 'unity in diversity' has come with discoveries of common anatomical features, the cell cycle, conservation of intermediary metabolism, and the genetic code, to name but a few. While in vertebrates there appears to be a conservation of the neural circuits underlying sex behaviour, it is still too early to state the extent to which this concept can be extended to the hormonal mechanisms underlying behaviour. This chapter has documented how some widely-held assumptions are generalities only in a very restricted sense. I have tried to show how much of our conceptual understanding of the behavioural endocrinology stems from extensive studies on relatively few species. According to (Beach 1979), there are '... two cardinal rules that should govern not only the construction of animal models for human behaviour, but for all

  9. Evolutionary explanations for natural language: criteria from evolutionary biology

    NARCIS (Netherlands)

    Zuidema, W.; de Boer, B.

    2008-01-01

    Theories of the evolutionary origins of language must be informed by empirical and theoretical results from a variety of different fields. Complementing recent surveys of relevant work from linguistics, animal behaviour and genetics, this paper surveys the requirements on evolutionary scenarios that

  10. The state of software for evolutionary biology.

    Science.gov (United States)

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-01-29

    With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C ++ (e.g., MrBayes, MAFFT, SweepFinder etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Since, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Toward an integration of evolutionary biology and ecosystem science.

    Science.gov (United States)

    Matthews, Blake; Narwani, Anita; Hausch, Stephen; Nonaka, Etsuko; Peter, Hannes; Yamamichi, Masato; Sullam, Karen E; Bird, Kali C; Thomas, Mridul K; Hanley, Torrance C; Turner, Caroline B

    2011-07-01

    At present, the disciplines of evolutionary biology and ecosystem science are weakly integrated. As a result, we have a poor understanding of how the ecological and evolutionary processes that create, maintain, and change biological diversity affect the flux of energy and materials in global biogeochemical cycles. The goal of this article was to review several research fields at the interfaces between ecosystem science, community ecology and evolutionary biology, and suggest new ways to integrate evolutionary biology and ecosystem science. In particular, we focus on how phenotypic evolution by natural selection can influence ecosystem functions by affecting processes at the environmental, population and community scale of ecosystem organization. We develop an eco-evolutionary model to illustrate linkages between evolutionary change (e.g. phenotypic evolution of producer), ecological interactions (e.g. consumer grazing) and ecosystem processes (e.g. nutrient cycling). We conclude by proposing experiments to test the ecosystem consequences of evolutionary changes. © 2011 Blackwell Publishing Ltd/CNRS.

  12. An Evolutionary Perspective on the Crabtree Effect

    Directory of Open Access Journals (Sweden)

    Thomas ePfeiffer

    2014-10-01

    Full Text Available The capability to ferment sugars into ethanol is a key metabolic trait of yeasts. Crabtree-positive yeasts use fermentation even in the presence of oxygen, where they could, in principle, rely on the respiration pathway. This is surprising because fermentation has a much lower ATP yield than respiration (2 ATP vs. approximately 18 ATP per glucose. While genetic events in the evolution of the Crabtree effect have been identified, the selective advantages provided by this trait remain controversial. In this review we analyse explanations for the emergence of the Crabtree effect from an evolutionary and game-theoretical perspective. We argue that an increased rate of ATP production is likely the most important factor behind the emergence of the Crabtree effect.

  13. Evolutionary Perspective on Collective Decision Making

    Science.gov (United States)

    Farrell, Dene; Sayama, Hiroki; Dionne, Shelley D.; Yammarino, Francis J.; Wilson, David Sloan

    Team decision making dynamics are investigated from a novel perspective by shifting agency from decision makers to representations of potential solutions. We provide a new way to navigate social dynamics of collective decision making by interpreting decision makers as constituents of an evolutionary environment of an ecology of evolving solutions. We demonstrate distinct patterns of evolution with respect to three forms of variation: (1) Results with random variations in utility functions of individuals indicate that groups demonstrating minimal internal variation produce higher true utility values of group solutions and display better convergence; (2) analysis of variations in behavioral patterns within a group shows that a proper balance between selective and creative evolutionary forces is crucial to producing adaptive solutions; and (3) biased variations of the utility functions diminish the range of variation for potential solution utility, leaving only the differential of convergence performance static. We generally find that group cohesion (low random variation within a group) and composition (appropriate variation of behavioral patterns within a group) are necessary for a successful navigation of the solution space, but performance in both cases is susceptible to group level biases.

  14. The Best and the Worst of Times for Evolutionary Biology.

    Science.gov (United States)

    Avise, John C.

    2003-01-01

    Discusses opportunities and challenges for the field of evolutionary biology, particularly in areas related to molecular genetic technologies, the environment, biodiversity, and public education. (Author/KHR)

  15. Evolutionary biology of bacterial and fungal pathogens

    National Research Council Canada - National Science Library

    Baquero, F

    2008-01-01

    ... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...

  16. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    Science.gov (United States)

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Evolutionary biology: a basic science for medicine in the 21st century.

    Science.gov (United States)

    Perlman, Robert L

    2011-01-01

    Evolutionary biology was a poorly developed discipline at the time of the Flexner Report and was not included in Flexner's recommendations for premedical or medical education. Since that time, however, the value of an evolutionary approach to medicine has become increasingly recognized. There are several ways in which an evolutionary perspective can enrich medical education and improve medical practice. Evolutionary considerations rationalize our continued susceptibility or vulnerability to disease; they call attention to the idea that the signs and symptoms of disease may be adaptations that prevent or limit the severity of disease; they help us understand the ways in which our interventions may affect the evolution of microbial pathogens and of cancer cells; and they provide a framework for thinking about population variation and risk factors for disease. Evolutionary biology should become a foundational science for the medical education of the future.

  18. A Modeling Approach to Teaching Evolutionary Biology in High Schools.

    Science.gov (United States)

    Passmore, Cynthia; Stewart, Jim

    2002-01-01

    Describes the commitments and research that went into the design of a 9-week high school course in evolutionary biology designed to bring students to an understanding of the practice of evolutionary biology by engaging them in developing, elaborating, and using one of the discipline's most important explanatory models. (Contains 39 references.)…

  19. Evolutionary Ideas Held by Experienced South African Biology Teachers

    Science.gov (United States)

    Kyriacou, Xenia; de Beer, Josef; Ramnarain, Umesh

    2015-01-01

    With evolutionary biology relatively recently introduced into the South African school curriculum, the need arose to explore practising teachers' knowledge of the subject. A number of anticipated as well as unanticipated cognitive and affective barriers to the understanding of evolutionary biology were identified from a questionnaire with…

  20. Oxytocin mediated behavior in invertebrates: An evolutionary perspective.

    Science.gov (United States)

    Lockard, Meghan A; Ebert, Margaret S; Bargmann, Cornelia I

    2017-02-01

    The molecular and functional conservation of oxytocin-related neuropeptides in behavior is striking. In animals separated by at least 600 million years of evolution, from roundworms to humans, oxytocin homologs play critical roles in the modulation of reproductive behavior and other biological functions. Here, we review the roles of oxytocin in invertebrate behavior from an evolutionary perspective. We begin by tracing the evolution of oxytocin through the invertebrate animal lineages, and then describe common themes in invertebrate behaviors that are mediated by oxytocin-related peptides, including reproductive behavior, learning and memory, food arousal, and predator/prey relationships. Finally, we discuss interesting future directions that have recently become experimentally tractable. Studying oxytocin in invertebrates offers precise insights into the activity of neuropeptides on well-defined neural circuits; the principles that emerge may also be represented in the more complex vertebrate brain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 128-142, 2017. © 2016 Wiley Periodicals, Inc.

  1. Democratizing evolutionary biology, lessons from insects

    DEFF Research Database (Denmark)

    Dunn, Robert Roberdeau; Beasley, DeAnna E.

    2016-01-01

    The engagement of the public in the scientific process is an old practice. Yet with recent advances in technology, the role of the citizen scientist in studying evolutionary processes has increased. Insects provide ideal models for understanding these evolutionary processes at large scales. This ...

  2. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    Science.gov (United States)

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Goldfish morphology as a model for evolutionary developmental biology.

    Science.gov (United States)

    Ota, Kinya G; Abe, Gembu

    2016-01-01

    Morphological variation of the goldfish is known to have been established by artificial selection for ornamental purposes during the domestication process. Chinese texts that date to the Song dynasty contain descriptions of goldfish breeding for ornamental purposes, indicating that the practice originated over one thousand years ago. Such a well-documented goldfish breeding process, combined with the phylogenetic and embryological proximities of this species with zebrafish, would appear to make the morphologically diverse goldfish strains suitable models for evolutionary developmental (evodevo) studies. However, few modern evodevo studies of goldfish have been conducted. In this review, we provide an overview of the historical background of goldfish breeding, and the differences between this teleost and zebrafish from an evolutionary perspective. We also summarize recent progress in the field of molecular developmental genetics, with a particular focus on the twin-tail goldfish morphology. Furthermore, we discuss unanswered questions relating to the evolution of the genome, developmental robustness, and morphologies in the goldfish lineage, with the goal of blazing a path toward an evodevo study paradigm using this teleost species as a new model species. For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.

  4. An Evolutionary Perspective on Toxic Leadership

    OpenAIRE

    Lucia Ovidia VREJA; Balan, Sergiu,; Loredana Cornelia BOSCA

    2016-01-01

    Charles Darwin’s prediction from 1859, that future psychology was going to be built on principles derived from evolutionary theory came at last to be fulfilled. Nowadays, there are at least four disciplines that attempt to explain human behaviours as evolutionary adaptations (or maladaptations) to the natural and/or social environment: human sociobiology, human behavioural ecology, evolutionary psychology, memetics and gene–culture coevolution theory (in our view, the most adequate of all). A...

  5. Evolutionary perspectives on learning: conceptual and methodological issues in the study of adaptive specializations.

    Science.gov (United States)

    Krause, Mark A

    2015-07-01

    Inquiry into evolutionary adaptations has flourished since the modern synthesis of evolutionary biology. Comparative methods, genetic techniques, and various experimental and modeling approaches are used to test adaptive hypotheses. In psychology, the concept of adaptation is broadly applied and is central to comparative psychology and cognition. The concept of an adaptive specialization of learning is a proposed account for exceptions to general learning processes, as seen in studies of Pavlovian conditioning of taste aversions, sexual responses, and fear. The evidence generally consists of selective associations forming between biologically relevant conditioned and unconditioned stimuli, with conditioned responses differing in magnitude, persistence, or other measures relative to non-biologically relevant stimuli. Selective associations for biologically relevant stimuli may suggest adaptive specializations of learning, but do not necessarily confirm adaptive hypotheses as conceived of in evolutionary biology. Exceptions to general learning processes do not necessarily default to an adaptive specialization explanation, even if experimental results "make biological sense". This paper examines the degree to which hypotheses of adaptive specializations of learning in sexual and fear response systems have been tested using methodologies developed in evolutionary biology (e.g., comparative methods, quantitative and molecular genetics, survival experiments). A broader aim is to offer perspectives from evolutionary biology for testing adaptive hypotheses in psychological science.

  6. Regulatory Evolution and Theoretical Arguments in Evolutionary Biology

    Science.gov (United States)

    Ioannidis, Stavros

    2013-01-01

    The "cis"-regulatory hypothesis is one of the most important claims of evolutionary developmental biology. In this paper I examine the theoretical argument for "cis"-regulatory evolution and its role within evolutionary theorizing. I show that, although the argument has some weaknesses, it acts as a useful example for the importance of current…

  7. Useful parasites: the evolutionary biology and biotechnology ...

    Indian Academy of Sciences (India)

    , transposable elements have long been considered as 'parasitic' or 'selfish'. Today, we ... research niche and deserve to be included into the agenda of molecular ecologists, evolutionary geneticists, conservation biologists and plant breeders.

  8. The Carbon Crisis: An Evolutionary Perspective

    Science.gov (United States)

    Peacock, K.

    2013-12-01

    By the 'carbon crisis' I mean the coupled crises of the depletion of the highest-EROI sources of fossil fuels and the global warming caused by our use of those fossil fuels. (EROI means 'energy return on energy investment'; Hall 2011.) While global warming is arguably more urgent, either of these factors would sooner or later be sufficient by itself to call a halt to our global-scale, energy-intensive, high technology economy. In lethal combination, they threaten to drastically reduce the capacity of the planet to support 7+ billion talking hominids. I will pull the camera back for a very long view and characterize the carbon crisis and our possible responses to it from an evolutionary and ecological perspective. It remains unclear why sapiens emerged rather suddenly as the most successful member of the family Homo about 50 to 60 kya; some argue that this neurological explosion could be due to our ancestors having survived the rigors of the Toba population bottleneck, which presumably would have favoured high adaptability (Ambrose 1998). Whatever the cause, Paleolithic humans deployed an unprecedented combination of technological and social ingenuity (the capacity for adaptive social organization; Homer-Dixon 2001). Aided by the relatively benign climate of the Holocene and ultimately by our increasing ability to tap into the resources of the 'found' ecology, especially the vast stores of hydrocarbons bequeathed by the Paleozoic and Mesozoic eras, our population has grown exponentially to its present unsteady pinnacle of (possibly) temporary reproductive success. The question now is what happens next. It was human ingenuity that got us through the ice age, put footprints on the Moon, and brought us to this crisis point; now, only human ingenuity (both social and technical) can get us past it. Our species will finally achieve a sustainable mode of existence on this planet when (in E. Odum's words; 1973) 'the present-day concept of ';unlimited exploitation of

  9. Democratizing evolutionary biology, lessons from insects.

    Science.gov (United States)

    Dunn, Robert R; Beasley, DeAnna E

    2016-12-01

    The engagement of the public in the scientific process is an old practice. Yet with recent advances in technology, the role of the citizen scientist in studying evolutionary processes has increased. Insects provide ideal models for understanding these evolutionary processes at large scales. This review highlights how insect-based citizen science has led to the expansion of specimen collections and reframed research questions in light of new observations and unexpected discoveries. Given the rapid expansion of human-modified (and inhabited) environments, the degree to which the public can participate in insect-based citizen science will allow us to track and monitor evolutionary trends at a global scale. Copyright © 2016. Published by Elsevier Inc.

  10. An evolutionary behaviorist perspective on orgasm

    OpenAIRE

    Fleischman, Diana S

    2016-01-01

    Evolutionary explanations for sexual behavior and orgasm most often posit facilitating reproduction as the primary function (i.e. greater rate of fertilization). Other reproductive benefits of sexual pleasure and orgasm such as improved bonding of parents have also been discussed but not thoroughly. Although sex is known to be highly reinforcing, behaviorist principles are rarely invoked alongside evolutionary psychology in order to account for human sexual and social behavior. In this paper,...

  11. the evolutionary biology and biotechnology applications of ...

    Indian Academy of Sciences (India)

    of many genetic disorders, such as haemophilia A, Apert syndrome .... Examples of adaptive mutations and exaptations provided by transposable elements. .... adaptive variation. However, such surveys should be under- taken in a wider range of species to reliably estimate the impact of TEs on their evolutionary ecology.

  12. Evolutionary convergence and biologically embodied cognition

    NARCIS (Netherlands)

    Keijzer, Franciscus

    2017-01-01

    The study of evolutionary patterns of cognitive convergence would be greatly helped by a clear demarcation of cognition. Cognition is often used as an equivalent of mind, making it difficult to pin down empirically or to apply it confidently beyond the human condition. Recent developments in

  13. Evolutionary psychology in the modern world: applications, perspectives, and strategies.

    Science.gov (United States)

    Roberts, S Craig; van Vugt, Mark; Dunbar, Robin I M

    2012-12-20

    An evolutionary approach is a powerful framework which can bring new perspectives on any aspect of human behavior, to inform and complement those from other disciplines, from psychology and anthropology to economics and politics. Here we argue that insights from evolutionary psychology may be increasingly applied to address practical issues and help alleviate social problems. We outline the promise of this endeavor, and some of the challenges it faces. In doing so, we draw parallels between an applied evolutionary psychology and recent developments in Darwinian medicine, which similarly has the potential to complement conventional approaches. Finally, we describe some promising new directions which are developed in the associated papers accompanying this article.

  14. An Evolutionary Perspective on War Heroism

    NARCIS (Netherlands)

    Rusch, Hannes; Störmer, C.

    2015-01-01

    Humans are one of the most cooperative and altruistic species on the planet. At the same time, humans have a long history of violent and deadly intergroup conflicts or wars. Recently, contemporary evolutionary theorists have revived Charles Darwin’s idea that human in-group altruism and out-group

  15. Understanding the mind from an evolutionary perspective: an overview of evolutionary psychology.

    Science.gov (United States)

    Shackelford, Todd K; Liddle, James R

    2014-05-01

    The theory of evolution by natural selection provides the only scientific explanation for the existence of complex adaptations. The design features of the brain, like any organ, are the result of selection pressures operating over deep time. Evolutionary psychology posits that the human brain comprises a multitude of evolved psychological mechanisms, adaptations to specific and recurrent problems of survival and reproduction faced over human evolutionary history. Although some mistakenly view evolutionary psychology as promoting genetic determinism, evolutionary psychologists appreciate and emphasize the interactions between genes and environments. This approach to psychology has led to a richer understanding of a variety of psychological phenomena, and has provided a powerful foundation for generating novel hypotheses. Critics argue that evolutionary psychologists resort to storytelling, but as with any branch of science, empirical testing is a vital component of the field, with hypotheses standing or falling with the weight of the evidence. Evolutionary psychology is uniquely suited to provide a unifying theoretical framework for the disparate subdisciplines of psychology. An evolutionary perspective has provided insights into several subdisciplines of psychology, while simultaneously demonstrating the arbitrary nature of dividing psychological science into such subdisciplines. Evolutionary psychologists have amassed a substantial empirical and theoretical literature, but as a relatively new approach to psychology, many questions remain, with several promising directions for future research. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  16. Engineering reduced evolutionary potential for synthetic biology.

    Science.gov (United States)

    Renda, Brian A; Hammerling, Michael J; Barrick, Jeffrey E

    2014-07-01

    The field of synthetic biology seeks to engineer reliable and predictable behaviors in organisms from collections of standardized genetic parts. However, unlike other types of machines, genetically encoded biological systems are prone to changes in their designed sequences due to mutations in their DNA sequences after these devices are constructed and deployed. Thus, biological engineering efforts can be confounded by undesired evolution that rapidly breaks the functions of parts and systems, particularly when they are costly to the host cell to maintain. Here, we explain the fundamental properties that determine the evolvability of biological systems. Then, we use this framework to review current efforts to engineer the DNA sequences that encode synthetic biology devices and the genomes of their microbial hosts to reduce their ability to evolve and therefore increase their genetic reliability so that they maintain their intended functions over longer timescales.

  17. Evolutionary computation techniques a comparative perspective

    CERN Document Server

    Cuevas, Erik; Oliva, Diego

    2017-01-01

    This book compares the performance of various evolutionary computation (EC) techniques when they are faced with complex optimization problems extracted from different engineering domains. Particularly focusing on recently developed algorithms, it is designed so that each chapter can be read independently. Several comparisons among EC techniques have been reported in the literature, however, they all suffer from one limitation: their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. In each chapter, a complex engineering optimization problem is posed, and then a particular EC technique is presented as the best choice, according to its search characteristics. Lastly, a set of experiments is conducted in order to compare its performance to other popular EC methods.

  18. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Graziele Pereira Oliveira

    2017-01-01

    Full Text Available For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV, raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’ that could be evolved gradually by nucleotides’ gain and loss and point mutations.

  19. An evolutionary behaviorist perspective on orgasm

    Directory of Open Access Journals (Sweden)

    Diana S. Fleischman

    2016-10-01

    Full Text Available Evolutionary explanations for sexual behavior and orgasm most often posit facilitating reproduction as the primary function (i.e. greater rate of fertilization. Other reproductive benefits of sexual pleasure and orgasm such as improved bonding of parents have also been discussed but not thoroughly. Although sex is known to be highly reinforcing, behaviorist principles are rarely invoked alongside evolutionary psychology in order to account for human sexual and social behavior. In this paper, I will argue that intense sexual pleasure, especially orgasm, can be understood as a primary reinforcer shaped by evolution to reinforce behavior that facilitates reproductive success (i.e. conception through copulation. Next, I will describe an evolutionary account of social shaping. In particular, I will focus on how humans evolved to use orgasm and sexual arousal to shape the social behavior and emotional states of others through both classical and operant conditioning and through both reproductive and non-reproductive forms of sexual behavior. Finally, I will describe how orgasm is a signal of sensitivity to reinforcement that is itself reinforcing.

  20. Diabetes and Obesity—An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Sylvia Kirchengast

    2017-01-01

    Full Text Available Obesity and type II diabetes belong to the most serious public health challenges of the 21st century. Initially both diseases were typical of affluent societies. Currently both conditions however are increasingly found in low and middle income countries. In future obesity and diabetes are expected to reach epidemic proportions and affect developing countries to a greater extent than developed ones. A globalization of obesity and diabetes is observable. Recently prevalence rates increased, especially in Asia, the Near and Middle East, the Western Pacific region and even in Sub-Saharan Africa. Evolutionary Anthropology tries to understand the evolutionary mechanisms promoting rising obesity and diabetes type II rates. Homo sapiens evolved in an environment quite different from our recent one. Profound changes in physical activity patterns and nutritional habits during the last 10,000 years and increasingly during the last 200 years increased the risk of obesity and diabetes type II. Consequently our recent environment is called “obesogenic”. This mismatch has been recently observable among societies experiencing rapid cultural changes characterized by Westernization and modernization. This review focuses on obesity and type II diabetes from the viewpoint of evolutionary anthropology.

  1. An evolutionary behaviorist perspective on orgasm

    Science.gov (United States)

    Fleischman, Diana S.

    2016-01-01

    Evolutionary explanations for sexual behavior and orgasm most often posit facilitating reproduction as the primary function (i.e. greater rate of fertilization). Other reproductive benefits of sexual pleasure and orgasm such as improved bonding of parents have also been discussed but not thoroughly. Although sex is known to be highly reinforcing, behaviorist principles are rarely invoked alongside evolutionary psychology in order to account for human sexual and social behavior. In this paper, I will argue that intense sexual pleasure, especially orgasm, can be understood as a primary reinforcer shaped by evolution to reinforce behavior that facilitates reproductive success (i.e. conception through copulation). Next, I will describe an evolutionary account of social shaping. In particular, I will focus on how humans evolved to use orgasm and sexual arousal to shape the social behavior and emotional states of others through both classical and operant conditioning and through both reproductive and non-reproductive forms of sexual behavior. Finally, I will describe how orgasm is a signal of sensitivity to reinforcement that is itself reinforcing. PMID:27799083

  2. An evolutionary behaviorist perspective on orgasm.

    Science.gov (United States)

    Fleischman, Diana S

    2016-01-01

    Evolutionary explanations for sexual behavior and orgasm most often posit facilitating reproduction as the primary function (i.e. greater rate of fertilization). Other reproductive benefits of sexual pleasure and orgasm such as improved bonding of parents have also been discussed but not thoroughly. Although sex is known to be highly reinforcing, behaviorist principles are rarely invoked alongside evolutionary psychology in order to account for human sexual and social behavior. In this paper, I will argue that intense sexual pleasure, especially orgasm, can be understood as a primary reinforcer shaped by evolution to reinforce behavior that facilitates reproductive success (i.e. conception through copulation). Next, I will describe an evolutionary account of social shaping. In particular, I will focus on how humans evolved to use orgasm and sexual arousal to shape the social behavior and emotional states of others through both classical and operant conditioning and through both reproductive and non-reproductive forms of sexual behavior. Finally, I will describe how orgasm is a signal of sensitivity to reinforcement that is itself reinforcing.

  3. An Evolutionary Perspective on Toxic Leadership

    Directory of Open Access Journals (Sweden)

    Lucia Ovidia VREJA

    2016-12-01

    Full Text Available Charles Darwin’s prediction from 1859, that future psychology was going to be built on principles derived from evolutionary theory came at last to be fulfilled. Nowadays, there are at least four disciplines that attempt to explain human behaviours as evolutionary adaptations (or maladaptations to the natural and/or social environment: human sociobiology, human behavioural ecology, evolutionary psychology, memetics and gene–culture coevolution theory (in our view, the most adequate of all. According to gene–culture coevolution theory, articulated language was the singular phenomenon that permitted humans to become a cultural species, and from that moment on culture become itself a selection factor. Culture means transmission of information from one generation to the next and learning from other individuals’ experiences, trough language. So, it is of critical importance to have good criteria for the selection of those individuals from whom we should learn. Yet when humans also choose their leaders from among those role-models, according to the same criteria, this mechanism can become a maladaptation and the result can be toxic leadership.

  4. An Evolutionary Perspective on Parental and Grandparental Investment

    NARCIS (Netherlands)

    Heijkoop, M.

    2010-01-01

    Although great effort has been spent on studying the effects of parenting on child development, much less research has focused on factors that predict individual differences in parental investment. In this dissertation, an evolutionary psychological perspective was used to identify characteristics

  5. Attachment in Middle Childhood: An Evolutionary-Developmental Perspective

    Science.gov (United States)

    Del Giudice, Marco

    2015-01-01

    Middle childhood is a key transitional stage in the development of attachment processes and representations. Here I discuss the middle childhood transition from an evolutionary-developmental perspective and show how this approach offers fresh insight into the function and organization of attachment in this life stage. I begin by presenting an…

  6. The evolutionary biology of insect hearing.

    Science.gov (United States)

    Fullard, J H; Yack, J E

    1993-07-01

    Few areas of science have experienced such a blending of laboratory and field perspectives as the study of hearing. The disciplines of sensory ecology and neuroethology interpret the morphology and physiology of ears in the adaptive context in which this sense organ functions. Insects, with their enormous diversity, are valuable candidates for the study of how tympanal ears have evolved and how they operate today in different habitats. Copyright © 1993. Published by Elsevier Ltd.

  7. Evolutionary bioscience as regulatory systems biology.

    Science.gov (United States)

    Davidson, Eric H

    2011-09-01

    At present several entirely different explanatory approaches compete to illuminate the mechanisms by which animal body plans have evolved. Their respective relevance is briefly considered here in the light of modern knowledge of genomes and the regulatory processes by which development is controlled. Just as development is a system property of the regulatory genome, causal explanation of evolutionary change in developmental process must be considered at a system level. Here I enumerate some mechanistic consequences that follow from the conclusion that evolution of the body plan has occurred by alteration of the structure of developmental gene regulatory networks. The hierarchy and multiple additional design features of these networks act to produce Boolean regulatory state specification functions at upstream phases of development of the body plan. These are created by the logic outputs of network subcircuits, and in modern animals these outputs are impervious to continuous adaptive variation unlike genes operating more peripherally in the network. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. [Sexual attraction: a concept analysis using an evolutionary perspective].

    Science.gov (United States)

    Yang, Shu-Chin; Chu, Chun-Hong; Lu, Zxy-Yann Jane

    2015-02-01

    Medical technology has transformed the body image of women and altered perceptions of beauty and sexual attraction. While "sexual attraction" is a fundamental concept in sexology, the characteristics of this concept have not been studied in the field of nursing. Because nurses provide advice and health education for women, it is essential to clarify the concept of sexual attraction for the benefit of related nursing research and for the further development of nursing knowledge. This study explores the concept of sexual attraction in a Taiwanese social context using concept analysis based on an evolutionary perspective. Inductive inquiry is used to compare and contrast articles from the academic literature, magazines, and newspapers, and data from participant observation and interviews are used to generate exemplars. The process by which the concept of sexual attraction has evolved over time is captured from three distinct aspects: significance, use, and application. The definitional statement of sexual attraction includes the five dimensions of: 1. sexual-oriented psychological dynamics; 2. personal aesthetics and sensory experience; 3. instinct body forces; 4. body language of self; and 5. social and cultural norms. This study scrutinized the changes in attributes that emphasize the biological, objectified body, and stereotyped gender roles of women. Further directions for research and nursing knowledge development are suggested. Examples include identifying the changes in the concept of sexual attraction that result from technological advancement and further clarifying the experiential knowledge of sexual attraction that represents the selfhood and independence of women in Taiwan.

  9. Measuring the evolutionary rewiring of biological networks.

    Directory of Open Access Journals (Sweden)

    Chong Shou

    Full Text Available We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or "rewire", at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of "commonplace" networks such as family trees, co-authorships and linux-kernel function dependencies.

  10. Evolutionary crossroads in developmental biology: annelids.

    Science.gov (United States)

    Ferrier, David E K

    2012-08-01

    Annelids (the segmented worms) have a long history in studies of animal developmental biology, particularly with regards to their cleavage patterns during early development and their neurobiology. With the relatively recent reorganisation of the phylogeny of the animal kingdom, and the distinction of the super-phyla Ecdysozoa and Lophotrochozoa, an extra stimulus for studying this phylum has arisen. As one of the major phyla within Lophotrochozoa, Annelida are playing an important role in deducing the developmental biology of the last common ancestor of the protostomes and deuterostomes, an animal from which >98% of all described animal species evolved.

  11. Evolutionary game theory as a framework for studying biological invasions.

    Science.gov (United States)

    Pintor, Lauren M; Brown, Joel S; Vincent, Thomas L

    2011-04-01

    Although biological invasions pose serious threats to biodiversity, they also provide the opportunity to better understand interactions between the ecological and evolutionary processes structuring populations and communities. However, ecoevolutionary frameworks for studying species invasions are lacking. We propose using game theory and the concept of an evolutionarily stable strategy (ESS) as a conceptual framework for integrating the ecological and evolutionary dynamics of invasions. We suggest that the pathways by which a recipient community may have no ESS provide mechanistic hypotheses for how such communities may be vulnerable to invasion and how invaders can exploit these vulnerabilities. We distinguish among these pathways by formalizing the evolutionary contexts of the invader relative to the recipient community. We model both the ecological and the adaptive dynamics of the interacting species. We show how the ESS concept provides new mechanistic hypotheses for when invasions result in long- or short-term increases in biodiversity, species replacement, and subsequent evolutionary changes.

  12. The evolutionary biology of dance without frills.

    Science.gov (United States)

    Ravignani, Andrea; Cook, Peter F

    2016-10-10

    Recently psychologists have taken up the question of whether dance is reliant on unique human adaptations, or whether it is rooted in neural and cognitive mechanisms shared with other species [1,2]. In its full cultural complexity, human dance clearly has no direct analog in animal behavior. Most definitions of dance include the consistent production of movement sequences timed to an external rhythm. While not sufficient for dance, modes of auditory-motor timing, such as synchronization and entrainment, are experimentally tractable constructs that may be analyzed and compared between species. In an effort to assess the evolutionary precursors to entrainment and social features of human dance, Laland and colleagues [2] have suggested that dance may be an incidental byproduct of adaptations supporting vocal or motor imitation - referred to here as the 'imitation and sequencing' hypothesis. In support of this hypothesis, Laland and colleagues rely on four convergent lines of evidence drawn from behavioral and neurobiological research on dance behavior in humans and rhythmic behavior in other animals. Here, we propose a less cognitive, more parsimonious account for the evolution of dance. Our 'timing and interaction' hypothesis suggests that dance is scaffolded off of broadly conserved timing mechanisms allowing both cooperative and antagonistic social coordination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. An evolutionary biochemist's perspective on promiscuity.

    Science.gov (United States)

    Copley, Shelley D

    2015-02-01

    Evolutionary biochemists define enzyme promiscuity as the ability to catalyze secondary reactions that are physiologically irrelevant, either because they are too inefficient to affect fitness or because the enzyme never encounters the substrate. Promiscuous activities are common because evolution of a perfectly specific active site is both difficult and unnecessary; natural selection ceases when the performance of a protein is 'good enough' that it no longer affects fitness. Although promiscuous functions are accidental and physiologically irrelevant, they are of great importance because they provide opportunities for the evolution of new functions in nature and in the laboratory, as well as targets for therapeutic drugs and tools for a wide range of technological applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Polemics and Synthesis: Ernst Mayr and Evolutionary Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 7. Polemics and Synthesis: Ernst Mayr and Evolutionary Biology. Renee M Borges. General Article Volume 10 Issue 7 July 2005 pp 21-33. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Polemics and Synthesis: Ernst Mayr and Evolutionary Biology

    Indian Academy of Sciences (India)

    during his life that spanned a century, Ernst Mayr (1904-2005) made outstanding contributions to our understanding of the pat- tern and process of evolution. An ornithologist and systematist by training, Mayr embraced Darwinism and championed the cause of evolutionary biology throughout his long and highly productive.

  16. Biochemistry and evolutionary biology: Two disciplines that need ...

    Indian Academy of Sciences (India)

    Biochemical information has been crucial for the development of evolutionary biology. On the one hand, the sequence information now appearing is producing a huge increase in the amount of data available for phylogenetic analysis; on the other hand, and perhaps more fundamentally, it allows understanding of the ...

  17. Psychology and evolutionary biology; Causal analysis, evidence, and nomothetic laws

    NARCIS (Netherlands)

    Van Hezewijk, René

    2008-01-01

    Published as a chapter in Van Hezewijk, R. (2003). Psychology and evolutionary biology; Causal analysis, evidence, and nomothetic laws. In N. Stephenson, L. Radtke, R. Jorna & H. J. Stam (Eds.), Theoretical psychology; Critical contributions (pp. 405-415). Concord, Ontario: Captus Press.

  18. Teaching evolutionary biology: Pressures, stress, and coping

    Science.gov (United States)

    Griffith, Joyce A.; Brem, Sarah K.

    2004-10-01

    Understanding what teachers need to be more comfortable and confident in their profession is crucial to the future of effective teachers and scientific literacy in public schools. This study focuses on the experiences of Arizona biology teachers in teaching evolution, using a clinical model of stress to identify sources of pressure, the resulting stresses, and coping strategies they employ to alleviate these stresses. We conducted focus groups, one-on-one interviews, and written surveys with 15 biology teachers from the Phoenix area. On the basis of their responses, teachers were clustered into three categories: Conflicted, who struggle with their own beliefs and the possible impact of their teaching, Selective, who carefully avoid difficult topics and situations, and Scientists, who see no place for controversial social issues in their science classroom. Teachers from each group felt that they could be more effective in teaching evolution if they possessed the most up-to-date information about evolution and genomics, a safe space in which to reflect on the possible social and personal implications with their peers, and access to richer lesson plans for teaching evolution that include not only science but personal stories regarding how the lessons arose, and what problems and opportunities they created.

  19. An evolutionary perspective on protein moonlighting.

    Science.gov (United States)

    Copley, Shelley D

    2014-12-01

    Moonlighting proteins serve one or more novel functions in addition to their canonical roles. Moonlighting functions arise when an adventitious interaction between a protein and a new partner improves fitness of the organism. Selective pressure for improvement in the new function can result in two alternative outcomes. The gene encoding the newly bifunctional protein may duplicate and diverge so as to encode two proteins, each of which serves only one function. Alternatively, genetic changes that minimize adaptive conflict between the two functions and/or improve control over the time and place at which each function is served can lead to a moonlighting protein. Importantly, genetic changes that enhance a moonlighting function can occur in the gene encoding the moonlighting protein itself, in a gene that affects the structure of its new partner or in a gene encoding a transcription factor that controls expression of either partner. The evolutionary history of each moonlighting protein is complex, depending on the stochastic occurrence of genetic changes such as gene duplication and point mutations, and the effects of those changes on fitness. Population effects, particularly loss of promising individuals due to random genetic drift, also play a role in the emergence of a moonlighting protein. The ultimate outcome is not necessarily the 'optimal' solution to the problem of serving two functions, but may be 'good enough' so that fitness becomes limited by some other function.

  20. Evolutionary Psychology in the Modern World: Applications, Perspectives, and Strategies

    Directory of Open Access Journals (Sweden)

    S. Craig Roberts

    2012-12-01

    Full Text Available An evolutionary approach is a powerful framework which can bring new perspectives on any aspect of human behavior, to inform and complement those from other disciplines, from psychology and anthropology to economics and politics. Here we argue that insights from evolutionary psychology may be increasingly applied to address practical issues and help alleviate social problems. We outline the promise of this endeavor, and some of the challenges it faces. In doing so, we draw parallels between an applied evolutionary psychology and recent developments in Darwinian medicine, which similarly has the potential to complement conventional approaches. Finally, we describe some promising new directions which are developed in the associated papers accompanying this article.

  1. From experimental systems to evolutionary biology: an impossible journey?

    Science.gov (United States)

    Morange, Michel

    2013-01-01

    The historical approach to the sciences has undergone a sea change during recent decades. Maybe the major contribution of Hans-Jörg Rheinberger to this movement was his demonstration of the importance of experimental systems, and of their transformations, in the development of the sciences. To describe these transformations, Hans-Jörg borrows metaphors from evolutionary biology. I want to argue that evolutionary biologists can find in these recent historical studies plenty of models and concepts to address unresolved issues in their discipline. At a time when transdisciplinarity is highly praised, it is useful to provide a precise description of the obstacles that have so far prevented this exchange.

  2. Evolutionary systems biology: what it is and why it matters.

    Science.gov (United States)

    Soyer, Orkun S; O'Malley, Maureen A

    2013-08-01

    Evolutionary systems biology (ESB) is a rapidly growing integrative approach that has the core aim of generating mechanistic and evolutionary understanding of genotype-phenotype relationships at multiple levels. ESB's more specific objectives include extending knowledge gained from model organisms to non-model organisms, predicting the effects of mutations, and defining the core network structures and dynamics that have evolved to cause particular intracellular and intercellular responses. By combining mathematical, molecular, and cellular approaches to evolution, ESB adds new insights and methods to the modern evolutionary synthesis, and offers ways in which to enhance its explanatory and predictive capacities. This combination of prediction and explanation marks ESB out as a research manifesto that goes further than its two contributing fields. Here, we summarize ESB via an analysis of characteristic research examples and exploratory questions, while also making a case for why these integrative efforts are worth pursuing. © 2013 WILEY Periodicals, Inc.

  3. Probiotics and autoimmunity: an evolutionary perspective.

    Science.gov (United States)

    Canche-Pool, E B; Cortez-Gómez, R; Flores-Mejía, R; González-González, E; González-Serrano, M E; Lara-Rodríguez, M C; Ledesma-Soto, Y; Mendoza-Aguilar, M D; Meza-Sánchez, D E; Sánchez-García, F J; Silva-Sánchez, A; Thompson-Bonilla, M R; Trujillo-Vizuet, M G; Wong-Baeza, I

    2008-01-01

    Probiotics are microorganisms that have demonstrated beneficial effects on human health. Probiotics are usually isolated from the commensal microflora that inhabits the skin and mucosas. We propose that probiotics represent the species of microorganisms that have established a symbiotic relationship with humans for the longest time. Cultural practices of ancient human societies used to favor that symbiosis and the transmission of probiotics from generation to generation. New practices, introduced as a result of industrialization, such as childbirth by surgical delivery, ingestion of pasteurized and synthetic compounds-supplemented food, cleaner homes, indiscriminate use of antibiotics and so on, have led in recent years to the replacement of probiotics by other microorganisms that are not as well adapted to the microenvironments of the human body. These newly settled microorganisms lack many of the beneficial effects of probiotics. Our hypothesis is that the sudden change (from an evolutive perspective) in human intestinal microflora may importantly contribute to the rise in the incidence of autoimmune diseases, observed in the last half a century.

  4. Is evolutionary psychology a metatheory for psychology? A discussion of four major issues in psychology from an evolutionary developmental perspective

    NARCIS (Netherlands)

    Ploeger, A.; van der Maas, H.L.J.; Raijmakers, M.E.J.

    2008-01-01

    Evolutionary psychology has been proposed as a metatheoretical framework for psychology. We argue that evolutionary psychology should be expanded if it is to offer new insights regarding the major issues in psychology. Evolutionary developmental biology can provide valuable new insights into issues

  5. [Evolutionary medicine: an introduction. Evolutionary biology, a missing element in medical teaching].

    Science.gov (United States)

    Swynghedauw, Bernard

    2009-05-01

    The aim of this brief review article is to help to reconcile medicine with evolutionary biology, a subject that should be taught in medical school. Evolutionary medicine takes the view that contemporary ills are related to an incompatibility between the environment in which humans currently live and their genomes, which have been shaped by diferent environmental conditions during biological evolution. Human activity has recently induced acute environmental modifications that have profoundly changed the medical landscape. Evolutionary biology is an irreversible, ongoing and discontinuous process characterized by periods of stasis followed by accelerations. Evolutionary biology is determined by genetic mutations, which are selected either by Darwinian selective pressure or randomly by genetic drift. Most medical events result from a genome/environment conflict. Some may be purely genetic, as in monogenic diseases, and others purely environmental, such as traffic accidents. Nevertheless, in most common diseases the clinical landscape is determined by the conflict between these two factors, the genetic elements of which are gradually being unraveled Three examples are examined in depth:--The medical consequences of the greenhouse effect. The absence of excess mortality during recent heat waves suggests that the main determinant of mortality in the 2003 heatwave was heatstroke and old age. The projected long-term effects of global warming call for research on thermolysis, a forgotten branch of physiology.--The hygiene hypothesis postulates that the exponential rise in autoimmune and allergic diseases is linked to lesser exposure to infectious agents, possibly involving counter-regulatory factors such as IL-10.--The recent rise in the incidence of obesity and type 2 diabetes in rich countries can be considered to result from a conflict between a calorie-rich environment and gene variants that control appetite. These variants are currently being identified by genome

  6. Neurohormetic phytochemicals: An evolutionary-bioenergetic perspective.

    Science.gov (United States)

    Murugaiyah, Vikneswaran; Mattson, Mark P

    2015-10-01

    The impact of dietary factors on brain health and vulnerability to disease is increasingly appreciated. The results of epidemiological studies, and intervention trials in animal models suggest that diets rich in phytochemicals can enhance neuroplasticity and resistance to neurodegeneration. Here we describe how interactions of plants and animals during their co-evolution, and resulting reciprocal adaptations, have shaped the remarkable characteristics of phytochemicals and their effects on the physiology of animal cells in general, and neurons in particular. Survival advantages were conferred upon plants capable of producing noxious bitter-tasting chemicals, and on animals able to tolerate the phytochemicals and consume the plants as an energy source. The remarkably diverse array of phytochemicals present in modern fruits, vegetables spices, tea and coffee may have arisen, in part, from the acquisition of adaptive cellular stress responses and detoxification enzymes in animals that enabled them to consume plants containing potentially toxic chemicals. Interestingly, some of the same adaptive stress response mechanisms that protect neurons against noxious phytochemicals are also activated by dietary energy restriction and vigorous physical exertion, two environmental challenges that shaped brain evolution. In this perspective article, we describe some of the signaling pathways relevant to cellular energy metabolism that are modulated by 'neurohormetic phytochemicals' (potentially toxic chemicals produced by plants that have beneficial effects on animals when consumed in moderate amounts). We highlight the cellular bioenergetics-related sirtuin, adenosine monophosphate activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and insulin-like growth factor 1 (IGF-1) pathways. The inclusion of dietary neurohormetic phytochemicals in an overall program for brain health that also includes exercise and energy restriction may find applications in the

  7. Neurohormetic Phytochemicals: An Evolutionary - Bioenergetic Perspective

    Science.gov (United States)

    Murugaiyah, Vikneswaran; Mattson, Mark P.

    2015-01-01

    The impact of dietary factors on brain health and vulnerability to disease is increasingly appreciated. The results of epidemiological studies, and intervention trials in animal models suggest that diets rich in phytochemicals can enhance neuroplasticity and resistance to neurodegeneration. Here we describe how interactions of plants and animals during their co-evolution, and resulting reciprocal adaptations, have shaped the remarkable characteristics of phytochemicals and their effects on the physiology of animal cells in general, and neurons in particular. Survival advantages were conferred upon plants capable of producing noxious bitter-tasting chemicals, and on animals able to tolerate the phytochemicals and consume the plants as an energy source. The remarkably diverse array of phytochemicals present in modern fruits, vegetables spices, tea and coffee may have arisen, in part, from the acquisition of adaptive cellular stress responses and detoxification enzymes in animals that enabled them to consume plants containing potentially toxic chemicals. Interestingly, some of the same adaptive stress response mechanisms that protect neurons against noxious phytochemicals are also activated by dietary energy restriction and vigorous physical exertion, two environmental challenges that shaped brain evolution. In this perspective article, we describe some of the signaling pathways relevant to cellular energy metabolism that are modulated by ‘neurohormetic phytochemicals’ (potentially toxic chemicals produced by plants that have beneficial effects on animals when consumed in moderate amounts). We highlight the cellular bioenergetics-related sirtuin, adenosine monophosphate activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and insulin-like growth factor 1 (IGF-1) pathways. The inclusion of dietary neurohormetic phytochemicals in an overall program for brain health that also includes exercise and energy restriction may find applications in the

  8. Evolution, Science and Society: Evolutionary Biology and the National Research Agenda.

    Science.gov (United States)

    Futuyma, Douglas J.; Meagher, Thomas R.

    2001-01-01

    Discusses ways of advancing understanding of evolutionary biology which seeks to explain all the characteristics of organisms. Describes the goals of evolutionary biology, why it is important, and how it contributes to society and basic science. (ASK)

  9. phyloXML: XML for evolutionary biology and comparative genomics.

    Science.gov (United States)

    Han, Mira V; Zmasek, Christian M

    2009-10-27

    Evolutionary trees are central to a wide range of biological studies. In many of these studies, tree nodes and branches need to be associated (or annotated) with various attributes. For example, in studies concerned with organismal relationships, tree nodes are associated with taxonomic names, whereas tree branches have lengths and oftentimes support values. Gene trees used in comparative genomics or phylogenomics are usually annotated with taxonomic information, genome-related data, such as gene names and functional annotations, as well as events such as gene duplications, speciations, or exon shufflings, combined with information related to the evolutionary tree itself. The data standards currently used for evolutionary trees have limited capacities to incorporate such annotations of different data types. We developed a XML language, named phyloXML, for describing evolutionary trees, as well as various associated data items. PhyloXML provides elements for commonly used items, such as branch lengths, support values, taxonomic names, and gene names and identifiers. By using "property" elements, phyloXML can be adapted to novel and unforeseen use cases. We also developed various software tools for reading, writing, conversion, and visualization of phyloXML formatted data. PhyloXML is an XML language defined by a complete schema in XSD that allows storing and exchanging the structures of evolutionary trees as well as associated data. More information about phyloXML itself, the XSD schema, as well as tools implementing and supporting phyloXML, is available at http://www.phyloxml.org.

  10. Integrating Functional, Developmental and Evolutionary Biology into Biology Curricula

    Science.gov (United States)

    Haave, Neil

    2012-01-01

    A complete understanding of life involves how organisms are able to function in their environment and how they arise. Understanding how organisms arise involves both their evolution and development. Thus to completely comprehend living things, biology must study their function, development and evolution. Previous proposals for standardized…

  11. The tragedy of the commons in evolutionary biology.

    OpenAIRE

    Rankin DJ; Bargum K; Kokko H.

    2007-01-01

    Garrett Hardin's tragedy of the commons is an analogy that shows how individuals driven by self-interest can end up destroying the resource upon which they all depend. The proposed solutions for humans rely on highly advanced skills such as negotiation, which raises the question of how non-human organisms manage to resolve similar tragedies. In recent years, this question has promoted evolutionary biologists to apply the tragedy of the commons to a wide range of biological systems. Here, we p...

  12. Fewer invited talks by women in evolutionary biology symposia.

    Science.gov (United States)

    Schroeder, J; Dugdale, H L; Radersma, R; Hinsch, M; Buehler, D M; Saul, J; Porter, L; Liker, A; De Cauwer, I; Johnson, P J; Santure, A W; Griffin, A S; Bolund, E; Ross, L; Webb, T J; Feulner, P G D; Winney, I; Szulkin, M; Komdeur, J; Versteegh, M A; Hemelrijk, C K; Svensson, E I; Edwards, H; Karlsson, M; West, S A; Barrett, E L B; Richardson, D S; van den Brink, V; Wimpenny, J H; Ellwood, S A; Rees, M; Matson, K D; Charmantier, A; Dos Remedios, N; Schneider, N A; Teplitsky, C; Laurance, W F; Butlin, R K; Horrocks, N P C

    2013-09-01

    Lower visibility of female scientists, compared to male scientists, is a potential reason for the under-representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under-represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001-2011, 9-23% of invited speakers were women. This under-representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high-impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early-mid career stage scientists, but was similar to senior scientists and authors that have published in high-impact journals. High-quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  13. Antibiotic resistance in the wild: an eco-evolutionary perspective.

    Science.gov (United States)

    Hiltunen, Teppo; Virta, Marko; Laine, Anna-Liisa

    2017-01-19

    The legacy of the use and misuse of antibiotics in recent decades has left us with a global public health crisis: antibiotic-resistant bacteria are on the rise, making it harder to treat infections. At the same time, evolution of antibiotic resistance is probably the best-documented case of contemporary evolution. To date, research on antibiotic resistance has largely ignored the complexity of interactions that bacteria engage in. However, in natural populations, bacteria interact with other species; for example, competition and grazing are import interactions influencing bacterial population dynamics. Furthermore, antibiotic leakage to natural environments can radically alter bacterial communities. Overall, we argue that eco-evolutionary feedback loops in microbial communities can be modified by residual antibiotics and evolution of antibiotic resistance. The aim of this review is to connect some of the well-established key concepts in evolutionary biology and recent advances in the study of eco-evolutionary dynamics to research on antibiotic resistance. We also identify some key knowledge gaps related to eco-evolutionary dynamics of antibiotic resistance, and review some of the recent technical advantages in molecular microbiology that offer new opportunities for tackling these questions. Finally, we argue that using the full potential of evolutionary theory and active communication across the different fields is needed for solving this global crisis more efficiently.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Authors.

  14. Evolutionary biology through the lens of budding yeast comparative genomics.

    Science.gov (United States)

    Marsit, Souhir; Leducq, Jean-Baptiste; Durand, Éléonore; Marchant, Axelle; Filteau, Marie; Landry, Christian R

    2017-10-01

    The budding yeast Saccharomyces cerevisiae is a highly advanced model system for studying genetics, cell biology and systems biology. Over the past decade, the application of high-throughput sequencing technologies to this species has contributed to this yeast also becoming an important model for evolutionary genomics. Indeed, comparative genomic analyses of laboratory, wild and domesticated yeast populations are providing unprecedented detail about many of the processes that govern evolution, including long-term processes, such as reproductive isolation and speciation, and short-term processes, such as adaptation to natural and domestication-related environments.

  15. Evolutionary biology today and the call for an extended synthesis.

    Science.gov (United States)

    Futuyma, Douglas J

    2017-10-06

    Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an 'extended evolutionary synthesis'. 'Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected 'process' of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation

  16. Charles Darwin and the Origins of Plant Evolutionary Developmental Biology

    Science.gov (United States)

    Friedman, William E.; Diggle, Pamela K.

    2011-01-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form. PMID:21515816

  17. Charles Darwin and the origins of plant evolutionary developmental biology.

    Science.gov (United States)

    Friedman, William E; Diggle, Pamela K

    2011-04-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form.

  18. Gilbert Gottlieb: intermediator between psychology and evolutionary biology.

    Science.gov (United States)

    Rosenblatt, Jay S

    2007-12-01

    This article describes and evaluates Gilbert Gottlieb's role as an intermediator between psychology and evolutionary biology. He proposed that altered developmental conditions gave rise to new behavioral phenotypes (behavioral neophenotypes) that could provide the basis for initiating speciation. As an example, Gottlieb cited sympatric speciation of two species of fruit flies (Rhageletis pomella), which he believed was based on an ontogenetic shift in pupal feeding on apples or hawthorn fruit which determined their adult selection of apple or hawthorn trees for ovipositing. Recent evidence has provided additional links in the process of speciation of these fruit flies. Unlike other efforts to incorporate evolution in psychology, Gottlieb's theoretical contribution was based on actual evolutionary processes including recent developments in the field of evo-devo.

  19. Developmental dynamics: toward a biologically plausible evolutionary psychology.

    Science.gov (United States)

    Lickliter, Robert; Honeycutt, Hunter

    2003-11-01

    There has been a conceptual revolution in the biological sciences over the past several decades. Evidence from genetics, embryology, and developmental biology has converged to offer a more epigenetic, contingent, and dynamic view of how organisms develop. Despite these advances, arguments for the heuristic value of a gene-centered, predeterministic approach to the study of human behavior and development have become increasingly evident in the psychological sciences during this time. In this article, the authors review recent advances in genetics, embryology, and developmental biology that have transformed contemporary developmental and evolutionary theory and explore how these advances challenge gene-centered explanations of human behavior that ignore the complex, highly coordinated system of regulatory dynamics involved in development and evolution.

  20. An evolutionary perspective on anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    David John Klinke

    2013-01-01

    Full Text Available The challenges associated with demonstrating a durable response using molecular targeted therapies in cancer has sparked a renewed interest in viewing cancer from an evolutionary perspective. Evolutionary processes have three common traits: heterogeneity, dynamics, and a selective fitness landscape. Mutagens randomly alter the genome of host cells creating a population of cells that contain different somatic mutations. This genomic rearrangement perturbs cellular homeostasis through changing how cells interact with their tissue microenvironment. To counterbalance the ability of mutated cells to outcompete for limited resources, control structures are encoded within the cell and within the organ system, such as innate and adaptive immunity, to restore cellular homeostasis. These control structures shape the selective fitness landscape and determine whether a cell that harbors particular somatic mutations is retained or eliminated from a cell population. While next-generation sequencing has revealed the complexity and heterogeneity of oncogenic transformation, understanding the dynamics of oncogenesis and how cancer cells alter the selective fitness landscape remain unclear. In this technology review, we will summarize how recent advances in technology have impacted our understanding of these three attributes of cancer as an evolutionary process. In particular, we will focus on how advances in genome sequencing have enabled quantifying cellular heterogeneity, advances in computational power have enabled explicit testing of postulated intra- and intercellular control structures against the available data using simulation, and advances in proteomics have enabled identifying novel mechanisms of cellular cross-talk that cancer cells use to alter the fitness landscape.

  1. On the origins of anticipation as an evolutionary framework: functional systems perspective

    Science.gov (United States)

    Kurismaa, Andres

    2015-08-01

    This paper discusses the problem of anticipation from an evolutionary and systems-theoretical perspective, developed in the context of Russian/Soviet evolutionary biological and neurophysiological schools in the early and mid-twentieth century. On this background, an outline is given of the epigenetic interpretation of anticipatory capacities formulated and substantiated by the eminent Russian neurophysiologist academician Peter K. Anokhin in the framework of functional systems theory. It is considered that several key positions of this theory are well confirmed by recent evidence on anticipation as an evolutionarily basic adaptive capacity, possibly inherent to the organization of life. In the field of neuroscience, the theory of functional systems may potentially facilitate future studies at the intersection of learning, development and evolution by representing an integrative approach to the problem of anticipation.

  2. Zebrafish Xenograft: An Evolutionary Experiment in Tumour Biology.

    Science.gov (United States)

    Wyatt, Rachael A; Trieu, Nhu P V; Crawford, Bryan D

    2017-09-05

    Though the cancer research community has used mouse xenografts for decades more than zebrafish xenografts, zebrafish have much to offer: they are cheap, easy to work with, and the embryonic model is relatively easy to use in high-throughput assays. Zebrafish can be imaged live, allowing us to observe cellular and molecular processes in vivo in real time. Opponents dismiss the zebrafish model due to the evolutionary distance between zebrafish and humans, as compared to mice, but proponents argue for the zebrafish xenograft's superiority to cell culture systems and its advantages in imaging. This review places the zebrafish xenograft in the context of current views on cancer and gives an overview of how several aspects of this evolutionary disease can be addressed in the zebrafish model. Zebrafish are missing homologs of some human proteins and (of particular interest) several members of the matrix metalloproteinase (MMP) family of proteases, which are known for their importance in tumour biology. This review draws attention to the implicit evolutionary experiment taking place when the molecular ecology of the xenograft host is significantly different than that of the donor.

  3. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology.

    Science.gov (United States)

    Bonier, Frances; Martin, Paul R

    2016-11-30

    An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution. © 2016 The Author(s).

  4. Kant and Hegel's Responses to Hume's Skepticism Concerning Causality: An Evolutionary Epistemological Perspective

    Directory of Open Access Journals (Sweden)

    Adam Christian Scarfe

    2012-05-01

    Full Text Available According to Hume, determinations of necessary causal connection are without empirical warrant, but, as he maintains, the concept of causality qua necessary connection is indispensable to human beings, having survival value for them, a claim which points to the biological significance of this concept. In contrast to Hume, Kant argues that the causal principle qua necessary connection belongs to the a priori conceptual framework by which rational beings constitute their experience and render the world intelligible. In “Kant’s Doctrine of the A Priori in Light of Contemporary Biology” (1941 / 1962 evolutionary epistemologist Konrad Lorenz sought to adapt Kant’s philosophy to contemporary biology by arguing that the a priori concepts of the understanding can be interpreted as comprising a biologically inherited framework, yet one that is provisional and in flux. Such an evolutionary interpretation of both Hume and Kant’s perspectives of the lacuna concerning causality brings the ideas of these thinkers closer together. Kant himself used suggestive analogies between the major epistemological positions concerning the origin of the a priori concepts of the understanding and the major biological theories of his time concerning the generation and development of organisms. Nevertheless, Kant would probably be reluctant to embrace such an evolutionarily-oriented conception of the categories, given his descriptions of them as self-thought, a priori first principles having a purely intellectual origin, belonging as a very condition for the possibility of the experience of rational beings in general, and as neither the product of a process of development, nor subject to one. This paper shows how Hegel’s emphasis on the dialectical progression of the logical Concept (Begriff can help to ground Lorenz’s evolutionary neo-Kantianism. Toward the end of the paper, I discuss the evolutionary relevance of skepticism and critical thinking in this

  5. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    Science.gov (United States)

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  6. Phylo-evo-devo: combining phylogenetics with evolutionary developmental biology

    Directory of Open Access Journals (Sweden)

    Minelli Alessandro

    2009-06-01

    Full Text Available Abstract As a result of the integration of molecular and morphological approaches for the reconstruction of phylogenies, and of the intertwining of developmental and evolutionary biology, further prospects are open for a fruitful interaction between these two fields in what we may call a phylo-evo-devo approach. Wiegmann et al.'s molecular phylogeny of the holometabolous insect orders, recently published in BMC Biology, offers a good opportunity to revisit the inverted positions of wings and halteres in the Diptera and the Strepsiptera in terms of a putative homeotic mutation in the Hox gene Ultrabithorax. The main finding of this paper is that Strepsiptera are closely related to the Coleoptera rather than Diptera, as recently claimed. Through this exemplary case, the paper demonstrates the value of the reciprocal illumination we can expect from the integration of a good phylogeny and a sound knowledge of the evolvability of developmental mechanisms.

  7. Evolutionary biology as a link between religion and knowledge

    Directory of Open Access Journals (Sweden)

    C. W. du Toit

    2000-01-01

    Full Text Available It would appear that the epistemological tradition of the West is culminating in the present science-religion debate. The evolutionary model is being used increasingly in different disciplines as a guideline to understand humans and their action in the world. The struggle for explaining the action of God has shifted from the world of history and texts to the invisible level of quantum physics and molecular biology. It seems that levels of indeterminacy in quantum mechanics and autopoietic systems offer space to explain the action of God. On the human level integrity is sought by linking the highest level of consciousness and rationality to the very basic level of molecular and genetic structures. These issues are dealt with and specific attention is given to autopoietic systems and the biological roots of rationality.

  8. Driving developmental and evolutionary change: A systems biology view.

    Science.gov (United States)

    Bard, Jonathan

    2013-04-01

    Embryonic development is underpinned by ∼50 core processes that drive morphogenesis, growth, patterning and differentiation, and each is the functional output of a complex molecular network. Processes are thus the natural and parsimonious link between genotype and phenotype and the obvious focus for any discussion of biological change. Here, the implications of this approach are explored. One is that many features of developmental change can be modeled as mathematical graphs, or sets of connected triplets of the general form . In these, the verbs (edges) are the outputs of the processes that drive change and the nouns (nodes) are the time-dependent states of biological entities (from molecules to tissues). Such graphs help unpick the multi-level complexity of developmental phenomena and may help suggest new experiments. Another comes from analyzing the effect of mutation that lead to tinkering with the dynamic properties of these processes and to congenital abnormalities; if these changes are both inherited and advantageous, they become evolutionary modifications. In this context, protein networks often represents what classical evolutionary genetics sees as genes, and the realization that traits reflect the output processes of complex networks, particularly for growth, patterning and pigmentation, rather than anything simpler clarifies some problems that the evolutionary synthesis of the 1950s has found hard to solve. In the wider context, most processes are used many times in development and cooperate to produce tissue modules (bones, branching duct systems, muscles etc.). Their underlying generative networks can thus be thought of as genomic modules or subroutines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Biological causal links on physiological and evolutionary time scales.

    Science.gov (United States)

    Karmon, Amit; Pilpel, Yitzhak

    2016-04-26

    Correlation does not imply causation. If two variables, say A and B, are correlated, it could be because A causes B, or that B causes A, or because a third factor affects them both. We suggest that in many cases in biology, the causal link might be bi-directional: A causes B through a fast-acting physiological process, while B causes A through a slowly accumulating evolutionary process. Furthermore, many trained biologists tend to consistently focus at first on the fast-acting direction, and overlook the slower process in the opposite direction. We analyse several examples from modern biology that demonstrate this bias (codon usage optimality and gene expression, gene duplication and genetic dispensability, stem cell division and cancer risk, and the microbiome and host metabolism) and also discuss an example from linguistics. These examples demonstrate mutual effects between the fast physiological processes and the slow evolutionary ones. We believe that building awareness of inference biases among biologists who tend to prefer one causal direction over another could improve scientific reasoning.

  10. Psychotraumatology: What researchers and clinicians can learn from an evolutionary perspective.

    Science.gov (United States)

    Troisi, Alfonso

    2017-09-06

    This review outlines the contribution of evolutionary science to experimental and clinical psychotraumatology. From an evolutionary perspective, traumatic and psychosocial stressors are conceived of as events or circumstances that thwart the achievement of biological goals. The more important is the adaptive value of the goal, the more painful is the emotional impact of the life event that endangers goal achievement. Life history theory and sexual selection theory help to explain why goal priorities differ between the sexes and across age groups. Cultural values and social learning interact with evolved inclinations in determining the hierarchy of goals for a specific person in a specific phase of his or her life. To illustrate the applicability of the evolutionary model, epidemiological and clinical data concerning individual differences in stress sensitivity and stress generation are reviewed and discussed. The final part of the review summarizes new hypotheses that explain how early and current psychosocial stressors can activate a series of adaptive mechanisms including developmental plasticity, predictive adaptive responses and differential susceptibility. Ultimately, the contribution of evolutionary science to psychotraumatology is the idea that experimental and clinical studies should shift the focus of research from the external environment (defined as all stressful factors external to the subjects under investigation) to the ecological environment (defined as those stressful factors of the external environment that have a greater potential to threaten the adaptive equilibrium of the subjects under investigation because of their evolved inclinations). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Primary Emotional Systems and Personality: An Evolutionary Perspective

    Science.gov (United States)

    Montag, Christian; Panksepp, Jaak

    2017-01-01

    The present article highlights important concepts of personality including stability issues from the perspective of situational demands and stability over the life-course. Following this more introductory section, we argue why individual differences in primary emotional systems may represent the phylogenetically oldest parts of human personality. Our argumentation leads to the need to increasingly consider individual differences in the raw affects/emotions of people to understand human personality in a bottom–up fashion, which can be coordinated with top–down perspectives. In support of this idea, we also review existing evidence linking individual differences in primal emotions as assessed with the Affective Neuroscience Personality Scales and the widely accepted Big Five Model of Personality. In this context, we provide additional evidence on the link between primal emotions and personality in German and Chinese sample populations. In short, this article addresses evolutionary perspectives in the evaluation of human personality, highlighting some of the ancestral emotional urges that probably still control variations in the construction of human personality structures. Moreover, we address how individual differences in primary emotional systems can illuminate linkages to major human psychopathologies and the potential advantages and disadvantages of carrying a certain personality trait within certain cultural/environmental niches. PMID:28443039

  12. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions.

    Science.gov (United States)

    Olsson, Lennart; Levit, Georgy S; Hossfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a "universal acid" (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research--evolutionary developmental biology--has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin's Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the "Jena school" of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about "biometabolic modi" are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research--heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of

  13. The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective.

    Science.gov (United States)

    Gilbert, Gregory S; Parker, Ingrid M

    2016-08-04

    An explicit phylogenetic perspective provides useful tools for phytopathology and plant disease ecology because the traits of both plants and microbes are shaped by their evolutionary histories. We present brief primers on phylogenetic signal and the analytical tools of phylogenetic ecology. We review the literature and find abundant evidence of phylogenetic signal in pathogens and plants for most traits involved in disease interactions. Plant nonhost resistance mechanisms and pathogen housekeeping functions are conserved at deeper phylogenetic levels, whereas molecular traits associated with rapid coevolutionary dynamics are more labile at branch tips. Horizontal gene transfer disrupts the phylogenetic signal for some microbial traits. Emergent traits, such as host range and disease severity, show clear phylogenetic signals. Therefore pathogen spread and disease impact are influenced by the phylogenetic structure of host assemblages. Phylogenetically rare species escape disease pressure. Phylogenetic tools could be used to develop predictive tools for phytosanitary risk analysis and reduce disease pressure in multispecies cropping systems.

  14. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions

    Science.gov (United States)

    Olsson, Lennart; Levit, Georgy S.; Hoßfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a “universal acid” (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research—evolutionary developmental biology—has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin’s Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the “Jena school” of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about “biometabolic modi” are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research—heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the

  15. Cognitive innovations and the evolutionary biology of expertise.

    Science.gov (United States)

    Dukas, Reuven

    2017-12-05

    Animal life can be perceived as the selective use of information for maximizing survival and reproduction. All organisms including bacteria and protists rely on genetic networks to build and modulate sophisticated structures and biochemical mechanisms for perceiving information and responding to environmental changes. Animals, however, have gone through a series of innovations that dramatically increased their capacity to acquire, retain and act upon information. Multicellularity was associated with the evolution of the nervous system, which took over many tasks of internal communication and coordination. This paved the way for the evolution of learning, initially based on individual experience and later also via social interactions. The increased importance of social learning also led to the evolution of language in a single lineage. Individuals' ability to dramatically increase performance via learning may have led to an evolutionary cycle of increased lifespan and greater investment in cognitive abilities, as well as in the time necessary for the development and refinement of expertise. We still know little, however, about the evolutionary biology, genetics and neurobiological mechanisms that underlie such expertise and its development.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).

  16. Reconstructing nursing altruism using a biological evolutionary framework.

    Science.gov (United States)

    Haigh, Carol A

    2010-06-01

    This paper presents a discussion of the role of altruism in development of the discipline of nursing and an exploration of how nursing altruism compares with current thinking in biological evolutionary theory. There is an assumption that the role of the nurse has its foundations in altruistic behaviours; however, the source of this altruism is never analysed or debated. A search of the biological altruism, altruism and health-related literature encompassing the years 1975-2007 was performed using Google Scholar. The first element of the study is a brief overview of nursing altruism as a way of establishing the conceptual boundaries. Additionally, the major tenets of biological evolution are explored to clarify the theoretical underpinnings of the hypotheses presented. A key premise of this study is that nursing altruism is not solely a manifestation of disinterested sacrifice for the benefit of others, but is more concerned with ensuring the survival of a clearly defined social group. A re-evaluation of altruism as a motivating factor in nursing and as an element of the therapeutic relationship is long overdue. It is time that the nursing profession examined professional driving forces using more than traditional philosophical frameworks. Nursing altruism is programmed to ensure the survival of the meme rather than to act in the best interest of patients. Certainly patients reap the benefits of this selfish altruism, but that can be argued to be a side effect rather than a result.

  17. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. © 2015 Richardson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. The Experimental Study of Bacterial Evolution and Its Implications for the Modern Synthesis of Evolutionary Biology.

    Science.gov (United States)

    O'Malley, Maureen A

    2017-10-04

    Since the 1940s, microbiologists, biochemists and population geneticists have experimented with the genetic mechanisms of microorganisms in order to investigate evolutionary processes. These evolutionary studies of bacteria and other microorganisms gained some recognition from the standard-bearers of the modern synthesis of evolutionary biology, especially Theodosius Dobzhansky and Ledyard Stebbins. A further period of post-synthesis bacterial evolutionary research occurred between the 1950s and 1980s. These experimental analyses focused on the evolution of population and genetic structure, the adaptive gain of new functions, and the evolutionary consequences of competition dynamics. This large body of research aimed to make evolutionary theory testable and predictive, by giving it mechanistic underpinnings. Although evolutionary microbiologists promoted bacterial experiments as methodologically advantageous and a source of general insight into evolution, they also acknowledged the biological differences of bacteria. My historical overview concludes with reflections on what bacterial evolutionary research achieved in this period, and its implications for the still-developing modern synthesis.

  19. An Evolutionary Genomic Perspective on the Breeding of Dwarf Chickens.

    Science.gov (United States)

    Wang, Ming-Shan; Otecko, Newton O; Wang, Sheng; Wu, Dong-Dong; Yang, Min-Min; Xu, Yi-Long; Murphy, Robert W; Peng, Min-Sheng; Zhang, Ya-Ping

    2017-12-01

    The evolutionary history for dwarfism in chickens remains an enigma. Herein, we explore the evolution of the Serama, the smallest breed of chicken. Leveraging comparative population genomics, analyses identify several genes that are potentially associated with the growth and development of bones and muscles. These genes, and in particular both POU1F1 and IGF1, are under strong positive selection. Three allopatric dwarf bantams (Serama, Yuanbao, and Daweishan) with different breeding-histories, form distinct clusters and exhibit unique population structures. Parallel genetic mechanisms underlay their variation in body size. These findings provide insights into the multiple and complex pathways, depending on genomic variation, that chicken can take in response to aviculture selection for dwarfism. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The Schistosoma mansoni phylome: using evolutionary genomics to gain insight into a parasite’s biology

    Directory of Open Access Journals (Sweden)

    Silva Larissa

    2012-11-01

    Full Text Available Abstract Background Schistosoma mansoni is one of the causative agents of schistosomiasis, a neglected tropical disease that affects about 237 million people worldwide. Despite recent efforts, we still lack a general understanding of the relevant host-parasite interactions, and the possible treatments are limited by the emergence of resistant strains and the absence of a vaccine. The S. mansoni genome was completely sequenced and still under continuous annotation. Nevertheless, more than 45% of the encoded proteins remain without experimental characterization or even functional prediction. To improve our knowledge regarding the biology of this parasite, we conducted a proteome-wide evolutionary analysis to provide a broad view of the S. mansoni’s proteome evolution and to improve its functional annotation. Results Using a phylogenomic approach, we reconstructed the S. mansoni phylome, which comprises the evolutionary histories of all parasite proteins and their homologs across 12 other organisms. The analysis of a total of 7,964 phylogenies allowed a deeper understanding of genomic complexity and evolutionary adaptations to a parasitic lifestyle. In particular, the identification of lineage-specific gene duplications pointed to the diversification of several protein families that are relevant for host-parasite interaction, including proteases, tetraspanins, fucosyltransferases, venom allergen-like proteins, and tegumental-allergen-like proteins. In addition to the evolutionary knowledge, the phylome data enabled us to automatically re-annotate 3,451 proteins through a phylogenetic-based approach rather than solely sequence similarity searches. To allow further exploitation of this valuable data, all information has been made available at PhylomeDB (http://www.phylomedb.org. Conclusions In this study, we used an evolutionary approach to assess S. mansoni parasite biology, improve genome/proteome functional annotation, and provide insights into

  1. The Schistosoma mansoni phylome: using evolutionary genomics to gain insight into a parasite's biology.

    Science.gov (United States)

    Silva, Larissa Lopes; Marcet-Houben, Marina; Nahum, Laila Alves; Zerlotini, Adhemar; Gabaldón, Toni; Oliveira, Guilherme

    2012-11-13

    Schistosoma mansoni is one of the causative agents of schistosomiasis, a neglected tropical disease that affects about 237 million people worldwide. Despite recent efforts, we still lack a general understanding of the relevant host-parasite interactions, and the possible treatments are limited by the emergence of resistant strains and the absence of a vaccine. The S. mansoni genome was completely sequenced and still under continuous annotation. Nevertheless, more than 45% of the encoded proteins remain without experimental characterization or even functional prediction. To improve our knowledge regarding the biology of this parasite, we conducted a proteome-wide evolutionary analysis to provide a broad view of the S. mansoni's proteome evolution and to improve its functional annotation. Using a phylogenomic approach, we reconstructed the S. mansoni phylome, which comprises the evolutionary histories of all parasite proteins and their homologs across 12 other organisms. The analysis of a total of 7,964 phylogenies allowed a deeper understanding of genomic complexity and evolutionary adaptations to a parasitic lifestyle. In particular, the identification of lineage-specific gene duplications pointed to the diversification of several protein families that are relevant for host-parasite interaction, including proteases, tetraspanins, fucosyltransferases, venom allergen-like proteins, and tegumental-allergen-like proteins. In addition to the evolutionary knowledge, the phylome data enabled us to automatically re-annotate 3,451 proteins through a phylogenetic-based approach rather than solely sequence similarity searches. To allow further exploitation of this valuable data, all information has been made available at PhylomeDB (http://www.phylomedb.org). In this study, we used an evolutionary approach to assess S. mansoni parasite biology, improve genome/proteome functional annotation, and provide insights into host-parasite interactions. Taking advantage of a proteome

  2. a structural biology perspective TANWEER HUSSAIN

    Indian Academy of Sciences (India)

    Administrator

    a structural biology perspective. TANWEER HUSSAIN. Molecular Reproduction, Development and Genetics (MRDG). Indian Institute of Science (IISc). Bangalore. Symposium on “Molecular Machines: a multidiscipline enterprise” 1st July 2017. 28th mid-year meeting of Indian Academy of Sciences at IISc, Bangalore ...

  3. Evolutionary Developmental Biology (Evo-Devo) Research in Latin America.

    Science.gov (United States)

    Marcellini, Sylvain; González, Favio; Sarrazin, Andres F; Pabón-Mora, Natalia; Benítez, Mariana; Piñeyro-Nelson, Alma; Rezende, Gustavo L; Maldonado, Ernesto; Schneider, Patricia Neiva; Grizante, Mariana B; Da Fonseca, Rodrigo Nunes; Vergara-Silva, Francisco; Suaza-Gaviria, Vanessa; Zumajo-Cardona, Cecilia; Zattara, Eduardo E; Casasa, Sofia; Suárez-Baron, Harold; Brown, Federico D

    2017-01-01

    Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community. © 2016 Wiley Periodicals, Inc.

  4. What have humans done for evolutionary biology? Contributions from genes to populations.

    Science.gov (United States)

    Briga, Michael; Griffin, Robert M; Berger, Vérane; Pettay, Jenni E; Lummaa, Virpi

    2017-11-15

    Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. © 2017 The Author(s).

  5. Use of genome-scale metabolic models in evolutionary systems biology.

    NARCIS (Netherlands)

    Papp, B.; Szappanos, B.; Notebaart, R.A.

    2011-01-01

    One of the major aims of the nascent field of evolutionary systems biology is to test evolutionary hypotheses that are not only realistic from a population genetic point of view but also detailed in terms of molecular biology mechanisms. By providing a mapping between genotype and phenotype for

  6. Evolutionary and Political Economic Influences on Biological Diversity in African Americans.

    Science.gov (United States)

    Jackson, Fatimah Linda Collier

    1993-01-01

    Examines existing data on biological diversity among Americans of African descent within the contexts of their evolutionary backgrounds and political and economic realities. Explores the origins of the diversity, and provides an evolutionary and political economy synthesis for evaluating the biological distinctions apparent among African…

  7. Neutrons in biology - a perspective

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.P. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    After almost a decade of uncertainty, the field of neutrons in biology is set to embark on an era of stability and renewed vitality. As detailed in this volume, methodologies have been refined, new tools are now being added to the array, the two largest reactor sources have long term programs in place, and spoliation sources are making an impact. By way of introduction, it is pertinent to reflect on the origins of the field and to highlight some aspects that have influenced the progress of the field. In an increasingly competitive environment, it is extremely important that the future capitalize on the substantial investment made over the last two to three decades.

  8. A soul of truth in things erroneous: Popper's "amateurish" evolutionary philosophy in light of contemporary biology.

    Science.gov (United States)

    Vecchi, Davide; Baravalle, Lorenzo

    2015-01-01

    This paper will critically assess Popper's evolutionary philosophy. There exists a rich literature on the topic with which we have many reservations. We believe that Popper's evolutionary philosophy should be assessed in light of the intriguing theoretical insights offered, during the last 10 years or so, by the philosophy of biology, evolutionary biology and molecular biology. We will argue that, when analysed in this manner, Popper's ideas concerning the nature of selection, Lamarckism and the theoretical limits of neo-Darwinism can be appreciated in their full biological and philosophical value.

  9. Investigating Climate Change and Reproduction: Experimental Tools from Evolutionary Biology

    Directory of Open Access Journals (Sweden)

    Oliver Y. Martin

    2012-09-01

    Full Text Available It is now generally acknowledged that climate change has wide-ranging biological consequences, potentially leading to impacts on biodiversity. Environmental factors can have diverse and often strong effects on reproduction, with obvious ramifications for population fitness. Nevertheless, reproductive traits are often neglected in conservation considerations. Focusing on animals, recent progress in sexual selection and sexual conflict research suggests that reproductive costs may pose an underestimated hurdle during rapid climate change, potentially lowering adaptive potential and increasing extinction risk of certain populations. Nevertheless, regime shifts may have both negative and positive effects on reproduction, so it is important to acquire detailed experimental data. We hence present an overview of the literature reporting short-term reproductive consequences of exposure to different environmental factors. From the enormous diversity of findings, we conclude that climate change research could benefit greatly from more coordinated efforts incorporating evolutionary approaches in order to obtain cross-comparable data on how individual and population reproductive fitness respond in the long term. Therefore, we propose ideas and methods concerning future efforts dealing with reproductive consequences of climate change, in particular by highlighting the advantages of multi-generational experimental evolution experiments.

  10. Improving the reviewing process in Ecology and Evolutionary Biology

    Directory of Open Access Journals (Sweden)

    Grossman, G. D.

    2014-06-01

    Full Text Available I discuss current issues in reviewing and editorial practices in ecology and evolutionary biology and suggest possible solutions for current problems. The reviewing crisis is unlikely to change unless steps are taken by journals to provide greater inclusiveness and incentives to reviewers. In addition, both journals and institutions should reduce their emphasis on publication numbers (least publishable units and impact factors and focus instead on article synthesis and quality which will require longer publications. Academic and research institutions should consider reviewing manuscripts and editorial positions an important part of a researcher’s professional activities and reward them accordingly. Rewarding reviewers either monetarily or via other incentives such as free journal subscriptions may encourage participation in the reviewing process for both profit and non–profit journals. Reviewer performance will likely be improved by measures that increase inclusiveness, such as sending reviews and decision letters to reviewers. Journals may be able to evaluate the efficacy of their reviewing process by comparing citations of rejected but subsequently published papers with those published within the journal at similar times. Finally, constructive reviews: 1 identify important shortcomings and suggest solutions when possible, 2 distinguish trivial from non–trivial problems, and 3 include editor’s evaluations of the reviews including identification of trivial versus substantive comments (i.e., those that must be addressed.

  11. Adaptation and novelty: teleological explanations in evolutionary biology.

    Science.gov (United States)

    Ayala, F J

    1999-01-01

    Knives, birds' wings, and mountain slopes are used for certain purposes: cutting, flying, and climbing. A bird's wings have in common with knives that they have been 'designed' for the purpose they serve, which purpose accounts for their existence, whereas mountain slopes have come about by geological processes independently of their uses for climbing. A bird's wings differ from a knife in that they have not been designed or produced by any conscious agent; rather, the wings, like the slopes, are outcomes of natural processes without any intentional causation. Evolutionary biologists use teleological language and teleological explanations. I propose that this use is appropriate, because teleological explanations are hypotheses that can be subject to empirical testing. The distinctiveness of teleological hypotheses is that they account for the existence of a feature in terms of the function it serves; for example, wings have evolved and persist because flying is beneficial to birds by increasing their chances of surviving and reproducing. Features of organisms that are explained with teleological hypotheses include structures, such as wings; processes, such as development from egg to adult; and behaviours, such as nest building. A proximate explanation of these features is the function they serve; an ultimate explanation that they all share is their contribution to the reproductive fitness of the organisms. I distinguish several kinds of teleological explanations, such as natural and artificial, as well as bounded and unbounded, some of which but not others apply to biological explanations.

  12. New insights into the evolutionary history of biological nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2013-08-01

    Full Text Available Nitrogenase, which catalyzes the ATP-dependent reduction of dinitrogen (N2 to ammonia (NH3, accounts for roughly half of the bioavailable nitrogen supporting extant life. The fundamental requirement for fixed forms of nitrogen for life on Earth, both at present and in the past, has led to broad and significant interest in the origin and evolution of this fundamental biological process. One key question is whether the limited availability of fixed nitrogen was a factor in life’s origin or whether there were ample sources of fixed nitrogen produced by abiotic processes or delivered through the weathering of bolide impact materials to support this early life. If the latter, the key questions become what were the characteristics of the environment that precipitated the evolution of this oxygen sensitive process, when did this occur, and how was its subsequent evolutionary history impacted by the advent of oxygenic photosynthesis and the rise of oxygen in the Earth’s biosphere. Since the availability of fixed sources of nitrogen capable of supporting early life is difficult to glean from the geologic record, there are limited means to get direct insights into these questions. Indirect insights, however, can be gained by deep phylogenetic studies of nitrogenase structural gene products and additional gene products involved in the biosynthesis of the complex metal-containing prosthetic groups associated with this enzyme complex. Insights gained from such studies, as reviewed herein, challenge traditional models for the evolution of biological nitrogen fixation and provide the basis for the development of new conceptual models that explain the stepwise evolution of this highly complex and life sustaining process.

  13. Bridging Evolutionary Biology and Developmental Psychology: Toward An Enduring Theoretical Infrastructure.

    Science.gov (United States)

    Frankenhuis, Willem E; Tiokhin, Leonid

    2018-01-16

    Bjorklund synthesizes promising research directions in developmental psychology using an evolutionary framework. In general terms, we agree with Bjorklund: Evolutionary theory has the potential to serve as a metatheory for developmental psychology. However, as currently used in psychology, evolutionary theory is far from reaching this potential. In evolutionary biology, formal mathematical models are the norm. In developmental psychology, verbal models are the norm. In order to reach its potential, evolutionary developmental psychology needs to embrace formal modeling. © 2018 The Authors. Child Development © 2018 Society for Research in Child Development, Inc.

  14. Use of genome-scale metabolic models in evolutionary systems biology.

    Science.gov (United States)

    Papp, Balázs; Szappanos, Balázs; Notebaart, Richard A

    2011-01-01

    One of the major aims of the nascent field of evolutionary systems biology is to test evolutionary hypotheses that are not only realistic from a population genetic point of view but also detailed in terms of molecular biology mechanisms. By providing a mapping between genotype and phenotype for hundreds of genes, genome-scale systems biology models of metabolic networks have already provided valuable insights into the evolution of metabolic gene contents and phenotypes of yeast and other microbial species. Here we review the recent use of these computational models to predict the fitness effect of mutations, genetic interactions, evolutionary outcomes, and to decipher the mechanisms of mutational robustness. While these studies have demonstrated that even simplified models of biochemical reaction networks can be highly informative for evolutionary analyses, they have also revealed the weakness of this modeling framework to quantitatively predict mutational effects, a challenge that needs to be addressed for future progress in evolutionary systems biology.

  15. Early stress and human behavioral development: emerging evolutionary perspectives.

    Science.gov (United States)

    Del Giudice, M

    2014-08-01

    Stress experienced early in life exerts a powerful, lasting influence on development. Converging empirical findings show that stressful experiences become deeply embedded in the child's neurobiology, with an astonishing range of long-term effects on cognition, emotion, and behavior. In contrast with the prevailing view that such effects are the maladaptive outcomes of 'toxic' stress, adaptive models regard them as manifestations of evolved developmental plasticity. In this paper, I offer a brief introduction to adaptive models of early stress and human behavioral development, with emphasis on recent theoretical contributions and emerging concepts in the field. I begin by contrasting dysregulation models of early stress with their adaptive counterparts; I then introduce life history theory as a unifying framework, and review recent work on predictive adaptive responses (PARs) in human life history development. In particular, I discuss the distinction between forecasting the future state of the environment (external prediction) and forecasting the future state of the organism (internal prediction). Next, I present the adaptive calibration model, an integrative model of individual differences in stress responsivity based on life history concepts. I conclude by examining how maternal-fetal conflict may shape the physiology of prenatal stress and its adaptive and maladaptive effects on postnatal development. In total, I aim to show how theoretical work from evolutionary biology is reshaping the way we think about the role of stress in human development, and provide researchers with an up-to-date conceptual map of this fascinating and rapidly evolving field.

  16. Ein Klassiker der Padagogik in Evolutionarer Perspektive: Eduard Sprangers "Lebensformen" im Lichte der Modernen Biologie (A Classic of Pedagogics from an Evolutionary Perspective: Edward Spranger's "Forms of Life" in the Light of Modern Biology).

    Science.gov (United States)

    Neumann, Dieter

    2002-01-01

    Interprets Edward Spranger's "Forms of Life" against the background of the findings of modern biology. Shows how far Spranger's diagnosis of different human types, which are not affected by external influences on characteristics, conform with research hypotheses of modern biological sciences. (CAJ)

  17. Causes and consequences of coagulation activation in sepsis: an evolutionary medicine perspective.

    Science.gov (United States)

    Fiusa, Maiara Marx Luz; Carvalho-Filho, Marco Antonio; Annichino-Bizzacchi, Joyce M; De Paula, Erich V

    2015-05-06

    Coagulation and innate immunity have been linked together for at least 450 million years of evolution. Sepsis, one of the world's leading causes of death, is probably the condition in which this evolutionary link is more evident. However, the biological and the clinical relevance of this association have only recently gained the attention of the scientific community. During sepsis, the host response to a pathogen is invariably associated with coagulation activation. For several years, coagulation activation has been solely regarded as a mechanism of tissue damage, a concept that led to several clinical trials of anticoagulant agents for sepsis. More recently, this paradigm has been challenged by the failure of these clinical trials, and by a growing bulk of evidence supporting the concept that coagulation activation is beneficial for pathogen clearance. In this article we discuss recent basic and clinical data that point to a more balanced view of the detrimental and beneficial consequences of coagulation activation in sepsis. Reappraisal of the association between coagulation and immune activation from an evolutionary medicine perspective offers a unique opportunity to gain new insights about the pathogenesis of sepsis, paving the way to more successful approaches in both basic and clinical research in this field.

  18. Proposal for Teaching Evolutionary Biology: A Bridge between Research and Educational Practice

    Science.gov (United States)

    Alvarez Pérez, Eréndira; Ruiz Gutiérrez, Rosaura

    2016-01-01

    We present quantitative results for the doctoral thesis of the first-named author of this article. The objective was to recommend and test a teaching proposal for core knowledge of evolutionary biology in secondary education. The focus of the study is "Problem cores in teaching". The "Weaving evolutionary thinking" teaching…

  19. Expansion of biological pathways based on evolutionary inference.

    Science.gov (United States)

    Li, Yang; Calvo, Sarah E; Gutman, Roee; Liu, Jun S; Mootha, Vamsi K

    2014-07-03

    The availability of diverse genomes makes it possible to predict gene function based on shared evolutionary history. This approach can be challenging, however, for pathways whose components do not exhibit a shared history but rather consist of distinct "evolutionary modules." We introduce a computational algorithm, clustering by inferred models of evolution (CLIME), which inputs a eukaryotic species tree, homology matrix, and pathway (gene set) of interest. CLIME partitions the gene set into disjoint evolutionary modules, simultaneously learning the number of modules and a tree-based evolutionary history that defines each module. CLIME then expands each module by scanning the genome for new components that likely arose under the inferred evolutionary model. Application of CLIME to ∼1,000 annotated human pathways and to the proteomes of yeast, red algae, and malaria reveals unanticipated evolutionary modularity and coevolving components. CLIME is freely available and should become increasingly powerful with the growing wealth of eukaryotic genomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The Comparative Organismal Approach in Evolutionary Developmental Biology: Insights from Ascidians and Cavefish.

    Science.gov (United States)

    Jeffery, William R

    2016-01-01

    Important contributions to evolutionary developmental biology have been made using the comparative organismal approach. As examples, I describe insights obtained from studies of Molgula ascidians and Astyanax cavefish. © 2016 Elsevier Inc. All rights reserved.

  1. [The history of development of evolutionary methods in St. Petersburg school of computer simulation in biology].

    Science.gov (United States)

    Menshutkin, V V; Kazanskiĭ, A B; Levchenko, V F

    2010-01-01

    The history of rise and development of evolutionary methods in Saint Petersburg school of biological modelling is traced and analyzed. Some pioneering works in simulation of ecological and evolutionary processes, performed in St.-Petersburg school became an exemplary ones for many followers in Russia and abroad. The individual-based approach became the crucial point in the history of the school as an adequate instrument for construction of models of biological evolution. This approach is natural for simulation of the evolution of life-history parameters and adaptive processes in populations and communities. In some cases simulated evolutionary process was used for solving a reverse problem, i. e., for estimation of uncertain life-history parameters of population. Evolutionary computations is one more aspect of this approach application in great many fields. The problems and vistas of ecological and evolutionary modelling in general are discussed.

  2. The application of statistical physics to evolutionary biology.

    Science.gov (United States)

    Sella, Guy; Hirsh, Aaron E

    2005-07-05

    A number of fundamental mathematical models of the evolutionary process exhibit dynamics that can be difficult to understand analytically. Here we show that a precise mathematical analogy can be drawn between certain evolutionary and thermodynamic systems, allowing application of the powerful machinery of statistical physics to analysis of a family of evolutionary models. Analytical results that follow directly from this approach include the steady-state distribution of fixed genotypes and the load in finite populations. The analogy with statistical physics also reveals that, contrary to a basic tenet of the nearly neutral theory of molecular evolution, the frequencies of adaptive and deleterious substitutions at steady state are equal. Finally, just as the free energy function quantitatively characterizes the balance between energy and entropy, a free fitness function provides an analytical expression for the balance between natural selection and stochastic drift.

  3. The Neural Systems of Forgiveness: An Evolutionary Psychological Perspective

    Directory of Open Access Journals (Sweden)

    Joseph Billingsley

    2017-05-01

    Full Text Available Evolution-minded researchers posit that the suite of human cognitive adaptations may include forgiveness systems. According to these researchers, forgiveness systems regulate interpersonal motivation toward a transgressor in the wake of harm by weighing multiple factors that influence both the potential gains of future interaction with the transgressor and the likelihood of future harm. Although behavioral research generally supports this evolutionary model of forgiveness, the model’s claims have not been examined with available neuroscience specifically in mind, nor has recent neuroscientific research on forgiveness generally considered the evolutionary literature. The current review aims to help bridge this gap by using evolutionary psychology and cognitive neuroscience to mutually inform and interrogate one another. We briefly summarize the evolutionary research on forgiveness, then review recent neuroscientific findings on forgiveness in light of the evolutionary model. We emphasize neuroscientific research that links desire for vengeance to reward-based areas of the brain, that singles out prefrontal areas likely associated with inhibition of vengeful feelings, and that correlates the activity of a theory-of-mind network with assessments of the intentions and blameworthiness of those who commit harm. In addition, we identify gaps in the existing neuroscientific literature, and propose future research directions that might address them, at least in part.

  4. The importance of an evolutionary perspective in conservation policy planning.

    Science.gov (United States)

    Moritz, Craig C; Potter, Sally

    2013-12-01

    Prioritization of taxa for conservation must rest on a foundation of correctly identified species boundaries, enhanced by an understanding of evolutionary history and phylogenetic relationships. Therefore, we can incorporate both evolutionary and ecological processes into efforts to sustain biodiversity. In this issue of Molecular Ecology, Malaney & Cook (2013) highlight the critical value of an evolutionary biogeographical approach, combining multilocus phylogeography with climatic niche modelling to infer phylogenetically weighted conservation priorities for evolutionary lineages of jumping mice across North America. Remarkably, they find that the Preble's meadow jumping mouse (Zapus hudsonius preblei), long debated as a threatened taxon, in fact represents the southern terminus of a relatively uniform lineage that expanded well into Alaska during the Holocene. By contrast, some other relictual and phylogenetically divergent taxa of jumping mice likely warrant greater conservation priority. This study highlights the value of integrative approaches that place current taxonomy in a broader evolutionary context to identify taxa for conservation assessment, but also highlights the challenges in maintaining potential for adaptive responses to environmental change. © 2013 John Wiley & Sons Ltd.

  5. The Neural Systems of Forgiveness: An Evolutionary Psychological Perspective.

    Science.gov (United States)

    Billingsley, Joseph; Losin, Elizabeth A R

    2017-01-01

    Evolution-minded researchers posit that the suite of human cognitive adaptations may include forgiveness systems. According to these researchers, forgiveness systems regulate interpersonal motivation toward a transgressor in the wake of harm by weighing multiple factors that influence both the potential gains of future interaction with the transgressor and the likelihood of future harm. Although behavioral research generally supports this evolutionary model of forgiveness, the model's claims have not been examined with available neuroscience specifically in mind, nor has recent neuroscientific research on forgiveness generally considered the evolutionary literature. The current review aims to help bridge this gap by using evolutionary psychology and cognitive neuroscience to mutually inform and interrogate one another. We briefly summarize the evolutionary research on forgiveness, then review recent neuroscientific findings on forgiveness in light of the evolutionary model. We emphasize neuroscientific research that links desire for vengeance to reward-based areas of the brain, that singles out prefrontal areas likely associated with inhibition of vengeful feelings, and that correlates the activity of a theory-of-mind network with assessments of the intentions and blameworthiness of those who commit harm. In addition, we identify gaps in the existing neuroscientific literature, and propose future research directions that might address them, at least in part.

  6. Neurodevelopmental Plasticity in Pre- and Postnatal Environmental Interactions: Implications for Psychiatric Disorders from an Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Young-A Lee

    2015-01-01

    Full Text Available Psychiatric disorders are disadvantageous behavioral phenotypes in humans. Accordingly, a recent epidemiological study has reported decreased fecundity in patients with psychiatric disorders, such as schizophrenia and autism spectrum disorders. Moreover, the fecundity of the relatives of these patients is not exceedingly higher compared to the fecundity of the relatives of normal subjects. Collectively, the prevalence of psychiatric disorders among humans is expected to decrease over generations. Nevertheless, in reality, the prevalence rates of psychiatric disorders in humans either have been constant over a long period of time or have even increased more recently. Several attempts to explain this fact have been made using biological mechanisms, such as de novo gene mutations or variants, although none of these explanations is fully comprehensive. Here, we propose a hypothesis towards understanding the biological mechanisms of psychiatric disorders from evolutionary perspectives. This hypothesis considers that behavioral phenotypes associated with psychiatric disorders might have emerged in the evolution of organisms as a neurodevelopmental adaptation against adverse environmental conditions associated with stress.

  7. Evolutionary psychology from a developmental systems perspective: comment on Lickliter and Honeycutt (2003).

    Science.gov (United States)

    Bjorklund, David F

    2003-11-01

    Although agreeing with R. Lickliter and H. Honeycutt (2003) that evolutionary psychology lacks and should adopt a coherent developmental model to explain how evolved mechanisms become expressed in phenotypes, it is argued that adhering to the principles of developmental systems theory, despite enhancing evolutionary psychology, would not change appreciably its basic focus. The concepts of innateness and modularity, what is inherited and what evolves, as well as the possible role of developmental plasticity in the evolution of human cognition are discussed. It is proposed that evolutionary psychology can incorporate the developmental systems perspective into its theorizing, with the end result being a science that more closely reflects human nature.

  8. Buried Treasure: Evolutionary Perspectives on Microbial Iron Piracy.

    Science.gov (United States)

    Barber, Matthew F; Elde, Nels C

    2015-11-01

    Host-pathogen interactions provide valuable systems for the study of evolutionary genetics and natural selection. The sequestration of essential iron has emerged as a crucial innate defense system termed nutritional immunity, leading pathogens to evolve mechanisms of 'iron piracy' to scavenge this metal from host proteins. This battle for iron carries numerous consequences not only for host-pathogen evolution but also microbial community interactions. Here we highlight recent and potential future areas of investigation on the evolutionary implications of microbial iron piracy in relation to molecular arms races, host range, competition, and virulence. Applying evolutionary genetic approaches to the study of microbial iron acquisition could also provide new inroads for understanding and combating infectious disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Evolutionary biology and the determinants of morality 2 | Odozor ...

    African Journals Online (AJOL)

    biological factors, such as education, family integration and upbringing, religion, socialisation and culture, which even go beyond biology to determine the very contents of human morality. This second essay continues the reflection on this ...

  10. Genotype- or Phenotype-Targeting Anticancer Therapies? Lessons from Tumor Evolutionary Biology.

    Science.gov (United States)

    Escargueil, Alexandre E; Prado, Soizic; Dezaire, Ambre; Clairambault, Jean; Larsen, Annette K; Soares, Daniele G

    2016-01-01

    Despite the efficacy of most cancer therapies, drug resistance remains a major problem in the clinic. The eradication of the entire tumor and the cure of the patient by chemotherapy alone are rare, in particular for advanced disease. From an evolutionary perspective, the selective pressure exerted by chemotherapy leads to the emergence of resistant clones where resistance can be associated with many different functional mechanisms at the single cell level or can involve changes in the tumor micro-environment. In the last decade, tumor genomics has contributed to the improvement of our understanding of tumorigenesis and has led to the identification of numerous cellular targets for the development of novel therapies. However, since tumors are by nature extremely heterogeneous, the drug efficacy and economical sustainability of this approach is now debatable. Importantly, tumor cell heterogeneity depends not only on genetic modifications but also on non-genetic processes involving either stochastic events or epigenetic modifications making genetic biomarkers of uncertain utility. In this review, we wish to highlight how evolutionary biology can impact our understanding of carcinogenesis and resistance to therapies. We will discuss new approaches based on applied ecology and evolution dynamics that can be used to convert the cancer into a chronic disease where the drugs would control tumor growth. Finally, we will discuss the way metabolic dysfunction or phenotypic changes can help developing new delivery systems or phenotypetargeted drugs and how exploring new sources of active compounds can conduct to the development of drugs with original mechanisms of action. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Not just a theory--the utility of mathematical models in evolutionary biology.

    Directory of Open Access Journals (Sweden)

    Maria R Servedio

    2014-12-01

    Full Text Available Progress in science often begins with verbal hypotheses meant to explain why certain biological phenomena exist. An important purpose of mathematical models in evolutionary research, as in many other fields, is to act as “proof-of-concept” tests of the logic in verbal explanations, paralleling the way in which empirical data are used to test hypotheses. Because not all subfields of biology use mathematics for this purpose, misunderstandings of the function of proof-of-concept modeling are common. In the hope of facilitating communication, we discuss the role of proof-of-concept modeling in evolutionary biology.

  12. Not just a theory--the utility of mathematical models in evolutionary biology.

    Science.gov (United States)

    Servedio, Maria R; Brandvain, Yaniv; Dhole, Sumit; Fitzpatrick, Courtney L; Goldberg, Emma E; Stern, Caitlin A; Van Cleve, Jeremy; Yeh, D Justin

    2014-12-01

    Progress in science often begins with verbal hypotheses meant to explain why certain biological phenomena exist. An important purpose of mathematical models in evolutionary research, as in many other fields, is to act as “proof-of-concept” tests of the logic in verbal explanations, paralleling the way in which empirical data are used to test hypotheses. Because not all subfields of biology use mathematics for this purpose, misunderstandings of the function of proof-of-concept modeling are common. In the hope of facilitating communication, we discuss the role of proof-of-concept modeling in evolutionary biology.

  13. Biology Teachers' Conceptions of the Diversity of Life and the Historical Development of Evolutionary Concepts

    Science.gov (United States)

    da Silva, Paloma Rodrigues; de Andrade, Mariana A. Bologna Soares; de Andrade Caldeira, Ana Maria

    2015-01-01

    Biology is a science that involves study of the diversity of living organisms. This diversity has always generated questions and has motivated cultures to seek plausible explanations for the differences and similarities between types of organisms. In biology teaching, these issues are addressed by adopting an evolutionary approach. The aim of this…

  14. Cooperation and conflict in cancer: An evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Jonathan Featherston

    2012-09-01

    Full Text Available Evolutionary approaches to carcinogenesis have gained prominence in the literature and enhanced our understanding of cancer. However, an appreciation of neoplasia in the context of evolutionary transitions, particularly the transition from independent genes to a fullyintegrated genome, is largely absent. In the gene–genome evolutionary transition, mobile genetic elements (MGEs can be studied as the extant exemplars of selfish autonomous lowerlevel units that cooperated to form a higher-level, functionally integrated genome. Here,we discuss levels of selection in cancer cells. In particular, we examine the tension between gene and genome units of selection by examining the expression profiles of MGE domains in an array of human cancers. Overall, across diverse cancers, there is an aberrant expression of several families of mobile elements, including the most common MGE in the human genome, retrotransposon LINE 1. These results indicate an alternative life-history strategy for MGEs in the cancers studied. Whether the aberrant expression is the cause or effect oftumourigenesis is unknown, although some evidence suggests that dysregulation of MGEs can play a role in cancer origin and progression. These data are interpreted in combination with phylostratigraphic reports correlating the origin of cancer genes with multicellularity and other potential increases in complexity in cancer cell populations. Cooperation and conflict between individuals at the gene, genome and cell level provide an evolutionary medicineperspective of cancer that enhances our understanding of disease pathogenesis and treatment.

  15. Understanding Morality from an Evolutionary Perspective: Challenges and Opportunities

    Science.gov (United States)

    Keefer, Matthew W.

    2013-01-01

    In recent years, there has been a proliferation of new research on moral thinking informed by evolutionary theory. The new findings have emanated from a wide variety of fields. While there is no shortage of theoretical models that attempt to account for specific research findings, Matthew Keefer's goals in this essay are more general. First, he…

  16. Anthropology and the study of menopause: evolutionary, developmental, and comparative perspectives.

    Science.gov (United States)

    Sievert, Lynnette Leidy

    2014-10-01

    This work aims to consider how the discipline of anthropology contributes to the study of menopause through evolutionary, developmental, and comparative perspectives. This study was a review of skeletal and ethnographic evidence for menopause and postreproductive life in humans' distant past, hypotheses for the evolution of menopause and long postreproductive life, variation in age at menopause with focus on childhood environments, and the study of variation in symptom experience across populations. Longevity, rather than capacity for menopause, sets humans apart from other primates. Skeletal evidence demonstrates that some Neanderthals and archaic Homo sapiens lived to the age at menopause and that at least one third of women in traditional foraging populations live beyond menopause. The evolutionary reasons for why women experience a long postreproductive life continue to be debated. A developmental perspective suggests that early childhood may be a critical time for the environment to irreversibly influence the number of oocytes or rate of follicular atresia and, ultimately, age at menopause. A comparative perspective examines symptom experience at midlife through participant observation, qualitative interviews, and quantitative instruments to gain a holistic understanding of the meaning, experience, and sociocultural context of menopause. An evolutionary perspective suggests that menopause is not a recent phenomenon among humans. A developmental perspective focuses on the influence of early childhood on ovarian function. A comparative perspective expands clinical norms and provides knowledge about the range of human variations.

  17. Optimal immunity meets natural variation: the evolutionary biology of host defence.

    Science.gov (United States)

    Graham, A L

    2013-11-01

    This editorial introduces the seven articles that comprise the Parasite Immunology special issue on the Evolutionary Biology of Host Defence. The rationale for an evolutionary approach to immunoparasitology is briefly outlined, and then the articles are placed in that broader context. A central aim of each article is to explain the generation and maintenance of immunological heterogeneity among hosts in nature. The authors describe new tools and approaches that enable unprecedented insight into evolutionary and immunological processes in both the laboratory and the wild. The examples discussed include insects, birds and mammals (as hosts) and trypanosomes, apicomplexans and nematodes (as parasites). © 2013 John Wiley & Sons Ltd.

  18. The social production of health: critical contributions from evolutionary, biological, and cultural anthropology.

    Science.gov (United States)

    Levin, Betty Wolder; Browner, C H

    2005-08-01

    In 1946, the newly formed World Health Organization boldly sought to conceptualize "health" as wellbeing in the positive sense, "not merely the absence of disease or infirmity." Yet nearly six decades later, researchers are still principally concerned with pathology and its characteristics and consequences. This special issue is the result of an effort to broaden the focus. Anthropologists working from evolutionary, biological and sociocultural perspectives and in diverse geographic regions were asked to examine meanings associated with health and/or to identify social conditions and practices that have contributed to positive physiological and psychological states in particular cultures, times, or across time. Most notable, perhaps, was discovering how difficult it is for Western social scientists to move beyond pathology-based thinking; most authors represented here regard health primarily as the absence of disease. Still, these papers articulate and address questions key to understanding health in and of itself, including: How is health conceptualized? What kinds of social conditions lead to health? And, how do social inequalities affect health? This introduction critically discusses previous work on the subject to contextualize the original research papers offered here.

  19. Comparative Advantages of Spin-off Firms: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Bilgehan Uzunca

    2011-11-01

    Full Text Available As predicted by evolutionary economics, historical antecedents matter when it comes to the relationship between survival of entrants and organizational capabilities. Spinoff firms provide an exemplary case of such relationship where the founders’ pre-entry capabilities that are inherited from the parent firm increases their survival chances. Looking closer and deeper to the evolutionary spinoff success mechanisms, I examine three specific genetic features which make spinoff firms more advantageous compared to other entrants; namely 1 Genotype: Transfer of blueprint, 2 Phenotype: Organizational learning, and 3 Memes: Informal relations and social capital. A detailed theoretical analysis of each mechanism prevails how they function and provide sustainable competitive advantage to spinoff firms. Testable hypotheses are provided about each mechanism.

  20. Why Shops Close Again : An Evolutionary Perspective on the Deregulation of Shopping Hours

    NARCIS (Netherlands)

    Kosfeld, M.

    1999-01-01

    This paper introduces a new perspective on the deregulation of shopping hours based on ideas from evolutionary game theory. We study a retail economy where shopping hours have been deregulated recently. It is argued that first, the deregulation leads to a coordination problem between store owners

  1. The Nestor Effect: Extending Evolutionary Developmental Psychology to a Lifespan Perspective

    Science.gov (United States)

    Greve, Werner; Bjorklund, David F.

    2009-01-01

    We extend an evolutionary perspective of development to the lifespan, proposing that human longevity may be related to the experience, knowledge, and wisdom provided by older members of human groups. In addition to the assistance in childcare provided by grandmothers to their daughters, the experience of wise elders could have served to benefit…

  2. The future orientation of constructive memory: an evolutionary perspective on therapeutic hypnosis and brief psychotherapy.

    Science.gov (United States)

    Rossi, Ernest; Erickson-Klein, Roxanna; Rossi, Kathryn

    2008-04-01

    We explore a new distinction between the future, prospective memory system being investigated in current neuroscience and the past, retrospective memory system, which was the original theoretical foundation of therapeutic hypnosis, classical psychoanalysis, and psychotherapy. We then generalize a current evolutionary theory of sleep and dreaming, which focuses on the future, prospective memory system, to conceptualize a new evolutionary perspective on therapeutic hypnosis and brief psychotherapy. The implication of current neuroscience research is that activity-dependent gene expression and brain plasticity are the psychobiological basis of adaptive behavior, consciousness, and creativity in everyday life as well as psychotherapy. We summarize a case illustrating how this evolutionary perspective can be used to quickly resolve problems with past obstructive procrastination in school to facilitate current and future academic success.

  3. Species diversity vs. morphological disparity in the light of evolutionary developmental biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-04-01

    Two indicators of a clade's success are its diversity (number of included species) and its disparity (extent of morphospace occupied by its members). Many large genera show high diversity with low disparity, while others such as Euphorbia and Drosophila are highly diverse but also exhibit high disparity. The largest genera are often characterized by key innovations that often, but not necessarily, coincide with their diagnostic apomorphies. In terms of their contribution to speciation, apomorphies are either permissive (e.g. flightlessness) or generative (e.g. nectariferous spurs). Except for Drosophila, virtually no genus among those with the highest diversity or disparity includes species currently studied as model species in developmental genetics or evolutionary developmental biology (evo-devo). An evo-devo approach is, however, potentially important to understand how diversity and disparity could rapidly increase in the largest genera currently accepted by taxonomists. The most promising directions for future research and a set of key questions to be addressed are presented in this review. From an evo-devo perspective, the evolution of clades with high diversity and/or disparity can be addressed from three main perspectives: (1) evolvability, in terms of release from previous constraints and of the presence of genetic or developmental conditions favouring multiple parallel occurrences of a given evolutionary transition and its reversal; (2) phenotypic plasticity as a facilitator of speciation; and (3) modularity, heterochrony and a coupling between the complexity of the life cycle and the evolution of diversity and disparity in a clade. This simple preliminary analysis suggests a set of topics that deserve priority for scrutiny, including the possible role of saltational evolution in the origination of high diversity and/or disparity, the predictability of morphological evolution following release from a former constraint, and the extent and the possible

  4. Mathematics and evolutionary biology make bioinformatics education comprehensible.

    Science.gov (United States)

    Jungck, John R; Weisstein, Anton E

    2013-09-01

    The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes-the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software-the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a 'two-culture' problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses.

  5. Public health evolutionary biology of antimicrobial resistance: priorities for intervention.

    Science.gov (United States)

    Baquero, Fernando; Lanza, Val F; Cantón, Rafael; Coque, Teresa M

    2015-03-01

    The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stochastic variation required for evolutionary progress. Invasion refers to the process by which AbR significantly increases in frequency in a given (invaded) environment, led by external invaders local multiplication and spread, or by endogenous conversion. Conversion occurs because of the spread of AbR genes from an exogenous resistant clone into an established (endogenous) bacterial clone(s) colonizing the environment; and/or because of dissemination of particular resistant genetic variants that emerged within an endogenous clonal population. Occupation of a given environment by a resistant variant means a permanent establishment of this organism in this environment, even in the absence of antibiotic selection. Specific interventions on emergence influence invasion, those acting on invasion also influence occupation and interventions on occupation determine emergence. Such interventions should be simultaneously applied, as they are not simple solutions to the complex problem of AbR.

  6. Mathematics and evolutionary biology make bioinformatics education comprehensible

    Science.gov (United States)

    Weisstein, Anton E.

    2013-01-01

    The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes—the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software—the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a ‘two-culture’ problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses. PMID:23821621

  7. An Evolutionary Perspective of Nutrition and Inflammation as Mechanisms of Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    María Esther Rubio-Ruiz

    2015-01-01

    Full Text Available When cardiovascular diseases are viewed from an evolutionary biology perspective, a heightened thrifty and an inflammatory design could be their mechanisms. Human ancestors confronted a greater infectious load and were subjected to the selection for proinflammatory genes and a strong inflammatory function. Ancestors also faced starvation periods that pressed for a thrifty genotype which caused fat accumulation. The pressure of sustaining gluconeogenesis during periods of poor nourishment selected individuals with insulin resistance. Obesity induces a proinflammatory state due to the secretion of adipokines which underlie cardiometabolic diseases. Our actual lifestyle needs no more of such proinflammatory and thrifty genotypes and these ancestral genes might increase predisposition to diseases. Risk factors for atherosclerosis and diabetes are based on inflammatory and genetic foundations that can be accounted for by excess fat. Longevity has also increased in recent times and is related to a proinflammatory response with cardiovascular consequences. If human ancestral lifestyle could be recovered by increasing exercise and adapting a calorie restriction diet, obesity would decrease and the effects on chronic low-grade inflammation would be limited. Thereby, the rates of both atherosclerosis and diabetes could be reduced.

  8. Uxoricide in pregnancy: ancient Greek domestic violence in evolutionary perspective.

    Science.gov (United States)

    Deacy, Susan; McHardy, Fiona

    2013-10-24

    Previous studies of ancient Greek examples of uxoricide in pregnancy have concluded that the theme is used to suggest tyrannical abuse of power and that the violence is a product of the patriarchal nature of ancient society. This article uses evolutionary analyses of violence during pregnancy to argue that the themes of sexual jealousy and uncertainty over paternity are as crucial as the theme of power to an understanding of these examples and that the examples can be seen as typical instances of spousal abuse as it occurs in all types of society.

  9. Psychotic symptoms in the general population - an evolutionary perspective.

    Science.gov (United States)

    Ian, Kelleher; Jenner, Jack A; Cannon, Mary

    2010-09-01

    Our ideas about the intrinsically pathological nature of hallucinations and delusions are being challenged by findings from epidemiology, neuroimaging and clinical research. Population-based studies using both self-report and interview surveys show that the prevalence of psychotic symptoms is far greater than had been previously considered, prompting us to re-evaluate these psychotic symptoms and their meaning in an evolutionary context. This non-clinical phenotype may hold the key to understanding the persistence of psychosis in the population. From a neuroscientific point of view, detailed investigation of the non-clinical psychosis phenotype should provide novel leads for research into the aetiology, nosology and treatment of psychosis.

  10. Sex differences in self-regulation: An evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Niki eHosseini-Kamkar

    2014-08-01

    Full Text Available Bjorklund and Kipp (1996 provide an evolutionary framework predicting that there is a female advantage in inhibition and self-regulation due to differing selection pressures placed on males and females. The majority of the present review will summarize sex differences in self-regulation at the behavioral level. The neural and hormonal underpinnings of this potential sexual dimorphism will also be investigated and the results of the experiments summarized will be related to the hypothesis advanced by Bjorklund and Kipp (1996. Paradoxically, sex differences in self-regulation are more consistently reported in children prior to the onset of puberty. In adult cohorts, the results of studies examining sex differences in self-regulation are mixed. A few recent experiments suggesting that females are less impulsive than males only during fertile stages of the menstrual cycle will be reviewed. A brief discussion of an evolutionary framework proposing that it is adaptive for females to employ a self-regulatory behavioral strategy when fertile will follow.

  11. Consciousness, crosstalk, and the mereological fallacy: An evolutionary perspective

    Science.gov (United States)

    Wallace, Rodrick

    2012-12-01

    The cross-sectional decontextualization afflicting contemporary neuroscience - attributing to ‘the brain’ what is the province of the whole organism - is mirrored by an evolutionary decontextualization exceptionalizing consciousness. The living state is characterized by cognitive processes at all scales and levels of organization. Many can be associated with dual information sources that ‘speak’ a ‘language’ of behavior-in-context. Shifting global broadcasts analogous to consciousness, albeit far slower - wound healing, tumor control, immune function, gene expression, etc. - have emerged through repeated evolutionary exaptation of the crosstalk and noise inherent to all information transmission. These recruit ‘unconscious’ cognitive modules into tunable arrays as needed to meet threats and opportunities across multiple frames of reference. The development is straightforward, based on the powerful necessary conditions imposed by the asymptotic limit theorems of communication theory, in the same sense that the Central Limit Theorem constrains sums of stochastic variates. Recognition of information as a form of free energy instantiated by physical processes that consume free energy permits analogs to phase transition and nonequilibrium thermodynamic arguments, leading to ‘dynamic regression models’ useful for data analysis.

  12. Children's Ability to Learn Evolutionary Explanations for Biological Adaptation

    Science.gov (United States)

    Shtulman, Andrew; Neal, Cara; Lindquist, Gabrielle

    2016-01-01

    Research Findings: Evolution by natural selection is often relegated to the high school curriculum on the assumption that younger students cannot grasp its complexity. We sought to test that assumption by teaching children ages 4-12 (n = 96) a selection-based explanation for biological adaptation and comparing their success to that of adults…

  13. Evolutionary Biology and the Determinants of Morality | Odozor ...

    African Journals Online (AJOL)

    Against the background of traditional ethics, this paper examined morality as a product of human effort and training, in contrast to its view as an outcome of mere human biological constitution. Conscientious training of the moral faculties, together with the requisite socialization process, enables the human moral nature to be ...

  14. Primary Emotional Systems and Personality: An Evolutionary Perspective

    OpenAIRE

    Montag, Christian; Panksepp, Jaak

    2017-01-01

    The present article highlights important concepts of personality including stability issues from the perspective of situational demands and stability over the life-course. Following this more introductory section, we argue why individual differences in primary emotional systems may represent the phylogenetically oldest parts of human personality. Our argumentation leads to the need to increasingly consider individual differences in the raw affects/emotions of people to understand human person...

  15. Evolutionary perspective on the origin of Haitian cholera outbreak strain.

    Science.gov (United States)

    Dasgupta, Anirban; Banerjee, Rachana; Das, Santasabuj; Basak, Surajit

    2012-01-01

    Cholera epidemic has not been reported in Haiti for at least 100 years, although cholera has been present in Latin America since 1991. Surprisingly, the recent cholera epidemic in Haiti (October 2010) recorded more than 250,000 cases and 4000 deaths in the first 6 months and became one of the most explosive and deadly cholera outbreak in recent history. In the present study, we conducted genomic analyses of pathogenicity islands of three Haitian Vibrio cholerae strains and compared them with nine different V. cholerae O1 El Tor genomes. Although CIRS101 is evolutionarily most similar to the Haitian strains, our study also provides some important differences in the genetic organization of pathogenicity islands of Haitian strains with CIRS101. Evolutionary analysis suggests that unusual functional constraints have been imposed on the Haitian strains and we hypothesize that amino acid substitution is more deleterious in Haitian strains than in nonHaitian strains.

  16. Evolutionary psychology: new perspectives on cognition and motivation.

    Science.gov (United States)

    Cosmides, Leda; Tooby, John

    2013-01-01

    Evolutionary psychology is the second wave of the cognitive revolution. The first wave focused on computational processes that generate knowledge about the world: perception, attention, categorization, reasoning, learning, and memory. The second wave views the brain as composed of evolved computational systems, engineered by natural selection to use information to adaptively regulate physiology and behavior. This shift in focus--from knowledge acquisition to the adaptive regulation of behavior--provides new ways of thinking about every topic in psychology. It suggests a mind populated by a large number of adaptive specializations, each equipped with content-rich representations, concepts, inference systems, and regulatory variables, which are functionally organized to solve the complex problems of survival and reproduction encountered by the ancestral hunter-gatherers from whom we are descended. We present recent empirical examples that illustrate how this approach has been used to discover new features of attention, categorization, reasoning, learning, emotion, and motivation.

  17. Personality from a cognitive-biological perspective

    Science.gov (United States)

    Neuman, Yair

    2014-12-01

    The term "personality" is used to describe a distinctive and relatively stable set of mental traits that aim to explain the organism's behavior. The concept of personality that emerged in human psychology has been also applied to the study of non-human organisms from birds to horses. In this paper, I critically review the concept of personality from an interdisciplinary perspective, and point to some ideas that may be used for developing a cognitive-biological theory of personality. Integrating theories and research findings from various fields such as cognitive ethnology, clinical psychology, and neuroscience, I argue that the common denominator of various personality theories are neural systems of threat/trust management and their emotional, cognitive, and behavioral dimensions. In this context, personality may be also conceived as a meta-heuristics both human and non-human organisms apply to model and predict the behavior of others. The paper concludes by suggesting a minimal computational model of personality that may guide future research.

  18. Improving the reviewing process in Ecology and Evolutionary Biology

    OpenAIRE

    Grossman, G. D.

    2014-01-01

    Mejora del proceso de revisión de artículos en ecología y biología evolutiva Se debaten los problemas actuales de la revisión y las prácticas editoriales en los campos de la ecología y la biología evolutiva, y se sugieren posibles soluciones para los mismos. La crisis por la que está pasando la revisión no cambiará a menos que las revistas tomen medidas para aumentar la inclusividad de los revisores y los incentivos a los mismos. Asimismo, tanto las revistas como las instituciones debería...

  19. Epigenetic Regulation of Biological Rhythms: An Evolutionary Ancient Molecular Timer.

    Science.gov (United States)

    Stevenson, Tyler J

    2017-12-05

    Biological rhythms are pervasive in nature, yet our understanding of the molecular mechanisms that govern timing is far from complete. The rapidly emerging research focus on epigenetic plasticity has revealed a system that is highly dynamic and reversible. In this Opinion, I propose an epigenetic clock model that outlines how molecular modifications, such as DNA methylation, are integral components for timing endogenous biological rhythms. The hypothesis proposed is that an epigenetic clock serves to maintain the period of molecular rhythms via control over the phase of gene transcription and this timing mechanism resides in all cells, from unicellular to complex organisms. The model also provides a novel framework for the timing of epigenetic modifications during the lifespan and transgenerational inheritance of an organism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.

    Science.gov (United States)

    Jiang, Chao; Caccamo, Paul D; Brun, Yves V

    2015-04-01

    How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era. © 2015 WILEY Periodicals, Inc.

  1. Evolutionary tradeoffs between economy and effectiveness in biological homeostasis systems.

    Science.gov (United States)

    Szekely, Pablo; Sheftel, Hila; Mayo, Avi; Alon, Uri

    2013-01-01

    Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this feature, even if one is able to measure only a small fraction of the system's parameters, one can infer the rest. We applied this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in bacteria, and calcium homeostasis in mammals.

  2. Evolution of microbes and viruses: a paradigm shift in evolutionary biology?

    Science.gov (United States)

    Koonin, Eugene V; Wolf, Yuri I

    2012-01-01

    When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain "ribosomal Tree of Life" that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: (1) pervasive horizontal gene transfer (HGT), in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment) of the Tree of Life concept, (2) Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and (3) evolution of evolvability, i.e., dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary biology.

  3. Evolution of microbes and viruses: A paradigm shift in evolutionary biology?

    Directory of Open Access Journals (Sweden)

    Eugene V. Koonin

    2012-09-01

    Full Text Available When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain ‘ribosomal Tree of Life’ that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: i pervasive horizontal gene transfer (HGT, in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment of the Tree of Life concept, ii Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and iii evolution of evolvability, i.e. dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary

  4. Remembering the Forest While Viewing the Trees: Evolutionary Thinking in the Teaching of Molecular Biology

    Science.gov (United States)

    Saraswati, Sitaraman; Sitaraman, Ramakrishnan

    2014-01-01

    Given the centrality of evolutionary theory to the study of biology, we present a strategy for reinforcing its importance by appropriately recontextualizing classic and well-known experiments that are not explicitly linked with evolution in conventional texts. This exercise gives students an appreciation of the applicability of the theory of…

  5. A Course in Evolutionary Biology: Engaging Students in the "Practice" of Evolution. Research Report.

    Science.gov (United States)

    Passmore, Cynthia; Stewart, James

    Recent education reform documents emphasize the need for students to develop a rich understanding of evolution's power to integrate knowledge of the natural world. This paper describes a nine-week high school course designed to help students understand evolutionary biology by engaging them in developing, elaborating, and using Charles Darwin's…

  6. Inherit the Policy: A Sociocultural Approach to Understanding Evolutionary Biology Policy in South Carolina

    Science.gov (United States)

    Moore, Gregory D.

    2012-01-01

    South Carolina biology Indicator 5.6 calls for students to "Summarize ways that scientists use data from a variety of sources to investigate and critically analyze aspects of evolutionary theory" (South Carolina Department of Education, 2006). Levinson and Sutton (2001) offered a sociocultural approach to policy that considers cultural…

  7. Remembering the forest while viewing the trees: evolutionary thinking in the teaching of molecular biology.

    Science.gov (United States)

    Saraswati, Sitaraman; Sitaraman, Ramakrishnan

    2014-01-01

    Given the centrality of evolutionary theory to the study of biology, we present a strategy for reinforcing its importance by appropriately recontextualizing classic and well-known experiments that are not explicitly linked with evolution in conventional texts. This exercise gives students an appreciation of the applicability of the theory of evolution in diverse contexts, including those where it is not explicitly mentioned. © 2013 by The International Union of Biochemistry and Molecular Biology.

  8. The significance and scope of evolutionary developmental biology: a vision for the 21st century.

    Science.gov (United States)

    Moczek, Armin P; Sears, Karen E; Stollewerk, Angelika; Wittkopp, Patricia J; Diggle, Pamela; Dworkin, Ian; Ledon-Rettig, Cristina; Matus, David Q; Roth, Siegfried; Abouheif, Ehab; Brown, Federico D; Chiu, Chi-Hua; Cohen, C Sarah; Tomaso, Anthony W De; Gilbert, Scott F; Hall, Brian; Love, Alan C; Lyons, Deirdre C; Sanger, Thomas J; Smith, Joel; Specht, Chelsea; Vallejo-Marin, Mario; Extavour, Cassandra G

    2015-01-01

    Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century. © 2015 Wiley Periodicals, Inc.

  9. Latitudinal clines: an evolutionary view on biological rhythms†,‡

    Science.gov (United States)

    Hut, Roelof A.; Paolucci, Silvia; Dor, Roi; Kyriacou, Charalambos P.; Daan, Serge

    2013-01-01

    Properties of the circadian and annual timing systems are expected to vary systematically with latitude on the basis of different annual light and temperature patterns at higher latitudes, creating specific selection pressures. We review literature with respect to latitudinal clines in circadian phenotypes as well as in polymorphisms of circadian clock genes and their possible association with annual timing. The use of latitudinal (and altitudinal) clines in identifying selective forces acting on biological rhythms is discussed, and we evaluate how these studies can reveal novel molecular and physiological components of these rhythms. PMID:23825204

  10. Latitudinal clines: an evolutionary view on biological rhythms.

    Science.gov (United States)

    Hut, Roelof A; Paolucci, Silvia; Dor, Roi; Kyriacou, Charalambos P; Daan, Serge

    2013-08-22

    Properties of the circadian and annual timing systems are expected to vary systematically with latitude on the basis of different annual light and temperature patterns at higher latitudes, creating specific selection pressures. We review literature with respect to latitudinal clines in circadian phenotypes as well as in polymorphisms of circadian clock genes and their possible association with annual timing. The use of latitudinal (and altitudinal) clines in identifying selective forces acting on biological rhythms is discussed, and we evaluate how these studies can reveal novel molecular and physiological components of these rhythms.

  11. An Evolutionary Perspective on Food Review and Human Taste

    Science.gov (United States)

    Breslin, Paul A.S.

    2013-01-01

    The sense of taste is stimulated when nutrients or other chemical compounds activate specialized receptor cells within the oral cavity. Taste helps us decide what to eat and influences how efficiently we digest these foods. Human taste abilities have been shaped, in large part, by the ecological niches our evolutionary ancestors occupied and by the nutrients they sought. Early hominoids sought nutrition within a closed tropical forest environment, probably eating mostly fruit and leaves, and early hominids left this environment for the savannah and greatly expanded their dietary repertoire. They would have used their sense of taste to identify nutritious food items. The risks of making poor food selections when foraging not only entail wasted energy and metabolic harm from eating foods of low nutrient and energy content, but also the harmful and potentially lethal ingestion of toxins. The learned consequences of ingested foods may subsequently guide our future food choices. The evolved taste abilities of humans are still useful for the one billion humans living with very low food security by helping them identify nutrients. But for those who have easy access to tasty, energy-dense foods our sensitivities for sugary, salty and fatty foods have also helped cause over nutrition-related diseases, such as obesity and diabetes. PMID:23660364

  12. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  13. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    2010-08-01

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  14. Judgments about Cooperators and Freeriders on a Shuar Work Team: An Evolutionary Psychological Perspective

    Science.gov (United States)

    Price, Michael E.

    2006-01-01

    Evolutionary biological theories of group cooperation predict that (1) group members will tend to judge cooperative co-members favorably, and freeriding co-members negatively and (2) members who themselves cooperate more frequently will be especially likely to make these social judgments. An experiment tested these predictions among Shuar…

  15. Relationships and the social brain: integrating psychological and evolutionary perspectives.

    Science.gov (United States)

    Sutcliffe, Alistair; Dunbar, Robin; Binder, Jens; Arrow, Holly

    2012-05-01

    Psychological studies of relationships tend to focus on specific types of close personal relationships (romantic, parent-offspring, friendship) and examine characteristics of both the individuals and the dyad. This paper looks more broadly at the wider range of relationships that constitute an individual's personal social world. Recent work on the composition of personal social networks suggests that they consist of a series of layers that differ in the quality and quantity of relationships involved. Each layer increases relationship numbers by an approximate multiple of 3 (5-15-50-150) but decreasing levels of intimacy (strong, medium, and weak ties) and frequency of interaction. To account for these regularities, we draw on both social and evolutionary psychology to argue that relationships at different layers serve different functions and have different cost-benefit profiles. At each layer, the benefits are asymptotic but the costs of maintaining a relationship at that level (most obviously, the time that has to be invested in servicing it) are roughly linear with the number of relationships. The trade-off between costs and benefits at a given level, and across the different types of demands and resources typical of different levels, gives rise to a distribution of social effort that generates and maintains a hierarchy of layered sets of relationships within social networks. We suggest that, psychologically, these trade-offs are related to the level of trust in a relationship, and that this is itself a function of the time invested in the relationship. ©2011 The British Psychological Society.

  16. The ecology of cancer from an evolutionary game theory perspective.

    Science.gov (United States)

    Pacheco, Jorge M; Santos, Francisco C; Dingli, David

    2014-08-06

    The accumulation of somatic mutations, to which the cellular genome is permanently exposed, often leads to cancer. Analysis of any tumour shows that, besides the malignant cells, one finds other 'supporting' cells such as fibroblasts, immune cells of various types and even blood vessels. Together, these cells generate the microenvironment that enables the malignant cell population to grow and ultimately lead to disease. Therefore, understanding the dynamics of tumour growth and response to therapy is incomplete unless the interactions between the malignant cells and normal cells are investigated in the environment in which they take place. The complex interactions between cells in such an ecosystem result from the exchange of information in the form of cytokines- and adhesion-dependent interactions. Such processes impose costs and benefits to the participating cells that may be conveniently recast in the form of a game pay-off matrix. As a result, tumour progression and dynamics can be described in terms of evolutionary game theory (EGT), which provides a convenient framework in which to capture the frequency-dependent nature of ecosystem dynamics. Here, we provide a tutorial review of the central aspects of EGT, establishing a relation with the problem of cancer. Along the way, we also digress on fitness and of ways to compute it. Subsequently, we show how EGT can be applied to the study of the various manifestations and dynamics of multiple myeloma bone disease and its preceding condition known as monoclonal gammopathy of undetermined significance. We translate the complex biochemical signals into costs and benefits of different cell types, thus defining a game pay-off matrix. Then we use the well-known properties of the EGT equations to reduce the number of core parameters that characterize disease evolution. Finally, we provide an interpretation of these core parameters in terms of what their function is in the ecosystem we are describing and generate

  17. Incorporating tree-thinking and evolutionary time scale into developmental biology.

    Science.gov (United States)

    Kuraku, Shigehiro; Feiner, Nathalie; Keeley, Sean D; Hara, Yuichiro

    2016-01-01

    Phylogenetic approaches are indispensable in any comparative molecular study involving multiple species. These approaches are in increasing demand as the amount and availability of DNA sequence information continues to increase exponentially, even for organisms that were previously not extensively studied. Without the sound application of phylogenetic concepts and knowledge, one can be misled when attempting to infer ancestral character states as well as the timing and order of evolutionary events, both of which are frequently exerted in evolutionary developmental biology. The ignorance of phylogenetic approaches can also impact non-evolutionary studies and cause misidentification of the target gene or protein to be examined in functional characterization. This review aims to promote tree-thinking in evolutionary conjecture and stress the importance of a sense of time scale in cross-species comparisons, in order to enhance the understanding of phylogenetics in all biological fields including developmental biology. To this end, molecular phylogenies of several developmental regulatory genes, including those denoted as "cryptic pan-vertebrate genes", are introduced as examples. © 2016 Japanese Society of Developmental Biologists.

  18. Introduction to the special issue : Globalisation, knowledge and institutional change: Towards an evolutionary perspective to economic development

    NARCIS (Netherlands)

    Morrison, Andrea; Cusmano, Lucia

    2015-01-01

    This special issue aims at advancing the debate about the interpretative power of evolutionary perspectives on economic development and institutional change. In the introduction, we argue that the interpretative power of the current evolutionary approach can be improved by elaborating an 'augmented'

  19. Some assembly required: evolutionary and systems perspectives on the mammalian reproductive system.

    Science.gov (United States)

    Mordhorst, Bethany R; Wilson, Miranda L; Conant, Gavin C

    2016-01-01

    In this review, we discuss the way that insights from evolutionary theory and systems biology shed light on form and function in mammalian reproductive systems. In the first part of the review, we contrast the rapid evolution seen in some reproductive genes with the generally conservative nature of development. We discuss directional selection and coevolution as potential drivers of rapid evolution in sperm and egg proteins. Such rapid change is very different from the highly conservative nature of later embryo development. However, it is not unique, as some regions of the sex chromosomes also show elevated rates of evolutionary change. To explain these contradictory trends, we argue that it is not reproductive functions per se that induce rapid evolution. Rather, it is the fact that biotic interactions, such as speciation events and sexual conflict, have no evolutionary endpoint and hence can drive continuous evolutionary changes. Returning to the question of sex chromosome evolution, we discuss the way that recent advances in evolutionary genomics and systems biology and, in particular, the development of a theory of gene balance provide a better understanding of the evolutionary patterns seen on these chromosomes. We end the review with a discussion of a surprising and incompletely understood phenomenon observed in early embryos: namely the Warburg effect, whereby glucose is fermented to lactate and alanine rather than respired to carbon dioxide. We argue that evolutionary insights, from both yeasts and tumor cells, help to explain the Warburg effect, and that new metabolic modeling approaches are useful in assessing the potential sources of the effect.

  20. In the beginning was the familiar voice: personally familiar voices in the evolutionary and contemporary biology of communication.

    Science.gov (United States)

    Sidtis, Diana; Kreiman, Jody

    2012-06-01

    The human voice is described in dialogic linguistics as an embodiment of self in a social context, contributing to expression, perception and mutual exchange of self, consciousness, inner life, and personhood. While these approaches are subjective and arise from phenomenological perspectives, scientific facts about personal vocal identity, and its role in biological development, support these views. It is our purpose to review studies of the biology of personal vocal identity-the familiar voice pattern-as providing an empirical foundation for the view that the human voice is an embodiment of self in the social context. Recent developments in the biology and evolution of communication are concordant with these notions, revealing that familiar voice recognition (also known as vocal identity recognition or individual vocal recognition) has contributed to survival in the earliest vocalizing species. Contemporary ethology documents the crucial role of familiar voices across animal species in signaling and perceiving internal states and personal identities. Neuropsychological studies of voice reveal multimodal cerebral associations arising across brain structures involved in memory, emotion, attention, and arousal in vocal perception and production, such that the voice represents the whole person. Although its roots are in evolutionary biology, human competence for processing layered social and personal meanings in the voice, as well as personal identity in a large repertory of familiar voice patterns, has achieved an immense sophistication.

  1. Obesogens in the aquatic environment: an evolutionary and toxicological perspective.

    Science.gov (United States)

    Capitão, Ana; Lyssimachou, Angeliki; Castro, Luís Filipe Costa; Santos, Miguel M

    2017-09-01

    The rise of obesity in humans is a major health concern of our times, affecting an increasing proportion of the population worldwide. It is now evident that this phenomenon is not only associated with the lack of exercise and a balanced diet, but also due to environmental factors, such as exposure to environmental chemicals that interfere with lipid homeostasis. These chemicals, also known as obesogens, are present in a wide range of products of our daily life, such as cosmetics, paints, plastics, food cans and pesticide-treated food, among others. A growing body of evidences indicates that their action is not limited to mammals. Obesogens also end up in the aquatic environment, potentially affecting its ecosystems. In fact, reports show that some environmental chemicals are able to alter lipid homeostasis, impacting weight, lipid profile, signaling pathways and/or protein activity, of several taxa of aquatic animals. Such perturbations may give rise to physiological disorders and disease. Although largely unexplored from a comparative perspective, the key molecular components implicated in lipid homeostasis have likely appeared early in animal evolution. Therefore, it is not surprising that the obesogen effects are found in other animal groups beyond mammals. Collectively, data indicates that suspected obesogens impact lipid metabolism across phyla that have diverged over 600 million years ago. Thus, a consistent link between environmental chemical exposure and the obesity epidemic has emerged. This review aims to summarize the available information on the effects of putative obesogens in aquatic organisms, considering the similarities and differences of lipid homeostasis pathways among metazoans, thus contributing to a better understanding of the etiology of obesity in human populations. Finally, we identify the knowledge gaps in this field and we set future research priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evolutionary Dynamics of the wnt Gene Family: A Lophotrochozoan Perspective

    Science.gov (United States)

    Cho, Sung-Jin; Vallès, Yvonne; Giani, Vincent C.; Seaver, Elaine C.; Weisblat, David A.

    2010-01-01

    The wnt gene family encodes a set of secreted glycoproteins involved in key developmental processes, including cell fate specification and regulation of posterior growth (Cadigan KM, Nusse R. 1997. Wnt signaling: a common theme in animal development. Genes Dev. 11:3286–3305.; Martin BL, Kimelman D. 2009. Wnt signaling and the evolution of embryonic posterior development. Curr Biol. 19:R215–R219.). As for many other gene families, evidence for expansion and/or contraction of the wnt family is available from deuterostomes (e.g., echinoderms and vertebrates [Nusse R, Varmus HE. 1992. Wnt genes. Cell. 69:1073–1087.; Schubert M, Holland LZ, Holland ND, Jacobs DK. 2000. A phylogenetic tree of the Wnt genes based on all available full-length sequences, including five from the cephalochordate amphioxus. Mol Biol Evol. 17:1896–1903.; Croce JC, Wu SY, Byrum C, Xu R, Duloquin L, Wikramanayake AH, Gache C, McClay DR. 2006. A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus. Dev Biol. 300:121–131.]) and ecdysozoans (e.g., arthropods and nematodes [Eisenmann DM. 2005. Wnt signaling. WormBook. 1–17.; Bolognesi R, Farzana L, Fischer TD, Brown SJ. 2008. Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum. Curr Biol. 18:1624–1629.]), but little is known from the third major bilaterian group, the lophotrochozoans (e.g., mollusks and annelids [Prud'homme B, Lartillot N, Balavoine G, Adoutte A, Vervoort M. 2002. Phylogenetic analysis of the Wnt gene family. Insights from lophotrochozoan members. Curr Biol. 12:1395.]). To obtain a more comprehensive scenario of the evolutionary dynamics of this gene family, we exhaustively mined wnt gene sequences from the whole genome assemblies of a mollusk (Lottia gigantea) and two annelids (Capitella teleta and Helobdella robusta) and examined them by phylogenetic, genetic linkage, intron–exon structure, and embryonic

  3. Conciliation biology: the eco-evolutionary management of permanently invaded biotic systems

    Science.gov (United States)

    Carroll, Scott P

    2011-01-01

    Biotic invaders and similar anthropogenic novelties such as domesticates, transgenics, and cancers can alter ecology and evolution in environmental, agricultural, natural resource, public health, and medical systems. The resulting biological changes may either hinder or serve management objectives. For example, biological control and eradication programs are often defeated by unanticipated resistance evolution and by irreversibility of invader impacts. Moreover, eradication may be ill-advised when nonnatives introduce beneficial functions. Thus, contexts that appear to call for eradication may instead demand managed coexistence of natives with nonnatives, and yet applied biologists have not generally considered the need to manage the eco-evolutionary dynamics that commonly result from interactions of natives with nonnatives. Here, I advocate a conciliatory approach to managing systems where novel organisms cannot or should not be eradicated. Conciliatory strategies incorporate benefits of nonnatives to address many practical needs including slowing rates of resistance evolution, promoting evolution of indigenous biological control, cultivating replacement services and novel functions, and managing native–nonnative coevolution. Evolutionary links across disciplines foster cohesion essential for managing the broad impacts of novel biotic systems. Rather than signaling defeat, conciliation biology thus utilizes the predictive power of evolutionary theory to offer diverse and flexible pathways to more sustainable outcomes. PMID:25567967

  4. Evolutionary biology and anthropology suggest biome reconstitution as a necessary approach toward dealing with immune disorders.

    Science.gov (United States)

    Parker, William; Ollerton, Jeff

    2013-01-01

    Industrialized society currently faces a wide range of non-infectious, immune-related pandemics. These pandemics include a variety of autoimmune, inflammatory and allergic diseases that are often associated with common environmental triggers and with genetic predisposition, but that do not occur in developing societies. In this review, we briefly present the idea that these pandemics are due to a limited number of evolutionary mismatches, the most damaging being 'biome depletion'. This particular mismatch involves the loss of species from the ecosystem of the human body, the human biome, many of which have traditionally been classified as parasites, although some may actually be commensal or even mutualistic. This view, evolved from the 'hygiene hypothesis', encompasses a broad ecological and evolutionary perspective that considers host-symbiont relations as plastic, changing through ecological space and evolutionary time. Fortunately, this perspective provides a blueprint, termed 'biome reconstitution', for disease treatment and especially for disease prevention. Biome reconstitution includes the controlled and population-wide reintroduction (i.e. domestication) of selected species that have been all but eradicated from the human biome in industrialized society and holds great promise for the elimination of pandemics of allergic, inflammatory and autoimmune diseases.

  5. Dopamine in socioecological and evolutionary perspectives: implications for psychiatric disorders.

    Science.gov (United States)

    Yamaguchi, Yoshie; Lee, Young-A; Goto, Yukiori

    2015-01-01

    Dopamine (DA) transmission in brain areas such as the prefrontal cortex (PFC) and nucleus accumbens (NAcc) plays important roles in cognitive and affective function. As such, DA deficits have been implicated in a number of psychiatric disorders such as schizophrenia and attention deficit/hyperactivity disorder (ADHD). Accumulating evidence suggests that DA is also involved in social behavior of animals and humans. Although most animals organize and live in social groups, how the DA system functions in such social groups of animals, and its dysfunction causes compromises in the groups has remained less understood. Here we propose that alterations of DA signaling and associated genetic variants and behavioral phenotypes, which have been normally considered as "deficits" in investigation at an individual level, may not necessarily yield disadvantages, but even work advantageously, depending on social contexts in groups. This hypothesis could provide a novel insight into our understanding of the biological mechanisms of psychiatric disorders, and a potential explanation that disadvantageous phenotypes associated with DA deficits in psychiatric disorders have remained in humans through evolution.

  6. Dopamine in Socioecological and Evolutionary Perspectives: Implications for Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Yoshie eYamaguchi

    2015-06-01

    Full Text Available Dopamine (DA transmission in brain areas such as the prefrontal cortex (PFC and nucleus accumbens (NAcc plays important roles in cognitive and affective function. As such, DA deficits have been implicated in a number of psychiatric disorders such as schizophrenia and attention deficit/hyperactivity disorder (ADHD. Accumulating evidence suggests that DA is also involved in social behavior of animals and humans. Although most animals organize and live in social groups, how the DA system functions in such social groups of animals, and its dysfunction causes compromises in the groups has remained less understood. Here we propose that alterations of DA signaling and associated genetic variants and behavioral phenotypes, which have been normally considered as deficits in investigation at an individual level, may not necessarily yield disadvantages, and even work advantageously, depending on social contexts in subjects with such DA alterations living in social groups. This hypothesis could provide a novel insight into our understanding of the biological mechanisms of psychiatric disorders, and a potential explanation that disadvantageous phenotypes associated with DA deficits in psychiatric disorders have remained in humans through evolution.

  7. Human Ecology: A Perspective for Biology Education. Monograph Series II.

    Science.gov (United States)

    Bybee, Rodger W.

    This monograph provides a framework for biology teachers who are rethinking and redesigning their programs. The major focus is on the human ecology perspective in biology programs. The first chapter attempts to define and clarify human ecology through historical review. The second chapter provides support, based on a survey of citizens…

  8. The Biology and Evolution of Music: A Comparative Perspective

    Science.gov (United States)

    Fitch, W. Tecumseh

    2006-01-01

    Studies of the biology of music (as of language) are highly interdisciplinary and demand the integration of diverse strands of evidence. In this paper, I present a comparative perspective on the biology and evolution of music, stressing the value of comparisons both with human language, and with those animal communication systems traditionally…

  9. An evolutionary perspective on gradual formation of superego in the primal horde.

    Science.gov (United States)

    Pulcu, Erdem

    2014-01-01

    Freud proposed that the processes which occurred in the primal horde are essential for understanding superego formation and therefore, the successful dissolution of the Oedipus complex. However, Freud theorized superego formation in the primal horde as if it is an instant, all-or-none achievement. The present paper proposes an alternative model aiming to explain gradual development of superego in the primitive man. The proposed model is built on knowledge from evolutionary and neural sciences as well as anthropology, and it particularly focuses on the evolutionary significance of the acquisition of fire by hominids in the Pleistocene period in the light of up-to-date archaeological findings. Acquisition of fire is discussed as a form of sublimation which might have helped Prehistoric man to maximize the utility of limited evolutionary biological resources, potentially contributing to the rate and extent of bodily evolution. The limitations of both Freud's original conceptualization and the present model are discussed accordingly in an interdisciplinary framework.

  10. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology.

    Science.gov (United States)

    Wideman, Jeremy G; Muñoz-Gómez, Sergio A

    2016-08-01

    The ER-mitochondria organizing network (ERMIONE) in Saccharomyces cerevisiae is involved in maintaining mitochondrial morphology and lipid homeostasis. ERMES and MICOS are two scaffolding complexes of ERMIONE that contribute to these processes. ERMES is ancient but has been lost in several lineages including animals, plants, and SAR (stramenopiles, alveolates and rhizaria). On the other hand, MICOS is ancient and has remained present in all organisms bearing mitochondrial cristae. The ERMIONE precursor evolved in the α-proteobacterial ancestor of mitochondria which had the central subunit of MICOS, Mic60. The subsequent evolution of ERMIONE and its interactors in eukaryotes reflects the integrative co-evolution of mitochondria and their hosts and the adaptive paths that some lineages have followed in their specialization to certain environments. By approaching the ERMIONE from a perspective of comparative evolutionary cell biology, we hope to shed light on not only its evolutionary history, but also how ERMIONE components may function in organisms other than S. cerevisiae. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ancestor of the new archetypal biology: Goethe's dynamic typology as a model for contemporary evolutionary developmental biology.

    Science.gov (United States)

    Riegner, Mark F

    2013-12-01

    As understood historically, typological thinking has no place in evolutionary biology since its conceptual framework is viewed as incompatible with population thinking. In this article, I propose that what I describe as dynamic typological thinking has been confused with, and has been overshadowed by, a static form of typological thinking. This conflation results from an inability to grasp dynamic typological thinking due to the overlooked requirement to engage our cognitive activity in an unfamiliar way. Thus, analytical thinking alone is unsuited to comprehend the nature of dynamic typological thinking. Over 200 years ago, J. W. von Goethe, in his Metamorphosis of Plants (1790) and other writings, introduced a dynamic form of typological thinking that has been traditionally misunderstood and misrepresented. I describe in detail Goethe's phenomenological methodology and its contemporary value in understanding morphological patterns in living organisms. Furthermore, contrary to the implications of static typological thinking, dynamic typological thinking is perfectly compatible with evolutionary dynamics and, if rightly understood, can contribute significantly to the still emerging field of evolutionary developmental biology (evo-devo). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Thermodynamics, ecology and evolutionary biology: A bridge over troubled water or common ground?

    Science.gov (United States)

    Skene, Keith R.

    2017-11-01

    This paper addresses a key issue confronting ecological and evolutionary biology, namely the challenge of a cohesive approach to these fields given significant differences in the concepts and foundations of their study. Yet these two areas of scientific research are paramount in terms addressing the spatial and temporal dynamics and distribution of diversity, an understanding of which is needed if we are to resolve the current crisis facing the biosphere. The importance of understanding how nature responds to change is now of essential rather than of metaphysical interest as our planet struggles with increasing anthropogenic damage. Ecology and evolutionary biology can no longer remain disjointed. While some progress has been made in terms of synthetic thinking across these areas, this has often been in terms of bridge building, where thinking in one aspect is extended over to the other side. We review these bridges and the success or otherwise of such efforts. This paper then suggests that in order to move from a descriptive to a mechanistic understanding of the biosphere, we may need to re-evaluate our approach to the studies of ecology and evolutionary biology, finding a common denominator that will enable us to address the critical issues facing us, particularly in terms of understanding what drives change, what determines tempo and how communities function. Common ground, we argue, is essential if we are to comprehend how resilience operates in the natural world and how diversification can counter increasing extinction rates. This paper suggests that thermodynamics may provide a bridge between ecology and evolutionary biology, and that this will enable us to move forward with otherwise intractable problems.

  13. Can systems biology help to separate evolutionary analogies (convergent homoplasies) from homologies?

    Science.gov (United States)

    Gordon, Malcolm S; Notar, Julia C

    2015-01-01

    Convergent evolutionary analogies (homoplasies) of many kinds occur in diverse phylogenetic clades/lineages on both the animal and plant branches of the Tree of Life. Living organisms whose last common ancestors lived millions to hundreds of millions of years ago have later converged morphologically, behaviorally or at other levels of functionality (from molecular genetics through biochemistry, physiology and other organismic processes) as a result of long term strong natural selection that has constrained and channeled evolutionary processes. This happens most often when organisms belonging to different clades occupy ecological niches, habitats or environments sharing major characteristics that select for a relatively narrow range of organismic properties. Systems biology, broadly defined, provides theoretical and methodological approaches that are beginning to make it possible to answer a perennial evolutionary biological question relating to convergent homoplasies: Are at least some of the apparent analogies actually unrecognized homologies? This review provides an overview of the current state of knowledge of important aspects of this topic area. It also provides a resource describing many homoplasies that may be fruitful subjects for systems biological research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A dynamic parking charge optimal control model under perspective of commuters' evolutionary game behavior

    Science.gov (United States)

    Lin, XuXun; Yuan, PengCheng

    2018-01-01

    In this research we consider commuters' dynamic learning effect by modeling the trip mode choice behavior from a new perspective of dynamic evolutionary game theory. We explore the behavior pattern of different types of commuters and study the evolution path and equilibrium properties under different traffic conditions. We further establish a dynamic parking charge optimal control (referred to as DPCOC) model to alter commuters' trip mode choice while minimizing the total social cost. Numerical tests show. (1) Under fixed parking fee policy, the evolutionary results are completely decided by the travel time and the only method for public transit induction is to increase the parking charge price. (2) Compared with fixed parking fee policy, DPCOC policy proposed in this research has several advantages. Firstly, it can effectively turn the evolutionary path and evolutionary stable strategy to a better situation while minimizing the total social cost. Secondly, it can reduce the sensitivity of trip mode choice behavior to traffic congestion and improve the ability to resist interferences and emergencies. Thirdly, it is able to control the private car proportion to a stable state and make the trip behavior more predictable for the transportation management department. The research results can provide theoretical basis and decision-making references for commuters' mode choice prediction, dynamic setting of urban parking charge prices and public transit induction.

  15. Why do we all want to be young and beautiful (and women especially)? From the evolutionary psychological perspective.

    Science.gov (United States)

    Tadinac, Meri

    2010-12-01

    Within social sciences, the standards of beauty were for a long time considered to be culturally determined, meaning that different people with different life experiences in different cultures acquire different standards of beauty, as captured in the famous sentence "Beauty is in the eye of the beholder". However, two groups of findings have challenged this common assumption: first, people in different cultures generally agree on which faces are attractive; second, preferences emerge early in life, before cultural standards of beauty are likely to be assimilated. Evolutionary psychology explores the psychological adaptations (evolved psychological mechanisms constructed by natural selection) that constitute human nature. From the perspective of evolutionary psychology, beauty is not a cultural construct and appreciating beauty is not learned but is rather a biological adaptation, a part of universal human nature: the preferences for some physical characteristics reflect adaptations for mate choice because they signal aspects of mate quality. Theory of natural selection explains the adaptations, which help organisms in their tasks of survival. However, an organism can be adapted and survive for many years without passing its qualities to future generations--to pass them it must reproduce. The theory of sexual selection explains the adaptations that have arisen as a consequence of successful mating. In order to gain reproductive success, women and men adopt certain mate selection strategies--integrated sets of adaptations, not necessarily conscious, which organize and guide the individual's reproductive efforts.

  16. Transdisciplinary Perspectives in Bioethics: A Co-evolutionary Introduction from the Big History

    Directory of Open Access Journals (Sweden)

    Javier Collado-Ruano

    2016-10-01

    Full Text Available The main objective of this work is to expand the bioethics notion expressed in the Article 17th of the Universal Declaration on Bioethics and Human Rights, concerning the interconnections between human beings and other life forms. For this purpose, it is combined the transdisciplinary methodology with the theoretical framework of the “Big History” to approach the co-evolutionary phenomena that life is developing on Earth for some 3.8 billion years. As a result, the study introduces us to the unification, integration and inclusion of the history of the universe, the solar system, Earth, and life with the history of human beings. In conclusion, I consider to safeguard the cosmic miracle that represents the emergence of life we must adopt new transdisciplinary perspectives into bioethics to address the ecosystem complexity of co-evolutionary processes of life on Gaia as a whole.

  17. Evolutionary epistemology: Reviewing and reviving with new data the research programme for distributed biological intelligence.

    Science.gov (United States)

    Slijepcevic, Predrag

    2018-01-01

    Numerous studies in microbiology, eukaryotic cell biology, plant biology, biomimetics, synthetic biology, and philosophy of science appear to support the principles of the epistemological theory inspired by evolution, also known as "Evolutionary Epistemology", or EE. However, that none of the studies acknowledged EE suggests that its principles have not been formulated with sufficient clarity and depth to resonate with the interests of the empirical research community. In this paper I review evidence in favor of EE, and also reformulate EE principles to better inform future research. The revamped programme may be tentatively called Research Programme for Distributed Biological Intelligence. Intelligence I define as the capacity of organisms to gain information about their environment, process that information internally, and translate it into phenotypic forms. This multistage progression may be expressed through the acronym IGPT (information-gain-process-translate). The key principles of the programme may be summarized as follows. (i) Intelligence, a universal biological phenomenon promoting individual fitness, is required for effective organism-environment interactions. Given that animals represent less than 0.01% of the planetary biomass, neural intelligence is not the evolutionary norm. (ii) The basic unit of intelligence is a single cell prokaryote. All other forms of intelligence are derived. (iii) Intelligence is hierarchical. It ranges from bacteria to the biosphere or Gaia. (iv) The concept of "information" acquires a new meaning because information processing is at the heart of biological intelligence. All biological systems, from bacteria to Gaia, are intelligent, open thermodynamic systems that exchange information, matter and energy with the environment. (v) The organism-environment interaction is cybernetic. As much as the organism changes due to the influence of the environment, the organism's responses to induced changes affect the environment and

  18. Perspective: Reaches of chemical physics in biology.

    Science.gov (United States)

    Gruebele, Martin; Thirumalai, D

    2013-09-28

    Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.

  19. Exercise and cognitive function: a hypothesis for the association of type II diabetes mellitus and Alzheimer's disease from an evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Brito Gilberto NO

    2009-09-01

    Full Text Available Abstract The association of type II diabetes mellitus (DM2 with Alzheimer's disease (AD has received considerable attention in recent years. In the present paper, a hypothesis for this association from an evolutionary perspective, with emphasis on the close interplay between exercise and cognitive function, will be advanced in order to provide a biological rationale for the notion that the fundamental metabolic features of DM2 act in the brain over a protracted time span to induce the neuropathological characteristics of Alzheimer's disease thereby producing cognitive impairment. It is hoped that this hypothesis puts the association of DM2 and AD on firm conceptual grounds from a biological perspective and offers directions for further research.

  20. The Design and Transformation of Biofundamentals: A Nonsurvey Introductory Evolutionary and Molecular Biology Course

    Science.gov (United States)

    Klymkowsky, Michael W.; Rentsch, Jeremy D.; Begovic, Emina; Cooper, Melanie M.

    2016-01-01

    Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students’ ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the expense of the development of a meaningful framework within which to consider biological phenomena. About a decade ago, we began a reconsideration of what an introductory course should present to students and the skills they need to master. The original Web-based course’s design presaged many of the recommendations of the Vision and Change report; in particular, a focus on social evolutionary mechanisms, stochastic (evolutionary and molecular) processes, and core ideas (cellular continuity, evolutionary homology, molecular interactions, coupled chemical reactions, and molecular machines). Inspired by insights from the Chemistry, Life, the Universe & Everything general chemistry project, we transformed the original Web version into a (freely available) book with a more unified narrative flow and a set of formative assessments delivered through the beSocratic system. We outline how student responses to course materials are guiding future course modifications, in particular a more concerted effort at helping students to construct logical, empirically based arguments, explanations, and models. PMID:27909020

  1. What will result from the interaction between functional and evolutionary biology?

    Science.gov (United States)

    Morange, Michel

    2011-03-01

    The modern synthesis has been considered to be wrongly called a "synthesis", since it had completely excluded embryology, and many other disciplines. The recent developments of Evo-Devo have been seen as a step in the right direction, as complementing the modern synthesis, and probably leading to a "new synthesis". My argument is that the absence of embryology from the modern synthesis was the visible sign of a more profound lack: the absence of functional biology in the evolutionary synthesis. I will consider the reasons for this absence, as well as the recent transformations which favoured a closer interaction between these two branches of biology. Then I will describe two examples of recent work in which functional and evolutionary questioning were tightly linked. The most significant part of the paper will be devoted to the transformation of evolutionary theory that can be expected from this encounter: a deep transformation, or simply an experimental confirmation of this theory? I will not choose between these two different possibilities, but will discuss some of the difficulties which make the choice problematic. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Biochemistry and physiology within the framework of the extended synthesis of evolutionary biology.

    Science.gov (United States)

    Vianello, Angelo; Passamonti, Sabina

    2016-02-09

    Functional biologists, like Claude Bernard, ask "How?", meaning that they investigate the mechanisms underlying the emergence of biological functions (proximal causes), while evolutionary biologists, like Charles Darwin, asks "Why?", meaning that they search the causes of adaptation, survival and evolution (remote causes). Are these divergent views on what is life? The epistemological role of functional biology (molecular biology, but also biochemistry, physiology, cell biology and so forth) appears essential, for its capacity to identify several mechanisms of natural selection of new characters, individuals and populations. Nevertheless, several issues remain unsolved, such as orphan metabolic activities, i.e., adaptive functions still missing the identification of the underlying genes and proteins, and orphan genes, i.e., genes that bear no signature of evolutionary history, yet provide an organism with improved adaptation to environmental changes. In the framework of the Extended Synthesis, we suggest that the adaptive roles of any known function/structure are reappraised in terms of their capacity to warrant constancy of the internal environment (homeostasis), a concept that encompasses both proximal and remote causes.

  3. Assessing the prospects for a return of organisms in evolutionary biology.

    Science.gov (United States)

    Huneman, Philippe

    2010-01-01

    An argument has been raised from various perspectives against the Modern Synthesis (MS) in the past two decades: it has forgotten organisms. Niche construction theorists (Odling-Smee et al. 2003), developmental biologists like West-Eberhard (2003) and Evo-Devo elaborated various views which concur on a rehabilitation of the explanatory role of organisms, formerly neglected by an evolutionary science mostly centered on genes. This paper aims at assessing such criticisms by unraveling the specific arguments they use and evaluating how empirical findings may support them. In the first section, I review the usual critiques about the way MS treats organisms and show that the organisms-concerned critique is multifaceted, and I use the controversy about units of selection in order to show that purely conceptual and empirical arguments have been mixed up when organisms were concerned. In the second section, I consider successively the challenges raised to evolutionary MS by structuralist biologists and then the developmentalist challenge mostly raised by Evo-Devo. I distinguish what is purely conceptual among those criticisms and what mostly relies on recent empirical findings about genome activation, inheritance, and epigenetics. The last section discusses another program in MS, namely "evolutionary transitions" research, as enquiry into the emergence of organisms.

  4. How Single-Cell Genomics Is Changing Evolutionary and Developmental Biology.

    Science.gov (United States)

    Marioni, John C; Arendt, Detlev

    2017-10-06

    The recent flood of single-cell data not only boosts our knowledge of cells and cell types, but also provides new insight into development and evolution from a cellular perspective. For example, assaying the genomes of multiple cells during development reveals developmental lineage trees-the kinship lineage-whereas cellular transcriptomes inform us about the regulatory state of cells and their gradual restriction in potency-the Waddington lineage. Beyond that, the comparison of single-cell data across species allows evolutionary changes to be tracked at all stages of development from the zygote, via different kinds of stem cells, to the differentiating cells. We discuss recent insights into the evolution of stem cells and initial attempts to reconstruct the evolutionary cell type tree of the mammalian forebrain, for example, by the comparative analysis of neuron types in the mesencephalic floor. These studies illustrate the immense potential of single-cell genomics to open up a new era in developmental and evolutionary research.

  5. The Design and Transformation of Biofundamentals: A Nonsurvey Introductory Evolutionary and Molecular Biology Course.

    Science.gov (United States)

    Klymkowsky, Michael W; Rentsch, Jeremy D; Begovic, Emina; Cooper, Melanie M

    2016-01-01

    Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students' ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the expense of the development of a meaningful framework within which to consider biological phenomena. About a decade ago, we began a reconsideration of what an introductory course should present to students and the skills they need to master. The original Web-based course's design presaged many of the recommendations of the Vision and Change report; in particular, a focus on social evolutionary mechanisms, stochastic (evolutionary and molecular) processes, and core ideas (cellular continuity, evolutionary homology, molecular interactions, coupled chemical reactions, and molecular machines). Inspired by insights from the Chemistry, Life, the Universe & Everything general chemistry project, we transformed the original Web version into a (freely available) book with a more unified narrative flow and a set of formative assessments delivered through the beSocratic system. We outline how student responses to course materials are guiding future course modifications, in particular a more concerted effort at helping students to construct logical, empirically based arguments, explanations, and models. © 2016 M. W. Klymkowsky et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. An Evolutionary Perspective on the Importance of Community Relations for Quality of Life

    Directory of Open Access Journals (Sweden)

    Bjørn Grinde

    2009-01-01

    Full Text Available The evolutionary perspective is relevant for the study of quality of life in that the brain, including its capacity for positive and negative states of mind, has been shaped by the forces of evolution. The present text uses this perspective to discuss three questions related to the observation that human interactions are a particular important factor for well-being: (1 What is known about the inherent nature of our social propensities? (2 Is the present situation responsible for a suboptimal quality of life? (3 Are there alternatives to the organization of mainstream Western society? Based on this discussion, the question is raised as to whether it is possible to suggest improvements. Briefly, it seems possible to create conditions that enhance social relations and to the extent that happiness is considered an important objective, this is a relevant endeavor.

  7. Controversies in modern evolutionary biology: the imperative for error detection and quality control.

    Science.gov (United States)

    Prosdocimi, Francisco; Linard, Benjamin; Pontarotti, Pierre; Poch, Olivier; Thompson, Julie D

    2012-01-04

    The data from high throughput genomics technologies provide unique opportunities for studies of complex biological systems, but also pose many new challenges. The shift to the genome scale in evolutionary biology, for example, has led to many interesting, but often controversial studies. It has been suggested that part of the conflict may be due to errors in the initial sequences. Most gene sequences are predicted by bioinformatics programs and a number of quality issues have been raised, concerning DNA sequencing errors or badly predicted coding regions, particularly in eukaryotes. We investigated the impact of these errors on evolutionary studies and specifically on the identification of important genetic events. We focused on the detection of asymmetric evolution after duplication, which has been the subject of controversy recently. Using the human genome as a reference, we established a reliable set of 688 duplicated genes in 13 complete vertebrate genomes, where significantly different evolutionary rates are observed. We estimated the rates at which protein sequence errors occur and are accumulated in the higher-level analyses. We showed that the majority of the detected events (57%) are in fact artifacts due to the putative erroneous sequences and that these artifacts are sufficient to mask the true functional significance of the events. Initial errors are accumulated throughout the evolutionary analysis, generating artificially high rates of event predictions and leading to substantial uncertainty in the conclusions. This study emphasizes the urgent need for error detection and quality control strategies in order to efficiently extract knowledge from the new genome data. © 2012 Prosdocimi et al; licensee BioMed Central Ltd.

  8. A microbial perspective of human developmental biology.

    Science.gov (United States)

    Charbonneau, Mark R; Blanton, Laura V; DiGiulio, Daniel B; Relman, David A; Lebrilla, Carlito B; Mills, David A; Gordon, Jeffrey I

    2016-07-07

    When most people think of human development, they tend to consider only human cells and organs. Yet there is another facet that involves human-associated microbial communities. A microbial perspective of human development provides opportunities to refine our definitions of healthy prenatal and postnatal growth and to develop innovative strategies for disease prevention and treatment. Given the dramatic changes in lifestyles and disease patterns that are occurring with globalization, we issue a call for the establishment of 'human microbial observatories' designed to examine microbial community development in birth cohorts representing populations with diverse anthropological characteristics, including those undergoing rapid change.

  9. Decentralized control of ecological and biological networks through Evolutionary Network Control

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2016-09-01

    Full Text Available Evolutionary Network Control (ENC has been recently introduced to allow the control of any kind of ecological and biological networks, with an arbitrary number of nodes and links, acting from inside and/or outside. To date, ENC has been applied using a centralized approach where an arbitrary number of network nodes and links could be tamed. This approach has shown to be effective in the control of ecological and biological networks. However a decentralized control, where only one node and the correspondent input/output links are controlled, could be more economic from a computational viewpoint, in particular when the network is very large (i.e. big data. In this view, ENC is upgraded here to realize the decentralized control of ecological and biological nets.

  10. Outline of a unified Darwinian evolutionary theory for physical and biological systems.

    Science.gov (United States)

    Baladrón, Carlos; Khrennikov, Andrei

    2017-11-01

    The scheme of a unified Darwinian evolutionary theory for physical and biological systems is described. Every physical system is methodologically endowed with a classical information processor, which turns every system into an agent being also susceptible to evolution. Biological systems retain this structure as natural extensions of physical systems from which they are built up. Optimization of information flows turns out to be the key element to study the possible emergence of quantum behavior and the unified Darwinian description of physical and biological systems. The Darwinian natural selection scheme is completed by the Lamarckian component in the form of the anticipation of states of surrounding bio-physical systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Psychological and Biological Perspectives on Altruism.

    Science.gov (United States)

    Hoffman, Martin L.

    1978-01-01

    Explores the case for viewing altruism as an inherent part of human nature. Postulates an altruistic disposition or motive to act which is under the control of perceptual and cognitive processes. Presents psychological evidence complementing this view. Discusses social implications of a biological basis for human altruism. (RH)

  12. The biology of memory: a forty-year perspective.

    Science.gov (United States)

    Kandel, Eric R

    2009-10-14

    In the forty years since the Society for Neuroscience was founded, our understanding of the biology of memory has progressed dramatically. From a historical perspective, one can discern four distinct periods of growth in neurobiological research during that time. Here I use that chronology to chart a personalized and selective course through forty years of extraordinary advances in our understanding of the biology of memory storage.

  13. FUNCTION IN BIOLOGY: ETIOLOGICAL AND ORGANIZATIONAL PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Nunes Neto Nei Freitas Freitas

    2009-12-01

    -ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    ABSTRACT. In this paper, we argue for a taxonomy of approaches to function based on different epistemological perspectives assumed with regard to the treatment of this central concept in the life sciences. We distinguish between etiological and organizational perspectives on function, analyzing two distinct theories related to each perspective: Wright’s selectionist etiological approach and Godfrey-Smith’s modern history theory of functions, in the case of the etiological perspective; and Cummins’ functional analysis and Collier’s interactivist approach to function, among organizational accounts. We explain differences and similarities between these theories and the broader perspectives on function, arguing for a particular way of understanding the consensus without unity in debates about function. While explaining the accounts of function, we also deal with the relationship between this concept and other important biological concepts, such as adaptation, selection, complexity, and autonomy. We also advance an argument for the limits and prospects of the explanatory role of function in evolution. By arguing that changes in functionality are always grounded on changes in systems’ organization, we show that function can never explain the origins of traits. Nevertheless, it can explain the spread of traits in populations, but only when we are dealing with functionally novel traits. Finally, we stress that organizational accounts of function are needed to understand how new functions appear by means of changes in systems

  14. Forest soil biology-timber harvesting relationships: a perspective

    Science.gov (United States)

    M. F. Jurgensen; M. J. Larsen; A. E. Harvey

    1979-01-01

    Timber harvesting has a pronounced effect on the soil microflora by wood removal and changing properties. This paper gives a perspective on soil biology-harvesting relationships with emphasis on the northern Rocky Mountain region. Of special significance to forest management operations are the effects of soil micro-organisms on: the availability of soil nutrients,...

  15. A fungal perspective on conservation biology.

    Science.gov (United States)

    Heilmann-Clausen, Jacob; Barron, Elizabeth S; Boddy, Lynne; Dahlberg, Anders; Griffith, Gareth W; Nordén, Jenni; Ovaskainen, Otso; Perini, Claudia; Senn-Irlet, Beatrice; Halme, Panu

    2015-02-01

    Hitherto fungi have rarely been considered in conservation biology, but this is changing as the field moves from addressing single species issues to an integrative ecosystem-based approach. The current emphasis on biodiversity as a provider of ecosystem services throws the spotlight on the vast diversity of fungi, their crucial roles in terrestrial ecosystems, and the benefits of considering fungi in concert with animals and plants. We reviewed the role of fungi in ecosystems and composed an overview of the current state of conservation of fungi. There are 5 areas in which fungi can be readily integrated into conservation: as providers of habitats and processes important for other organisms; as indicators of desired or undesired trends in ecosystem functioning; as indicators of habitats of conservation value; as providers of powerful links between human societies and the natural world because of their value as food, medicine, and biotechnological tools; and as sources of novel tools and approaches for conservation of megadiverse organism groups. We hope conservation professionals will value the potential of fungi, engage mycologists in their work, and appreciate the crucial role of fungi in nature. © 2014 Society for Conservation Biology.

  16. Biological Nitrogen Fixation: Perspective and Limitation

    Directory of Open Access Journals (Sweden)

    N D Purwantari

    2008-03-01

    Full Text Available The demand of chemical fertilizer, N in particular will be increasing until 2020. In Indonesia, the demand of fertilizer from 1999 – 2002 increased 37.5 and 12.4% for urea and ammonium sulphate, respectively. At the same time, the price of this fertilizer is also increasing and it can not be afforded by the farmer. Other problem in using chemical fertilizer is damaging to the soil and environment. One of the problem solvings for this condition is to maximize biological nitrogen fixation (BNF. BNF is the fixation of N atmosphere by association between soil bacteria rhizobia and leguminous plant. BNF is sustainable and environmentally friendly in providing nitrogen fertilizer. Therefore, it would reduce the requirement of chemical nitrogen fertilizer for the plant. Gliricidia sepium fixes 170 kg N/ha/12 months, equivalent with 377 kg urea, Sesbania sesban 179 kg N/ha/10 months, equivalent 397 kg with urea, soybean 26 – 57 kg/2 months equivalent with 57 – 126 kg urea. The amount of N2- fixed varies, affected by species, environmental and biological factors. There are some limitations in applying this technology. The effect of N contribution is very slow at the beginning but in the long term, it would be beneficial for plant production and at the same time, maintain condition of physical and chemical of soil, soil microbes and therefore soil fertility.

  17. Evolutionary cell biology: functional insight from “endless forms most beautiful”

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G.; Dacks, Joel B.

    2015-01-01

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. PMID:26668171

  18. Perspective: Mechanochemistry of biological and synthetic molecules

    Science.gov (United States)

    Makarov, Dmitrii E.

    2016-01-01

    Coupling of mechanical forces and chemical transformations is central to the biophysics of molecular machines, polymer chemistry, fracture mechanics, tribology, and other disciplines. As a consequence, the same physical principles and theoretical models should be applicable in all of those fields; in fact, similar models have been invoked (and often repeatedly reinvented) to describe, for example, cell adhesion, dry and wet friction, propagation of cracks, and action of molecular motors. This perspective offers a unified view of these phenomena, described in terms of chemical kinetics with rates of elementary steps that are force dependent. The central question is then to describe how the rate of a chemical transformation (and its other measurable properties such as the transition path) depends on the applied force. I will describe physical models used to answer this question and compare them with experimental measurements, which employ single-molecule force spectroscopy and which become increasingly common. Multidimensionality of the underlying molecular energy landscapes and the ensuing frequent misalignment between chemical and mechanical coordinates result in a number of distinct scenarios, each showing a nontrivial force dependence of the reaction rate. I will discuss these scenarios, their commonness (or its lack), and the prospects for their experimental validation. Finally, I will discuss open issues in the field.

  19. Biological invasions in agricultural settings: insights from evolutionary biology and population genetics.

    Science.gov (United States)

    Guillemaud, Thomas; Ciosi, Marc; Lombaert, Eric; Estoup, Arnaud

    2011-03-01

    Invasion biology and agriculture are intimately related for several reasons and in particular because many agricultural pest species are recent invaders. In this article we suggest that the reconstruction of invasion routes with population genetics-based methods can address fundamental questions in ecology and practical aspects of the management of biological invasions in agricultural settings. We provide a brief description of the methods used to reconstruct invasion routes and describe their main characteristics. In particular, we focus on a scenario--the bridgehead invasion scenario --which had been overlooked until recently. We show that this scenario, in which an invasive population is the source of other invasive populations, is evolutionarily parsimonious and may have played a crucial role in shaping the distribution of many recent agricultural pests. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Emergent aquatic plants: biological and economic perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Lawhon, W.T.

    1981-01-01

    One of the most productive, but least exploited, biomass resources is the group classified as the emergent aquatic plants. Information is presented concerning the biological and economic factors that must be considered if emergent aquatic plants are to become viable feedstocks for multipurpose systems. The feedstock purposes highlighted include fuel and/or chemical production and the species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolla. If these species are to be viable candidates in biomass systems, a number of research areas must be investigated further. Issues such as the development of base-line yield data for managed systems, mechanization and harvesting conceptualization, genetic (crop) improvement, identification of secondary plant products, and economic considerations require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if successful. 19 references.

  1. Biological warfare in a historical perspective.

    Science.gov (United States)

    Roffey, R; Tegnell, A; Elgh, F

    2002-08-01

    There are some early examples of biological warfare (BW), but in modern times it was used first for sabotage by Germany during WWI. Development of biological weapons on a military significant scale was initiated in several countries in the period between the world wars. During WWII, several countries had active programs such as the USA, UK, Canada, Germany, Japan and the Soviet Union. It was only Japan that on a fairly large scale used BW. The US program continued until 1969, when President Nixon took a decision to end it in connection with signing the BTWC. The Soviet Union had also continued its program after the war, and this was enhanced after signing the BTWC: in the 1980s the program consisted of around fifty facilities and involved around 60,000 people. The Soviet Union produced and maintained a large stockpile of BW-agents. After the collapse of the Soviet Union, and due to pressure from USA and UK, President Yeltsin issued a decree in 1992 banning continued offensive BW activity. However, there are still concerns of residual activity in Russia. Another program of concern is the Iraqi BW-program. After 10 years of UN inspections that were stopped in 1998, there are still many unanswered questions concerning the BW program. There was also a covert BW-program in South Africa that was terminated around 1993. There have also been a number of allegations of alleged use or possession. In addition, there are indications that 10-12 states are now trying to acquire BW, and this assessment is based on intelligence information, mainly from the USA. For example Iraq, North Korea, Iran, Syria, Sudan and Libya. Another aspect is the strong driving force of technology developments to promote this type of program, opening new risks for future potential military misuse.

  2. Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    Science.gov (United States)

    Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; Terry, Mark; French, Donald P.; Price, Rebecca M.; Perez, Kathryn E.

    2013-01-01

    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we find that instruction often addresses development cursorily, with most of the treatment embedded within instruction on evolution. Based on results of surveys and interviews with students, we suggest that teaching core concepts (CCs) within a framework that integrates supporting concepts (SCs) from both evolutionary and developmental biology can improve evo-devo instruction. We articulate CCs, SCs, and foundational concepts (FCs) that provide an integrative framework to help students master evo-devo concepts and to help educators address specific conceptual difficulties their students have with evo-devo. We then identify the difficulties that undergraduates have with these concepts. Most of these difficulties are of two types: those that are ubiquitous among students in all areas of biology and those that stem from an inadequate understanding of FCs from developmental, cell, and molecular biology. PMID:24006397

  3. Gene bionetworks involved in the epigenetic transgenerational inheritance of altered mate preference: environmental epigenetics and evolutionary biology.

    Science.gov (United States)

    Skinner, Michael K; Savenkova, Marina I; Zhang, Bin; Gore, Andrea C; Crews, David

    2014-05-16

    Mate preference behavior is an essential first step in sexual selection and is a critical determinant in evolutionary biology. Previously an environmental compound (the fungicide vinclozolin) was found to promote the epigenetic transgenerational inheritance of an altered sperm epigenome and modified mate preference characteristics for three generations after exposure of a gestating female. The current study investigated gene networks involved in various regions of the brain that correlated with the altered mate preference behavior in the male and female. Statistically significant correlations of gene clusters and modules were identified to associate with specific mate preference behaviors. This novel systems biology approach identified gene networks (bionetworks) involved in sex-specific mate preference behavior. Observations demonstrate the ability of environmental factors to promote the epigenetic transgenerational inheritance of this altered evolutionary biology determinant. Combined observations elucidate the potential molecular control of mate preference behavior and suggests environmental epigenetics can have a role in evolutionary biology.

  4. Evolutionary interrogation of human biology in well-annotated genomic framework of rhesus macaque.

    Science.gov (United States)

    Zhang, Shi-Jian; Liu, Chu-Jun; Yu, Peng; Zhong, Xiaoming; Chen, Jia-Yu; Yang, Xinzhuang; Peng, Jiguang; Yan, Shouyu; Wang, Chenqu; Zhu, Xiaotong; Xiong, Jingwei; Zhang, Yong E; Tan, Bertrand Chin-Ming; Li, Chuan-Yun

    2014-05-01

    With genome sequence and composition highly analogous to human, rhesus macaque represents a unique reference for evolutionary studies of human biology. Here, we developed a comprehensive genomic framework of rhesus macaque, the RhesusBase2, for evolutionary interrogation of human genes and the associated regulations. A total of 1,667 next-generation sequencing (NGS) data sets were processed, integrated, and evaluated, generating 51.2 million new functional annotation records. With extensive NGS annotations, RhesusBase2 refined the fine-scale structures in 30% of the macaque Ensembl transcripts, reporting an accurate, up-to-date set of macaque gene models. On the basis of these annotations and accurate macaque gene models, we further developed an NGS-oriented Molecular Evolution Gateway to access and visualize macaque annotations in reference to human orthologous genes and associated regulations (www.rhesusbase.org/molEvo). We highlighted the application of this well-annotated genomic framework in generating hypothetical link of human-biased regulations to human-specific traits, by using mechanistic characterization of the DIEXF gene as an example that provides novel clues to the understanding of digestive system reduction in human evolution. On a global scale, we also identified a catalog of 9,295 human-biased regulatory events, which may represent novel elements that have a substantial impact on shaping human transcriptome and possibly underpin recent human phenotypic evolution. Taken together, we provide an NGS data-driven, information-rich framework that will broadly benefit genomics research in general and serves as an important resource for in-depth evolutionary studies of human biology.

  5. Exploring the Factors Related to Acceptance of Evolutionary Theory among Turkish Preservice Biology Teachers: Toward a More Informative Conceptual Ecology for Biological Evolution

    Science.gov (United States)

    Deniz, Hasan; Donnelly, Lisa A.; Yilmaz, Irfan

    2008-01-01

    In this study, using multiple regression analysis, we aimed to explore the factors related to acceptance of evolutionary theory among preservice Turkish biology teachers using conceptual ecology for biological evolution as a theoretical lens. We aimed to determine the extent to which we can account for the variance in acceptance of evolutionary…

  6. Internationality of Publications, Co-Authorship, References and Citations in Brazilian Evolutionary Biology

    Directory of Open Access Journals (Sweden)

    Dirce Maria Santin

    2016-02-01

    Full Text Available The international dimensions of contemporary science have significantly impacted production and use patterns of scientific knowledge, which, in turn, requires new insights of librarians, publishers and academic institutions. Despite the recognized importance of internationality in science, studies on the internationalization of scientific output are still limited and dedicated exclusively to analyzing of its diffusion and international collaboration. This study analyzes the national/international character of articles, international collaboration, references and citations of Brazilian scientific output in Evolutionary Biology in order to understand the contribution to the internationalization of science in Brazil. Analyses are based on data from the Science Citation Index of Web of Science and include 1450 articles, 60,454 references and 18,059 citing documents. Results reveal similar internationality patterns, with 99.6% of articles published in foreign journals, 90.5% international references, and 88.5% international citations. Despite recording the lowest value among the indicators (51.9%, international collaboration surpasses the national and international average and is an important characteristic in the field in Brazil, contributing to increasing the number of references and the impact of articles. Evolutionary Biology is considered a predominantly international field, whose internationality patterns increase the audience for the studies and provide greater visibility for Brazilian science.

  7. Into the Green Economy – Evolutionary Perspectives on Green Economic Change

    DEFF Research Database (Denmark)

    Andersen, Maj Munch

    The recent ‘greening’ of the economy represents possible one of the most profound examples of economic change. While the environment used to be considered a burden to business this perspec-tive has changed making ‘eco-innovation’ increasingly recognized as a driver of economic devel-opment. Evolu......The recent ‘greening’ of the economy represents possible one of the most profound examples of economic change. While the environment used to be considered a burden to business this perspec-tive has changed making ‘eco-innovation’ increasingly recognized as a driver of economic devel...... problem solving, and simultaneously, the emergence of new green selection criteria on the market. These lead to a series of interrelated eco-innovations, which gain still more force as the green market matures. In the search for the origins of paradigmatic changes, the paper suggests to focus...... technological trajectory and the changes in selection mechanisms, the paper argues, evolve to a large degree as part of interactive, creative economic processes between firms. The evolutionary capabilities perspective is important in contributing to a better micro theoretical framework of inno-vation systems...

  8. Strategies for Reliable Exploitation of Evolutionary Concepts in High Throughput Biology

    Directory of Open Access Journals (Sweden)

    Julie D. Thompson

    2008-01-01

    Full Text Available The recent availability of the complete genome sequences of a large number of model organisms, together with the immense amount of data being produced by the new high-throughput technologies, means that we can now begin comparative analyses to understand the mechanisms involved in the evolution of the genome and their consequences in the study of biological systems. Phylogenetic approaches provide a unique conceptual framework for performing comparative analyses of all this data, for propagating information between different systems and for predicting or inferring new knowledge. As a result, phylogeny-based inference systems are now playing an increasingly important role in most areas of high throughput genomics, including studies of promoters (phylogenetic footprinting, interactomes (based on the presence and degree of conservation of interacting proteins, and in comparisons of transcriptomes or proteomes (phylogenetic proximity and co-regulation/co-expression. Here we review the recent developments aimed at making automatic, reliable phylogeny-based inference feasible in large-scale projects. We also discuss how evolutionary concepts and phylogeny-based inference strategies are now being exploited in order to understand the evolution and function of biological systems. Such advances will be fundamental for the success of the emerging disciplines of systems biology and synthetic biology, and will have wide-reaching effects in applied fields such as biotechnology, medicine and pharmacology.

  9. An Evolutionary Perspective on Family Studies: Differential Susceptibility to Environmental Influences.

    Science.gov (United States)

    Hartman, Sarah; Belsky, Jay

    2016-12-01

    An evolutionary perspective of human development provides the basis for the differential-susceptibility hypothesis which stipulates that individuals should differ in their susceptibility to environmental influences, with some being more affected than others by both positive and negative developmental experiences and environmental exposures. This paper reviews evidence consistent with this claim while revealing that temperamental and genetic characteristics play a role in distinguishing more and less susceptible individuals. The differential-susceptibility framework under consideration is contrasted to the traditional diathesis-stress view that "vulnerability" traits predispose some to being disproportionately affected by (only) adverse experiences. We raise several issues stimulated by the literature that need to be clarified in further research. Lastly, we suggest that therapy may differ in its effects depending on an individual's susceptibility. © 2015 Family Process Institute.

  10. Children's Risky Play from an Evolutionary Perspective: The Anti-Phobic Effects of Thrilling Experiences

    Directory of Open Access Journals (Sweden)

    Ellen Beate Hansen Sandseter

    2011-04-01

    Full Text Available This theoretical article views children's risky play from an evolutionary perspective, addressing specific evolutionary functions and especially the anti-phobic effects of risky play. According to the non-associative theory, a contemporary approach to the etiology of anxiety, children develop fears of certain stimuli (e.g., heights and strangers that protect them from situations they are not mature enough to cope with, naturally through infancy. Risky play is a set of motivated behaviors that both provide the child with an exhilarating positive emotion and expose the child to the stimuli they previously have feared. As the child's coping skills improve, these situations and stimuli may be mastered and no longer be feared. Thus fear caused by maturational and age relevant natural inhibition is reduced as the child experiences a motivating thrilling activation, while learning to master age adequate challenges. It is concluded that risky play may have evolved due to this anti-phobic effect in normal child development, and it is suggested that we may observe an increased neuroticism or psychopathology in society if children are hindered from partaking in age adequate risky play.

  11. Vulnerability from a co-evolutionary perspective: valuating natural hazards management in the Eastern Alps

    Science.gov (United States)

    Thaler, Thomas; Fuchs, Sven

    2014-05-01

    In past decades, we observed a change in natural hazard management from a structural, security-based policy towards an integrated, risk-based management system. Therefore, the concept of vulnerability has become central in the policy debate. In order to assess vulnerability, we need a broader understanding of the term to manage natural hazards and to reduce damages and losses from future events. This paper adopts a co-evolutionary perspective to provide a critical assessment of vulnerability in natural hazard management, taking the Eastern Alps as an example. We discuss the structural, social and institutional vulnerability and governance from an integrated point of view to understand and to analyse the interdependences and interactions between human and physical systems. The aim is to consider the dynamic interactions between multiple conceptualised vulnerabilities in evaluating natural hazard management systems. A co-evolutionary framework widens the explanatory of multiple interactions in vulnerability to provide useful information and concepts to improve risk management. Keywords: vulnerability; co-evolution; natural hazards; Eastern Alps

  12. Primitive mechanisms of trauma response: an evolutionary perspective on trauma-related disorders.

    Science.gov (United States)

    Baldwin, David V

    2013-09-01

    The symptoms we identify and the behaviors we recognize as defenses define which symptoms we see as trauma-related. Early conceptions of trauma-related disorders focused on physical signs of distress while current ones emphasize mental symptoms, but traumatizing experiences evoke psychobiological reactions. An evolutionary perspective presumes that psychophysical reactions to traumatizing events evolved to ensure survival. This theoretical review examines several primitive mechanisms (e.g., sensitization and dissolution) associated with responses to diverse stressors, from danger to life-threat. Some rapidly acquired symptoms form without conscious awareness because severe stresses can dysregulate mental and physical components within systems ensuring survival. Varied defensive options engage specialized and enduring psychophysical reactions; this allows for more adaptive responses to diverse threats. Thus, parasympathetically mediated defense states such as freeze or collapse increase trauma-related symptom variability. Comorbidity and symptom variability confuse those expecting mental rather than psychophysical responses to trauma, and active (sympathetically mediated flight and fight) rather than immobility defenses. Healthcare implications for stress research, clinical practice and diagnostic nosology stem from the broader evolutionary view. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Toward a synthesis of developmental biology with evolutionary theory and ecology.

    Science.gov (United States)

    Sommer, Ralf J; Mayer, Melanie G

    2015-01-01

    The evolutionary conservation of developmental mechanisms is a truism in biology, but few attempts have been made to integrate development with evolutionary theory and ecology. To work toward such a synthesis, we summarize studies in the nematode model Pristionchus pacificus, focusing on the development of the dauer, a stress-resistant, alternative larval stage. Integrative approaches combining molecular and genetic principles of development with natural variation and ecological studies in wild populations have identified a key role for a developmental switch mechanism in dauer development and evolution, one that involves the nuclear hormone receptor DAF-12. DAF-12 is a crucial regulator and convergence point for different signaling inputs, and its function is conserved among free-living and parasitic nematodes. Furthermore, DAF-12 is the target of regulatory loops that rely on novel or fast-evolving components to control the intraspecific competition of dauer larvae. We propose developmental switches as paradigms for understanding the integration of development, evolution, and ecology at the molecular level.

  14. Coevolution takes the sting out of it: Evolutionary biology and mechanisms of toxin resistance in animals.

    Science.gov (United States)

    Arbuckle, Kevin; Rodríguez de la Vega, Ricardo C; Casewell, Nicholas R

    2017-10-27

    Understanding how biotic interactions shape the genomes of the interacting species is a long-sought goal of evolutionary biology that has been hampered by the scarcity of tractable systems in which specific genomic features can be linked to complex phenotypes involved in interspecific interactions. In this review we present the compelling case of evolved resistance to the toxic challenge of venomous or poisonous animals as one such system. Animal venoms and poisons can be comprised of few or of many individual toxins. Here we show that resistance to animal toxins has evolved multiple times across metazoans, although it has been documented more often in phyla that feed on chemically-armed animals than in prey of venomous predators. We review three types of gene-product based resistance: 1) toxin scavenging, where molecules produced by the envenomed organism bind and inactivate the toxins; 2) target-site insensitivity, including landmark cases of convergent changes that make the molecules normally targeted by animal toxins refractory, and; 3) off-target repurposing, where envenomed organisms overcome toxicity by exploiting the function of toxins to alter their physiological effect. We finish by discussing the evolutionary processes that likely played a role in the origin and maintenance of toxin resistance. We conclude that antagonistic interactions involving poisonous or venomous animals are unparalleled models for investigating microevolutionary processes involved in coevolution and linking them to macroevolutionary patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The evolution and understanding of hierarchical complexity in biology from an algebraic perspective.

    Science.gov (United States)

    Nehaniv, C L; Rhodes, J L

    2000-01-01

    We develop the rigorous notion of a model for understanding state transition systems by hierarchical coordinate systems. Using this we motivate an algebraic definition of the complexity of biological systems, comparing it to other candidates such as genome size and number of cell types. We show that our complexity measure is the unique maximal complexity measure satisfying a natural set of axioms. This reveals a strong relationship between hierarchical complexity in biological systems and the area of algebra known as global semigroup theory. We then study the rate at which hierarchical complexity can evolve in biological systems assuming evolution is "as slow as possible" from the perspective of computational power of organisms. Explicit bounds on the evolution of complexity are derived showing that, although the evolutionary changes in hierarchical complexity are bounded, in some circumstances complexity may more than double in certain "genius jumps" of evolution. In fact, examples show that our bounds are sharp. We sketch the structure where such complexity jumps are known to occur and note some similarities to previously identified mechanisms in biological evolutionary transitions. We also address the question of, How fast can complexity evolve over longer periods of time? Although complexity may more than double in a single generation, we prove that in a smooth sequence of t "inclusion" steps, complexity may grow at most from N to (N + 1)t + N, a linear function of number of generations t, while for sequences of "mapping" steps it increases by at most t. Thus, despite the fact that there are major transitions in which complexity jumps are possible, over longer periods of time, the growth of complexity may be broken into maximal intervals on which it is bounded above in the manner described.

  16. Why Control Activity? Evolutionary Selection Pressures Affecting the Development of Physical Activity Genetic and Biological Regulation

    Directory of Open Access Journals (Sweden)

    J. Timothy Lightfoot

    2013-01-01

    Full Text Available The literature strongly suggests that daily physical activity is genetically and biologically regulated. Potential identities of the responsible mechanisms are unclear, but little has been written concerning the possible evolutionary selection pressures leading to the development of genetic/biological controls of physical activity. Given the weak relationship between exercise endurance and activity levels and the differential genomic locations associated with the regulation of endurance and activity, it is probable that regulation of endurance and activity evolved separately. This hypothesis paper considers energy expenditures and duration of activity in hunter/gatherers, pretechnology farmers, and modern Western societies and considers the potential of each to selectively influence the development of activity regulation. Food availability is also considered given the known linkage of caloric restriction on physical activity as well as early data relating food oversupply to physical inactivity. Elucidating the selection pressures responsible for the genetic/biological control of activity will allow further consideration of these pressures on activity in today’s society, especially the linkages between food and activity. Further, current food abundance is removing the cues for activity that were present for the first 40,000 years of human evolution, and thus future research should investigate the effects of this abundance upon the mechanisms regulating activity.

  17. Evolutionary game theory for physical and biological scientists. I. Training and validating population dynamics equations.

    Science.gov (United States)

    Liao, David; Tlsty, Thea D

    2014-08-06

    Failure to understand evolutionary dynamics has been hypothesized as limiting our ability to control biological systems. An increasing awareness of similarities between macroscopic ecosystems and cellular tissues has inspired optimism that game theory will provide insights into the progression and control of cancer. To realize this potential, the ability to compare game theoretic models and experimental measurements of population dynamics should be broadly disseminated. In this tutorial, we present an analysis method that can be used to train parameters in game theoretic dynamics equations, used to validate the resulting equations, and used to make predictions to challenge these equations and to design treatment strategies. The data analysis techniques in this tutorial are adapted from the analysis of reaction kinetics using the method of initial rates taught in undergraduate general chemistry courses. Reliance on computer programming is avoided to encourage the adoption of these methods as routine bench activities.

  18. Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology.

    Science.gov (United States)

    Morris, Dylan H; Gostic, Katelyn M; Pompei, Simone; Bedford, Trevor; Łuksza, Marta; Neher, Richard A; Grenfell, Bryan T; Lässig, Michael; McCauley, John W

    2017-10-30

    Seasonal influenza is controlled through vaccination campaigns. Evolution of influenza virus antigens means that vaccines must be updated to match novel strains, and vaccine effectiveness depends on the ability of scientists to predict nearly a year in advance which influenza variants will dominate in upcoming seasons. In this review, we highlight a promising new surveillance tool: predictive models. Developed through data-sharing and close collaboration between the World Health Organization and academic scientists, these models use surveillance data to make quantitative predictions regarding influenza evolution. Predictive models demonstrate the potential of applied evolutionary biology to improve public health and disease control. We review the state of influenza predictive modeling and discuss next steps and recommendations to ensure that these models deliver upon their considerable biomedical promise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012.

    Science.gov (United States)

    Santin, Dirce M; Vanz, Samile A S; Stumpf, Ida R C

    2016-03-01

    This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community.

  20. Effects of demographic stochasticity on biological community assembly on evolutionary time scales

    KAUST Repository

    Murase, Yohsuke

    2010-04-13

    We study the effects of demographic stochasticity on the long-term dynamics of biological coevolution models of community assembly. The noise is induced in order to check the validity of deterministic population dynamics. While mutualistic communities show little dependence on the stochastic population fluctuations, predator-prey models show strong dependence on the stochasticity, indicating the relevance of the finiteness of the populations. For a predator-prey model, the noise causes drastic decreases in diversity and total population size. The communities that emerge under influence of the noise consist of species strongly coupled with each other and have stronger linear stability around the fixed-point populations than the corresponding noiseless model. The dynamics on evolutionary time scales for the predator-prey model are also altered by the noise. Approximate 1/f fluctuations are observed with noise, while 1/ f2 fluctuations are found for the model without demographic noise. © 2010 The American Physical Society.

  1. The expiry date of man: a synthesis of evolutionary biology and public health.

    Science.gov (United States)

    Bonneux, L; Barendregt, J J; Van der Maas, P J

    1998-10-01

    In industrialised countries, mortality and morbidity are dominated by age related chronic degenerative diseases. The health and health care needs of future populations will be heavily determined by these conditions of old age. Two opposite scenarios of future morbidity exist: morbidity might decrease ("compress"), because life span is limited, and the incidence of disease is postponed. Or morbidity might increase ("expand"), because death is delayed more than disease incidence. Optimality theory in evolutionary biology explains senescence as a by product of an optimised life history. The theory clarifies how senescence is timed by the competing needs for reproduction and survival, and why this leads to a generalised deterioration of many functions at many levels. As death and disease are not independent, future morbidity will depend on duration and severity of the process of senescence, partly determined by health care, palliating the disease severity but increasing the disease duration by postponing death. Even if morbidity might be compressed, health care needs will surely expand.

  2. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012

    Directory of Open Access Journals (Sweden)

    Dirce M. Santin

    2016-03-01

    Full Text Available This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community.

  3. Are humans prone to autoimmunity? Implications from evolutionary changes in hominin sialic acid biology.

    Science.gov (United States)

    Varki, Ajit

    2017-09-01

    Given varied intrinsic and extrinsic challenges to the immune system, it is unsurprising that each evolutionary lineage evolves distinctive features of immunoreactivity, and that tolerance mechanisms fail, allowing autoimmunity. Humans appear prone to many autoimmune diseases, with mechanisms both genetic and environmental. Another rapidly evolving biological system involves sialic acids, a family of monosaccharides that are terminal caps on cell surface and secreted molecules of vertebrates, and play multifarious roles in immunity. We have explored multiple genomic changes in sialic acid biology that occurred in human ancestors (hominins), some with implications for enhanced immunoreactivity, and hence for autoimmunity. Human ancestors lost the enzyme synthesizing the common mammalian sialic acid Neu5Gc, with an accumulation of the precursor sialic acid Neu5Ac. Resulting changes include an enhanced reactivity by some immune cells and increased ability of macrophages to kill bacteria, at the cost of increased endotoxin sensitivity. There are also multiple human-specific evolutionary changes in inhibitory and activating Siglecs, immune cell receptors that recognize sialic acids as "self-associated molecular patterns" (SAMPs) to modulate immunity, but can also be hijacked by pathogen molecular mimicry of SAMPs. Altered expression patterns and fixed or polymorphic SIGLEC pseudogenization in humans has modulated both innate and adaptive immunity, sometimes favoring over-reactivity. Meanwhile, dietary intake of Neu5Gc (derived primarily from red meats) allows metabolic incorporation of this non-human molecule into human cells--apparently the first example of "xeno-autoimmunity" involving "xeno-autoantigen" interactions with circulating "xeno-autoantibodies". Taken together, some of these factors may contribute to the apparent human propensity for autoimmunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The causal pie model: an epidemiological method applied to evolutionary biology and ecology.

    Science.gov (United States)

    Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette

    2014-05-01

    A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a "causal pie" of "component causes". Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made.

  5. Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective.

    Science.gov (United States)

    Luo, Shiqi; Lu, Jian

    2017-06-01

    Transposable elements (TEs) are DNA sequences that can move within the genome. TEs have greatly shaped the genomes, transcriptomes, and proteomes of the host organisms through a variety of mechanisms. However, TEs generally disrupt genes and destabilize the host genomes, which substantially reduce fitness of the host organisms. Understanding the genomic distribution and evolutionary dynamics of TEs will greatly deepen our understanding of the TE-mediated biological processes. Most TE insertions are highly polymorphic in Drosophila melanogaster, providing us a good system to investigate the evolution of TEs at the population level. Decades of theoretical and experimental studies have well established "transposition-selection" population genetics model, which assumes that the equilibrium between TE replication and purifying selection determines the copy number of TEs in the genome. In the last decade, P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) were demonstrated to be master repressors of TE activities in Drosophila. The discovery of piRNAs revolutionized our understanding of TE repression, because it reveals that the host organisms have evolved an adaptive mechanism to defend against TE invasion. Tremendous progress has been made to understand the molecular mechanisms by which piRNAs repress active TEs, although many details in this process remain to be further explored. The interaction between piRNAs and TEs well explains the molecular mechanisms underlying hybrid dysgenesis for the I-R and P-M systems in Drosophila, which have puzzled evolutionary biologists for decades. The piRNA repression pathway provides us an unparalleled system to study the co-evolutionary process between parasites and host organisms. Copyright © 2017 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.

  6. Taking the conservation biology perspective to secondary school classrooms.

    Science.gov (United States)

    Wyner, Yael; Desalle, Rob

    2010-06-01

    The influence of conservation biology can be enhanced greatly if it reaches beyond undergraduate biology to students at the middle and high school levels. If a conservation perspective were taught in secondary schools, students who are not interested in biology could be influenced to pursue careers or live lifestyles that would reduce the negative impact of humans on the world. We use what we call the ecology-disrupted approach to transform the topics of conservation biology research into environmental-issue and ecology topics, the major themes of secondary school courses in environmental science. In this model, students learn about the importance and complexity of normal ecological processes by studying what goes wrong when people disrupt them (environmental issues). Many studies published in Conservation Biology are related in some way to the ecological principles being taught in secondary schools. Describing research in conservation biology in the language of ecology curricula in secondary schools can help bring these science stories to the classroom and give them a context in which they can be understood by students. Without this context in the curriculum, a science story can devolve into just another environmental issue that has no immediate effect on the daily lives of students. Nevertheless, if the research is placed in the context of larger ecological processes that are being taught, students can gain a better understanding of ecology and a better understanding of their effect on the world.

  7. Simulations in Medicine and Biology: Insights and perspectives

    Science.gov (United States)

    Spyrou, George M.

    2015-01-01

    Modern medicine and biology have been transformed into quantitative sciences of high complexity, with challenging objectives. The aims of medicine are related to early diagnosis, effective therapy, accurate intervention, real time monitoring, procedures/systems/instruments optimization, error reduction, and knowledge extraction. Concurrently, following the explosive production of biological data concerning DNA, RNA, and protein biomolecules, a plethora of questions has been raised in relation to their structure and function, the interactions between them, their relationships and dependencies, their regulation and expression, their location, and their thermodynamic characteristics. Furthermore, the interplay between medicine and biology gives rise to fields like molecular medicine and systems biology which are further interconnected with physics, mathematics, informatics, and engineering. Modelling and simulation is a powerful tool in the fields of Medicine and Biology. Simulating the phenomena hidden inside a diagnostic or therapeutic medical procedure, we are able to obtain control on the whole system and perform multilevel optimization. Furthermore, modelling and simulation gives insights in the various scales of biological representation, facilitating the understanding of the huge amounts of derived data and the related mechanisms behind them. Several examples, as well as the insights and the perspectives of simulations in biomedicine will be presented.

  8. An Evolutionary Perspective on Global Vegetation \\delta15N Co-variance With Average Annual Precipitation

    Science.gov (United States)

    Sechrest, W.; Billmark, K. A.; Shields, L. G.; Swap, R. J.; Macko, S. A.

    2001-12-01

    Recent regional transect studies have shown a significant negative relationship between the \\delta15N value of vegetation and the mean annual precipitation. \\delta15N values provide an indication of the source nitrogen utilized by the plant owing to differential fractionations from biological and chemical processes. The fact that such a relationship exists across a variety of systems is surprising given the abundance of global plant species and the complexity of the nitrogen cycle. This observed pattern suggests that there may be some biological controls on plant utilization of nitrogen that are linked to available water. After observing this relationship in samples collected as a part of the Southern African Regional Science Initiative (SAFARI 2000), we have found that this relationship holds on a global scale for published values of \\delta15N. The critical question remains; is this relationship a result of shared characteristics of related species, or more broadly is there an evolutionary reason for this relationship? Since the \\delta15N values varied with rainfall, we hypothesize that the photosynthetic pathway utilized by plants play a role in this pattern. For example, plants that have evolved C4 metabolism, in other words, plants that have evolved mechanisms to allow for utilization of nutrients in a way more independent of available water than their C3 metabolizing counterparts, may exhibit different \\delta15N with respect to our original relationship. The data collected in conjunction with SAFARI 2000 confirms this hypothesis and as a result we have used modern phylogenetic techniques (using taxonomic information as a surrogate for true phylogenetic relationships between the included plant species) to test whether evolutionary history has played a role in the \\delta15N pattern. We anticipate that by using multidisciplinary tools this study will greatly advance ongoing research in the areas of nitrogen dynamics and vegetative biogeochemical cycling.

  9. Annual Research Review: Prenatal stress and the origins of psychopathology: an evolutionary perspective.

    Science.gov (United States)

    Glover, Vivette

    2011-04-01

    If a mother is stressed or anxious while pregnant her child is more likely to show a range of symptoms such as those of attention deficit hyperactivity disorder, conduct disorder, aggression or anxiety. While there remains some debate about what proportion of these effects are due to the prenatal or the postnatal environment, and the role of genetics, there is good evidence that prenatal stress exposure can increase the risk for later psychopathology. Why should this be? In our evolutionary history it is possible that some increase in these characteristics in some individuals was adaptive in a stressful environment, and that this type of fetal programming prepared the child or group for the environment in which they were going to find themselves. Anxiety may have been associated with increased vigilance, distractible attention with more perception of danger, impulsivity with more exploration, conduct disorder with a willingness to break rules, and aggression with the ability to fight intruders or predators. This adaptation for a future dangerous environment may explain why stress and anxiety, rather than depression, seem to have these programming effects; why there is a dose-response relationship with prenatal stress from moderate to severe and it is not only toxic stress that has consequences; why not all children are affected and why individual children are affected in different ways; and why the outcomes affected can depend on the sex of the offspring. An evolutionary perspective may give a different understanding of children in our society with these symptoms, and suggest new directions for research. For example, there is some evidence that the type of cognitive deficits observed after prenatal stress have specific characteristics; these may be those which were adaptive in a past environment. © 2011 The Author. Journal of Child Psychology and Psychiatry. © 2011 Association for Child and Adolescent Mental Health.

  10. Culture extends the scope of evolutionary biology in the great apes.

    Science.gov (United States)

    Whiten, Andrew

    2017-07-24

    Discoveries about the cultures and cultural capacities of the great apes have played a leading role in the recognition emerging in recent decades that cultural inheritance can be a significant factor in the lives not only of humans but also of nonhuman animals. This prominence derives in part from these primates being those with whom we share the most recent common ancestry, thus offering clues to the origins of our own thoroughgoing reliance on cumulative cultural achievements. In addition, the intense research focus on these species has spawned an unprecedented diversity of complementary methodological approaches, the results of which suggest that cultural phenomena pervade the lives of these apes, with potentially major implications for their broader evolutionary biology. Here I review what this extremely broad array of observational and experimental methodologies has taught us about the cultural lives of chimpanzees, gorillas, and orangutans and consider the ways in which this knowledge extends our wider understanding of primate biology and the processes of adaptation and evolution that shape it. I address these issues first by evaluating the extent to which the results of cultural inheritance echo a suite of core principles that underlie organic Darwinian evolution but also extend them in new ways and then by assessing the principal causal interactions between the primary, genetically based organic processes of evolution and the secondary system of cultural inheritance that is based on social learning from others.

  11. Introducing Flexibility to Complex, Resilient Socio-Ecological Systems: A Comparative Analysis of Economics, Flexible Manufacturing Systems, Evolutionary Biology, and Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Vivek Anand Asokan

    2017-06-01

    Full Text Available In this paper, a framework incorporating flexibility as a characteristic is proposed for designing complex, resilient socio-ecological systems. In an interconnected complex system, flexibility allows prompt deployment of resources where they are needed and is crucial for both innovation and robustness. A comparative analysis of flexible manufacturing systems, economics, evolutionary biology, and supply chain management is conducted to identify the most important characteristics of flexibility. Evolutionary biology emphasises overlapping functions and multi-functionality, which allow a system with structurally different elements to perform the same function, enhancing resilience. In economics, marginal cost and marginal expected profit are factors that are considered to be important in incorporating flexibility while making changes to the system. In flexible manufacturing systems, the size of choice sets is important in creating flexibility, as initial actions preserve more options for future actions that will enhance resilience. Given the dynamic nature of flexibility, identifying the characteristics that can lead to flexibility will introduce a crucial dimension to designing resilient and sustainable socio-ecological systems with a long-term perspective in mind.

  12. A molecular perspective: biology of the emerging pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Rosenblum, Erica Bree; Fisher, Matthew C; James, Timothy Y; Stajich, Jason E; Longcore, Joyce E; Gentry, Lydia R; Poorten, Thomas J

    2010-11-01

    Ten years after the first discovery of the chytrid pathogen Batrachochytrium dendrobatidis (Bd), the catastrophic effect of Bd on wild amphibian populations is indisputable. However, a number of persistent questions remain about Bd's origin and mechanisms of pathogenicity. Here we discuss the promise of genetic and genomic tools for answering these previously intractable questions about the biology and evolutionary history of Bd. Full genomes of 2 Bd strains have recently been sequenced, and Bd research on this species using population genetics, phylogenetics, proteomics, comparative genomics and functional genomics is already underway. We review some of the insights gleaned from the first studies using these genome-scale approaches focusing particularly on Bd's genomic architecture, patterns of global genetic variation, virulence factors and genetic interactions with hosts. Avenues of future research promise to be particularly fruitful and highlight the need for integrative studies that unite genetic, ecological and spatial data in both Bd and its amphibian hosts.

  13. The evolution of the Faculty of Language from a Chomskyan perspective: bridging linguistics and biology.

    Science.gov (United States)

    Longa, Victor Manuel

    2013-01-01

    While language was traditionally considered a purely cultural trait, the advent of Noam Chomsky's Generative Grammar in the second half of the twentieth century dramatically challenged that view. According to that theory, language is an innate feature, part of the human biological endowment. If language is indeed innate, it had to biologically evolve. This review has two main objectives: firstly, it characterizes from a Chomskyan perspective the evolutionary processes by which language could have come into being. Secondly, it proposes a new method for interpreting the archaeological record that radically differs from the usual types of evidence Paleoanthropology has concentrated on when dealing with language evolution: while archaeological remains have usually been regarded from the view of the behavior they could be associated with, the paper will consider archaeological remains from the view of the computational processes and capabilities at work for their production. This computational approach, illustrated with a computational analysis of prehistoric geometric engravings, will be used to challenge the usual generative thinking on language evolution, based on the high specificity of language. The paper argues that the biological machinery of language is neither specifically linguistic nor specifically human, although language itself can still be considered a species-specific innate trait. From such a view, language would be one of the consequences of a slight modification operated on an ancestral architecture shared with vertebrates.

  14. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants.

    Science.gov (United States)

    Plattner, Helmut

    2017-07-18

    During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in

  15. Critical thinking: concept analysis from the perspective of Rodger's evolutionary method of concept analysis

    Science.gov (United States)

    Carbogim, Fábio da Costa; de Oliveira, Larissa Bertacchini; Püschel, Vilanice Alves de Araújo

    2016-01-01

    ABSTRACT Objective: to analyze the concept of critical thinking (CT) in Rodger's evolutionary perspective. Method: documentary research undertaken in the Cinahl, Lilacs, Bdenf and Dedalus databases, using the keywords of 'critical thinking' and 'Nursing', without limitation based on year of publication. The data were analyzed in accordance with the stages of Rodger's conceptual model. The following were included: books and articles in full, published in Portuguese, English or Spanish, which addressed CT in the teaching and practice of Nursing; articles which did not address aspects related to the concept of CT were excluded. Results: the sample was made up of 42 works. As a substitute term, emphasis is placed on 'analytical thinking', and, as a related factor, decision-making. In order, the most frequent preceding and consequent attributes were: ability to analyze, training of the student nurse, and clinical decision-making. As the implications of CT, emphasis is placed on achieving effective results in care for the patient, family and community. Conclusion: CT is a cognitive skill which involves analysis, logical reasoning and clinical judgment, geared towards the resolution of problems, and standing out in the training and practice of the nurse with a view to accurate clinical decision-making and the achieving of effective results. PMID:27598376

  16. Is capitalism in our genes? Competition, cooperation and the idea of homo oeconomicus from an evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Portera Mariagrazia

    2016-01-01

    Full Text Available In the last few years a growing number of academic disciplines in the Humanities and Social Sciences have turned to the evolutionary approach: Evolutionary Economics, among these disciplines, is a thriving subfield of Economics, which adopts Darwin’s evolutionary ideas and concepts for the understanding of economic system and modes of production. Evolutionary hypotheses such as the „selfish gene“ idea, the ideas of „inclusive fitness“, „struggle for life“ and „survival of the fittest“ may suggest - and have indeed suggested - that humans are rational self-interest individuals, doing what they can to increase their own reproductive chances or at least the chances of their close relatives („inclusive fitness“. To put it differently, evolutionary theory seems to suggest that capitalism (in a broad sense is a system that has co-evolved with humans and best fits our evolved psychology. Is this the whole story? Is capitalism „in our genes“? In this paper I argue that conclusions such as „we are born to be rational self-interested agents“ or „capitalism is encoded in our genome“ are the result of a misleading application of Darwin’s evolutionary theory to human socio-economic processes, mainly to justify a (Western society based on selfish principles, but which is not naturally selfish in itself. Evolution seems to be the result of cooperative, not only (or not mainly competitive processes, and the model of Homo oeconomicus, that is the idea that humans are rational self-interested agents always trying to maximize profit, is, also from an bio-evolutionary perspective, nothing more than a fictional exercise.

  17. Evolutionary transition from biological to social systems via generation of reflexive models of externality.

    Science.gov (United States)

    Igamberdiev, Abir U

    2017-12-01

    Evolutionary transition from biological to social systems corresponds to the emergence of the structure of subject that incorporates the internal image of the external world. This structure, established on the basis of referral of the subject (self) to its symbolic image, acquires a potential to rationally describe the external world through the semiotic structure of human language. It has been modelled in reflexive psychology using the algebra of simple relations (Lefebvre, V.A., J. Soc. Biol. Struct. 10, 129-175, 1987). The model introduces a substantial opposition of the two basic complementary types of reflexion defined as Western (W) and Eastern (E). These types generate opposite models of behavior and opposite organizations of societies. Development of human societies involves the interactions of W and E types not only between the societies but also within one society underlying its homeostasis and dynamics. Invention of new ideas and implementation of new technologies shift the probability pattern of reflexive choices, appearing as internal assessments of the individual agents within a society, and direct changes in the preference of reflexive types. The dynamics of societies and of interactions between societies is based on the interference of opposite reflexive structures and on the establishment of different patterns during such interference. At different times in the history of human civilization these changing patterns resulted in the formation and splitting of large empires, the development and spreading of new technologies, the consecutive periods of wellness and decline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Useful parasites: the evolutionary biology and biotechnology applications of transposable elements.

    Science.gov (United States)

    Bonchev, Georgi N

    2016-12-01

    Transposable elements usually comprise the most abundant nongenic fraction of eukaryotic genomes. Because of their capacity to selfreplicate and to induce a wide range of mutations, transposable elements have long been considered as 'parasitic' or 'selfish'. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work. Numerous studies have provided evidences that mobile elements have the potential to act as agents of evolution by increasing, rearranging and diversifying the genetic repertoire of their hosts. With large-scale sequencing becoming increasingly available, more and more scientists come across transposable element sequences in their data. I will provide examples that transposable elements, although having signatures of 'selfish' DNA, play a significant biological role in the maintainance of genome integrity and providing novel regulatoty networks. These features, along with the transpositional and mutagenic capacity to produce a raw genetic diversity, make the genome mobile fraction, a key player in species adaptation and microevolution. The last but not least, transposable elements stand as informative DNA markers that may complement other conventional DNA markers. Altogether, transposable elements represent a promising, but still largely unexplored research niche and deserve to be included into the agenda of molecular ecologists, evolutionary geneticists, conservation biologists and plant breeders.

  19. Evolutionary Cell Biology of Division Mode in the Bacterial Planctomycetes-Verrucomicrobia- Chlamydiae Superphylum.

    Science.gov (United States)

    Rivas-Marín, Elena; Canosa, Inés; Devos, Damien P

    2016-01-01

    Bacteria from the Planctomycetes, Verrucomicrobia, and Chlamydiae (PVC) superphylum are exceptions to the otherwise dominant mode of division by binary fission, which is based on the interaction between the FtsZ protein and the peptidoglycan (PG) biosynthesis machinery. Some PVC bacteria are deprived of the FtsZ protein and were also thought to lack PG. How these bacteria divide is still one of the major mysteries of microbiology. The presence of PG has recently been revealed in Planctomycetes and Chlamydiae, and proteins related to PG synthesis have been shown to be implicated in the division process in Chlamydiae, providing important insights into PVC mechanisms of division. Here, we review the historical lack of observation of PG in PVC bacteria, its recent detection in two phyla and its involvement in chlamydial cell division. Based on the detection of PG-related proteins in PVC proteomes, we consider the possible evolution of the diverse division mechanisms in these bacteria. We conclude by summarizing what is known and what remains to be understood about the evolutionary cell biology of PVC division modes.

  20. Explanations for adaptations, just-so stories, and limitations on evidence in evolutionary biology.

    Science.gov (United States)

    Smith, Richard J

    2016-11-01

    Explanations of the historical origin of specific individual traits are a key part of the research program in paleontology and evolutionary biology. Why did bipedalism evolve in the human lineage? Why did some dinosaurs and related species have head crests? Why did viviparity evolve in some reptiles? Why did the common ancestor of primates evolve stereoscopic vision, grasping hands and feet, nails instead of claws, and large brains? These are difficult questions. To varying degrees, an explanation must grapple with (1) judgments about changes in fitness that might follow from a change in morphology - without actually observing behavior or measuring reproductive success, (2) the relationship between genes and traits, (3) limitations on doing relevant experiments, (4) the interpretation of causes that are almost certainly contingent, multifactorial, interactive, hierarchical, nonlinear, emergent, and probabilistic rather than deterministic, (5) limited information about variation and ontogeny, (6) a dataset based on the random fortunes of the historical record, including only partial hard-tissue morphology and no soft-tissue morphology, (7) an equally partial and problematic (for example, time-averaged) record of the environment, (8) the compression of all data into a geological time scale that is likely to miss biologically important events or fluctuations, (9) dependence on a process that can only be inferred ("form and even behavior may leave fossil traces, but forces like natural selection do not", 1:130 ) and finally, (10) the assumption of the "adaptationist programme"2 that the trait in question is in fact an adaptation rather than a consequence of genetic drift, correlated evolution, pleiotropy, exaptation, or other mechanisms. © 2016 Wiley Periodicals, Inc.

  1. Effector biology of plant-associated organisms: concepts and perspectives.

    Science.gov (United States)

    Win, J; Chaparro-Garcia, A; Belhaj, K; Saunders, D G O; Yoshida, K; Dong, S; Schornack, S; Zipfel, C; Robatzek, S; Hogenhout, S A; Kamoun, S

    2012-01-01

    Every plant is closely associated with a variety of living organisms. Therefore, deciphering how plants interact with mutualistic and parasitic organisms is essential for a comprehensive understanding of the biology of plants. The field of plant-biotic interactions has recently coalesced around an integrated model. Major classes of molecular players both from plants and their associated organisms have been revealed. These include cell surface and intracellular immune receptors of plants as well as apoplastic and host-cell-translocated (cytoplasmic) effectors of the invading organism. This article focuses on effectors, molecules secreted by plant-associated organisms that alter plant processes. Effectors have emerged as a central class of molecules in our integrated view of plant-microbe interactions. Their study has significantly contributed to advancing our knowledge of plant hormones, plant development, plant receptors, and epigenetics. Many pathogen effectors are extraordinary examples of biological innovation; they include some of the most remarkable proteins known to function inside plant cells. Here, we review some of the key concepts that have emerged from the study of the effectors of plant-associated organisms. In particular, we focus on how effectors function in plant tissues and discuss future perspectives in the field of effector biology.

  2. Structure and scale of the mechanics of mammalian dental enamel viewed from an evolutionary perspective.

    Science.gov (United States)

    Lucas, Peter W; Philip, Swapna M; Al-Qeoud, Dareen; Al-Draihim, Nuha; Saji, Sreeja; van Casteren, Adam

    2016-01-01

    Mammalian enamel, the contact dental tissue, is something of an enigma. It is almost entirely made of hydroxyapatite, yet exhibits very different mechanical behavior to a homogeneous block of the same mineral. Recent approaches suggest that its hierarchical composite form, similar to other biological hard tissues, leads to a mechanical performance that depends very much on the scale of measurement. The stiffness of the material is predicted to be highest at the nanoscale, being sacrificed to produce a high toughness at the largest scale, that is, at the level of the tooth crown itself. Yet because virtually all this research has been conducted only on human (or sometimes "bovine") enamel, there has been little regard for structural variation of the tissue considered as evolutionary adaptation to diet. What is mammalian enamel optimized for? We suggest that there are competing selective pressures. We suggest that the structural characteristics that optimize enamel to resist large-scale fractures, such as crown failures, are very different to those that resist wear (small-scale fracture). While enamel is always designed for damage tolerance, this may be suboptimal in the enamel of some species, including modern humans (which have been the target of most investigations), in order to counteract wear. The experimental part of this study introduces novel techniques that help to assess resistance at the nanoscale. © 2015 Wiley Periodicals, Inc.

  3. Incorporating an ontogenetic perspective into evolutionary theory of sexual size dimorphism.

    Science.gov (United States)

    Chou, Chun-Chia; Iwasa, Yoh; Nakazawa, Takefumi

    2016-02-01

    Sexual size dimorphism (SSD) describes divergent body sizes of adult males and females. While SSD has traditionally been explained by sexual and fecundity selection, recent advances in physiology and developmental biology emphasize that SSD would occur proximately because of sexual differences in ontogenetic growth trajectories (i.e., growth rate and duration). Notably, these ontogenetic traits are subject to energetic or time constraints and thus traded off with fitness components (e.g., survival and reproduction). To elucidate the importance of such ontogenetic trade-offs in the evolution of SSD, we developed a new theoretical framework by extending quantitative genetic models for the evolution of sexual dimorphism in which we reinterpret the trait as body size and reformulate sex-specific fitness in size-dependent manners. More specifically, we assume that higher growth rate or longer growth duration leads to larger body size and higher reproductive success but incurs the cost of lower survivorship or shorter reproduction period. We illustrate how two sexes would optimize ontogenetic growth trajectories in sex-specific ways and exhibit divergent body sizes. The present framework provides new insights into the evolutionary theory of SSD and predictions for empirical testing. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. Transforming Biology Assessment with Machine Learning: Automated Scoring of Written Evolutionary Explanations

    Science.gov (United States)

    Nehm, Ross H.; Ha, Minsu; Mayfield, Elijah

    2012-01-01

    This study explored the use of machine learning to automatically evaluate the accuracy of students' written explanations of evolutionary change. Performance of the Summarization Integrated Development Environment (SIDE) program was compared to human expert scoring using a corpus of 2,260 evolutionary explanations written by 565 undergraduate…

  5. Evolutionary Explanations for Antibiotic Resistance in Daily Press, Online Websites and Biology Textbooks in Sweden

    Science.gov (United States)

    Bohlin, Gustav; Höst, Gunnar E.

    2015-01-01

    The present study explores the extent and precision of evolutionary explanations for antibiotic resistance in communication directed toward the Swedish public. Bacterial resistance develops through evolutionary mechanisms and knowledge of these helps to explain causes underlying the growing prevalence of resistant strains, as well as important…

  6. Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology.

    Science.gov (United States)

    Clutton-Brock, Tim; Sheldon, Ben C

    2010-10-01

    Many important questions in ecology and evolutionary biology can only be answered with data that extend over several decades and answering a substantial proportion of questions requires records of the life histories of recognisable individuals. We identify six advantages that long-term, individual based studies afford in ecology and evolution: (i) analysis of age structure; (ii) linkage between life history stages; (iii) quantification of social structure; (iv) derivation of lifetime fitness measures; (v) replication of estimates of selection; (vi) linkage between generations, and we review their impact on studies in six key areas of evolution and ecology. Our review emphasises the unusual opportunities and productivity of long-term, individual-based studies and documents the important role that they play in research on ecology and evolutionary biology as well as the difficulties they face. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Developmental biology, the stem cell of biological disciplines.

    Science.gov (United States)

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  8. Genes are information, so information theory is coming to the aid of evolutionary biology.

    Science.gov (United States)

    Sherwin, William B

    2015-11-01

    Speciation is central to evolutionary biology, and to elucidate it, we need to catch the early genetic changes that set nascent taxa on their path to species status (Via 2009). That challenge is difficult, of course, for two chief reasons: (i) serendipity is required to catch speciation in the act; and (ii) after a short time span with lingering gene flow, differentiation may be low and/or embodied only in rare alleles that are difficult to sample. In this issue of Molecular Ecology Resources, Smouse et al. (2015) have noted that optimal assessment of differentiation within and between nascent species should be robust to these challenges, and they identified a measure based on Shannon's information theory that has many advantages for this and numerous other tasks. The Shannon measure exhibits complete additivity of information at different levels of subdivision. Of all the family of diversity measures ('0' or allele counts, '1' or Shannon, '2' or heterozygosity, F(ST) and related metrics) Shannon's measure comes closest to weighting alleles by their frequencies. For the Shannon measure, rare alleles that represent early signals of nascent speciation are neither down-weighted to the point of irrelevance, as for level 2 measures, nor up-weighted to overpowering importance, as for level 0 measures (Chao et al. 2010, )2015. Shannon measures have a long history in population genetics, dating back to Shannon's PhD thesis in 1940 (Crow 2001), but have received only sporadic attention, until a resurgence of interest in the last ten years, as reviewed briefly by Smouse et al. (2015). © 2015 John Wiley & Sons Ltd.

  9. Mechanists Must be Holists Too! Perspectives from Circadian Biology.

    Science.gov (United States)

    Bechtel, William

    2016-12-01

    The pursuit of mechanistic explanations in biology has produced a great deal of knowledge about the parts, operations, and organization of mechanisms taken to be responsible for biological phenomena. Holist critics have often raised important criticisms of proposed mechanistic explanations, but until recently holists have not had alternative research strategies through which to advance explanations. This paper argues both that the results of mechanistic strategies has forced mechanists to confront ways in which whole systems affect their components and that new representational and modeling strategies are providing tools for understanding these effects of whole systems upon components. Drawing from research on the mechanism responsible for circadian rhythms in mammals, I develop two examples in which mechanistic analysis is being integrated into a more holist perspective: research revealing intercellular integration of circadian mechanisms with those involved in cell metabolism and research revealing that stable␣rhythms are dependent on how individual cells in the suprachiasmatic nucleus synchronize with each other to generate regular rhythms. Tools such as network diagramming and computational modeling are providing means to integrate mechanistic models into accounts of whole systems.

  10. Puzzles in modern biology. II. Language, cancer and the recursive processes of evolutionary innovation.

    Science.gov (United States)

    Frank, Steven A

    2016-01-01

    Human language emerged abruptly. Diverse body forms evolved suddenly. Seed-bearing plants spread rapidly. How do complex evolutionary innovations arise so quickly? Resolving alternative claims remains difficult. The great events of the past happened a long time ago. Cancer provides a model to study evolutionary innovation. A tumor must evolve many novel traits to become an aggressive cancer. I use what we know or could study about cancer to describe the key processes of innovation. In general, evolutionary systems form a hierarchy of recursive processes. Those recursive processes determine the rates at which innovations are generated, spread and transmitted. I relate the recursive processes to abrupt evolutionary innovation.

  11. Perspectives on the mathematics of biological patterning and morphogenesis

    Science.gov (United States)

    Garikipati, Krishna

    2017-02-01

    A central question in developmental biology is how size and position are determined. The genetic code carries instructions on how to control these properties in order to regulate the pattern and morphology of structures in the developing organism. Transcription and protein translation mechanisms implement these instructions. However, this cannot happen without some manner of sampling of epigenetic information on the current patterns and morphological forms of structures in the organism. Any rigorous description of space- and time-varying patterns and morphological forms reduces to one among various classes of spatio-temporal partial differential equations. Reaction-transport equations represent one such class. Starting from simple Fickian diffusion, the incorporation of reaction, phase segregation and advection terms can represent many of the patterns seen in the animal and plant kingdoms. Morphological form, requiring the development of three-dimensional structure, also can be represented by these equations of mass transport, albeit to a limited degree. The recognition that physical forces play controlling roles in shaping tissues leads to the conclusion that (nonlinear) elasticity governs the development of morphological form. In this setting, inhomogeneous growth drives the elasticity problem. The combination of reaction-transport equations with those of elasto-growth makes accessible a potentially unlimited spectrum of patterning and morphogenetic phenomena in developmental biology. This perspective communication is a survey of the partial differential equations of mathematical physics that have been proposed to govern patterning and morphogenesis in developmental biology. Several numerical examples are included to illustrate these equations and the corresponding physics, with the intention of providing physical insight wherever possible.

  12. The biology and evolution of music: a comparative perspective.

    Science.gov (United States)

    Fitch, W Tecumseh

    2006-05-01

    Studies of the biology of music (as of language) are highly interdisciplinary and demand the integration of diverse strands of evidence. In this paper, I present a comparative perspective on the biology and evolution of music, stressing the value of comparisons both with human language, and with those animal communication systems traditionally termed "song". A comparison of the "design features" of music with those of language reveals substantial overlap, along with some important differences. Most of these differences appear to stem from semantic, rather than structural, factors, suggesting a shared formal core of music and language. I next review various animal communication systems that appear related to human music, either by analogy (bird and whale "song") or potential homology (great ape bimanual drumming). A crucial comparative distinction is between learned, complex signals (like language, music and birdsong) and unlearned signals (like laughter, ape calls, or bird calls). While human vocalizations clearly build upon an acoustic and emotional foundation shared with other primates and mammals, vocal learning has evolved independently in our species since our divergence with chimpanzees. The convergent evolution of vocal learning in other species offers a powerful window into psychological and neural constraints influencing the evolution of complex signaling systems (including both song and speech), while ape drumming presents a fascinating potential homology with human instrumental music. I next discuss the archeological data relevant to music evolution, concluding on the basis of prehistoric bone flutes that instrumental music is at least 40,000 years old, and perhaps much older. I end with a brief review of adaptive functions proposed for music, concluding that no one selective force (e.g., sexual selection) is adequate to explaining all aspects of human music. I suggest that questions about the past function of music are unlikely to be answered

  13. Mental Health in the Perspectives of Biological Evolution and Cultural Change.

    Science.gov (United States)

    Reynolds, V.

    1979-01-01

    Outlines and discusses characteristics of an ethological perspective on mental illness, which emphasizes the evolutionary background of humanity, his recent background since the agricultural and industrial revolutions, and the physiological and psychosomatic factors of the human species in dealing with stress. (CS)

  14. Evolutionary Nephrology.

    Science.gov (United States)

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  15. Unity and disunity in evolutionary sciences: process-based analogies open common research avenues for biology and linguistics.

    Science.gov (United States)

    List, Johann-Mattis; Pathmanathan, Jananan Sylvestre; Lopez, Philippe; Bapteste, Eric

    2016-08-20

    For a long time biologists and linguists have been noticing surprising similarities between the evolution of life forms and languages. Most of the proposed analogies have been rejected. Some, however, have persisted, and some even turned out to be fruitful, inspiring the transfer of methods and models between biology and linguistics up to today. Most proposed analogies were based on a comparison of the research objects rather than the processes that shaped their evolution. Focusing on process-based analogies, however, has the advantage of minimizing the risk of overstating similarities, while at the same time reflecting the common strategy to use processes to explain the evolution of complexity in both fields. We compared important evolutionary processes in biology and linguistics and identified processes specific to only one of the two disciplines as well as processes which seem to be analogous, potentially reflecting core evolutionary processes. These new process-based analogies support novel methodological transfer, expanding the application range of biological methods to the field of historical linguistics. We illustrate this by showing (i) how methods dealing with incomplete lineage sorting offer an introgression-free framework to analyze highly mosaic word distributions across languages; (ii) how sequence similarity networks can be used to identify composite and borrowed words across different languages; (iii) how research on partial homology can inspire new methods and models in both fields; and (iv) how constructive neutral evolution provides an original framework for analyzing convergent evolution in languages resulting from common descent (Sapir's drift). Apart from new analogies between evolutionary processes, we also identified processes which are specific to either biology or linguistics. This shows that general evolution cannot be studied from within one discipline alone. In order to get a full picture of evolution, biologists and linguists need to

  16. I Want to Watch this! An Evolutionary Perspective on the Popularity of Sports

    National Research Council Canada - National Science Library

    Menelaos Apostolou; Maria Athanasiou

    2016-01-01

    .... The present paper attempts to address the question why sports vary in popularity. To this end, an evolutionary framework is employed that indicates that sports have evolved to enable the reliable exchange of information of unobserved traits...

  17. Evolutionary Game Analysis of Government Regulation and Enterprise Emission from the Perspective of Environmental Tax

    Science.gov (United States)

    Mai, Yazong

    2017-12-01

    In the context of the upcoming implementation of the environmental tax policy, there is a need for a focus on the relationship between government regulation and corporate emissions. To achieve the real effect of environmental tax policy, government need to regulate the illegal emissions of enterprises. Based on the hypothesis of bounded rationality, this paper analyses the strategic set of government regulators and polluting enterprises in the implementation of environmental tax policy. By using the evolutionary game model, the utility function and payoff matrix of the both sides are constructed, and the evolutionary analysis and strategy adjustment of the environmental governance target and the actual profit of the stakeholders are carried out. Thus, the wrong behaviours could be corrected so that the equilibrium of the evolutionary system can be achieved gradually, which could also get the evolutionary stable strategies of the government and the polluting enterprises in the implementation of environmental tax policy.

  18. Explanations for attractiveness-related positive biases in an evolutionary perspective of life history theory.

    Science.gov (United States)

    Chen, Bin-Bin

    2017-01-01

    The mating-related evolutionary explanation that Maestripieri et al. offer does not apply to (1) infants' positive biases toward attractive individuals and (2) adults' positive biases toward attractive infants and children. They are best understood when integrated into an evolutionary life history framework. I argue that the life history of positive biases toward attractive individuals is driven by fundamental trade-offs made throughout development.

  19. The current status of REH theory. [Random Evolutionary Hits in biological molecular evolution

    Science.gov (United States)

    Holmquist, R.; Jukes, T. H.

    1981-01-01

    A response is made to the evaluation of Fitch (1980) of REH (random evolutionary hits) theory for the evolutionary divergence of proteins and nucleic acids. Correct calculations for the beta hemoglobin mRNAs of the human, mouse and rabbit in the absence and presence of selective constraints are summarized, and it is shown that the alternative evolutionary analysis of Fitch underestimates the total fixed mutations. It is further shown that the model used by Fitch to test for the completeness of the count of total base substitutions is in fact a variant of REH theory. Considerations of the variance inherent in evolutionary estimations are also presented which show the REH model to produce no more variance than other evolutionary models. In the reply, it is argued that, despite the objections raised, REH theory applied to proteins gives inaccurate estimates of total gene substitutions. It is further contended that REH theory developed for nucleic sequences suffers from problems relating to the frequency of nucleotide substitutions, the identity of the codons accepting silent and amino acid-changing substitutions, and estimate uncertainties.

  20. Decision-Making Under Risk: Integrating Perspectives From Biology, Economics, and Psychology.

    Science.gov (United States)

    Mishra, Sandeep

    2014-08-01

    Decision-making under risk has been variably characterized and examined in many different disciplines. However, interdisciplinary integration has not been forthcoming. Classic theories of decision-making have not been amply revised in light of greater empirical data on actual patterns of decision-making behavior. Furthermore, the meta-theoretical framework of evolution by natural selection has been largely ignored in theories of decision-making under risk in the human behavioral sciences. In this review, I critically examine four of the most influential theories of decision-making from economics, psychology, and biology: expected utility theory, prospect theory, risk-sensitivity theory, and heuristic approaches. I focus especially on risk-sensitivity theory, which offers a framework for understanding decision-making under risk that explicitly involves evolutionary considerations. I also review robust empirical evidence for individual differences and environmental/situational factors that predict actual risky decision-making that any general theory must account for. Finally, I offer steps toward integrating various theoretical perspectives and empirical findings on risky decision-making. © 2014 by the Society for Personality and Social Psychology, Inc.

  1. Crowdsourcing and curation: perspectives from biology and natural language processing.

    Science.gov (United States)

    Hirschman, Lynette; Fort, Karën; Boué, Stéphanie; Kyrpides, Nikos; Islamaj Doğan, Rezarta; Cohen, Kevin Bretonnel

    2016-01-01

    Crowdsourcing is increasingly utilized for performing tasks in both natural language processing and biocuration. Although there have been many applications of crowdsourcing in these fields, there have been fewer high-level discussions of the methodology and its applicability to biocuration. This paper explores crowdsourcing for biocuration through several case studies that highlight different ways of leveraging 'the crowd'; these raise issues about the kind(s) of expertise needed, the motivations of participants, and questions related to feasibility, cost and quality. The paper is an outgrowth of a panel session held at BioCreative V (Seville, September 9-11, 2015). The session consisted of four short talks, followed by a discussion. In their talks, the panelists explored the role of expertise and the potential to improve crowd performance by training; the challenge of decomposing tasks to make them amenable to crowdsourcing; and the capture of biological data and metadata through community editing.Database URL: http://www.mitre.org/publications/technical-papers/crowdsourcing-and-curation-perspectives. © The Author(s) 2016. Published by Oxford University Press.

  2. Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations.

    Science.gov (United States)

    Bershtein, Shimon; Serohijos, Adrian Wr; Shakhnovich, Eugene I

    2017-02-01

    Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Population Genomics and the Statistical Values of Race:An Interdisciplinary Perspective on the Biological Classification of Human Populations and Implications for Clinical Genetic Epidemiological Research

    Directory of Open Access Journals (Sweden)

    Koffi N. Maglo

    2016-02-01

    Full Text Available The biological status and biomedical significance of the concept of race as applied to humans continue to be contentious issues despite the use of advanced statistical and clustering methods to determine continental ancestry. It is thus imperative for researchers to understand the limitations as well as potential uses of the concept of race in biology and biomedicine. This paper deals with the theoretical assumptions behind cluster analysis in human population genomics. Adopting an interdisciplinary approach, it demonstrates that the hypothesis that attributes the clustering of human populations to frictional effects of landform barriers at continental boundaries is empirically incoherent. It then contrasts the scientific status of the cluster and cline constructs in human population genomics, and shows how cluster may be instrumentally produced. It also shows how statistical values of race vindicate Darwin’s argument that race is evolutionarily meaningless. Finally, the paper explains why, due to spatiotemporal parameters, evolutionary forces and socio-cultural factors influencing population structure, continental ancestry may be pragmatically relevant to global and public health genomics. Overall, this work demonstrates that, from a biological systematic and evolutionary taxonomical perspective, human races/continental groups or clusters have no natural meaning or objective biological reality. In fact, the utility of racial categorizations in research and in clinics can be explained by spatiotemporal parameters, socio-cultural factors and evolutionary forces affecting disease causation and treatment response.

  4. Population Genomics and the Statistical Values of Race: An Interdisciplinary Perspective on the Biological Classification of Human Populations and Implications for Clinical Genetic Epidemiological Research.

    Science.gov (United States)

    Maglo, Koffi N; Mersha, Tesfaye B; Martin, Lisa J

    2016-01-01

    The biological status and biomedical significance of the concept of race as applied to humans continue to be contentious issues despite the use of advanced statistical and clustering methods to determine continental ancestry. It is thus imperative for researchers to understand the limitations as well as potential uses of the concept of race in biology and biomedicine. This paper deals with the theoretical assumptions behind cluster analysis in human population genomics. Adopting an interdisciplinary approach, it demonstrates that the hypothesis that attributes the clustering of human populations to "frictional" effects of landform barriers at continental boundaries is empirically incoherent. It then contrasts the scientific status of the "cluster" and "cline" constructs in human population genomics, and shows how cluster may be instrumentally produced. It also shows how statistical values of race vindicate Darwin's argument that race is evolutionarily meaningless. Finally, the paper explains why, due to spatiotemporal parameters, evolutionary forces, and socio-cultural factors influencing population structure, continental ancestry may be pragmatically relevant to global and public health genomics. Overall, this work demonstrates that, from a biological systematic and evolutionary taxonomical perspective, human races/continental groups or clusters have no natural meaning or objective biological reality. In fact, the utility of racial categorizations in research and in clinics can be explained by spatiotemporal parameters, socio-cultural factors, and evolutionary forces affecting disease causation and treatment response.

  5. Perspective: Genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by?

    Science.gov (United States)

    Pigliucci, Massimo; Murren, Courtney J

    2003-07-01

    The idea of genetic assimilation, that environmentally induced phenotypes may become genetically fixed and no longer require the original environmental stimulus, has had varied success through time in evolutionary biology research. Proposed by Waddington in the 1940s, it became an area of active empirical research mostly thanks to the efforts of its inventor and his collaborators. It was then attacked as of minor importance during the "hardening" of the neo-Darwinian synthesis and was relegated to a secondary role for decades. Recently, several papers have appeared, mostly independently of each other, to explore the likelihood of genetic assimilation as a biological phenomenon and its potential importance to our understanding of evolution. In this article we briefly trace the history of the concept and then discuss theoretical models that have newly employed genetic assimilation in a variety of contexts. We propose a typical scenario of evolution of genetic assimilation via an intermediate stage of phenotypic plasticity and present potential examples of the same. We also discuss a conceptual map of current and future lines of research aimed at exploring the actual relevance of genetic assimilation for evolutionary biology.

  6. The EvoDevoCI: A Concept Inventory for Gauging Students' Understanding of Evolutionary Developmental Biology

    Science.gov (United States)

    Perez, Kathryn E.; Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; French, Donald P.; Terry, Mark; Price, Rebecca M.

    2013-01-01

    The American Association for the Advancement of Science 2011 report "Vision and Change in Undergraduate Biology Education" encourages the teaching of developmental biology as an important part of teaching evolution. Recently, however, we found that biology majors often lack the developmental knowledge needed to understand evolutionary…

  7. The Genetic Precursors and the Advantageous and Disadvantageous Sequelae of Inhibited Temperament: An Evolutionary Perspective

    Science.gov (United States)

    Davies, Patrick T.; Cicchetti, Dante; Hentges, Rochelle F.; Sturge-Apple, Melissa L.

    2013-01-01

    Guided by evolutionary game theory (Korte, Koolhaas, Wingfield, & McEwen, 2005), this study aimed to identify the genetic precursors and the psychosocial sequelae of inhibited temperament in a sociodemographically disadvantaged and racially diverse sample (N = 201) of 2-year-old children who experienced elevated levels of domestic violence.…

  8. Preschoolers' Social Dominance, Moral Cognition, and Moral Behavior: An Evolutionary Perspective

    Science.gov (United States)

    Hawley, Patricia H.; Geldhof, G. John

    2012-01-01

    Various aspects of moral functioning, aggression, and positive peer regard were assessed in 153 preschool children. Our hypotheses were inspired by an evolutionary approach to morality that construes moral norms as tools of the social elite. Accordingly, children were also rated for social dominance and strategies for its attainment. We predicted…

  9. The Role of Affordances in the Evolutionary Process Reconsidered A Niche Construction Perspective

    NARCIS (Netherlands)

    Withagen, Rob; van Wermeskerken, Margot

    Gibson asserted that affordances are the primary objects of perception. Although this assertion is especially attractive when considered in the context of evolutionary theory, the role that affordances play in the evolution of animals' perceptual and action systems is still unclear. Trying to

  10. Evolutionary history of the porpoise family(Phocoenidae) : A perspective from mitogenomes

    NARCIS (Netherlands)

    Ben Chehida, Yacine; Aguilar, A. A.; Borrell, A.; Ferreira, M.; Taylor, B.L.; Rojas-Bracho, L.; Lorenzo Robertson, R.; Thumloup, Julie; Schumacher, C.; Vikingsson, G.A.; Morin, Phillip A.; Fontaine, Michael Christophe

    2017-01-01

    The six species of porpoises inhabit the cold waters of the globe, displaying a textbook example of anti-tropical distribution in marine mammals. Nevertheless, the evolutionary history of the porpoises still remained poorly understood, but this knowledge is crucial to illuminate the conservation

  11. Pheromone-mediated aggregation in nonsocial arthropods : An evolutionary ecological perspective

    NARCIS (Netherlands)

    Wertheim, B; van Baalen, EJA; Dicke, M; Vet, LEM

    2005-01-01

    Although the use of aggregation pheromones has been reported for hundreds of nonsocial arthropod species, the evolutionary ecological aspects of this behavior have received little attention. Despite the elaborate literature on mechanisms. robust data on costs and benefits of aggregation pheromones

  12. Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective

    NARCIS (Netherlands)

    Wertheim, B.; Baalen, van E.J.A.; Dicke, M.; Vet, L.E.M.

    2005-01-01

    Although the use of aggregation pheromones has been reported for hundreds of nonsocial arthropod species, the evolutionary ecological aspects of this behavior have received little attention. Despite the elaborate literature on mechanisms, robust data on costs and benefits of aggregation pheromones

  13. Artificial Neural Networks, and Evolutionary Algorithms as a systems biology approach to a data-base on fetal growth restriction.

    Science.gov (United States)

    Street, Maria E; Buscema, Massimo; Smerieri, Arianna; Montanini, Luisa; Grossi, Enzo

    2013-12-01

    One of the specific aims of systems biology is to model and discover properties of cells, tissues and organisms functioning. A systems biology approach was undertaken to investigate possibly the entire system of intra-uterine growth we had available, to assess the variables of interest, discriminate those which were effectively related with appropriate or restricted intrauterine growth, and achieve an understanding of the systems in these two conditions. The Artificial Adaptive Systems, which include Artificial Neural Networks and Evolutionary Algorithms lead us to the first analyses. These analyses identified the importance of the biochemical variables IL-6, IGF-II and IGFBP-2 protein concentrations in placental lysates, and offered a new insight into placental markers of fetal growth within the IGF and cytokine systems, confirmed they had relationships and offered a critical assessment of studies previously performed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The future of Evo-Devo: the inaugural meeting of the Pan American Society for evolutionary developmental biology.

    Science.gov (United States)

    Lesoway, Maryna P

    2016-01-01

    What is the future of evolutionary developmental biology? This question and more were discussed at the inaugural meeting for the Pan American Society for Evolutionary Developmental Biology, held August 5-9, 2015, in Berkeley, California, USA. More than 300 participants attended the first meeting of the new society, representing the current diversity of Evo-Devo. Speakers came from throughout the Americas, presenting work using an impressive range of study systems, techniques, and approaches. Current research draws from themes including the role of gene regulatory networks, plasticity and the role of the environment, novelty, population genetics, and regeneration, using new and emerging techniques as well as traditional tools. Multiple workshops and a discussion session covered subjects both practical and theoretical, providing an opportunity for members to discuss the current challenges and future directions for Evo-Devo. The excitement and discussion generated over the course of the meeting demonstrates the current dynamism of the field, suggesting that the future of Evo-Devo is bright indeed. © 2016 Wiley Periodicals, Inc.

  15. Using large-scale public health data to explore the evolutionary biology of human pregnancy and child bearing

    DEFF Research Database (Denmark)

    Hollegaard, Birgitte

    Medicine has made a giant leap forward over the last century when it comes to the treatment of human disease, but even the most cutting edge 21st century medicine cannot prevent new diseases arising, nor those thought to be extinct developing resistance to pharmaceuticals and returning. Consequen......Medicine has made a giant leap forward over the last century when it comes to the treatment of human disease, but even the most cutting edge 21st century medicine cannot prevent new diseases arising, nor those thought to be extinct developing resistance to pharmaceuticals and returning...... lead to a series of conflicts. Here, I take an evolutionary perspective to investigate why these conflicts exist, and how they are maintained despite the potentially detrimental effect they can have on the health of the mother and child. The pregnancy induced disease preeclampsia is caused...... by the mother's blood pressure increasing to a harmful level, but the etiology of the disease has remained unknown. Preeclampsia is detrimental to both the mother and offspring, and should in theory therefore have been removed by natural selection. I looked into evolutionary explanations for this, specifically...

  16. New perspectives on evolutionary medicine: the relevance of microevolution for human health and disease.

    Science.gov (United States)

    Rühli, Frank Jakobus; Henneberg, Maciej

    2013-04-29

    Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations.

  17. The Genetic Background Effect on Domesticated Species: A Mouse Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Eli Reuveni

    2011-01-01

    Full Text Available Laboratory mouse strains are known for their large phenotypic diversity and serve as a primary mammalian model in genotype-phenotype association studies. One possible attempt to understand the reason for this diversity could be addressed by careful investigation of the unique evolutionary history of their wild-derived founders and the consequence that it may have on the genetic makeup of the laboratory mouse strains during the history of human fancy breeding. This review will summarize recently published literature that endeavors to unravel the genetic background of laboratory mouse strains, as well as give new insights into novel evolutionary approaches. I will explain basic concepts of molecular evolution and the reason why it is important in order to infer function even among closely related wild and domesticated species. I will also discuss future frontiers in the field and how newly emerging sequencing technologies could help us to better understand the relationship between genotype and phenotype.

  18. Social structure modulates the evolutionary consequences of social plasticity: A social network perspective on interacting phenotypes.

    Science.gov (United States)

    Montiglio, Pierre-Olivier; McGlothlin, Joel W; Farine, Damien R

    2018-02-01

    Organisms express phenotypic plasticity during social interactions. Interacting phenotype theory has explored the consequences of social plasticity for evolution, but it is unclear how this theory applies to complex social structures. We adapt interacting phenotype models to general social structures to explore how the number of social connections between individuals and preference for phenotypically similar social partners affect phenotypic variation and evolution. We derive an analytical model that ignores phenotypic feedback and use simulations to test the predictions of this model. We find that adapting previous models to more general social structures does not alter their general conclusions but generates insights into the effect of social plasticity and social structure on the maintenance of phenotypic variation and evolution. Contribution of indirect genetic effects to phenotypic variance is highest when interactions occur at intermediate densities and decrease at higher densities, when individuals approach interacting with all group members, homogenizing the social environment across individuals. However, evolutionary response to selection tends to increase at greater network densities as the effects of an individual's genes are amplified through increasing effects on other group members. Preferential associations among similar individuals (homophily) increase both phenotypic variance within groups and evolutionary response to selection. Our results represent a first step in relating social network structure to the expression of social plasticity and evolutionary responses to selection.

  19. The genetic architecture of normal variation in human pigmentation: an evolutionary perspective and model.

    Science.gov (United States)

    McEvoy, Brian; Beleza, Sandra; Shriver, Mark D

    2006-10-15

    Skin pigmentation varies substantially across human populations in a manner largely coincident with ultraviolet radiation intensity. This observation suggests that natural selection in response to sunlight is a major force in accounting for pigmentation variability. We review recent progress in identifying the genes controlling this variation with a particular focus on the trait's evolutionary past and the potential role of testing for signatures of selection in aiding the discovery of functionally important genes. We have analyzed SNP data from the International HapMap project in 77 pigmentation candidate genes for such signatures. On the basis of these results and other similar work, we provide a tentative three-population model (West Africa, East Asia and North Europe) of the evolutionary-genetic architecture of human pigmentation. These results suggest a complex evolutionary history, with selection acting on different gene targets at different times and places in the human past. Some candidate genes may have been selected in the ancestral human population, others in the 'out of Africa' proto European-Asian population, whereas most appear to have selectively evolved solely in either Europeans or East Asians separately despite the pigmentation similarities between these two populations. Selection signatures can provide important clues to aid gene discovery. However, these should be viewed as complements, rather than replacements of, functional studies including linkage and association analyses, which can directly refine our understanding of the trait.

  20. Critical thinking: concept analysis from the perspective of Rodger's evolutionary method of concept analysis.

    Science.gov (United States)

    Carbogim, Fábio da Costa; Oliveira, Larissa Bertacchini de; Püschel, Vilanice Alves de Araújo

    2016-09-01

    to analyze the concept of critical thinking (CT) in Rodger's evolutionary perspective. documentary research undertaken in the Cinahl, Lilacs, Bdenf and Dedalus databases, using the keywords of 'critical thinking' and 'Nursing', without limitation based on year of publication. The data were analyzed in accordance with the stages of Rodger's conceptual model. The following were included: books and articles in full, published in Portuguese, English or Spanish, which addressed CT in the teaching and practice of Nursing; articles which did not address aspects related to the concept of CT were excluded. the sample was made up of 42 works. As a substitute term, emphasis is placed on 'analytical thinking', and, as a related factor, decision-making. In order, the most frequent preceding and consequent attributes were: ability to analyze, training of the student nurse, and clinical decision-making. As the implications of CT, emphasis is placed on achieving effective results in care for the patient, family and community. CT is a cognitive skill which involves analysis, logical reasoning and clinical judgment, geared towards the resolution of problems, and standing out in the training and practice of the nurse with a view to accurate clinical decision-making and the achieving of effective results. analisar o conceito de pensamento crítico (PC), na perspectiva evolucionista de Rodgers. pesquisa documental realizada nas bases de dados Cinahl, Lilacs, Bdenf e Dedalus, utilizando-se as palavras-chave pensamento crítico e Enfermagem, sem delimitação de ano de publicação. Os dados foram analisados conforme etapas do modelo conceitual de Rodgers. Incluíram-se livros e artigos na íntegra, publicados em português, inglês ou espanhol que abordavam o PC no ensino e prática de Enfermagem, excluindo-se estudos que não abordassem aspectos relacionados ao conceito do PC. a amostra foi constituída por 42 trabalhos. Como termo substituto, destacou-se pensamento analítico e, como

  1. A Co-evolutionary perspective on the Drivers of International Sourcing of Pharmaceutical R&D to India

    DEFF Research Database (Denmark)

    Haakonsson, Stine Jessen; Ørberg Jensen, Peter D.; M. Mudambi, Susan

    2013-01-01

    The attractiveness of the Indian pharmaceutical industry as a destination for R&D sourcing by multinational corporations (MNCs) has evolved over the past decades. This evolution has coincided with changes in MNC strategies regarding sourcing location and governance modes. We propose a co-evolutio...... illustrates how host-country institutional evolution, notably regarding intellectual property rights and education, plays a significant role for international sourcing of pharmaceutical R&D.......-evolutionary theory perspective embracing both firm-internal and firm-environmental factors for location attractiveness, along with institutional and industry changes. The framework integrates constructs from past research in economic geography, international business, and R&D internationalization. The Indian case...

  2. Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    Science.gov (United States)

    Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; Terry, Mark; French, Donald P.; Price, Rebecca M.; Perez, Kathryn E.

    2013-01-01

    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we…

  3. "Evo in the News:" Understanding Evolution and Students' Attitudes toward the Relevance of Evolutionary Biology

    Science.gov (United States)

    Infanti, Lynn M.; Wiles, Jason R.

    2014-01-01

    This investigation evaluated the effects of exposure to the "Evo in the News" section of the "Understanding Evolution" website on students' attitudes toward biological evolution in undergraduates in a mixed-majors introductory biology course at Syracuse University. Students' attitudes toward evolution and changes therein were…

  4. Comparative systems biology across an evolutionary gradient within the Shewanella genus

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinidis, Kostas; Serres, Margrethe H.; Romine, Margaret F.; Rodrigues, Jorge L.M.; Auchutung, Jennifer M.; McCue, Lee Ann; Lipton, Mary S.; Obraztsova, Anna; Giometti, Carol S.; Nealson, Kenneth H.; Fredrickson, Jim K.; Tiedje, James M.

    2009-09-15

    To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology such as the species definition. Here, we take advantage of the completed genomic sequences, expressed proteomic profiles, and physiological studies of ten closely related Shewanella organisms to provide quantitative insights into this issue. Our analyses revealed that, despite the extensive horizontal gene transfer characterizing these genomes, the genotypic and phenotypic similarities among the organisms were generally predictable from their evolutionary relatedness. The power of the predictions depended, however, on the degree of ecological specialization of the organisms evaluated. Using the unprecedented genetic gradient formed by these genomes, we were able to isolate the effect of ecology from the effect of evolutionary divergence and rank the different cellular functions in terms of their rates of evolution. Our ranking also revealed that whole-cell protein expression differences among these organisms when grown under identical conditions were relatively larger than differences at the genome level, suggesting that similarity in gene regulation and expression should constitute another important parameter for (new) species description. Collectively, our results provide important new information towards beginning a system level understanding of bacterial species and genera.

  5. The development of dental research in Argentinean biological anthropology: current state and future perspectives.

    Science.gov (United States)

    Bernal, V; Luna, L H

    2011-10-01

    The aim of this paper is to conduct a historical analysis of the research-oriented studies related to dental anthropology in Argentina, evaluate its current state and discuss future expectations and perspectives. In this country, anthropological studies based on analysis of dentition have been scarce and even temporarily discontinued, since they began in the late nineteenth century, simply following the course of the predominant theoretical and methodological approaches over time. Early papers, guided mainly by evolutionary ideas, were oriented towards establishing the taxonomic position of humans through the description and comparison of morphological and morphometric aspects of the dental crown and root. Later studies mainly described types of intentional modifications (i.e. dental mutilations) and tooth wear in the context of Historic-Cultural School. However, they failed to constitute valid lines of research over time. In recent years, there has been a significant change in dental studies, mainly as a result of the interest in evaluating the adaptive aspects of human populations within biocultural settings. One of the most relevant lines of studies has been the bioarchaeological analysis of health and stress indicators, such as enamel hypoplasia, caries and tooth wear in hunter-gatherer and farmer societies. More recently, the study of discrete and metric dental traits began, with a goal to contribute to the study of evolution and inter-populational biological relations among South American groups. Since teeth contain valuable information not only about the environment in which the individual lived, but also about the action of neutral and non-neutral factors on human groups, the consolidation of ongoing studies will contribute to knowledge of various aspects of the adaptation and evolution of native American populations. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Evolutionary Nephrology

    Directory of Open Access Journals (Sweden)

    Robert L. Chevalier

    2017-05-01

    Full Text Available Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as “maladaptive.” In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or from evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ∼40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons, evolutionary selection for APOL1 mutations (which provide resistance to trypanosome infection, a tradeoff, and modern life experience (Western diet mismatch leading to diabetes and hypertension. Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout the life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo, developmental programming, and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  7. Biology's Challenge to Social Work: Embodying the Person-in-Environment Perspective.

    Science.gov (United States)

    Saleebey, Dennis

    1992-01-01

    Notes that, although social work credits itself for using biopsychosocial perspective, "bio" is virtually absent from profession's knowing and doing. Review of areas in which biological knowledge is growing ("biology of hope"--psychoneuroimmunology, for example--and the new biomedical approach to mental health) yields some ideas about how theory…

  8. Evolutionary and biological implications of dental mesial drift in rodents: the case of the Ctenodactylidae (Rodentia, Mammalia.

    Directory of Open Access Journals (Sweden)

    Helder Gomes Rodrigues

    Full Text Available Dental characters are importantly used for reconstructing the evolutionary history of mammals, because teeth represent the most abundant material available for the fossil species. However, the characteristics of dental renewal are presently poorly used, probably because dental formulae are frequently not properly established, whereas they could be of high interest for evolutionary and developmental issues. One of the oldest rodent families, the Ctenodactylidae, is intriguing in having longstanding disputed dental formulae. Here, we investigated 70 skulls among all extant ctenodactylid genera (Ctenodactylus, Felovia, Massoutiera and Pectinator by using X-ray conventional and synchrotron microtomography in order to solve and discuss these dental issues. Our study clearly indicates that Massoutiera, Felovia and Ctenodactylus differ from Pectinator not only by a more derived dentition, but also by a more derived eruptive sequence. In addition to molars, their dentition only includes the fourth deciduous premolars, and no longer bears permanent premolars, conversely to Pectinator. Moreover, we found that these premolars are lost during adulthood, because of mesial drift of molars. Mesial drift is a striking mechanism involving migration of teeth allowed by both bone remodeling and dental resorption. This dental innovation is to date poorly known in rodents, since it is only the second report described. Interestingly, we noted that dental drift in rodents is always associated with high-crowned teeth favoring molar size enlargement. It can thus represent another adaptation to withstand high wear, inasmuch as these rodents inhabit desert environments where dust is abundant. A more accurate study of mesial drift in rodents would be very promising from evolutionary, biological and orthodontic points of view.

  9. Evolutionary and Biological Implications of Dental Mesial Drift in Rodents: The Case of the Ctenodactylidae (Rodentia, Mammalia)

    Science.gov (United States)

    Gomes Rodrigues, Helder; Solé, Floréal; Charles, Cyril; Tafforeau, Paul; Vianey-Liaud, Monique; Viriot, Laurent

    2012-01-01

    Dental characters are importantly used for reconstructing the evolutionary history of mammals, because teeth represent the most abundant material available for the fossil species. However, the characteristics of dental renewal are presently poorly used, probably because dental formulae are frequently not properly established, whereas they could be of high interest for evolutionary and developmental issues. One of the oldest rodent families, the Ctenodactylidae, is intriguing in having longstanding disputed dental formulae. Here, we investigated 70 skulls among all extant ctenodactylid genera (Ctenodactylus, Felovia, Massoutiera and Pectinator) by using X-ray conventional and synchrotron microtomography in order to solve and discuss these dental issues. Our study clearly indicates that Massoutiera, Felovia and Ctenodactylus differ from Pectinator not only by a more derived dentition, but also by a more derived eruptive sequence. In addition to molars, their dentition only includes the fourth deciduous premolars, and no longer bears permanent premolars, conversely to Pectinator. Moreover, we found that these premolars are lost during adulthood, because of mesial drift of molars. Mesial drift is a striking mechanism involving migration of teeth allowed by both bone remodeling and dental resorption. This dental innovation is to date poorly known in rodents, since it is only the second report described. Interestingly, we noted that dental drift in rodents is always associated with high-crowned teeth favoring molar size enlargement. It can thus represent another adaptation to withstand high wear, inasmuch as these rodents inhabit desert environments where dust is abundant. A more accurate study of mesial drift in rodents would be very promising from evolutionary, biological and orthodontic points of view. PMID:23185576

  10. Innovation dynamics of Salvadoran agri-food industry from an evolutionary perspective

    Energy Technology Data Exchange (ETDEWEB)

    Peraza Castaneda, E.H.; Aleixandre Mendizábal, G.

    2016-07-01

    This paper presents a holistic approach to analyse the dynamics of innovation of a low-tech sector in a less developed economy, the agri-food industry in El Salvador, in the context of evolutionary economy. This requires using complementary quantitative and qualitative data and methodologies to better understand how Salvadoran agri-food industry innovation system works and how STI public policies can improve the performance of a key sector in terms of national socioeconomic development. The work already done shows a concentrated and vigorous sector with some upstream and downstream connections that innovate depending on firm size, age, R&D activities and use of industrial property rights. (Author)

  11. Diversity matters: the importance of comparative studies and the potential for synergy between neuroscience and evolutionary biology.

    Science.gov (United States)

    Carlson, Bruce A

    2012-08-01

    Basic research in neuroscience and clinical research on neurological disorders synergistically increase our understanding of the human brain. Traditionally, functional and clinical studies of the human brain were limited to postmortem histology, "natural experiments" (eg, lesions to brain areas caused by trauma or disease), and crude measures of electrical activity such as electroencephalography. More recently, the development of transcranial magnetic stimulation and rapid advances in imaging technology have greatly facilitated human brain research. In rare cases in which treating a neurological disorder involves implanting electrodes, researchers can even record the electrical activity of individual neurons. Although these approaches have led to important insights, they do not allow for a precise dissection of the underlying mechanisms by which the brain mediates perception, cognition, and behavior. Thus, neuroscientists and neurologists remain severely limited in the types of experiments they can perform on human subjects and much of our understanding of brain structure and function is based on research in animal models. In this article, I highlight the enormous potential for synergy between neuroscience and evolutionary biology. Nervous systems have been shaped by evolution, and comparative approaches take advantage of the resulting diversity to gain insight into the neural mechanisms of behavior. On the other hand, nervous systems and the behaviors and perceptions they mediate can play a fundamental role in the evolutionary processes that generate this diversity. To emphasize these points, I describe recent findings from research on African fishes that use electricity to communicate and navigate in their dark underwater world.

  12. The Evolutionary Biology of Ourselves Unit Requirements and Organizational Change in United States History

    CERN Document Server

    Lipo, C; Lipo, Carl; Madsen, Mark

    1999-01-01

    Researchers have proposed that the distinction between so-called "simple" and "complex" societies can be expressed by an increase in the number of levels at which functional organization, interaction, and thus selection, operate. In spite of the obvious links between this suggestion and research into complex social organization amongst insects and other social animals, the levels of selection model has seen little use among anthropologists. We suggest that the primary reason for lack of research into the evolutionary causes of social complexity has been the lack of descriptive units with which we can examine phenotypic variation and heritability of social organization above the level of the organism. The goal of our paper, therefore, is to begin constructing descriptive units which map to meaningful models of multi-level selection. In order to demonstrate how these units are useful in a real dataset, we examine the functional changes involved in the United States economy over the last 100 years, a period of t...

  13. Cognition as the tip of the emotional iceberg: A neuro-evolutionary perspective

    NARCIS (Netherlands)

    Bos, P.A.; Brummelman, E.; Terburg, D.

    2015-01-01

    We emphasize the importance of a neuroevolutionary perspective in moving beyond the cognition-emotion dichotomy. Cognitive behavior depends on cortical structures firmly rooted in the emotional brain from which they have evolved. As such, there cannot be cognition without emotion. Endocrine

  14. Size counts: evolutionary perspectives on physical activity and body size from early hominids to modern humans.

    Science.gov (United States)

    Leonard, William R

    2010-11-01

    This paper examines the evolutionary origins of human dietary and activity patterns, and their implications for understanding modern health problems. Humans have evolved distinctive nutritional characteristics associated the high metabolic costs of our large brains. The evolution of larger hominid brain size necessitated the adoption of foraging strategies that both provided high quality foods, and required larger ranges and activity budgets. Over time, human subsistence strategies have become ever more efficient in obtaining energy with minimal time and effort. Today, populations of the industrialized world live in environments characterized by low levels of energy expenditure and abundant food supplies contributing to growing rates of obesity. Analyses of trends in dietary intake and body weight in the US over the last 50 years indicate that the dramatic rise in obesity cannot be explained solely by increased energy consumption. Rather, declines in activity are also important. Further, we find that recent recommendations on physical activity have the potential to bring daily energy expenditure levels of industrialized societies surprisingly close to those observed among subsistence-level populations. These findings highlight the importance of physical activity in promoting nutritional health and show the utility of evolutionary approaches for developing public health recommendations.

  15. Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.

    Science.gov (United States)

    Yin, Zekun; Lan, Haidong; Tan, Guangming; Lu, Mian; Vasilakos, Athanasios V; Liu, Weiguo

    2017-01-01

    The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics.

  16. Why isn't everyone an evolutionary psychologist?

    Science.gov (United States)

    Burke, Darren

    2014-01-01

    Despite a widespread acceptance that the brain that underpins human psychology is the result of biological evolution, very few psychologists in any way incorporate an evolutionary perspective in their research or practice. There have been many attempts to convince mainstream psychology of the importance of such a perspective, mostly from those who identify with "Evolutionary Psychology," and there has certainly been progress in that direction, but the core of psychology remains essentially unevolutionary. Here I explore a number of potential reasons for mainstream psychology continuing to ignore or resist an evolutionary approach, and suggest some ways in which those of us interested in seeing an increase in the proportion of psychologists adopting an evolutionary perspective might need to modify our tactics to increase our chances of success.

  17. Systematics and evolutionary biology: uneasy bedfellows? Sistemática y biología evolutiva: ¿compañeros incómodos?

    Directory of Open Access Journals (Sweden)

    Jeffrey H. Schwartz

    2011-03-01

    Full Text Available The history of systematics and evolutionary biology demonstrates how greatly the "modern evolutionary synthesis" instrumentally prevented, rather than facilitated, the intellectual growth and maturity of the diversity of evolutionary disciplines. In truth, the claim of the synthesis being synthetic is essentially without basis, indeed a myth. Instead, the "synthesis" had precisely the opposite effect: namely, squelching the arena of debate, disagreement, and diverse theorizing that had characterized the preceding decades. Although each of the 3 primary architects of the synthesis - Dobzhansky, Mayr, and Simpson - had his own agenda, they were united around the theme of population genetics and population thinking. When applied to systematics, especially by Mayr, the result can now be seen as confused at best. Perhaps this review will provoke a revival of earlier years of intellectual curiosity and fervor, and rekindle interest in systematic method and theory.La historia de la sistemática y de la biología evolutiva muestra el papel que tuvo la "síntesis evolutiva moderna" para impedir, en lugar de favorecer, el crecimiento intelectual y la maduración de la diversidad de disciplinas evolucionistas. En efecto, la pretensión de la "síntesis" de ser sintética carece de bases, y por ende, resulta un mito. En su lugar, la "síntesis" tuvo precisamente el efecto opuesto: suprimir escenarios de debate, acuerdos, y cancelar el desarrollo mismo de las teorías que caracterizaron las décadas precedentes. Aunque cada uno de los 3 estudiosos responsables de formular la síntesis -Dobzhansky, Mayr y Simpson- tenía su propia agenda, coincidían en torno al tema de la genética de poblaciones y el pensamiento poblacional. Sin embargo, el resultado del debate respecto a la sistemática, especialmente abordado por Mayr, es actualmente confuso en el mejor de los casos. Quizás esta revisión provoque un resurgimiento en el fervor y la curiosidad intelectual

  18. The Design and Transformation of Biofundamentals: A Nonsurvey Introductory Evolutionary and Molecular Biology Course

    Science.gov (United States)

    Klymkowsky, Michael W.; Rentsch, Jeremy D.; Begovic, Emina; Cooper, Melanie M.

    2016-01-01

    Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students' ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the…

  19. Using the Principles of SoTL to Redesign an Advanced Evolutionary Biology Course

    Science.gov (United States)

    deBraga, Michael; Boyd, Cleo; Abdulnour, Shahad

    2015-01-01

    A primary goal of university instruction is the students' demonstration of improved, highly developed critical thinking (CT) skills. However, how do faculty encourage CT and its potential concomitant increase in student workload without negatively impacting student perceptions of the course? In this investigation, an advanced biology course is…

  20. I Want to Watch this! An Evolutionary Perspective on the Popularity of Sports

    Directory of Open Access Journals (Sweden)

    Menelaos Apostolou

    2016-07-01

    Full Text Available There are many different sports, and some are more popular for watching than others. The present paper attempts to address the question why sports vary in popularity. To this end, an evolutionary framework is employed that indicates that sports have evolved to enable the reliable exchange of information of unobserved traits. Six of these traits are nominated, namely, physical strength, stamina, speed, dexterity, aggression and team spirit. On this basis, it is predicted that sports which require higher competence in these traits, and thus are better in transferring information on these dimensions, are more popular than sports which require less competence. Analysis on data based on 34 different sports supports this prediction. The implications of these finding are further discussed.

  1. An evolutionary examination of telemedicine: a health and computer-mediated communication perspective.

    Science.gov (United States)

    Breen, Gerald-Mark; Matusitz, Jonathan

    2010-01-01

    Telemedicine, the use of advanced communication technologies in the healthcare context, has a rich history and a clear evolutionary course. In this paper, the authors identify telemedicine as operationally defined, the services and technologies it comprises, the direction telemedicine has taken, along with its increased acceptance in the healthcare communities. The authors also describe some of the key pitfalls warred with by researchers and activists to advance telemedicine to its full potential and lead to an unobstructed team of technicians to identify telemedicine's diverse utilities. A discussion and future directions section is included to provide fresh ideas to health communication and computer-mediated scholars wishing to delve into this area and make a difference to enhance public understanding of this field.

  2. Balanced intakes of natural triglycerides for optimum nutrition: an evolutionary and phytochemical perspective.

    Science.gov (United States)

    Broadhurst, C L

    1997-09-01

    Natural whole foods contain fats as structural components, and have a balance of polyunsaturated fat, monounsaturated fat, and saturated fat. Since we are still a Paleolithic species, adapted to eating only wild foods, it is difficult to justify the consumption of anything other than an overall balance of triglyceride/phospholipid types in an evolutionary sense. No natural fats are intrinsically good or bad--it is the proportions that matter. Variety is recommended in dietary lipid structure, degree of saturation, and chain length. Pathological n-3/n-6 polyunsaturated fat imbalance, obesity, and progressive glucose intolerance are consequences of adopting cereal grain based diets by both humans and livestock. Food processing and refining amplify these problems. Excessive concerns regarding polyunsaturated fat peroxidation in vivo are not warranted when trigylcerides are balanced and normal diets are consumed. Numerous phytochemicals present in unrefined oils, fruits, vegetables, and herbs afford significant protection from lipid peroxidation and chronic disease.

  3. The image of the God to whom we pray: An evolutionary psychobiological perspective

    Directory of Open Access Journals (Sweden)

    Jay R. Feierman

    2013-07-01

    Full Text Available Based on knowledge generated through our outer senses and with our use of reasoning and within the scientific discipline of evolutionary psychobiology we can make a reasonable presumption about God. The presumption concerns the image of the God to whom we pray. In the behavior that we use in the non-vocal aspect of petitioning prayer we (all persons of the three Abrahamic faiths relate behaviorally in our «body language» to God as though He is a high status male Lord rather than how modern children relate to a loving father. We do this even though «Father» is used for God in the various English translations of the New Testament an order of magnitude more than the term «LORD». How this paradox could have developed and how it is resolved is presented

  4. An evolutionary perspective on drug discovery in the plant genus Euphorbia L. (Euphorbiaceae)

    DEFF Research Database (Denmark)

    Ernst, Madeleine

    Plants have been widely used in many traditional medical systems around the world and are still thesource of many modern drugs. However, the rate at which new plant-derived drugs are discoveredis slow and recent estimates of biodiversity loss, as well as the need for tackling global...... herbivory and physical stresses or to attract pollinators. Consequently, specializedmetabolites, as well as plants used in traditional medicine, are not randomly distributed across phylogenetictrees. Evolutionary approaches to plant-based drug discovery suggest that this informationcan be used to guide......-based drug discovery. Phylogenetic patterns in speciesused in traditional medicine were investigated, and it was found that species used medicinally are notrandomly distributed across the phylogenetic tree. Subsequently, Euphorbia chemical diversity andbioactivity were investigated using mass spectral...

  5. The puzzle of partial migration: Adaptive dynamics and evolutionary game theory perspectives.

    Science.gov (United States)

    De Leenheer, Patrick; Mohapatra, Anushaya; Ohms, Haley A; Lytle, David A; Cushing, J M

    2017-01-07

    We consider the phenomenon of partial migration which is exhibited by populations in which some individuals migrate between habitats during their lifetime, but others do not. First, using an adaptive dynamics approach, we show that partial migration can be explained on the basis of negative density dependence in the per capita fertilities alone, provided that this density dependence is attenuated for increasing abundances of the subtypes that make up the population. We present an exact formula for the optimal proportion of migrants which is expressed in terms of the vital rates of migrant and non-migrant subtypes only. We show that this allocation strategy is both an evolutionary stable strategy (ESS) as well as a convergence stable strategy (CSS). To establish the former, we generalize the classical notion of an ESS because it is based on invasion exponents obtained from linearization arguments, which fail to capture the stabilizing effects of the nonlinear density dependence. These results clarify precisely when the notion of a "weak ESS", as proposed in Lundberg (2013) for a related model, is a genuine ESS. Secondly, we use an evolutionary game theory approach, and confirm, once again, that partial migration can be attributed to negative density dependence alone. In this context, the result holds even when density dependence is not attenuated. In this case, the optimal allocation strategy towards migrants is the same as the ESS stemming from the analysis based on the adaptive dynamics. The key feature of the population models considered here is that they are monotone dynamical systems, which enables a rather comprehensive mathematical analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. [Evolutionary medicine].

    Science.gov (United States)

    Wjst, M

    2013-12-01

    Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Evolutionary Awareness

    Directory of Open Access Journals (Sweden)

    Gregory Gorelik

    2014-10-01

    Full Text Available In this article, we advance the concept of “evolutionary awareness,” a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities—which we refer to as “intergenerational extended phenotypes”—by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.

  8. Evidence for past and present hybridization in three Antarctic icefish species provides new perspectives on an evolutionary radiation.

    Science.gov (United States)

    Marino, I A M; Benazzo, A; Agostini, C; Mezzavilla, M; Hoban, S M; Patarnello, T; Zane, L; Bertorelle, G

    2013-10-01

    Determining the timing, extent and underlying causes of interspecific gene exchange during or following speciation is central to understanding species' evolution. Antarctic notothenioid fish, thanks to the acquisition of antifreeze glycoproteins during Oligocene transition to polar conditions, experienced a spectacular radiation to >100 species during Late Miocene cooling events. The impact of recent glacial cycles on this group is poorly known, but alternating warming and cooling periods may have affected species' distributions, promoted ecological divergence into recurrently opening niches and/or possibly brought allopatric species into contact. Using microsatellite markers and statistical methods including Approximate Bayesian Computation, we investigated genetic differentiation, hybridization and the possible influence of the last glaciation/deglaciation events in three icefish species of the genus Chionodraco. Our results provide strong evidence of contemporary and past introgression by showing that: (i) a substantial fraction of contemporary individuals in each species has mixed ancestry, (ii) evolutionary scenarios excluding hybridization or including it only in ancient times have small or zero posterior probabilities, (iii) the data support a scenario of interspecific gene flow associated with the two most recent interglacial periods. Glacial cycles might therefore have had a profound impact on the genetic composition of Antarctic fauna, as newly available shelf areas during the warmer intervals might have favoured secondary contacts and hybridization between diversified groups. If our findings are confirmed in other notothenioids, they offer new perspectives for understanding evolutionary dynamics of Antarctic fish and suggest a need for new predictions on the effects of global warming in this group. © 2013 John Wiley & Sons Ltd.

  9. The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics.

    Science.gov (United States)

    Goswami, Anjali; Binder, Wendy J; Meachen, Julie; O'Keefe, F Robin

    2015-04-21

    Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change.

  10. An Evolutionary Approach to the Biological Management of Invasive Brown Treesnakes (Boiga irregularis) on Guam

    Science.gov (United States)

    2012-03-14

    of the most significant parasite afflictions of captive snakes and is highly contagious. These organisms cause extensive damage to the intestinal ...Wisniewski 2010). Estimates of the annual economic costs from the damages caused by the invasion of B. irregularis to the Hawaiian Islands from... Salmonella spp. for rodents (Singleton 1994 ) and numerous others. ‘Real world’ examples of successful biological management of vertebrate pests involve

  11. Examining Gender Differences in Written Assessment Tasks in Biology: A Case Study of Evolutionary Explanations.

    Science.gov (United States)

    Federer, Meghan Rector; Nehm, Ross H; Pearl, Dennis K

    2016-01-01

    Understanding sources of performance bias in science assessment provides important insights into whether science curricula and/or assessments are valid representations of student abilities. Research investigating assessment bias due to factors such as instrument structure, participant characteristics, and item types are well documented across a variety of disciplines. However, the relationships among these factors are unclear for tasks evaluating understanding through performance on scientific practices, such as explanation. Using item-response theory (Rasch analysis), we evaluated differences in performance by gender on a constructed-response (CR) assessment about natural selection (ACORNS). Three isomorphic item strands of the instrument were administered to a sample of undergraduate biology majors and nonmajors (Group 1: n = 662 [female = 51.6%]; G2: n = 184 [female = 55.9%]; G3: n = 642 [female = 55.1%]). Overall, our results identify relationships between item features and performance by gender; however, the effect is small in the majority of cases, suggesting that males and females tend to incorporate similar concepts into their CR explanations. These results highlight the importance of examining gender effects on performance in written assessment tasks in biology. © 2016 M. R. Federer et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract.

    Science.gov (United States)

    Mills, E N Clare; Jenkins, John A; Alcocer, Marcos J C; Shewry, Peter R

    2004-01-01

    The recently completed genome sequence of the model plant species Arabidopsis has been estimated to encode over 25,000 proteins, which, on the basis of their function, can be classified into structural and metabolic (the vast majority of plant proteins), protective proteins, which defend a plant against invasion by pathogens or feeding by pests, and storage proteins, which proved a nutrient store to support germination in seeds. It is now clear that almost all plant food allergens are either protective or storage proteins. It is also becoming evident that those proteins that trigger the development of an allergic response through the gastrointestinal tract belong primarily to two large protein superfamilies: (1) The cereal prolamin superfamily, comprising three major groups of plant food allergens, the 2S albumins, lipid transfer proteins, and cereal alpha-amylase/trypsin inhibitors, which have related structures, and are stable to thermal processing and proteolysis. They include major allergens from Brazil nut, peanuts, fruits, such as peaches, and cereals, such as rice and wheat; (2) The cupin superfamily, comprising the major globulin storage proteins from a number of plant species. The globulins have been found to be allergens in plant foods, such as peanuts, soya bean, and walnut; (3) The cyteine protease C1 family, comprising the papain-like proteases from microbes, plants, and animals. This family contains two notable allergens that sensitize via the GI tract, namely actinidin from kiwi fruit and the soybean allergen, Gly m Bd 30k/P34. This study describes the properties, structures, and evolutionary relationships of these protein families, the allergens that belong to them, and discusses them in relation to the role protein structure may play in determining protein allergenicity.

  13. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies

    Science.gov (United States)

    Fritzsch, B.; Beisel, K. W.; Bermingham, N. A.

    2000-01-01

    This brief overview shows that a start has been made to molecularly dissect vertebrate ear development and its evolutionary conservation to the development of the insect hearing organ. However, neither the patterning process of the ear nor the patterning process of insect sensory organs is sufficiently known at the moment to provide more than a first glimpse. Moreover, hardly anything is known about otocyst development of the cephalopod molluscs, another triploblast lineage that evolved complex 'ears'. We hope that the apparent conserved functional and cellular components present in the ciliated sensory neurons/hair cells will also be found in the genes required for vertebrate ear and insect sensory organ morphogenesis (Fig. 3). Likewise, we expect that homologous pre-patterning genes will soon be identified for the non-sensory cell development, which is more than a blocking of neuronal development through the Delta/Notch signaling system. Generation of the apparently unique ear could thus represent a multiplication of non-sensory cells by asymmetric and symmetric divisions as well as modification of existing patterning process by implementing novel developmental modules. In the final analysis, the vertebrate ear may come about by increasing the level of gene interactions in an already existing and highly conserved interactive cascade of bHLH genes. Since this was apparently achieved in all three lineages of triploblasts independently (Fig. 3), we now need to understand how much of the morphogenetic cascades are equally conserved across phyla to generate complex ears. The existing mutations in humans and mice may be able to point the direction of future research to understand the development of specific cell types and morphologies in the formation of complex arthropod, cephalopod, and vertebrate 'ears'.

  14. Systematic analysis of head-to-head gene organization: evolutionary conservation and potential biological relevance.

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Li

    2006-07-01

    Full Text Available Several "head-to-head" (or "bidirectional" gene pairs have been studied in individual experiments, but genome-wide analysis of this gene organization, especially in terms of transcriptional correlation and functional association, is still insufficient. We conducted a systematic investigation of head-to-head gene organization focusing on structural features, evolutionary conservation, expression correlation and functional association. Of the present 1,262, 1,071, and 491 head-to-head pairs identified in human, mouse, and rat genomes, respectively, pairs with 1- to 400-base pair distance between transcription start sites form the majority (62.36%, 64.15%, and 55.19% for human, mouse, and rat,respectively of each dataset, and the largest group is always the one with a transcription start site distance of 101 to 200 base pairs. The phylogenetic analysis among Fugu, chicken, and human indicates a negative selection on the separation of head-to-head genes across vertebrate evolution, and thus the ancestral existence of this gene organization. The expression analysis shows that most of the human head-to-head genes are significantly correlated,and the correlation could be positive, negative, or alternative depending on the experimental conditions. Finally, head to-head genes statistically tend to perform similar functions, and gene pairs associated with the significant cofunctions seem to have stronger expression correlations. The findings indicate that the head-to-head gene organization is ancient and conserved, which subjects functionally related genes to correlated transcriptional regulation and thus provides an exquisite mechanism of transcriptional regulation based on gene organization. These results have significantly expanded the knowledge about head-to-head gene organization. Supplementary materials for this study are available at http://www.scbit.org/h2h.

  15. Beyond fossil calibrations: Realities of molecular clock practices in evolutionary biology

    Directory of Open Access Journals (Sweden)

    Christy Anna Hipsley

    2014-05-01

    Full Text Available Molecular-based divergence dating methods, or molecular clocks, are the primary neontological tool for estimating the temporal origins of clades. While the appropriate use of vertebrate fossils as external clock calibrations has stimulated heated discussions in the paleontological community, less attention has been given to the quality and implementation of other calibration types. In lieu of appropriate fossils, many studies rely on alternative sources of age constraints based on geological events, substitution rates and heterochronous sampling, as well as dates secondarily derived from previous analyses. To illustrate the breadth and frequency of calibration types currently employed, we conducted a literature survey of over 600 articles published from 2007 to 2013. Over half of all analyses implemented one or more fossil dates as constraints, followed by geological events and secondary calibrations (15% each. Vertebrate taxa were subjects of nearly half of all studies, while invertebrates and plants together accounted for 43%, followed by viruses, protists and fungi (3% each. Current patterns in calibration practices were disproportionate to the number of discussions on their proper use, particularly regarding plants and secondarily derived dates, which are both relatively neglected. Based on our survey, we provide a comprehensive overview of the latest approaches in clock calibration, and outline strengths and weaknesses associated with each. This critique should serve as a call to action for researchers across multiple communities, particularly those working on clades for which fossil records are poor, to develop their own guidelines regarding selection and implementation of alternative calibration types. This issue is particularly relevant now, as time-calibrated phylogenies are used for more than dating evolutionary origins, but often serve as the backbone of investigations into biogeography, diversity dynamics and rates of phenotypic

  16. Cognitive Reorganization during Pregnancy and the Postpartum Period: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Marla V. Anderson

    2012-10-01

    Full Text Available Where the non-human animal research investigating reproduction-induced cognitive reorganization has focused on neural plasticity and adaptive advantage in response to the demands associated with pregnancy and parenting, human studies have primarily concentrated on pregnancy-induced memory decline. The current review updates Henry and Rendell's 2007 meta-analysis, and examines cognitive reorganization as the result of reproductive experience from an adaptationist perspective. Investigations of pregnancy-induced cognitive change in human females may benefit by focusing on areas, such as social cognition, where a cognitive advantage would serve a protective function, and by extending the study duration beyond pregnancy into the postpartum period.

  17. Cancer systems biology in the genome sequencing era: part 2, evolutionary dynamics of tumor clonal networks and drug resistance.

    Science.gov (United States)

    Wang, Edwin; Zou, Jinfeng; Zaman, Naif; Beitel, Lenore K; Trifiro, Mark; Paliouras, Miltiadis

    2013-08-01

    A tumor often consists of multiple cell subpopulations (clones). Current chemo-treatments often target one clone of a tumor. Although the drug kills that clone, other clones overtake it and the tumor recurs. Genome sequencing and computational analysis allows to computational dissection of clones from tumors, while singe-cell genome sequencing including RNA-Seq allows profiling of these clones. This opens a new window for treating a tumor as a system in which clones are evolving. Future cancer systems biology studies should consider a tumor as an evolving system with multiple clones. Therefore, topics discussed in Part 2 of this review include evolutionary dynamics of clonal networks, early-warning signals (e.g., genome duplication events) for formation of fast-growing clones, dissecting tumor heterogeneity, and modeling of clone-clone-stroma interactions for drug resistance. The ultimate goal of the future systems biology analysis is to obtain a 'whole-system' understanding of a tumor and therefore provides a more efficient and personalized management strategies for cancer patients. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Where Did You Come From? Where Will You Go? Human Evolutionary Biology Education and American Students' Academic Interests and Achievements, Professional Goals, and Socioscientific Decision-Making

    Science.gov (United States)

    Schrein, Caitlin M.

    2014-01-01

    In the United States, there is a national agenda to increase the number of qualified science, technology, engineering, and maths (STEM) professionals and a movement to promote science literacy among the general public. This project explores the association between formal human evolutionary biology education (HEB) and high school science class…

  19. Epigenetic Inheritance and Its Role in Evolutionary Biology: Re-Evaluation and New Perspectives.

    Science.gov (United States)

    Burggren, Warren

    2016-05-25

    Epigenetics increasingly occupies a pivotal position in our understanding of inheritance, natural selection and, perhaps, even evolution. A survey of the PubMed database, however, reveals that the great majority (>93%) of epigenetic papers have an intra-, rather than an inter-generational focus, primarily on mechanisms and disease. Approximately ~1% of epigenetic papers even mention the nexus of epigenetics, natural selection and evolution. Yet, when environments are dynamic (e.g., climate change effects), there may be an "epigenetic advantage" to phenotypic switching by epigenetic inheritance, rather than by gene mutation. An epigenetically-inherited trait can arise simultaneously in many individuals, as opposed to a single individual with a gene mutation. Moreover, a transient epigenetically-modified phenotype can be quickly "sunsetted", with individuals reverting to the original phenotype. Thus, epigenetic phenotype switching is dynamic and temporary and can help bridge periods of environmental stress. Epigenetic inheritance likely contributes to evolution both directly and indirectly. While there is as yet incomplete evidence of direct permanent incorporation of a complex epigenetic phenotype into the genome, doubtlessly, the presence of epigenetic markers and the phenotypes they create (which may sort quite separately from the genotype within a population) will influence natural selection and, so, drive the collective genotype of a population.

  20. Epigenetic Inheritance and Its Role in Evolutionary Biology: Re-Evaluation and New Perspectives

    Directory of Open Access Journals (Sweden)

    Warren Burggren

    2016-05-01

    Full Text Available Epigenetics increasingly occupies a pivotal position in our understanding of inheritance, natural selection and, perhaps, even evolution. A survey of the PubMed database, however, reveals that the great majority (>93% of epigenetic papers have an intra-, rather than an inter-generational focus, primarily on mechanisms and disease. Approximately ~1% of epigenetic papers even mention the nexus of epigenetics, natural selection and evolution. Yet, when environments are dynamic (e.g., climate change effects, there may be an “epigenetic advantage” to phenotypic switching by epigenetic inheritance, rather than by gene mutation. An epigenetically-inherited trait can arise simultaneously in many individuals, as opposed to a single individual with a gene mutation. Moreover, a transient epigenetically-modified phenotype can be quickly “sunsetted”, with individuals reverting to the original phenotype. Thus, epigenetic phenotype switching is dynamic and temporary and can help bridge periods of environmental stress. Epigenetic inheritance likely contributes to evolution both directly and indirectly. While there is as yet incomplete evidence of direct permanent incorporation of a complex epigenetic phenotype into the genome, doubtlessly, the presence of epigenetic markers and the phenotypes they create (which may sort quite separately from the genotype within a population will influence natural selection and, so, drive the collective genotype of a population.

  1. Epigenetic Inheritance and Its Role in Evolutionary Biology: Re-Evaluation and New Perspectives

    OpenAIRE

    Warren Burggren

    2016-01-01

    Epigenetics increasingly occupies a pivotal position in our understanding of inheritance, natural selection and, perhaps, even evolution. A survey of the PubMed database, however, reveals that the great majority (>93%) of epigenetic papers have an intra-, rather than an inter-generational focus, primarily on mechanisms and disease. Approximately ~1% of epigenetic papers even mention the nexus of epigenetics, natural selection and evolution. Yet, when environments are dynamic (e.g., climate...

  2. Fostering 21st-Century Evolutionary Reasoning: Teaching Tree Thinking to Introductory Biology Students.

    Science.gov (United States)

    Novick, Laura R; Catley, Kefyn M

    2016-01-01

    The ability to interpret and reason from Tree of Life (ToL) diagrams has become a vital component of science literacy in the 21st century. This article reports on the effectiveness of a research-based curriculum, including an instructional booklet, laboratory, and lectures, to teach the fundamentals of such tree thinking in an introductory biology class for science majors. We present the results of a study involving 117 undergraduates who received either our new research-based tree-thinking curriculum or business-as-usual instruction. We found greater gains in tree-thinking abilities for the experimental instruction group than for the business-as-usual group, as measured by performance on our novel assessment instrument. This was a medium size effect. These gains were observed on an unannounced test that was administered ∼5-6 weeks after the primary instruction in tree thinking. The nature of students' postinstruction difficulties with tree thinking suggests that the critical underlying concept for acquiring expert-level competence in this area is understanding that any specific phylogenetic tree is a subset of the complete, unimaginably large ToL. © 2016 L. R. Novick and K. M. Catley. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Tracing Behçet's disease origins along the Silk Road: an anthropological evolutionary genetics perspective.

    Science.gov (United States)

    Sazzini, Marco; Garagnani, Paolo; Sarno, Stefania; De Fanti, Sara; Lazzano, Teresa; Yang Yao, Daniele; Boattini, Alessio; Pazzola, Giulia; Maramotti, Sally; Boiardi, Luigi; Franceschi, Claudio; Salvarani, Carlo; Luiselli, Donata

    2015-01-01

    Behçet's disease is a multifactorial vasculitis that shows its highest prevalence in geographical areas historically involved in the Silk Road, suggesting that it might have originated somewhere along these ancient trade routes. This study aims to provide a first clue towards genetic evidence for this hypothesis by testing it via an anthropological evolutionary genetics approach. Behçet's disease variation at ancestry informative mitochondrial DNA control region and haplogroup diagnostic sites was characterised in 185 disease subjects of Italian descent and set into the Eurasian mitochondrial landscape by comparison with nearly 9,000 sequences representative of diversity observable in Italy and along the main Silk Road routes. Dissection of the actual genetic ancestry of disease individuals by means of population structure, spatial autocorrelation and haplogroup analyses revealed their closer relationships with some Middle Eastern and Central Asian groups settled along the Silk Road than with healthy Italians. These findings support the hypothesis that the Behçet's disease genetic risk has migrated to western Eurasia in parallel with ancestry components typical of Silk Road-related groups. This provided new insights that are useful to improve the understanding of disease origins and diffusion, as well as to inform future association studies aimed at properly accounting for the actual genetic ancestry of the examined Behçet's disease samples in order to minimise the detection of spurious associations and to improve the identification of genetic variants with actual clinical relevance.

  4. The Human Frontal Lobes and Frontal Network Systems: An Evolutionary, Clinical, and Treatment Perspective

    Science.gov (United States)

    Hoffmann, Michael

    2013-01-01

    Frontal lobe syndromes, better termed as frontal network systems, are relatively unique in that they may manifest from almost any brain region, due to their widespread connectivity. The understandings of the manifold expressions seen clinically are helped by considering evolutionary origins, the contribution of the state-dependent ascending monoaminergic neurotransmitter systems, and cerebral connectivity. Hence, the so-called networktopathies may be a better term for the syndromes encountered clinically. An increasing array of metric tests are becoming available that complement that long standing history of qualitative bedside assessments pioneered by Alexander Luria, for example. An understanding of the vast panoply of frontal systems' syndromes has been pivotal in understanding and diagnosing the most common dementia syndrome under the age of 60, for example, frontotemporal lobe degeneration. New treatment options are also progressively becoming available, with recent evidence of dopaminergic augmentation, for example, being helpful in traumatic brain injury. The latter include not only psychopharmacological options but also device-based therapies including mirror visual feedback therapy. PMID:23577266

  5. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids

    Science.gov (United States)

    vonHoldt, Bridgett M.; Pollinger, John P.; Earl, Dent A.; Knowles, James C.; Boyko, Adam R.; Parker, Heidi; Geffen, Eli; Pilot, Malgorzata; Jedrzejewski, Wlodzimierz; Jedrzejewska, Bogumila; Sidorovich, Vadim; Greco, Claudia; Randi, Ettore; Musiani, Marco; Kays, Roland; Bustamante, Carlos D.; Ostrander, Elaine A.; Novembre, John; Wayne, Robert K.

    2011-01-01

    High-throughput genotyping technologies developed for model species can potentially increase the resolution of demographic history and ancestry in wild relatives. We use a SNP genotyping microarray developed for the domestic dog to assay variation in over 48K loci in wolf-like species worldwide. Despite the high mobility of these large carnivores, we find distinct hierarchical population units within gray wolves and coyotes that correspond with geographic and ecologic differences among populations. Further, we test controversial theories about the ancestry of the Great Lakes wolf and red wolf using an analysis of haplotype blocks across all 38 canid autosomes. We find that these enigmatic canids are highly admixed varieties derived from gray wolves and coyotes, respectively. This divergent genomic history suggests that they do not have a shared recent ancestry as proposed by previous researchers. Interspecific hybridization, as well as the process of evolutionary divergence, may be responsible for the observed phenotypic distinction of both forms. Such admixture complicates decisions regarding endangered species restoration and protection. PMID:21566151

  6. New perspectives on the evolutionary history of hepatitis B virus genotype F.

    Science.gov (United States)

    Torres, Carolina; Piñeiro y Leone, Flavia Guadalupe; Pezzano, Silvana Claudia; Mbayed, Viviana Andrea; Campos, Rodolfo Héctor

    2011-04-01

    Hepatitis B virus (HBV) is a globally distributed human pathogen. The aim of this work was to analyze the evolutionary history of HBV genotype F, emphasizing on the study of subgenotypes prevalent in the Southern area of South America. Complete genomes of HBV genotype F from 36 samples from Argentina and Chile were sequenced and analyzed by phylogenetic and Bayesian coalescent methods along with sequences obtained from GenBank database. The phylogeography separated not only Central American from South American isolates but also revealed that different subgenotypes are distributed in constrained although not exclusive areas of the continent. The result obtained with time-stamped complete genomes failed to explain the wide geographical distribution and the clustering observed in this genotype. Conversely, the use of Bayesian coalescent analyses with substitution rates as priors, instead of the co-estimation of tMRCA and substitution rate, allowed us to propose a far origin for the HBV genotype F based on the phylogeographical and epidemiological data. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Common liability to addiction and “gateway hypothesis”: Theoretical, empirical and evolutionary perspective

    Science.gov (United States)

    Vanyukov, Michael M.; Tarter, Ralph E.; Kirillova, Galina P.; Kirisci, Levent; Reynolds, Maureen D.; Kreek, Mary Jeanne; Conway, Kevin P.; Maher, Brion S.; Iacono, William G.; Bierut, Laura; Neale, Michael C.; Clark, Duncan B.; Ridenour, Ty A.

    2013-01-01

    Background Two competing concepts address the development of involvement with psychoactive substances: the “gateway hypothesis” (GH) and common liability to addiction (CLA). Method The literature on theoretical foundations and empirical findings related to both concepts is reviewed. Results The data suggest that drug use initiation sequencing, the core GH element, is variable and opportunistic rather than uniform and developmentally deterministic. The association between risks for use of different substances, if any, can be more readily explained by common underpinnings than by specific staging. In contrast, the CLA concept is grounded in genetic theory and supported by data identifying common sources of variation in the risk for specific addictions. This commonality has identifiable neurobiological substrate and plausible evolutionary explanations. Conclusions Whereas the “gateway” hypothesis does not specify mechanistic connections between “stages”, and does not extend to the risks for addictions, the concept of common liability to addictions incorporates sequencing of drug use initiation as well as extends to related addictions and their severity, provides a parsimonious explanation of substance use and addiction co-occurrence, and establishes a theoretical and empirical foundation to research in etiology, quantitative risk and severity measurement, as well as targeted non-drug-specific prevention and early intervention. PMID:22261179

  8. Biological relevance of streamflow metrics: Regional and national perspectives

    Science.gov (United States)

    Carlisle, Daren M.; Grantham, Theodore E.; Eng, Kenny; Wolock, David M.

    2017-01-01

    Protecting the health of streams and rivers requires identifying ecologically significant attributes of the natural flow regime. Streamflow regimes are routinely quantified using a plethora of hydrologic metrics (HMs), most of which have unknown relevance to biological communities. At regional and national scales, we evaluated which of 509 commonly used HMs were associated with biological indicators of fish and invertebrate community integrity. We quantified alteration of each HM by using statistical models to predict site-specific natural baseline values for each of 728 sites across the USA where streamflow monitoring data were available concurrent with assessments of invertebrate or fish community integrity. We then ranked HMs according to their individual association with biological integrity based on random forest models that included HMs and other relevant covariates, such as land cover and stream chemistry. HMs were generally the most important predictors of biological integrity relative to the covariates. At a national scale, the most influential HMs were measures of depleted high flows, homogenization of flows, and erratic flows. Unique combinations of biologically relevant HMs were apparent among regions. We discuss the implications of our findings to the challenge of selecting HMs for streamflow research and management.

  9. Extended inclusive fitness theory: synergy and assortment drives the evolutionary dynamics in biology and economics.

    Science.gov (United States)

    Jaffe, Klaus

    2016-01-01

    W.D. Hamilton's Inclusive Fitness Theory explains the conditions that favor the emergence and maintenance of social cooperation. Today we know that these include direct and indirect benefits an agent obtains by its actions, and through interactions with kin and with genetically unrelated individuals. That is, in addition to kin-selection, assortation or homophily, and social synergies drive the evolution of cooperation. An Extended Inclusive Fitness Theory (EIFT) synthesizes the natural selection forces acting on biological evolution and on human economic interactions by assuming that natural selection driven by inclusive fitness produces agents with utility functions that exploit assortation and synergistic opportunities. This formulation allows to estimate sustainable cost/benefit threshold ratios of cooperation among organisms and/or economic agents, using existent analytical tools, illuminating our understanding of the dynamic nature of society, the evolution of cooperation among kin and non-kin, inter-specific cooperation, co-evolution, symbioses, division of labor and social synergies. EIFT helps to promote an interdisciplinary cross fertilization of the understanding of synergy by, for example, allowing to describe the role for division of labor in the emergence of social synergies, providing an integrated framework for the study of both, biological evolution of social behavior and economic market dynamics. Another example is a bio-economic understanding of the motivations of terrorists, which identifies different forms of terrorism.

  10. Obesity and human biology: toward a global perspective.

    Science.gov (United States)

    Brewis, Alexandra A

    2012-01-01

    Overweight bodies will soon be the modal human form. In this special issue of American Journal of Human Biology, authors use varied approaches to examine the expansion of obesity globally, particularly what shape variability in people's vulnerability to weight gain and its negative effects. The contributions together highlight how complex pathways between biology and health related to excess weight are strongly medicated, at multiple levels, by both socio-ecological context and life history. A systems approach, which can place human biological and biocultural variation iteratively within the broader contexts of developing and globalizing adiposity, will be a useful next step to informing effective prevention and intervention efforts. Copyright © 2012 Wiley Periodicals, Inc.

  11. Perspectives on theory at the interface of physics and biology.

    Science.gov (United States)

    Bialek, William

    2018-01-01

    Theoretical physics is the search for simple and universal mathematical descriptions of the natural world. In contrast, much of modern biology is an exploration of the complexity and diversity of life. For many, this contrast is prima facie evidence that theory, in the sense that physicists use the word, is impossible in a biological context. For others, this contrast serves to highlight a grand challenge. I am an optimist, and believe (along with many colleagues) that the time is ripe for the emergence of a more unified theoretical physics of biological systems, building on successes in thinking about particular phenomena. In this essay I try to explain the reasons for my optimism, through a combination of historical and modern examples.

  12. Anti-tick biological control agents: assessment and future perspectives

    Science.gov (United States)

    Samish, M.; Ginsberg, H.S.; Glazer, I.; Bowman, Alan. S.; Nuttall, Patricia A.

    2008-01-01

    Widespread and increasing resistance to most available acaracides threatens both global livestock industries and public health. This necessitates better understanding of ticks and the diseases they transmit in the development of new control strategies. Ticks: Biology, Disease and Control is written by an international collection of experts and covers in-depth information on aspects of the biology of the ticks themselves, various veterinary and medical tick-borne pathogens, and aspects of traditional and potential new control methods. A valuable resource for graduate students, academic researchers and professionals, the book covers the whole gamut of ticks and tick-borne diseases from microsatellites to satellite imagery and from exploiting tick saliva for therapeutic drugs to developing drugs to control tick populations. It encompasses the variety of interconnected fields impinging on the economically important and biologically fascinating phenomenon of ticks, the diseases they transmit and methods of their control.

  13. Perspectives on theory at the interface of physics and biology

    Science.gov (United States)

    Bialek, William

    2018-01-01

    Theoretical physics is the search for simple and universal mathematical descriptions of the natural world. In contrast, much of modern biology is an exploration of the complexity and diversity of life. For many, this contrast is prima facie evidence that theory, in the sense that physicists use the word, is impossible in a biological context. For others, this contrast serves to highlight a grand challenge. I am an optimist, and believe (along with many colleagues) that the time is ripe for the emergence of a more unified theoretical physics of biological systems, building on successes in thinking about particular phenomena. In this essay I try to explain the reasons for my optimism, through a combination of historical and modern examples.

  14. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  15. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Samuel M.; Li, Boxing; Tsien, Richard W., E-mail: richard.tsien@nyumc.org; Ma, Huan, E-mail: mahuan@gmail.com

    2015-04-24

    Reliance on Ca{sup 2+} signaling has been well-preserved through the course of evolution. While the complexity of Ca{sup 2+} signaling pathways has increased, activation of transcription factors including CREB by Ca{sup 2+}/CaM-dependent kinases (CaMKs) has remained critical for long-term plasticity. In C. elegans, the CaMK family is made up of only three members, and CREB phosphorylation is mediated by CMK-1, the homologue of CaMKI. CMK-1 nuclear translocation directly regulates adaptation of thermotaxis behavior in response to changes in the environment. In mammals, the CaMK family has been expanded from three to ten members, enabling specialization of individual elements of a signal transduction pathway and increased reliance on the CaMKII subfamily. This increased complexity enables private line communication between Ca{sup 2+} sources at the cell surface and specific cellular targets. Using both new and previously published data, we review the mechanism of a γCaMKII-CaM nuclear translocation. This intricate pathway depends on a specific role for multiple Ca{sup 2+}/CaM-dependent kinases and phosphatases: α/βCaMKII phosphorylates γCaMKII to trap CaM; CaN dephosphorylates γCaMKII to dispatch it to the nucleus; and PP2A induces CaM release from γCaMKII so that CaMKK and CaMKIV can trigger CREB phosphorylation. Thus, while certain basic elements have been conserved from C. elegans, evolutionary modifications offer opportunities for targeted communication, regulation of key nodes and checkpoints, and greater specificity and flexibility in signaling.

  16. Brain mechanisms of acoustic communication in humans and nonhuman primates: an evolutionary perspective.

    Science.gov (United States)

    Ackermann, Hermann; Hage, Steffen R; Ziegler, Wolfram

    2014-12-01

    Any account of "what is special about the human brain" (Passingham 2008) must specify the neural basis of our unique ability to produce speech and delineate how these remarkable motor capabilities could have emerged in our hominin ancestors. Clinical data suggest that the basal ganglia provide a platform for the integration of primate-general mechanisms of acoustic communication with the faculty of articulate speech in humans. Furthermore, neurobiological and paleoanthropological data point at a two-stage model of the phylogenetic evolution of this crucial prerequisite of spoken language: (i) monosynaptic refinement of the projections of motor cortex to the brainstem nuclei that steer laryngeal muscles, presumably, as part of a "phylogenetic trend" associated with increasing brain size during hominin evolution; (ii) subsequent vocal-laryngeal elaboration of cortico-basal ganglia circuitries, driven by human-specific FOXP2 mutations.;>This concept implies vocal continuity of spoken language evolution at the motor level, elucidating the deep entrenchment of articulate speech into a "nonverbal matrix" (Ingold 1994), which is not accounted for by gestural-origin theories. Moreover, it provides a solution to the question for the adaptive value of the "first word" (Bickerton 2009) since even the earliest and most simple verbal utterances must have increased the versatility of vocal displays afforded by the preceding elaboration of monosynaptic corticobulbar tracts, giving rise to enhanced social cooperation and prestige. At the ontogenetic level, the proposed model assumes age-dependent interactions between the basal ganglia and their cortical targets, similar to vocal learning in some songbirds. In this view, the emergence of articulate speech builds on the "renaissance" of an ancient organizational principle and, hence, may represent an example of "evolutionary tinkering" (Jacob 1977).

  17. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus.

    Science.gov (United States)

    Cohen, Samuel M; Li, Boxing; Tsien, Richard W; Ma, Huan

    2015-04-24

    Reliance on Ca(2+) signaling has been well-preserved through the course of evolution. While the complexity of Ca(2+) signaling pathways has increased, activation of transcription factors including CREB by Ca(2+)/CaM-dependent kinases (CaMKs) has remained critical for long-term plasticity. In C. elegans, the CaMK family is made up of only three members, and CREB phosphorylation is mediated by CMK-1, the homologue of CaMKI. CMK-1 nuclear translocation directly regulates adaptation of thermotaxis behavior in response to changes in the environment. In mammals, the CaMK family has been expanded from three to ten members, enabling specialization of individual elements of a signal transduction pathway and increased reliance on the CaMKII subfamily. This increased complexity enables private line communication between Ca(2+) sources at the cell surface and specific cellular targets. Using both new and previously published data, we review the mechanism of a γCaMKII-CaM nuclear translocation. This intricate pathway depends on a specific role for multiple Ca(2+)/CaM-dependent kinases and phosphatases: α/βCaMKII phosphorylates γCaMKII to trap CaM; CaN dephosphorylates γCaMKII to dispatch it to the nucleus; and PP2A induces CaM release from γCaMKII so that CaMKK and CaMKIV can trigger CREB phosphorylation. Thus, while certain basic elements have been conserved from C. elegans, evolutionary modifications offer opportunities for targeted communication, regulation of key nodes and checkpoints, and greater specificity and flexibility in signaling. Copyright © 2015. Published by Elsevier Inc.

  18. Socioeconomic status, education, and reproduction in modern women: an evolutionary perspective.

    Science.gov (United States)

    Huber, Susanne; Bookstein, Fred L; Fieder, Martin

    2010-01-01

    Although associations between status or resources and reproduction are positive in premodern societies and also in men in modern societies, in modern women the associations are typically negative. We investigated how the association between socioeconomic status and reproductive output varies with the source of status and resources, the woman's education, and her age at reproductive onset (proxied by age at marriage). By using a large sample of US women, we examined the association between a woman's reproductive output and her own and her husband's income and education. Education, income, and age at marriage are negatively associated with a woman's number of children and increase her chances of childlessness. Among the most highly educated two-thirds of the sample of women, husband's income predicts the number of children. The association between a woman's number of children and her husband's income turns from positive to negative when her education and age at marriage is low (even though her mean offspring number rises at the same time). The association between a woman's own income and her number of children is negative, regardless of education. Rather than maximizing the offspring number, these modern women seem to adjust investment in children based on their family size and resource availability. Striving for resources seems to be part of a modern female reproductive strategy--but, owing to costs of resource acquisition, especially higher education, it may lead to lower birthrates: a possible evolutionary explanation of the demographic transition, and a complement to the human capital theory of net reproductive output. (c) 2010 Wiley-Liss, Inc.

  19. Evolutionary history of selenocysteine incorporation from the perspective of SECIS binding proteins

    Directory of Open Access Journals (Sweden)

    Copeland Paul R

    2009-09-01

    Full Text Available Abstract Background The co-translational incorporation of selenocysteine into nascent polypeptides by recoding the UGA stop codon occurs in all domains of life. In eukaryotes, this event requires at least three specific factors: SECIS binding protein 2 (SBP2, a specific translation elongation factor (eEFSec, selenocysteinyl tRNA, and a cis-acting selenocysteine insertion sequence (SECIS element in selenoprotein mRNAs. While the phylogenetic relationships of selenoprotein families and the evolution of selenocysteine usage are well documented, the evolutionary history of SECIS binding proteins has not been explored. Results In this report we present a phylogeny of the eukaryotic SECIS binding protein family which includes SBP2 and a related protein we herein term SBP2L. Here we show that SBP2L is an SBP2 paralogue in vertebrates and is the only form of SECIS binding protein in invertebrate deuterostomes, suggesting a key role in Sec incorporation in these organisms, but an SBP2/SBP2L fusion protein is unable to support Sec incorporation in vitro. An in-depth phylogenetic analysis of the conserved L7Ae RNA binding domain suggests an ancestral relationship with ribosomal protein L30. In addition, we describe the emergence of a motif upstream of the SBP2 RNA binding domain that shares significant similarity with a motif within the pseudouridine synthase Cbf5. Conclusion Our analysis suggests that SECIS binding proteins arose once in evolution but diverged significantly in multiple lineages. In addition, likely due to a gene duplication event in the early vertebrate lineage, SBP2 and SBP2L are paralogous in vertebrates.

  20. Allergy-immunology practice parameters and strength of recommendation data: an evolutionary perspective.

    Science.gov (United States)

    Park, Matthew H; Banks, Taylor A; Nelson, Michael R

    2016-03-01

    The practice parameters for allergy and immunology (A/I) are a valuable tool guiding practitioners' clinical practice. The A/I practice parameters have evolved over time in the context of evidence-based medicine milestones. To identify evolutionary trends in the character, scope, and evidence underlying recommendations in the A/I practice parameters. Practice parameters that have guided A/I from 1995 through 2014 were analyzed. Statements and recommendations with strength of recommendation categories A and B were considered to have a basis in evidence from controlled trials. Forty-three publications and updates covering 25 unique topics were identified. There was great variability in the number of recommendations made and the proportion of statements with controlled trial evidence. The mean number of recommendations made per practice parameter has decreased significantly, from 95.8 to a mean of 38.3. There also is a trend toward an increased proportion of recommendations based on controlled trial evidence in practice parameters with fewer recommendations, with a mean of 30.7% in practice parameters with at least 100 recommendations based on controlled trial evidence compared with 48.3% in practice parameters with 30 to 100 recommendations and 51.0% in those with fewer than 30 recommendations. The A/I practice parameters have evolved significantly over time. Encouragingly, greater controlled trial evidence is associated with updated practice parameters and a recent trend of more narrowly focused topics. These findings should only bolster and inspire confidence in the utility of the A/I practice parameters in assisting practitioners to navigate through the uncertainty that is intrinsic to medicine in making informed decisions with patients. Published by Elsevier Inc.

  1. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Koning, Anne; Kuhnle, Gunter G C; Nagy, Peter; Bianco, Christopher L; Pasch, Andreas; Wink, David A; Fukuto, Jon M; Jackson, Alan A; van Goor, Harry; Olson, Kenneth R; Feelisch, Martin

    2017-10-01

    Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.

  2. Biological species is the only possible form of existence for higher organisms: the evolutionary meaning of sexual reproduction

    Directory of Open Access Journals (Sweden)

    Shcherbakov Victor P

    2010-03-01

    Full Text Available Abstract Consistent holistic view of sexual species as the highest form of biological existence is presented. The Weismann's idea that sex and recombination provide the variation for the natural selection to act upon is dominated in most discussions of the biological meaning of the sexual reproduction. Here, the idea is substantiated that the main advantage of sex is the opposite: the ability to counteract not only extinction but further evolution as well. Living systems live long owing to their ability to reproduce themselves with a high fidelity. Simple organisms (like bacteria reach the continued existence due to the high fidelity of individual genome replication. In organisms with a large genome and complex development, the achievable fidelity of DNA replication is not enough for the precise reproduction of the genome. Such species must be capable of surviving and must remain unchanged in spite of the continuous changes of their genes. This problem has no solution in the frame of asexual ("homeogenomic" lineages. They would rapidly degrade and become extinct or blurred out in the course of the reckless evolution. The core outcome of the transition to sexual reproduction was the creation of multiorganismic entity - biological species. Individual organisms forfeited their ability to reproduce autonomously. It implies that individual organisms forfeited their ability to substantive evolution. They evolve as a part of the biological species. In case of obligatory sexuality, there is no such a thing as synchronic multi-level selection. Natural selection cannot select anything that is not a unit of reproduction. Hierarchy in biology implies the functional predestination of the parts for the sake of the whole. A crucial feature of the sexual reproduction is the formation of genomes of individual organisms by random picking them over from the continuously shuffled gene pool instead of the direct replication of the ancestor's genome. A clear anti-evolutionary

  3. Biological species is the only possible form of existence for higher organisms: the evolutionary meaning of sexual reproduction.

    Science.gov (United States)

    Shcherbakov, Victor P

    2010-03-22

    Consistent holistic view of sexual species as the highest form of biological existence is presented. The Weismann's idea that sex and recombination provide the variation for the natural selection to act upon is dominated in most discussions of the biological meaning of the sexual reproduction. Here, the idea is substantiated that the main advantage of sex is the opposite: the ability to counteract not only extinction but further evolution as well. Living systems live long owing to their ability to reproduce themselves with a high fidelity. Simple organisms (like bacteria) reach the continued existence due to the high fidelity of individual genome replication. In organisms with a large genome and complex development, the achievable fidelity of DNA replication is not enough for the precise reproduction of the genome. Such species must be capable of surviving and must remain unchanged in spite of the continuous changes of their genes. This problem has no solution in the frame of asexual ("homeogenomic") lineages. They would rapidly degrade and become extinct or blurred out in the course of the reckless evolution. The core outcome of the transition to sexual reproduction was the creation of multiorganismic entity - biological species. Individual organisms forfeited their ability to reproduce autonomously. It implies that individual organisms forfeited their ability to substantive evolution. They evolve as a part of the biological species. In case of obligatory sexuality, there is no such a thing as synchronic multi-level selection. Natural selection cannot select anything that is not a unit of reproduction. Hierarchy in biology implies the functional predestination of the parts for the sake of the whole. A crucial feature of the sexual reproduction is the formation of genomes of individual organisms by random picking them over from the continuously shuffled gene pool instead of the direct replication of the ancestor's genome. A clear anti-evolutionary consequence of

  4. Biological species is the only possible form of existence for higher organisms: the evolutionary meaning of sexual reproduction

    Science.gov (United States)

    2010-01-01

    Consistent holistic view of sexual species as the highest form of biological existence is presented. The Weismann's idea that sex and recombination provide the variation for the natural selection to act upon is dominated in most discussions of the biological meaning of the sexual reproduction. Here, the idea is substantiated that the main advantage of sex is the opposite: the ability to counteract not only extinction but further evolution as well. Living systems live long owing to their ability to reproduce themselves with a high fidelity. Simple organisms (like bacteria) reach the continued existence due to the high fidelity of individual genome replication. In organisms with a large genome and complex development, the achievable fidelity of DNA replication is not enough for the precise reproduction of the genome. Such species must be capable of surviving and must remain unchanged in spite of the continuous changes of their genes. This problem has no solution in the frame of asexual ("homeogenomic") lineages. They would rapidly degrade and become extinct or blurred out in the course of the reckless evolution. The core outcome of the transition to sexual reproduction was the creation of multiorganismic entity - biological species. Individual organisms forfeited their ability to reproduce autonomously. It implies that individual organisms forfeited their ability to substantive evolution. They evolve as a part of the biological species. In case of obligatory sexuality, there is no such a thing as synchronic multi-level selection. Natural selection cannot select anything that is not a unit of reproduction. Hierarchy in biology implies the functional predestination of the parts for the sake of the whole. A crucial feature of the sexual reproduction is the formation of genomes of individual organisms by random picking them over from the continuously shuffled gene pool instead of the direct replication of the ancestor's genome. A clear anti-evolutionary consequence of

  5. The dilemma of dual use biological research: Polish perspective.

    Science.gov (United States)

    Czarkowski, Marek

    2010-03-01

    Biological research with legitimate scientific purpose that may be misused to pose a biological threat to public health and/or national security is termed dual use. In Poland there are adequate conditions for conducting experiments that could be qualified as dual use research, and therefore, a risk of attack on Poland or other countries exists. Optimal solutions for limiting such threats are required, and the national system of biosecurity should enable early, reliable, and complete identification of this type of research. Scientists should have a fundamental role in this process, their duty being to immediately, upon identification, report research with dual use potential. An important entity in the identification system of dual use research should also be the Central Register of Biological and Biomedical Research, which gathers information about all biological and biomedical research being conducted in a given country. Publishers, editors, and review committees of journals and other scientific publications should be involved in evaluating results of clinical trials. The National Council of Biosecurity should be the governmental institution responsible for developing a system of dual use research threat prevention. Its role would be to develop codes of conduct, form counsel of expertise, and monitor the problem at national level, while the Dual Use Research Committee would be responsible for individual cases. In Poland, current actions aiming to provide biological safety were based on developing and passing an act about genetically modified organisms (GMO's) and creating a GMO Committee. Considering experiences of other nations, one should view these actions as fragmentary, and thus insufficient protection against dual use research threats.

  6. The mammary gland in domestic ruminants: a systems biology perspective.

    Science.gov (United States)

    Ferreira, Ana M; Bislev, Stine L; Bendixen, Emøke; Almeida, André M

    2013-12-06

    Milk and dairy products are central elements in the human diet. It is estimated that 108kg of milk per year are consumed per person worldwide. Therefore, dairy production represents a relevant fraction of the economies of many countries, being cattle, sheep, goat, water buffalo, and other ruminants the main species used worldwide. An adequate management of dairy farming cannot be achieved without the knowledge on the biological mechanisms behind lactation in ruminants. Thus, understanding the morphology, development and regulation of the mammary gland in health, disease and production is crucial. Presently, innovative and high-throughput technologies such as genomics, transcriptomics, proteomics and metabolomics allow a much broader and detailed knowledge on such issues. Additionally, the application of a systems biology approach to animal science is vastly growing, as new advances in one field of specialization or animal species lead to new lines of research in other areas or/and are expanded to other species. This article addresses how modern research approaches may help us understand long-known issues in mammary development, lactation biology and dairy production. Dairy production depends upon the knowledge of the morphology and regulation of the mammary gland and lactation. High-throughput technologies allow a much broader and detailed knowledge on the biology of the mammary gland. This paper reviews the major contributions that genomics, transcriptomics, metabolomics and proteomics approaches have provided to understand the regulation of the mammary gland in health, disease and production. In the context of mammary gland "omics"-based research, the integration of results using a Systems Biology Approach is of key importance. © 2013.

  7. Human evolution. Evolution of early Homo: an integrated biological perspective.

    Science.gov (United States)

    Antón, Susan C; Potts, Richard; Aiello, Leslie C

    2014-07-04

    Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments. Copyright © 2014, American Association for the Advancement of Science.

  8. An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica

    Directory of Open Access Journals (Sweden)

    j. Alistair Crame

    1999-12-01

    Full Text Available The origins of present day benthic marine faunas from both the Magellan and Antarctic provinces may lie as far back as the Early Cretaceous (approx. 130 Ma. This was the time of the first significant marine incursion across the Gondwana supercontinent and isolation of a high-latitude group of continents. It was also the probable time of formation of the temperate, Pacific-margin Weddellian Province, which extended from Patagonia, through Antarctica and New Zealand, to south-eastern Australia. Both palaeontological and phylogenetic evidence suggest that a number of living taxa (i.e. genera and families from both provinces can be traced back to the Late Cretaceous-earliest Cenozoic interval. At this time there was no discernible gradient in taxonomic diversity from either southernmost South America or Australasia into Antarctica. The long, essentially temperate, Eocene epoch was followed by a period of major change during the ensuing Oligocene. At some time during this interval the Antarctic circum-polar current was fully formed and this led to a vicariant event between the Magellan and Antarctic faunas. However, it is important to stress that the intensification of circumpolar circulation also promoted at least some dispersal between various Subantarctic and Antarctic sites. In all probability, it was as late as the late Miocene (some 10-12 m.y. ago before an intense pattern of thermal zonation (in both horizontal and vertical senses was established in the world ocean. This may be the true time of full differentiation between the Magellan and Antarctic provinces. Although certain major groups, such as the bivalve molluscs and decapod crustaceans, have obviously declined within Antarctic regions through time, others, such as the bryozoans, echinoderms, amphipods and isopods appear to have flourished. The key to evolutionary success in cold polar waters may be not so much resistance to low temperatures, but the ability to exploit novel habitats and

  9. Using the Principles of SoTL to Redesign an Advanced Evolutionary Biology Course

    Directory of Open Access Journals (Sweden)

    Michael deBraga

    2015-03-01

    Full Text Available A primary goal of university instruction is the students’ demonstration of improved, highly developed critical thinking (CT skills. However, how do faculty encourage CT and its potential concomitant increase in student workload without negatively impacting student perceptions of the course? In this investigation, an advanced biology course is evaluated after structural changes (implemented in 2010 met with a poor student evaluation of the course and the instructor. This analysis first examines the steps used to transform a course to encourage CT and then explains how it can be assessed. To accomplish these goals, the instructor collaborated with an educational developer to redesign the course using a philosophy informed by SoTL. This approach, as we see it, represents a set of principles that demand transparency in the development and application of strategies whose aim is to encourage student learning. However, the SoTL approach would be insufficient to simply promote a set of strategies without some mechanism for evaluating its efficacy. Therefore, we designed a “Graded Response” (GR multiple-choice test to measure CT development and hence to properly evaluate whether the strategies embedded in our SoTL-informed course redesign have adequately met our goals.

  10. How Menthol Alters Tobacco-Smoking Behavior: A Biological Perspective.

    Science.gov (United States)

    Wickham, R J

    2015-09-01

    Mentholated cigarettes gained popularity in the 1950s and were often marketed as "healthy" cigarettes, attributable to their pleasurable mint flavor and cooling sensation in the mouth, lungs, and throat. While it is clear that nicotine is the primary psychoactive component in tobacco cigarettes, recent work has suggested that menthol may also play a role in exacerbating smoking behavior, despite original health claims. Recent evidence highlights four distinct biological mechanisms that can alter smoking behavior: 1) menthol acts to reduce the initially aversive experiences associated with tobacco smoking; 2) menthol can serve as a highly reinforcing sensory cue when associated with nicotine and promote smoking behavior; 3) menthol's actions on nicotinic acetylcholine receptors may change the reinforcing value of nicotine; and 4) menthol can alter nicotine metabolism, thus increasing nicotine bioavailability. The purpose of this review is to highlight and evaluate potential biological mechanisms by which menthol can alter smoking behavior.

  11. Review paper Personality and genes: remarks from a biological perspective

    Directory of Open Access Journals (Sweden)

    Grzegorz Węgrzyn

    2014-10-01

    Full Text Available Although there is no doubt that genes’ functions influence human personality, years of studies provided no clear picture on regulation of particular traits by specific genes. In this article, an overview of the complexity of the system of genetic control of personality is presented, and the level of complications of biological processes operating in this system is underlined. The methodology of studies devoted to determine effects of genes on personality traits is discussed, and limitations of various methods in such studies are indicated. Finally, suggestions for further research are listed and commented on. It is likely that to increase the level of our understanding of genetic mechanisms that modulate human personality, researchers conducting further studies will have to focus on using large sample sizes, performing independent replications, considering experiments on animal models, integrating cross-cultural data and epigenetic measures, and performing interdisciplinary experiments which combine methods of various disciplines, such as biology and psychology.

  12. PERSPECTIVES FOR DEVELOPMENT OF THE BIOLOGIC PLUM PRODUCTION IN BULGARIA

    Directory of Open Access Journals (Sweden)

    Ivanka Vitanova

    2014-03-01

    Full Text Available The Bulgarian plum cultivars Gabrovska, Nevena, Strinava, Guliaeva and Balvanska slava, breeding in the Plum Experimental Station in the town of Dryanovo and the introduced cultivars Stanley, Chachanska lepotitsa, Opal, Malvazinka, Hramova renkloda, Tuleu timpuriu, Althan’s Gage, Pacific, Mirabell de Nancy, Anna Schpet and Jojo, what are high productive and are tolerant to sharka and other important economic plum diseases are suitable for the biologic plum production. The organic fertilization is a basic element of the technology for the biologic plum production. The fertilization with manure and the green manure with a winter green peas and with a peas-rye mix increased the humus content, influenced positive action on the supplying of the plum plants with the main nutrient macro elements, increased the yield and to be able apply successfully in the plum orchards and at not irrigation conditions.

  13. Effects of abiotic stress on plants: a systems biology perspective.

    Science.gov (United States)

    Cramer, Grant R; Urano, Kaoru; Delrot, Serge; Pezzotti, Mario; Shinozaki, Kazuo

    2011-11-17

    The natural environment for plants is composed of a complex set of abiotic stresses and biotic stresses. Plant responses to these stresses are equally complex. Systems biology approaches facilitate a multi-targeted approach by allowing one to identify regulatory hubs in complex networks. Systems biology takes the molecular parts (transcripts, proteins and metabolites) of an organism and attempts to fit them into functional networks or models designed to describe and predict the dynamic activities of that organism in different environments. In this review, research progress in plant responses to abiotic stresses is summarized from the physiological level to the molecular level. New insights obtained from the integration of omics datasets are highlighted. Gaps in our knowledge are identified, providing additional focus areas for crop improvement research in the future.

  14. Developmental perspectives on personality: implications for ecological and evolutionary studies of individual differences.

    Science.gov (United States)

    Stamps, Judy A; Groothuis, Ton G G

    2010-12-27

    Developmental processes can have major impacts on the correlations in behaviour across contexts (contextual generality) and across time (temporal consistency) that are the hallmarks of animal personality. Personality can and does change: at any given age or life stage it is contingent upon a wide range of experiential factors that occurred earlier in life, from prior to conception through adulthood. We show how developmental reaction norms that describe the effects of prior experience on a given behaviour can be used to determine whether the effects of a given experience at a given age will affect contextual generality at a later age, and to illustrate how variation within individuals in developmental plasticity leads to variation in contextual generality across individuals as a function of experience. We also show why niche-picking and niche-construction, behavioural processes which allow individuals to affect their own developmental environment, can affect the contextual generality and the temporal consistency of personality. We conclude by discussing how an appreciation of developmental processes can alert behavioural ecologists studying animal personality to critical, untested assumptions that underlie their own research programmes, and outline situations in which a developmental perspective can improve studies of the functional significance and evolution of animal personality.

  15. Challenges and perspectives of chemical biology, a successful multidisciplinary field of natural sciences.

    Science.gov (United States)

    Rojas-Ruiz, Fernando A; Vargas-Méndez, Leonor Y; Kouznetsov, Vladimir V

    2011-03-23

    Objects, goals, and main methods as well as perspectives of chemical biology are discussed. This review is focused on the fundamental aspects of this emerging field of life sciences: chemical space, the small molecule library and chemical sensibilization (small molecule microassays).

  16. Evolutionary perspectives on emotions and their link to intentions, dispositions and behavior. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    Science.gov (United States)

    Wildgruber, Dirk; Kreifelts, Benjamin

    2015-06-01

    Koelsch and coworkers present a sophisticated neuroanatomical model of emotions comprising four affect-systems and four output-systems, each bound to a specific brain area [1]. Moreover, they suggest the emergence of distinct components of subjective feelings or "emotion percepts" due to integration of the activation across these subsystems. Incorporating numerous neurobiological, psychological and philosophical findings on human emotions, the model reflects an extensive interdisciplinary approach. Considering an evolutionary perspective, however, we would like to address some issues concerning emotions and their link to intentions, dispositions and behavior that are not fully covered by the Quartet Model. Charles Darwin pointed out that individuals that are better adapted to their environment have increased chances of survival and reproduction. Therefore, natural selection leads to a rising prevalence of properties offering a survival benefit across generations [2]. To better understand the biological functions of emotions we propose to ask the question: How do emotions provide a benefit for survival and reproduction?

  17. Human impact on fish sensory systems in the long term: an evolutionary perspective.

    Science.gov (United States)

    Zakon, Harold H

    2015-01-01

    Humans have severely impacted global ecosystems and this shows few signs of abating. Many aspects of an animal's biology, including its sensory systems, may be adversely influenced by pollutants and environmental noise. This review focuses on whether and/or how various environmental disturbances disrupt the sensory systems of fishes. As critical as it is to document and understand the current effects of the human footprint, it is also important to consider how organisms might adapt to these impacts over the long term. The present paper outlines the sources of genetic and genomic variation upon which natural selection can act and then reviews examples of known genetic contributions of variation in fish chemosensory, visual and acoustico-lateralis systems. © 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  18. Erziehung in einer biologisch determinierten Welt--Herausforderung fur die Theoriebildung einer Evolutionaren Padagogik aus Biologischer Perspektive (Education in a Biologically Determined World--A Challenge for a Theory of Evolutionary Pedagogics from a Biological Point of View).

    Science.gov (United States)

    Voland, Eckart; Voland, Renate

    2002-01-01

    Designates four challenges for a theory of evolutionary pedagogics which result from the theoretical progress made in biological science: (1) subjectively perceived autonomy; (2) teachability; (3) preparation for future life; and (4) the reality norm dilemma. Argues that these confrontations are the theoretical challenges for the further…

  19. Present and future of NMR for RNA-protein complexes: a perspective of integrated structural biology.

    Science.gov (United States)

    Carlomagno, Teresa

    2014-04-01

    Nucleic acids are gaining enormous importance as key molecules in almost all biological processes. Most nucleic acids do not act in isolation but are generally associated with proteins to form high-molecular-weight nucleoprotein complexes. In this perspective article I focus on the structural studies of supra-molecular ribonucleoprotein (RNP) assemblies in solution by a combination of state-of-the-art TROSY-based NMR experiments and other structural biology techniques. I discuss ways how to combine sparse NMR data with low-resolution structural information from small-angle scattering, fluorescence and electron paramagnetic resonance spectroscopy to obtain the structure of large RNP particles by an integrated structural biology approach. In the last section I give a perspective for the study of RNP complexes by solid-state NMR. Copyright © 2013 The Author. Published by Elsevier Inc. All rights reserved.

  20. Where Did You Come From? Where Will You Go? Human Evolutionary Biology Education and American Students' Academic Interests and Achievements, Professional Goals, and Socioscientific Decision-making

    Science.gov (United States)

    Schrein, Caitlin M.

    In the United States, there is a national agenda to increase the number of qualified science, technology, engineering, and maths (STEM) professionals and a movement to promote science literacy among the general public. This project explores the association between formal human evolutionary biology education (HEB) and high school science class enrollment, academic achievement, interest in a STEM degree program, motivation to pursue a STEM career, and socioscientific decision-making for a sample of students enrolled full-time at Arizona State University. Given a lack of a priori knowledge of these relationships, the Grounded Theory Method was used and was the foundation for a mixed-methods analysis involving qualitative and quantitative data from one-on-one interviews, focus groups, questionnaires, and an online survey. Theory development and hypothesis generation were based on data from 44 students. The survey instrument, developed to test the hypotheses, was completed by 486 undergraduates, age 18--22, who graduated from U.S. public high schools. The results showed that higher exposure to HEB was correlated with greater high school science class enrollment, particularly for advanced biological science classes, and that, for some students, HEB exposure may have influenced their enrollment, because the students found the content interesting and relevant. The results also suggested that students with higher K--12 HEB exposure felt more prepared for undergraduate science coursework. There was a positive correlation between HEB exposure and interest in a STEM degree and an indirect relationship between higher HEB exposure and motivation to pursue a STEM career. Regarding a number of socioscientific issues, including but not limited to climate change, homosexuality, and stem cell research, students' behaviors and decision-making more closely reflected a scientific viewpoint---or less-closely aligned to a religion-based perspective---when students had greater HEB exposure

  1. Charge Migration in DNA Perspectives from Physics, Chemistry, and Biology

    CERN Document Server

    Chakraborty, Tapash

    2007-01-01

    Charge migration through DNA has been the focus of considerable interest in recent years. A deeper understanding of the nature of charge transfer and transport along the double helix is important in fields as diverse as physics, chemistry and nanotechnology. It has also important implications in biology, in particular in DNA damage and repair. This book presents contributions from an international team of researchers active in this field. It contains a wide range of topics that includes the mathematical background of the quantum processes involved, the role of charge transfer in DNA radiation damage, a new approach to DNA sequencing, DNA photonics, and many others. This book should be of value to researchers in condensed matter physics, chemical physics, physical chemistry, and nanoscale sciences.

  2. Linking Microbiota to Human Diseases: A Systems Biology Perspective.

    Science.gov (United States)

    Wu, Hao; Tremaroli, Valentina; Bäckhed, Fredrik

    2015-12-01

    The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2 diabetes (T2D), and irritable bowel syndrome, and some animal experiments have suggested causality. However, few studies have validated causality in humans and the underlying mechanisms remain largely to be elucidated. We discuss how systems biology approaches combined with new experimental technologies may disentangle some of the mechanistic details in the complex interactions of diet, microbiota, and host metabolism and may provide testable hypotheses for advancing our current understanding of human-microbiota interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A Biological Perspective on the Meaning of Time

    Science.gov (United States)

    Rothschild, Lynn J.

    2014-01-01

    We have become impatient waiting for a web page to load, but the first member of our species evolved about 150,000 years ago - a geological instant as brief and as transitory as a text message. The shortest generation time of a bacterium is a sprint at under ten minutes, whereas a 200-year old whale, turtle or tree is not unknown. Life is a phenomenon that integrates processes ranging from the near instantaneous reactions of photosynthesis to the more stately pace of evolution. Here I will elucidate these processes with radically different time scales that go to creating and maintaining the diversity of life on earth, the clocks that nature uses to time them, and how modern biology is being used to alter the natural time scales.

  4. An ecological and evolutionary perspective on the parallel invasion of two cross-compatible trees.

    Science.gov (United States)

    Besnard, Guillaume; Cuneo, Peter

    2016-01-01

    Invasive trees are generally seen as ecosystem-transforming plants that can have significant impacts on native vegetation, and often require management and control. Understanding their history and biology is essential to guide actions of land managers. Here, we present a summary of recent research into the ecology, phylogeography and management of invasive olives, which are now established outside of their native range as high ecological impact invasive trees. The parallel invasion of European and African olive in different climatic zones of Australia provides an interesting case study of invasion, characterized by early genetic admixture between domesticated and wild taxa. Today, the impact of the invasive olives on native vegetation and ecosystem function is of conservation concern, with European olive a declared weed in areas of South Australia, and African olive a declared weed in New South Wales and Pacific islands. Population genetics was used to trace the origins and invasion of both subspecies in Australia, indicating that both olive subspecies have hybridized early after introduction. Research also indicates that African olive populations can establish from a low number of founder individuals even after successive bottlenecks. Modelling based on distributional data from the native and invasive range identified a shift of the realized ecological niche in the Australian invasive range for both olive subspecies, which was particularly marked for African olive. As highly successful and long-lived invaders, olives offer further opportunities to understand the genetic basis of invasion, and we propose that future research examines the history of introduction and admixture, the genetic basis of adaptability and the role of biotic interactions during invasion. Advances on these questions will ultimately improve predictions on the future olive expansion and provide a solid basis for better management of invasive populations. © The Authors 2016. Published by Oxford

  5. Flagellar movement in two bacteria of the family rickettsiaceae: a re-evaluation of motility in an evolutionary perspective.

    Directory of Open Access Journals (Sweden)

    Claudia Vannini

    Full Text Available Bacteria of the family Rickettsiaceae have always been largely studied not only for their importance in the medical field, but also as model systems in evolutionary biology. In fact, they share a recent common ancestor with mitochondria. The most studied species, belonging to genera Rickettsia and Orientia, are hosted by terrestrial arthropods and include many human pathogens. Nevertheless, recent findings show that a large part of Rickettsiaceae biodiversity actually resides outside the group of well-known pathogenic bacteria. Collecting data on these recently described non-conventional members of the family is crucial in order to gain information on ancestral features of the whole group. Although bacteria of the family Rickettsiaceae, and of the whole order Rickettsiales, are formally described as non-flagellated prokaryotes, some recent findings renewed the debate about this feature. In this paper we report the first finding of members of the family displaying numerous flagella and active movement inside their host cells. These two new taxa are hosted in aquatic environments by protist ciliates and are described here by means of ultrastructural and molecular characterization. Data here reported suggest that the ancestor of Rickettsiales displayed flagellar movement and re-evaluate the hypothesis that motility played a key-role in the origin of mitochondria. Moreover, our study highlights that the aquatic environment represents a well exploited habitat for bacteria of the family Rickettsiaceae. Our results encourage a deep re-consideration of ecological and morphological traits of the family and of the whole order.

  6. How the unique configuration of the human head may enhance flavor perception capabilities: an evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Daniel E Lieberman

    2014-07-01

    configuration of the human pharynx (Figure 1. Unlike other mammals, humans have a relatively short and retracted face, which results in a short oral cavity with a rounded tongue whose inferior margin lies well below the margin of the mandible. Because the hyoid and larynx are suspended from the base of the tongue, the human larynx becomes separated early in postnatal life relative to the oral cavity, causing humans to be the only species with a non-intranarial epiglottis in which the epiglottis does not contact the soft palate [3]. As a result, humans have no separation between the airway and foodway in the oropharynx. The non-intranarial epiglottis makes humans more likely to choke on food than other mammals, but helps humans produce more perceptible speech by setting up a two-tube vocal tract whose horizontal and vertical portions are equal in length and whose cross sectional areas can be modified independently by approximately 10-fold by the tongue [5]. Although this configuration almost certainly evolved for speech, it likely has beneficial consequences for retronasal olfaction. Whereas all other mammals, including chimpanzees, store a bolus of food prior to swallowing anterior to the epiglottis and thus removed from the airway, humans must store the bolus superior to the epiglottis in the pathway of expired air. Thus as humans breathe while chewing between swallows, expired air may be more likely to pick up volatile compounds from foods, which are then transported retronasally to the olfactory epithelium. The hypothesis that derived features of the human head and neck enhance retronasal olfaction needs to be tested. Comparative data are especially needed on retronasal airflow in a variety of mammals including other primates. In addition, more data are needed on retronasal olfactory perception in great apes such as chimpanzees. However, if true, then it is possible that humans may have uniquely enhanced abilities to detect flavor from food, raising several evolutionary

  7. How evolutionary principles improve the understanding of human health and disease.

    Science.gov (United States)

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-03-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies.

  8. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  9. AACR Centennial Series: The Biology of Cancer Metastasis: Historical Perspective

    Science.gov (United States)

    Talmadge, James E; Fidler, Isaiah J

    2014-01-01

    Metastases resistant to therapy is the major cause of death from cancer. Despite almost 200 years of study, the process of tumor metastasis remains controversial. Stephen Paget initially identified the role of host-tumor interactions on the basis of a review of autopsy records. His “seed and soil” hypothesis was substantiated a century later with experimental studies and numerous reports have confirmed these seminal observations. Inarguably, an improved understanding of the metastatic process and the attributes of the cells selected by this process are critical to the treatment of patients with systemic disease. In many patients, metastasis has occurred by the time of diagnosis, such that metastasis prevention may not be relevant, and treatment of systemic disease, as well as the identity of patients with early disease, should be our goal. During the last three decades, revitalized research has focused on new discoveries in the biology of metastasis. While our understanding of the molecular events that regulate metastasis has improved; nonetheless, the relevant contributions and timing of molecular lesion(s) potentially involved in its pathogenesis remain unclear. The history of pioneering observations and discussion of current controversies should help investigators understand the complex and multifactorial interactions between the host and selected tumor cells that contribute to fatal metastasis and allow for the design of successful therapy. PMID:20610625

  10. Cell wall biology: perspectives from cell wall imaging.

    Science.gov (United States)

    Lee, Kieran J D; Marcus, Susan E; Knox, J Paul

    2011-03-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth, are major repositories for photosynthetically accumulated carbon, and, in addition, impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose, hemicelluloses, and pectic polysaccharides. During the evolution of land plants, polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  11. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-off on Phenotype Robustness in Biological Networks Part I: Gene Regulatory Networks in Systems and Evolutionary Biology.

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view.

  12. Systems Biology Perspectives on Minimal and Simpler Cells

    Science.gov (United States)

    Xavier, Joana C.; Patil, Kiran Raosaheb

    2014-01-01

    SUMMARY The concept of the minimal cell has fascinated scientists for a long time, from both fundamental and applied points of view. This broad concept encompasses extreme reductions of genomes, the last universal common ancestor (LUCA), the creation of semiartificial cells, and the design of protocells and chassis cells. Here we review these different areas of research and identify common and complementary aspects of each one. We focus on systems biology, a discipline that is greatly facilitating the classical top-down and bottom-up approaches toward minimal cells. In addition, we also review the so-called middle-out approach and its contributions to the field with mathematical and computational models. Owing to the advances in genomics technologies, much of the work in this area has been centered on minimal genomes, or rather minimal gene sets, required to sustain life. Nevertheless, a fundamental expansion has been taking place in the last few years wherein the minimal gene set is viewed as a backbone of a more complex system. Complementing genomics, progress is being made in understanding the system-wide properties at the levels of the transcriptome, proteome, and metabolome. Network modeling approaches are enabling the integration of these different omics data sets toward an understanding of the complex molecular pathways connecting genotype to phenotype. We review key concepts central to the mapping and modeling of this complexity, which is at the heart of research on minimal cells. Finally, we discuss the distinction between minimizing the number of cellular components and minimizing cellular complexity, toward an improved understanding and utilization of minimal and simpler cells. PMID:25184563

  13. The Organic Anion Transporter (OAT) Family: A Systems Biology Perspective

    Science.gov (United States)

    Nigam, Sanjay K.; Bush, Kevin T.; Martovetsky, Gleb; Ahn, Sun-Young; Liu, Henry C.; Richard, Erin; Bhatnagar, Vibha; Wu, Wei

    2015-01-01

    The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the “Remote Sensing and Signaling Hypothesis,” which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling. PMID:25540139

  14. The evolutionary conformation from traditional lecture to active learning in an undergraduate biology course and its effects on student achievement

    Science.gov (United States)

    Diederich, Kirsten Bakke

    In response to the declining number of students in the United States entering into the STEM (science, technology, engineering, and math) disciplines, there has been an attempt to retain student interest in the sciences through the implementation of more active learning in the classroom. Active learning is defined as any instructional method that requires students do something in the classroom rather than simply listen to a lecture (Herreid, 2006). These student centered approaches provide the students with the opportunity to work cooperatively while developing the skills required for critical inquiry. They also help the students make the connections between what is being taught and how it can be applied in a real world setting. Science education researchers have attempted to analyze the efficacy of active learning. Although they find it difficult to compare the data, they state unequivocally that "Active learning is a better strategy for learning than the traditional didactic lecture format" (Prince, 2004). However, even though research supports the efficacy of active learning, instructors find it difficult to adopt this pedagogy into their classrooms due to concerns such as loss of content knowledge and student resistance. This three year qualitative and quantitative study addressed the level of student learning and satisfaction in an introductory vertebrate biology class at a small liberal arts college. The courses were taught by the same instructor using three pedagogical methods; traditional lecture (TL), problem-based learning (PBL), and case-based learning (CBL). Student grades and levels of assessment were compared between the TL and PBL, while student attrition rates, course satisfaction and views of active and group learning were analyzed across all three sections. The evolutionary confirmations from TL to PBL and ultimately the adoption of CBL as the method of choice are discussed from the view of both the faculty member and the students.

  15. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    He also enjoys music. (especially .... and, especially in ancient civilizations, the detailed classifica- tion of plants and animals was often based on their significance to humans. However, there was widespread recognition that the. I. , _ .___ l . ..... particular behaviour or morphological trait has evolved in that group of taxa.

  16. Reverse engineering and identification in systems biology: strategies, perspectives and challenges.

    Science.gov (United States)

    Villaverde, Alejandro F; Banga, Julio R

    2014-02-06

    The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology?

  17. Conclusions and perspectives: Perspectives for future research-and-development projects on biological

    NARCIS (Netherlands)

    Nicot, P.C.; Blum, B.; Köhl, J.; Ruocco, M.

    2011-01-01

    The review of published scientific literature on the biological control of selected pests and diseases has lead to the identification of clear knowledge gaps highlighted in previous chapters. Further bottlenecks were revealed by seeking the possible reasons for the striking discrepancy between the

  18. Systems biology of resilience and optimal health: integrating Chinese and Western medicine perspectives

    Directory of Open Access Journals (Sweden)

    Herman van Wietmarschen

    2017-05-01

    Full Text Available Western science has been strong in measuring details of biological systems such as gene expression levels and metabolite concentrations, and has generally followed a bottom up approach with regard to explaining biological phenomena. Chinese medicine in contrast has evolved as a top down approach in which body and mind is seen as a whole, a phenomenological approach based on the organization and dynamics of symptom patterns. Western and Chinese perspectives are developing towards a ‘middle out’ approach. Chinese medicine diagnosis, we will argue, allows bridging the gap between biologists and psychologists and offers new opportunities for the development of health monitoring tools and health promotion strategies.

  19. Advances on plant-pathogen interactions from molecular toward systems biology perspectives.

    Science.gov (United States)

    Peyraud, Rémi; Dubiella, Ullrich; Barbacci, Adelin; Genin, Stéphane; Raffaele, Sylvain; Roby, Dominique

    2017-05-01

    In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future. © 2016 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  20. Evolutionary perspectives on ageing

    Czech Academy of Sciences Publication Activity Database

    Reichard, Martin

    2017-01-01

    Roč. 70, SI (2017), s. 99-107 ISSN 1084-9521 R&D Projects: GA ČR(CZ) GA16-00291S Institutional support: RVO:68081766 Keywords : Gene-by-environment interactions * Germ-soma distinction * Intraspecific ageing rate * Modified mutation accumulation * Rejuvenation * Retrogression Subject RIV: EG - Zoology Impact factor: 6.614, year: 2016

  1. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    Science.gov (United States)

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  2. Evolutionary Theories in Environmental and Resource Economics: Approaches and Applications

    NARCIS (Netherlands)

    van den Bergh, J.C.J.M.; Gowdy, J.M.

    2000-01-01

    Recent advances in evolutionary theory have important implications for environmental economics. A short overview is offered of evolutionary thinking in economics. Subsequently, major concepts and approaches in evolutionary biology and evolutionary economics are presented and compared. Attention is

  3. Traumatic entrapment, appeasement and complex post-traumatic stress disorder: evolutionary perspectives of hostage reactions, domestic abuse and the Stockholm syndrome.

    Science.gov (United States)

    Cantor, Chris; Price, John

    2007-05-01

    Evolutionary theory and cross-species comparisons are explored to shed new insights into behavioural responses to traumatic entrapment, examining their relationships to the Stockholm syndrome (a specific response to traumatic entrapment) and complex post-traumatic stress disorder (PTSD). A selective literature review is undertaken examining responses to traumatic entrapment (including hostage, domestic abuse and similar situations) and the Stockholm syndrome, before examining mammalian, reptilian and other defensive responses to relevant threats. Chimpanzees, the closest relatives of humans, are closely examined from this perspective and commonalities in behavioural responses are highlighted. The neurobiological basis of defensive behaviours underlying PTSD is explored with reference to the triune brain model. Victims of protracted traumatic entrapment under certain circumstances may display the Stockholm syndrome, which involves paradoxically positive relationships with their oppressors that may persist beyond release. Similar responses are observed in many mammalian species, especially primates. Ethological concepts including dominance hierarchies, reverted escape, de-escalation and conditional reconciliation appear relevant and are illustrated. These phenomena are commonly encountered in victims of severe abuse and understanding these concepts may assist clinical management. Appeasement is the mammalian defence most relevant to the survival challenge presented by traumatic entrapment and appears to be the foundation of complex PTSD. Evolutionary perspectives have considerable potential to bridge and integrate neurobiology and the social sciences with respect to traumatic stress responses.

  4. Biological differences between the evolutionary lineages within Phytophthora ramorum and Phytophthora lateralis: Should the lineages be formally taxonomically designated?

    Science.gov (United States)

    Clive Brasier

    2017-01-01

    It is now generally accepted that the four evolutionary lineages of Phytophthora ramorum (informally designated NA1, NA2, EU1, and EU2) are relatively anciently divergent populations, recently introduced into Europe and North America from different, unknown geographic locations; that recombinants between them are genetically unstable and probably...

  5. Evolutionary institutionalism.

    Science.gov (United States)

    Fürstenberg, Dr Kai

    Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.

  6. Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Directory of Open Access Journals (Sweden)

    Gidrol Xavier

    2008-02-01

    Full Text Available Abstract Background Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge. Results We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC devoted to BN structure learning. Conclusion We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.

  7. The great opportunity: Evolutionary applications to medicine and public health.

    Science.gov (United States)

    Nesse, Randolph M; Stearns, Stephen C

    2008-02-01

    Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for

  8. Issues in Low Dose Radiation Biology: The Controversy Continues. A Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F.; Bair, William J.

    2013-05-01

    Both natural and man-made sources of ionizing radiation contribute to human exposure and consequently pose a risk to human health. Much of this is unavoidable, e.g., natural background radiation, and as the use of radiation in modern medicine and industry increases so does the potential health risk. This perspective reflects the author’s view of current issues in low dose radiation biology research, highlights some of the controversies therein, and suggests areas of future research to address these issues. The views expressed here are the authors own and do not represent any institution, organization or funding body.

  9. Is evolutionary biology becoming too politically correct? A reflection on the scala naturae, phylogenetically basal clades, anatomically plesiomorphic taxa, and 'lower' animals.

    Science.gov (United States)

    Diogo, Rui; Ziermann, Janine M; Linde-Medina, Marta

    2015-05-01

    , or the strepsirrhines and lemurs within the Primates, for instance. This review will contribute to improving our understanding of these broad evolutionary issues and of the evolution of the vertebrate Bauplans, and hopefully will stimulate future phylogenetic, evolutionary and developmental studies of these clades. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  10. Sex differences in jealousy in evolutionary and cultural perspective : Tests from the Netherlands, Germany, and the United States

    NARCIS (Netherlands)

    Buunk, BP; Angleitner, A; Oubaid, [No Value; Buss, DM

    1996-01-01

    As predicted by models derived from evolutionary psychology, men within the United States have been shown to exhibit greater psychological and physiological distress to sexual than to emotional infidelity of their partner, and women have been shown to exhibit more distress to emotional than to

  11. Quantitative genetics approaches to study evolutionary processes in ecotoxicology; a perspective from research on the evolution of resistance.

    Science.gov (United States)

    Klerks, Paul L; Xie, Lingtian; Levinton, Jeffrey S

    2011-05-01

    Quantitative genetic approaches are often used to study evolutionary processes in ecotoxicology. This paper focuses on the evolution of resistance to environmental contaminants-an important evolutionary process in ecotoxicology. Three approaches are commonly employed to study the evolution of resistance: (1) Assessing whether a contaminant-exposed population has an increased resistance relative to a control population, using either spatial or temporal comparisons. (2) Estimating a population's heritability of resistance. (3) Investigating responses in a laboratory selection experiment. All three approaches provide valuable information on the potential for contaminants to affect a population's evolutionary trajectory via natural selection. However, all three approaches have inherent limitations, including difficulty in separating the various genetic and environmental variance components, responses being dependent on specific population and testing conditions, and inability to fully capture natural conditions in the laboratory. In order to maximize insights into the long-term consequences of adaptation, it is important to not just look at resistance itself, but also at the fitness consequences and at correlated responses in characteristics other than resistance. The rapid development of molecular genetics has yielded alternatives to the "black box" approach of quantitative genetics, but the presence of different limitations and strengths in the two fields means that they should be viewed as complementary rather than exchangeable. Quantitative genetics is benefiting from the incorporation of molecular tools and remains an important field for studying evolutionary toxicology. © Springer Science+Business Media, LLC 2011

  12. Explaining financial and prosocial biases in favor of attractive people: Interdisciplinary perspectives from economics, social psychology, and evolutionary psychology.

    Science.gov (United States)

    Maestripieri, Dario; Henry, Andrea; Nickels, Nora

    2017-01-01

    Financial and prosocial biases in favor of attractive adults have been documented in the labor market, in social transactions in everyday life, and in studies involving experimental economic games. According to the taste-based discrimination model developed by economists, attractiveness-related financial and prosocial biases are the result of preferences or prejudices similar to those displayed toward members of a particular sex, racial, ethnic, or religious group. Other explanations proposed by economists and social psychologists maintain that attractiveness is a marker of personality, intelligence, trustworthiness, professional competence, or productivity. Evolutionary psychologists have argued that attractive adults are favored because they are preferred sexual partners. Evidence that stereotypes about attractive people are causally related to financial or prosocial biases toward them is weak or nonexistent. Consistent with evolutionary explanations, biases in favor of attractive women appear to be more consistent or stronger than those in favor of attractive men, and biases are more consistently reported in interactions between opposite-sex than same-sex individuals. Evolutionary explanations also account for increased prosocial behavior in situations in which attractive individuals are simply bystanders. Finally, evolutionary explanations are consistent with the psychological, physiological, and behavioral changes that occur when individuals are exposed to potential mates, which facilitate the expression of courtship behavior and increase the probability of occurrence of mating. Therefore, multiple lines of evidence suggest that mating motives play a more important role in driving financial and prosocial biases toward attractive adults than previously recognized.

  13. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    Science.gov (United States)

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  14. How to manage the biological risk in a dental clinic: current and future perspectives.

    Science.gov (United States)

    Saccucci, Matteo; Ierardo, Gaetano; Protano, Carmela; Vitali, Matteo; Polimeni, Antonella

    2017-10-01

    Dental personnel (DP) may be exposed to pathogens during dental treatment, either through contact contaminated equipment, or with blood and respiratory secretion. On the other hand, health care professionals are constantly exposed to pathogens and opportunists in their work environment. Consequently, the dental healthcare environment is connected with the risk of exposure to biological agents both for patients and dental workers, and involves a wide number of microorganisms that can be present in biological matrices (gingival fluids, saliva, blood), contaminated and/or non-sanitized surfaces, water used in the dental unit, or emitted by patients suffering or carrier of a transmissible disease. The main determinants of exposure to biological agents in dentistry are related, therefore, to several factors, such as the lack in the application of disinfection/sterilization procedures for surfaces, reusable tools, water, etc.; the lack in the use of protective equipment by workers; an insufficient or inefficient training of personnel; the use of non-targeted, too diluted, or expired biocides. Therefore, each single patient needs to be treated as a potential communicable infectious disease carrier and each case must receive high level of attention in compliance with preventive and hygiene standards, following disinfection and sterilization procedures, and always wearing personal protective equipment. The goal of this article was to discuss on the infection risks related to dental practice both for patients and workers, and to evaluate the state of the art and future perspectives, with particular attention to disinfection procedures, for occupational biological hazards and HAIs prevention in this setting.

  15. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert

    2015-04-10

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  16. Applying ecological and evolutionary theory to cancer: a long and winding road.

    Science.gov (United States)

    Thomas, Frédéric; Fisher, Daniel; Fort, Philippe; Marie, Jean-Pierre; Daoust, Simon; Roche, Benjamin; Grunau, Christoph; Cosseau, Céline; Mitta, Guillaume; Baghdiguian, Stephen; Rousset, François; Lassus, Patrice; Assenat, Eric; Grégoire, Damien; Missé, Dorothée; Lorz, Alexander; Billy, Frédérique; Vainchenker, William; Delhommeau, François; Koscielny, Serge; Itzykson, Raphael; Tang, Ruoping; Fava, Fanny; Ballesta, Annabelle; Lepoutre, Thomas; Krasinska, Liliana; Dulic, Vjekoslav; Raynaud, Peggy; Blache, Philippe; Quittau-Prevostel, Corinne; Vignal, Emmanuel; Trauchessec, Hélène; Perthame, Benoit; Clairambault, Jean; Volpert, Vitali; Solary, Eric; Hibner, Urszula; Hochberg, Michael E

    2013-01-01

    Since the mid 1970s, cancer has been described as a process of Darwinian evolution, with somatic cellular selection and evolution being the fundamental processes leading to malignancy and its many manifestations (neoangiogenesis, evasion of the immune system, metastasis, and resistance to therapies). Historically, little attention has been placed on applications of evolutionary biology to understanding and controlling neoplastic progression and to prevent therapeutic failures. This is now beginning to change, and there is a growing international interest in the interface between cancer and evolutionary biology. The objective of this introduction is first to describe the basic ideas and concepts linking evolutionary biology to cancer. We then present four major fronts where the evolutionary perspective is most developed, namely laboratory and clinical models, mathematical models, databases, and techniques and assays. Finally, we discuss several of the most promising challenges and future prospects in this interdisciplinary research direction in the war against cancer.

  17. Evolutionary and ecological perspectives of Late Paleozoic ferns. Part III. Anachoropterid ferns (including Anachoropteris, Tubicaulis, the Sermayaceae, Kaplanopteridaceae and Psalixochlaenaceae)

    OpenAIRE

    Galtier, Jean; Phillips, Tom L.

    2014-01-01

    The anachoropterid ferns, previously assigned to the family Anachoropteridaceae, are a group of anatomically preserved late Paleozoic filicalean ferns characterized by a C-shaped foliar xylem with abaxially recurved arms (inversicatenalean anatomy) and two main protoxylem strands. The variously curved to strongly inrolled foliar xylem certainly reflects different evolutionary trends within the morphogenus Anachoropteris. The occurrence of two groups of Tubicaulis is supported by differences i...

  18. Adolescent grandchildren’s perceptions of grandparents’ involvement in UK: an interpretation from life course and evolutionary theory perspective

    OpenAIRE

    Danielsbacka, Mirkka; Tanskanen, Antti O.

    2012-01-01

    In this article, we study grandparental involvement from the viewpoint of evolutionary theory and sociological life course perception. We have used ‘the Involved Grandparenting and Child Well-Being 2007’ survey, which is the first nationally representative sample of British and Welsh adolescents aged 11–16 (n = 1,488). First, we explore with the descriptive statistics the amount of grandparental involvement reported by adolescents. The result follows the predicted pattern: maternal grandparen...

  19. Not Just Add-Gender-&-Stir; Feminist Archaeology and the USe of Feminist and Evolutionary Biological Approaches to Patriarchy

    Directory of Open Access Journals (Sweden)

    Fiona Handley

    2000-11-01

    Full Text Available The relationship between men and women is of interest to many parties concerned with human behaviour. Feminists and evolutionary biologists are two such groups that have examined gender issues from different positions and have reached frequently opposing conclusions.  These divisions have only recently started to be breached as common ground is investigated.  This paper examines some of these issues, discusses the implications this rapprochement could have on feminist archaeology, and suggests the path for a development of a social archaeology that traverses the artificial barriers between 'nature' and 'culture'.

  20. Historical change and evolutionary theory.

    Science.gov (United States)

    Masters, Roger D

    2007-09-01

    Despite advances in fields like genetics, evolutionary psychology, and human behavior and evolution--which generally focus on individual or small group behavior from a biological perspective--evolutionary biology has made little impact on studies of political change and social history. Theories of natural selection often seem inapplicable to human history because our social behavior is embedded in language (which makes possible the concepts of time and social identity on which what we call "history" depends). Peter Corning's Holistic Darwinism reconceptualizes evolutionary biology, making it possible to go beyond the barriers separating the social and natural sciences. Corning focuses on two primary processes: "synergy" (complex multivariate interactions at multiple levels between a species and its environment) and "cybernetics" (the information systems permitting communication between individuals and groups over time). Combining this frame of reference with inclusive fitness theory, it is possible to answer the most important (and puzzling) question in human history: How did a species that lived for millennia in hunter-gatherer bands form centralized states governing large populations of non-kin (including multi-ethnic empires as well as modern nation-states)? The fragility and contemporary ethnic violence in Kenya and the Congo should suffice as evidence that these issues need to be taken seriously. To explain the rise and fall of states as well as changes in human laws and customs--the core of historical research--it is essential to show how the provision of collective goods can overcome the challenge of self-interest and free-riding in some instances, yet fail to do so in others. To this end, it is now possible to consider how a state providing public goods can--under circumstances that often include effective leadership--contribute to enhanced inclusive fitness of virtually all its members. Because social behavior needs to adapt to ecology, but ecological

  1. Rapid response to changing environments during biological invasions: DNA methylation perspectives.

    Science.gov (United States)

    Huang, Xuena; Li, Shiguo; Ni, Ping; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2017-12-01

    Dissecting complex interactions between species and their environments has long been a research hot spot in the fields of ecology and evolutionary biology. The well-recognized Darwinian evolution has well-explained long-term adaptation scenarios; however, "rapid" processes of biological responses to environmental changes remain largely unexplored, particularly molecular mechanisms such as DNA methylation that have recently been proposed to play crucial roles in rapid environmental adaptation. Invasive species, which have capacities to successfully survive rapidly changing environments during biological invasions, provide great opportunities to study molecular mechanisms of rapid environmental adaptation. Here, we used the methylation-sensitive amplified polymorphism (MSAP) technique in an invasive model ascidian, Ciona savignyi, to investigate how species interact with rapidly changing environments at the whole-genome level. We detected quite rapid DNA methylation response: significant changes of DNA methylation frequency and epigenetic differentiation between treatment and control groups occurred only after 1 hr of high-temperature exposure or after 3 hr of low-salinity challenge. In addition, we detected time-dependent hemimethylation changes and increased intragroup epigenetic divergence induced by environmental stresses. Interestingly, we found evidence of DNA methylation resilience, as most stress-induced DNA methylation variation maintained shortly (~48 hr) and quickly returned back to the control levels. Our findings clearly showed that invasive species could rapidly respond to acute environmental changes through DNA methylation modifications, and rapid environmental changes left significant epigenetic signatures at the whole-genome level. All these results provide fundamental background to deeply investigate the contribution of DNA methylation mechanisms to rapid contemporary environmental adaptation. © 2017 John Wiley & Sons Ltd.

  2. Understanding Schizophrenia as a Disorder of Consciousness: Biological Correlates and Translational Implications from Quantum Theory Perspectives

    Science.gov (United States)

    Venkatasubramanian, Ganesan

    2015-01-01

    From neurophenomenological perspectives, schizophrenia has been conceptualized as “a disorder with heterogeneous manifestations that can be integrally understood to involve fundamental perturbations in consciousness”. While these theoretical constructs based on consciousness facilitate understanding the ‘gestalt’ of schizophrenia, systematic research to unravel translational implications of these models is warranted. To address this, one needs to begin with exploration of plausible biological underpinnings of “perturbed consciousness” in schizophrenia. In this context, an attractive proposition to understand the biology of consciousness is “the orchestrated object reduction (Orch-OR) theory” which invokes quantum processes in the microtubules of neurons. The Orch-OR model is particularly important for understanding schizophrenia especially due to the shared ‘scaffold’ of microtubules. The initial sections of this review focus on the compelling evidence to support the view that “schizophrenia is a disorder of consciousness” through critical summary of the studies that have demonstrated self-abnormalities, aberrant time perception as well as dysfunctional intentional binding in this disorder. Subsequently, these findings are linked with ‘Orch-OR theory’ through the research evidence for aberrant neural oscillations as well as microtubule abnormalities observed in schizophrenia. Further sections emphasize the applicability and translational implications of Orch-OR theory in the context of schizophrenia and elucidate the relevance of quantum biology to understand the origins of this puzzling disorder as “fundamental disturbances in consciousness”. PMID:25912536

  3. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives.

    Science.gov (United States)

    Tordjman, Sylvie; Davlantis, Katherine S; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model.

  4. Understanding schizophrenia as a disorder of consciousness: biological correlates and translational implications from quantum theory perspectives.

    Science.gov (United States)

    Venkatasubramanian, Ganesan

    2015-04-30

    From neurophenomenological perspectives, schizophrenia has been conceptualized as "a disorder with heterogeneous manifestations that can be integrally understood to involve fundamental perturbations in consciousness". While these theoretical constructs based on consciousness facilitate understanding the 'gestalt' of schizophrenia, systematic research to unravel translational implications of these models is warranted. To address this, one needs to begin with exploration of plausible biological underpinnings of "perturbed consciousness" in schizophrenia. In this context, an attractive proposition to understand the biology of consciousness is "the orchestrated object reduction (Orch-OR) theory" which invokes quantum processes in the microtubules of neurons. The Orch-OR model is particularly important for understanding schizophrenia especially due to the shared 'scaffold' of microtubules. The initial sections of this review focus on the compelling evidence to support the view that "schizophrenia is a disorder of consciousness" through critical summary of the studies that have demonstrated self-abnormalities, aberrant time perception as well as dysfunctional intentional binding in this disorder. Subsequently, these findings are linked with 'Orch-OR theory' through the research evidence for aberrant neural oscillations as well as microtubule abnormalities observed in schizophrenia. Further sections emphasize the applicability and translational implications of Orch-OR theory in the context of schizophrenia and elucidate the relevance of quantum biology to understand the origins of this puzzling disorder as "fundamental disturbances in consciousness".

  5. Parent perspectives on privacy and governance for a pediatric repository of non-biological, research data.

    Science.gov (United States)

    Manhas, Kiran P; Page, Stacey; Dodd, Shawn X; Letourneau, Nicole; Ambrose, Aleta; Cui, Xinjie; Tough, Suzanne C

    2015-02-01

    Research data repositories (RDRs) are data storage entities where data can be submitted, stored, and subsequently accessed for purposes beyond the original intent. There is little information relating to non-biological RDRs, nor considerations regarding pediatric data storage and re-use. We examined parent perspectives on pediatric, non-biological RDRs. Qualitative, descriptive methods including both interviews and focus groups were used. Purposive sampling of adult participants in two provincial birth cohorts yielded 19 interviewees and 18 focus group participants (4 groups). Transcripts were analyzed by thematic content analysis. Parent research participants strongly supported the sharing of their own, and their child's, non-biological research data. Four themes emerged: that altruism has limits, that participants have ongoing privacy concerns, that some participants need the assurance of congruent values between themselves and researchers/research questions, and that opinions diverge for some governance issues. The establishment of RDRs is important and maximizes participants', researchers', and funders' investments. Participants as data donors have concerns relating to privacy, relationships, and governance that must be considered in RDR development. © The Author(s) 2014.

  6. Autism as a Disorder of Biological and Behavioral Rhythms: Toward New Therapeutic Perspectives

    Science.gov (United States)

    Tordjman, Sylvie; Davlantis, Katherine S.; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M.; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model. PMID:25756039

  7. Autism as a disorder of biological and behavioral rhythms: Towards new therapeutic perspectives

    Directory of Open Access Journals (Sweden)

    Sylvie eTordjman

    2015-02-01

    Full Text Available There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional and relational rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of peripheral oscillators suggests that this hormone might be also involved in the synchrony of motor, emotional and relational rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors or interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional and relational rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony such as the Early Start Denver Model (ESDM.

  8. Conceptual foundations of evolutionary thought

    Indian Academy of Sciences (India)

    K. P. MOHANAN

    2017-07-04

    Jul 4, 2017 ... This article seeks to explore the conceptual foundations of evolutionary thought in the physical, biological, and human sciences. Viewing evolution as symmetry breaking, it explores the concepts of change, history, and evolutionary history, and outlines a concept of biological macroevolution.

  9. Dental peculiarities in the silvery mole-rat: an original model for studying the evolutionary and biological origins of continuous dental generation in mammals

    Directory of Open Access Journals (Sweden)

    Helder Gomes Rodrigues

    2015-09-01

    Full Text Available Unravelling the evolutionary and developmental mechanisms that have impacted the mammalian dentition, since more than 200 Ma, is an intricate issue. Interestingly, a few mammal species, including the silvery mole-rat Heliophobius argenteocinereus, are able to replace their dentition by the addition of supernumerary molars at the back of jaw migrating then toward the front. The aim here was to demonstrate the potential interest of further studying this rodent in order to better understand the origins of continuous dental replacement in mammals, which could also provide interesting data concerning the evolution of limited dental generation occurring in first mammals. In the present study, we described the main stages of the dental eruptive sequence in the silvery mole-rat and the associated characteristics of horizontal replacement using X-ray microtomography. This was coupled to the investigation of other African mole-rats which have no dental replacement. This method permitted to establish evidence that the initial development of the dentition in Heliophobius is comparable to what it is observed in most of African mole-rats. This rodent first has premolars, but then identical additional molars, a mechanism convergent to manatees and the pygmy rock-wallaby. Evidence of continuous replacement and strong dental dynamics were also illustrated in Heliophobius, and stressed the need to deeply investigate these aspects for evolutionary, functional and developmental purposes. We also noticed that two groups of extinct non-mammalian synapsids convergently acquired this dental mechanism, but in a way differing from extant mammals. The discussion on the diverse evolutionary origins of horizontal dental replacement put emphasis on the necessity of focusing on biological parameters potentially involved in both continuous and limited developments of teeth in mammals. In that context, the silvery mole-rat could appear as the most appropriate candidate to do so.

  10. Evolutionary Theory under Fire.

    Science.gov (United States)

    Lewin, Roger

    1980-01-01

    Summarizes events of a conference on evolutionary biology in Chicago entitled: "Macroevolution." Reviews the theory of modern synthesis, a term used to explain Darwinism in terms of population biology and genetics. Issues presented at the conference are discussed in detail. (CS)

  11. Issues in low dose radiation biology: the controversy continues. A perspective.

    Science.gov (United States)

    Morgan, William F; Bair, William J

    2013-05-01

    Both natural and man-made sources of ionizing radiation contribute to human exposure and consequently pose a possible risk to human health. Much of this is unavoidable, e.g., natural background radiation, but as the use of radiation increases, so does the potential health risk and the public's concerns. This perspective reflects the authors' view of current issues in low dose radiation biology research, highlights some of the controversies therein, and suggests areas of future research to address both issues in low dose radiation research and the controversies. This is a critical time for the radiation sciences and the implications of future research will have a significant impact on radiation protection, medicine, national security, research and industry. The views expressed here are the authors' own and do not represent any institution, organization or funding body.

  12. Adolescent grandchildren's perceptions of grandparents' involvement in UK: an interpretation from life course and evolutionary theory perspective.

    Science.gov (United States)

    Danielsbacka, Mirkka; Tanskanen, Antti O

    2012-12-01

    In this article, we study grandparental involvement from the viewpoint of evolutionary theory and sociological life course perception. We have used 'the Involved Grandparenting and Child Well-Being 2007' survey, which is the first nationally representative sample of British and Welsh adolescents aged 11-16 (n = 1,488). First, we explore with the descriptive statistics the amount of grandparental involvement reported by adolescents. The result follows the predicted pattern: maternal grandparent is reported to involve in a grandchild's life the most, second maternal grandfather, third paternal grandmother and the last paternal grandfather. Second, we focus more closely on separate grandparents and show with four linear regression models which factors are connected to each grandparent's involvement. Grandchild's age, grandparent's health, grandparent's labour force participation and distance between a grandparent and a grandchild were factors that have similar effects in relation to all grandparents. Marital status mattered only for grandfathers, whereas family structure of a grandchild has opposite effects in relation to maternal and paternal grandparents. Grandchild's sex, grandparent's age, the number of grandchildren and the number of living grandparents all mattered, but only with respect to some grandparents. The study shows that it is advantageous to merge sociological and evolutionary viewpoints when studying a grandparental involvement in a modern society.

  13. Evolutionary analysis and interaction prediction for protein-protein interaction network in geometric space.

    Science.gov (United States)

    Huang, Lei; Liao, Li; Wu, Cathy H

    2017-01-01

    Prediction of protein-protein interaction (PPI) remains a central task in systems biology. With more PPIs identified, forming PPI networks, it has become feasible and also imperative to study PPIs at the network level, such as evolutionary analysis of the networks, for better understanding of PPI networks and for more accurate prediction of pairwise PPIs by leveraging the information gained at the network level. In this work we developed a novel method that enables us to incorporate evolutionary information into geometric space to improve PPI prediction, which in turn can be used to select and evaluate various evolutionary models. The method is tested with cross-validation using human PPI network and yeast PPI network data. The results show that the accuracy of PPI prediction measured by ROC score is increased by up to 14.6%, as compared to a baseline without using evolutionary information. The results also indicate that our modified evolutionary model DANEOsf-combining a gene duplication/neofunctionalization model and scale-free model-has a better fitness and prediction efficacy for these two PPI networks. The improved PPI prediction performance may suggest that our DANEOsf evolutionary model can uncover the underlying evolutionary mechanism for these two PPI networks better than other tested models. Consequently, of particular importance is that our method offers an effective way to select evolutionary models that best capture the underlying evolutionary mechanisms, evaluating the fitness of evolutionary models from the perspective of PPI prediction on real PPI networks.

  14. Evolutionary mysteries in meiosis

    NARCIS (Netherlands)

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E.; Wijnker, Erik; Haag, Christoph R.

    2016-01-01

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these

  15. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  16. The Emergence of New Industries in Space: An evolutionary understanding of industry emergence from a geographical perspective

    DEFF Research Database (Denmark)

    Tanner, Anne Nygaard

    This paper claims that in the field of economic geography, research questions about how new industries emerge and the degree to which their emergence are anchored in regional economies are less commonly studied than concepts of for example localisation economies and clusters. Consequently......, there is little knowledge regarding where new industries emerge and why new industries emerge where they do. Therefore there is a need to establish a more rigorous research agenda that will elucidate some of the more fundamental elements that contribute to the creation of new industries. It is the objective...... of this paper to contribute to the recently emerged evolutionary thinking in economic geography (Boschma, Martin 2007, Boschma, Frenken 2006, Grabher 2009) with a conceptual clarification of industry emergence. The paper first reviews the definition of emerging industries as it appears in the field...

  17. Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology

    NARCIS (Netherlands)

    Zadesenets, Kira S.; Vizoso, Dita B.; Schlatter, Aline; Konopatskaia, Irina D.; Berezikov, Eugene; Scharer, Lukas; Rubtsov, Nikolay B.

    2016-01-01

    Over the past decade, the free-living flatworm Macrostomum lignano has been successfully used in many areas of biology, including embryology, stem cells, sexual selection, bioadhesion and aging. The increased use of this powerful laboratory model, including the establishment of genomic resources and

  18. Modern application of evolutionary theory to psychology: key concepts and clarifications.

    Science.gov (United States)

    Goetz, Aaron T; Shackelford, Todd K

    2006-01-01

    Darwinian selection has become the centerpiece of biology, and in the past few decades many psychologists and anthropologists have recognized the value of using an evolutionary perspective to guide their work. With a focus on evolved psychological mechanisms and associated information processing features, evolutionary psychology has risen as a compelling and fruitful approach to the study of human psychology and behavior. In this article we review the instrument of evolution: natural selection, the products of evolution, and the impact of evolutionary thinking on modern psychological science. We conclude that as prejudicial barriers are overcome, as more evolutionary psychological work is conducted, and as hypothesized psychological mechanisms are substantiated in other disciplines, evolutionary psychology will emerge as the metatheory for psychology.

  19. Neuromuscular activity of the venoms of the Colombian coral snakes Micrurus dissoleucus and Micrurus mipartitus: an evolutionary perspective.

    Science.gov (United States)

    Renjifo, Camila; Smith, Eric N; Hodgson, Wayne C; Renjifo, Juan M; Sanchez, Armando; Acosta, Rodrigo; Maldonado, Jairo H; Riveros, Alain

    2012-01-01

    The venoms of coral snakes (genus Micrurus) are known to induce a broad spectrum of pharmacological activities. While some studies have investigated their potential human effects, little is known about their mechanism of action in terms of the ecological diversity and evolutionary relationships among the group. In the current study we investigated the neuromuscular blockade of the venom of two sister species Micrurus mipartitus and Micrurus dissoleucus, which exhibit divergent ecological characteristics in Colombia, by using the chick biventer cervicis nerve-muscle preparation. We also undertook a phylogenetic analysis of these species and their congeners, in order to provide an evolutionary framework for the American coral snakes. The venom of M. mipartitus caused a concentration-dependant inhibition (3-10 μg/ml) of nerve-mediated twitches and significantly inhibited contractile responses to exogenous ACh (1 mM), but not KCl (40 mM), indicating a postsynaptic mechanism of action. The inhibition of indirect twitches at the lower venom dose (3 μg/ml) showed to be triphasic and the effect was further attenuated when PLA2 was inhibited. M. dissoleucus venom (10-50 μg/ml) failed to produce a complete blockade of nerve-mediated twitches within a 3 h time period and significantly inhibited contractile responses to exogenous ACh (1 mM) and KCl (40 mM), indicating both postsynaptic and myotoxic mechanisms of action. Myotoxic activity was confirmed by morphological studies of the envenomed tissues. Our results demonstrate a hitherto unsuspected diversity of pharmacological actions in closely related species which exhibit divergent ecological characteristics; these results have important implications for both the clinical management of Coral snake envenomings and the design of Micrurus antivenom. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Quantitative Perspectives on Fifty Years of the Journal of the History of Biology.

    Science.gov (United States)

    Peirson, B R Erick; Bottino, Erin; Damerow, Julia L; Laubichler, Manfred D

    2017-11-01

    Journal of the History of Biology provides a fifty-year long record for examining the evolution of the history of biology as a scholarly discipline. In this paper, we present a new dataset and preliminary quantitative analysis of the thematic content of JHB from the perspectives of geography, organisms, and thematic fields. The geographic diversity of authors whose work appears in JHB has increased steadily since 1968, but the geographic coverage of the content of JHB articles remains strongly lopsided toward the United States, United Kingdom, and western Europe and has diversified much less dramatically over time. The taxonomic diversity of organisms discussed in JHB increased steadily between 1968 and the late 1990s but declined in later years, mirroring broader patterns of diversification previously reported in the biomedical research literature. Finally, we used a combination of topic modeling and nonlinear dimensionality reduction techniques to develop a model of multi-article fields within JHB. We found evidence for directional changes in the representation of fields on multiple scales. The diversity of JHB with regard to the representation of thematic fields has increased overall, with most of that diversification occurring in recent years. Drawing on the dataset generated in the course of this analysis, as well as web services in the emerging digital history and philosophy of science ecosystem, we have developed an interactive web platform for exploring the content of JHB, and we provide a brief overview of the platform in this article. As a whole, the data and analyses presented here provide a starting-place for further critical reflection on the evolution of the history of biology over the past half-century.