WorldWideScience

Sample records for evolutionary adaptive paths

  1. Evolutionary Paths

    NARCIS (Netherlands)

    Assche, van K.; Beunen, R.; Duineveld, M.

    2014-01-01

    In this chapter we discuss the concept of governance paths and the forms of dependency marking paths. The forms of dependency constitute rigidities in governance evolution, but leave space for flexibility, for path creation.

  2. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Feizi, Amir; Bisschops, Markus M. M.

    2017-01-01

    lactate degradation was crucial for tolerance to high concentrations of lactic acid. Our findings highlight the contribution of both the selection pressure and nature of the acid as a driver for directing the evolutionary path towards tolerance to low pH. The choice of carbon source was also an important......Tolerance of yeast to acid stress is important for many industrial processes including organic acid production. Therefore, elucidating the molecular basis of long term adaptation to acidic environments will be beneficial for engineering production strains to thrive under such harsh conditions....... Previous studies using gene expression analysis have suggested that both organic and inorganic acids display similar responses during short term exposure to acidic conditions. However, biological mechanisms that will lead to long term adaptation of yeast to acidic conditions remains unknown and whether...

  3. Characterizing the evolutionary path(s) to early Homo.

    Science.gov (United States)

    Schroeder, Lauren; Roseman, Charles C; Cheverud, James M; Ackermann, Rebecca R

    2014-01-01

    Numerous studies suggest that the transition from Australopithecus to Homo was characterized by evolutionary innovation, resulting in the emergence and coexistence of a diversity of forms. However, the evolutionary processes necessary to drive such a transition have not been examined. Here, we apply statistical tests developed from quantitative evolutionary theory to assess whether morphological differences among late australopith and early Homo species in Africa have been shaped by natural selection. Where selection is demonstrated, we identify aspects of morphology that were most likely under selective pressure, and determine the nature (type, rate) of that selection. Results demonstrate that selection must be invoked to explain an Au. africanus-Au. sediba-Homo transition, while transitions from late australopiths to various early Homo species that exclude Au. sediba can be achieved through drift alone. Rate tests indicate that selection is largely directional, acting to rapidly differentiate these taxa. Reconstructions of patterns of directional selection needed to drive the Au. africanus-Au. sediba-Homo transition suggest that selection would have affected all regions of the skull. These results may indicate that an evolutionary path to Homo without Au. sediba is the simpler path and/or provide evidence that this pathway involved more reliance on cultural adaptations to cope with environmental change.

  4. Characterizing the evolutionary path(s to early Homo.

    Directory of Open Access Journals (Sweden)

    Lauren Schroeder

    Full Text Available Numerous studies suggest that the transition from Australopithecus to Homo was characterized by evolutionary innovation, resulting in the emergence and coexistence of a diversity of forms. However, the evolutionary processes necessary to drive such a transition have not been examined. Here, we apply statistical tests developed from quantitative evolutionary theory to assess whether morphological differences among late australopith and early Homo species in Africa have been shaped by natural selection. Where selection is demonstrated, we identify aspects of morphology that were most likely under selective pressure, and determine the nature (type, rate of that selection. Results demonstrate that selection must be invoked to explain an Au. africanus-Au. sediba-Homo transition, while transitions from late australopiths to various early Homo species that exclude Au. sediba can be achieved through drift alone. Rate tests indicate that selection is largely directional, acting to rapidly differentiate these taxa. Reconstructions of patterns of directional selection needed to drive the Au. africanus-Au. sediba-Homo transition suggest that selection would have affected all regions of the skull. These results may indicate that an evolutionary path to Homo without Au. sediba is the simpler path and/or provide evidence that this pathway involved more reliance on cultural adaptations to cope with environmental change.

  5. Towards Adaptive Evolutionary Architecture

    DEFF Research Database (Denmark)

    Bak, Sebastian HOlt; Rask, Nina; Risi, Sebastian

    2016-01-01

    This paper presents first results from an interdisciplinary project, in which the fields of architecture, philosophy and artificial life are combined to explore possible futures of architecture. Through an interactive evolutionary installation, called EvoCurtain, we investigate aspects of how...... living in the future could occur, if built spaces could evolve and adapt alongside inhabitants. As such, present study explores the interdisciplinary possibilities in utilizing computational power to co-create with users and generate designs based on human input. We argue that this could lead...... to the development of designs tailored to the individual preferences of inhabitants, changing the roles of architects and designers entirely. Architecture-as-it-could-be is a philosophical approach conducted through artistic methods to anticipate the technological futures of human-centered development within...

  6. Towards Adaptive Evolutionary Architecture

    DEFF Research Database (Denmark)

    Bak, Sebastian HOlt; Rask, Nina; Risi, Sebastian

    2016-01-01

    This paper presents first results from an interdisciplinary project, in which the fields of architecture, philosophy and artificial life are combined to explore possible futures of architecture. Through an interactive evolutionary installation, called EvoCurtain, we investigate aspects of how...

  7. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory.

    Science.gov (United States)

    Ferriere, Regis; Legendre, Stéphane

    2013-01-19

    Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause 'evolutionary suicide'. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called 'evolutionary trapping'. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps.

  8. Evolutionary paths of streptococcal and staphylococcal superantigens

    Directory of Open Access Journals (Sweden)

    Okumura Kayo

    2012-08-01

    Full Text Available Abstract Background Streptococcus pyogenes (GAS harbors several superantigens (SAgs in the prophage region of its genome, although speG and smez are not located in this region. The diversity of SAgs is thought to arise during horizontal transfer, but their evolutionary pathways have not yet been determined. We recently completed sequencing the entire genome of S. dysgalactiae subsp. equisimilis (SDSE, the closest relative of GAS. Although speG is the only SAg gene of SDSE, speG was present in only 50% of clinical SDSE strains and smez in none. In this study, we analyzed the evolutionary paths of streptococcal and staphylococcal SAgs. Results We compared the sequences of the 12–60 kb speG regions of nine SDSE strains, five speG+ and four speG–. We found that the synteny of this region was highly conserved, whether or not the speG gene was present. Synteny analyses based on genome-wide comparisons of GAS and SDSE indicated that speG is the direct descendant of a common ancestor of streptococcal SAgs, whereas smez was deleted from SDSE after SDSE and GAS split from a common ancestor. Cumulative nucleotide skew analysis of SDSE genomes suggested that speG was located outside segments of steeper slopes than the stable region in the genome, whereas the region flanking smez was unstable, as expected from the results of GAS. We also detected a previously undescribed staphylococcal SAg gene, selW, and a staphylococcal SAg -like gene, ssl, in the core genomes of all Staphylococcus aureus strains sequenced. Amino acid substitution analyses, based on dN/dS window analysis of the products encoded by speG, selW and ssl suggested that all three genes have been subjected to strong positive selection. Evolutionary analysis based on the Bayesian Markov chain Monte Carlo method showed that each clade included at least one direct descendant. Conclusions Our findings reveal a plausible model for the comprehensive evolutionary pathway of streptococcal and

  9. Characterizing the Evolutionary Path(s) to Early Homo

    OpenAIRE

    Schroeder, Lauren; Roseman, Charles C.; Cheverud, James M.; Ackermann, Rebecca R.

    2014-01-01

    Numerous studies suggest that the transition from Australopithecus to Homo was characterized by evolutionary innovation, resulting in the emergence and coexistence of a diversity of forms. However, the evolutionary processes necessary to drive such a transition have not been examined. Here, we apply statistical tests developed from quantitative evolutionary theory to assess whether morphological differences among late australopith and early Homo species in Africa have been shaped by natural s...

  10. Exaptation, adaptation, and evolutionary psychology.

    Science.gov (United States)

    Schulz, Armin

    2013-01-01

    One of the most well known methodological criticisms of evolutionary psychology is Gould's claim that the program pays too much attention to adaptations, and not enough to exaptations. Almost as well known is the standard rebuttal of that criticism: namely, that the study of exaptations in fact depends on the study of adaptations. However, as I try to show in this paper, it is premature to think that this is where this debate ends. First, the notion of exaptation that is commonly used in this debate is different from the one that Gould and Vrba originally defined. Noting this is particularly important, since, second, the standard reply to Gould's criticism only works if the criticism is framed in terms of the former notion of exaptation, and not the latter. However, third, this ultimately does not change the outcome of the debate much, as evolutionary psychologists can respond to the revamped criticism of their program by claiming that the original notion of exaptation is theoretically and empirically uninteresting. By discussing these issues further, I also seek to determine, more generally, which ways of approaching the adaptationism debate in evolutionary biology are useful, and which not.

  11. Natural pedagogy as evolutionary adaptation.

    Science.gov (United States)

    Csibra, Gergely; Gergely, György

    2011-04-12

    We propose that the cognitive mechanisms that enable the transmission of cultural knowledge by communication between individuals constitute a system of 'natural pedagogy' in humans, and represent an evolutionary adaptation along the hominin lineage. We discuss three kinds of arguments that support this hypothesis. First, natural pedagogy is likely to be human-specific: while social learning and communication are both widespread in non-human animals, we know of no example of social learning by communication in any other species apart from humans. Second, natural pedagogy is universal: despite the huge variability in child-rearing practices, all human cultures rely on communication to transmit to novices a variety of different types of cultural knowledge, including information about artefact kinds, conventional behaviours, arbitrary referential symbols, cognitively opaque skills and know-how embedded in means-end actions. Third, the data available on early hominin technological culture are more compatible with the assumption that natural pedagogy was an independently selected adaptive cognitive system than considering it as a by-product of some other human-specific adaptation, such as language. By providing a qualitatively new type of social learning mechanism, natural pedagogy is not only the product but also one of the sources of the rich cultural heritage of our species.

  12. Evolutionary advantages of adaptive rewarding

    Science.gov (United States)

    Szolnoki, Attila; Perc, Matjaž

    2012-09-01

    Our well-being depends on both our personal success and the success of our society. The realization of this fact makes cooperation an essential trait. Experiments have shown that rewards can elevate our readiness to cooperate, but since giving a reward inevitably entails paying a cost for it, the emergence and stability of such behavior remains elusive. Here we show that allowing for the act of rewarding to self-organize in dependence on the success of cooperation creates several evolutionary advantages that instill new ways through which collaborative efforts are promoted. Ranging from indirect territorial battle to the spontaneous emergence and destruction of coexistence, phase diagrams and the underlying spatial patterns reveal fascinatingly rich social dynamics that explain why this costly behavior has evolved and persevered. Comparisons with adaptive punishment, however, uncover an Achilles heel of adaptive rewarding, coming from over-aggression, which in turn hinders optimal utilization of network reciprocity. This may explain why, despite its success, rewarding is not as firmly embedded into our societal organization as punishment.

  13. Teaching about Adaptation: Why Evolutionary History Matters

    Science.gov (United States)

    Kampourakis, Kostas

    2013-01-01

    Adaptation is one of the central concepts in evolutionary theory, which nonetheless has been given different definitions. Some scholars support a historical definition of adaptation, considering it as a trait that is the outcome of natural selection, whereas others support an ahistorical definition, considering it as a trait that contributes to…

  14. Adaptive path planning algorithm for cooperating unmanned air vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, C T; Roberts, R S

    2001-02-08

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  15. An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, C.T.; Roberts, R.S.

    2000-09-12

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  16. Financial Markets as Nonlinear Adaptive Evolutionary Systems

    OpenAIRE

    Hommes, C.H.

    2001-01-01

    This paper gives an overview of joint work with Buz Brock, on evolutionary adaptive belief systems (ABS) for modelling financial markets. Recent work with Andrea Gaunersdorfer is also reviewed and some recent experimental work on expectation formation in financial markets is also discussed. Financial markets are viewed as evolutionary systems between different, competing trading strategies. Agents are boundedly rational in the sense that they tend to follow strategies that have performed well...

  17. How Quasar Feedback May Shape the Co-evolutionary Paths

    Directory of Open Access Journals (Sweden)

    Wako Ishibashi

    2017-10-01

    Full Text Available Observations point toward some form of “co-evolutionary sequence,” from dust-enshrouded starbursts to luminous unobscured quasars. Active galactic nucleus (AGN feedback is generally invoked to expel the obscuring dusty gas in a blow-out event, eventually revealing the hidden central quasar. However, the physical mechanism driving AGN feedback, either due to winds or radiation, remains uncertain and is still a source of much debate. We consider quasar feedback, based on radiation pressure on dust, which directly acts on the obscuring dusty gas. We show that AGN radiative feedback is capable of efficiently removing the obscuring cocoon, and driving powerful outflows on galactic scales, consistent with recent observations. I will discuss how such quasar feedback may provide a natural physical interpretation of the observed evolutionary path, and the physical implications in the broader context of black hole-host galaxy co-evolution.

  18. Bone Adaptation as an Evolutionary Process

    DEFF Research Database (Denmark)

    Bagge, Mette

    1998-01-01

    The internal bone adaptation of the proximal femur is considered. A three-dimensional finite element model of the proximal femur is used. The bone remodeling in this work is numerically described byan evolutionary remodeling scheme with anisotropic material parameters andtime-dependent loading...

  19. Is adolescent bullying an evolutionary adaptation?

    Science.gov (United States)

    Volk, Anthony A; Camilleri, Joseph A; Dane, Andrew V; Marini, Zopito A

    2012-01-01

    Bullying appears to be ubiquitous across cultures, involving hundreds of millions of adolescents worldwide, and has potentially serious negative consequences for its participants (particularly victims). We challenge the traditionally held belief that bullying results from maladaptive development by reviewing evidence that bullying may be, in part, an evolved, facultative, adaptive strategy that offers some benefits to its practitioners. In support of this view, we draw from research that suggests bullying serves to promote adolescent bullies' evolutionarily-relevant somatic, sexual, and dominance goals, has a genetic basis, and is widespread among nonhuman animals. We identify and explain differences in the bullying behavior of the two sexes, as well as when and why bullying is adaptive and when it may not be. We offer commentary on both the failures and successes of current anti-bullying interventions from an evolutionary perspective and suggest future directions for both research and anti-bullying interventions. © 2012 Wiley Periodicals, Inc.

  20. [Migraine and evolutionary theory: paths for a clinical approach].

    Science.gov (United States)

    Alvaro-Gonzalez, L C

    2016-10-01

    Migraine is a very common disorder with a raising incidence. The theory of evolution allow us to explain the emergence of the disorder, due to the advantages that the overreactivity to stimulus provided to ancestral groups of Homo sapiens, and a greater presence of the disorder in modern societies, based in the interactions with external factors. Herein we analyze these points. Design of organisms and their responses to environmental factors emerge to improve survival. Thus pain and headache can be contemplated as homeostatic and adaptative responses. Below 10% of the population has no experience with headache and the migrainous phenotype is quite frequent in secondary headaches and in syndromic forms of migraine. These features can be understood under the next undergrounds: specific neurophysiological data (lack of habituation, sensibilization and low preactivation), genetic features (polygenic disorder with the implication of many gens with a low penetrance, that interact with the environment and are shared with comorbid disorders such as depression and anxiety); and environmental interactions in modern societies (increase in the number of estrogenic cycles and particularly overexposition to stress). A feature that was an evolutionary advantage has been transformed in a highly prevalent and disabling disorder in modern societies. It is the result of the interaction with internal (estrogenic cycles) and external (stress) stimuli. As a consequence, it becomes a mismatch disorder. The effects appear in childhood through epigenetics. Therefore, therapeutic interventions would yield greater benefits if whole populations were included in educative interventions incorporating these aspects.

  1. Genome-scale modeling of the evolutionary path to C4 photosynthesis

    Science.gov (United States)

    Myers, Christopher R.; Bogart, Eli

    In C4 photosynthesis, plants maintain a high carbon dioxide level in specialized bundle sheath cells surrounding leaf veins and restrict CO2 assimilation to those cells, favoring CO2 over O2 in competition for Rubisco active sites. In C3 plants, which do not possess such a carbon concentrating mechanism, CO2 fixation is reduced due to this competition. Despite the complexity of the C4 system, it has evolved convergently from more than 60 independent origins in diverse families of plants around the world over the last 30 million years. We study the evolution of the C4 system in a genome-scale model of plant metabolism that describes interacting mesophyll and bundle sheath cells and enforces key nonlinear kinetic relationships. Adapting the zero-temperature string method for simulating transition paths in physics and chemistry, we find the highest-fitness paths connecting C3 and C4 positions in the model's high-dimensional parameter space, and show that they reproduce known aspects of the C3-C4 transition while making additional predictions about metabolic changes along the path. We explore the relationship between evolutionary history and C4 biochemical subtype, and the effects of atmospheric carbon dioxide levels.

  2. Learning from evolutionary optimization by retracing search paths

    NARCIS (Netherlands)

    van der Walle, P.; Savolainen, Janne; Kuipers, L.; Herek, Jennifer Lynn

    2009-01-01

    Evolutionary search algorithms are used routinely to find optimal solutions for multi-parameter problems, such as complex pulse shapes in coherent control experiments. The algorithms are based on evolving a set of trial solutions iteratively until an optimum is reached, at which point the experiment

  3. Alternative Evolutionary Paths to Bacterial Antibiotic Resistance Cause Distinct Collateral Effects.

    Science.gov (United States)

    Barbosa, Camilo; Trebosc, Vincent; Kemmer, Christian; Rosenstiel, Philip; Beardmore, Robert; Schulenburg, Hinrich; Jansen, Gunther

    2017-09-01

    When bacteria evolve resistance against a particular antibiotic, they may simultaneously gain increased sensitivity against a second one. Such collateral sensitivity may be exploited to develop novel, sustainable antibiotic treatment strategies aimed at containing the current, dramatic spread of drug resistance. To date, the presence and molecular basis of collateral sensitivity has only been studied in few bacterial species and is unknown for opportunistic human pathogens such as Pseudomonas aeruginosa. In the present study, we assessed patterns of collateral effects by experimentally evolving 160 independent populations of P. aeruginosa to high levels of resistance against eight commonly used antibiotics. The bacteria evolved resistance rapidly and expressed both collateral sensitivity and cross-resistance. The pattern of such collateral effects differed to those previously reported for other bacterial species, suggesting interspecific differences in the underlying evolutionary trade-offs. Intriguingly, we also identified contrasting patterns of collateral sensitivity and cross-resistance among the replicate populations adapted to the same drug. Whole-genome sequencing of 81 independently evolved populations revealed distinct evolutionary paths of resistance to the selective drug, which determined whether bacteria became cross-resistant or collaterally sensitive towards others. Based on genomic and functional genetic analysis, we demonstrate that collateral sensitivity can result from resistance mutations in regulatory genes such as nalC or mexZ, which mediate aminoglycoside sensitivity in β-lactam-adapted populations, or the two-component regulatory system gene pmrB, which enhances penicillin sensitivity in gentamicin-resistant populations. Our findings highlight substantial variation in the evolved collateral effects among replicates, which in turn determine their potential in antibiotic therapy. © The Author 2017. Published by Oxford University Press on

  4. Robust Adaptive Photon Tracing using Photon Path Visibility

    DEFF Research Database (Denmark)

    Hachisuka, Toshiya; Jensen, Henrik Wann

    2011-01-01

    We present a new adaptive photon tracing algorithm which can handle illumination settings that are considered difficult for photon tracing approaches such as outdoor scenes, close-ups of a small part of an illuminated region, and illumination coming through a small gap. The key contribution in our...... algorithm is the use of visibility of photon path as the importance function which ensures that our sampling algorithm focuses on paths that are visible from the given viewpoint. Our sampling algorithm builds on two recent developments in Markov chain Monte Carlo methods: adaptive Markov chain sampling...... and replica exchange. Using these techniques, each photon path is adaptively mutated and it explores the sampling space efficiently without being stuck at a local peak of the importance function. We have implemented this sampling approach in the progressive photon mapping algorithm which provides visibility...

  5. Probing evolutionary repeatability: neutral and double changes and the predictability of evolutionary adaptation.

    Directory of Open Access Journals (Sweden)

    Scott William Roy

    Full Text Available The question of how organisms adapt is among the most fundamental in evolutionary biology. Two recent studies investigated the evolution of Escherichia coli in response to challenge with the antibiotic cefotaxime. Studying five mutations in the beta-lactamase gene that together confer significant antibiotic resistance, the authors showed a complex fitness landscape that greatly constrained the identity and order of intermediates leading from the initial wildtype genotype to the final resistant genotype. Out of 18 billion possible orders of single mutations leading from non-resistant to fully-resistant form, they found that only 27 (1.5x10(-7% pathways were characterized by consistently increasing resistance, thus only a tiny fraction of possible paths are accessible by positive selection. I further explore these data in several ways.Allowing neutral changes (those that do not affect resistance increases the number of accessible pathways considerably, from 27 to 629. Allowing multiple simultaneous mutations also greatly increases the number of accessible pathways. Allowing a single case of double mutation to occur along a pathway increases the number of pathways from 27 to 259, and allowing arbitrarily many pairs of simultaneous changes increases the number of possible pathways by more than 100 fold, to 4800. I introduce the metric 'repeatability,' the probability that two random trials will proceed via the exact same pathway. In general, I find that while the total number of accessible pathways is dramatically affected by allowing neutral or double mutations, the overall evolutionary repeatability is generally much less affected.These results probe the conceivable pathways available to evolution. Even when many of the assumptions of the analysis of Weinreich et al. (2006 are relaxed, I find that evolution to more highly cefotaxime resistant beta-lactamase proteins is still highly repeatable.

  6. Indirect evolutionary rescue: prey adapts, predator avoids extinction

    Science.gov (United States)

    Yamamichi, Masato; Miner, Brooks E

    2015-01-01

    Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator–prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term ‘indirect evolutionary rescue’, has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change. PMID:26366196

  7. Evolutionary adaptations: theoretical and practical implications for visual ergonomics.

    Science.gov (United States)

    Fostervold, Knut Inge; Watten, Reidulf G; Volden, Frode

    2014-01-01

    The literature discussing visual ergonomics often mention that human vision is adapted to light emitted by the sun. However, theoretical and practical implications of this viewpoint is seldom discussed or taken into account. The paper discusses some of the main theoretical implications of an evolutionary approach to visual ergonomics. Based on interactional theory and ideas from ecological psychology an evolutionary stress model is proposed as a theoretical framework for future research in ergonomics and human factors. The model stresses the importance of developing work environments that fits with our evolutionary adaptations. In accordance with evolutionary psychology, the environment of evolutionary adaptedness (EEA) and evolutionarily-novel environments (EN) are used as key concepts. Using work with visual display units (VDU) as an example, the paper discusses how this knowledge can be utilized in an ergonomic analysis of risk factors in the work environment. The paper emphasises the importance of incorporating evolutionary theory in the field of ergonomics. Further, the paper encourages scientific practices that further our understanding of any phenomena beyond the borders of traditional proximal explanations.

  8. AN ADAPTATIVE EVOLUTIONARY MODEL OF FINANCIAL INVESTORS

    Directory of Open Access Journals (Sweden)

    Stanculescu Mircea

    2009-05-01

    Full Text Available The main purpose of the paper is to determine a general behavior of a multi-agent model capable of describing the process of deliberation of an investors group witch may repeatedly decide whether to buy or sell an asset. Each adaptive agent was modeled as

  9. Path-oriented test cases generation based adaptive genetic algorithm.

    Science.gov (United States)

    Bao, Xiaoan; Xiong, Zijian; Zhang, Na; Qian, Junyan; Wu, Biao; Zhang, Wei

    2017-01-01

    The automatic generation of test cases oriented paths in an effective manner is a challenging problem for structural testing of software. The use of search-based optimization methods, such as genetic algorithms (GAs), has been proposed to handle this problem. This paper proposes an improved adaptive genetic algorithm (IAGA) for test cases generation by maintaining population diversity. It uses adaptive crossover rate and mutation rate in dynamic adjustment according to the differences between individual similarity and fitness values, which enhances the exploitation of searching global optimum. This novel approach is experimented and tested on a benchmark and six industrial programs. The experimental results confirm that the proposed method is efficient in generating test cases for path coverage.

  10. Adaptation and habitat selection in the eco-evolutionary process.

    Science.gov (United States)

    Morris, Douglas W

    2011-08-22

    The struggle for existence occurs through the vital rates of population growth. This basic fact demonstrates the tight connection between ecology and evolution that defines the emerging field of eco-evolutionary dynamics. An effective synthesis of the interdependencies between ecology and evolution is grounded in six principles. The mechanics of evolution specifies the origin and rules governing traits and evolutionary strategies. Traits and evolutionary strategies achieve their selective value through their functional relationships with fitness. Function depends on the underlying structure of variation and the temporal, spatial and organizational scales of evolution. An understanding of how changes in traits and strategies occur requires conjoining ecological and evolutionary dynamics. Adaptation merges these five pillars to achieve a comprehensive understanding of ecological and evolutionary change. I demonstrate the value of this world-view with reference to the theory and practice of habitat selection. The theory allows us to assess evolutionarily stable strategies and states of habitat selection, and to draw the adaptive landscapes for habitat-selecting species. The landscapes can then be used to forecast future evolution under a variety of climate change and other scenarios.

  11. Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance

    Science.gov (United States)

    Ogbunugafor, C. Brandon; Wylie, C. Scott; Diakite, Ibrahim; Weinreich, Daniel M.; Hartl, Daniel L.

    2016-01-01

    The adaptive landscape analogy has found practical use in recent years, as many have explored how their understanding can inform therapeutic strategies that subvert the evolution of drug resistance. A major barrier to applications of these concepts is a lack of detail concerning how the environment affects adaptive landscape topography, and consequently, the outcome of drug treatment. Here we combine empirical data, evolutionary theory, and computer simulations towards dissecting adaptive landscape by environment interactions for the evolution of drug resistance in two dimensions—drug concentration and drug type. We do so by studying the resistance mediated by Plasmodium falciparum dihydrofolate reductase (DHFR) to two related inhibitors—pyrimethamine and cycloguanil—across a breadth of drug concentrations. We first examine whether the adaptive landscapes for the two drugs are consistent with common definitions of cross-resistance. We then reconstruct all accessible pathways across the landscape, observing how their structure changes with drug environment. We offer a mechanism for non-linearity in the topography of accessible pathways by calculating of the interaction between mutation effects and drug environment, which reveals rampant patterns of epistasis. We then simulate evolution in several different drug environments to observe how these individual mutation effects (and patterns of epistasis) influence paths taken at evolutionary “forks in the road” that dictate adaptive dynamics in silico. In doing so, we reveal how classic metrics like the IC50 and minimal inhibitory concentration (MIC) are dubious proxies for understanding how evolution will occur across drug environments. We also consider how the findings reveal ambiguities in the cross-resistance concept, as subtle differences in adaptive landscape topography between otherwise equivalent drugs can drive drastically different evolutionary outcomes. Summarizing, we discuss the results with

  12. Monogonont rotifers as model systems for the study of micro-evolutionary adaptation and its eco-evolutionary implications

    NARCIS (Netherlands)

    Declerck, S.A.J.; Papakostas, S.

    2017-01-01

    A better understanding of the ability of organisms to adapt to local selection conditions is essential for a better insight in their ecological dynamics. The study of micro-evolutionary adaptation and its eco-evolutionary consequences is challenging for many reasons and the choice of a suitable

  13. Evolutionary path control strategy for solving many-objective optimization problem.

    Science.gov (United States)

    Roy, Proteek Chandan; Islam, Md Monirul; Murase, Kazuyuki; Yao, Xin

    2015-04-01

    The number of objectives in many-objective optimization problems (MaOPs) is typically high and evolutionary algorithms face severe difficulties in solving such problems. In this paper, we propose a new scalable evolutionary algorithm, called evolutionary path control strategy (EPCS), for solving MaOPs. The central component of our algorithm is the use of a reference vector that helps simultaneously minimizing all the objectives of an MaOP. In doing so, EPCS employs a new fitness assignment strategy for survival selection. This strategy consists of two procedures and our algorithm applies them sequentially. It encourages a population of solutions to follow a certain path reaching toward the Pareto optimal front. The essence of our strategy is that it reduces the number of nondominated solutions to increase selection pressure in evolution. Furthermore, unlike previous work, EPCS is able to apply the classical Pareto-dominance relation with the new fitness assignment strategy. Our algorithm has been tested extensively on several scalable test problems, namely five DTLZ problems with 5 to 40 objectives and six WFG problems with 2 to 13 objectives. Furthermore, the algorithm has been tested on six CEC09 problems having 2 or 3 objectives. The experimental results show that EPCS is capable of finding better solutions compared to other existing algorithms for problems with an increasing number of objectives.

  14. Evolutionary and differential psychology: conceptual conflicts and the path to integration

    Science.gov (United States)

    Marsh, Tim; Boag, Simon

    2013-01-01

    Evolutionary psychology has seen the majority of its success exploring adaptive features of the mind believed to be ubiquitous across our species. This has given rise to the belief that the adaptationist approach has little to offer the field of differential psychology, which concerns itself exclusively with the ways in which individuals systematically differ. By framing the historical origins of both disciplines, and exploring the means through which they each address the unique challenges of psychological description and explanation, the present article identifies the conceptual and theoretical problems that have kept differential psychology isolated not only from evolutionary psychology, but from explanatory approaches in general. Paying special attention to these conceptual problems, the authors review how these difficulties are being overcome by contemporary evolutionary research, and offer instructive suggestions concerning how differential researchers (and others) can best build upon these innovations. PMID:24065949

  15. Evolutionary and differential psychology: conceptual conflicts and the path to integration.

    Science.gov (United States)

    Marsh, Tim; Boag, Simon

    2013-01-01

    Evolutionary psychology has seen the majority of its success exploring adaptive features of the mind believed to be ubiquitous across our species. This has given rise to the belief that the adaptationist approach has little to offer the field of differential psychology, which concerns itself exclusively with the ways in which individuals systematically differ. By framing the historical origins of both disciplines, and exploring the means through which they each address the unique challenges of psychological description and explanation, the present article identifies the conceptual and theoretical problems that have kept differential psychology isolated not only from evolutionary psychology, but from explanatory approaches in general. Paying special attention to these conceptual problems, the authors review how these difficulties are being overcome by contemporary evolutionary research, and offer instructive suggestions concerning how differential researchers (and others) can best build upon these innovations.

  16. Evolutionary and Differential Psychology: Conceptual Conflicts and the Path to Integration

    Directory of Open Access Journals (Sweden)

    Tim eMarsh

    2013-09-01

    Full Text Available Evolutionary psychology has seen the majority of its success exploring adaptive features of the mind believed to be ubiquitous across our species. This has given rise to the belief that the adaptationist approach has little to offer the field of differential psychology, which concerns itself exclusively with the ways in which individuals systematically differ. By framing the historical origins of both disciplines, and exploring the means through which they each address the unique challenges of psychological description and explanation, the present article identifies the conceptual and theoretical problems that have kept differential psychology isolated not only from evolutionary psychology, but from explanatory approaches in general. Paying special attention to these conceptual problems, the authors review how these difficulties are being overcome by contemporary evolutionary research, and offer instructive suggestions concerning how differential researchers (and others can best build upon these innovations.

  17. Bite forces and evolutionary adaptations to feeding ecology in carnivores.

    Science.gov (United States)

    Christiansen, Per; Wroe, Stephen

    2007-02-01

    The Carnivora spans the largest ecological and body size diversity of any mammalian order, making it an ideal basis for studies of evolutionary ecology and functional morphology. For animals with different feeding ecologies, it may be expected that bite force represents an important evolutionary adaptation, but studies have been constrained by a lack of bite force data. In this study we present predictions of bite forces for 151 species of extant carnivores, comprising representatives from all eight families and the entire size and ecological spectrum within the order. We show that, when normalized for body size, bite forces differ significantly between the various feeding categories. At opposing extremes and independent of genealogy, consumers of tough fibrous plant material and carnivores preying on large prey both have high bite forces for their size, while bite force adjusted for body mass is low among specialized insectivores. Omnivores and carnivores preying on small prey have more moderate bite forces for their size. These findings indicate that differences in bite force represent important adaptations to and indicators of differing feeding ecologies throughout carnivoran evolution. Our results suggest that the incorporation of bite force data may assist in the construction of more robust evolutionary and palaeontological analyses of feeding ecology.

  18. Adapting to Population Growth: The Evolutionary Alternative to Malthus

    Directory of Open Access Journals (Sweden)

    Axel Kristinsson

    2016-06-01

    Full Text Available A long-standing debate on the dynamics of population growth in human history has become polarized between a Malthusian stance and a Boserupian one. The former tends to view population growth as limited by carrying capacity, dependent on environment and technology, whereas the latter sees population growth itself as a major inducement to social, economic and technological developments. In this paper the authors experiment with approaching this debate by using recent developments in evolutionary theory. According to these, evolutionary principles, as expounded by Charles Darwin and subsequent evolutionary scientists, apply not only to biological evolution but also to social or cultural evolution. Here, the role of genes is taken over by culture and, since culture is much more pliable than our DNA, evolution speeds up. As the only organisms on Earth whose evolution relies as heavily on culture as on genes, humans have become extremely adaptable. Their hyper-adaptability suggest that humans, through their cultural evolution, have managed increasingly to adapt to their own growing population, thus succeeding in accommodating ever-growing numbers. This hypothesis fits the Boserupian approach to population very well but less so the Malthusian one, perhaps indicating a gradual shift from a Malthusian regime to a Boserupian one in human history. The hypothesis is discussed and examined through four case studies: The beginning of farming around Göbekli Tepe in southeast Turkey, the productive farming systems of Tiwanaku in South America, the population crisis of late medieval and early modern Iceland, and the ‘collapse’ of Rapa Nui (Easter Island.

  19. Evolutionary adaptation to high altitude: a view from in utero

    Science.gov (United States)

    Julian, Colleen Glyde; Wilson, Megan J.; Moore, Lorna G.

    2010-01-01

    A primary focus within biological anthropology has been to elucidate the processes of evolutionary adaptation. A. Roberto Frisancho helped move anthropology towards more mechanistic explanations of human adaptation by drawing attention to the importance of the functional relevance of human variation. Using the natural laboratory of high altitude, he and others asked whether the unique physiology of indigenous high-altitude residents was the result of acclimatization, developmental plasticity and/or genetic adaptation in response to the high-altitude environment. We approach the question of human adaptation to high altitude from a somewhat unique vantage point; namely, by examining physiological characteristics – pregnancy and pregnancy outcome -- that are most closely associated with reproductive fitness. Here we review the potent example of high-altitude native population’s resistance to hypoxia-associated reductions in birth weight, which is often associated with higher infant morbidity and mortality at high altitude. With the exception of two recent publications, these comparative birth weight studies have utilized surnames, self-identification and/or linguistic characteristics to assess ancestry, and none have linked ‘advantageous’ phenotypes to specific genetic variations. Recent advancements in genetic and statistical tools have enabled us to assess individual ancestry with higher resolution, identify the genetic basis of complex phenotypes and to infer the effect of natural selection on specific gene regions. Using these technologies our studies are now directed to determine the genetic variations that underlie the mechanisms by which high-altitude ancestry protects fetal growth and, in turn, to further our understanding of evolutionary processes involved in human adaptation to high altitude. PMID:19367578

  20. Evolutionary adaptation to high altitude: a view from in utero.

    Science.gov (United States)

    Julian, Colleen Glyde; Wilson, Megan J; Moore, Lorna G

    2009-01-01

    A primary focus within biological anthropology has been to elucidate the processes of evolutionary adaptation. Frisancho helped to move anthropology towards more mechanistic explanations of human adaptation by drawing attention to the importance of the functional relevance of human variation. Using the natural laboratory of high altitude, he and others asked whether the unique physiology of indigenous high-altitude residents was the result of acclimatization, developmental plasticity, and/or genetic adaptation in response to the high-altitude environment. We approach the question of human adaptation to high altitude from a somewhat unique vantage point; namely, by examining physiological characteristics-pregnancy and pregnancy outcome-which are closely associated with reproductive fitness. Here we review the potent example of high-altitude native population's resistance to hypoxia-associated reductions in birth weight, which is often associated with higher infant morbidity and mortality at high altitude. With the exception of two recent publications, these comparative birth weight studies have utilized surnames, self-identification, and/or linguistic characteristics to assess ancestry, and none have linked 'advantageous' phenotypes to specific genetic variations. Recent advancements in genetic and statistical tools have enabled us to assess individual ancestry with higher resolution, identify the genetic basis of complex phenotypes and to infer the effect of natural selection on specific gene regions. Using these technologies our studies are now directed to determine the genetic variations that underlie the mechanisms by which high-altitude ancestry protects fetal growth and, in turn, to further our understanding of evolutionary processes involved in human adaptation to high altitude.

  1. Adaptation to fragmentation: evolutionary dynamics driven by human influences.

    Science.gov (United States)

    Cheptou, Pierre-Olivier; Hargreaves, Anna L; Bonte, Dries; Jacquemyn, Hans

    2017-01-19

    Fragmentation-the process by which habitats are transformed into smaller patches isolated from each other-has been identified as a major threat for biodiversity. Fragmentation has well-established demographic and population genetic consequences, eroding genetic diversity and hindering gene flow among patches. However, fragmentation should also select on life history, both predictably through increased isolation, demographic stochasticity and edge effects, and more idiosyncratically via altered biotic interactions. While species have adapted to natural fragmentation, adaptation to anthropogenic fragmentation has received little attention. In this review, we address how and whether organisms might adapt to anthropogenic fragmentation. Drawing on selected case studies and evolutionary ecology models, we show that anthropogenic fragmentation can generate selection on traits at both the patch and landscape scale, and affect the adaptive potential of populations. We suggest that dispersal traits are likely to experience especially strong selection, as dispersal both enables migration among patches and increases the risk of landing in the inhospitable matrix surrounding them. We highlight that suites of associated traits are likely to evolve together. Importantly, we show that adaptation will not necessarily rescue populations from the negative effects of fragmentation, and may even exacerbate them, endangering the entire metapopulation.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  2. Evolutionary online behaviour learning and adaptation in real robots.

    Science.gov (United States)

    Silva, Fernando; Correia, Luís; Christensen, Anders Lyhne

    2017-07-01

    Online evolution of behavioural control on real robots is an open-ended approach to autonomous learning and adaptation: robots have the potential to automatically learn new tasks and to adapt to changes in environmental conditions, or to failures in sensors and/or actuators. However, studies have so far almost exclusively been carried out in simulation because evolution in real hardware has required several days or weeks to produce capable robots. In this article, we successfully evolve neural network-based controllers in real robotic hardware to solve two single-robot tasks and one collective robotics task. Controllers are evolved either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions are found in a timely manner (1 h or less). Results show that more accurate simulations may lead to higher-performing controllers, and that completing the optimization process in real robots is meaningful, even if solutions found in simulation differ from solutions in reality. We furthermore demonstrate for the first time the adaptive capabilities of online evolution in real robotic hardware, including robots able to overcome faults injected in the motors of multiple units simultaneously, and to modify their behaviour in response to changes in the task requirements. We conclude by assessing the contribution of each algorithmic component on the performance of the underlying evolutionary algorithm.

  3. Evolutionary Adaptive Discovery of Phased Array Sensor Signal Identification

    Energy Technology Data Exchange (ETDEWEB)

    Timothy R. McJunkin; Milos Manic

    2011-05-01

    Tomography, used to create images of the internal properties and features of an object, from phased array ultasonics is improved through many sophisiticated methonds of post processing of data. One approach used to improve tomographic results is to prescribe the collection of more data, from different points of few so that data fusion might have a richer data set to work from. This approach can lead to rapid increase in the data needed to be stored and processed. It also does not necessarily lead to have the needed data. This article describes a novel approach to utilizing the data aquired as a basis for adapting the sensors focusing parameters to locate more precisely the features in the material: specifically, two evolutionary methods of autofocusing on a returned signal are coupled with the derivations of the forumulas for spatially locating the feature are given. Test results of the two novel methods of evolutionary based focusing (EBF) illustrate the improved signal strength and correction of the position of feature using the optimized focal timing parameters, called Focused Delay Identification (FoDI).

  4. Adaptive Topographies and Equilibrium Selection in an Evolutionary Game

    Science.gov (United States)

    Osinga, Hinke M.; Marshall, James A. R.

    2015-01-01

    It has long been known in the field of population genetics that adaptive topographies, in which population equilibria maximise mean population fitness for a trait regardless of its genetic bases, do not exist. Whether one chooses to model selection acting on a single locus or multiple loci does matter. In evolutionary game theory, analysis of a simple and general game involving distinct roles for the two players has shown that whether strategies are modelled using a single ‘locus’ or one ‘locus’ for each role, the stable population equilibria are unchanged and correspond to the fitness-maximising evolutionary stable strategies of the game. This is curious given the aforementioned population genetical results on the importance of the genetic bases of traits. Here we present a dynamical systems analysis of the game with roles detailing how, while the stable equilibria in this game are unchanged by the number of ‘loci’ modelled, equilibrium selection may differ under the two modelling approaches. PMID:25706762

  5. Preference learning with evolutionary Multivariate Adaptive Regression Spline model

    DEFF Research Database (Denmark)

    Abou-Zleikha, Mohamed; Shaker, Noor; Christensen, Mads Græsbøll

    2015-01-01

    This paper introduces a novel approach for pairwise preference learning through combining an evolutionary method with Multivariate Adaptive Regression Spline (MARS). Collecting users' feedback through pairwise preferences is recommended over other ranking approaches as this method is more appealing...... for human decision making. Learning models from pairwise preference data is however an NP-hard problem. Therefore, constructing models that can effectively learn such data is a challenging task. Models are usually constructed with accuracy being the most important factor. Another vitally important aspect...... that is usually given less attention is expressiveness, i.e. how easy it is to explain the relationship between the model input and output. Most machine learning techniques are focused either on performance or on expressiveness. This paper employ MARS models which have the advantage of being a powerful method...

  6. Basic emotions and adaptation. A computational and evolutionary model.

    Science.gov (United States)

    Pacella, Daniela; Ponticorvo, Michela; Gigliotta, Onofrio; Miglino, Orazio

    2017-01-01

    The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual "sensations" based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual's life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior

  7. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish

    Directory of Open Access Journals (Sweden)

    Sjödin Andreas

    2012-06-01

    Full Text Available Abstract Background Prior to this study, relatively few strains of Francisella had been genome-sequenced. Previously published Francisella genome sequences were largely restricted to the zoonotic agent F. tularensis. Only limited data were available for other members of the Francisella genus, including F. philomiragia, an opportunistic pathogen of humans, F. noatunensis, a serious pathogen of farmed fish, and other less well described endosymbiotic species. Results We determined the phylogenetic relationships of all known Francisella species, including some for which the phylogenetic positions were previously uncertain. The genus Francisella could be divided into two main genetic clades: one included F. tularensis, F. novicida, F. hispaniensis and Wolbachia persica, and another included F. philomiragia and F. noatunensis. Some Francisella species were found to have significant recombination frequencies. However, the fish pathogen F. noatunensis subsp. noatunensis was an exception due to it exhibiting a highly clonal population structure similar to the human pathogen F. tularensis. Conclusions The genus Francisella can be divided into two main genetic clades occupying both terrestrial and marine habitats. However, our analyses suggest that the ancestral Francisella species originated in a marine habitat. The observed genome to genome variation in gene content and IS elements of different species supports the view that similar evolutionary paths of host adaptation developed independently in F. tularensis (infecting mammals and F. noatunensis subsp. noatunensis (infecting fish.

  8. The Behavioural Biogeosciences: Moving Beyond Evolutionary Adaptation and Innate Reasoning

    Science.gov (United States)

    Glynn, P. D.

    2014-12-01

    Human biases and heuristics reflect adaptation over our evolutionary past to frequently experienced situations that affected our survival and that provided sharp distinguished feedbacks at the level of the individual. Human behavior, however, is not well adapted to the more diffusely experienced (i.e. less immediately/locally acute) problems and issues that scientists and society often seek to address today. Several human biases are identified that affect how science is conducted and used. These biases include an innate discounting of less visible phenomena/systems and of long-term perspectives; as well as a general lack of consideration of the coupling between the resources that we use and the waste that we consequently produce. Other biases include strong beliefs in human exceptionalism and separatedness from "nature". Francis Bacon (The New Organon, 1620) provided a classification of the factors, of the "idols of the mind", that bias pursuit of greater knowledge. How can we address these biases and the factors that affect behaviour and pursuit of knowledge; and ultimately impact the sustainability and resilience of human societies, resources and environments? A process for critical analysis is proposed that solicits explicit accounting and cognizance of these potential human biases and factors. Seeking a greater diversity of independant perspectives is essential: in both the conduct of science and in its application to the management of natural resources and environments. Accountability, traceability and structured processes are critical in this endeavor. The scientific methods designed during the industrial revolution are necessary, but insufficient, in addressing the issues of today. A new area of study in "the behavioral biogeosciences" is suggested that counters, or at least closely re-evaluates, our normal (i.e. adapted) human priorities of observation and study, as well as our judgements and decision-making.

  9. Basic emotions and adaptation. A computational and evolutionary model.

    Directory of Open Access Journals (Sweden)

    Daniela Pacella

    Full Text Available The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual "sensations" based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual's life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then

  10. An adaptive dual-optimal path-planning technique for unmanned air vehicles

    Directory of Open Access Journals (Sweden)

    Whitfield Clifford A.

    2016-01-01

    Full Text Available A multi-objective technique for unmanned air vehicle path-planning generation through task allocation has been developed. The dual-optimal path-planning technique generates real-time adaptive flight paths based on available flight windows and environmental influenced objectives. The environmentally-influenced flight condition determines the aircraft optimal orientation within a downstream virtual window of possible vehicle destinations that is based on the vehicle’s kinematics. The intermittent results are then pursued by a dynamic optimization technique to determine the flight path. This path-planning technique is a multi-objective optimization procedure consisting of two goals that do not require additional information to combine the conflicting objectives into a single-objective. The technique was applied to solar-regenerative high altitude long endurance flight which can benefit significantly from an adaptive real-time path-planning technique. The objectives were to determine the minimum power required flight paths while maintaining maximum solar power for continual surveillance over an area of interest (AOI. The simulated path generation technique prolonged the flight duration over a sustained turn loiter flight path by approximately 2 months for a year of flight. The potential for prolonged solar powered flight was consistent for all latitude locations, including 2 months of available flight at 60° latitude, where sustained turn flight was no longer capable.

  11. Evolutionary perspectives on learning: conceptual and methodological issues in the study of adaptive specializations.

    Science.gov (United States)

    Krause, Mark A

    2015-07-01

    Inquiry into evolutionary adaptations has flourished since the modern synthesis of evolutionary biology. Comparative methods, genetic techniques, and various experimental and modeling approaches are used to test adaptive hypotheses. In psychology, the concept of adaptation is broadly applied and is central to comparative psychology and cognition. The concept of an adaptive specialization of learning is a proposed account for exceptions to general learning processes, as seen in studies of Pavlovian conditioning of taste aversions, sexual responses, and fear. The evidence generally consists of selective associations forming between biologically relevant conditioned and unconditioned stimuli, with conditioned responses differing in magnitude, persistence, or other measures relative to non-biologically relevant stimuli. Selective associations for biologically relevant stimuli may suggest adaptive specializations of learning, but do not necessarily confirm adaptive hypotheses as conceived of in evolutionary biology. Exceptions to general learning processes do not necessarily default to an adaptive specialization explanation, even if experimental results "make biological sense". This paper examines the degree to which hypotheses of adaptive specializations of learning in sexual and fear response systems have been tested using methodologies developed in evolutionary biology (e.g., comparative methods, quantitative and molecular genetics, survival experiments). A broader aim is to offer perspectives from evolutionary biology for testing adaptive hypotheses in psychological science.

  12. Was the evolutionary road towards adaptive immunity paved with endothelium?

    Science.gov (United States)

    van Niekerk, Gustav; Davis, Tanja; Engelbrecht, Anna-Mart

    2015-09-04

    The characterization of a completely novel adaptive immune system (AIS) in jawless vertebrates (hagfish and lampreys) presents an excellent opportunity for exploring similarities and differences in design principles. It also highlights a somewhat neglected question: Why did vertebrates, representing only 5 % of all animals, evolve a system as complex as an AIS twice, whereas invertebrates failed to do so? A number of theories have been presented in answer to this question. However, these theories either fail to explain why invertebrates would not similarly develop an AIS and are confounded by issues of causality, or have been challenged by more recent findings. Instead of identifying a selective pressure that would drive the development of an AIS, we hypothesise that invertebrates failed to develop an AIS because of the evolutionary constraints imposed by these animals' physiological context. In particular, we argue that a number of vascular innovations in vertebrates allowed the effective implementation of an AIS. A lower blood volume allowed for a higher antibody titer (i.e., less 'diluted' antibody concentration), rendering these immune effectors more cost-effective. In addition, both a high circulatory velocity and the ability of endothelium to coordinate immune cell trafficking promote 'epitope sampling'. Collectively, these innovations allowed the effective implementation of AIS in vertebrates. The hypothesis posits that a number of innovations to the vascular system provided the release from constraints which allowed the implementation of an AIS. However, this hypothesis would be refuted by phylogenetic analysis demonstrating that the AIS preceded these vascular innovations. The hypothesis also suggests that vascular performance would have an impact on the efficacy of an AIS, thus predicting a correlation between the vascular parameters of a species and its relative investment in AIS. The contribution of certain vascular innovations in augmenting immune

  13. An adaptation of Krylov subspace methods to path following

    Energy Technology Data Exchange (ETDEWEB)

    Walker, H.F. [Utah State Univ., Logan, UT (United States)

    1996-12-31

    Krylov subspace methods at present constitute a very well known and highly developed class of iterative linear algebra methods. These have been effectively applied to nonlinear system solving through Newton-Krylov methods, in which Krylov subspace methods are used to solve the linear systems that characterize steps of Newton`s method (the Newton equations). Here, we will discuss the application of Krylov subspace methods to path following problems, in which the object is to track a solution curve as a parameter varies. Path following methods are typically of predictor-corrector form, in which a point near the solution curve is {open_quotes}predicted{close_quotes} by some easy but relatively inaccurate means, and then a series of Newton-like corrector iterations is used to return approximately to the curve. The analogue of the Newton equation is underdetermined, and an additional linear condition must be specified to determine corrector steps uniquely. This is typically done by requiring that the steps be orthogonal to an approximate tangent direction. Augmenting the under-determined system with this orthogonality condition in a straightforward way typically works well if direct linear algebra methods are used, but Krylov subspace methods are often ineffective with this approach. We will discuss recent work in which this orthogonality condition is imposed directly as a constraint on the corrector steps in a certain way. The means of doing this preserves problem conditioning, allows the use of preconditioners constructed for the fixed-parameter case, and has certain other advantages. Experiments on standard PDE continuation test problems indicate that this approach is effective.

  14. Talking Titler: Evolutionary and Self-Adaptive Land Tenure ...

    African Journals Online (AJOL)

    In the Talking Titler system, flexibility in creating relationships between people and between people and their interests in land has been the primary design feature. It is a tool for prototyping different designs and for developing land tenure information systems usung evolutionary strategies. The methodology was originally ...

  15. Walking on an Oscillating Treadmill: Two Paths to Functional Adaptation

    Science.gov (United States)

    Brady, Rachel A.; Peters, Brian T.; Bloomberg, Jacob J.

    2010-01-01

    We mounted a treadmill on top of a six degree-of-freedom motion base platform to investigate and characterize locomotor responses produced by healthy adults when introduced to a novel walking condition. Subjects were classified into two groups according to how their stride times were affected by the perturbation. Our data suggest that a person's choice of adaptation strategy is influenced by the relationship between his unique, natural stride frequency and the external frequency imposed by the motion base. Our data suggest that a person's stride time response while walking on a laterally oscillating treadmill is influenced by the relationship between his unique, natural stride frequency and the imposed external frequency of the motion base. This relationship may be useful for checking the efficacy of gait training and rehabilitation programs. Preselecting and manipulating a person's EST could be one way to draw him out of his preferred "entrainment well" during therapy or training.

  16. Assessment of Masonry Buildings Subjected to Landslide-Induced Settlements: From Load Path Method to Evolutionary Optimization Method

    Science.gov (United States)

    Palmisano, Fabrizio; Elia, Angelo

    2017-10-01

    One of the main difficulties, when dealing with landslide structural vulnerability, is the diagnosis of the causes of crack patterns. This is also due to the excessive complexity of models based on classical structural mechanics that makes them inappropriate especially when there is the necessity to perform a rapid vulnerability assessment at the territorial scale. This is why, a new approach, based on a ‘simple model’ (i.e. the Load Path Method, LPM), has been proposed by Palmisano and Elia for the interpretation of the behaviour of masonry buildings subjected to landslide-induced settlements. However, the LPM is very useful for rapidly finding the 'most plausible solution' instead of the exact solution. To find the solution, optimization algorithms are necessary. In this scenario, this article aims to show how the Bidirectional Evolutionary Structural Optimization method by Huang and Xie, can be very useful to optimize the strut-and-tie models obtained by using the Load Path Method.

  17. Cultural adaptation of preschool PATHS (Promoting Alternative Thinking Strategies) curriculum for Pakistani children.

    Science.gov (United States)

    Inam, Ayesha; Tariq, Pervaiz N; Zaman, Sahira

    2015-06-01

    Cultural adaptation of evidence-based programmes has gained importance primarily owing to its perceived impact on the established effectiveness of a programme. To date, many researchers have proposed different frameworks for systematic adaptation process. This article presents the cultural adaptation of preschool Promoting Alternative Thinking Strategies (PATHS) curriculum for Pakistani children using the heuristic framework of adaptation (Barrera & Castro, 2006). The study was completed in four steps: information gathering, preliminary adaptation design, preliminary adaptation test and adaptation refinement. Feedbacks on programme content suggested universality of the core programme components. Suggested changes were mostly surface structure: language, presentation of materials, conceptual equivalence of concepts, training needs of implementation staff and frequency of programme delivery. In-depth analysis was done to acquire cultural equivalence. Pilot testing of the outcome measures showed strong internal consistency. The results were further discussed with reference to similar work undertaken in other cultures. © 2014 International Union of Psychological Science.

  18. Link Adaptation for Microwave Link using both MATLAB and Path-Loss Tool

    Directory of Open Access Journals (Sweden)

    Jide Julius Popoola

    2016-12-01

    Full Text Available The inherent multipath transmission on wireless channels usually leads to signal fading which eventually degrades the system performance. In mitigating this problem, link adaptation has been identified as a promising scheme that helps in maximizing the system spectral efficiency (SE in dispersive wireless channels. In this paper, link adaptation based on adaptive modulation and coding was used to study the performance of M-ary quadrature amplitude modulation radio system subjected to multipath fading. MATLAB® scripts and Simulink model were developed to compare the effect of wireless channel on different constellation sizes. Also, transmission link on Federal University of Technology Akure campus’ path terrain was designed with the aid of path-loss® tool application software in order to further analysis the effect of using different modulation formats on the system performance. The results show that, employment of link adaptation scheme offers better performance regarding the system availability and SE

  19. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    Science.gov (United States)

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  20. Rapid evolutionary adaptation to elevated salt concentrations in pathogenic freshwater bacteria Serratia marcescens

    OpenAIRE

    Ketola, Tarmo; Hiltunen, Teppo

    2014-01-01

    Rapid evolutionary adaptions to new and previously detrimental environmental conditions can increase the risk of invasion by novel pathogens. We tested this hypothesis with a 133-day-long evolutionary experiment studying the evolution of the pathogenic Serratia marcescens bacterium at salinity niche boundary and in fluctuating conditions. We found that S. marcescens evolved at harsh (80 g/L) and extreme (100 g/L) salt conditions had clearly improved salt tolerance than those evolved in the ot...

  1. Evolutionary responses of innate Immunity to adaptive immunity

    Science.gov (United States)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  2. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.

    Science.gov (United States)

    Sulai, Yusufu N; Dubra, Alfredo

    2014-09-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

  3. A note on "Multicriteria adaptive paths in stochastic, time-varying networks"

    DEFF Research Database (Denmark)

    Pretolani, Daniele; Nielsen, Lars Relund; Andersen, Kim Allan

    In a recent paper, Opasanon and Miller-Hooks study multicriteria adaptive paths in stochastic time-varying networks. They propose a label correcting algorithm for finding the full set of efficient strategies. In this note we show that their algorithm is not correct, since it is based on a property...

  4. Adaptive Path Planning for a Vision-Based quadrotor in an Obstacle Field : Beijing, China

    NARCIS (Netherlands)

    Junell, J.L.; van Kampen, E.

    2016-01-01

    This paper demonstrates a real life approach for quadrotor obstacle avoidance in indoor flight. A color-based vision approach for obstacle detection is used to good effect conjointly with an adaptive path planning algorithm. The presented task is to move about a set indoor space while avoiding

  5. Online adaptation of path formation in UAV search-and-identify missions

    NARCIS (Netherlands)

    Willigen, W.H. van; Schut, M.C.; Eiben, A.E.; Kester, L.J.H.M.

    2011-01-01

    In this paper, we propose a technique for optimisation and online adaptation of search paths of unmanned aerial vehicles (UAVs) in search-and-identify missions. In these missions, a UAV has the objective to search for targets and to identify those. We extend earlier work that was restricted to

  6. Constrained Optimization Based on Hybrid Evolutionary Algorithm and Adaptive Constraint-Handling Technique

    DEFF Research Database (Denmark)

    Wang, Yong; Cai, Zixing; Zhou, Yuren

    2009-01-01

    A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...

  7. A quantitative evolutionary theory of adaptive behavior dynamics.

    Science.gov (United States)

    McDowell, J J

    2013-10-01

    The idea that behavior is selected by its consequences in a process analogous to organic evolution has been discussed for over 100 years. A recently proposed theory instantiates this idea by means of a genetic algorithm that operates on a population of potential behaviors. Behaviors in the population are represented by numbers in decimal integer (phenotypic) and binary bit string (genotypic) forms. One behavior from the population is emitted at random each time tick, after which a new population of potential behaviors is constructed by recombining parent behavior bit strings. If the emitted behavior produced a benefit to the organism, then parents are chosen on the basis of their phenotypic similarity to the emitted behavior; otherwise, they are chosen at random. After parent behavior recombination, the population is subjected to a small amount of mutation by flipping random bits in the population's bit strings. The behavior generated by this process of selection, reproduction, and mutation reaches equilibrium states that conform to every empirically valid equation of matching theory, exactly and without systematic error. These equations are known to describe the behavior of many vertebrate species, including humans, in a variety of experimental, naturalistic, natural, and social environments. The evolutionary theory also generates instantaneous dynamics and patterns of preference change in constantly changing environments that are consistent with the dynamics of live-organism behavior. These findings support the assertion that the world of behavior we observe and measure is generated by evolutionary dynamics. PsycINFO Database Record (c) 2013 APA, all rights reserved

  8. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    Science.gov (United States)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  9. Children's Ability to Learn Evolutionary Explanations for Biological Adaptation

    Science.gov (United States)

    Shtulman, Andrew; Neal, Cara; Lindquist, Gabrielle

    2016-01-01

    Research Findings: Evolution by natural selection is often relegated to the high school curriculum on the assumption that younger students cannot grasp its complexity. We sought to test that assumption by teaching children ages 4-12 (n = 96) a selection-based explanation for biological adaptation and comparing their success to that of adults…

  10. Revisiting our Evolutionary Path: The Search for Holistic Education in a Fragmented World

    OpenAIRE

    Gerald Gutenschwager

    2017-01-01

    When the World Academy of Art & Science (WAAS) was founded, it sought to address the gap between science and society, or rather the apparent unwillingness or inability of scientists to address their responsibilities as important members of society. This problem is related to the growing disparity between tool making and symbol making, those ancient skills that brought humans to the highest stage in the evolutionary process (at least until now?). Symbols—language, mathematics, graphics and oth...

  11. Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana.

    Science.gov (United States)

    Fournier-Level, Alexandre; Perry, Emily O; Wang, Jonathan A; Braun, Peter T; Migneault, Andrew; Cooper, Martha D; Metcalf, C Jessica E; Schmitt, Johanna

    2016-05-17

    Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.

  12. Weighted log-rank statistic to compare shared-path adaptive treatment strategies.

    Science.gov (United States)

    Kidwell, Kelley M; Wahed, Abdus S

    2013-04-01

    Adaptive treatment strategies (ATSs) more closely mimic the reality of a physician's prescription process where the physician prescribes a medication to his/her patient, and based on that patient's response to the medication, modifies the treatment. Two-stage randomization designs, more generally, sequential multiple assignment randomization trial designs, are useful to assess ATSs where the interest is in comparing the entire sequence of treatments, including the patient's intermediate response. In this paper, we introduce the notion of shared-path and separate-path ATSs and propose a weighted log-rank statistic to compare overall survival distributions of multiple two-stage ATSs, some of which may be shared-path. Large sample properties of the statistic are derived and the type I error rate and power of the test are compared with the standard log-rank test through simulation.

  13. EVOLUTIONARY AND ADAPTIVE ROLE OF TRANSPOSABLE ELEMENTS IN AGRICULTURAL PLANTS

    OpenAIRE

    Žana Marin; Nataša Štajner

    2016-01-01

    Transposable elements (TE) are stretches of DNA that represent the greatest fraction of genomes, especially in plants. Because of their high copy numbers and ability to mobilize through genome, they are able to influence the phenotypic traits and evolution of plants and also plant adaptation to environmental stress. By genetic and epigenetic mechanisms, they change the gene structure, influence gene expression and create new regulatory networks. The fraction of genome that they represent and ...

  14. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus

    KAUST Repository

    Mock, Thomas

    2017-01-17

    The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.

  15. Adaptation and novelty: teleological explanations in evolutionary biology.

    Science.gov (United States)

    Ayala, F J

    1999-01-01

    Knives, birds' wings, and mountain slopes are used for certain purposes: cutting, flying, and climbing. A bird's wings have in common with knives that they have been 'designed' for the purpose they serve, which purpose accounts for their existence, whereas mountain slopes have come about by geological processes independently of their uses for climbing. A bird's wings differ from a knife in that they have not been designed or produced by any conscious agent; rather, the wings, like the slopes, are outcomes of natural processes without any intentional causation. Evolutionary biologists use teleological language and teleological explanations. I propose that this use is appropriate, because teleological explanations are hypotheses that can be subject to empirical testing. The distinctiveness of teleological hypotheses is that they account for the existence of a feature in terms of the function it serves; for example, wings have evolved and persist because flying is beneficial to birds by increasing their chances of surviving and reproducing. Features of organisms that are explained with teleological hypotheses include structures, such as wings; processes, such as development from egg to adult; and behaviours, such as nest building. A proximate explanation of these features is the function they serve; an ultimate explanation that they all share is their contribution to the reproductive fitness of the organisms. I distinguish several kinds of teleological explanations, such as natural and artificial, as well as bounded and unbounded, some of which but not others apply to biological explanations.

  16. Psychosocial adaptation: an evolutionary concept analysis exploring a common multidisciplinary language.

    Science.gov (United States)

    Londono, Yenly; McMillan, Diana E

    2015-11-01

    To provide the first known concept analysis of psychosocial adaptation, exploring its evolution from the concept adaptation. We also determine how psychosocial adaptation is conceptualized across nursing, health, sociobehavioural and education disciplines. Psychosocial adaptation is an important conceptual term that is poorly defined in nursing and other health, sociobehavioural and education disciplines. A thorough understanding of the concept's application in nursing and across disciplines can help to clarify its meaning, facilitate a more effective common language between disciplines and inform future psychosocial adaptation research. Rodger's evolutionary view guided this concept analysis. Peer-reviewed English and Spanish manuscripts published between 2011-2013 were retrieved from the following databases: CINAHL, Psych INFO, PubMed, Scopus and LILACS. Eighty-nine articles related to psychosocial adaptation were included in the analysis. Findings identify key attributes, antecedents and consequences associated with the use of the concept. Findings were compared vis-a-vis reported characteristics of adaptation. The attributes characterizing psychosocial adaptation are: change, process, continuity, interaction and influence. In psychosocial adaptation, new life conditions serve as antecedents, while consequences are good or bad outcomes. Important features of the evolution of this concept include its broad appropriation across the reviewed disciplines. The attributes of psychosocial adaptation, have some similarities to those of general adaptation. Both concepts include an aspect of change, but unlike adaptation, psychosocial adaptation has branched away from biological descriptors, such as homeostasis and tends to focus on relational characteristics, such as interaction and influences. © 2015 John Wiley & Sons Ltd.

  17. Path Tracking for Unmanned Ground Vehicle Navigation: Implementation and Adaptation of the Pure Pursuit Algorithm

    Science.gov (United States)

    2005-12-01

    robotic path tracking for Ackerman steered vehicles and presents results of implementation and adaptation of the Pure Pursuit algorithm at Defence R&D...Pursuit is useful for a wide variety of robotic applications. iv DRDC Suffield TM 2005-224 Future Work: The stability of the algorithm still...pour la défense Canada – Suffield : 1. Comme dispositif de poursuite de parcours visant à poursuivre une ligne droite entre les points de

  18. MPEG-2 video coding with an adaptive selection of scanning path and picture structure

    Science.gov (United States)

    Zhou, Minhua; De Lameillieure, Jan L.; Schaefer, Ralf

    1996-09-01

    In the MPEG-2 video coding an interlaced frame can be encoded as either a frame-picture or two field-pictures. The selection of picture structure (frame/field) has a strong impact on picture quality. In order to achieve the best possible picture quality, an adaptive scheme is proposed in this paper to select the optimal picture structure on a frame by frame basis. The selection of picture structure is performed in connection with that of the optimal scanning path. First, the scanning path (zig-zag scan/alternate scan) is chosen based on a post-analysis of DCT-coefficients. Secondly, the optimal picture structure is selected for the next frame according to the chosen scanning path, i.e. a zig-zag scan corresponds to frame picture structure, while an alternate scan corresponds to field picture structure. Furthermore, the TM5 buffer control algorithm is extended to support the coding with adaptive frame/field picture structure. Finally, simulation results verify the adaptive scheme proposed in this paper.

  19. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits

    Science.gov (United States)

    2011-01-01

    Background Cyanobacteria belong to an ancient group of photosynthetic prokaryotes with pronounced variations in their cellular differentiation strategies, physiological capacities and choice of habitat. Sequencing efforts have shown that genomes within this phylum are equally diverse in terms of size and protein-coding capacity. To increase our understanding of genomic changes in the lineage, the genomes of 58 contemporary cyanobacteria were analysed for shared and unique orthologs. Results A total of 404 protein families, present in all cyanobacterial genomes, were identified. Two of these are unique to the phylum, corresponding to an AbrB family transcriptional regulator and a gene that escapes functional annotation although its genomic neighbourhood is conserved among the organisms examined. The evolution of cyanobacterial genome sizes involves a mix of gains and losses in the clade encompassing complex cyanobacteria, while a single event of reduction is evident in a clade dominated by unicellular cyanobacteria. Genome sizes and gene family copy numbers evolve at a higher rate in the former clade, and multi-copy genes were predominant in large genomes. Orthologs unique to cyanobacteria exhibiting specific characteristics, such as filament formation, heterocyst differentiation, diazotrophy and symbiotic competence, were also identified. An ancestral character reconstruction suggests that the most recent common ancestor of cyanobacteria had a genome size of approx. 4.5 Mbp and 1678 to 3291 protein-coding genes, 4%-6% of which are unique to cyanobacteria today. Conclusions The different rates of genome-size evolution and multi-copy gene abundance suggest two routes of genome development in the history of cyanobacteria. The expansion strategy is driven by gene-family enlargment and generates a broad adaptive potential; while the genome streamlining strategy imposes adaptations to highly specific niches, also reflected in their different functional capacities. A few

  20. Continual Online Evolutionary Planning for In-Game Build Order Adaptation in StarCraft

    DEFF Research Database (Denmark)

    Justesen, Niels Orsleff; Risi, Sebastian

    2017-01-01

    able to switch between predefined strategies, which makes it hard to adapt to new situations. This paper introduces an evolutionary-based method to overcome this challenge, called Continual Online Evolutionary Planning (COEP), which is able to perform in-game adaptive build-order planning. COEP...... was added to an open source StarCraft bot called UAlbertaBot and is able to outperform the built-in bots in the game as well as being competitive against a number of scripted opening strategies. The COEP augmented bot can change its build order dynamically and quickly adapt to the opponent’s strategy.......The real-time strategy game StarCraft has become an important benchmark for AI research as it poses a complex environment with numerous challenges. An important strategic aspect in this game is to decide what buildings and units to produce. StarCraft bots playing in AI competitions today are only...

  1. EVOLUTIONARY AND ADAPTIVE ROLE OF TRANSPOSABLE ELEMENTS IN AGRICULTURAL PLANTS

    Directory of Open Access Journals (Sweden)

    Žana Marin

    2016-10-01

    Full Text Available Transposable elements (TE are stretches of DNA that represent the greatest fraction of genomes, especially in plants. Because of their high copy numbers and ability to mobilize through genome, they are able to influence the phenotypic traits and evolution of plants and also plant adaptation to environmental stress. By genetic and epigenetic mechanisms, they change the gene structure, influence gene expression and create new regulatory networks. The fraction of genome that they represent and the influence they have is variable among species; however they were detected in practically every plant genome researched up to date. Deleterious mutations may be caused by their activity which is also another reason why their expression is tightly regulated by the host organism. Gaining knowledge of TE's mechanisms and research development in the future will allow us to use them, for example for crop improvement purposes, resistance development against diseases and pathogens and suppression of invasive species.

  2. SUNSEED — An evolutionary path to smart grid comms over converged telco and energy provider networks

    DEFF Research Database (Denmark)

    Stefanovic, Cedomir; Popovski, Petar; Jorguseski, Ljupco

    2014-01-01

    of energy distribution service operators (DSO) and telecom operators (telco) for the future smart grid operations and services. To achieve this objective, SUNSEED proposes an evolutionary approach to converge existing DSO and telco networks, consisting of six steps: overlap, interconnect, interoperate......, manage, plan and open. Each step involves identification of the related smart grid service requirements and implementation of the appropriate solutions. The promise of SUNSEED approach lies in potentially much lower investments and total cost of ownership of future smart energy grids within dense......SUNSEED, “Sustainable and robust networking for smart electricity distribution”, is a 3-year project started in 2014 and partially funded under call FP7-ICT-2013-11. The project objective is to research, design and implement methods for exploitation of existing communication infrastructure...

  3. E-Learning and Personalized Learning Path: A Proposal Based on the Adaptive Educational Hypermedia System

    Directory of Open Access Journals (Sweden)

    Francesco Colace

    2014-03-01

    Full Text Available The E-Learning is becoming an effective approach for the improving of quality of learning. Many institutions are adopting this approach both to improve their traditional courses both to increase the potential audience. In the last period great attention is paid in the introduction of methodologies and techniques for the adaptation of learning process to the real needs of students. In this scenario the Adaptive Educational Hypermedia System can be an effective approach. Adaptive hypermedia is a promising area of research at the crossroads of hypermedia and adaptive systems. One of the most important fields where this approach can be applied is just the e-Learning. In this context the adaptive learning resources selection and sequencing is recognized as among one of the most interesting research questions. An Adaptive Educational Hypermedia System is composed by services for the management of the Knowledge Space, the definition of a User Model, the observation of student during his learning period and, as previously said, the adaptation of the learning path according to the real needs of the students. In particular the use of ontologyཿs formalism for the modeling of the ཿknowledge space࿝ related to the course can increase the sharable of learning objects among similar courses or better contextualize their role in the course. This paper addresses the design problem of an Adaptive hypermedia system by the definition of methodologies able to manage each its components, In particular an original user, learning contents, tracking strategies and adaptation model are developed. The proposed Adaptive Educational Hypermedia System has been integrated in an e-Learning platform and an experimental campaign has been conducted. In particular the proposed approach has been introduced in three different blended courses. A comparison with traditional approach has been described and the obtained results seem to be very promising.

  4. Evolutionary learning of adaptation to varying environments through a transgenerational feedback

    Science.gov (United States)

    Xue, Bingkan; Leibler, Stanislas

    Organisms can adapt to a randomly varying environment by creating phenotypic diversity in their population, a phenomenon often referred to as evolutionary bet-hedging\\x9D. The favorable level of phenotypic diversity depends on the statistics of local environmental variations. Often, the timescale of environmental variations can be much longer than the lifespan of individual organisms. How could organisms collect such long-term environmental information to adjust their phenotypic diversity? We propose here a general mechanism of evolutionary learning based on a transgenerational feedback: the frequency of the parent phenotype is progressively reinforced in the distribution of phenotypes among the offspring. This mechanism can in principle be realized through known molecular processes of epigenetic inheritance, observed in some model organisms. Thus, our theory may provide a perspective for understanding the evolutionary significance of such processes. BKX is funded by the Schmidt Membership in Biology at IAS.

  5. Revisiting our Evolutionary Path: The Search for Holistic Education in a Fragmented World

    Directory of Open Access Journals (Sweden)

    Gerald Gutenschwager

    2017-10-01

    Full Text Available When the World Academy of Art & Science (WAAS was founded, it sought to address the gap between science and society, or rather the apparent unwillingness or inability of scientists to address their responsibilities as important members of society. This problem is related to the growing disparity between tool making and symbol making, those ancient skills that brought humans to the highest stage in the evolutionary process (at least until now?. Symbols—language, mathematics, graphics and other pictorial and linguistic representations, as well as clothing, hairstyles, etc.—when used to establish social rank, may serve to give legitimacy to the current social order or may serve to criticize and change it. Reincorporating science into society would require that scientists, as well as every member of society, recognize this. This would require an educational system that would give equal emphasis to tool making and symbol making, and this would help students to understand how society is a product of both of these processes.

  6. Improving the Adaptability of Simulated Evolutionary Swarm Robots in Dynamically Changing Environments

    Science.gov (United States)

    Yao, Yao; Marchal, Kathleen; Van de Peer, Yves

    2014-01-01

    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store ‘good behaviour’ and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment. PMID:24599485

  7. A Self-adaptive Dynamic Evaluation Model for Diabetes Mellitus, Based on Evolutionary Strategies

    Directory of Open Access Journals (Sweden)

    An-Jiang Lu

    2016-03-01

    Full Text Available In order to evaluate diabetes mellitus objectively and accurately, this paper builds a self-adaptive dynamic evaluation model for diabetes mellitus, based on evolutionary strategies. First of all, on the basis of a formalized description of the evolutionary process of diabetes syndromes, using a state transition function, it judges whether a disease is evolutionary, through an excitation parameter. It then, provides evidence for the rebuilding of the evaluation index system. After that, by abstracting and rebuilding the composition of evaluation indexes, it makes use of a heuristic algorithm to determine the composition of the evolved evaluation index set of diabetes mellitus, It then, calculates the weight of each index in the evolved evaluation index set of diabetes mellitus by building a dependency matrix and realizes the self-adaptive dynamic evaluation of diabetes mellitus under an evolutionary environment. Using this evaluation model, it is possible to, quantify all kinds of diagnoses and treatment experiences of diabetes and finally to adopt ideal diagnoses and treatment measures for different patients with diabetics.

  8. Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics.

    Science.gov (United States)

    Haasdijk, Evert; Bredeche, Nicolas; Eiben, A E

    2014-01-01

    Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability), and secondly they must competently perform user-specified tasks (usefulness). The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms-survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee) framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a 'market mechanism' that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks.

  9. The evolutionary time machine: forecasting how populations can adapt to changing environments using dormant propagules

    Science.gov (United States)

    Orsini, Luisa; Schwenk, Klaus; De Meester, Luc; Colbourne, John K.; Pfrender, Michael E.; Weider, Lawrence J.

    2013-01-01

    Evolutionary changes are determined by a complex assortment of ecological, demographic and adaptive histories. Predicting how evolution will shape the genetic structures of populations coping with current (and future) environmental challenges has principally relied on investigations through space, in lieu of time, because long-term phenotypic and molecular data are scarce. Yet, dormant propagules in sediments, soils and permafrost are convenient natural archives of population-histories from which to trace adaptive trajectories along extended time periods. DNA sequence data obtained from these natural archives, combined with pioneering methods for analyzing both ecological and population genomic time-series data, are likely to provide predictive models to forecast evolutionary responses of natural populations to environmental changes resulting from natural and anthropogenic stressors, including climate change. PMID:23395434

  10. Adaptive enhanced sampling with a path-variable for the simulation of protein folding and aggregation

    Science.gov (United States)

    Peter, Emanuel K.

    2017-12-01

    In this article, we present a novel adaptive enhanced sampling molecular dynamics (MD) method for the accelerated simulation of protein folding and aggregation. We introduce a path-variable L based on the un-biased momenta p and displacements dq for the definition of the bias s applied to the system and derive 3 algorithms: general adaptive bias MD, adaptive path-sampling, and a hybrid method which combines the first 2 methodologies. Through the analysis of the correlations between the bias and the un-biased gradient in the system, we find that the hybrid methodology leads to an improved force correlation and acceleration in the sampling of the phase space. We apply our method on SPC/E water, where we find a conservation of the average water structure. We then use our method to sample dialanine and the folding of TrpCage, where we find a good agreement with simulation data reported in the literature. Finally, we apply our methodologies on the initial stages of aggregation of a hexamer of Alzheimer's amyloid β fragment 25-35 (Aβ 25-35) and find that transitions within the hexameric aggregate are dominated by entropic barriers, while we speculate that especially the conformation entropy plays a major role in the formation of the fibril as a rate limiting factor.

  11. Cultural evolutionary design of adaptive wavelet filters based on lifting scheme for micro-instruments

    CERN Document Server

    Manna, C; Romanucci, Carmine; Zanesco, Antonio; Arpaia, Pasquale

    2010-01-01

    An evolutionary procedure based on cultural algorithms for the optimal design of adaptive wavelet filters based on lifting scheme is proposed. Numerical results of characterization, based on statistical experiment design, as well as validation, based on the comparison with a genetic optimization algorithm, are presented. Experimental results of the validation on two case studies for reducing uncertainty arising from noise in on-field corrosion rate measurements are highlighted. (C) 2010 Elsevier Ltd. All rights reserved.

  12. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come?

    Directory of Open Access Journals (Sweden)

    Higgs Stephen

    2008-02-01

    Full Text Available Abstract Since 2004, several million indigenous cases of Chikungunya virus disease occurred in Africa, the Indian Ocean, India, Asia and, recently, Europe. The virus, usually transmitted by Aedes aegypti mosquitoes, has now repeatedly been associated with a new vector, Ae. Albopictus. Analysis of full-length viral sequences reveals three independent events of virus exposure to Ae. Albopictus, each followed by the acquisition of a single adaptive mutation providing selective advantage for transmission by this mosquito. This disconcerting and current unique example of "evolutionary convergence" occurring in nature illustrates rapid pathogen adaptation to ecological perturbation, driven directly as a consequence of human activities.

  13. Non-adaptive origins of evolutionary innovations increase network complexity in interacting digital organisms.

    Science.gov (United States)

    Fortuna, Miguel A; Zaman, Luis; Wagner, Andreas; Bascompte, Jordi

    2017-12-05

    The origin of evolutionary innovations is a central problem in evolutionary biology. To what extent such innovations have adaptive or non-adaptive origins is hard to assess in real organisms. This limitation, however, can be overcome using digital organisms, i.e. self-replicating computer programs that mutate, evolve and coevolve within a user-defined computational environment. Here, we quantify the role of the non-adaptive origins of host resistance traits in determining the evolution of ecological interactions among host and parasite digital organisms. We find that host resistance traits arising spontaneously as exaptations increase the complexity of antagonistic host-parasite networks. Specifically, they lead to higher host phenotypic diversification, a larger number of ecological interactions and higher heterogeneity in interaction strengths. Given the potential of network architecture to affect network dynamics, such exaptations may increase the persistence of entire communities. Our in silico approach, therefore, may complement current theoretical advances aimed at disentangling the ecological and evolutionary mechanisms shaping species interaction networks.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).

  14. Human Facial Expressions as Adaptations:Evolutionary Questions in Facial Expression Research

    Science.gov (United States)

    SCHMIDT, KAREN L.; COHN, JEFFREY F.

    2007-01-01

    The importance of the face in social interaction and social intelligence is widely recognized in anthropology. Yet the adaptive functions of human facial expression remain largely unknown. An evolutionary model of human facial expression as behavioral adaptation can be constructed, given the current knowledge of the phenotypic variation, ecological contexts, and fitness consequences of facial behavior. Studies of facial expression are available, but results are not typically framed in an evolutionary perspective. This review identifies the relevant physical phenomena of facial expression and integrates the study of this behavior with the anthropological study of communication and sociality in general. Anthropological issues with relevance to the evolutionary study of facial expression include: facial expressions as coordinated, stereotyped behavioral phenotypes, the unique contexts and functions of different facial expressions, the relationship of facial expression to speech, the value of facial expressions as signals, and the relationship of facial expression to social intelligence in humans and in nonhuman primates. Human smiling is used as an example of adaptation, and testable hypotheses concerning the human smile, as well as other expressions, are proposed. PMID:11786989

  15. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

    KAUST Repository

    Woo, Yong

    2015-07-15

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. © Woo et al.

  16. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites.

    Science.gov (United States)

    Woo, Yong H; Ansari, Hifzur; Otto, Thomas D; Klinger, Christen M; Kolisko, Martin; Michálek, Jan; Saxena, Alka; Shanmugam, Dhanasekaran; Tayyrov, Annageldi; Veluchamy, Alaguraj; Ali, Shahjahan; Bernal, Axel; del Campo, Javier; Cihlář, Jaromír; Flegontov, Pavel; Gornik, Sebastian G; Hajdušková, Eva; Horák, Aleš; Janouškovec, Jan; Katris, Nicholas J; Mast, Fred D; Miranda-Saavedra, Diego; Mourier, Tobias; Naeem, Raeece; Nair, Mridul; Panigrahi, Aswini K; Rawlings, Neil D; Padron-Regalado, Eriko; Ramaprasad, Abhinay; Samad, Nadira; Tomčala, Aleš; Wilkes, Jon; Neafsey, Daniel E; Doerig, Christian; Bowler, Chris; Keeling, Patrick J; Roos, David S; Dacks, Joel B; Templeton, Thomas J; Waller, Ross F; Lukeš, Julius; Oborník, Miroslav; Pain, Arnab

    2015-07-15

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga.

  17. Studying the evolutionary significance of thermal adaptation in ectotherms: The diversification of amphibians' energetics.

    Science.gov (United States)

    Nespolo, Roberto F; Figueroa, Julio; Solano-Iguaran, Jaiber J

    2017-08-01

    A fundamental problem in evolutionary biology is the understanding of the factors that promote or constrain adaptive evolution, and assessing the role of natural selection in this process. Here, comparative phylogenetics, that is, using phylogenetic information and traits to infer evolutionary processes has been a major paradigm . In this study, we discuss Ornstein-Uhlenbeck models (OU) in the context of thermal adaptation in ectotherms. We specifically applied this approach to study amphibians's evolution and energy metabolism. It has been hypothesized that amphibians exploit adaptive zones characterized by low energy expenditure, which generate specific predictions in terms of the patterns of diversification in standard metabolic rate (SMR). We complied whole-animal metabolic rates for 122 species of amphibians, and adjusted several models of diversification. According to the adaptive zone hypothesis, we expected: (1) to find "accelerated evolution" in SMR (i.e., diversification above Brownian Motion expectations, BM), (2) that a model assuming evolutionary optima (i.e., an OU model) fits better than a white-noise model and (3) that a model assuming multiple optima (according to the three amphibians's orders) fits better than a model assuming a single optimum. As predicted, we found that the diversification of SMR occurred most of the time, above BM expectations. Also, we found that a model assuming an optimum explained the data in a better way than a white-noise model. However, we did not find evidence that an OU model with multiple optima fits the data better, suggesting a single optimum in SMR for Anura, Caudata and Gymnophiona. These results show how comparative phylogenetics could be applied for testing adaptive hypotheses regarding history and physiological performance in ectotherms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Adaptive scallop height tool path generation for robot-based incremental sheet metal forming

    Science.gov (United States)

    Seim, Patrick; Möllensiep, Dennis; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    Incremental sheet metal forming is an emerging process for the production of individualized products or prototypes in low batch sizes and with short times to market. In these processes, the desired shape is produced by the incremental inward motion of the workpiece-independent forming tool in depth direction and its movement along the contour in lateral direction. Based on this shape production, the tool path generation is a key factor on e.g. the resulting geometric accuracy, the resulting surface quality, and the working time. This paper presents an innovative tool path generation based on a commercial milling CAM package considering the surface quality and working time. This approach offers the ability to define a specific scallop height as an indicator of the surface quality for specific faces of a component. Moreover, it decreases the required working time for the production of the entire component compared to the use of a commercial software package without this adaptive approach. Different forming experiments have been performed to verify the newly developed tool path generation. Mainly, this approach serves to solve the existing conflict of combining the working time and the surface quality within the process of incremental sheet metal forming.

  19. Latest Stored Information Based Adaptive Selection Strategy for Multiobjective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Jiale Gao

    2017-01-01

    Full Text Available The adaptive operator selection (AOS and the adaptive parameter control are widely used to enhance the search power in many multiobjective evolutionary algorithms. This paper proposes a novel adaptive selection strategy with bandits for the multiobjective evolutionary algorithm based on decomposition (MOEA/D, named latest stored information based adaptive selection (LSIAS. An improved upper confidence bound (UCB method is adopted in the strategy, in which the operator usage rate and abandonment of extreme fitness improvement are introduced to improve the performance of UCB. The strategy uses a sliding window to store recent valuable information about operators, such as factors, probabilities, and efficiency. Four common used DE operators are chosen with the AOS, and two kinds of assist information on operator are selected to improve the operators search power. The operator information is updated with the help of LSIAS and the resulting algorithmic combination is called MOEA/D-LSIAS. Compared to some well-known MOEA/D variants, the LSIAS demonstrates the superior robustness and fast convergence for various multiobjective optimization problems. The comparative experiments also demonstrate improved search power of operators with different assist information on different problems.

  20. Sulfur Isotope Fractionation during the Evolutionary Adaptation of a Sulfate-Reducing Bacterium

    Science.gov (United States)

    Anderson-Trocmé, Luke; Whyte, Lyle G.; Zane, Grant M.; Wall, Judy D.; Wing, Boswell A.

    2015-01-01

    Dissimilatory sulfate reduction is a microbial catabolic pathway that preferentially processes less massive sulfur isotopes relative to their heavier counterparts. This sulfur isotope fractionation is recorded in ancient sedimentary rocks and generally is considered to reflect a phenotypic response to environmental variations rather than to evolutionary adaptation. Modern sulfate-reducing microorganisms isolated from similar environments can exhibit a wide range of sulfur isotope fractionations, suggesting that adaptive processes influence the sulfur isotope phenotype. To date, the relationship between evolutionary adaptation and isotopic phenotypes has not been explored. We addressed this by studying the covariation of fitness, sulfur isotope fractionation, and growth characteristics in Desulfovibrio vulgaris Hildenborough in a microbial evolution experiment. After 560 generations, the mean fitness of the evolved lineages relative to the starting isogenic population had increased by ∼17%. After 927 generations, the mean fitness relative to the initial ancestral population had increased by ∼20%. Growth rate in exponential phase increased during the course of the experiment, suggesting that this was a primary influence behind the fitness increases. Consistent changes were observed within different selection intervals between fractionation and fitness. Fitness changes were associated with changes in exponential growth rate but changes in fractionation were not. Instead, they appeared to be a response to changes in the parameters that govern growth rate: yield and cell-specific sulfate respiration rate. We hypothesize that cell-specific sulfate respiration rate, in particular, provides a bridge that allows physiological controls on fractionation to cross over to the adaptive realm. PMID:25662968

  1. Evolutionary adaptation to environmental stressors: a common response at the proteomic level.

    Science.gov (United States)

    Sørensen, Jesper G; Schou, Mads F; Loeschcke, Volker

    2017-06-01

    Mechanistic trade-offs between traits under selection can shape and constrain evolutionary adaptation to environmental stressors. However, our knowledge of the quantitative and qualitative overlap in the molecular machinery among stress tolerance traits is highly restricted by the challenges of comparing and interpreting data between separate studies and laboratories, as well as to extrapolating between different levels of biological organization. We investigated the expression of the constitutive proteome (833 proteins) of 35 Drosophila melanogaster replicate populations artificially selected for increased resistance to six different environmental stressors. The evolved proteomes were significantly differentiated from replicated control lines. A targeted analysis of the constitutive proteomes revealed a regime-specific selection response among heat-shock proteins, which provides evidence that selection also adjusts the constitutive expression of these molecular chaperones. Although the selection response in some proteins was regime specific, the results were dominated by evidence for a "common stress response." With the exception of high temperature survival, we found no evidence for negative correlations between environmental stress resistance traits, meaning that evolutionary adaptation is not constrained by mechanistic trade-offs in regulation of functional important proteins. Instead, standing genetic variation and genetic trade-offs outside regulatory domains likely constrain the evolutionary responses in natural populations. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. The logic of social sharing: an evolutionary game analysis of adaptive norm development.

    Science.gov (United States)

    Tatsuya, Tatsuya; Takezawa, Masanori; Hastie, Reid

    2003-01-01

    Although norms can potentially serve useful constructs to understand human minds, being fundamentally social in evolutionary as well as cultural senses, there are as yet no useful psychological theories of adaptive norm development. This article provides an illustrative model about how a norm emerges in a society. We focus on the "communal-sharing norm" in primordial societies, a norm designating uncertain resources as common properties to be shared with other members. Based on anthropological findings, we develop a theory about how the communal-sharing norm emerges and is maintained. Then, using evolutionary computer simulations, we test several hypotheses about the conditions under which the norm will dominate social resource sharing. We further test behavioral implications of the norm, demonstrating that uncertainty involved in resource acquisition is a key factor that triggers the psychology of sharing even in highly industrialized societies. Finally, we discuss the importance of norm construct for analyzing the dynamic relation between minds and society.

  3. Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming.

    Science.gov (United States)

    Pitiot, Alain; Toga, Arthur W; Thompson, Paul M

    2002-08-01

    This paper presents a fully automated segmentation method for medical images. The goal is to localize and parameterize a variety of types of structure in these images for subsequent quantitative analysis. We propose a new hybrid strategy that combines a general elastic template matching approach and an evolutionary heuristic. The evolutionary algorithm uses prior statistical information about the shape of the target structure to control the behavior of a number of deformable templates. Each template, modeled in the form of a B-spline, is warped in a potential field which is itself dynamically adapted. Such a hybrid scheme proves to be promising: by maintaining a population of templates, we cover a large domain of the solution space under the global guidance of the evolutionary heuristic, and thoroughly explore interesting areas. We address key issues of automated image segmentation systems. The potential fields are initially designed based on the spatial features of the edges in the input image, and are subjected to spatially adaptive diffusion to guarantee the deformation of the template. This also improves its global consistency and convergence speed. The deformation algorithm can modify the internal structure of the templates to allow a better match. We investigate in detail the preprocessing phase that the images undergo before they can be used more effectively in the iterative elastic matching procedure: a texture classifier, trained via linear discriminant analysis of a learning set, is used to enhance the contrast of the target structure with respect to surrounding tissues. We show how these techniques interact within a statistically driven evolutionary scheme to achieve a better tradeoff between template flexibility and sensitivity to noise and outliers. We focus on understanding the features of template matching that are most beneficial in terms of the achieved match. Examples from simulated and real image data are discussed, with considerations of

  4. Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations.

    Directory of Open Access Journals (Sweden)

    Murat Cetinbaş

    Full Text Available Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics.

  5. Evolutionary adaptation of the sensitivity of connexin26 hemichannels to CO2.

    Science.gov (United States)

    de Wolf, Elizabeth; Cook, Jonathan; Dale, Nicholas

    2017-02-08

    CO2 readily combines with H2O to form [Formula: see text] and H+ Because an increase of only 100 nM in the concentration of H+ (a decrease of 0.1 unit of pH) in blood can prove fatal, the regulated excretion of CO2 during breathing is an essential life-preserving process. In rodents and humans, this vital process is mediated in part via the direct sensing of CO2 via connexin26 (Cx26). CO2 binds to hemichannels of Cx26 causing them to open and allow release of the neurotransmitter ATP. If Cx26 were to be a universal and important CO2 sensor across all homeothermic animals, then a simple hypothesis would posit that it should exhibit evolutionary adaptation in animals with different homeostatic set points for the regulation of partial pressure of arterial CO2 (PaCO2). In humans and rats, PaCO2 is regulated around a set point of 40 mmHg. By contrast, birds are able to maintain cerebral blood flow and breathing at much lower levels of PaCO2 Fossorial mammals, such as the mole rat, live exclusively underground in burrows that are both hypoxic and hypercapnic and can thrive under very hypercapnic conditions. We have therefore compared the CO2 sensitivity of Cx26 from human, chicken, rat and mole rat (Heterocephalus glaber). We find that both the affinity and cooperativity of CO2 binding to Cx26 have been subjected to evolutionary adaption in a manner consistent with the homeostatic requirements of these four species. This is analogous to the evolutionary adaptation of haemoglobin to the needs of O2 transport across the animal kingdom and supports the hypothesis that Cx26 is an important and universal CO2 sensor in homeotherms. © 2017 The Authors.

  6. Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates

    DEFF Research Database (Denmark)

    Pereira, Joana; Johnson, Warren E.; O'Brien, Stephen J.

    2014-01-01

    . In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive...... the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints...

  7. An adaptive evolutionary algorithm for traveling salesman problem with precedence constraints.

    Science.gov (United States)

    Sung, Jinmo; Jeong, Bongju

    2014-01-01

    Traveling sales man problem with precedence constraints is one of the most notorious problems in terms of the efficiency of its solution approach, even though it has very wide range of industrial applications. We propose a new evolutionary algorithm to efficiently obtain good solutions by improving the search process. Our genetic operators guarantee the feasibility of solutions over the generations of population, which significantly improves the computational efficiency even when it is combined with our flexible adaptive searching strategy. The efficiency of the algorithm is investigated by computational experiments.

  8. Direct adaptive feedforward compensation of narrowband disturbances without explicit identification of the secondary path model

    Science.gov (United States)

    Zech, Philipp; Lato, Victorio; Rinderknecht, Stephan

    2017-08-01

    The effectiveness of common algorithms for feedforward compensation of narrowband disturbance depends mainly on the model quality. To avoid this dependency several direct adaptive control algorithms without explicitly identified secondary path models have been developed over the last years. However an overview of their properties and a comparison of their performances in a standardized benchmark is still lacking. In this paper the three most promising algorithms are modified for narrowband feedforward vibration control for the use in rotating machinery. As in this application the reference signal is generated using the frequency measurement from a speed sensor it can be assumed that there is no coupling between reference measurement and the secondary path. First the algorithms are tested in simulation, then they are implemented on a test rig for active vibration control of unbalance induced rotor vibration. In simulation as well as for the test rig the performances of the algorithms are compared to each other. Advantages and drawbacks of the algorithms are discussed and practical instructions for implementation are given. The work is intended to serve as starting point and motivation for future research in this field of study.

  9. Evolutionary tipping points in the capacity to adapt to environmental change.

    Science.gov (United States)

    Botero, Carlos A; Weissing, Franz J; Wright, Jonathan; Rubenstein, Dustin R

    2015-01-06

    In an era of rapid climate change, there is a pressing need to understand how organisms will cope with faster and less predictable variation in environmental conditions. Here we develop a unifying model that predicts evolutionary responses to environmentally driven fluctuating selection and use this theoretical framework to explore the potential consequences of altered environmental cycles. We first show that the parameter space determined by different combinations of predictability and timescale of environmental variation is partitioned into distinct regions where a single mode of response (reversible phenotypic plasticity, irreversible phenotypic plasticity, bet-hedging, or adaptive tracking) has a clear selective advantage over all others. We then demonstrate that, although significant environmental changes within these regions can be accommodated by evolution, most changes that involve transitions between regions result in rapid population collapse and often extinction. Thus, the boundaries between response mode regions in our model correspond to evolutionary tipping points, where even minor changes in environmental parameters can have dramatic and disproportionate consequences on population viability. Finally, we discuss how different life histories and genetic architectures may influence the location of tipping points in parameter space and the likelihood of extinction during such transitions. These insights can help identify and address some of the cryptic threats to natural populations that are likely to result from any natural or human-induced change in environmental conditions. They also demonstrate the potential value of evolutionary thinking in the study of global climate change.

  10. The ecology of a continental evolutionary radiation: Is the radiation of sigmodontine rodents adaptive?

    Science.gov (United States)

    Maestri, Renan; Monteiro, Leandro Rabello; Fornel, Rodrigo; Upham, Nathan S; Patterson, Bruce D; de Freitas, Thales Renato Ochotorena

    2017-03-01

    Evolutionary radiations on continents are less well-understood and appreciated than those occurring on islands. The extent of ecological influence on species divergence can be evaluated to determine whether a radiation was ultimately the outcome of divergent natural selection or else arose mainly by nonecological divergence. Here, we used phylogenetic comparative methods to test distinct hypotheses corresponding to adaptive and nonadaptive evolutionary scenarios for the morphological evolution of sigmodontine rodents. Results showed that ecological variables (diet and life-mode) explain little of the shape and size variation of sigmodontine skulls and mandibles. A Brownian model with varying rates for insectivory versus all other diets was the most likely evolutionary model. The insectivorous sigmodontines have a faster rate of morphological evolution than mice feeding on other diets, possibly due to stronger selection for features that aid insectivory. We also demonstrate that rapid early-lineage diversification is not accompanied by high morphological divergence among subclades, contrasting with island results. The geographic size of continents permits spatial segregation to a greater extent than on islands, allowing for allopatric distributions and escape from interspecific competition. We suggest that continental radiations of rodents are likely to produce a pattern of high species diversification coupled with a low degree of phenotypic specialization. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  11. Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura

    Directory of Open Access Journals (Sweden)

    Matos Margarida

    2009-06-01

    Full Text Available Abstract Here we present a correction to our article "Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura". We have recently detected an error concerning the application of the Ln RH formula – a test to detect positive selection – to our microsatellite data. Here we provide the corrected data and discuss its implications for our overall findings. The corrections presented here have produced some changes relative to our previous results, namely in a locus (dsub14 that presents indications of being affected by positive selection. In general, our populations present less consistent indications of positive selection for this particular locus in both periods studied – between generations 3 and 14 and between generation 14 and 40 of laboratory adaptation. Despite this, the main findings of our study regarding the possibility of positive selection acting on that particular microsatellite still hold. As previously concluded in our article, further studies should be performed on this specific microsatellite locus (and neighboring areas to elucidate in greater detail the evolutionary forces acting on this specific region of the O chromosome of Drosophila subobscura.

  12. Cognitive Adaptations for n-person Exchange: The Evolutionary Roots of Organizational Behavior

    Science.gov (United States)

    Tooby, John; Cosmides, Leda; Price, Michael E.

    2013-01-01

    Organizations are composed of stable, predominantly cooperative interactions or n-person exchanges. Humans have been engaging in n-person exchanges for a great enough period of evolutionary time that we appear to have evolved a distinct constellation of species-typical mechanisms specialized to solve the adaptive problems posed by this form of social interaction. These mechanisms appear to have been evolutionarily elaborated out of the cognitive infrastructure that initially evolved for dyadic exchange. Key adaptive problems that these mechanisms are designed to solve include coordination among individuals, and defense against exploitation by free riders. Multi-individual cooperation could not have been maintained over evolutionary time if free riders reliably benefited more than contributors to collective enterprises, and so outcompeted them. As a result, humans evolved mechanisms that implement an aversion to exploitation by free riding, and a strategy of conditional cooperation, supplemented by punitive sentiment towards free riders. Because of the design of these mechanisms, how free riding is treated is a central determinant of the survival and health of cooperative organizations. The mapping of the evolved psychology of n-party exchange cooperation may contribute to the construction of a principled theoretical foundation for the understanding of human behavior in organizations. PMID:23814325

  13. Parametric diagnosis of the adaptive gas path in the automatic control system of the aircraft engine

    Science.gov (United States)

    Kuznetsova, T. A.

    2017-01-01

    The paper dwells on the adaptive multimode mathematical model of the gas-turbine aircraft engine (GTE) embedded in the automatic control system (ACS). The mathematical model is based on the throttle performances, and is characterized by high accuracy of engine parameters identification in stationary and dynamic modes. The proposed on-board engine model is the state space linearized low-level simulation. The engine health is identified by the influence of the coefficient matrix. The influence coefficient is determined by the GTE high-level mathematical model based on measurements of gas-dynamic parameters. In the automatic control algorithm, the sum of squares of the deviation between the parameters of the mathematical model and real GTE is minimized. The proposed mathematical model is effectively used for gas path defects detecting in on-line GTE health monitoring. The accuracy of the on-board mathematical model embedded in ACS determines the quality of adaptive control and reliability of the engine. To improve the accuracy of identification solutions and sustainability provision, the numerical method of Monte Carlo was used. The parametric diagnostic algorithm based on the LPτ - sequence was developed and tested. Analysis of the results suggests that the application of the developed algorithms allows achieving higher identification accuracy and reliability than similar models used in practice.

  14. An Adaptive Dynamic Surface Controller for Ultralow Altitude Airdrop Flight Path Angle with Actuator Input Nonlinearity

    Directory of Open Access Journals (Sweden)

    Mao-long Lv

    2016-01-01

    Full Text Available In the process of ultralow altitude airdrop, many factors such as actuator input dead-zone, backlash, uncertain external atmospheric disturbance, and model unknown nonlinearity affect the precision of trajectory tracking. In response, a robust adaptive neural network dynamic surface controller is developed. As a result, the aircraft longitudinal dynamics with actuator input nonlinearity is derived; the unknown nonlinear model functions are approximated by means of the RBF neural network. Also, an adaption strategy is used to achieve robustness against model uncertainties. Finally, it has been proved that all the signals in the closed-loop system are bounded and the tracking error converges to a small residual set asymptotically. Simulation results demonstrate the perfect tracking performance and strong robustness of the proposed method, which is not only applicable to the actuator with input dead-zone but also suitable for the backlash nonlinearity. At the same time, it can effectively overcome the effects of dead-zone and the atmospheric disturbance on the system and ensure the fast track of the desired flight path angle instruction, which overthrows the assumption that system functions must be known.

  15. An adaptive compromise programming method for multi-objective path optimization

    Science.gov (United States)

    Li, Rongrong; Leung, Yee; Lin, Hui; Huang, Bo

    2013-04-01

    Network routing problems generally involve multiple objectives which may conflict one another. An effective way to solve such problems is to generate a set of Pareto-optimal solutions that is small enough to be handled by a decision maker and large enough to give an overview of all possible trade-offs among the conflicting objectives. To accomplish this, the present paper proposes an adaptive method based on compromise programming to assist decision makers in identifying Pareto-optimal paths, particularly for non-convex problems. This method can provide an unbiased approximation of the Pareto-optimal alternatives by adaptively changing the origin and direction of search in the objective space via the dynamic updating of the largest unexplored region till an appropriately structured Pareto front is captured. To demonstrate the efficacy of the proposed methodology, a case study is carried out for the transportation of dangerous goods in the road network of Hong Kong with the support of geographic information system. The experimental results confirm the effectiveness of the approach.

  16. On the evolutionary origin of the adaptive immune system--the adipocyte hypothesis.

    Science.gov (United States)

    van Niekerk, Gustav; Engelbrecht, Anna-Mart

    2015-04-01

    Jawless vertebrates utilize a form of adaptive immunity that is functionally based on molecular effectors that are completely different from those of vertebrates. This observation raises an intriguing question: why did vertebrates, representing only 5% of all animals, twice evolve a system as complex as adaptive immunity? Theories aimed at identifying a selective pressure that would 'drive' the development of an adaptive immune system (AIS) fail to explain why invertebrates would not similarly develop an AIS. We argue that an AIS can only be implemented in a certain physiological context, i.e., that an AIS represents an unevolvable trait for invertebrates. The immune system is functionally integrated with other systems; therefore a preexisting physiological innovation unique to vertebrates may have acted as the prerequisite infrastructure that allowed the development of an AIS. We propose that future efforts should be directed toward identifying the evolutionary release that allowed the development of an adaptive immune system in vertebrates. In particular, the advent of specialized adipocytes might have expanded the metabolic scope of vertebrates, allowing the opportunistic incorporation of an AIS. However, physiological innovations, unique to (or more developed in) vertebrates, support the implementation of an AIS. Thus, understanding the interaction between systems (e.g. neural-immune-adipose connection) may illuminate our understanding regarding the perplexing immunological dimorphism within the animal kingdom. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  17. Determining paths by which farmers can adapt effectively to scarce freshwater resources

    Science.gov (United States)

    Watson, R.; Hornberger, G.; Carrico, A. R.

    2012-12-01

    Stress on freshwater resources is a significant risk associated with climatic change. The risk is even greater given the expected changes in overall resource use as the developing world develops, as the world's population continues to grow, and as land use changes dramatically. Effective water management has implications for food security, health, and political stability worldwide. This is particularly true in developing regions heavily dependent on agriculture, and where agriculture depends on irrigation. Adaptation to water stress requires both managing water allocation among competing users and ensuring that each user is efficient in his or her use of a limited allotment: the problem is a quintessential common-pool resource (CPR) dilemma. In the future even more so than in the past, adaptation will be essential as the world evolves. The problem that we identify—determining paths by which farmers can adapt effectively to increasingly scarce freshwater resources—is one of great scientific and societal importance. The issue lies at the intersection of water-cycle processes and social-psychological processes that influence and are influenced by water availability and use. This intersection harbors intriguing unresolved scientific questions; advances in natural and social sciences will stem from attacks on the overall problem. The issue is societally compelling because the ability of the world to supply adequate food for a population expected to grow to over 9 billion by 2050 may well be determined by how farmers, consumers, and government institutions adapt to changing conditions of water availability. Major strides have been made in recent decades in understanding why Hardin's envisioned "tragedy of the commons" is avoided under certain circumstances, in some cases through self-organization rather than government intervention originally considered a necessity. Furthermore, we now know that the impacts of decisions about allocation and use of water can be

  18. Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria in a long-term evolution experiment.

    Science.gov (United States)

    Großkopf, Tobias; Consuegra, Jessika; Gaffé, Joël; Willison, John C; Lenski, Richard E; Soyer, Orkun S; Schneider, Dominique

    2016-08-20

    Predicting adaptive trajectories is a major goal of evolutionary biology and useful for practical applications. Systems biology has enabled the development of genome-scale metabolic models. However, analysing these models via flux balance analysis (FBA) cannot predict many evolutionary outcomes including adaptive diversification, whereby an ancestral lineage diverges to fill multiple niches. Here we combine in silico evolution with FBA and apply this modelling framework, evoFBA, to a long-term evolution experiment with Escherichia coli. Simulations predicted the adaptive diversification that occurred in one experimental population and generated hypotheses about the mechanisms that promoted coexistence of the diverged lineages. We experimentally tested and, on balance, verified these mechanisms, showing that diversification involved niche construction and character displacement through differential nutrient uptake and altered metabolic regulation. The evoFBA framework represents a promising new way to model biochemical evolution, one that can generate testable predictions about evolutionary and ecosystem-level outcomes.

  19. Plastic and Evolutionary Gene Expression Responses Are Correlated in European Grayling (Thymallus thymallus) Subpopulations Adapted to Different Thermal Environments.

    Science.gov (United States)

    Mäkinen, Hannu; Papakostas, Spiros; Vøllestad, Leif Asbjørn; Leder, Erica H; Primmer, Craig R

    2016-01-01

    Understanding how populations adapt to changing environmental conditions is a long-standing theme in evolutionary biology. Gene expression changes have been recognized as an important driver of local adaptation, but relatively little is known regarding the direction of change and in particular, about the interplay between plastic and evolutionary gene expression. We have previously shown that the gene expression profiles of European grayling (Thymallus thymallus) populations inhabiting different thermal environments include both plastic and evolutionary components. However, whether the plastic and evolutionary responses were in the same direction was not investigated in detail, nor was the identity of the specific genes involved. In this study, we show that the plastic changes in protein expression in response to different temperatures are highly correlated with the evolutionary response in grayling subpopulations adapted to different thermal environments. This finding provides preliminary evidence that the plastic response most likely facilitates adaptation during the early phases of colonization of thermal environments. The proteins that showed significant changes in expression level between warm and cold temperature treatments were mostly related to muscle development, which is consistent with earlier findings demonstrating muscle mass differentiation between cold and warm grayling populations. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh in vertebrates.

    Directory of Open Access Journals (Sweden)

    Joana Pereira

    Full Text Available The Hedgehog (Hh gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog--Shh; Indian hedgehog--Ihh; and Desert hedgehog--Dhh, each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.

  1. Head size, weaponry, and cervical adaptation: Testing craniocervical evolutionary hypotheses in Ceratopsia.

    Science.gov (United States)

    VanBuren, Collin S; Campione, Nicolás E; Evans, David C

    2015-07-01

    The anterior cervical vertebrae form the skeletal connection between the cranial and postcranial skeletons in higher tetrapods. As a result, the morphology of the atlas-axis complex is likely to be shaped by selection pressures acting on either the head or neck. The neoceratopsian (Reptilia:Dinosauria) syncervical represents one of the most highly modified atlas-axis regions in vertebrates, being formed by the complete coalescence of the three most anterior cervical vertebrae. In ceratopsids, the syncervical has been hypothesized to be an adaptation to support a massive skull, or to act as a buttress during intraspecific head-to-head combat. Here, we test these functional/adaptive hypotheses within a phylogenetic framework and critically examine the previously proposed methods for quantifying relative head size in the fossil record for the first time. Results indicate that neither the evolution of cranial weaponry nor large head size correlates with the origin of cervical fusion in ceratopsians, and we, therefore, reject both adaptive hypotheses for the origin of the syncervical. Anterior cervical fusion has evolved independently in a number of amniote clades, and further research on extant groups with this peculiar anatomy is needed to understand the evolutionary basis for cervical fusion in Neoceratopsia. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  2. Sex-ratio control erodes sexual selection, revealing evolutionary feedback from adaptive plasticity.

    Science.gov (United States)

    Fawcett, Tim W; Kuijper, Bram; Weissing, Franz J; Pen, Ido

    2011-09-20

    Female choice is a powerful selective force, driving the elaboration of conspicuous male ornaments. This process of sexual selection has profound implications for many life-history decisions, including sex allocation. For example, females with attractive partners should produce more sons, because these sons will inherit their father's attractiveness and enjoy high mating success, thereby yielding greater fitness returns than daughters. However, previous research has overlooked the fact that there is a reciprocal feedback from life-history strategies to sexual selection. Here, using a simple mathematical model, we show that if mothers adaptively control offspring sex in relation to their partner's attractiveness, sexual selection is weakened and male ornamentation declines. This weakening occurs because the ability to determine offspring sex reduces the fitness difference between females with attractive and unattractive partners. We use individual-based, evolutionary simulations to show that this result holds under more biologically realistic conditions. Sexual selection and sex allocation thus interact in a dynamic fashion: The evolution of conspicuous male ornaments favors sex-ratio adjustment, but this conditional strategy then undermines the very same process that generated it, eroding sexual selection. We predict that, all else being equal, the most elaborate sexual displays should be seen in species with little or no control over offspring sex. The feedback process we have described points to a more general evolutionary principle, in which a conditional strategy weakens directional selection on another trait by reducing fitness differences.

  3. Co-evolutionary behaviour selection in adaptive social networks predicts clustered marginalization of minorities

    CERN Document Server

    Schleussner, Carl-Friedrich; Engemann, Denis A; Levermann, Anders

    2015-01-01

    Human behaviour is largely shaped by local social interactions and depends on the structure of connections between individuals in social networks. These two dimensions of behaviour selection are commonly studied in isolation by different disciplines and are often treated as independent processes. To the contrary, empirical findings on spread of behaviour in social networks suggest that local interactions between individuals and network evolution are interdependent. Empirical evidence, however, remains inconclusive as social network studies often suffer from limited sample sizes or are prohibitive on ethical grounds. Here we introduce a co-evolutionary adaptive network model of social behaviour selection that provides insights into generative mechanisms by resolving both these aspects through computer simulations. We considered four complementary models and evaluated them with regard to emulating empirical behaviour dynamics in social networks. For this purpose we modelled the prevalence of smoking and and the...

  4. Morphology of the snake spectacle reflects its evolutionary adaptation and development

    DEFF Research Database (Denmark)

    Da Silva, Mari-Ann Otkjaer; Heegaard, Steffen; Wang, Tobias

    2017-01-01

    optical coherence tomography (OCT) to measure spectacular thickness. Multivariable analyses were made to determine whether family, activity period (diurnal/nocturnal) and habitat (arboreal/terrestrial/fossorial/aquatic) influenced spectacle thickness. Results The thinnest spectacles in absolute terms were...... found in the Usambara bush viper (Viperidae) with a thickness of 74 ± 9 μm and the absolute thickest spectacle was found in the red-tailed pipe snake (Cylindrophiidae) which had a spectacle thickness of 244 ± 57 μm. Fossorial and aquatic snakes had significantly thicker spectacles than arboreal...... be predicted by taxonomic family and habitat, but not activity period. Conclusion This phylogenetically broad systematic study of the thickness of the snake spectacle showed that spectacular thickness varies greatly across snake species and may reflect evolutionary adaptation and development....

  5. Biomimetic evolutionary analysis: testing the adaptive value of vertebrate tail stiffness in autonomous swimming robots.

    Science.gov (United States)

    Long, J H; Koob, T J; Irving, K; Combie, K; Engel, V; Livingston, N; Lammert, A; Schumacher, J

    2006-12-01

    For early vertebrates, a long-standing hypothesis is that vertebrae evolved as a locomotor adaptation, stiffening the body axis and enhancing swimming performance. While supported by biomechanical data, this hypothesis has not been tested using an evolutionary approach. We did so by extending biomimetic evolutionary analysis (BEA), which builds physical simulations of extinct systems, to include use of autonomous robots as proxies of early vertebrates competing in a forage navigation task. Modeled after free-swimming larvae of sea squirts (Chordata, Urochordata), three robotic tadpoles (;Tadros'), each with a propulsive tail bearing a biomimetic notochord of variable spring stiffness, k (N m(-1)), searched for, oriented to, and orbited in two dimensions around a light source. Within each of ten generations, we selected for increased swimming speed, U (m s(-1)) and decreased time to the light source, t (s), average distance from the source, R (m) and wobble maneuvering, W (rad s(-2)). In software simulation, we coded two quantitative trait loci (QTL) that determine k: bending modulus, E (Nm(-2)) and length, L (m). Both QTL were mutated during replication, independently assorted during meiosis and, as haploid gametes, entered into the gene pool in proportion to parental fitness. After random mating created three new diploid genotypes, we fabricated three new offspring tails. In the presence of both selection and chance events (mutation, genetic drift), the phenotypic means of this small population evolved. The classic hypothesis was supported in that k was positively correlated (r(2)=0.40) with navigational prowess, NP, the dimensionless ratio of U to the product of R, t and W. However, the plausible adaptive scenario, even in this simplified system, is more complex, since the remaining variance in NP was correlated with the residuals of R and U taken with respect to k, suggesting that changes in k alone are insufficient to explain the evolution of NP.

  6. The puzzle of partial migration: Adaptive dynamics and evolutionary game theory perspectives.

    Science.gov (United States)

    De Leenheer, Patrick; Mohapatra, Anushaya; Ohms, Haley A; Lytle, David A; Cushing, J M

    2017-01-07

    We consider the phenomenon of partial migration which is exhibited by populations in which some individuals migrate between habitats during their lifetime, but others do not. First, using an adaptive dynamics approach, we show that partial migration can be explained on the basis of negative density dependence in the per capita fertilities alone, provided that this density dependence is attenuated for increasing abundances of the subtypes that make up the population. We present an exact formula for the optimal proportion of migrants which is expressed in terms of the vital rates of migrant and non-migrant subtypes only. We show that this allocation strategy is both an evolutionary stable strategy (ESS) as well as a convergence stable strategy (CSS). To establish the former, we generalize the classical notion of an ESS because it is based on invasion exponents obtained from linearization arguments, which fail to capture the stabilizing effects of the nonlinear density dependence. These results clarify precisely when the notion of a "weak ESS", as proposed in Lundberg (2013) for a related model, is a genuine ESS. Secondly, we use an evolutionary game theory approach, and confirm, once again, that partial migration can be attributed to negative density dependence alone. In this context, the result holds even when density dependence is not attenuated. In this case, the optimal allocation strategy towards migrants is the same as the ESS stemming from the analysis based on the adaptive dynamics. The key feature of the population models considered here is that they are monotone dynamical systems, which enables a rather comprehensive mathematical analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes

    Directory of Open Access Journals (Sweden)

    Windisch Heidrun Sigrid

    2012-10-01

    Full Text Available Abstract Background Studies of temperature-induced adaptation on the basis of genomic sequence data were mainly done in extremophiles. Although the general hypothesis of an increased molecular flexibility in the cold is widely accepted, the results of thermal adaptation are still difficult to detect at proteomic down to the genomic sequence level. Approaches towards a more detailed picture emerge with the advent of new sequencing technologies. Only small changes in primary protein structure have been shown to modify kinetic and thermal properties of enzymes, but likewise for interspecies comparisons a high genetic identity is still essential to specify common principles. The present study uses comprehensive transcriptomic sequence information to uncover general patterns of thermal adaptation on the RNA as well as protein primary structure. Results By comparing orthologous sequences of two closely related zoarcid fish inhabiting different latitudinal zones (Antarctica: Pachycara brachycephalum, temperate zone: Zoarces viviparus we were able to detect significant differences in the codon usage. In the cold-adapted species a lower GC content in the wobble position prevailed for preserved amino acids. We were able to estimate 40-60% coverage of the functions represented within the two compared zoarcid cDNA-libraries on the basis of a reference genome of the phylogenetically closely related fish Gasterosteus aculeatus. A distinct pattern of amino acid substitutions could be identified for the non-synonymous codon exchanges, with a remarkable surplus of serine and reduction of glutamic acid and asparagine for the Antarctic species. Conclusion Based on the differences between orthologous sequences from confamiliar species, distinguished mainly by the temperature regimes of their habitats, we hypothesize that temperature leaves a signature on the composition of biological macromolecules (RNA, proteins with implications for the transcription and

  8. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths.

    Directory of Open Access Journals (Sweden)

    Marie Touchon

    2009-01-01

    Full Text Available The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re- annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species, including seven that we sequenced to completion. Within the approximately 18,000 families of orthologous genes, we found approximately 2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an

  9. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths.

    Science.gov (United States)

    Touchon, Marie; Hoede, Claire; Tenaillon, Olivier; Barbe, Valérie; Baeriswyl, Simon; Bidet, Philippe; Bingen, Edouard; Bonacorsi, Stéphane; Bouchier, Christiane; Bouvet, Odile; Calteau, Alexandra; Chiapello, Hélène; Clermont, Olivier; Cruveiller, Stéphane; Danchin, Antoine; Diard, Médéric; Dossat, Carole; Karoui, Meriem El; Frapy, Eric; Garry, Louis; Ghigo, Jean Marc; Gilles, Anne Marie; Johnson, James; Le Bouguénec, Chantal; Lescat, Mathilde; Mangenot, Sophie; Martinez-Jéhanne, Vanessa; Matic, Ivan; Nassif, Xavier; Oztas, Sophie; Petit, Marie Agnès; Pichon, Christophe; Rouy, Zoé; Ruf, Claude Saint; Schneider, Dominique; Tourret, Jérôme; Vacherie, Benoit; Vallenet, David; Médigue, Claudine; Rocha, Eduardo P C; Denamur, Erick

    2009-01-01

    The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the approximately 18,000 families of orthologous genes, we found approximately 2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.

  10. Adaptive attunement of selective covert attention to evolutionary-relevant emotional visual scenes.

    Science.gov (United States)

    Fernández-Martín, Andrés; Gutiérrez-García, Aída; Capafons, Juan; Calvo, Manuel G

    2017-05-01

    We investigated selective attention to emotional scenes in peripheral vision, as a function of adaptive relevance of scene affective content for male and female observers. Pairs of emotional-neutral images appeared peripherally-with perceptual stimulus differences controlled-while viewers were fixating on a different stimulus in central vision. Early selective orienting was assessed by the probability of directing the first fixation towards either scene, and the time until first fixation. Emotional scenes selectively captured covert attention even when they were task-irrelevant, thus revealing involuntary, automatic processing. Sex of observers and specific emotional scene content (e.g., male-to-female-aggression, families and babies, etc.) interactively modulated covert attention, depending on adaptive priorities and goals for each sex, both for pleasant and unpleasant content. The attentional system exhibits domain-specific and sex-specific biases and attunements, probably rooted in evolutionary pressures to enhance reproductive and protective success. Emotional cues selectively capture covert attention based on their bio-social significance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. An adaptive evolutionary multi-objective approach based on simulated annealing.

    Science.gov (United States)

    Li, H; Landa-Silva, D

    2011-01-01

    A multi-objective optimization problem can be solved by decomposing it into one or more single objective subproblems in some multi-objective metaheuristic algorithms. Each subproblem corresponds to one weighted aggregation function. For example, MOEA/D is an evolutionary multi-objective optimization (EMO) algorithm that attempts to optimize multiple subproblems simultaneously by evolving a population of solutions. However, the performance of MOEA/D highly depends on the initial setting and diversity of the weight vectors. In this paper, we present an improved version of MOEA/D, called EMOSA, which incorporates an advanced local search technique (simulated annealing) and adapts the search directions (weight vectors) corresponding to various subproblems. In EMOSA, the weight vector of each subproblem is adaptively modified at the lowest temperature in order to diversify the search toward the unexplored parts of the Pareto-optimal front. Our computational results show that EMOSA outperforms six other well established multi-objective metaheuristic algorithms on both the (constrained) multi-objective knapsack problem and the (unconstrained) multi-objective traveling salesman problem. Moreover, the effects of the main algorithmic components and parameter sensitivities on the search performance of EMOSA are experimentally investigated.

  12. Evolutionary architecture of the infant-adapted group of Bifidobacterium species associated with the probiotic function.

    Science.gov (United States)

    Kwak, Min-Jung; Kwon, Soon-Kyeong; Yoon, Jae-Kyung; Song, Ju Yeon; Seo, Jae-Gu; Chung, Myung Jun; Kim, Jihyun F

    2016-10-01

    Bifidobacteria, often associated with the gastrointestinal tract of animals, are well known for their roles as probiotics. Among the dozens of Bifidobacterium species, Bifidobacterium bifidum, B. breve, and B. longum are the ones most frequently isolated from the feces of infants and known to help the digestion of human milk oligosaccharides. To investigate the correlation between the metabolic properties of bifidobacteria and their phylogeny, we performed a phylogenomic analysis based on 452 core genes of forty-four completely sequenced Bifidobacterium species. Results show that a major evolutionary event leading to the clade of the infant-adapted species is linked to carbohydrate metabolism, but it is not the only factor responsible for the adaptation of bifidobacteria to the gut. The genome of B. longum subsp. infantis, a typical bifidobacterium in the gut of breast-fed infants, encodes proteins associated with several kinds of species-specific metabolic pathways, including urea metabolism and biosynthesis of riboflavin and lantibiotics. Our results demonstrate that these metabolic features, which are associated with the probiotic function of bifidobacteria, are species-specific and highly correlate with their phylogeny. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. The Role of Evolutionary Intermediates in the Host Adaptation of Canine Parvovirus

    Science.gov (United States)

    Stucker, Karla M.; Pagan, Israel; Cifuente, Javier O.; Kaelber, Jason T.; Lillie, Tyler D.; Hafenstein, Susan; Holmes, Edward C.

    2012-01-01

    The adaptation of viruses to new hosts is a poorly understood process likely involving a variety of viral structures and functions that allow efficient replication and spread. Canine parvovirus (CPV) emerged in the late 1970s as a host-range variant of a virus related to feline panleukopenia virus (FPV). Within a few years of its emergence in dogs, there was a worldwide replacement of the initial virus strain (CPV type 2) by a variant (CPV type 2a) characterized by four amino acid differences in the capsid protein. However, the evolutionary processes that underlie the acquisition of these four mutations, as well as their effects on viral fitness, both singly and in combination, are still uncertain. Using a comprehensive experimental analysis of multiple intermediate mutational combinations, we show that these four capsid mutations act in concert to alter antigenicity, cell receptor binding, and relative in vitro growth in feline cells. Hence, host adaptation involved complex interactions among both surface-exposed and buried capsid mutations that together altered cell infection and immune escape properties of the viruses. Notably, most intermediate viral genotypes containing different combinations of the four key amino acids possessed markedly lower fitness than the wild-type viruses. PMID:22114336

  14. Similar temperature dependencies of glycolytic enzymes: an evolutionary adaptation to temperature dynamics?

    Directory of Open Access Journals (Sweden)

    Cruz Luisa Ana B

    2012-12-01

    Full Text Available Abstract Background Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in Saccharomyces cerevisiae during temperature changes. Results Saccharomyces cerevisiae was grown under different temperature regimes and glucose availability conditions. These included glucose-excess batch cultures at different temperatures and glucose-limited chemostat cultures, subjected to fast linear temperature shifts and circadian sinoidal temperature cycles. An observed temperature-independent relation between intracellular levels of glycolytic metabolites and residual glucose concentration for all experimental conditions revealed that it is the substrate availability rather than temperature that determines intracellular metabolite profiles. This observation corresponded with predictions generated in silico with a kinetic model of yeast glycolysis, when the catalytic capacities of all glycolytic enzymes were set to share the same normalized temperature dependency. Conclusions From an evolutionary perspective, such similar temperature dependencies allow cells to adapt more rapidly to temperature changes, because they result in minimal perturbations of intracellular metabolite levels, thus circumventing the need for extensive modification of enzyme levels.

  15. Evolutionary blueprint for host- and niche-adaptation in Staphylococcus aureus clonal complex CC30

    Directory of Open Access Journals (Sweden)

    Martin John Mcgavin

    2012-04-01

    Full Text Available Staphylococcus aureus clonal complex CC30 has caused infectious epidemics for more than 60 years, and therefore provides a model system to evaluate how evolution has influenced the disease potential of closely related strains. In previous multiple genome comparisons, phylogenetic analyses established three major branches that evolved from a common ancestor. Clade 1, comprised of historic pandemic phage type 80/81 methicillin susceptible S. aureus (MSSA, and Clade 2 comprised of contemporary community acquired methicillin resistant S. aureus (CA-MRSA were hyper-virulent in murine infection models. Conversely, Clade 3 strains comprised of contemporary hospital associated MRSA (HA-MRSA and clinical MSSA exhibited attenuated virulence, due to common single nucleotide polymorphisms (SNP’s that abrogate production of α-hemolysin Hla, and interfere with signaling of the accessory gene regulator agr. We have now completed additional in silico genome comparisons of fifteen additional CC30 genomes in the public domain, to assess the hypothesis that Clade 3 has evolved to favor niche adaptation. In addition to SNP’s that influence agr and hla, other common traits of Clade 3 include tryptophan auxotrophy due to a di-nucleotide deletion within trpD, a premature stop codon within isdH encoding an immunogenic cell surface protein involved in iron acquisition, loss of a genomic toxin-antitoxin addiction module, acquisition of S. aureus pathogenicity islands SaPI4, and SaPI2 encoding toxic shock syndrome toxin tst, and increased copy number of insertion sequence ISSau2, which appears to target transcription terminators. Compared to other Clade 3 MSSA, S. aureus MN8, which is associated with Staphylococcal toxic shock syndrome, exhibited a unique ISSau2 insertion, and enhanced production of toxic shock syndrome toxin encoded by SaPI2. Cumulatively, our data support the notion that Clade 3 strains are following an evolutionary blueprint towards niche-adaptation.

  16. A Neural Path Integration Mechanism for Adaptive Vector Navigation in Autonomous Agents

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Dasgupta, Sakyasingha; Wörgötter, Florentin

    2015-01-01

    Animals show remarkable capabilities in navigating their habitat in a fully autonomous and energy-efficient way. In many species, these capabilities rely on a process called path integration, which enables them to estimate their current location and to find their way back home after long......-distance journeys. Path integration is achieved by integrating compass and odometric cues. Here we introduce a neural path integration mechanism that interacts with a neural locomotion control to simulate homing behavior and path integration-related behaviors observed in animals. The mechanism is applied...... to a simulated sixlegged artificial agent. Input signals from an allothetic compass and odometry are sustained through leaky neural integrator circuits, which are then used to compute the home vector by local excitation-global inhibition interactions. The home vector is computed and represented in circular...

  17. Toad heart utilizes exclusively slow skeletal muscle troponin T: an evolutionary adaptation with potential functional benefits.

    Science.gov (United States)

    Feng, Han-Zhong; Chen, Xuequn; Hossain, M Moazzem; Jin, Jian-Ping

    2012-08-24

    The three isoforms of vertebrate troponin T (TnT) are normally expressed in a muscle type-specific manner. Here we report an exception that the cardiac muscle of toad (Bufo) expresses exclusively slow skeletal muscle TnT (ssTnT) together with cardiac forms of troponin I and myosin as determined using immunoblotting, cDNA cloning, and/or LC-MS/MS. Using RT-PCR and 3'- and 5'-rapid amplification of cDNA ends on toad cardiac mRNA, we cloned full-length cDNAs encoding two alternatively spliced variants of ssTnT. Expression of the cloned cDNAs in Escherichia coli confirmed that the toad cardiac muscle expresses solely ssTnT, predominantly the low molecular weight variant with the exon 5-encoded NH(2)-terminal segment spliced out. Functional studies were performed in ex vivo working toad hearts and compared with the frog (Rana) hearts. The results showed that toad hearts had higher contractile and relaxation velocities and were able to work against a significantly higher afterload than that of frog hearts. Therefore, the unique evolutionary adaptation of utilizing exclusively ssTnT in toad cardiac muscle corresponded to a fitness value from improving systolic function of the heart. The data demonstrated a physiological importance of the functional diversity of TnT isoforms. The structure-function relationship of TnT may be explored for the development of new treatment of heart failure.

  18. Morphology of the snake spectacle reflects its evolutionary adaptation and development.

    Science.gov (United States)

    Da Silva, Mari-Ann Otkjaer; Heegaard, Steffen; Wang, Tobias; Gade, Jacob Thorup; Damsgaard, Christian; Bertelsen, Mads Frost

    2017-08-18

    Covering the eye of all snakes is a transparent integumental structure known as the spectacle. In order to determine variations in spectacle thickness among species, the spectacles of 217 alcohol-preserved museum specimens of 44 species belonging to 14 different families underwent optical coherence tomography (OCT) to measure spectacular thickness. Multivariable analyses were made to determine whether family, activity period (diurnal/nocturnal) and habitat (arboreal/terrestrial/fossorial/aquatic) influenced spectacle thickness. The thinnest spectacles in absolute terms were found in the Usambara bush viper (Viperidae) with a thickness of 74 ± 9 μm and the absolute thickest spectacle was found in the red-tailed pipe snake (Cylindrophiidae) which had a spectacle thickness of 244 ± 57 μm. Fossorial and aquatic snakes had significantly thicker spectacles than arboreal and terrestrial snakes. When spectacle thickness was correlated to eye size (horizontal spectacle diameter), Gray's earth snake (Uropeltidae) had the lowest ratio (1:7) and the cottonmouth (Viperidae) had the highest ratio (1:65). Multivariable and phylogenetic analyses showed that spectacular thickness could be predicted by taxonomic family and habitat, but not activity period. This phylogenetically broad systematic study of the thickness of the snake spectacle showed that spectacular thickness varies greatly across snake species and may reflect evolutionary adaptation and development.

  19. Optimization of an Autonomous Car Controller Using a Self-Adaptive Evolutionary Strategy

    Directory of Open Access Journals (Sweden)

    Tae Seong Kim

    2012-09-01

    Full Text Available Autonomous cars control the steering wheel, acceleration and the brake pedal, the gears and the clutch using sensory information from multiple sources. Like a human driver, it understands the current situation on the roads from the live streaming of sensory values. The decision-making module often suffers from the limited range of sensors and complexity due to the large number of sensors and actuators. Because it is tedious and difficult to design the controller manually from trial-and-error, it is desirable to use intelligent optimization algorithms. In this work, we propose optimizing the parameters of an autonomous car controller using self-adaptive evolutionary strategies (SAESs which co-evolve solutions and mutation steps for each parameter. We also describe how the most generalized parameter set can be retrieved from the process of optimization. Open-source car racing simulation software (TORCS is used to test the goodness of the proposed methods on 6 different tracks. Experimental results show that the SAES is competitive with the manual design of authors and a simple ES.

  20. The Evolutionary Psychology of War: Offense and Defense in the Adapted Mind.

    Science.gov (United States)

    Lopez, Anthony C

    2017-01-01

    The study of warfare from an evolutionary perspective has expanded rapidly over the last couple of decades. However, it has tended to focus on the ancestral origins, prevalence, and instruments of war rather than adaptationist analyses of its underlying psychology. I argue that our evolved coalitional psychology may contain a set of distinct evolved heuristics designed specifically for offensive and defensive coalitional aggression. Data from two survey experiments are presented, in which subjects were given scenarios depicting offensive or defensive aggression and were told to make decisions, for example, regarding their willingness to participate in the conflict, their opinions of others who did not choose to participate, and their expectations benefit. The results indicate that humans do indeed distinguish readily between these two domains and that their willingness to participate, as well as their emotional responses toward others, is highly contingent upon this informational cue in adaptively relevant ways. In addition, and consistent with parental investment theory, data reveal a range of sex differences in attitudes toward coalitional aggression in the two conflict domains. Beyond the study of warfare, this project has implications for our understanding of the relationship between individual behavior and group dynamics, as well as for our understanding of the mechanisms by which the psychological framing of political events can lead to important social outcomes.

  1. The First Joke: Exploring the Evolutionary Origins of Humor

    OpenAIRE

    Joseph Polimeni; Jeffrey P. Reiss

    2006-01-01

    Humor is a complex cognitive function which often leads to laughter. Contemporary humor theorists have begun to formulate hypotheses outlining the possible innate cognitive structures underlying humor. Humor's conspicuous presence in the behavioral repertoire of humankind invites adaptive explanations. This article explores the possible adaptive features of humor and ponders its evolutionary path through hominid history. Current humor theories and previous evolutionary ideas on humor are revi...

  2. The "new normal": Adapting doctoral trainee career preparation for broad career paths in science

    National Research Council Canada - National Science Library

    Rebekah St Clair; Tamara Hutto; Cora MacBeth; Wendy Newstetter; Nael A McCarty; Julia Melkers

    ...) are poorly understood. The recent adaptation of the Social Cognitive Career Theory to explicitly highlight the interplay of contextual support mechanisms, individual career search efficacy, and self-adaptation of job...

  3. Designing a performance measurement system for supply chain using balanced scorecard, path analysis, cooperative game theory and evolutionary game theory: A Case Study

    Directory of Open Access Journals (Sweden)

    Seyed Hootan Eskafi

    2015-04-01

    Full Text Available In recent years, supply chain management is known as the key factor for achieving competitive advantage. Better customer service, revenue improvement and cost reduction are the results of this philosophy. Organizations can manage the performance of their firms by appropriate goal setting, identifying criteria and continuous performance measurement, which creates a good view for the business circumstances. Developing and defining appropriate indicators at different levels of chain is necessary for implementing a performance measurement system. In this study, we propose a new method to determine the measurement indicators and strategies of the company in term of balanced scorecard. The study is a combination of balanced scorecard, path analysis, evolutionary game theory and cooperative game theory for strategic planning. The study offers an appropriate program for future activities of organizations and determines the present status of the firm. The implementation of the proposed method is introduced for a food producer and the results are analyzed.

  4. Genome analysis of a transmissible lineage of pseudomonas aeruginosa reveals pathoadaptive mutations and distinct evolutionary paths of hypermutators.

    Directory of Open Access Journals (Sweden)

    Rasmus Lykke Marvig

    Full Text Available Genome sequencing of bacterial pathogens has advanced our understanding of their evolution, epidemiology, and response to antibiotic therapy. However, we still have only a limited knowledge of the molecular changes in in vivo evolving bacterial populations in relation to long-term, chronic infections. For example, it remains unclear what genes are mutated to facilitate the establishment of long-term existence in the human host environment, and in which way acquisition of a hypermutator phenotype with enhanced rates of spontaneous mutations influences the evolutionary trajectory of the pathogen. Here we perform a retrospective study of the DK2 clone type of P. aeruginosa isolated from Danish patients suffering from cystic fibrosis (CF, and analyze the genomes of 55 bacterial isolates collected from 21 infected individuals over 38 years. Our phylogenetic analysis of 8,530 mutations in the DK2 genomes shows that the ancestral DK2 clone type spread among CF patients through several independent transmission events. Subsequent to transmission, sub-lineages evolved independently for years in separate hosts, creating a unique possibility to study parallel evolution and identification of genes targeted by mutations to optimize pathogen fitness (pathoadaptive mutations. These genes were related to antibiotic resistance, the cell envelope, or regulatory functions, and we find that the prevalence of pathoadaptive mutations correlates with evolutionary success of co-evolving sub-lineages. The long-term co-existence of both normal and hypermutator populations enabled comparative investigations of the mutation dynamics in homopolymeric sequences in which hypermutators are particularly prone to mutations. We find a positive exponential correlation between the length of the homopolymer and its likelihood to acquire mutations and identify two homopolymer-containing genes preferentially mutated in hypermutators. This homopolymer facilitated differential

  5. From classical to quantum and back: Hamiltonian adaptive resolution path integral, ring polymer, and centroid molecular dynamics

    Science.gov (United States)

    Kreis, Karsten; Kremer, Kurt; Potestio, Raffaello; Tuckerman, Mark E.

    2017-12-01

    Path integral-based methodologies play a crucial role for the investigation of nuclear quantum effects by means of computer simulations. However, these techniques are significantly more demanding than corresponding classical simulations. To reduce this numerical effort, we recently proposed a method, based on a rigorous Hamiltonian formulation, which restricts the quantum modeling to a small but relevant spatial region within a larger reservoir where particles are treated classically. In this work, we extend this idea and show how it can be implemented along with state-of-the-art path integral simulation techniques, including path-integral molecular dynamics, which allows for the calculation of quantum statistical properties, and ring-polymer and centroid molecular dynamics, which allow the calculation of approximate quantum dynamical properties. To this end, we derive a new integration algorithm that also makes use of multiple time-stepping. The scheme is validated via adaptive classical-path-integral simulations of liquid water. Potential applications of the proposed multiresolution method are diverse and include efficient quantum simulations of interfaces as well as complex biomolecular systems such as membranes and proteins.

  6. Brain-Computer Evolutionary Multi-Objective Optimization (BC-EMO): a genetic algorithm adapting to the decision maker

    OpenAIRE

    Battiti, Roberto; Passerini, Andrea

    2009-01-01

    The centrality of the decision maker (DM) is widely recognized in the Multiple Criteria Decision Making community. This translates into emphasis on seamless human-computer interaction, and adaptation of the solution technique to the knowledge which is progressively acquired from the DM. This paper adopts the methodology of Reactive Optimization(RO) for evolutionary interactive multi-objective optimization. RO follows to the paradigm of "learning while optimizing", through the use of online ma...

  7. Current Evolutionary Adaptiveness of Psychiatric Disorders: Fertility Rates, Parent-Child Relationship Quality, and Psychiatric Disorders across the Lifespan

    OpenAIRE

    Jacobson, Nicholas C.

    2016-01-01

    This study sought to evaluate the current evolutionary adaptiveness of psychopathology by examining whether these disorders impact the quantity of offspring or the quality of the parent-child relationship across the lifespan. Using the National Comorbidity Survey, this study examined whether DSM-III-R anxiety, posttraumatic stress, depressive, bipolar, substance use, antisocial, and psychosis disorders predicted later fertility and the quality of parent-child relationships across the lifespan...

  8. Explanations for adaptations, just-so stories, and limitations on evidence in evolutionary biology.

    Science.gov (United States)

    Smith, Richard J

    2016-11-01

    Explanations of the historical origin of specific individual traits are a key part of the research program in paleontology and evolutionary biology. Why did bipedalism evolve in the human lineage? Why did some dinosaurs and related species have head crests? Why did viviparity evolve in some reptiles? Why did the common ancestor of primates evolve stereoscopic vision, grasping hands and feet, nails instead of claws, and large brains? These are difficult questions. To varying degrees, an explanation must grapple with (1) judgments about changes in fitness that might follow from a change in morphology - without actually observing behavior or measuring reproductive success, (2) the relationship between genes and traits, (3) limitations on doing relevant experiments, (4) the interpretation of causes that are almost certainly contingent, multifactorial, interactive, hierarchical, nonlinear, emergent, and probabilistic rather than deterministic, (5) limited information about variation and ontogeny, (6) a dataset based on the random fortunes of the historical record, including only partial hard-tissue morphology and no soft-tissue morphology, (7) an equally partial and problematic (for example, time-averaged) record of the environment, (8) the compression of all data into a geological time scale that is likely to miss biologically important events or fluctuations, (9) dependence on a process that can only be inferred ("form and even behavior may leave fossil traces, but forces like natural selection do not", 1:130 ) and finally, (10) the assumption of the "adaptationist programme"2 that the trait in question is in fact an adaptation rather than a consequence of genetic drift, correlated evolution, pleiotropy, exaptation, or other mechanisms. © 2016 Wiley Periodicals, Inc.

  9. Bridging the Gap: The 'Soft Path' for Improving Resilience and Adaptability of Water Systems (Invited)

    Science.gov (United States)

    Gleick, P. H.

    2010-12-01

    The failure of traditional water management systems in the 20th century -- what I call the "hard path for water" -- is evident in several ways, including the persistent inability to meet basic human needs for safe water and adequate sanitation for vast populations, ongoing and accelerating aquatic ecosystem collapses , and growing political disputes over water allocation, management, and use, even in regions where substantial investment in water has been made. Progress in resolving these problems, especially in the face of unavoidable climate changes, growing populations, and constrained financial systems, will require bridging hydrologic and social sciences in new ways. Integrating social and cultural knowledge with new economic and technological tools and classical hydrologic and climatological sciences can produce a new “soft path for water” that offers the opportunity to move toward sustainable water systems. This talk will define the soft path for water and offer examples of innovative steps already being taken along that path in the western United States, South Africa, India, and elsewhere.

  10. Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures.

    Science.gov (United States)

    Monteiro, Leandro R; Nogueira, Marcelo R

    2010-03-01

    The evolutionary integration of complex morphological structures is a macroevolutionary pattern in which morphogenetic components evolve in a coordinated fashion, which can result from the interplay among processes of developmental, genetic integration, and different types of selection. We tested hypotheses of ecological versus developmental factors underlying patterns of within-species and evolutionary integration in the mandible of phyllostomid bats, during the most impressive ecological and morphological radiation among mammals. Shape variation of mandibular morphogenetic components was associated with diet, and the transition of integration patterns from developmental to within-species to evolutionary was examined. Within-species (as a proxy to genetic) integration in different lineages resembled developmental integration regardless of diet specialization, however, evolutionary integration patterns reflected selection in different mandibular components. For dietary specializations requiring extensive functional changes in mastication patterns or biting, such as frugivores and sanguivores, the evolutionary integration pattern was not associated with expected within-species or developmental integration. On the other hand, specializations with lower mastication demands or without major functional reorganization (such as nectarivores and carnivores), presented evolutionary integration patterns similar to the expected developmental pattern. These results show that evolutionary integration patterns are largely a result of independent selection on specific components regardless of developmental modules.

  11. The optimal paths of climate change mitigation and adaptation under certainty and uncertainty

    NARCIS (Netherlands)

    Felgenhauer, T.; Bruin, de K.C.

    2009-01-01

    Tradeoffs between climate change mitigation and adaptation policies are explored under both certainty and uncertainty with learning using a numerical two-period decision model. We first replicate a version of the Adaptation in DICE climate model (AD-DICE) (de Bruin et al., 2009), which modifies the

  12. Opportunities for Adaptivity in the UMTS Terminal Receiver: The Path-Search Function

    NARCIS (Netherlands)

    Potman, J.; Damstra, Marijn; Hoeksema, F.W.; Slump, Cornelis H.

    2004-01-01

    Wireless communication systems will have to become more and more exible. In the Adaptive Wireless Networking project we try to develop such a exible wireless communication system by developing algorithms for adaptive implementation of the digital signal processing functions in wireless communication

  13. An evaluation of unisensory and multisensory adaptive flight-path navigation displays

    Science.gov (United States)

    Moroney, Brian W.

    1999-11-01

    The present study assessed the use of unimodal (auditory or visual) and multimodal (audio-visual) adaptive interfaces to aid military pilots in the performance of a precision-navigation flight task when they were confronted with additional information-processing loads. A standard navigation interface was supplemented by adaptive interfaces consisting of either a head-up display based flight director, a 3D virtual audio interface, or a combination of the two. The adaptive interfaces provided information about how to return to the pathway when off course. Using an advanced flight simulator, pilots attempted two navigation scenarios: (A) maintain proper course under normal flight conditions and (B) return to course after their aircraft's position has been perturbed. Pilots flew in the presence or absence of an additional information-processing task presented in either the visual or auditory modality. The additional information-processing tasks were equated in terms of perceived mental workload as indexed by the NASA-TLX. Twelve experienced military pilots (11 men and 1 woman), naive to the purpose of the experiment, participated in the study. They were recruited from Wright-Patterson Air Force Base and had a mean of 2812 hrs. of flight experience. Four navigational interface configurations, the standard visual navigation interface alone (SV), SV plus adaptive visual, SV plus adaptive auditory, and SV plus adaptive visual-auditory composite were combined factorially with three concurrent tasks (CT), the no CT, the visual CT, and the auditory CT, a completely repeated measures design. The adaptive navigation displays were activated whenever the aircraft was more than 450 ft off course. In the normal flight scenario, the adaptive interfaces did not bolster navigation performance in comparison to the standard interface. It is conceivable that the pilots performed quite adequately using the familiar generic interface under normal flight conditions and hence showed no added

  14. Rapid evolutionary adaptation to elevated salt concentrations in pathogenic freshwater bacteria Serratia marcescens

    National Research Council Canada - National Science Library

    Ketola, Tarmo; Hiltunen, Teppo

    2014-01-01

    .... We tested this hypothesis with a 133‐day‐long evolutionary experiment studying the evolution of the pathogenic Serratia marcescens bacterium at salinity niche boundary and in fluctuating conditions. We found...

  15. Frequency and motivational state: evolutionary simulations suggest an adaptive function for network oscillations

    NARCIS (Netherlands)

    Heerebout, B.T.; Phaf, R.H.; Taatgen, N.A.; van Rijn, H.

    2009-01-01

    Evolutionary simulations of foraging agents, controlled by artificial neural networks, unexpectedly yielded oscillating node activations in the networks. The agents had to navigate a virtual environment to collect food while avoiding predation. Between generations their neural networks were

  16. Evolutionary Nephrology.

    Science.gov (United States)

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  17. Detection of new in-path targets by drivers using Stop & Go Adaptive Cruise Control.

    Science.gov (United States)

    Stanton, Neville A; Dunoyer, Alain; Leatherland, Adam

    2011-05-01

    This paper reports on the design and evaluation of in-car displays used to support Stop & Go Adaptive Cruise Control. Stop & Go Adaptive Cruise Control is an extension of Adaptive Cruise Control, as it is able to bring the vehicle to a complete stop. Previous versions of Adaptive Cruise Control have only operated above 26 kph. The greatest concern for these technologies is the appropriateness of the driver's response in any given scenario. Three different driver interfaces were proposed to support the detection of modal, spatial and temporal changes of the system: an iconic display, a flashing iconic display, and a representation of the radar. The results show that drivers correctly identified more changes detected by the system with the radar display than with the other displays, but higher levels of workload accompanied this increased detection. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Macro-evolutionary studies of cultural diversity: a review of empirical studies of cultural transmission and cultural adaptation

    Science.gov (United States)

    Mace, Ruth; Jordan, Fiona M.

    2011-01-01

    A growing body of theoretical and empirical research has examined cultural transmission and adaptive cultural behaviour at the individual, within-group level. However, relatively few studies have tried to examine proximate transmission or test ultimate adaptive hypotheses about behavioural or cultural diversity at a between-societies macro-level. In both the history of anthropology and in present-day work, a common approach to examining adaptive behaviour at the macro-level has been through correlating various cultural traits with features of ecology. We discuss some difficulties with simple ecological associations, and then review cultural phylogenetic studies that have attempted to go beyond correlations to understand the underlying cultural evolutionary processes. We conclude with an example of a phylogenetically controlled approach to understanding proximate transmission pathways in Austronesian cultural diversity. PMID:21199844

  19. Macro-evolutionary studies of cultural diversity: a review of empirical studies of cultural transmission and cultural adaptation.

    Science.gov (United States)

    Mace, Ruth; Jordan, Fiona M

    2011-02-12

    A growing body of theoretical and empirical research has examined cultural transmission and adaptive cultural behaviour at the individual, within-group level. However, relatively few studies have tried to examine proximate transmission or test ultimate adaptive hypotheses about behavioural or cultural diversity at a between-societies macro-level. In both the history of anthropology and in present-day work, a common approach to examining adaptive behaviour at the macro-level has been through correlating various cultural traits with features of ecology. We discuss some difficulties with simple ecological associations, and then review cultural phylogenetic studies that have attempted to go beyond correlations to understand the underlying cultural evolutionary processes. We conclude with an example of a phylogenetically controlled approach to understanding proximate transmission pathways in Austronesian cultural diversity.

  20. Spectrum efficient distance-adaptive paths for fixed and fixed-alternate routing in elastic optical networks

    Science.gov (United States)

    Agrawal, Anuj; Bhatia, Vimal; Prakash, Shashi

    2018-01-01

    Efficient utilization of spectrum is a key concern in the soon to be deployed elastic optical networks (EONs). To perform routing in EONs, various fixed routing (FR), and fixed-alternate routing (FAR) schemes are ubiquitously used. FR, and FAR schemes calculate a fixed route, and a prioritized list of a number of alternate routes, respectively, between different pairs of origin o and target t nodes in the network. The route calculation performed using FR and FAR schemes is predominantly based on either the physical distance, known as k -shortest paths (KSP), or on the hop count (HC). For survivable optical networks, FAR usually calculates link-disjoint (LD) paths. These conventional routing schemes have been efficiently used for decades in communication networks. However, in this paper, it has been demonstrated that these commonly used routing schemes cannot utilize the network spectral resources optimally in the newly introduced EONs. Thus, we propose a new routing scheme for EON, namely, k -distance adaptive paths (KDAP) that efficiently utilizes the benefit of distance-adaptive modulation, and bit rate-adaptive superchannel capability inherited by EON to improve spectrum utilization. In the proposed KDAP, routes are found and prioritized on the basis of bit rate, distance, spectrum granularity, and the number of links used for a particular route. To evaluate the performance of KSP, HC, LD, and the proposed KDAP, simulations have been performed for three different sized networks, namely, 7-node test network (TEST7), NSFNET, and 24-node US backbone network (UBN24). We comprehensively assess the performance of various conventional, and the proposed routing schemes by solving both the RSA and the dual RSA problems under homogeneous and heterogeneous traffic requirements. Simulation results demonstrate that there is a variation amongst the performance of KSP, HC, and LD, depending on the o - t pair, and the network topology and its connectivity. However, the proposed

  1. Static and quasi-static behavior of an adaptive system to compensate path errors for smart fiber placement

    Science.gov (United States)

    Perner, M.; Monner, H. P.; Krombholz, C.; Kruse, F. F.

    2015-04-01

    Smart fiber placement is an ambitious topic in current research for automated manufacturing of large-scale composite structures, e.g. wing covers. Adaptive systems get in focus to obtain a high degree of observability and controllability of the manufacturing process. In particular, vibrational issues and material failure have to be studied to significantly increase the production rate with no loss in accuracy of the fiber layup. As one contribution, an adaptive system has been developed to be integrated into the fiber placement head. It decouples the compaction roller from disturbances caused by misalignments, varying components' behavior over a large work area and acceleration changes during operation. Therefore, the smart system axially adapts the position of the compaction roller in case of disturbances. This paper investigates the behavior of the system to compensate quasi-static deviations from the desired path. In particular, the compensation efficiency of a constant offset, a linear drift with constant gradient and a single-curved drift is studied. Thus, the test bed with measurement devices and scenarios is explained. Based on the knowledge obtained by the experimental data, the paper concludes with a discussion of the proposed approach for its use under operating conditions and further implementation.

  2. Evolutionary tipping points in the capacity to adapt to environmental change

    NARCIS (Netherlands)

    Botero, Carlos A.; Weissing, Franz J.; Wright, Jonathan; Rubenstein, Dustin R.

    2015-01-01

    In an era of rapid climate change, there is a pressing need to understand how organisms will cope with faster and less predictable variation in environmental conditions. Here we develop a unifying model that predicts evolutionary responses to environmentally driven fluctuating selection and use this

  3. Cultural Adaptations to Environmental Variability: An Evolutionary Account of East-West Differences

    Science.gov (United States)

    Chang, Lei; Mak, Miranda C. K.; Li, Tong; Wu, Bao Pei; Chen, Bin Bin; Lu, Hui Jing

    2011-01-01

    Much research has been conducted to document and sometimes to provide proximate explanations (e.g., Confucianism vs. Western philosophy) for East-West cultural differences. The ultimate evolutionary mechanisms underlying these cross-cultural differences have not been addressed. We propose in this review that East-West cultural differences (e.g.,…

  4. An Examination of the Impact of Harsh Parenting Contexts on Children's Adaptation within an Evolutionary Framework

    Science.gov (United States)

    Sturge-Apple, Melissa L.; Davies, Patrick T.; Martin, Meredith J.; Cicchetti, Dante; Hentges, Rochelle F.

    2012-01-01

    The current study tests whether propositions set forth in an evolutionary model of temperament (Korte, Koolhaas, Wingfield, & McEwen, 2005) may enhance our understanding of children's differential susceptibility to unsupportive and harsh caregiving practices. Guided by this model, we examined whether children's behavioral strategies for coping…

  5. [Combination of Genetic and Humanitarian (Cross-Cultural) Methods for the Identification of Human Genes Involved in the Process of Adaptation to Evolutionary New Environmental Factors].

    Science.gov (United States)

    Borinskaya, S A; Yankovsky, N K

    2015-04-01

    Human settlement from the African ancestral home was accompanied by cultural and genetic adaptation to new habitat conditions (climate, infections, diet, etc.). We previously suggested for the first time an approach to the identification of human genes presumably involved in adaptation to evolutionary new environmental factors based on a combination of genetic and humanitarian methods of study. In order to search for the genes involved in adaptation and for environmental factors (to which this adaptation occurs), we attempted to find correlations between the population allele frequencies of the studied gene and formalized descriptions of peculiarities of the habitat of ethnic groups given in "Ethnographic Atlas" by G. P. Murdock. In the presented review, we summarized our own data on an experimental determination of the allele frequencies for lactase (LCT*), apolipoprotein E (APOE), and alcohol dehydrogenase (ADH1B) genes in populations of Russia. Based on these data and available materials of other investigators, we developed maps of worldwide allele frequency distribution for these genes. We detected a correlation of allele frequencies of these genes in populations with the presence of certain factors of the environment that these populations inhabit. It was also confirmed that the evolutionarily young LCT*-13910T allele, which determines lactase persistence and the possibility of milk consumption in adults, is distributed in populations for which dairy animal husbandry is typical. During the analysis of 68 populations, we for the first time demonstrated that the frequency of the APOE e4 allele (which is ancestral for humans and influences the lipid metabolism) is higher in groups with a high contribution of hunting and gathering. Our data are in favor of the hypothesis that it was exactly the e4 allele that was a subject for selection, while the e3 allele was less important for adaptation. We also for the first time demonstrated that the evolutionarily young ADH

  6. The “new normal”: Adapting doctoral trainee career preparation for broad career paths in science

    Science.gov (United States)

    St. Clair, Rebekah; Hutto, Tamara; MacBeth, Cora; Newstetter, Wendy; McCarty, Nael A.

    2017-01-01

    Doctoral recipients in the biomedical sciences and STEM fields are showing increased interest in career opportunities beyond academic positions. While recent research has addressed the interests and preferences of doctoral trainees for non-academic careers, the strategies and resources that trainees use to prepare for a broad job market (non-academic) are poorly understood. The recent adaptation of the Social Cognitive Career Theory to explicitly highlight the interplay of contextual support mechanisms, individual career search efficacy, and self-adaptation of job search processes underscores the value of attention to this explicit career phase. Our research addresses the factors that affect the career search confidence and job search strategies of doctoral trainees with non-academic career interests and is based on nearly 900 respondents from an NIH-funded survey of doctoral students and postdoctoral fellows in the biomedical sciences at two U.S. universities. Using structural equation modeling, we find that trainees pursuing non-academic careers, and/or with low perceived program support for career goals, have lower career development and search process efficacy (CDSE), and receive different levels of support from their advisors/supervisors. We also find evidence of trainee adaptation driven by their career search efficacy, and not by career interests. PMID:28542304

  7. The "new normal": Adapting doctoral trainee career preparation for broad career paths in science.

    Directory of Open Access Journals (Sweden)

    Rebekah St Clair

    Full Text Available Doctoral recipients in the biomedical sciences and STEM fields are showing increased interest in career opportunities beyond academic positions. While recent research has addressed the interests and preferences of doctoral trainees for non-academic careers, the strategies and resources that trainees use to prepare for a broad job market (non-academic are poorly understood. The recent adaptation of the Social Cognitive Career Theory to explicitly highlight the interplay of contextual support mechanisms, individual career search efficacy, and self-adaptation of job search processes underscores the value of attention to this explicit career phase. Our research addresses the factors that affect the career search confidence and job search strategies of doctoral trainees with non-academic career interests and is based on nearly 900 respondents from an NIH-funded survey of doctoral students and postdoctoral fellows in the biomedical sciences at two U.S. universities. Using structural equation modeling, we find that trainees pursuing non-academic careers, and/or with low perceived program support for career goals, have lower career development and search process efficacy (CDSE, and receive different levels of support from their advisors/supervisors. We also find evidence of trainee adaptation driven by their career search efficacy, and not by career interests.

  8. Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers.

    Science.gov (United States)

    Lachance, Joseph; Vernot, Benjamin; Elbers, Clara C; Ferwerda, Bart; Froment, Alain; Bodo, Jean-Marie; Lema, Godfrey; Fu, Wenqing; Nyambo, Thomas B; Rebbeck, Timothy R; Zhang, Kun; Akey, Joshua M; Tishkoff, Sarah A

    2012-08-03

    To reconstruct modern human evolutionary history and identify loci that have shaped hunter-gatherer adaptation, we sequenced the whole genomes of five individuals in each of three different hunter-gatherer populations at > 60× coverage: Pygmies from Cameroon and Khoesan-speaking Hadza and Sandawe from Tanzania. We identify 13.4 million variants, substantially increasing the set of known human variation. We found evidence of archaic introgression in all three populations, and the distribution of time to most recent common ancestors from these regions is similar to that observed for introgressed regions in Europeans. Additionally, we identify numerous loci that harbor signatures of local adaptation, including genes involved in immunity, metabolism, olfactory and taste perception, reproduction, and wound healing. Within the Pygmy population, we identify multiple highly differentiated loci that play a role in growth and anterior pituitary function and are associated with height. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. From Classical to Quantum and Back: A Hamiltonian Scheme for Adaptive Multiresolution Classical/Path-Integral Simulations.

    Science.gov (United States)

    Kreis, Karsten; Tuckerman, Mark E; Donadio, Davide; Kremer, Kurt; Potestio, Raffaello

    2016-07-12

    Quantum delocalization of atomic nuclei affects the physical properties of many hydrogen-rich liquids and biological systems even at room temperature. In computer simulations, quantum nuclei can be modeled via the path-integral formulation of quantum statistical mechanics, which implies a substantial increase in computational overhead. By restricting the quantum description to a small spatial region, this cost can be significantly reduced. Herein, we derive a bottom-up, rigorous, Hamiltonian-based scheme that allows molecules to change from quantum to classical and vice versa on the fly as they diffuse through the system, both reducing overhead and making quantum grand-canonical simulations possible. The method is validated via simulations of low-temperature parahydrogen. Our adaptive resolution approach paves the way to efficient quantum simulations of biomolecules, membranes, and interfaces.

  10. An evolutionary frame of work to study physiological adaptation to high altitudes Un marco conceptual para estudiar adaptaciones fisiológicas a altas altitudes

    OpenAIRE

    Rezende, Enrico L.; Gomes, Fernando R.; Ghalambor, Cameron K.; GREGORY A. RUSSELL; MARK A. CHAPPELLl

    2005-01-01

    How complex physiological systems evolve is one of the major questions in evolutionary physiology. For example, how traits interact at the physiological and genetic level, what are the roles of development and plasticity in Darwinian evolution, and eventually how physiological traits will evolve, remains poorly understood. In this article we summarize the current frame of work evolutionary physiologists are employing to study the evolution of physiological adaptations, as well as the role of ...

  11. Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas

    NARCIS (Netherlands)

    Jonsson, Knud A.; Fabre, Pierre-Henri; Fritz, Susanne A.; Etienne, Rampal S.; Ricklefs, Robert E.; Jorgensen, Tobias B.; Fjeldsa, Jon; Rahbek, Carsten; Ericson, Per G. P.; Woog, Friederike; Pasquet, Eric; Irestedt, Martin

    2012-01-01

    Adaptive radiation is the rapid diversification of a single lineage into many species that inhabit a variety of environments or use a variety of resources and differ in traits required to exploit these. Why some lineages undergo adaptive radiation is notwell-understood, but filling unoccupied

  12. Progress in Adaptive Immunotherapy for Cancer in Companion Animals: Success on the Path to a Cure

    Directory of Open Access Journals (Sweden)

    Katie L. Anderson

    2015-10-01

    Full Text Available Harnessing the ability of the immune system to eradicate cancer has been a long-held goal of oncology. Work from the last two decades has finally brought immunotherapy into the forefront for cancer treatment, with demonstrable clinical success for aggressive tumors where other therapies had failed. In this review, we will discuss a range of therapies that are in different stages of clinical or preclinical development for companion animals with cancer, and which share the common objective of eliciting adaptive, anti-tumor immune responses. Even though challenges remain, manipulating the immune system holds significant promise to create durable responses and improve outcomes in companion animals with cancer. Furthermore, what we learn from this process will inform and accelerate development of comparable therapies for human cancer patients.

  13. Progress in Adaptive Immunotherapy for Cancer in Companion Animals: Success on the Path to a Cure.

    Science.gov (United States)

    Anderson, Katie L; Modiano, Jaime F

    2015-12-01

    Harnessing the ability of the immune system to eradicate cancer has been a long-held goal of oncology. Work from the last two decades has finally brought immunotherapy into the forefront for cancer treatment, with demonstrable clinical success for aggressive tumors where other therapies had failed. In this review, we will discuss a range of therapies that are in different stages of clinical or preclinical development for companion animals with cancer, and which share the common objective of eliciting adaptive, anti-tumor immune responses. Even though challenges remain, manipulating the immune system holds significant promise to create durable responses and improve outcomes in companion animals with cancer. Furthermore, what we learn from this process will inform and accelerate development of comparable therapies for human cancer patients.

  14. Evolutionary paths to mammalian cochleae.

    Science.gov (United States)

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies.

  15. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish

    Science.gov (United States)

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl h...

  16. The First Joke: Exploring the Evolutionary Origins of Humor

    Directory of Open Access Journals (Sweden)

    Joseph Polimeni

    2006-01-01

    Full Text Available Humor is a complex cognitive function which often leads to laughter. Contemporary humor theorists have begun to formulate hypotheses outlining the possible innate cognitive structures underlying humor. Humor's conspicuous presence in the behavioral repertoire of humankind invites adaptive explanations. This article explores the possible adaptive features of humor and ponders its evolutionary path through hominid history. Current humor theories and previous evolutionary ideas on humor are reviewed. In addition, scientific fields germane to the evolutionary study of humor are examined: animal models, genetics, children's humor, humor in pathological conditions, neurobiology, humor in traditional societies and cognitive archeology. Candidate selection pressures and associated evolutionary mechanisms are considered. The authors conclude that several evolutionary-related topics such as the origins of language, cognition underlying spiritual feelings, hominid group size, and primate teasing could have special relevance to the origins of humor.

  17. [The paths get shorter. Pastoral nomadism as an adapted way of life in deserts].

    Science.gov (United States)

    Schwartz, H J; Schwartz, S

    1981-11-27

    Pastoral nomadism, as a way of life adapted to marginally exploitable land and climatic conditions, is the sole chance for using the desert to support people. Nonetheless, this lifestyle has suffered great harm in the last 2 decades and has come under fire from experts as a non-productive and environmentally damaging type of economy. This attitude however ignores the historical viability of this system which has been used for thousands of years. It is estimated that 350 million individuals worldwide live in the so-called savannah-ecosystem, i.e. on natural grassland. Roughly 1/5 are nomadic herders; half of them, 45 million, live in Africa south of the Sahara, and use more than 1/3 of the total area of the continent. Losses of available land since the late 1940s due to growth of agriculturally-oriented population groups, the concomitant increase in cultivated land, and establishment of natural parks and wildlife preserves have greatly restricted seasonal migration of nomads and their herds. This in turn has degraded pasturage from overgrazing. The final result is a deadly spiral of shrinking pasture and increasing usage of the remaining land. Ultimately vegetation is totally destroyed by this kind of pressure. Although land regeneration potential is high, it cannot withstand continuous burdens of this magnitude. Thus pastoral nomadism in Africa is almost extinct in its mature and intact forms. This reduced system is self-destructive and is no longer viable. In view of the critical food shortage in Africa, efforts should be made to re-establish a more viable, fully nomadic system linked to national markets and social services.

  18. Evolutionary Nephrology

    Directory of Open Access Journals (Sweden)

    Robert L. Chevalier

    2017-05-01

    Full Text Available Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as “maladaptive.” In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or from evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ∼40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons, evolutionary selection for APOL1 mutations (which provide resistance to trypanosome infection, a tradeoff, and modern life experience (Western diet mismatch leading to diabetes and hypertension. Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout the life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo, developmental programming, and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  19. Managing uncertainty, ambiguity and ignorance in impact assessment by embedding evolutionary resilience, participatory modelling and adaptive management.

    Science.gov (United States)

    Bond, Alan; Morrison-Saunders, Angus; Gunn, Jill A E; Pope, Jenny; Retief, Francois

    2015-03-15

    In the context of continuing uncertainty, ambiguity and ignorance in impact assessment (IA) prediction, the case is made that existing IA processes are based on false 'normal' assumptions that science can solve problems and transfer knowledge into policy. Instead, a 'post-normal science' approach is needed that acknowledges the limits of current levels of scientific understanding. We argue that this can be achieved through embedding evolutionary resilience into IA; using participatory workshops; and emphasising adaptive management. The goal is an IA process capable of informing policy choices in the face of uncertain influences acting on socio-ecological systems. We propose a specific set of process steps to operationalise this post-normal science approach which draws on work undertaken by the Resilience Alliance. This process differs significantly from current models of IA, as it has a far greater focus on avoidance of, or adaptation to (through incorporating adaptive management subsequent to decisions), unwanted future scenarios rather than a focus on the identification of the implications of a single preferred vision. Implementing such a process would represent a culture change in IA practice as a lack of knowledge is assumed and explicit, and forms the basis of future planning activity, rather than being ignored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The evolutionary strategies of plant defenses have a dynamic impact on the adaptations and interactions of vectors and pathogens.

    Science.gov (United States)

    Huot, Ordom Brian; Nachappa, Punya; Tamborindeguy, Cecilia

    2013-06-01

    Plants have evolved and diversified to reduce the damages imposed by infectious pathogens and herbivorous insects. Living in a sedentary lifestyle, plants are constantly adapting to their environment. They employ various strategies to increase performance and fitness. Thus, plants developed cost-effective strategies to defend against specific insects and pathogens. Plant defense, however, imposes selective pressure on insects and pathogens. This selective pressure provides incentives for pathogens and insects to diversify and develop strategies to counter plant defense. This results in an evolutionary arms race among plants, pathogens and insects. The ever-changing adaptations and physiological alterations among these organisms make studying plant-vector-pathogen interactions a challenging and fascinating field. Studying plant defense and plant protection requires knowledge of the relationship among organisms and the adaptive strategies each organism utilize. Therefore, this review focuses on the integral parts of plant-vector-pathogen interactions in order to understand the factors that affect plant defense and disease development. The review addresses plant-vector-pathogen co-evolution, plant defense strategies, specificity of plant defenses and plant-vector-pathogen interactions. Improving the comprehension of these factors will provide a multi-dimensional perspective for the future research in pest and disease management. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  1. The evolutionary dynamics of adaptive virginity, sex-allocation, and altruistic helping in haplodiploid animals.

    Science.gov (United States)

    Rautiala, Petri; Helanterä, Heikki; Puurtinen, Mikael

    2018-01-01

    In haplodiploids, females can produce sons from unfertilized eggs without mating. However, virgin reproduction is usually considered to be a result of a failure to mate, rather than an adaptation. Here, we build an analytical model for evolution of virgin reproduction, sex-allocation, and altruistic female helping in haplodiploid taxa. We show that when mating is costly (e.g., when mating increases predation risk), virginity can evolve as an adaptive female reproductive strategy. Furthermore, adaptive virginity results in strongly divergent sex-ratios in mated and virgin queen nests ("split sex ratios"), which promotes the evolution of altruistic helping by daughters in mated queen nests. However, when helpers evolve to be efficient and increase nest production significantly, virgin reproduction is selected against. Our results suggest that adaptive virginity could have been an important stepping stone on the pathway to eusociality in haplodiploids. We further show that virginity can be an adaptive reproductive strategy also in primitively social haplodiploids if workers bias the sex ratio toward females. By remaining virgin, queens are free to produce sons, the more valuable sex in a female-biased population. Our work brings a new dimension to the studies linking reproductive strategies with social evolution. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. Covariance Matrix Adaptation Evolutionary Strategy for Drift Correction of Electronic Nose Data

    Science.gov (United States)

    Di Carlo, S.; Falasconi, M.; Sanchez, E.; Sberveglieri, G.; Scionti, A.; Squillero, G.; Tonda, A.

    2011-09-01

    Electronic Noses (ENs) might represent a simple, fast, high sample throughput and economic alternative to conventional analytical instruments [1]. However, gas sensors drift still limits the EN adoption in real industrial setups due to high recalibration effort and cost [2]. In fact, pattern recognition (PaRC) models built in the training phase become useless after a period of time, in some cases a few weeks. Although algorithms to mitigate the drift date back to the early 90 this is still a challenging issue for the chemical sensor community [3]. Among other approaches, adaptive drift correction methods adjust the PaRC model in parallel with data acquisition without need of periodic calibration. Self-Organizing Maps (SOMs) [4] and Adaptive Resonance Theory (ART) networks [5] have been already tested in the past with fair success. This paper presents and discusses an original methodology based on a Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [6], suited for stochastic optimization of complex problems.

  3. Using rules to adapt applications for business models with high evolutionary rates

    Directory of Open Access Journals (Sweden)

    Juan Fuente, A. A

    2013-06-01

    Full Text Available Nowadays, business models are in permanent evolution since the requirements belongs to a rapidly evolving world. In a context where communications all around the world travel so fast the business models need to be adapted permanently to the information the managers receive. In such world, traditional software development, needed for adapting software to changes, do not work properly since business changes need to be in exploitation in shorter times. In that situation, it is needed to go quicker from the business idea to the exploitation environment. This issue can be solved accelerating the development speed: from the expert to the customer, with no –or few, technical intervention. This paper proposes an approach to empower domain experts in developing adaptability solutions by using automated sets of production rules in a friendly way. Furthermore, a use case that implements this kind of development was used in a real problem prototype.

  4. Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts

    DEFF Research Database (Denmark)

    Pedersen, Søren Damkiær; Yang, Lei; Molin, Søren

    2013-01-01

    The genetic basis of bacterial adaptation to a natural environment has been investigated in a highly successful Pseudomonas aeruginosa lineage (DK2) that evolved within the airways of patients with cystic fibrosis (CF) for more than 35 y. During evolution in the CF airways, the DK2 lineage...... phenotypes. Our results suggest that adaptation to a highly selective environment, such as the CF airways, is a highly dynamic and complex process, which involves continuous optimization of existing regulatory networks to match the fluctuations in the environment....

  5. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears

    DEFF Research Database (Denmark)

    Liu, Shiping; Lorenzen, Eline D.; Fumagalli, Matteo

    2014-01-01

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyperlipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show...

  6. Model-aided learning for adaptive management of natural resources: an evolutionary design perspective

    NARCIS (Netherlands)

    Groot, J.C.J.; Rossing, W.A.H.

    2011-01-01

    1. Researchers using the adaptive management paradigm consider learning about the behaviour of social-ecological systems as an inherent element of endeavours to improve the provision of ecosystem services. Learning-by-experience about social-ecological systems is a slow process attributable to

  7. Parametric 3D Atmospheric Reconstruction in Highly Variable Terrain with Recycled Monte Carlo Paths and an Adapted Bayesian Inference Engine

    Science.gov (United States)

    Langmore, Ian; Davis, Anthony B.; Bal, Guillaume; Marzouk, Youssef M.

    2012-01-01

    We describe a method for accelerating a 3D Monte Carlo forward radiative transfer model to the point where it can be used in a new kind of Bayesian retrieval framework. The remote sensing challenge is to detect and quantify a chemical effluent of a known absorbing gas produced by an industrial facility in a deep valley. The available data is a single low resolution noisy image of the scene in the near IR at an absorbing wavelength for the gas of interest. The detected sunlight has been multiply reflected by the variable terrain and/or scattered by an aerosol that is assumed partially known and partially unknown. We thus introduce a new class of remote sensing algorithms best described as "multi-pixel" techniques that call necessarily for a 3D radaitive transfer model (but demonstrated here in 2D); they can be added to conventional ones that exploit typically multi- or hyper-spectral data, sometimes with multi-angle capability, with or without information about polarization. The novel Bayesian inference methodology uses adaptively, with efficiency in mind, the fact that a Monte Carlo forward model has a known and controllable uncertainty depending on the number of sun-to-detector paths used.

  8. The genome sequence of the North-European cucumber (Cucumis sativus L. unravels evolutionary adaptation mechanisms in plants.

    Directory of Open Access Journals (Sweden)

    Rafał Wóycicki

    Full Text Available Cucumber (Cucumis sativus L., a widely cultivated crop, has originated from Eastern Himalayas and secondary domestication regions includes highly divergent climate conditions e.g. temperate and subtropical. We wanted to uncover adaptive genome differences between the cucumber cultivars and what sort of evolutionary molecular mechanisms regulate genetic adaptation of plants to different ecosystems and organism biodiversity. Here we present the draft genome sequence of the Cucumis sativus genome of the North-European Borszczagowski cultivar (line B10 and comparative genomics studies with the known genomes of: C. sativus (Chinese cultivar--Chinese Long (line 9930, Arabidopsis thaliana, Populus trichocarpa and Oryza sativa. Cucumber genomes show extensive chromosomal rearrangements, distinct differences in quantity of the particular genes (e.g. involved in photosynthesis, respiration, sugar metabolism, chlorophyll degradation, regulation of gene expression, photooxidative stress tolerance, higher non-optimal temperatures tolerance and ammonium ion assimilation as well as in distributions of abscisic acid-, dehydration- and ethylene-responsive cis-regulatory elements (CREs in promoters of orthologous group of genes, which lead to the specific adaptation features. Abscisic acid treatment of non-acclimated Arabidopsis and C. sativus seedlings induced moderate freezing tolerance in Arabidopsis but not in C. sativus. This experiment together with analysis of abscisic acid-specific CRE distributions give a clue why C. sativus is much more susceptible to moderate freezing stresses than A. thaliana. Comparative analysis of all the five genomes showed that, each species and/or cultivars has a specific profile of CRE content in promoters of orthologous genes. Our results constitute the substantial and original resource for the basic and applied research on environmental adaptations of plants, which could facilitate creation of new crops with improved growth

  9. Design and Analysis of Schemes for Adapting Migration Intervals in Parallel Evolutionary Algorithms.

    Science.gov (United States)

    Mambrini, Andrea; Sudholt, Dirk

    2015-01-01

    The migration interval is one of the fundamental parameters governing the dynamic behaviour of island models. Yet, there is little understanding on how this parameter affects performance, and how to optimally set it given a problem in hand. We propose schemes for adapting the migration interval according to whether fitness improvements have been found. As long as no improvement is found, the migration interval is increased to minimise communication. Once the best fitness has improved, the migration interval is decreased to spread new best solutions more quickly. We provide a method for obtaining upper bounds on the expected running time and the communication effort, defined as the expected number of migrants sent. Example applications of this method to common example functions show that our adaptive schemes are able to compete with, or even outperform, the optimal fixed choice of the migration interval, with regard to running time and communication effort.

  10. Bergmann's Rule, Adaptation, and Thermoregulation in Arctic Animals: Conflicting Perspectives from Physiology, Evolutionary Biology, and Physical Anthropology After World War II.

    Science.gov (United States)

    Hagen, Joel B

    2017-05-01

    Bergmann's rule and Allen's rule played important roles in mid-twentieth century discussions of adaptation, variation, and geographical distribution. Although inherited from the nineteenth-century natural history tradition these rules gained significance during the consolidation of the modern synthesis as evolutionary theorists focused attention on populations as units of evolution. For systematists, the rules provided a compelling rationale for identifying geographical races or subspecies, a function that was also picked up by some physical anthropologists. More generally, the rules provided strong evidence for adaptation by natural selection. Supporters of the rules tacitly, or often explicitly, assumed that the clines described by the rules reflected adaptations for thermoregulation. This assumption was challenged by the physiologists Laurence Irving and Per Scholander based on their arctic research conducted after World War II. Their critique spurred a controversy played out in a series of articles in Evolution, in Ernst Mayr's Animal Species and Evolution, and in the writings of other prominent evolutionary biologists and physical anthropologists. Considering this episode highlights the complexity and ambiguity of important biological concepts such as adaptation, homeostasis, and self-regulation. It also demonstrates how different disciplinary orientations and styles of scientific research influenced evolutionary explanations, and the consequent difficulties of constructing a truly synthetic evolutionary biology in the decades immediately following World War II.

  11. Differential enzyme targeting as an evolutionary adaptation to herbivory in carnivora.

    Science.gov (United States)

    Birdsey, Graeme M; Lewin, Jackie; Cunningham, Andrew A; Bruford, Michael W; Danpure, Christopher J

    2004-04-01

    Not all members of the order Carnivora are carnivorous. Some are omnivorous, and a few, such as the giant panda, Ailuropoda melanoleuca, are almost exclusively herbivorous. Although a number of adaptations to increased plant-eating are recognized within Carnivora, few have been studied at the molecular level. One molecular adaptation to diet that is spread widely across Mammalia is the differential intracellular targeting of the intermediary metabolic enzyme alanine:glyoxylate aminotransferase (AGT), which tends to be mitochondrial in carnivores, peroxisomal in herbivores, and both mitochondrial and peroxisomal in omnivores. In the present study, we have analyzed the targeting of AGT in Carnivora in relation to species' natural diets. We show not only that there has been an adaptive shift in AGT targeting from the mitochondrion toward the peroxisome as diets have shifted from being mainly carnivorous to ones that are more omnivorous and herbivorous but also that in one lineage, namely that of the giant panda, there is evidence for positive selection pressure at the molecular level on the AGT mitochondrial targeting sequence to decrease its efficiency, thereby allowing more AGT to be targeted to the peroxisomes.

  12. Evolutionary Developmental Soft Robotics As a Framework to Study Intelligence and Adaptive Behavior in Animals and Plants

    Directory of Open Access Journals (Sweden)

    Francesco Corucci

    2017-07-01

    Full Text Available In this paper, a comprehensive methodology and simulation framework will be reviewed, designed in order to study the emergence of adaptive and intelligent behavior in generic soft-bodied creatures. By incorporating artificial evolutionary and developmental processes, the system allows to evolve complete creatures (brain, body, developmental properties, sensory, control system, etc. for different task environments. Whether the evolved creatures will resemble animals or plants is in general not known a priori, and depends on the specific task environment set up by the experimenter. In this regard, the system may offer a unique opportunity to explore differences and similarities between these two worlds. Different material properties can be simulated and optimized, from a continuum of soft/stiff materials, to the interconnection of heterogeneous structures, both found in animals and plants alike. The adopted genetic encoding and simulation environment are particularly suitable in order to evolve distributed sensory and control systems, which play a particularly important role in plants. After a general description of the system some case studies will be presented, focusing on the emergent properties of the evolved creatures. Particular emphasis will be on some unifying concepts that are thought to play an important role in the emergence of intelligent and adaptive behavior across both the animal and plant kingdoms, such as morphological computation and morphological developmental plasticity. Overall, with this paper, we hope to draw attention on set of tools, methodologies, ideas and results, which may be relevant to researchers interested in plant-inspired robotics and intelligence.

  13. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle

    KAUST Repository

    Aranda, Manuel

    2016-12-22

    Despite half a century of research, the biology of dinoflagellates remains enigmatic: they defy many functional and genetic traits attributed to typical eukaryotic cells. Genomic approaches to study dinoflagellates are often stymied due to their large, multi-gigabase genomes. Members of the genus Symbiodinium are photosynthetic endosymbionts of stony corals that provide the foundation of coral reef ecosystems. Their smaller genome sizes provide an opportunity to interrogate evolution and functionality of dinoflagellate genomes and endosymbiosis. We sequenced the genome of the ancestral Symbiodinium microadriaticum and compared it to the genomes of the more derived Symbiodinium minutum and Symbiodinium kawagutii and eukaryote model systems as well as transcriptomes from other dinoflagellates. Comparative analyses of genome and transcriptome protein sets show that all dinoflagellates, not only Symbiodinium, possess significantly more transmembrane transporters involved in the exchange of amino acids, lipids, and glycerol than other eukaryotes. Importantly, we find that only Symbiodinium harbor an extensive transporter repertoire associated with the provisioning of carbon and nitrogen. Analyses of these transporters show species-specific expansions, which provides a genomic basis to explain differential compatibilities to an array of hosts and environments, and highlights the putative importance of gene duplications as an evolutionary mechanism in dinoflagellates and Symbiodinium.

  14. Testing for local adaptation and evolutionary potential along altitudinal gradients in rainforest Drosophila: beyond laboratory estimates.

    Science.gov (United States)

    O'Brien, Eleanor K; Higgie, Megan; Reynolds, Alan; Hoffmann, Ary A; Bridle, Jon R

    2017-05-01

    Predicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species distribution models (SDMs) use the current relationship between environmental variation and species' abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (i) that the relationship of environment with abundance or fitness is constant throughout a species' range and will remain so in future and (ii) that abiotic factors (e.g. temperature, humidity) determine species' distributions. We test these assumptions by relating field abundance of the rainforest fruit fly Drosophila birchii to ecological change across gradients that include its low and high altitudinal limits. We then test how such ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to sites along two altitudinal gradients, to determine whether genetic variation in fitness responses could facilitate future adaptation to environmental change. Overall, field abundance was highest at cooler, high-altitude sites, and declined towards warmer, low-altitude sites. By contrast, cage fitness (productivity) increased towards warmer, lower-altitude sites, suggesting that biotic interactions (absent from cages) drive ecological limits at warmer margins. In addition, the relationship between environmental variation and abundance varied significantly among gradients, indicating divergence in ecological niche across the species' range. However, there was no evidence for local adaptation within gradients, despite greater productivity of high-altitude than low-altitude populations when families were reared under laboratory conditions. Families also responded similarly to transplantation along gradients, providing no evidence for fitness trade-offs that would favour local adaptation. These findings highlight the importance of (i) measuring genetic variation

  15. Population Genomics Reveal Recent Speciation and Rapid Evolutionary Adaptation in Polar Bears

    OpenAIRE

    Liu, Shiping; Lorenzen, Eline D.; Fumagalli, Matteo; Li, Bo; Harris, Kelley; Xiong, Zijun; ZHOU, Long; Korneliussen, Thorfinn Sand; Somel, Mehmet; Babbitt, Courtney; Wray, Greg; Li, Jianwen; He, Weiming; Wang, Zhuo; Fu, Wenjing

    2014-01-01

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyperlipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479–343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under...

  16. The Evolutionary Paradox of Tooth Wear: Simply Destruction or Inevitable Adaptation?

    Science.gov (United States)

    Benazzi, Stefano; Nguyen, Huynh Nhu; Schulz, Dieter; Grosse, Ian R.; Gruppioni, Giorgio; Hublin, Jean-Jacques; Kullmer, Ottmar

    2013-01-01

    Over the last century, humans from industrialized societies have witnessed a radical increase in some dental diseases. A severe problem concerns the loss of dental materials (enamel and dentine) at the buccal cervical region of the tooth. This “modern-day” pathology, called non-carious cervical lesions (NCCLs), is ubiquitous and worldwide spread, but is very sporadic in modern humans from pre-industrialized societies. Scholars believe that several factors are involved, but the real dynamics behind this pathology are far from being understood. Here we use an engineering approach, finite element analysis (FEA), to suggest that the lack of dental wear, characteristic of industrialized societies, might be a major factor leading to NCCLs. Occlusal loads were applied to high resolution finite element models of lower second premolars (P2) to demonstrate that slightly worn P2s envisage high tensile stresses in the buccal cervical region, but when worn down artificially in the laboratory the pattern of stress distribution changes and the tensile stresses decrease, matching the results obtained in naturally worn P2s. In the modern industrialized world, individuals at advanced ages show very moderate dental wear when compared to past societies, and teeth are exposed to high tensile stresses at the buccal cervical region for decades longer. This is the most likely mechanism explaining enamel loss in the cervical region, and may favor the activity of other disruptive processes such as biocorrosion. Because of the lack of dental abrasion, our masticatory apparatus faces new challenges that can only be understood in an evolutionary perspective. PMID:23638020

  17. Adaptive quantum control of two photon fluorescence on Coumarin 30 by using evolutionary algorithm

    Science.gov (United States)

    Poudel, Milan; Kolomenski, Alexender; Schuessler, Hans

    2006-10-01

    Two-photon excitation fluorescence of complex molecules (Coumarin-30) is successfully optimized by using feedback control pulse shaping technique. For such an optimization we have implemented an evolutionary algorithm [1], [2] in a Lab-view programming environment with a liquid crystal pulse shaper in a folded 4f set up. In the algorithm, one generation uses 48 individuals (vectors of voltage on the LC matrix).For each generation the fitness value is measured for every setting of the mask. A new generation is built from the previous by combining parents (the fittest individuals) and producing the desired degree of mutations (changes of the vector elements by some random value) to provide reasonable convergence. By successive repetition of this scheme, individuals corresponding to the highest fitness values will survive and produce offspring's for subsequent generations. Typically, convergence to the optimum value was achieved after 30 generations. Without any prior knowledge of the molecular system, the optimization goal was automatically achieved by changing the spectral phases [3]. The pulses before and after optimization were measured with GRENOUILLE, a type of second harmonic frequency resolved optical gating (SH FROG). To find the efficient pulse with lower intensity, three types of optimization were performed, the two photon fluorescence signal, the second harmonic signal and the ratio between them. The Intensity of two photon fluorescence of coumarin-30 could be increased noticeably compared to the transform limited pulse optimizing the second harmonic generation. The experimental results appear to be the potential applications of coherent control to the complicated molecular system as well as in bio medical imaging.

  18. The evolutionary paradox of tooth wear: simply destruction or inevitable adaptation?

    Directory of Open Access Journals (Sweden)

    Stefano Benazzi

    Full Text Available Over the last century, humans from industrialized societies have witnessed a radical increase in some dental diseases. A severe problem concerns the loss of dental materials (enamel and dentine at the buccal cervical region of the tooth. This "modern-day" pathology, called non-carious cervical lesions (NCCLs, is ubiquitous and worldwide spread, but is very sporadic in modern humans from pre-industrialized societies. Scholars believe that several factors are involved, but the real dynamics behind this pathology are far from being understood. Here we use an engineering approach, finite element analysis (FEA, to suggest that the lack of dental wear, characteristic of industrialized societies, might be a major factor leading to NCCLs. Occlusal loads were applied to high resolution finite element models of lower second premolars (P2 to demonstrate that slightly worn P2s envisage high tensile stresses in the buccal cervical region, but when worn down artificially in the laboratory the pattern of stress distribution changes and the tensile stresses decrease, matching the results obtained in naturally worn P2s. In the modern industrialized world, individuals at advanced ages show very moderate dental wear when compared to past societies, and teeth are exposed to high tensile stresses at the buccal cervical region for decades longer. This is the most likely mechanism explaining enamel loss in the cervical region, and may favor the activity of other disruptive processes such as biocorrosion. Because of the lack of dental abrasion, our masticatory apparatus faces new challenges that can only be understood in an evolutionary perspective.

  19. A comparison of structural and evolutionary attributes of Escherichia coli and Thermus thermophilus small ribosomal subunits: signatures of thermal adaptation.

    Directory of Open Access Journals (Sweden)

    Saurav Mallik

    Full Text Available Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU. Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs in both species. E. coli SSCCs are numerous and larger compared to T. thermophilus SSCCs, which again indicates densely packed thermophilic 16S rRNA. Thermophilic ribosomal proteins (r-proteins have longer disordered regions than their mesophilic homologs and they experience larger disorder-to-order transitions during SSU-assembly. This is reflected in the predicted higher conformational changes of thermophilic r-proteins compared to their mesophilic homologs during SSU-assembly. This high conformational change of thermophilic r-proteins may help them to associate with the 16S ribosomal RNA with high complementary interfaces, larger interface areas, and denser molecular contacts, compared to those of mesophilic. Thus, thermophilic protein-rRNA interfaces are tightly associated with 16S rRNA than their mesophilic homologs. Densely packed 16S rRNA interior and tight protein-rRNA binding of T. thermophilus (compared to those of E. coli are likely the signatures of its thermal adaptation. We have found a linear correlation between the free energy of protein-RNA interface formation, interface size, and square of conformational changes, which is followed in both prokaryotic and eukaryotic SSU. Disorder is associated with high protein-RNA interface polarity. We have found an evolutionary tendency to maintain high polarity (thereby disorder at protein-rRNA interfaces, than that at rest of the protein structures. However, some proteins exhibit exceptions to this general trend.

  20. Current evolutionary adaptiveness of psychiatric disorders: Fertility rates, parent-child relationship quality, and psychiatric disorders across the lifespan.

    Science.gov (United States)

    Jacobson, Nicholas C

    2016-08-01

    This study sought to evaluate the current evolutionary adaptiveness of psychopathology by examining whether these disorders impact the quantity of offspring or the quality of the parent-child relationship across the life span. Using the National Comorbidity Survey, this study examined whether DSM-III-R anxiety, posttraumatic stress, depressive, bipolar, substance use, antisocial, and psychosis disorders predicted later fertility and the quality of parent-child relationships across the life span in a national sample (N = 8,098). Using latent variable and varying coefficient models, the results suggested that anxiety in males and bipolar pathology in males and females were associated with increased fertility at younger ages. The results suggested almost all other psychopathology was associated with decreased fertility in middle to late adulthood. The results further suggested that all types of psychopathology had negative impacts on the parent-child relationship quality (except for antisocial pathology in males). Nevertheless, for all disorders, the impact of psychopathology on both fertility and the parent-child relationship quality was affected by the age of the participant. The results also showed that anxiety pathology is associated with a high-quantity, low-quality parenting strategy followed by a low-quantity, low-quality parenting strategy. Further, the results suggest that bipolar pathology is associated with an early high-quantity and a continued low-quality parenting strategy. Posttraumatic stress, depression, substance use, antisocial personality, and psychosis pathology are each associated with a low-quantity, low-quality parenting strategy, particularly in mid to late adulthood. These findings suggest that the evolutionary impact of psychopathology depends on the developmental context. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Evolutionary psychology as a metatheory for the social sciences: How to gather interdisciplinary evidence for a psychological adaptation

    NARCIS (Netherlands)

    Ploeger, A.; van der Hoort, B.

    2015-01-01

    Evolutionary psychology has been proposed as a new metatheory for the social sciences (Buss, 1995). Evolutionary psychology is an approach that emphasizes the evolutionary background of psychological phenomena (e.g., cognition, motivation, perception), with the expectation that knowledge about this

  2. How wasting is saving: weight loss at altitude might result from an evolutionary adaptation.

    Science.gov (United States)

    Murray, Andrew J; Montgomery, Hugh E

    2014-08-01

    At extreme altitude (>5,000 - 5,500 m), sustained hypoxia threatens human function and survival, and is associated with marked involuntary weight loss (cachexia). This seems to be a coordinated response: appetite and protein synthesis are suppressed, and muscle catabolism promoted. We hypothesise that, rather than simply being pathophysiological dysregulation, this cachexia is protective. Ketone bodies, synthesised during relative starvation, protect tissues such as the brain from reduced oxygen availability by mechanisms including the reduced generation of reactive oxygen species, improved mitochondrial efficiency and activation of the ATP-sensitive potassium (KATP ) channel. Amino acids released from skeletal muscle also protect cells from hypoxia, and may interact synergistically with ketones to offer added protection. We thus propose that weight loss in hypoxia is an adaptive response: the amino acids and ketone bodies made available act not only as metabolic substrates, but as metabolic modulators, protecting cells from the hypoxic challenge. © 2014 The Authors. Bioessays published by WILEY Periodicals, Inc.

  3. POPULATION GENOMICS REVEAL RECENT SPECIATION AND RAPID EVOLUTIONARY ADAPTATION IN POLAR BEARS

    Science.gov (United States)

    Liu, Shiping; Lorenzen, Eline D.; Fumagalli, Matteo; Li, Bo; Harris, Kelley; Xiong, Zijun; Zhou, Long; Korneliussen, Thorfinn Sand; Somel, Mehmet; Babbitt, Courtney; Wray, Greg; Li, Jianwen; He, Weiming; Wang, Zhuo; Fu, Wenjing; Xiang, Xueyan; Morgan, Claire C.; Doherty, Aoife; O’Connell, Mary J.; McInerney, James O.; Born, Erik W.; Dalén, Love; Dietz, Rune; Orlando, Ludovic; Sonne, Christian; Zhang, Guojie; Nielsen, Rasmus; Willerslev, Eske; Wang, Jun

    2014-01-01

    SUMMARY Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyperlipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479–343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardio-vascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans. PMID:24813606

  4. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population.

    Science.gov (United States)

    Bonnet, Timothée; Wandeler, Peter; Camenisch, Glauco; Postma, Erik

    2017-01-01

    In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is

  5. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population.

    Directory of Open Access Journals (Sweden)

    Timothée Bonnet

    2017-01-01

    Full Text Available In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative genetic models are able to provide us with an understanding of the causes and consequences of

  6. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears.

    Science.gov (United States)

    Liu, Shiping; Lorenzen, Eline D; Fumagalli, Matteo; Li, Bo; Harris, Kelley; Xiong, Zijun; Zhou, Long; Korneliussen, Thorfinn Sand; Somel, Mehmet; Babbitt, Courtney; Wray, Greg; Li, Jianwen; He, Weiming; Wang, Zhuo; Fu, Wenjing; Xiang, Xueyan; Morgan, Claire C; Doherty, Aoife; O'Connell, Mary J; McInerney, James O; Born, Erik W; Dalén, Love; Dietz, Rune; Orlando, Ludovic; Sonne, Christian; Zhang, Guojie; Nielsen, Rasmus; Willerslev, Eske; Wang, Jun

    2014-05-08

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyper-lipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479-343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardiovascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory; Detter, John C [Los Alamos National Laboratory; Bruce, David C [Los Alamos National Laboratory; Challacombe, Jean F [Los Alamos National Laboratory; Brettin, Thomas S [Los Alamos National Laboratory; Necsulea, Anamaria [UNIV LYON; Daubin, Vincent [UNIV LYON; Medigue, Claudine [GENOSCOPE; Adney, William S [NREL; Xu, Xin C [UC DAVIS; Lapidus, Alla [JGI; Pujic, Pierre [UNIV LYON; Berry, Alison M [UC DAVIS; Barabote, Ravi D [UC DAVIS; Leu, David [UC DAVIS; Normand, Phillipe [UNIV LYON

    2009-01-01

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus 11B, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNA than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudo genes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.

  8. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory; Detter, Chris [Los Alamos National Laboratory; Bruce, David [Los Alamos National Laboratory; Challacome, Jean F [Los Alamos National Laboratory; Brettin, Thomas S [Los Alamos National Laboratory; Barabote, Ravi D [UC DAVIS; Leu, David [UC DAVIS; Normand, Philippe [CNRS, UNIV LYON; Necsula, Anamaria [CNRS, UNIV LYON; Daubin, Vincent [CNRS, UNIV LYON; Medigue, Claudine [CNRS/GENOSCOPE; Adney, William S [NREL; Xu, Xin C [UC DAVIS; Lapidus, Alla [DOE JOINT GENOME INST.; Pujic, Pierre [CNRS, UNIV LYON; Richardson, Paul [DOE JOINT GENOME INST; Berry, Alison M [UC DAVIS

    2008-01-01

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus lIB, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNA than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudogenes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.

  9. In situ conservation-harnessing natural and human-derived evolutionary forces to ensure future crop adaptation.

    Science.gov (United States)

    Bellon, Mauricio R; Dulloo, Ehsan; Sardos, Julie; Thormann, Imke; Burdon, Jeremy J

    2017-12-01

    Ensuring the availability of the broadest possible germplasm base for agriculture in the face of increasingly uncertain and variable patterns of biotic and abiotic change is fundamental for the world's future food supply. While ex situ conservation plays a major role in the conservation and availability of crop germplasm, it may be insufficient to ensure this. In situ conservation aims to maintain target species and the collective genotypes they represent under evolution. A major rationale for this view is based on the likelihood that continued exposure to changing selective forces will generate and favor new genetic variation and an increased likelihood that rare alleles that may be of value to future agriculture are maintained. However, the evidence that underpins this key rationale remains fragmented and has not been examined systematically, thereby decreasing the perceived value and support for in situ conservation for agriculture and food systems and limiting the conservation options available. This study reviews evidence regarding the likelihood and rate of evolutionary change in both biotic and abiotic traits for crops and their wild relatives, placing these processes in a realistic context in which smallholder farming operates and crop wild relatives continue to exist. It identifies areas of research that would contribute to a deeper understanding of these processes as the basis for making them more useful for future crop adaptation.

  10. Structure and biomechanical properties of the trachea of the striped dolphin Stenella coeruleoalba: evidence for evolutionary adaptations to diving.

    Science.gov (United States)

    Cozzi, Bruno; Bagnoli, Paola; Acocella, Fabio; Costantino, Maria Laura

    2005-05-01

    This study analyzes the structure and mechanical properties of the trachea of the striped dolphin Stenella coeruleoalba, one of the most common cetacean species. The cetacean trachea is made up of closed or semiclosed cartilaginous rings without a paries membranaceus. Our results indicate that the inner lining of the trachea contains erectile tissue in which several venous lacunae permeate the mucosa. We also observed and described the presence of peripheral neurons containing nitric oxide along the rim of the venous lacunae. Data obtained from compression and tensile tests and comparison with the pig and goat tracheas indicate a higher stiffness and a different, higher breaking point for the dolphin trachea. On the whole, our data suggest that the trachea of the striped dolphin possesses structural properties that allow rapid filling with blood, possibly in relation to dive activities, and also allow modifications due to increased pressure and immediate return to the original shape without risks of permanent bending or rupture, as would happen in a terrestrial mammal. As the organ undergoes intense pressure difference during descent to optimal foraging depth and subsequent rapid ascent to surface, especially in deep dives of hundreds of meters, the specific structural and biomechanical peculiarities of the trachea of the striped dolphin may represent an evolutionary adaptation to life in the water and to diving. Copyright (c) 2005 Wiley-Liss, Inc.

  11. How Magnetotactic Bacteria Respond to Radiation Induced Stress and Damage: Comparative Genomics Evidences for Evolutionary Adaptation

    Science.gov (United States)

    Wang, Y.; Pan, Y.

    2015-12-01

    A mediated umuCD genes and double copied ssb gene, these low fidelity DNA polymerase along with Ssb protein may endow MTB high adaptive mutation under stress condition; 4) also, magnetosome crystals (magnetite or greigite) can reduce radiation oxidative damage and protect MTB.

  12. Hypertensive disorders of pregnancy are an evolutionary adaptation to mitigate the reproductive consequences of the human physique.

    Science.gov (United States)

    Ayuk, Paul T-Y

    2006-01-01

    The aetiology of hypertensive disorders of pregnancy remains unknown, despite over 30 years of research. The prevalence and natural history of these disorders and the lack of progress in identifying a cause calls for a radical new approach. It is hypothesised that these disorders arise as a consequence of abnormal maternal regulatory mechanisms. The evolution of the physical characteristics unique to humans (bi-pedal gait and a large brain) resulted in a narrow pelvis and a large head. Such a physique is not conducive to viviparity and caused difficult, prolonged and obstructed labour with post-partum haemorrhage--the commonest causes of maternal mortality in the absence of modern medical care. In such circumstances, up to 6.5% of pregnant women will die as a direct consequence of pregnancy, mainly as a result of obstructed labour and haemorrhage. The death toll would have been much higher over millions of years of evolution. These conditions exerted significant adaptive and evolutionary pressure on our species. The adaptations necessary to mitigate the reproductive consequences of the human physique include activation of the coagulation system to reduce post-partum haemorrhage, increased blood pressure to peak after delivery and maintain cerebral perfusion in the face of post-partum blood loss and restriction of fetal growth to prevent obstructed labour. These adaptations must be regulated to guarantee their occurrence but limit their extent to prevent disease. Evidence for blood pressure regulation during pregnancy and a proposed mechanism to achieve this are presented. Regulation requires a redundant feto-placental signal and a single tightly controlled regulator. To guarantee that blood pressure rises, the feto-placental signal is predicted to be conveyed by several different molecules and to be produced in excess in all pregnancies. Normality is then maintained by a single tightly controlled regulator. This model predicts that the feto-placental factors that

  13. Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype expression and genotype frequency in Paramecium microcosms.

    Science.gov (United States)

    Killeen, Joshua; Gougat-Barbera, Claire; Krenek, Sascha; Kaltz, Oliver

    2017-04-01

    Evolutionary rescue (ER) occurs when populations, which have declined due to rapid environmental change, recover through genetic adaptation. The success of this process and the evolutionary trajectory of the population strongly depend on the rate of environmental change. Here we investigated how different rates of temperature increase (from 23 to 32 °C) affect population persistence and evolutionary change in experimental microcosms of the protozoan Paramecium caudatum. Consistent with theory on ER, we found that those populations experiencing the slowest rate of temperature increase were the least likely to become extinct and tended to be the best adapted to the new temperature environment. All high-temperature populations were more tolerant to severe heat stress (35, 37 °C), indicating a common mechanism of heat protection. High-temperature populations also had superior growth rates at optimum temperatures, leading to the absence of a pattern of local adaptation to control (23 °C) and high-temperature (32 °C) environments. However, high-temperature populations had reduced growth at low temperatures (5-9 °C), causing a shift in the temperature niche. In part, the observed evolutionary change can be explained by selection from standing variation. Using mitochondrial markers, we found complete divergence between control and high-temperature populations in the frequencies of six initial founder genotypes. Our results confirm basic predictions of ER and illustrate how adaptation to an extreme local environment can produce positive as well as negative correlated responses to selection over the entire range of the ecological niche. © 2017 John Wiley & Sons Ltd.

  14. Problem Adaptation Therapy for Pain (PATH-Pain): A Psychosocial Intervention for Older Adults with Chronic Pain and Negative Emotions in Primary Care.

    Science.gov (United States)

    Kiosses, Dimitris N; Ravdin, Lisa D; Stern, Amy; Bolier, Ruth; Kenien, Cara; Reid, M Carrington

    2017-01-01

    Chronic pain is highly prevalent in older adults, contributes to activity restriction and social isolation, disrupts family and interpersonal relationships, and poses a significant economic burden to society. Negative emotions such as sadness, anxiety, helplessness, and hopelessness are associated with chronic pain and contribute to poor quality of life, impaired interpersonal and social functioning, and increased disability. Psychosocial interventions for older adults with chronic pain have been historically developed for, and are almost exclusively delivered to, cognitively intact patients. Therefore, many older adults with chronic pain and comorbid cognitive deficits have limited treatment options. Our multidisciplinary team developed Problem Adaptation Therapy for Pain in Primary Care (PATH-Pain), a psychosocial intervention for older adults with chronic pain, negative emotions, and a wide range of cognitive functioning, including mild-to-moderate cognitive impairment. In the current article, we describe the principles underlying PATH-Pain, review the steps taken to adapt the original PATH protocol, outline the treatment process, and present a case illustrating its potential value.

  15. Evolutionary Expectations

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    cognitive bounds will perceive business opportunities identically. In addition, because cues provide information about latent causal structures of the environment, changes in causality must be accompanied by changes in cognitive representations if adaptation is to be maintained. The concept of evolutionary......, they are correlated among people who share environments because these individuals satisfice within their cognitive bounds by using cues in order of validity, as opposed to using cues arbitrarily. Any difference in expectations thereby arise from differences in cognitive ability, because two individuals with identical......The concept of evolutionary expectations descends from cue learning psychology, synthesizing ideas on rational expectations with ideas on bounded rationality, to provide support for these ideas simultaneously. Evolutionary expectations are rational, but within cognitive bounds. Moreover...

  16. Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability.

    Science.gov (United States)

    Santos, José; Monteagudo, Ángel

    2017-03-27

    The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.

  17. An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight

    Science.gov (United States)

    Whitfield, Clifford A.

    2009-12-01

    A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight. Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude. The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for

  18. Evolutionary institutionalism.

    Science.gov (United States)

    Fürstenberg, Dr Kai

    Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.

  19. A Robust Sparse Adaptive Filtering Algorithm with a Correntropy Induced Metric Constraint for Broadband Multi-Path Channel Estimation

    Directory of Open Access Journals (Sweden)

    Yingsong Li

    2016-10-01

    Full Text Available A robust sparse least-mean mixture-norm (LMMN algorithm is proposed, and its performance is appraised in the context of estimating a broadband multi-path wireless channel. The proposed algorithm is implemented via integrating a correntropy-induced metric (CIM penalty into the conventional LMMN algorithm to modify the basic cost function, which is denoted as the CIM-based LMMN (CIM-LMMN algorithm. The proposed CIM-LMMN algorithm is derived in detail within the kernel framework. The updating equation of CIM-LMMN can provide a zero attractor to attract the non-dominant channel coefficients to zeros, and it also gives a tradeoff between the sparsity and the estimation misalignment. Moreover, the channel estimation behavior is investigated over a broadband sparse multi-path wireless channel, and the simulation results are compared with the least mean square/fourth (LMS/F, least mean square (LMS, least mean fourth (LMF and the recently-developed sparse channel estimation algorithms. The channel estimation performance obtained from the designated sparse channel estimation demonstrates that the CIM-LMMN algorithm outperforms the recently-developed sparse LMMN algorithms and the relevant sparse channel estimation algorithms. From the results, we can see that our CIM-LMMN algorithm is robust and is superior to these mentioned algorithms in terms of both the convergence speed rate and the channel estimation misalignment for estimating a sparse channel.

  20. Designing and Developing a Novel Hybrid Adaptive Learning Path Recommendation System (ALPRS) for Gamification Mathematics Geometry Course

    Science.gov (United States)

    Su, Chung-Ho

    2017-01-01

    Since recommendation systems possess the advantage of adaptive recommendation, they have gradually been applied to e-learning systems to recommend subsequent learning content for learners. However, problems exist in current learning recommender systems available to students in that they are often general learning content and unable to offer…

  1. Adaptive evolution of Mediterranean pines.

    Science.gov (United States)

    Grivet, Delphine; Climent, José; Zabal-Aguirre, Mario; Neale, David B; Vendramin, Giovanni G; González-Martínez, Santiago C

    2013-09-01

    Mediterranean pines represent an extremely heterogeneous assembly. Although they have evolved under similar environmental conditions, they diversified long ago, ca. 10 Mya, and present distinct biogeographic and demographic histories. Therefore, it is of special interest to understand whether and to what extent they have developed specific strategies of adaptive evolution through time and space. To explore evolutionary patterns, the Mediterranean pines' phylogeny was first reconstructed analyzing a new set of 21 low-copy nuclear genes with multilocus Bayesian tree reconstruction methods. Secondly, a phylogenetic approach was used to search for footprints of natural selection and to examine the evolution of multiple phenotypic traits. We identified two genes (involved in pines' defense and stress responses) that have likely played a role in the adaptation of Mediterranean pines to their environment. Moreover, few life-history traits showed historical or evolutionary adaptive convergence in Mediterranean lineages, while patterns of character evolution revealed various evolutionary trade-offs linking growth-development, reproduction and fire-related traits. Assessing the evolutionary path of important life-history traits, as well as the genomic basis of adaptive variation is central to understanding the past evolutionary success of Mediterranean pines and their future response to environmental changes. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Adaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor.

    Science.gov (United States)

    Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas

    2017-09-28

    Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically.

  3. Adaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2017-09-01

    Full Text Available Current research on Unmanned Aerial Vehicles (UAVs shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically.

  4. Applying evolutionary anthropology

    OpenAIRE

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also h...

  5. Path Dependency

    OpenAIRE

    Mark Setterfield

    2015-01-01

    Path dependency is defined, and three different specific concepts of path dependency – cumulative causation, lock in, and hysteresis – are analyzed. The relationships between path dependency and equilibrium, and path dependency and fundamental uncertainty are also discussed. Finally, a typology of dynamical systems is developed to clarify these relationships.

  6. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Adaptive focusing of high-intensity light beams over short paths

    Science.gov (United States)

    Kanev, Fedor Yu; Chesnokov, S. S.

    1987-10-01

    Numerical experiments were used to analyze the efficiency of adaptive control of the wavefronts of light beams traveling under conditions of steady-state wind refraction over paths amounting to 0.1 of the diffraction length. The equations describing the propagation of the light waves emitted and scattered by an object were solved in a lens system of coordinates, which made it possible to increase considerably the reliability of numerical prediction. The results were used to propose wavefront control by an algorithm for modified phase conjugation based on storage of a phase profile ensuring the best compensation of nonlinear distortions in all the preceding iterations. This algorithm was found to increase the concentration of the field on an object by 40-45% compared with nonadaptive focusing.

  7. Modeling the two-locus architecture of divergent pollinator adaptation: how variation in SAD paralogs affects fitness and evolutionary divergence in sexually deceptive orchids.

    Science.gov (United States)

    Xu, Shuqing; Schlüter, Philipp M

    2015-01-01

    Divergent selection by pollinators can bring about strong reproductive isolation via changes at few genes of large effect. This has recently been demonstrated in sexually deceptive orchids, where studies (1) quantified the strength of reproductive isolation in the field; (2) identified genes that appear to be causal for reproductive isolation; and (3) demonstrated selection by analysis of natural variation in gene sequence and expression. In a group of closely related Ophrys orchids, specific floral scent components, namely n-alkenes, are the key floral traits that control specific pollinator attraction by chemical mimicry of insect sex pheromones. The genetic basis of species-specific differences in alkene production mainly lies in two biosynthetic genes encoding stearoyl-acyl carrier protein desaturases (SAD) that are associated with floral scent variation and reproductive isolation between closely related species, and evolve under pollinator-mediated selection. However, the implications of this genetic architecture of key floral traits on the evolutionary processes of pollinator adaptation and speciation in this plant group remain unclear. Here, we expand on these recent findings to model scenarios of adaptive evolutionary change at SAD2 and SAD5, their effects on plant fitness (i.e., offspring number), and the dynamics of speciation. Our model suggests that the two-locus architecture of reproductive isolation allows for rapid sympatric speciation by pollinator shift; however, the likelihood of such pollinator-mediated speciation is asymmetric between the two orchid species O. sphegodes and O. exaltata due to different fitness effects of their predominant SAD2 and SAD5 alleles. Our study not only provides insight into pollinator adaptation and speciation mechanisms of sexually deceptive orchids but also demonstrates the power of applying a modeling approach to the study of pollinator-driven ecological speciation.

  8. Career Path Descriptions

    CERN Document Server

    Charkiewicz, A

    2000-01-01

    Before the Career Path system, jobs were classified according to grades with general statutory definitions, guided by the "Job Catalogue" which defined 6 evaluation criteria with example illustrations in the form of "typical" job descriptions. Career Paths were given concise statutory definitions necessitating a method of description and evaluation adapted to their new wider-band salary concept. Evaluations were derived from the same 6 criteria but the typical descriptions became unusable. In 1999, a sub-group of the Standing Concertation Committee proposed a new guide for describing Career Paths, adapted to their wider career concept by expanding the 6 evaluation criteria into 9. For each criterion several levels were established tracing the expected evolution of job level profiles and personal competencies over their longer salary ranges. While providing more transparency to supervisors and staff, the Guide's official use would be by services responsible for vacancy notices, Career Path evaluations and rela...

  9. The interaction of neutral evolutionary processes with climatically-driven adaptive changes in the 3D shape of the human os coxae.

    Science.gov (United States)

    Betti, Lia; von Cramon-Taubadel, Noreen; Manica, Andrea; Lycett, Stephen J

    2014-08-01

    Differences in the breadth of the pelvis among modern human populations and among extinct hominin species have often been interpreted in the light of thermoregulatory adaptation, whereby a larger pelvic girdle would help preserve body temperature in cold environments while a narrower pelvis would help dissipate heat in tropical climates. There is, however, a theoretical problem in interpreting a pattern of variation as evidence of selection without first accounting for the effects of neutral evolutionary processes (i.e., mutation, genetic drift and migration). Here, we analyse 3D configurations of 27 landmarks on the os coxae of 1494 modern human individuals representing 30 male and 23 female populations from five continents and a range of climatic conditions. We test for the effects of climate on the size and shape of the pelvic bone, while explicitly accounting for population history (i.e., geographically-mediated gene flow and genetic drift). We find that neutral processes account for a substantial proportion of shape variance in the human os coxae in both sexes. Beyond the neutral pattern due to population history, temperature is a significant predictor of shape and size variation in the os coxae, at least in males. The effect of climate on the shape of the pelvic bone, however, is comparatively limited, explaining only a small percentage of shape variation in males and females. In accordance with previous hypotheses, the size of the os coxae tends to increase with decreasing temperature, although the significance of the association is reduced when population history is taken into account. In conclusion, the shape and size of the human os coxae reflect both neutral evolutionary processes and climatically-driven adaptive changes. Neutral processes have a substantial effect on pelvic variation, suggesting such factors will need to be taken into account in future studies of human and fossil hominin coxal variation. Copyright © 2014 Elsevier Ltd. All rights

  10. An evolutionary frame of work to study physiological adaptation to high altitudes Un marco conceptual para estudiar adaptaciones fisiológicas a altas altitudes

    Directory of Open Access Journals (Sweden)

    ENRICO L. REZENDE

    2005-06-01

    Full Text Available How complex physiological systems evolve is one of the major questions in evolutionary physiology. For example, how traits interact at the physiological and genetic level, what are the roles of development and plasticity in Darwinian evolution, and eventually how physiological traits will evolve, remains poorly understood. In this article we summarize the current frame of work evolutionary physiologists are employing to study the evolution of physiological adaptations, as well as the role of developmental and reversible phenotypic plasticity in this context. We also highlight representative examples of how the integration of evolutionary and developmental physiology, concomitantly with the mechanistic understanding of physiological systems, can provide a deeper insight on how endothermic vertebrates could cope with reduced ambient temperatures and oxygen availability characteristic of high altitude environments. In this context, high altitude offers a unique system to study the evolution of physiological traits, and we believe much can be gained by integrating theoretical and empirical knowledge from evolutionary biology, such as life-history theory or the comparative method, with the mechanistic understanding of physiological processesUna de las preguntas más importantes en fisiología evolutiva es como evolucionan los sistemas fisiológicos complejos. Por ejemplo, actualmente sabemos poco sobre la interacción entre varios rasgos a niveles genéticos y fisiológicos, sobre el papel de la plasticidad fenotípica durante distintas etapas del desarrollo y madurez para la evolución fisiológica dentro de un linaje. En este trabajo explicamos el marco conceptual ocupado por fisiólogos evolutivos en la actualidad para estudiar adaptaciones fisiológicas a nivel evolutivo y el papel de la plasticidad dentro de la evolución Darviniana. Citamos ejemplos de como la integración de la fisiología evolutiva y del desarrollo nos permitió un mayor

  11. Evolutionary Mechanisms for Loneliness

    Science.gov (United States)

    Cacioppo, John T.; Cacioppo, Stephanie; Boomsma, Dorret I.

    2013-01-01

    Robert Weiss (1973) conceptualized loneliness as perceived social isolation, which he described as a gnawing, chronic disease without redeeming features. On the scale of everyday life, it is understandable how something as personally aversive as loneliness could be regarded as a blight on human existence. However, evolutionary time and evolutionary forces operate at such a different scale of organization than we experience in everyday life that personal experience is not sufficient to understand the role of loneliness in human existence. Research over the past decade suggests a very different view of loneliness than suggested by personal experience, one in which loneliness serves a variety of adaptive functions in specific habitats. We review evidence on the heritability of loneliness and outline an evolutionary theory of loneliness, with an emphasis on its potential adaptive value in an evolutionary timescale. PMID:24067110

  12. An evolutionary history of defensins: a role for copy number variation in maximizing host innate and adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Lee R Machado

    2015-03-01

    Full Text Available Defensins represent an evolutionary ancient family of antimicrobial peptides that play diverse roles in human health and disease. Defensins are cationic cysteine-containing multifunctional peptides predominantly expressed by epithelial cells or neutrophils. Defensins play a key role in host innate immune responses to infection and, in addition to their classically described role as antimicrobial peptides, have also been implicated in immune modulation, fertility, development and wound healing. Aberrant expression of defensins is important in a number of inflammatory diseases as well as modulating host immune responses to bacteria, unicellular pathogens and viruses. In parallel with their role in immunity, in other species, defensins have evolved alternative functions, including the control of coat color in dogs. Defensin genes reside in complex genomic regions that are prone to structural variations and some defensin family members exhibit copy number variation (CNV. Structural variations have mediated, and continue to influence, the diversification and expression of defensin family members. This review highlights the work currently being done to better understand the genomic architecture of the β-defensin locus. It evaluates current evidence linking defensin copy number variation to autoimmune disease (i.e. Crohn’s disease and psoriasis as well as the contribution CNV has in influencing immune responses to HIV infection.

  13. Predictable variation of range-sizes across an extreme environmental gradient in a lizard adaptive radiation: evolutionary and ecological inferences.

    Directory of Open Access Journals (Sweden)

    Daniel Pincheira-Donoso

    Full Text Available Large-scale patterns of current species geographic range-size variation reflect historical dynamics of dispersal and provide insights into future consequences under changing environments. Evidence suggests that climate warming exerts major damage on high latitude and elevation organisms, where changes are more severe and available space to disperse tracking historical niches is more limited. Species with longer generations (slower adaptive responses, such as vertebrates, and with restricted distributions (lower genetic diversity, higher inbreeding in these environments are expected to be particularly threatened by warming crises. However, a well-known macroecological generalization (Rapoport's rule predicts that species range-sizes increase with increasing latitude-elevation, thus counterbalancing the impact of climate change. Here, I investigate geographic range-size variation across an extreme environmental gradient and as a function of body size, in the prominent Liolaemus lizard adaptive radiation. Conventional and phylogenetic analyses revealed that latitudinal (but not elevational ranges significantly decrease with increasing latitude-elevation, while body size was unrelated to range-size. Evolutionarily, these results are insightful as they suggest a link between spatial environmental gradients and range-size evolution. However, ecologically, these results suggest that Liolaemus might be increasingly threatened if, as predicted by theory, ranges retract and contract continuously under persisting climate warming, potentially increasing extinction risks at high latitudes and elevations.

  14. An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects.

    Science.gov (United States)

    Eisenberg, Dan T A

    2011-01-01

    Telomeres, repetitive DNA sequences found at the ends of linear chromosomes, play a role in regulating cellular proliferation, and shorten with increasing age in proliferating human tissues. The rate of age-related shortening of telomeres is highest early in life and decreases with age. Shortened telomeres are thought to limit the proliferation of cells and are associated with increased morbidity and mortality. Although natural selection is widely assumed to operate against long telomeres because they entail increased cancer risk, the evidence for this is mixed. Instead, here it is proposed that telomere length is primarily limited by energetic constraints. Cell proliferation is energetically expensive, so shorter telomeres should lead to a thrifty phenotype. Shorter telomeres are proposed to restrain adaptive immunity as an energy saving mechanism. Such a limited immune system, however, might also result in chronic infections, inflammatory stress, premature aging, and death--a more "disposable soma." With an increased reproductive lifespan, the fitness costs of premature aging are higher and longer telomeres will be favored by selection. Telomeres exhibit a paternal effect whereby the offspring of older fathers have longer telomeres due to increased telomere lengths of sperm with age. This paternal effect is proposed to be an adaptive signal of the expected age of male reproduction in the environment offspring are born into. The offspring of lineages of older fathers will tend to have longer, and thereby less thrifty, telomeres, better preparing them for an environment with higher expected ages at reproduction. Copyright © 2010 Wiley-Liss, Inc.

  15. The evolutionary adaptation of the C282Y mutation to culture and climate during the European Neolithic.

    Science.gov (United States)

    Heath, Kathleen M; Axton, Jacob H; McCullough, John M; Harris, Nathan

    2016-05-01

    The C282Y allele is the major cause of hemochromatosis as a result of excessive iron absorption. The mutation arose in continental Europe no earlier than 6,000 years ago, coinciding with the arrival of the Neolithic agricultural revolution. Here we hypothesize that this new Neolithic diet, which originated in the sunny warm and dry climates of the Middle East, was carried by migrating farmers into the chilly and damp environments of Europe where iron is a critical micronutrient for effective thermoregulation. We argue that the C282Y allele was an adaptation to this novel environment. To address our hypothesis, we compiled C282Y allele frequencies, known Neolithic sites in Europe and climatic data on temperature and rainfall for statistical analysis. Our findings indicate that the geographic cline for C282Y frequency in Europe increases as average temperatures decrease below 16°C, a critical threshold for thermoregulation, with rainy days intensifying the trend. The results indicate that the deleterious C282Y allele, responsible for most cases of hemochromatosis, may have evolved as a selective advantage to culture and climate during the European Neolithic. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.

  16. Assisted protein folding at low temperature: evolutionary adaptation of the Antarctic fish chaperonin CCT and its client proteins

    Science.gov (United States)

    Cuellar, Jorge; Yébenes, Hugo; Parker, Sandra K.; Carranza, Gerardo; Serna, Marina; Valpuesta, José María; Zabala, Juan Carlos; Detrich, H. William

    2014-01-01

    ABSTRACT Eukaryotic ectotherms of the Southern Ocean face energetic challenges to protein folding assisted by the cytosolic chaperonin CCT. We hypothesize that CCT and its client proteins (CPs) have co-evolved molecular adaptations that facilitate CCT–CP interaction and the ATP-driven folding cycle at low temperature. To test this hypothesis, we compared the functional and structural properties of CCT–CP systems from testis tissues of an Antarctic fish, Gobionotothen gibberifrons (Lönnberg) (habitat/body T = −1.9 to +2°C), and of the cow (body T = 37°C). We examined the temperature dependence of the binding of denatured CPs (β-actin, β-tubulin) by fish and bovine CCTs, both in homologous and heterologous combinations and at temperatures between −4°C and 20°C, in a buffer conducive to binding of the denatured CP to the open conformation of CCT. In homologous combination, the percentage of G. gibberifrons CCT bound to CP declined linearly with increasing temperature, whereas the converse was true for bovine CCT. Binding of CCT to heterologous CPs was low, irrespective of temperature. When reactions were supplemented with ATP, G. gibberifrons CCT catalyzed the folding and release of actin at 2°C. The ATPase activity of apo-CCT from G. gibberifrons at 4°C was ∼2.5-fold greater than that of apo-bovine CCT, whereas equivalent activities were observed at 20°C. Based on these results, we conclude that the catalytic folding cycle of CCT from Antarctic fishes is partially compensated at their habitat temperature, probably by means of enhanced CP-binding affinity and increased flexibility of the CCT subunits. PMID:24659247

  17. Do lions Panthera leo actively select prey or do prey preferences simply reflect chance responses via evolutionary adaptations to optimal foraging?

    Directory of Open Access Journals (Sweden)

    Matt W Hayward

    Full Text Available Research on coursing predators has revealed that actions throughout the predatory behavioral sequence (using encounter rate, hunting rate, and kill rate as proxy measures of decisions drive observed prey preferences. We tested whether similar actions drive the observed prey preferences of a stalking predator, the African lion Panthera leo. We conducted two 96 hour, continuous follows of lions in Addo Elephant National Park seasonally from December 2003 until November 2005 (16 follows, and compared prey encounter rate with prey abundance, hunt rate with prey encounter rate, and kill rate with prey hunt rate for the major prey species in Addo using Jacobs' electivity index. We found that lions encountered preferred prey species far more frequently than expected based on their abundance, and they hunted these species more frequently than expected based on this higher encounter rate. Lions responded variably to non-preferred and avoided prey species throughout the predatory sequence, although they hunted avoided prey far less frequently than expected based on the number of encounters of them. We conclude that actions of lions throughout the predatory behavioural sequence, but particularly early on, drive the prey preferences that have been documented for this species. Once a hunt is initiated, evolutionary adaptations to the predator-prey interactions drive hunting success.

  18. Evolutionary history and adaptive significance of the polymorphic Pan I in migratory and stationary populations of Atlantic cod (Gadus morhua).

    Science.gov (United States)

    Andersen, Øivind; Johnsen, Hanne; De Rosa, Maria Cristina; Præbel, Kim; Stjelja, Suzana; Kirubakaran, Tina Graceline; Pirolli, Davide; Jentoft, Sissel; Fevolden, Svein-Erik

    2015-08-01

    The synaptophysin (SYP) family comprises integral membrane proteins involved in vesicle-trafficking events, but the physiological function of several members has been enigmatic for decades. The presynaptic SYP protein controls neurotransmitter release, while SYP-like 2 (SYPL2) contributes to maintain normal Ca(2+)-signaling in the skeletal muscles. The polymorphic pantophysin (Pan I) of Atlantic cod shows strong genetic divergence between stationary and migratory populations, which seem to be adapted to local environmental conditions. We have investigated the functional involvement of Pan I in the different ecotypes by analyzing the 1) phylogeny, 2) spatio-temporal gene expression, 3) structure-function relationship of the Pan I(A) and I(B) protein variants, and 4) linkage to rhodopsin (rho) recently proposed to be associated with different light sensitivities in Icelandic populations of Atlantic cod. We searched for SYP family genes in phylogenetic key species and identified a single syp-related gene in three invertebrate chordates, while four members, Syp, Sypl1, Sypl2 and synaptoporin (Synpr), were found in tetrapods, Comoran coelacanth and spotted gar. Teleost fish were shown to possess duplicated syp, sypl2 and synpr genes of which the sypl2b paralog is identical to Pan I. The ubiquitously expressed cod Pan I codes for a tetra-spanning membrane protein possessing five amino acid substitutions in the first intravesicular loop, but only minor structural differences were shown between the allelic variants. Despite sizable genomic distance (>2.5 Mb) between Pan I and rho, highly significant linkage disequilibrium was found by genotyping shallow and deep water juvenile settlers predominated by the Pan I(A)-rho(A) and Pan I(B)-rho(B) haplotypes, respectively. However, the predicted rhodopsin protein showed no amino acid changes, while multiple polymorphic sites in the upstream region might affect the gene expression and pigment levels in stationary and migratory cod

  19. Evolutionary Developmental Psychology.

    Science.gov (United States)

    Geary, David C.; Bjorklund, David F.

    2000-01-01

    Describes evolutionary developmental psychology as the study of the genetic and ecological mechanisms that govern the development of social and cognitive competencies common to all human beings and the epigenetic (gene-environment interactions) processes that adapt these competencies to local conditions. Outlines basic assumptions and domains of…

  20. Path Dependence

    DEFF Research Database (Denmark)

    Madsen, Mogens Ove

    Begrebet Path Dependence blev oprindelig udviklet inden for New Institutionel Economics af bl.a. David, Arthur og North. Begrebet har spredt sig vidt i samfundsvidenskaberne og undergået en udvikling. Dette paper propagerer for at der er sket så en så omfattende udvikling af begrebet, at man nu kan...... tale om 1. og 2. generation af Path Dependence begrebet. Den nyeste udvikling af begrebet har relevans for metodologi-diskusionerne i relation til Keynes...

  1. [Symbiogenesis and Synthetic Evolutionary Theory: The Third Synthesis].

    Science.gov (United States)

    Provoro, N A; Tikhonovich, I A; Vorobyov, N I

    2015-06-01

    Integration of the concepts of symbiogenesis and synthetic evolutionary theory is the main path for the development of evolutionary biology. It is based on the analysis of cooperative adaptations that evolve under the impact of symbiotic-specific selective pressures responsible for the formation of super-species hereditary systems--metagenomes, symbiogenomes, and hologenomes. The genetic integration of nonrelated organisms (symbiogenesis) is determined by the inheritance of microsymbionts by hosts resulted in the complication of mutualistic interactions according to the scheme: pleiotropic symbiosis --> mutual partner's exploitation --> interspecies altruism. This evolution may result in the loss of genetic individuality in microsymbionts; this loss is expressed as a deep reduction in their genomes. A significant number of these may be exported to the host, resulting in the transformation of symbiotic systems into novel, genetically integral organisms.

  2. Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms

    Directory of Open Access Journals (Sweden)

    Schmitt-Kopplin Philippe

    2010-07-01

    (phenolic compounds. The evolutionary adaptation of P. euphratica to saline environments is apparently linked with higher energy requirement of cellular metabolism and a loss of transcriptional regulation.

  3. Evolutionary Explanations of Eating Disorders

    Directory of Open Access Journals (Sweden)

    Igor Kardum

    2008-12-01

    Full Text Available This article reviews several most important evolutionary mechanisms that underlie eating disorders. The first part clarifies evolutionary foundations of mental disorders and various mechanisms leading to their development. In the second part selective pressures and evolved adaptations causing contemporary epidemic of obesity as well as differences in dietary regimes and life-style between modern humans and their ancestors are described. Concerning eating disorders, a number of current evolutionary explanations of anorexia nervosa are presented together with their main weaknesses. Evolutionary explanations of eating disorders based on the reproductive suppression hypothesis and its variants derived from kin selection theory and the model of parental manipulation were elaborated. The sexual competition hypothesis of eating disorder, adapted to flee famine hypothesis as well as explanation based on the concept of social attention holding power and the need to belonging were also explained. The importance of evolutionary theory in modern conceptualization and research of eating disorders is emphasized.

  4. TADL-V2: An Improved Trust-Aware Dynamic Location-based Adaptation Protocol For Discovering Multiple Paths in MANETs

    Directory of Open Access Journals (Sweden)

    Helen Bakhsh

    2015-08-01

    Full Text Available Mobile ad hoc networks (MANETs have a number of features that make the provisioning of Quality of Services (QoS particularly challenging. One of the most challenging issues is how to discover more reliable paths for high priority traffic delivery in a highly mobile network and do so with minimum overhead costs. This paper attempts to address this issue by designing and evaluating a multi-path discovery protocol. This protocol, named as Trust-Aware Dynamic Location-based protocol version 2 (TADL-V2, is an improved version of our earlier published protocol, TADL. TADL-V2 has improved TADL in two aspects: (1 it uses a hybrid approach to node-disjoint path discovery based on the network mobility level and (2 it uses a mobility based approach to search area resizing. These measures enable TADL-V2 to discover more paths with reduced number of control packets injected into the network. Our simulation study shows that TADL-V2 outperforms TADL in terms of reducing control overheads when the network is highly mobile. This overhead reduction can have a positive effect on QoS provisioning.

  5. Archaeogenetics in evolutionary medicine.

    Science.gov (United States)

    Bouwman, Abigail; Rühli, Frank

    2016-09-01

    Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.

  6. Evolutionary synthetic biology.

    Science.gov (United States)

    Peisajovich, Sergio G

    2012-06-15

    Signaling networks process vast amounts of environmental information to generate specific cellular responses. As cellular environments change, signaling networks adapt accordingly. Here, I will discuss how the integration of synthetic biology and directed evolution approaches is shedding light on the molecular mechanisms that guide the evolution of signaling networks. In particular, I will review studies that demonstrate how different types of mutations, from the replacement of individual amino acids to the shuffling of modular domains, lead to markedly different evolutionary trajectories and consequently to diverse network rewiring. Moreover, I will argue that intrinsic evolutionary properties of signaling proteins, such as the robustness of wild type functions, the promiscuous nature of evolutionary intermediates, and the modular decoupling between binding and catalysis, play important roles in the evolution of signaling networks. Finally, I will argue that rapid advances in our ability to synthesize DNA will radically alter how we study signaling network evolution at the genome-wide level.

  7. Asian International Students at an Australian University: Mapping the Paths between Integrative Motivation, Competence in L2 Communication, Cross-Cultural Adaptation and Persistence with Structural Equation Modelling

    Science.gov (United States)

    Yu, Baohua

    2013-01-01

    This study examined the interrelationships of integrative motivation, competence in second language (L2) communication, sociocultural adaptation, academic adaptation and persistence of international students at an Australian university. Structural equation modelling demonstrated that the integrative motivation of international students has a…

  8. Path Creation

    DEFF Research Database (Denmark)

    Karnøe, Peter; Garud, Raghu

    2012-01-01

    . Competencies emerged through processes and mechanisms such as co-creation that implicated multiple learning processes. The process was not an orderly linear one as emergent contingencies influenced the learning processes. An implication is that public policy to catalyse clusters cannot be based......This paper employs path creation as a lens to follow the emergence of the Danish wind turbine cluster. Supplier competencies, regulations, user preferences and a market for wind power did not pre-exist; all had to emerge in a tranformative manner involving multiple actors and artefacts...

  9. Evolutionary pattern search algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hart, W.E.

    1995-09-19

    This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimental analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.

  10. Evolutionary developmental psychology.

    Science.gov (United States)

    King, Ashley C; Bjorklund, David F

    2010-02-01

    The field of evolutionary developmental psychology can potentially broaden the horizons of mainstream evolutionary psychology by combining the principles of Darwinian evolution by natural selection with the study of human development, focusing on the epigenetic effects that occur between humans and their environment in a way that attempts to explain how evolved psychological mechanisms become expressed in the phenotypes of adults. An evolutionary developmental perspective includes an appreciation of comparative research and we, among others, argue that contrasting the cognition of humans with that of nonhuman primates can provide a framework with which to understand how human cognitive abilities and intelligence evolved. Furthermore, we argue that several aspects of childhood (e.g., play and immature cognition) serve both as deferred adaptations as well as imparting immediate benefits. Intense selection pressure was surely exerted on childhood over human evolutionary history and, as a result, neglecting to consider the early developmental period of children when studying their later adulthood produces an incomplete picture of the evolved adaptations expressed through human behavior and cognition.

  11. Hybridizing Particle Swarm Optimization and Differential Evolution for the Mobile Robot Global Path Planning

    Directory of Open Access Journals (Sweden)

    Biwei Tang

    2016-05-01

    Full Text Available Global path planning is a challenging issue in the filed of mobile robotics due to its complexity and the nature of non-deterministic polynomial-time hard (NP-hard. Particle swarm optimization (PSO has gained increasing popularity in global path planning due to its simplicity and high convergence speed. However, since the basic PSO has difficulties balancing exploration and exploitation, and suffers from stagnation, its efficiency in solving global path planning may be restricted. Aiming at overcoming these drawbacks and solving the global path planning problem efficiently, this paper proposes a hybrid PSO algorithm that hybridizes PSO and differential evolution (DE algorithms. To dynamically adjust the exploration and exploitation abilities of the hybrid PSO, a novel PSO, the nonlinear time-varying PSO (NTVPSO, is proposed for updating the velocities and positions of particles in the hybrid PSO. In an attempt to avoid stagnation, a modified DE, the ranking-based self-adaptive DE (RBSADE, is developed to evolve the personal best experience of particles in the hybrid PSO. The proposed algorithm is compared with four state-of-the-art evolutionary algorithms. Simulation results show that the proposed algorithm is highly competitive in terms of path optimality and can be considered as a vital alternative for solving global path planning.

  12. Applying evolutionary anthropology.

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.

  13. Intelligent Online Path Planning for UAVs in Adversarial Environments

    Directory of Open Access Journals (Sweden)

    Xingguang Peng

    2012-03-01

    Full Text Available Online path planning (OPP for unmanned aerial vehicles (UAVs is a basic issue of intelligent flight and is indeed a dynamic multi-objective optimization problem (DMOP. In this paper, an OPP framework is proposed in the sense of model predictive control (MPC to continuously update the environmental information for the planner. For solving the DMOP involved in the MPC we propose a dynamic multi-objective evolutionary algorithm based on linkage and prediction (LP-DMOEA. Within this algorithm, the historical Pareto sets are collected and analysed to enhance the performance. For intelligently selecting the best path from the output of the OPP, the Bayesian network and fuzzy logic are used to quantify the bias to each optimization objective. The DMOEA is validated on three benchmark problems characterized by different changing types in decision and objective spaces. Moreover, the simulation results show that the LP-DMOEA overcomes the restart method for OPP. The decision-making method for solution selection can assess the situation in an adversarial environment and accordingly adapt the path planner.

  14. Proteomics in evolutionary ecology.

    Science.gov (United States)

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  15. Evolutionary Awareness

    Directory of Open Access Journals (Sweden)

    Gregory Gorelik

    2014-10-01

    Full Text Available In this article, we advance the concept of “evolutionary awareness,” a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities—which we refer to as “intergenerational extended phenotypes”—by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.

  16. Evolutionary macroecology

    Directory of Open Access Journals (Sweden)

    José Alexandre F. Diniz-Filho

    2013-10-01

    Full Text Available Macroecology focuses on ecological questions at broad spatial and temporal scales, providing a statistical description of patterns in species abundance, distribution and diversity. More recently, historical components of these patterns have begun to be investigated more deeply. We tentatively refer to the practice of explicitly taking species history into account, both analytically and conceptually, as ‘evolutionary macroecology’. We discuss how the evolutionary dimension can be incorporated into macroecology through two orthogonal and complementary data types: fossils and phylogenies. Research traditions dealing with these data have developed more‐or‐less independently over the last 20–30 years, but merging them will help elucidate the historical components of diversity gradients and the evolutionary dynamics of species’ traits. Here we highlight conceptual and methodological advances in merging these two research traditions and review the viewpoints and toolboxes that can, in combination, help address patterns and unveil processes at temporal and spatial macro‐scales.

  17. [Evolutionary medicine].

    Science.gov (United States)

    Wjst, M

    2013-12-01

    Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Mapping the Paths from Styles of Anger Experience and Expression to Obsessive–Compulsive Symptoms: The Moderating Roles of Family Cohesion and Adaptability

    Science.gov (United States)

    Liu, Liang; Liu, Cuilian; Zhao, Xudong

    2017-01-01

    Previous research has shown strong connections of anger experience and expression with obsessive–compulsive (OC) symptoms. Additionally, studies have demonstrated links between family environment variables and obsessive–compulsive disorder (OCD). Our study aims to integrate the perspectives from these two literatures by exploring the moderating roles of family cohesion and family adaptability in the relationship between anger proneness and suppression and OCD symptoms. A total of 2008 college students were recruited from a comprehensive university in Shanghai, China between February and May 2016. The subjects completed self-report inventories, including the Symptom Check List-90, State-Trait Anger Expression Inventory 2 (Chinese version), and Family Adaptability and Cohesion Scale, second edition (Chinese Version). Controlling for age, one-child family status, ethnicity, family income, current depression, and anxiety, our analyses showed that the association between anger proneness and OC symptoms was moderated by family cohesion among men and that family adaptability moderated the connection between anger suppression and OC complaints among women. The findings imply that a more cohesive and empathic family environment may protect male students with high levels of anger proneness from developing OC behaviors or thoughts. The results suggest that for female subjects who are accustomed to suppressing angry feelings, flexible family coping strategies and communication atmospheres would reduce their vulnerability to OC symptoms. The findings are somewhat consistent with those of previous studies on psychotherapy outcomes that showed that OCD patients benefitted from psychotherapeutic interventions that cultivated the clients’ family cohesion and adaptability. PMID:28512441

  19. Mapping the Paths from Styles of Anger Experience and Expression to Obsessive-Compulsive Symptoms: The Moderating Roles of Family Cohesion and Adaptability.

    Science.gov (United States)

    Liu, Liang; Liu, Cuilian; Zhao, Xudong

    2017-01-01

    Previous research has shown strong connections of anger experience and expression with obsessive-compulsive (OC) symptoms. Additionally, studies have demonstrated links between family environment variables and obsessive-compulsive disorder (OCD). Our study aims to integrate the perspectives from these two literatures by exploring the moderating roles of family cohesion and family adaptability in the relationship between anger proneness and suppression and OCD symptoms. A total of 2008 college students were recruited from a comprehensive university in Shanghai, China between February and May 2016. The subjects completed self-report inventories, including the Symptom Check List-90, State-Trait Anger Expression Inventory 2 (Chinese version), and Family Adaptability and Cohesion Scale, second edition (Chinese Version). Controlling for age, one-child family status, ethnicity, family income, current depression, and anxiety, our analyses showed that the association between anger proneness and OC symptoms was moderated by family cohesion among men and that family adaptability moderated the connection between anger suppression and OC complaints among women. The findings imply that a more cohesive and empathic family environment may protect male students with high levels of anger proneness from developing OC behaviors or thoughts. The results suggest that for female subjects who are accustomed to suppressing angry feelings, flexible family coping strategies and communication atmospheres would reduce their vulnerability to OC symptoms. The findings are somewhat consistent with those of previous studies on psychotherapy outcomes that showed that OCD patients benefitted from psychotherapeutic interventions that cultivated the clients' family cohesion and adaptability.

  20. Mapping the Paths from Styles of Anger Experience and Expression to Obsessive–Compulsive Symptoms: The Moderating Roles of Family Cohesion and Adaptability

    Directory of Open Access Journals (Sweden)

    Liang Liu

    2017-05-01

    Full Text Available Previous research has shown strong connections of anger experience and expression with obsessive–compulsive (OC symptoms. Additionally, studies have demonstrated links between family environment variables and obsessive–compulsive disorder (OCD. Our study aims to integrate the perspectives from these two literatures by exploring the moderating roles of family cohesion and family adaptability in the relationship between anger proneness and suppression and OCD symptoms. A total of 2008 college students were recruited from a comprehensive university in Shanghai, China between February and May 2016. The subjects completed self-report inventories, including the Symptom Check List-90, State-Trait Anger Expression Inventory 2 (Chinese version, and Family Adaptability and Cohesion Scale, second edition (Chinese Version. Controlling for age, one-child family status, ethnicity, family income, current depression, and anxiety, our analyses showed that the association between anger proneness and OC symptoms was moderated by family cohesion among men and that family adaptability moderated the connection between anger suppression and OC complaints among women. The findings imply that a more cohesive and empathic family environment may protect male students with high levels of anger proneness from developing OC behaviors or thoughts. The results suggest that for female subjects who are accustomed to suppressing angry feelings, flexible family coping strategies and communication atmospheres would reduce their vulnerability to OC symptoms. The findings are somewhat consistent with those of previous studies on psychotherapy outcomes that showed that OCD patients benefitted from psychotherapeutic interventions that cultivated the clients’ family cohesion and adaptability.

  1. Evolutionary genomics of environmental pollution.

    Science.gov (United States)

    Whitehead, Andrew

    2014-01-01

    Chemical toxins have been a persistent source of evolutionary challenges throughout the history of life, and deep within the genomic storehouse of evolutionary history lay ancient adaptations to diverse chemical poisons. However, the rate of change of contemporary environments mediated by human-introduced pollutants is rapidly screening this storehouse and severely testing the adaptive potential of many species. In this chapter, we briefly review the deep history of evolutionary adaptation to environmental toxins, and then proceed to describe the attributes of stressors and populations that may facilitate contemporary adaptation to pollutants introduced by humans. We highlight that phenotypes derived to enable persistence in polluted habitats may be multi-dimensional, requiring global genome-scale tools and approaches to uncover their mechanistic basis, and include examples of recent progress in the field. The modern tools of genomics offer promise for discovering how pollutants interact with genomes on physiological timescales, and also for discovering what genomic attributes of populations may enable resistance to pollutants over evolutionary timescales. Through integration of these sophisticated genomics tools and approaches with an understanding of the deep historical forces that shaped current populations, a more mature understanding of the mechanistic basis of contemporary ecological-evolutionary dynamics should emerge.

  2. Evolutionary Dynamics of Biological Games

    Science.gov (United States)

    Nowak, Martin A.; Sigmund, Karl

    2004-02-01

    Darwinian dynamics based on mutation and selection form the core of mathematical models for adaptation and coevolution of biological populations. The evolutionary outcome is often not a fitness-maximizing equilibrium but can include oscillations and chaos. For studying frequency-dependent selection, game-theoretic arguments are more appropriate than optimization algorithms. Replicator and adaptive dynamics describe short- and long-term evolution in phenotype space and have found applications ranging from animal behavior and ecology to speciation, macroevolution, and human language. Evolutionary game theory is an essential component of a mathematical and computational approach to biology.

  3. Mapping the Paths from Styles of Anger Experience and Expression to Obsessive?Compulsive Symptoms: The Moderating Roles of Family Cohesion and Adaptability

    OpenAIRE

    Liu, Liang; Liu, Cuilian; Zhao, Xudong

    2017-01-01

    Previous research has shown strong connections of anger experience and expression with obsessive–compulsive (OC) symptoms. Additionally, studies have demonstrated links between family environment variables and obsessive–compulsive disorder (OCD). Our study aims to integrate the perspectives from these two literatures by exploring the moderating roles of family cohesion and family adaptability in the relationship between anger proneness and suppression and OCD symptoms. A total of 2008 college...

  4. Phylogenetic patterns of human coxsackievirus B5 arise from population dynamics between two genogroups and reveal evolutionary factors of molecular adaptation and transmission.

    Science.gov (United States)

    Henquell, Cécile; Mirand, Audrey; Richter, Jan; Schuffenecker, Isabelle; Böttiger, Blenda; Diedrich, Sabine; Terletskaia-Ladwig, Elena; Christodoulou, Christina; Peigue-Lafeuille, Hélène; Bailly, Jean-Luc

    2013-11-01

    The aim of this study was to gain insights into the tempo and mode of the evolutionary processes that sustain genetic diversity in coxsackievirus B5 (CVB5) and into the interplay with virus transmission. We estimated phylodynamic patterns with a large sample of virus strains collected in Europe by Bayesian statistical methods, reconstructed the ancestral states of genealogical nodes, and tested for selection. The genealogies estimated with the structural one-dimensional gene encoding the VP1 protein and nonstructural 3CD locus allowed the precise description of lineages over time and cocirculating virus populations within the two CVB5 clades, genogroups A and B. Strong negative selection shaped the evolution of both loci, but compelling phylogenetic data suggested that immune selection pressure resulted in the emergence of the two genogroups with opposed evolutionary pathways. The genogroups also differed in the temporal occurrence of the amino acid changes. The virus strains of genogroup A were characterized by sequential acquisition of nonsynonymous changes in residues exposed at the virus 5-fold axis. The genogroup B viruses were marked by selection of three changes in a different domain (VP1 C terminus) during its early emergence. These external changes resulted in a selective sweep, which was followed by an evolutionary stasis that is still ongoing after 50 years. The inferred population history of CVB5 showed an alternation of the prevailing genogroup during meningitis epidemics across Europe and is interpreted to be a consequence of partial cross-immunity.

  5. Network models of TEM β-lactamase mutations coevolving under antibiotic selection show modular structure and anticipate evolutionary trajectories.

    Science.gov (United States)

    Guthrie, Violeta Beleva; Allen, Jennifer; Camps, Manel; Karchin, Rachel

    2011-09-01

    Understanding how novel functions evolve (genetic adaptation) is a critical goal of evolutionary biology. Among asexual organisms, genetic adaptation involves multiple mutations that frequently interact in a non-linear fashion (epistasis). Non-linear interactions pose a formidable challenge for the computational prediction of mutation effects. Here we use the recent evolution of β-lactamase under antibiotic selection as a model for genetic adaptation. We build a network of coevolving residues (possible functional interactions), in which nodes are mutant residue positions and links represent two positions found mutated together in the same sequence. Most often these pairs occur in the setting of more complex mutants. Focusing on extended-spectrum resistant sequences, we use network-theoretical tools to identify triple mutant trajectories of likely special significance for adaptation. We extrapolate evolutionary paths (n = 3) that increase resistance and that are longer than the units used to build the network (n = 2). These paths consist of a limited number of residue positions and are enriched for known triple mutant combinations that increase cefotaxime resistance. We find that the pairs of residues used to build the network frequently decrease resistance compared to their corresponding singlets. This is a surprising result, given that their coevolution suggests a selective advantage. Thus, β-lactamase adaptation is highly epistatic. Our method can identify triplets that increase resistance despite the underlying rugged fitness landscape and has the unique ability to make predictions by placing each mutant residue position in its functional context. Our approach requires only sequence information, sufficient genetic diversity, and discrete selective pressures. Thus, it can be used to analyze recent evolutionary events, where coevolution analysis methods that use phylogeny or statistical coupling are not possible. Improving our ability to assess

  6. B cells in teleost fish act as pivotal initiating APCs in priming adaptive immunity: an evolutionary perspective on the origin of the B-1 cell subset and B7 molecules.

    Science.gov (United States)

    Zhu, Lv-yun; Lin, Ai-fu; Shao, Tong; Nie, Li; Dong, Wei-ren; Xiang, Li-xin; Shao, Jian-zhong

    2014-03-15

    The long-held paradigm that B cells cannot uptake nonspecific particulate Ags for the initiation of primary adaptive immunity has been challenged by the recent discovery that teleost B cells have potent phagocytic and microbicidal abilities. This discovery provides preliminary clues that primitive B cells might act as initiating APCs in priming adaptive immunity. In this study, zebrafish B cells clearly showed a potent Ag-presenting ability to both soluble Ags and bacterial particles to prime naive CD4(+) T cell activation. This finding demonstrates the innate-like nature of teleost B cells in the interface of innate and adaptive immunity, indicating that they might consist of a major population of initiating APCs whose performance is similar to that of dendritic cells. Given the functional similarities between teleost B cells and the mammalian B-1 subset, we hypothesize that B-1 lineage and teleost B cells might originate from a common ancestor with potent phagocytic and initiating APC capacities. In addition, CD80/86 and CD83 costimulatory signals were identified as being essential for B cell-initiated adaptive immunity. This result suggests that the costimulatory mechanism originated as early as the origin of adaptive immunity and is conserved throughout vertebrate evolution. In fish, only a single CD80/86 copy exists, which is similar to mammalian CD86 rather than to CD80. Thus, CD86 might be a more primordial B7 family member that originated from fish. This study provides valuable insights into the evolutionary history of professional APCs, B cell lineages, and the costimulatory mechanism underlying adaptive immunity as a whole.

  7. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  8. Green infrastructure as a climate change adaptation policy intervention: muddying the waters or clearing a path to a more secure future?

    Science.gov (United States)

    Sussams, L W; Sheate, W R; Eales, R P

    2015-01-01

    As dangerous climate change looms, decision-makers are increasingly realising that societies will need to adapt to this threat as well as mitigate against it. Green infrastructure (GI) is increasingly seen as an ideal climate change adaptation policy response. However, with this research the authors identify a number of crucial knowledge gaps within GI and, consequently, call for caution and for a concerted effort to understand the concept and what it can really deliver. GI has risen to prominence in a range of policy areas in large part due to its perceived ability to produce multiple benefits simultaneously, termed 'multifunctionality'. This characteristic strengthens the political appeal of the policy in question at a time when environmental issues have slipped down political agendas. Multifunctionality, however, brings its own set of new challenges that should be evaluated fully before the policy is implemented. This research takes important first steps to developing a critical understanding of what is achievable within GI's capacity. It focuses on one of GI's single objectives, namely climate change adaptation, to focus the analysis of how current obstacles in applying GI's multifunctionality could lead to the ineffective delivery of its objective. By drawing on expert opinion from government officials and representatives from the private, non-government organisation (NGO) and academic sectors, this research questions GI's ability to be effectively 'multifunctional' with an inconsistent definition at its core, deficiencies in its understanding and conflicts within its governance. In light of these observations, the authors then reflect on the judiciousness of applying GI to achieve the other objectives it has also been charged with delivering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. An Evolutionary Perspective on Toxic Leadership

    OpenAIRE

    Lucia Ovidia VREJA; Balan, Sergiu,; Loredana Cornelia BOSCA

    2016-01-01

    Charles Darwin’s prediction from 1859, that future psychology was going to be built on principles derived from evolutionary theory came at last to be fulfilled. Nowadays, there are at least four disciplines that attempt to explain human behaviours as evolutionary adaptations (or maladaptations) to the natural and/or social environment: human sociobiology, human behavioural ecology, evolutionary psychology, memetics and gene–culture coevolution theory (in our view, the most adequate of all). A...

  10. Incorporating Development Into Evolutionary Psychology

    OpenAIRE

    David F. Bjorklund

    2016-01-01

    Developmental thinking is gradually becoming integrated within mainstream evolutionary psychology. This is most apparent with respect to the role of parenting, with proponents of life history theory arguing that cognitive and behavioral plasticity early in life permits children to select different life history strategies, with such strategies being adaptive solutions to different fitness trade-offs. I argue that adaptations develop and are based on the highly plastic nature of infants’ and ch...

  11. Evolutionary psychology and intelligence research.

    Science.gov (United States)

    Kanazawa, Satoshi

    2010-01-01

    This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative variation on a monomorphic design allows us to incorporate heritable individual differences in evolved adaptations. The Savanna-IQ Interaction Hypothesis, which is one consequence of the integration of evolutionary psychology and intelligence research, can potentially explain why less intelligent individuals enjoy TV more, why liberals are more intelligent than conservatives, and why night owls are more intelligent than morning larks, among many other findings. The general approach proposed here will allow us to integrate evolutionary psychology with any other aspect of differential psychology. Copyright 2010 APA, all rights reserved.

  12. Evolutionary Psychology and Intelligence Research

    Science.gov (United States)

    Kanazawa, Satoshi

    2010-01-01

    This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative…

  13. The major synthetic evolutionary transitions.

    Science.gov (United States)

    Solé, Ricard

    2016-08-19

    Evolution is marked by well-defined events involving profound innovations that are known as 'major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These 'synthetic' transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).

  14. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways.

    Science.gov (United States)

    Thomson, Nicholas R; Clayton, Debra J; Windhorst, Daniel; Vernikos, Georgios; Davidson, Susanne; Churcher, Carol; Quail, Michael A; Stevens, Mark; Jones, Michael A; Watson, Michael; Barron, Andy; Layton, Abigail; Pickard, Derek; Kingsley, Robert A; Bignell, Alex; Clark, Louise; Harris, Barbara; Ormond, Doug; Abdellah, Zahra; Brooks, Karen; Cherevach, Inna; Chillingworth, Tracey; Woodward, John; Norberczak, Halina; Lord, Angela; Arrowsmith, Claire; Jagels, Kay; Moule, Sharon; Mungall, Karen; Sanders, Mandy; Whitehead, Sally; Chabalgoity, Jose A; Maskell, Duncan; Humphrey, Tom; Roberts, Mark; Barrow, Paul A; Dougan, Gordon; Parkhill, Julian

    2008-10-01

    We have determined the complete genome sequences of a host-promiscuous Salmonella enterica serovar Enteritidis PT4 isolate P125109 and a chicken-restricted Salmonella enterica serovar Gallinarum isolate 287/91. Genome comparisons between these and other Salmonella isolates indicate that S. Gallinarum 287/91 is a recently evolved descendent of S. Enteritidis. Significantly, the genome of S. Gallinarum has undergone extensive degradation through deletion and pseudogene formation. Comparison of the pseudogenes in S. Gallinarum with those identified previously in other host-adapted bacteria reveals the loss of many common functional traits and provides insights into possible mechanisms of host and tissue adaptation. We propose that experimental analysis in chickens and mice of S. Enteritidis-harboring mutations in functional homologs of the pseudogenes present in S. Gallinarum could provide an experimentally tractable route toward unraveling the genetic basis of host adaptation in S. enterica.

  15. Evolutionary theory and the naturalist fallacy

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    2008-01-01

    The article is an invited response to a target article by Joseph Carroll entitled "An evolutionary paradigm for literary study". It argues that the target article  misuse the fact that works of art are based on adaptations that were fitness-enhancing in the era of evolutionary adaptations to claim...... that great work of art are also automatically fitness-enhancing in the present day environment, at that there are simple correllations between whether a work of art has a high aesthetic value and whether it is fitness-enhancing or not.  Keywords :  Evolutionary aesthetics, film theory, literary theory...

  16. Incorporating Development Into Evolutionary Psychology

    Directory of Open Access Journals (Sweden)

    David F. Bjorklund

    2016-09-01

    Full Text Available Developmental thinking is gradually becoming integrated within mainstream evolutionary psychology. This is most apparent with respect to the role of parenting, with proponents of life history theory arguing that cognitive and behavioral plasticity early in life permits children to select different life history strategies, with such strategies being adaptive solutions to different fitness trade-offs. I argue that adaptations develop and are based on the highly plastic nature of infants’ and children’s behavior/cognition/brains. The concept of evolved probabilistic cognitive mechanisms is introduced, defined as information processing mechanisms evolved to solve recurrent problems faced by ancestral populations that are expressed in a probabilistic fashion in each individual in a generation and are based on the continuous and bidirectional interaction over time at all levels of organization, from the genetic through the cultural. Early perceptual/cognitive biases result in behavior that, when occurring in a species-typical environment, produce continuous adaptive changes in behavior (and cognition, yielding adaptive outcomes. Examples from social learning and tool use are provided, illustrating the development of adaptations via evolved probabilistic cognitive mechanisms. The integration of developmental concepts into mainstream evolutionary psychology (and evolutionary concepts into mainstream developmental psychology will provide a clearer picture of what it means to be human.

  17. The emerging empirics of evolutionary economic geography.

    NARCIS (Netherlands)

    Boschma, R.A.; Frenken, K.

    2011-01-01

    Following last decade’s programmatic papers on Evolutionary Economic Geography, we report on recent empirical advances and how this empirical work can be positioned vis-a`-vis other strands of research in economic geography. First, we review studies on the path dependent nature of clustering, and

  18. The Evolving Theory of Evolutionary Radiations.

    Science.gov (United States)

    Simões, M; Breitkreuz, L; Alvarado, M; Baca, S; Cooper, J C; Heins, L; Herzog, K; Lieberman, B S

    2016-01-01

    Evolutionary radiations have intrigued biologists for more than 100 years, and our understanding of the patterns and processes associated with these radiations continues to grow and evolve. Recently it has been recognized that there are many different types of evolutionary radiation beyond the well-studied adaptive radiations. We focus here on multifarious types of evolutionary radiations, paying special attention to the abiotic factors that might trigger diversification in clades. We integrate concepts such as exaptation, species selection, coevolution, and the turnover-pulse hypothesis (TPH) into the theoretical framework of evolutionary radiations. We also discuss other phenomena that are related to, but distinct from, evolutionary radiations that have relevance for evolutionary biology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The evolutionary psychology of hunger.

    Science.gov (United States)

    Al-Shawaf, Laith

    2016-10-01

    An evolutionary psychological perspective suggests that emotions can be understood as coordinating mechanisms whose job is to regulate various psychological and physiological programs in the service of solving an adaptive problem. This paper suggests that it may also be fruitful to approach hunger from this coordinating mechanism perspective. To this end, I put forward an evolutionary task analysis of hunger, generating novel a priori hypotheses about the coordinating effects of hunger on psychological processes such as perception, attention, categorization, and memory. This approach appears empirically fruitful in that it yields a bounty of testable new hypotheses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. K shortest paths in stochastic time-dependent networks

    DEFF Research Database (Denmark)

    Nielsen, Lars Relund; Pretolani, Daniele; Andersen, Kim Allan

    2004-01-01

    A substantial amount of research has been devoted to the shortest path problem in networks where travel times are stochastic or (deterministic and) time-dependent. More recently, a growing interest has been attracted by networks that are both stochastic and time-dependent. In these networks......, the best route choice is not necessarily a path, but rather a time-adaptive strategy that assigns successors to nodes as a function of time. In some particular cases, the shortest origin-destination path must nevertheless be chosen a priori, since time-adaptive choices are not allowed. Unfortunately......, finding the a priori shortest path is NP-hard, while the best time-adaptive strategy can be found in polynomial time. In this paper, we propose a solution method for the a priori shortest path problem, and we show that it can be easily adapted to the ranking of the first K shortest paths. Moreover, we...

  1. Masturbation, sexuality, and adaptation: normalization in adolescence.

    Science.gov (United States)

    Shapiro, Theodore

    2008-03-01

    During adolescence the central masturbation fantasy that is formulated during childhood takes its final form and paradoxically must now be directed outward for appropriate object finding and pair matching in the service of procreative aims. This is a step in adaptation that requires a further developmental landmark that I have called normalization. The path toward airing these private fantasies is facilitated by chumship relationships as a step toward further exposure to the social surround. Hartmann's structuring application of adaptation within psychoanalysis is used as a framework for understanding the process that simultaneously serves intrapsychic and social demands and permits goals that follow evolutionary principles. Variations in the normalization process from masturbatory isolation to a variety of forms of sexual socialization are examined in sociological data concerning current adolescent sexual behavior and in case examples that indicate some routes to normalized experience and practice.

  2. Evolutionary dynamics in financial markets with many trader types

    NARCIS (Netherlands)

    Brock, W.A.; Hommes, C.H.; Wagener, F.O.O.

    2001-01-01

    This paper develops the notion of a Large Type Limit (LTL) describing the average behavior of adaptive evolutionary systems with many trader types. It is shown that generic and persistent features of adaptive evolutionary systems with many trader types are well described by the large type limit.

  3. Evolutionary adaptation of muscle power output to environmental temperature: force-velocity characteristics of skinned fibres isolated from antarctic, temperate and tropical marine fish.

    Science.gov (United States)

    Johnston, I A; Altringham, J D

    1985-09-01

    Single fast fibres were isolated from the myotomal muscles of icefish (Chaenocephalus aceratus Lönnberg, Antarctica), North Sea Cod (Gadus morhua L.) and Pacific Blue Marlin (Makaira nigricans Wakiya, Hawaii). Fibres were chemically skinned with the non-ionic detergent Brij-58. Maximum tensions (Po, kN m-2) developed at the characteristic body temperature of each species are 231 for icefish (-1 degree C), 187 for cod (8 degrees C) and 156 for marlin (20 degrees C). At 0 degree C Po is 7 times higher for fibres from the icefish than from the marlin. Fibres from icefish and cod failed to relax completely following activations at temperatures above approximately 12 degrees C. The resultant post-contraction force is associated with a proportional increase in stiffness, suggesting the formation of a population of Ca-insensitive cross bridges. At 10 degrees C there is little interspecific variation in unloaded contraction velocity (Vmax) among the three species. Vmax (muscle lengths s-1) at normal body temperatures are 0.9 for icefish (-1 degree C), 1.0 for cod (8 degrees C) and 3.4 for marlin (20 degrees C). The force-velocity (P-V) relationship becomes progressively more curved with increasing temperature for all three species. Maximum power output for the fast muscle fibres from the Antarctic species at -1 degree C is around 60% of that of the tropical fish at 20 degrees C. Evolutionary temperature compensation of muscle power output appears largely to involve differences in the ability of cross bridges to generate force.

  4. Vervet monkeys use paths consistent with context-specific spatial movement heuristics.

    Science.gov (United States)

    Teichroeb, Julie A

    2015-10-01

    Animal foraging routes are analogous to the computationally demanding "traveling salesman problem" (TSP), where individuals must find the shortest path among several locations before returning to the start. Humans approximate solutions to TSPs using simple heuristics or "rules of thumb," but our knowledge of how other animals solve multidestination routing problems is incomplete. Most nonhuman primate species have shown limited ability to route plan. However, captive vervets were shown to solve a TSP for six sites. These results were consistent with either planning three steps ahead or a risk-avoidance strategy. I investigated how wild vervet monkeys (Chlorocebus pygerythrus) solved a path problem with six, equally rewarding food sites; where site arrangement allowed assessment of whether vervets found the shortest route and/or used paths consistent with one of three simple heuristics to navigate. Single vervets took the shortest possible path in fewer than half of the trials, usually in ways consistent with the most efficient heuristic (the convex hull). When in competition, vervets' paths were consistent with different, more efficient heuristics dependent on their dominance rank (a cluster strategy for dominants and the nearest neighbor rule for subordinates). These results suggest that, like humans, vervets may solve multidestination routing problems by applying simple, adaptive, context-specific "rules of thumb." The heuristics that were consistent with vervet paths in this study are the same as some of those asserted to be used by humans. These spatial movement strategies may have common evolutionary roots and be part of a universal mental navigational toolkit. Alternatively, they may have emerged through convergent evolution as the optimal way to solve multidestination routing problems.

  5. Evolutionary developmental psychology

    National Research Council Canada - National Science Library

    King, Ashley C; Bjorklund, David F

    2010-01-01

    The field of evolutionary developmental psychology can potentially broaden the horizons of mainstream evolutionary psychology by combining the principles of Darwinian evolution by natural selection...

  6. Telling Tales at Work: An Evolutionary Explanation

    Science.gov (United States)

    Yang, Chulguen

    2013-01-01

    This article explores the adaptive functions of storytelling in the workplace from an evolutionary perspective. Based on the analysis of ethnographic studies on hunter-gatherer and modern work organizations, this article claims that storytelling, as an adapted cognitive device, was selectively retained by natural and sexual selection, because of…

  7. the evolutionary biology and biotechnology applications of ...

    Indian Academy of Sciences (India)

    of many genetic disorders, such as haemophilia A, Apert syndrome .... Examples of adaptive mutations and exaptations provided by transposable elements. .... adaptive variation. However, such surveys should be under- taken in a wider range of species to reliably estimate the impact of TEs on their evolutionary ecology.

  8. The charophycean green algae as model systems to study plant cell walls and other evolutionary adaptations that gave rise to land plants

    DEFF Research Database (Denmark)

    Sørensen, Iben; Rose, Jocelyn K.C.; Doyle, Jeff J.

    2012-01-01

    for terrestrial colonization. The nature and molecular bases of such traits are still being determined, but one critical adaptation is thought to have been the evolution of a complex cell wall. Very little is known about the identity, origins and diversity of the biosynthetic machinery producing the major suites...... of structural polymers (i. e., cell wall polysaccharides and associated molecules) that must have been in place for land colonization. However, it has been suggested that the success of the earliest land plants was partly based on the frequency of gene duplication, and possibly whole genome sduplications......, during times of radical habitat changes. Orders of the CGA span early diverging taxa retaining more ancestral characters, through complex multicellular organisms with morphological characteristics resembling those of land plants. Examination of gene diversity and evolution within the CGA could help...

  9. Comparative evolutionary psychology of sperm competition.

    Science.gov (United States)

    Shackelford, Todd K; Goetz, Aaron T

    2006-05-01

    A comparative evolutionary psychological perspective predicts that species that recurrently faced similar adaptive problems may have evolved similar psychological mechanisms to solve these problems. Sperm competition provides an arena in which to assess the heuristic value of such a comparative evolutionary perspective. The sperm competition that results from female infidelity and polyandry presents a similar class of adaptive problems for individuals across many species. The authors first describe mechanisms of sperm competition in insects and in birds. They suggest that the adaptive problems and evolved solutions in these species provide insight into human anatomy, physiology, psychology, and behavior. The authors then review recent theoretical and empirical arguments for the existence of sperm competition in humans and discuss proposed adaptations in humans that have analogs in insects or birds. The authors conclude by highlighting the heuristic value of a comparative evolutionary psychological approach in this field. Copyright 2006 APA, all rights reserved.

  10. Path-neighborhood graphs

    NARCIS (Netherlands)

    R.C. Laskar (R.C.); H.M. Mulder (Martyn)

    2013-01-01

    textabstractA path-neighborhood graph is a connected graph in which every neighborhood induces a path. In the main results the 3-sun-free path-neighborhood graphs are characterized. The 3-sun is obtained from a 6-cycle by adding three chords between the three pairs of vertices at distance 2. A Pk

  11. White-opaque switching in natural MTLa/α isolates of Candida albicans: evolutionary implications for roles in host adaptation, pathogenesis, and sex.

    Directory of Open Access Journals (Sweden)

    Jing Xie

    Full Text Available Phenotypic transitions play critical roles in host adaptation, virulence, and sexual reproduction in pathogenic fungi. A minority of natural isolates of Candida albicans, which are homozygous at the mating type locus (MTL, a/a or α/α, are known to be able to switch between two distinct cell types: white and opaque. It is puzzling that white-opaque switching has never been observed in the majority of natural C. albicans strains that have heterozygous MTL genotypes (a/α, given that they contain all of the opaque-specific genes essential for switching. Here we report the discovery of white-opaque switching in a number of natural a/α strains of C. albicans under a condition mimicking aspects of the host environment. The optimal condition for white-to-opaque switching in a/α strains of C. albicans is to use N-acetylglucosamine (GlcNAc as the sole carbon source and to incubate the cells in 5% CO2. Although the induction of white-to-opaque switching in a/α strains of C. albicans is not as robust as in MTL homozygotes in response to GlcNAc and CO2, opaque cells of a/α strains exhibit similar features of cellular and colony morphology to their MTL homozygous counterparts. Like MTL homozygotes, white and opaque cells of a/α strains differ in their behavior in different mouse infection models. We have further demonstrated that the transcriptional regulators Rfg1, Brg1, and Efg1 are involved in the regulation of white-to-opaque switching in a/α strains. We propose that the integration of multiple environmental cues and the activation and inactivation of a set of transcriptional regulators controls the expression of the master switching regulator WOR1, which determines the final fate of the cell type in C. albicans. Our discovery of white-opaque switching in the majority of natural a/α strains of C. albicans emphasizes its widespread nature and importance in host adaptation, pathogenesis, and parasexual reproduction.

  12. Comparative Evolutionary Histories of the Fungal Chitinase Gene Family Reveal Non-Random Size Expansions and Contractions due to Adaptive Natural Selection

    Directory of Open Access Journals (Sweden)

    Jan Stenlid

    2008-01-01

    Full Text Available Gene duplication and loss play an important role in the evolution of novel functions and for shaping an organism’s gene content. Recently, it was suggested that stress-related genes frequently are exposed to duplications and losses, while growth-related genes show selection against change in copy number. The fungal chitinase gene family constitutes an interesting case study of gene duplication and loss, as their biological roles include growth and development as well as more stress-responsive functions. We used genome sequence data to analyze the size of the chitinase gene family in different fungal taxa, which range from 1 in Batrachochytrium dendrobatidis and Schizosaccharomyces pombe to 20 in Hypocrea jecorina and Emericella nidulans, and to infer their phylogenetic relationships. Novel chitinase subgroups are identified and their phylogenetic relationships with previously known chitinases are discussed. We also employ a stochastic birth and death model to show that the fungal chitinase gene family indeed evolves non-randomly, and we identify six fungal lineages where larger-than-expected expansions (Pezizomycotina, H. jecorina, Gibberella zeae, Uncinocarpus reesii, E. nidulans and Rhizopus oryzae, and two contractions (Coccidioides immitis and S. pombe potentially indicate the action of adaptive natural selection. The results indicate that antagonistic fungal-fungal interactions are an important process for soil borne ascomycetes, but not for fungal species that are pathogenic in humans. Unicellular growth is correlated with a reduction of chitinase gene copy numbers which emphasizes the requirement of the combined action of several chitinases for filamentous growth.

  13. Evolutionary Information Theory

    Directory of Open Access Journals (Sweden)

    Mark Burgin

    2013-04-01

    Full Text Available Evolutionary information theory is a constructive approach that studies information in the context of evolutionary processes, which are ubiquitous in nature and society. In this paper, we develop foundations of evolutionary information theory, building several measures of evolutionary information and obtaining their properties. These measures are based on mathematical models of evolutionary computations, machines and automata. To measure evolutionary information in an invariant form, we construct and study universal evolutionary machines and automata, which form the base for evolutionary information theory. The first class of measures introduced and studied in this paper is evolutionary information size of symbolic objects relative to classes of automata or machines. In particular, it is proved that there is an invariant and optimal evolutionary information size relative to different classes of evolutionary machines. As a rule, different classes of algorithms or automata determine different information size for the same object. The more powerful classes of algorithms or automata decrease the information size of an object in comparison with the information size of an object relative to weaker4 classes of algorithms or machines. The second class of measures for evolutionary information in symbolic objects is studied by introduction of the quantity of evolutionary information about symbolic objects relative to a class of automata or machines. To give an example of applications, we briefly describe a possibility of modeling physical evolution with evolutionary machines to demonstrate applicability of evolutionary information theory to all material processes. At the end of the paper, directions for future research are suggested.

  14. Adaptive Tracking Control for Robots With an Interneural Computing Scheme.

    Science.gov (United States)

    Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang

    2017-01-24

    Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.

  15. Structural Insights Into the Evolutionary Paths of Oxylipin Biosynthetic Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.-S.; Nioche, P.; Hamberg, M.; Raman, C.S.

    2009-05-20

    The oxylipin pathway generates not only prostaglandin-like jasmonates but also green leaf volatiles (GLVs), which confer characteristic aromas to fruits and vegetables. Although allene oxide synthase (AOS) and hydroperoxide lyase are atypical cytochrome P450 family members involved in the synthesis of jasmonates and GLVs, respectively, it is unknown how these enzymes rearrange their hydroperoxide substrates into different products. Here we present the crystal structures of Arabidopsis thaliana AOS, free and in complex with substrate or intermediate analogues. The structures reveal an unusual active site poised to control the reactivity of an epoxyallylic radical and its cation by means of interactions with an aromatic {pi}-system. Replacing the amino acid involved in these steps by a non-polar residue markedly reduces AOS activity and, unexpectedly, is both necessary and sufficient for converting AOS into a GLV biosynthetic enzyme. Furthermore, by combining our structural data with bioinformatic and biochemical analyses, we have discovered previously unknown hydroperoxide lyase in plant growth-promoting rhizobacteria, AOS in coral, and epoxyalcohol synthase in amphioxus. These results indicate that oxylipin biosynthetic genes were present in the last common ancestor of plants and animals, but were subsequently lost in all metazoan lineages except Placozoa, Cnidaria and Cephalochordata.

  16. Evolutionary Paths to Corrupt Societies of Artificial Agents

    Science.gov (United States)

    Nasrallah, Walid

    Virtual corrupt societies can be defined as groups of interacting computer-generated agents who predominantly choose behavior that gives short term personal gain at the expense of a higher aggregate cost to others. This paper focuses on corrupt societies that, unlike published models in which cooperation must evolve in order for the society to continue to survive, do not naturally die out as the corrupt class siphons off the resources. For example, a very computationally simple strategy of avoiding confrontation can allow a majority of "unethical" individuals to survive off the efforts of an "ethical" but productive minority. Analogies are drawn to actual human societies in which similar conditions gave rise to behavior traditionally defined as economic or political corruption.

  17. Evolutionary paths towards the mobility patterns of the future

    CERN Document Server

    Fornahl, Dirk

    2014-01-01

    This edited volume presents new insights and challenges in the field of electric mobility in relation to new mobility and infrastructure concepts as well as to renewable energies. The book covers the socio-economic view on the topic as well as technical aspects and thus offers valuable knowledge for future business models. It primarily addresses practitioners and researchers in the field but may also be of use to graduate students.

  18. Exploring the evolutionary path of plant MAPK networks.

    Science.gov (United States)

    Dóczi, Róbert; Okrész, László; Romero, Alfonso E; Paccanaro, Alberto; Bögre, László

    2012-09-01

    The evolutionarily conserved mitogen-activated protein kinase (MAPK) signaling network comprises connected protein kinases arranged in MAPK modules. In this Opinion article, we analyze MAPK signaling components in evolutionarily representative species of the plant lineage and in Naegleria gruberi, a member of an early diverging eukaryotic clade. In Naegleria, there are two closely related MAPK kinases (MKKs) and a single conventional MAPK, whereas in several species of algae, there are two distinct MKKs and multiple MAPKs belonging to different groups. This suggests that the formation of multiple MAPK modules began early during plant evolution. The expansion of MAPK signaling components through gene duplications and the evolution of interaction motifs could have contributed to the highly connected complex MAPK signaling network that we know in Arabidopsis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Transition path time distributions

    Science.gov (United States)

    Laleman, M.; Carlon, E.; Orland, H.

    2017-12-01

    Biomolecular folding, at least in simple systems, can be described as a two state transition in a free energy landscape with two deep wells separated by a high barrier. Transition paths are the short part of the trajectories that cross the barrier. Average transition path times and, recently, their full probability distribution have been measured for several biomolecular systems, e.g., in the folding of nucleic acids or proteins. Motivated by these experiments, we have calculated the full transition path time distribution for a single stochastic particle crossing a parabolic barrier, including inertial terms which were neglected in previous studies. These terms influence the short time scale dynamics of a stochastic system and can be of experimental relevance in view of the short duration of transition paths. We derive the full transition path time distribution as well as the average transition path times and discuss the similarities and differences with the high friction limit.

  20. Algorithmic Mechanism Design of Evolutionary Computation.

    Science.gov (United States)

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  1. Evolutionary principles and their practical application.

    Science.gov (United States)

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  2. Understanding the mind from an evolutionary perspective: an overview of evolutionary psychology.

    Science.gov (United States)

    Shackelford, Todd K; Liddle, James R

    2014-05-01

    The theory of evolution by natural selection provides the only scientific explanation for the existence of complex adaptations. The design features of the brain, like any organ, are the result of selection pressures operating over deep time. Evolutionary psychology posits that the human brain comprises a multitude of evolved psychological mechanisms, adaptations to specific and recurrent problems of survival and reproduction faced over human evolutionary history. Although some mistakenly view evolutionary psychology as promoting genetic determinism, evolutionary psychologists appreciate and emphasize the interactions between genes and environments. This approach to psychology has led to a richer understanding of a variety of psychological phenomena, and has provided a powerful foundation for generating novel hypotheses. Critics argue that evolutionary psychologists resort to storytelling, but as with any branch of science, empirical testing is a vital component of the field, with hypotheses standing or falling with the weight of the evidence. Evolutionary psychology is uniquely suited to provide a unifying theoretical framework for the disparate subdisciplines of psychology. An evolutionary perspective has provided insights into several subdisciplines of psychology, while simultaneously demonstrating the arbitrary nature of dividing psychological science into such subdisciplines. Evolutionary psychologists have amassed a substantial empirical and theoretical literature, but as a relatively new approach to psychology, many questions remain, with several promising directions for future research. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  3. An evolutionary approach to military history

    Directory of Open Access Journals (Sweden)

    Xabier Rubio Campillo

    2014-01-01

    Full Text Available This paper provides a new way of analysing the concept of change within the field of military history. The proposal is based on the use of complex adaptive systems and evolutionary theory. We introduce the concepts of selection, adaptation and coevolution to explain how war is managed in different societies, and game theory to explore decision-making processes of commanders. We emphasize the value of integrating formal modeling and computational simulations in order to apply the approach to real case studies. Our conclusions outline the advantages of an evolutionary military history in the difficult task of understanding the causes of transformation in past battlefields and armies.

  4. Euryhalinity in an evolutionary context

    Science.gov (United States)

    Schultz, Eric T.; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    This chapter focuses on the evolutionary importance and taxonomic distribution of euryhalinity. Euryhalinity refers to broad halotolerance and broad halohabitat distribution. Salinity exposure experiments have demonstrated that species vary tenfold in their range of tolerable salinity levels, primarily because of differences in upper limits. Halotolerance breadth varies with the species’ evolutionary history, as represented by its ordinal classification, and with the species’ halohabitat. Freshwater and seawater species tolerate brackish water; their empirically-determined fundamental haloniche is broader than their realized haloniche, as revealed by the halohabitats they occupy. With respect to halohabitat distribution, a minority of species (<10%) are euryhaline. Habitat-euryhalinity is prevalent among basal actinopterygian fishes, is largely absent from orders arising from intermediate nodes, and reappears in the most derived taxa. There is pronounced family-level variability in the tendency to be halohabitat-euryhaline, which may have arisen during a burst of diversification following the Cretaceous-Palaeogene extinction. Low prevalence notwithstanding, euryhaline species are potent sources of evolutionary diversity. Euryhalinity is regarded as a key innovation trait whose evolution enables exploitation of new adaptive zone, triggering cladogenesis. We review phylogenetically-informed studies that demonstrate freshwater species diversifying from euryhaline ancestors through processes such as landlocking. These studies indicate that some euryhaline taxa are particularly susceptible to changes in halohabitat and subsequent diversification, and some geographic regions have been hotspots for transitions to freshwater. Comparative studies on mechanisms among multiple taxa and at multiple levels of biological integration are needed to clarify evolutionary pathways to, and from, euryhalinity.

  5. Multi-Dimensional Path Queries

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    1998-01-01

    to create nested path structures. We present an SQL-like query language that is based on path expressions and we show how to use it to express multi-dimensional path queries that are suited for advanced data analysis in decision support environments like data warehousing environments......We present the path-relationship model that supports multi-dimensional data modeling and querying. A path-relationship database is composed of sets of paths and sets of relationships. A path is a sequence of related elements (atoms, paths, and sets of paths). A relationship is a binary path...

  6. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  7. Path dependence and creation

    DEFF Research Database (Denmark)

    Garud, Raghu; Karnøe, Peter

    the place of agency in these theories that take history so seriously. In the end, they are as interested in path creation and destruction as they are in path dependence. This book is compiled of both theoretical and empirical writing. It shows relatively well-known industries such as the automobile...

  8. Preventive evolutionary medicine of cancers.

    Science.gov (United States)

    Hochberg, Michael E; Thomas, Frédéric; Assenat, Eric; Hibner, Urszula

    2013-01-01

    Evolutionary theory predicts that once an individual reaches an age of sufficiently low Darwinian fitness, (s)he will have reduced chances of keeping cancerous lesions in check. While we clearly need to better understand the emergence of precursor states and early malignancies as well as their mitigation by the microenvironment and tissue architecture, we argue that lifestyle changes and preventive therapies based in an evolutionary framework, applied to identified high-risk populations before incipient neoplasms become clinically detectable and chemoresistant lineages emerge, are currently the most reliable way to control or eliminate early tumours. Specifically, the relatively low levels of (epi)genetic heterogeneity characteristic of many if not most incipient lesions will mean a relatively limited set of possible adaptive traits and associated costs compared to more advanced cancers, and thus a more complete and predictable understanding of treatment options and outcomes. We propose a conceptual model for preventive treatments and discuss the many associated challenges.

  9. Zero-Slack, Noncritical Paths

    Science.gov (United States)

    Simons, Jacob V., Jr.

    2017-01-01

    The critical path method/program evaluation and review technique method of project scheduling is based on the importance of managing a project's critical path(s). Although a critical path is the longest path through a network, its location in large projects is facilitated by the computation of activity slack. However, logical fallacies in…

  10. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  11. The genomic basis of eco-evolutionary dynamics.

    Science.gov (United States)

    Rodríguez-Verdugo, Alejandra; Buckley, James; Stapley, Jessica

    2017-03-01

    Recent recognition that ecological and evolutionary processes can operate on similar timescales has led to a rapid increase in theoretical and empirical studies on eco-evolutionary dynamics. Progress in the fields of evolutionary biology, genomics and ecology is greatly enhancing our understanding of rapid adaptive processes, the predictability of adaptation and the genetics of ecologically important traits. However, progress in these fields has proceeded largely independently of one another. In an attempt to better integrate these fields, the centre for 'Adaptation to a Changing Environment' organized a conference entitled 'The genomic basis of eco-evolutionary change' and brought together experts in ecological genomics and eco-evolutionary dynamics. In this review, we use the work of the invited speakers to summarize eco-evolutionary dynamics and discuss how they are relevant for understanding and predicting responses to contemporary environmental change. Then, we show how recent advances in genomics are contributing to our understanding of eco-evolutionary dynamics. Finally, we highlight the gaps in our understanding of eco-evolutionary dynamics and recommend future avenues of research in eco-evolutionary dynamics. © 2017 John Wiley & Sons Ltd.

  12. The Evolutionary Linguist's Divining-rod: Restrictive Theory

    African Journals Online (AJOL)

    KATEVG

    The Evolutionary Linguist's Divining-rod: Restrictive Theory 51 course, to be complemented by a theory which characterizes – in an equally constrained way – the products of adaptation by natural selection. Indeed, on certain theories of evolutionary processes an entity is considered an exaptation if it lacks the properties of ...

  13. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  14. Transmissible cancers in an evolutionary context.

    Science.gov (United States)

    Ujvari, Beata; Papenfuss, Anthony T; Belov, Katherine

    2016-07-01

    Cancer is an evolutionary and ecological process in which complex interactions between tumour cells and their environment share many similarities with organismal evolution. Tumour cells with highest adaptive potential have a selective advantage over less fit cells. Naturally occurring transmissible cancers provide an ideal model system for investigating the evolutionary arms race between cancer cells and their surrounding micro-environment and macro-environment. However, the evolutionary landscapes in which contagious cancers reside have not been subjected to comprehensive investigation. Here, we provide a multifocal analysis of transmissible tumour progression and discuss the selection forces that shape it. We demonstrate that transmissible cancers adapt to both their micro-environment and macro-environment, and evolutionary theories applied to organisms are also relevant to these unique diseases. The three naturally occurring transmissible cancers, canine transmissible venereal tumour (CTVT) and Tasmanian devil facial tumour disease (DFTD) and the recently discovered clam leukaemia, exhibit different evolutionary phases: (i) CTVT, the oldest naturally occurring cell line is remarkably stable; (ii) DFTD exhibits the signs of stepwise cancer evolution; and (iii) clam leukaemia shows genetic instability. While all three contagious cancers carry the signature of ongoing and fairly recent adaptations to selective forces, CTVT appears to have reached an evolutionary stalemate with its host, while DFTD and the clam leukaemia appear to be still at a more dynamic phase of their evolution. Parallel investigation of contagious cancer genomes and transcriptomes and of their micro-environment and macro-environment could shed light on the selective forces shaping tumour development at different time points: during the progressive phase and at the endpoint. A greater understanding of transmissible cancers from an evolutionary ecology perspective will provide novel avenues for

  15. Adaptation as organism design

    OpenAIRE

    Gardner, Andy

    2009-01-01

    The problem of adaptation is to explain the apparent design of organisms. Darwin solved this problem with the theory of natural selection. However, population geneticists, whose responsibility it is to formalize evolutionary theory, have long neglected the link between natural selection and organismal design. Here, I review the major historical developments in theory of organismal adaptation, clarifying what adaptation is and what it is not, and I point out future avenues for research.

  16. Analysis of Students' Arguments on Evolutionary Theory

    Science.gov (United States)

    Basel, Nicolai; Harms, Ute; Prechtl, Helmut

    2013-01-01

    A qualitative exploratory study was conducted to reveal students' argumentation skills in the context of the topic of evolution. Transcripts from problem-centred interviews on secondary students' beliefs about evolutionary processes of adaptation were analysed using a content analysis approach. For this purpose two categorical systems were…

  17. Paths to Remarriage.

    Science.gov (United States)

    Spanier, Graham B.; Glick, Paul C.

    1980-01-01

    Presents a demographic analysis of the paths to remarriage--the extent and timing of remarriage, social factors associated with remarriage, and the impact of the event which preceded remarriage (divorce or widowhood). (Author)

  18. Metabolism at Evolutionary Optimal States

    Directory of Open Access Journals (Sweden)

    Iraes Rabbers

    2015-06-01

    Full Text Available Metabolism is generally required for cellular maintenance and for the generation of offspring under conditions that support growth. The rates, yields (efficiencies, adaptation time and robustness of metabolism are therefore key determinants of cellular fitness. For biotechnological applications and our understanding of the evolution of metabolism, it is necessary to figure out how the functional system properties of metabolism can be optimized, via adjustments of the kinetics and expression of enzymes, and by rewiring metabolism. The trade-offs that can occur during such optimizations then indicate fundamental limits to evolutionary innovations and bioengineering. In this paper, we review several theoretical and experimental findings about mechanisms for metabolic optimization.

  19. Path planning in changeable environments

    NARCIS (Netherlands)

    Nieuwenhuisen, D.

    2007-01-01

    This thesis addresses path planning in changeable environments. In contrast to traditional path planning that deals with static environments, in changeable environments objects are allowed to change their configurations over time. In many cases, path planning algorithms must facilitate quick

  20. Paths to nursing leadership.

    Science.gov (United States)

    Bondas, Terese

    2006-07-01

    The aim was to explore why nurses enter nursing leadership and apply for a management position in health care. The study is part of a research programme in nursing leadership and evidence-based care. Nursing has not invested enough in the development of nursing leadership for the development of patient care. There is scarce research on nurses' motives and reasons for committing themselves to a career in nursing leadership. A strategic sample of 68 Finnish nurse leaders completed a semistructured questionnaire. Analytic induction was applied in an attempt to generate a theory. A theory, Paths to Nursing Leadership, is proposed for further research. Four different paths were found according to variations between the nurse leaders' education, primary commitment and situational factors. They are called the Path of Ideals, the Path of Chance, the Career Path and the Temporary Path. Situational factors and role models of good but also bad nursing leadership besides motivational and educational factors have played a significant role when Finnish nurses have entered nursing leadership. The educational requirements for nurse leaders and recruitment to nursing management positions need serious attention in order to develop a competent nursing leadership.

  1. Evolutionary ecology of virus emergence.

    Science.gov (United States)

    Dennehy, John J

    2017-02-01

    The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.

  2. What's wrong with evolutionary biology?

    Science.gov (United States)

    Welch, John J

    2017-01-01

    There have been periodic claims that evolutionary biology needs urgent reform, and this article tries to account for the volume and persistence of this discontent. It is argued that a few inescapable properties of the field make it prone to criticisms of predictable kinds, whether or not the criticisms have any merit. For example, the variety of living things and the complexity of evolution make it easy to generate data that seem revolutionary (e.g. exceptions to well-established generalizations, or neglected factors in evolution), and lead to disappointment with existing explanatory frameworks (with their high levels of abstraction, and limited predictive power). It is then argued that special discontent stems from misunderstandings and dislike of one well-known but atypical research programme: the study of adaptive function, in the tradition of behavioural ecology. To achieve its goals, this research needs distinct tools, often including imaginary agency, and a partial description of the evolutionary process. This invites mistaken charges of narrowness and oversimplification (which come, not least, from researchers in other subfields), and these chime with anxieties about human agency and overall purpose. The article ends by discussing several ways in which calls to reform evolutionary biology actively hinder progress in the field.

  3. The evolutionary dynamics of language.

    Science.gov (United States)

    Steels, Luc; Szathmáry, Eörs

    2018-02-01

    The well-established framework of evolutionary dynamics can be applied to the fascinating open problems how human brains are able to acquire and adapt language and how languages change in a population. Schemas for handling grammatical constructions are the replicating unit. They emerge and multiply with variation in the brains of individuals and undergo selection based on their contribution to needed expressive power, communicative success and the reduction of cognitive effort. Adopting this perspective has two major benefits. (i) It makes a bridge to neurobiological models of the brain that have also adopted an evolutionary dynamics point of view, thus opening a new horizon for studying how human brains achieve the remarkably complex competence for language. And (ii) it suggests a new foundation for studying cultural language change as an evolutionary dynamics process. The paper sketches this novel perspective, provides references to empirical data and computational experiments, and points to open problems. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A teleofunctional account of evolutionary mismatch.

    Science.gov (United States)

    Cofnas, Nathan

    When the environment in which an organism lives deviates in some essential way from that to which it is adapted, this is described as "evolutionary mismatch," or "evolutionary novelty." The notion of mismatch plays an important role, explicitly or implicitly, in evolution-informed cognitive psychology, clinical psychology, and medicine. The evolutionary novelty of our contemporary environment is thought to have significant implications for our health and well-being. However, scientists have generally been working without a clear definition of mismatch. This paper defines mismatch as deviations in the environment that render biological traits unable, or impaired in their ability, to produce their selected effects (i.e., to perform their proper functions in Neander's sense). The machinery developed by Millikan in connection with her account of proper function, and with her related teleosemantic account of representation, is used to identify four major types, and several subtypes, of evolutionary mismatch. While the taxonomy offered here does not in itself resolve any scientific debates, the hope is that it can be used to better formulate empirical hypotheses concerning the effects of mismatch. To illustrate, it is used to show that the controversial hypothesis that general intelligence evolved as an adaptation to handle evolutionary novelty can, contra some critics, be formulated in a conceptually coherent way.

  5. Remembering the evolutionary Freud.

    Science.gov (United States)

    Young, Allan

    2006-03-01

    Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.

  6. The evolutionary outcome of sexual conflict

    Science.gov (United States)

    Lessells, C(Kate). M

    2006-01-01

    Inter-locus sexual conflict occurs by definition when there is sexually antagonistic selection on a trait so that the optimal trait value differs between the sexes. As a result, there is selection on each sex to manipulate the trait towards its own optimum and resist such manipulation by the other sex. Sexual conflict often leads additionally to the evolution of harmful behaviour and to self-reinforcing and even perpetual sexually antagonistic coevolution. In an attempt to understand the determinants of these different outcomes, I compare two groups of traits—those related to parental investment (PI) and to mating—over which there is sexual conflict, but which have to date been explored by largely separate research traditions. A brief review suggests that sexual conflict over PI, particularly over PI per offspring, leads less frequently to the evolution of manipulative behaviour, and rarely to the evolution of harmful behaviour or to the rapid evolutionary changes which may be symptomatic of sexually antagonistic coevolution. The chief determinants of the evolutionary outcome of sexual conflict are the benefits of manipulation and resistance, the costs of manipulation and resistance, and the feasibility of manipulation. All three of these appear to contribute to the differences in the evolutionary outcome of conflicts over PI and mating. A detailed dissection of the evolutionary changes following from sexual conflict exposes greater complexity than a simple adaptation–counter-adaptation cycle and clarifies the role of harm. Not all of the evolutionary changes that follow from sexual conflict are sexually antagonistic, and harm is not necessary for sexually antagonistic coevolution to occur. In particular, whereas selection on the trait over which there is conflict is by definition sexually antagonistic, collateral harm is usually in the interest of neither sex. This creates the opportunity for palliative adaptations which reduce collateral harm. Failure to

  7. Evolutionary Biology Needs Wild Microbiomes.

    Science.gov (United States)

    Hird, Sarah M

    2017-01-01

    The microbiome is a vital component to the evolution of a host and much of what we know about the microbiome derives from studies on humans and captive animals. But captivity alters the microbiome and mammals have unique biological adaptations that affect their microbiomes (e.g., milk). Birds represent over 30% of known tetrapod diversity and possess their own suite of adaptations relevant to the microbiome. In a previous study, we showed that 59 species of birds displayed immense variation in their microbiomes and host (bird) taxonomy and ecology were most correlated with the gut microbiome. In this Frontiers Focused Review, I put those results in a broader context by discussing how collecting and analyzing wild microbiomes contributes to the main goals of evolutionary biology and the specific ways that birds are unique microbial hosts. Finally, I outline some of the methodological considerations for adding microbiome sampling to the research of wild animals and urge researchers to do so. To truly understand the evolution of a host, we need to understand the millions of microorganisms that inhabit it as well: evolutionary biology needs wild microbiomes.

  8. Why an extended evolutionary synthesis is necessary.

    Science.gov (United States)

    Müller, Gerd B

    2017-10-06

    Since the last major theoretical integration in evolutionary biology-the modern synthesis (MS) of the 1940s-the biosciences have made significant advances. The rise of molecular biology and evolutionary developmental biology, the recognition of ecological development, niche construction and multiple inheritance systems, the '-omics' revolution and the science of systems biology, among other developments, have provided a wealth of new knowledge about the factors responsible for evolutionary change. Some of these results are in agreement with the standard theory and others reveal different properties of the evolutionary process. A renewed and extended theoretical synthesis, advocated by several authors in this issue, aims to unite pertinent concepts that emerge from the novel fields with elements of the standard theory. The resulting theoretical framework differs from the latter in its core logic and predictive capacities. Whereas the MS theory and its various amendments concentrate on genetic and adaptive variation in populations, the extended framework emphasizes the role of constructive processes, ecological interactions and systems dynamics in the evolution of organismal complexity as well as its social and cultural conditions. Single-level and unilinear causation is replaced by multilevel and reciprocal causation. Among other consequences, the extended framework overcomes many of the limitations of traditional gene-centric explanation and entails a revised understanding of the role of natural selection in the evolutionary process. All these features stimulate research into new areas of evolutionary biology.

  9. Leavitt path algebras

    CERN Document Server

    Abrams, Gene; Siles Molina, Mercedes

    2017-01-01

    This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

  10. The population genetics of evolutionary rescue.

    Directory of Open Access Journals (Sweden)

    H Allen Orr

    2014-08-01

    Full Text Available Evolutionary rescue occurs when a population that is threatened with extinction by an environmental change adapts to the change sufficiently rapidly to survive. Here we extend the mathematical theory of evolutionary rescue. In particular, we model evolutionary rescue to a sudden environmental change when adaptation involves evolution at a single locus. We consider adaptation using either new mutations or alleles from the standing genetic variation that begin rare. We obtain several results: i the total probability of evolutionary rescue from either new mutation or standing variation; ii the conditions under which rescue is more likely to involve a new mutation versus an allele from the standing genetic variation; iii a mathematical description of the U-shaped curve of total population size through time, conditional on rescue; and iv the time until the average population size begins to rebound as well as the minimal expected population size experienced by a rescued population. Our analysis requires taking into account a subtle population-genetic effect (familiar from the theory of genetic hitchhiking that involves "oversampling" of those lucky alleles that ultimately sweep to high frequency. Our results are relevant to conservation biology, experimental microbial evolution, and medicine (e.g., the dynamics of antibiotic resistance.

  11. Coevolution of slow-fast populations: evolutionary sliding, evolutionary pseudo-equilibria and complex Red Queen dynamics.

    Science.gov (United States)

    Dercole, F; Ferrière, R; Gragnani, A; Rinaldi, S

    2006-04-22

    We study the interplay of ecological and evolutionary dynamics in communities composed of populations with contrasting time-scales. In such communities, genetic variation of individual traits can cause population transitions between stationary and cyclic ecological regimes, hence abrupt variations in fitness. Such abrupt variations raise ridges in the adaptive landscape, where the populations are poised between equilibrium and cyclic coexistence and along which evolutionary trajectories can remain sliding for long times or halt at special points called evolutionary pseudo-equilibria. These novel phenomena should be generic to all systems in which ecological interactions cause fitness to vary discontinuously. They are demonstrated by the analysis of a predator-prey community, with one adaptive trait for each population. The eco-evolutionary dynamics of the system show a number of other distinctive features, including evolutionary extinction and two forms of Red Queen dynamics. One of them is characterized by intermittent bouts of cyclic oscillations of the two populations.

  12. Paths in hyperspaces

    Directory of Open Access Journals (Sweden)

    Camillo Constantini

    2003-10-01

    Full Text Available We prove that the hyperspace of closed bounded sets with the Hausdor_ topology, over an almost convex metric space, is an absolute retract. Dense subspaces of normed linear spaces are examples of, not necessarily connected, almost convex metric spaces. We give some necessary conditions for the path-wise connectedness of the Hausdorff metric topology on closed bounded sets. Finally, we describe properties of a separable metric space, under which its hyperspace with the Wijsman topology is path-wise connected.

  13. Path dependence and creation

    DEFF Research Database (Denmark)

    Garud, Raghu; Karnøe, Peter

    the place of agency in these theories that take history so seriously. In the end, they are as interested in path creation and destruction as they are in path dependence. This book is compiled of both theoretical and empirical writing. It shows relatively well-known industries such as the automobile......, biotechnology and semi-conductor industries in a new light. It also invites the reader to learn more about medical practices, wind power, lasers and synthesizers. Primarily for academicians, researchers and PhD students in fields related to technology management, this book is a research-oriented textbook...

  14. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 11. Evolutionary Biology Today - The Domain of Evolutionary Biology. Amitabh Joshi. Series Article Volume 7 Issue 11 November 2002 pp 8-17. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Part E: Evolutionary Computation

    DEFF Research Database (Denmark)

    2015-01-01

    evolutionary algorithms, such as memetic algorithms, which have emerged as a very promising tool for solving many real-world problems in a multitude of areas of science and technology. Moreover, parallel evolutionary combinatorial optimization has been presented. Search operators, which are crucial in all...

  16. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Amitabh Joshi studies and teaches evolutionary ' genetics and population ecology at the Jawaharlal. Nehru Centre for Advanced. Scientific Research,. Bangalore. His current research interests are in life- history, evolution, the evolutionary genetics of biological clocks, the evolution of ecological specialization dynamics. He.

  17. Evolutionary humanoid robotics

    CERN Document Server

    Eaton, Malachy

    2015-01-01

    This book examines how two distinct strands of research on autonomous robots, evolutionary robotics and humanoid robot research, are converging. The book will be valuable for researchers and postgraduate students working in the areas of evolutionary robotics and bio-inspired computing.

  18. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 2. Evolutionary Biology Today - What do Evolutionary Biologists do? Amitabh Joshi. Series Article Volume 8 Issue 2 February 2003 pp 6-18. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Constructive neutral evolution: exploring evolutionary theory’s curious disconnect

    Directory of Open Access Journals (Sweden)

    Stoltzfus Arlin

    2012-10-01

    Full Text Available Abstract Constructive neutral evolution (CNE suggests that neutral evolution may follow a stepwise path to extravagance. Whether or not CNE is common, the mere possibility raises provocative questions about causation: in classical neo-Darwinian thinking, selection is the sole source of creativity and direction, the only force that can cause trends or build complex features. However, much of contemporary evolutionary genetics departs from the conception of evolution underlying neo-Darwinism, resulting in a widening gap between what formal models allow, and what the prevailing view of the causes of evolution suggests. In particular, a mutationist conception of evolution as a 2-step origin-fixation process has been a source of theoretical innovation for 40 years, appearing not only in the Neutral Theory, but also in recent breakthroughs in modeling adaptation (the “mutational landscape” model, and in practical software for sequence analysis. In this conception, mutation is not a source of raw materials, but an agent that introduces novelty, while selection is not an agent that shapes features, but a stochastic sieve. This view, which now lays claim to important theoretical, experimental, and practical results, demands our attention. CNE provides a way to explore its most significant implications about the role of variation in evolution. Reviewers Alex Kondrashov, Eugene Koonin and Johann Peter Gogarten reviewed this article.

  20. From Charles Darwin to Sherlock Holmes: contributions of evolutionary psychology in forensic science investigation

    OpenAIRE

    Fontanesi, Lilybeth

    2013-01-01

    Introduction Evolutionary psychology (EP) is a discipline born between evolutionary biology, cognitive science, and physical anthropology. It's both a theoretical and practical scientific discipline which principal purpose is to study human behavior, in order to understand the biological and evolutionary causes that generated it. Evolutionary psychology finds its roots in the Darwinian theory, considering human behavior as the product of adaptations to recurring problems in the ancestra...

  1. MEASURING PATH DEPENDENCY

    Directory of Open Access Journals (Sweden)

    Peter Juhasz

    2017-03-01

    Full Text Available While risk management gained popularity during the last decades even some of the basic risk types are still far out of focus. One of these is path dependency that refers to the uncertainty of how we reach a certain level of total performance over time. While decision makers are careful in accessing how their position will look like the end of certain periods, little attention is given how they will get there through the period. The uncertainty of how a process will develop across a shorter period of time is often “eliminated” by simply choosing a longer planning time interval, what makes path dependency is one of the most often overlooked business risk types. After reviewing the origin of the problem we propose and compare seven risk measures to access path. Traditional risk measures like standard deviation of sub period cash flows fail to capture this risk type. We conclude that in most cases considering the distribution of the expected cash flow effect caused by the path dependency may offer the best method, but we may need to use several measures at the same time to include all the optimisation limits of the given firm

  2. An Unplanned Path

    Science.gov (United States)

    McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.

    2013-01-01

    The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…

  3. Gas path seal

    Science.gov (United States)

    Bill, R. C.; Johnson, R. D. (Inventor)

    1979-01-01

    A gas path seal suitable for use with a turbine engine or compressor is described. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shrouds the rotor bades. A compliant backing surrounds the shroud. The backing is a yieldingly deformable porous material covered with a thin ductile layer. A mounting fixture surrounds the backing.

  4. Lexicographic Path Induction

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Sarnat, Jeffrey

    2009-01-01

    an induction principle that combines the comfort of structural induction with the expressive strength of transfinite induction. Using lexicographic path induction, we give a consistency proof of Martin-Löf’s intuitionistic theory of inductive definitions. The consistency of Heyting arithmetic follows directly...

  5. Adaptive VFH

    Science.gov (United States)

    Odriozola, Iñigo; Lazkano, Elena; Sierra, Basi

    2011-10-01

    This paper investigates the improvement of the Vector Field Histogram (VFH) local planning algorithm for mobile robot systems. The Adaptive Vector Field Histogram (AVFH) algorithm has been developed to improve the effectiveness of the traditional VFH path planning algorithm overcoming the side effects of using static parameters. This new algorithm permits the adaptation of planning parameters for the different type of areas in an environment. Genetic Algorithms are used to fit the best VFH parameters to each type of sector and, afterwards, every section in the map is labelled with the sector-type which best represents it. The Player/Stage simulation platform has been chosen for making all sort of tests and to prove the new algorithm's adequateness. Even though there is still much work to be carried out, the developed algorithm showed good navigation properties and turned out to be softer and more effective than the traditional VFH algorithm.

  6. Organisations’ evolutionary dynamics: a group dynamics approach

    Directory of Open Access Journals (Sweden)

    Germán Eduardo Vargas

    2010-04-01

    Full Text Available Colombian entrepreneurs’ straggling, reactionary and inertial orientation has been inconsistently lustified by the availability of internal and leveraged resources, a concept intensifying deficient technological capacity. Company activity (seen as being a socioeconomic unit has been integrally orientated within an evolutionary framework by company identity and cohesion as well as adaptation and evolutionary mechanisms. The present document uses a group dynamics’ model to illustrate how knowledge-based strategic orientation and integration for innovation have become an imperative for development, from slight leverage, distinguishing between two evolutionary company forms: traditional economic (inertial, as they introduce sporadic incremental improvements and modern companies (dynamic and radical innovators. Revealing conclusions obtained from such model may be used for intervening in and modernising company activity.

  7. Evolutionary Sound Synthesis Controlled by Gestural Data

    Directory of Open Access Journals (Sweden)

    Jose Fornari

    2011-05-01

    Full Text Available This article focuses on the interdisciplinary research involving Computer Music and Generative Visual Art. We describe the implementation of two interactive artistic systems based on principles of Gestural Data (WILSON, 2002 retrieval and self-organization (MORONI, 2003, to control an Evolutionary Sound Synthesis method (ESSynth. The first implementation uses, as gestural data, image mapping of handmade drawings. The second one uses gestural data from dynamic body movements of dance. The resulting computer output is generated by an interactive system implemented in Pure Data (PD. This system uses principles of Evolutionary Computation (EC, which yields the generation of a synthetic adaptive population of sound objects. Considering that music could be seen as “organized sound” the contribution of our study is to develop a system that aims to generate "self-organized sound" – a method that uses evolutionary computation to bridge between gesture, sound and music.

  8. The evolutionary implications of epigenetic inheritance.

    Science.gov (United States)

    Jablonka, Eva

    2017-10-06

    The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.

  9. An Evolutionary Perspective on Mate Rejection.

    Science.gov (United States)

    Kelly, Ashleigh J; Dubbs, Shelli L; Barlow, Fiona Kate

    2016-01-01

    We argue that mate rejection and ex-partner relationships are important, multifaceted topics that have been underresearched in social and evolutionary psychology. Mate rejection and relationship dissolution are ubiquitous and form integral parts of the human experience. Both also carry with them potential risks and benefits to our fitness and survival. Hence, we expect that mate rejection would have given rise to evolved behavioral and psychological adaptations. Herein, we outline some of the many unanswered questions in evolutionary psychology on these topics, at each step presenting novel hypotheses about how men and women should behave when rejecting a mate or potential mate or in response to rejection. We intend these hypotheses and suggestions for future research to be used as a basis for enriching our understanding of human mating from an evolutionary perspective.

  10. Visual environment recognition for robot path planning using template matched filters

    Science.gov (United States)

    Orozco-Rosas, Ulises; Picos, Kenia; Díaz-Ramírez, Víctor H.; Montiel, Oscar; Sepúlveda, Roberto

    2017-08-01

    A visual approach in environment recognition for robot navigation is proposed. This work includes a template matching filtering technique to detect obstacles and feasible paths using a single camera to sense a cluttered environment. In this problem statement, a robot can move from the start to the goal by choosing a single path between multiple possible ways. In order to generate an efficient and safe path for mobile robot navigation, the proposal employs a pseudo-bacterial potential field algorithm to derive optimal potential field functions using evolutionary computation. Simulation results are evaluated in synthetic and real scenes in terms of accuracy of environment recognition and efficiency of path planning computation.

  11. Contemporary climate change and terrestrial invertebrates : Evolutionary versus plastic changes

    NARCIS (Netherlands)

    Schilthuizen, Menno; Kellermann, Vanessa

    To forecast the responses of species to future climate change, an understanding of the ability of species to adapt to long-term shifts in temperature is crucial. We present a review on evolutionary adaptation and phenotypic plasticity of temperature-related traits in terrestrial invertebrates. The

  12. Hypermedia Environments and Adaptive Instruction.

    Science.gov (United States)

    Federico, Pat-Anthony

    1999-01-01

    Reviews relevant professional literature concerning hypermedia environments and adaptive instruction for online learning for distance education and continuing education. Highlights include aptitude-treatment interaction; cognitive processes; navigational paths; log files; and intelligent tutors. Contains 125 references. (LRW)

  13. Human genomic disease variants: a neutral evolutionary explanation.

    Science.gov (United States)

    Dudley, Joel T; Kim, Yuseob; Liu, Li; Markov, Glenn J; Gerold, Kristyn; Chen, Rong; Butte, Atul J; Kumar, Sudhir

    2012-08-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.

  14. Human genomic disease variants: A neutral evolutionary explanation

    Science.gov (United States)

    Dudley, Joel T.; Kim, Yuseob; Liu, Li; Markov, Glenn J.; Gerold, Kristyn; Chen, Rong; Butte, Atul J.; Kumar, Sudhir

    2012-01-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease. PMID:22665443

  15. Entanglement by Path Identity

    Science.gov (United States)

    Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton

    2017-02-01

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces—starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

  16. The effect of varying path properties in path steering tasks

    NARCIS (Netherlands)

    L. Liu (Lei); R. van Liere (Robert)

    2010-01-01

    textabstractPath steering is a primitive 3D interaction task that requires the user to navigate through a path of a given length and width. In a previous paper, we have conducted controlled experiments in which users operated a pen input device to steer a cursor through a 3D path subject to

  17. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  18. Multiobjective Multifactorial Optimization in Evolutionary Multitasking.

    Science.gov (United States)

    Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen

    2016-05-03

    In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.

  19. Predictability of evolutionary trajectories in fitness landscapes.

    Directory of Open Access Journals (Sweden)

    Alexander E Lobkovsky

    2011-12-01

    Full Text Available Experimental studies on enzyme evolution show that only a small fraction of all possible mutation trajectories are accessible to evolution. However, these experiments deal with individual enzymes and explore a tiny part of the fitness landscape. We report an exhaustive analysis of fitness landscapes constructed with an off-lattice model of protein folding where fitness is equated with robustness to misfolding. This model mimics the essential features of the interactions between amino acids, is consistent with the key paradigms of protein folding and reproduces the universal distribution of evolutionary rates among orthologous proteins. We introduce mean path divergence as a quantitative measure of the degree to which the starting and ending points determine the path of evolution in fitness landscapes. Global measures of landscape roughness are good predictors of path divergence in all studied landscapes: the mean path divergence is greater in smooth landscapes than in rough ones. The model-derived and experimental landscapes are significantly smoother than random landscapes and resemble additive landscapes perturbed with moderate amounts of noise; thus, these landscapes are substantially robust to mutation. The model landscapes show a deficit of suboptimal peaks even compared with noisy additive landscapes with similar overall roughness. We suggest that smoothness and the substantial deficit of peaks in the fitness landscapes of protein evolution are fundamental consequences of the physics of protein folding.

  20. Predictability of evolutionary trajectories in fitness landscapes.

    Science.gov (United States)

    Lobkovsky, Alexander E; Wolf, Yuri I; Koonin, Eugene V

    2011-12-01

    Experimental studies on enzyme evolution show that only a small fraction of all possible mutation trajectories are accessible to evolution. However, these experiments deal with individual enzymes and explore a tiny part of the fitness landscape. We report an exhaustive analysis of fitness landscapes constructed with an off-lattice model of protein folding where fitness is equated with robustness to misfolding. This model mimics the essential features of the interactions between amino acids, is consistent with the key paradigms of protein folding and reproduces the universal distribution of evolutionary rates among orthologous proteins. We introduce mean path divergence as a quantitative measure of the degree to which the starting and ending points determine the path of evolution in fitness landscapes. Global measures of landscape roughness are good predictors of path divergence in all studied landscapes: the mean path divergence is greater in smooth landscapes than in rough ones. The model-derived and experimental landscapes are significantly smoother than random landscapes and resemble additive landscapes perturbed with moderate amounts of noise; thus, these landscapes are substantially robust to mutation. The model landscapes show a deficit of suboptimal peaks even compared with noisy additive landscapes with similar overall roughness. We suggest that smoothness and the substantial deficit of peaks in the fitness landscapes of protein evolution are fundamental consequences of the physics of protein folding.

  1. Evolutionary behavioral genetics.

    Science.gov (United States)

    Zietsch, Brendan P; de Candia, Teresa R; Keller, Matthew C

    2015-04-01

    We describe the scientific enterprise at the intersection of evolutionary psychology and behavioral genetics-a field that could be termed Evolutionary Behavioral Genetics-and how modern genetic data is revolutionizing our ability to test questions in this field. We first explain how genetically informative data and designs can be used to investigate questions about the evolution of human behavior, and describe some of the findings arising from these approaches. Second, we explain how evolutionary theory can be applied to the investigation of behavioral genetic variation. We give examples of how new data and methods provide insight into the genetic architecture of behavioral variation and what this tells us about the evolutionary processes that acted on the underlying causal genetic variants.

  2. Marine mammals: evolutionary biology

    National Research Council Canada - National Science Library

    Berta, Annalisa; Sumich, James L; Kovacs, Kit M

    2015-01-01

    The third edition of Marine Mammals: Evolutionary Biology provides a comprehensive and current assessment of the diversity, evolution, and biology of marine mammals, while highlighting the latest tools and techniques for their study...

  3. Evolutionary Accessibility of Mutational Pathways

    Science.gov (United States)

    Franke, Jasper; Klözer, Alexander; de Visser, J. Arjan G. M.; Krug, Joachim

    2011-01-01

    Functional effects of different mutations are known to combine to the total effect in highly nontrivial ways. For the trait under evolutionary selection (‘fitness’), measured values over all possible combinations of a set of mutations yield a fitness landscape that determines which mutational states can be reached from a given initial genotype. Understanding the accessibility properties of fitness landscapes is conceptually important in answering questions about the predictability and repeatability of evolutionary adaptation. Here we theoretically investigate accessibility of the globally optimal state on a wide variety of model landscapes, including landscapes with tunable ruggedness as well as neutral ‘holey’ landscapes. We define a mutational pathway to be accessible if it contains the minimal number of mutations required to reach the target genotype, and if fitness increases in each mutational step. Under this definition accessibility is high, in the sense that at least one accessible pathway exists with a substantial probability that approaches unity as the dimensionality of the fitness landscape (set by the number of mutational loci) becomes large. At the same time the number of alternative accessible pathways grows without bounds. We test the model predictions against an empirical 8-locus fitness landscape obtained for the filamentous fungus Aspergillus niger. By analyzing subgraphs of the full landscape containing different subsets of mutations, we are able to probe the mutational distance scale in the empirical data. The predicted effect of high accessibility is supported by the empirical data and is very robust, which we argue reflects the generic topology of sequence spaces. Together with the restrictive assumptions that lie in our definition of accessibility, this implies that the globally optimal configuration should be accessible to genome wide evolution, but the repeatability of evolutionary trajectories is limited owing to the presence of a

  4. The Evolutionary Origins of Hierarchy.

    Directory of Open Access Journals (Sweden)

    Henok Mengistu

    2016-06-01

    Full Text Available Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments. Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  5. Is Exercise Really Medicine? An Evolutionary Perspective.

    Science.gov (United States)

    Lieberman, Daniel E

    2015-01-01

    An evolutionary perspective helps evaluate the extent to which exercise is medicine and to explain the exercise paradox: why people tend to avoid exercise despite its benefits. Many lines of evidence indicate that humans evolved to be adapted for regular, moderate amounts of endurance physical activity into late age. However, because energy from food was limited, humans also were selected to avoid unnecessary exertion, and most anatomical and physiological systems evolved to require stimuli from physical activity to adjust capacity to demand. Consequently, selection never operated to cope with the long-term effects of chronic inactivity. However, because all adaptations involve trade-offs, there is no evolutionary-determined dose or type of physical activity that will optimize health. Furthermore, because humans evolved to be active for play or necessity, efforts to promote exercise will require altering environments in ways that nudge or even compel people to be active and to make exercise fun.

  6. Path Creation as a Process of Resource Alignment and Anchoring: Industry Formation for On-Site Water Recycling in Beijing

    NARCIS (Netherlands)

    Binz, Christian; Truffer, Bernhard|info:eu-repo/dai/nl/6603148005; Coenen, Lars

    2016-01-01

    Where and how new industrial paths emerge are much debated questions in economic geography, especially in light of the recent evolutionary turn. This article contributes to the ongoing debate on path creation with a new analytical framework that specifies the formation of generic resources in

  7. EVOLUCIONISTA Y DARWIN Evolutionary Economics and Darwin

    Directory of Open Access Journals (Sweden)

    IVÁN D. HERNANDEZ U

    disyuntivas racionales es insuficiente, esto plantea un reto para que futuras investigaciones consideren al pensamiento evolucionista como una alternativa a la hora de estudiar sistemas con altos niveles de emprenderismo por necesidad, alta desigualdad y alta felicidad. Es seguramente un terreno fructífero e interesante.From the XIXth century onwards, two different paths were taken in the history of economic science. Almost simultaneously, the darwinian and the marginalist revolution took place but their respective -ulterior motif - could not be more opposited one from the other. The theory of Darwin about the evolution of the species by means of the natural selection, became a challenge to the dominant vision of the world: the Newtonian one (Witt, 1999. This challenge to the Newtonian ideal, was influenced, paradoxically, by intellectual stimuli coming from thinkers outside biology. These influences emanated from the liberal social philosophy of -laissez faire, laissez passer- during the XVIII century and beginning of the XIX century. In Darwin's correspondence with Herbert Spencer, stands out the clear influence of economists-philosophers like Adam Smith, from the so-called School of Edinburgh, and Robert Malthus. The paradox is that nowadays Darwin, in return, influences modern economists. The Darwinian revolution in the modern economy consists in showing capitalism as a evolutionary process explained by processes of change of patterns in the relations between entities. But great part of this study of Darwinian influence does not have to do with the study of Biology itself. It is related to the principles and concepts that define the evolutionary mechanism that is the foundation of the development of the modern evolutionary theory. What can we learn from the study of the natural system and its related disciplines in the field of social thinking in the adaptability of agents, in the face of adversity and bio- and sociodiversity? The high degree of entrepreneurship in Latin

  8. Time to evolve? Potential evolutionary responses of fraser river sockeye salmon to climate change and effects on persistence

    National Research Council Canada - National Science Library

    Reed, Thomas E; Schindler, Daniel E; Hague, Merran J; Patterson, David A; Meir, Eli; Waples, Robin S; Hinch, Scott G

    2011-01-01

    Evolutionary adaptation affects demographic resilience to climate change but few studies have attempted to project changes in selective pressures or quantify impacts of trait responses on population...

  9. Research on the ant colony algorithm in robot path planning

    Science.gov (United States)

    Wang, Yong; Ma, Jianming; Wang, Ying

    2017-05-01

    Using the A* algorithm principle proposed adaptive adjustment heuristic function, to reduce the degree of divergence algorithm; The state transition of the next ant improvement strategies, to improve the diversity of path planning solution; Control the change of the pheromone, to avoid algorithm trapped in local optimal solution; The improved ant colony algorithm makes the robot along an optimal or suboptimal path to arrive at the target.

  10. As-Rigid-As-Possible molecular interpolation paths

    Science.gov (United States)

    Nguyen, Minh Khoa; Jaillet, Léonard; Redon, Stéphane

    2017-04-01

    This paper proposes a new method to generate interpolation paths between two given molecular conformations. It relies on the As-Rigid-As-Possible (ARAP) paradigm used in Computer Graphics to manipulate complex meshes while preserving their essential structural characteristics. The adaptation of ARAP approaches to the case of molecular systems is presented in this contribution. Experiments conducted on a large set of benchmarks show how such a strategy can efficiently compute relevant interpolation paths with large conformational rearrangements.

  11. Shortest Paths and Vehicle Routing

    DEFF Research Database (Denmark)

    Petersen, Bjørn

    This thesis presents how to parallelize a shortest path labeling algorithm. It is shown how to handle Chvátal-Gomory rank-1 cuts in a column generation context. A Branch-and-Cut algorithm is given for the Elementary Shortest Paths Problem with Capacity Constraint. A reformulation of the Vehicle R...... Routing Problem based on partial paths is presented. Finally, a practical application of finding shortest paths in the telecommunication industry is shown....

  12. Evolutionary approaches to cultural and linguistic diversity

    OpenAIRE

    Steele, James; Jordan, Peter; Cochrane, Ethan

    2010-01-01

    Evolutionary approaches to cultural change are increasingly influential, and many scientists believe that a ‘grand synthesis’ is now in sight. The papers in this Theme Issue, which derives from a symposium held by the AHRC Centre for the Evolution of Cultural Diversity (University College London) in December 2008, focus on how the phylogenetic tree-building and network-based techniques used to estimate descent relationships in biology can be adapted to reconstruct cultural histories, where so...

  13. Computational path planner for product assembly in complex environments

    Science.gov (United States)

    Shang, Wei; Liu, Jianhua; Ning, Ruxin; Liu, Mi

    2013-03-01

    Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.

  14. Incorporating evolutionary processes into population viability models.

    Science.gov (United States)

    Pierson, Jennifer C; Beissinger, Steven R; Bragg, Jason G; Coates, David J; Oostermeijer, J Gerard B; Sunnucks, Paul; Schumaker, Nathan H; Trotter, Meredith V; Young, Andrew G

    2015-06-01

    We examined how ecological and evolutionary (eco-evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco-evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco-evo PVA using individual-based models with individual-level genotype tracking and dynamic genotype-phenotype mapping to model emergent population-level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco-evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence. © 2014 Society for Conservation Biology.

  15. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    Science.gov (United States)

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Applications of evolutionary computation in image processing and pattern recognition

    CERN Document Server

    Cuevas, Erik; Perez-Cisneros, Marco

    2016-01-01

    This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an...

  17. The genomic landscape of rapid repeated evolutionary ...

    Science.gov (United States)

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor–based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediatinggenes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversityhas likely been a crucial substrate for selective sweeps to propel rapid adaptation. This manuscript describes genomic evaluations that contribute to our understanding of the ecological and evolutionary risks associated with chronic contaminant exposures to wildlife populations. Here, we assessed genetic patterns associated with long-term response to an important class of highly toxic environmental pollutants. Specifically, chemical-specific tolerance has rapidly and repeatedly evolved in an estuarine fish species resident to estuaries of the Atlantic U.S. coast. We used laboratory studies to ch

  18. Integrating path dependency and path creation in a general understanding of path constitution

    OpenAIRE

    Meyer, Uli; Schubert, Cornelius

    2007-01-01

    Path dependency as it is described by Arthur and David portrays technological developments as historically embedded, emergent processes. In contrast, Garud and Karnøe's notion of path creation emphasises the role of strategic change and deliberate action for the development of new technologies. In this article, we integrate both concepts into a general understanding of path processes which accounts for emergent as well as deliberate modes of path constitution. In addition, we distinguish betw...

  19. Modeling adaptive and non-adaptive responses to environmental change

    DEFF Research Database (Denmark)

    Coulson, Tim; Kendall, Bruce E; Barthold, Julia A.

    2017-01-01

    , with plastic responses being either adaptive or non-adaptive. We develop an approach that links quantitative genetic theory with data-driven structured models to allow prediction of population responses to environmental change via plasticity and adaptive evolution. After introducing general new theory, we...... construct a number of example models to demonstrate that evolutionary responses to environmental change over the short-term will be considerably slower than plastic responses, and that the rate of adaptive evolution to a new environment depends upon whether plastic responses are adaptive or non-adaptive......Understanding how the natural world will be impacted by environmental change over the coming decades is one of the most pressing challenges facing humanity. Addressing this challenge is difficult because environmental change can generate both population level plastic and evolutionary responses...

  20. Historical change and evolutionary theory.

    Science.gov (United States)

    Masters, Roger D

    2007-09-01

    Despite advances in fields like genetics, evolutionary psychology, and human behavior and evolution--which generally focus on individual or small group behavior from a biological perspective--evolutionary biology has made little impact on studies of political change and social history. Theories of natural selection often seem inapplicable to human history because our social behavior is embedded in language (which makes possible the concepts of time and social identity on which what we call "history" depends). Peter Corning's Holistic Darwinism reconceptualizes evolutionary biology, making it possible to go beyond the barriers separating the social and natural sciences. Corning focuses on two primary processes: "synergy" (complex multivariate interactions at multiple levels between a species and its environment) and "cybernetics" (the information systems permitting communication between individuals and groups over time). Combining this frame of reference with inclusive fitness theory, it is possible to answer the most important (and puzzling) question in human history: How did a species that lived for millennia in hunter-gatherer bands form centralized states governing large populations of non-kin (including multi-ethnic empires as well as modern nation-states)? The fragility and contemporary ethnic violence in Kenya and the Congo should suffice as evidence that these issues need to be taken seriously. To explain the rise and fall of states as well as changes in human laws and customs--the core of historical research--it is essential to show how the provision of collective goods can overcome the challenge of self-interest and free-riding in some instances, yet fail to do so in others. To this end, it is now possible to consider how a state providing public goods can--under circumstances that often include effective leadership--contribute to enhanced inclusive fitness of virtually all its members. Because social behavior needs to adapt to ecology, but ecological

  1. Two Generations of Path Dependence

    DEFF Research Database (Denmark)

    Madsen, Mogens Ove

      Even if there is no fully articulated and generally accepted theory of Path Dependence it has eagerly been taken up across a wide range of social sciences - primarily coming from economics. Path Dependence is most of all a metaphor that offers reason to believe, that some political, social...... or economic processes have multiple possible paths of outcomes, rather than a unique path of equilibria. The selection among outcomes may depend on contingent choices or events - outcomes of path-dependent processes require a very relevant study - a perception of history....

  2. Path Through the Wheat

    Directory of Open Access Journals (Sweden)

    David Middleton

    2005-01-01

    Full Text Available The hillside’s tidal waves of yellow-green Break downward into full-grown stalks of wheat In which a peasant, shouldering his hoe Passes along a snaking narrow path -- A teeming place through which his hard thighs press And where his head just barely stays above The swaying grain, drunken in abundance, Farm buildings almost floating on the swells Beyond which sea gulls gliding white in air Fly down on out of sight to salty fields, Taking the channel fish off Normandy, A surfeit fit for Eden i...

  3. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  4. JAVA PathFinder

    Science.gov (United States)

    Mehhtz, Peter

    2005-01-01

    JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.

  5. Phylogeography and evolutionary genetics of the weasel : (Mustela Nivalis)

    OpenAIRE

    Rodrigues, Mónica Andreia Fernandes

    2015-01-01

    Tese de doutoramento, Biologia (Biologia Evolutiva), Universidade de Lisboa, Faculdade de Ciências, 2015 Understanding how the biogeography and evolutionary history of species affect their current distribution, genetic variation, phenotypic diversity and adaptation to different environmental conditions, is a major challenge in evolutionary biology. In this thesis, the least weasel (Mustela nivalis) was used as a model to study the impacts of the Pleistocene climatic oscillations on the con...

  6. Modeling evolutionary games in populations with demographic structure

    DEFF Research Database (Denmark)

    Li, Xiang-Yi; Giaimo, Stefano; Baudisch, Annette

    2015-01-01

    Classic life history models are often based on optimization algorithms, focusing on the adaptation of survival and reproduction to the environment, while neglecting frequency dependent interactions in the population. Evolutionary game theory, on the other hand, studies frequency dependent strategy...... interactions, but usually omits life history and the demographic structure of the population. Here we show how an integration of both aspects can substantially alter the underlying evolutionary dynamics. We study the replicator dynamics of strategy interactions in life stage structured populations. Individuals...

  7. Genome-wide detection of selection and other evolutionary forces

    DEFF Research Database (Denmark)

    Xu, Zhuofei; Zhou, Rui

    2015-01-01

    As is well known, pathogenic microbes evolve rapidly to escape from the host immune system and antibiotics. Genetic variations among microbial populations occur frequently during the long-term pathogen–host evolutionary arms race, and individual mutation beneficial for the fitness can be fixed...... of an animal pathogen. The evolutionary analysis of the protein-coding part of the genomes will provide a wide spectrum oof genetic variations that play potential roles in adaptive evolution of bacteria....

  8. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  9. An adaptive paradigm for human space settlement

    Science.gov (United States)

    Smith, Cameron M.

    2016-02-01

    Because permanent space settlement will be multigenerational it will have to be viable on ecological timescales so far unfamiliar to those planning space exploration. Long-term viability will require evolutionary and adaptive planning. Adaptations in the natural world provide many lessons for such planning, but implementing these lessons will require a new, evolutionary paradigm for envisioning and carrying out Earth-independent space settlement. I describe some of these adaptive lessons and propose some cognitive shifts required to implement them in a genuinely evolutionary approach to human space settlement.

  10. The Experimental Study of Bacterial Evolution and Its Implications for the Modern Synthesis of Evolutionary Biology.

    Science.gov (United States)

    O'Malley, Maureen A

    2017-10-04

    Since the 1940s, microbiologists, biochemists and population geneticists have experimented with the genetic mechanisms of microorganisms in order to investigate evolutionary processes. These evolutionary studies of bacteria and other microorganisms gained some recognition from the standard-bearers of the modern synthesis of evolutionary biology, especially Theodosius Dobzhansky and Ledyard Stebbins. A further period of post-synthesis bacterial evolutionary research occurred between the 1950s and 1980s. These experimental analyses focused on the evolution of population and genetic structure, the adaptive gain of new functions, and the evolutionary consequences of competition dynamics. This large body of research aimed to make evolutionary theory testable and predictive, by giving it mechanistic underpinnings. Although evolutionary microbiologists promoted bacterial experiments as methodologically advantageous and a source of general insight into evolution, they also acknowledged the biological differences of bacteria. My historical overview concludes with reflections on what bacterial evolutionary research achieved in this period, and its implications for the still-developing modern synthesis.

  11. The topology of evolutionary novelty and innovation in macroevolution.

    Science.gov (United States)

    Erwin, Douglas H

    2017-12-05

    Sewall Wright's fitness landscape introduced the concept of evolutionary spaces in 1932. George Gaylord Simpson modified this to an adaptive, phenotypic landscape in 1944 and since then evolutionary spaces have played an important role in evolutionary theory through fitness and adaptive landscapes, phenotypic and functional trait spaces, morphospaces and related concepts. Although the topology of such spaces is highly variable, from locally Euclidean to pre-topological, evolutionary change has often been interpreted as a search through a pre-existing space of possibilities, with novelty arising by accessing previously inaccessible or difficult to reach regions of a space. Here I discuss the nature of evolutionary novelty and innovation within the context of evolutionary spaces, and argue that the primacy of search as a conceptual metaphor ignores the generation of new spaces as well as other changes that have played important evolutionary roles.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Authors.

  12. Adaptation and Natural Selection revisited.

    Science.gov (United States)

    Sober, E; Wilson, D S

    2011-02-01

    In Adaptation and Natural Selection, George C. Williams linked the distinction between group and individual adaptation with the distinction between group and individual selection. Williams' Principle, as we will call it, says that adaptation at a level requires selection at that level. This is a necessary but not a sufficient condition; for example, group adaptation requires group selection, but the fact that group selection influences a trait's evolution does not suffice for the resulting trait frequency to be a group adaptation. What more is required? In this paper, we describe an answer to this question that has been developed in multilevel selection theory. We also discuss an alternative framework for defining units of adaptation that violates Williams' Principle. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  13. Paleoanthropology and evolutionary theory.

    Science.gov (United States)

    Tattersall, Ian

    2012-01-01

    Paleoanthropologists of the first half of the twentieth century were little concerned either with evolutionary theory or with the technicalities and broader implications of zoological nomenclature. In consequence, the paleoanthropological literature of the period consisted largely of a series of descriptions accompanied by authoritative pronouncements, together with a huge excess of hominid genera and species. Given the intellectual flimsiness of the resulting paleoanthropological framework, it is hardly surprising that in 1950 the ornithologist Ernst Mayr met little resistance when he urged the new postwar generation of paleoanthropologists to accept not only the elegant reductionism of the Evolutionary Synthesis but a vast oversimplification of hominid phylogenetic history and nomenclature. Indeed, the impact of Mayr's onslaught was so great that even when developments in evolutionary biology during the last quarter of the century brought other paleontologists to the realization that much more has been involved in evolutionary histories than the simple action of natural selection within gradually transforming lineages, paleoanthropologists proved highly reluctant to follow. Even today, paleoanthropologists are struggling to reconcile an intuitive realization that the burgeoning hominid fossil record harbors a substantial diversity of species (bringing hominid evolutionary patterns into line with that of other successful mammalian families), with the desire to cram a huge variety of morphologies into an unrealistically minimalist systematic framework. As long as this theoretical ambivalence persists, our perception of events in hominid phylogeny will continue to be distorted.

  14. Internet's critical path horizon

    Science.gov (United States)

    Valverde, S.; Solé, R. V.

    2004-03-01

    Internet is known to display a highly heterogeneous structure and complex fluctuations in its traffic dynamics. Congestion seems to be an inevitable result of user's behavior coupled to the network dynamics and it effects should be minimized by choosing appropriate routing strategies. But what are the requirements of routing depth in order to optimize the traffic flow? In this paper we analyse the behavior of Internet traffic with a topologically realistic spatial structure as described in a previous study [S.-H. Yook et al., Proc. Natl Acad. Sci. USA 99, 13382 (2002)]. The model involves self-regulation of packet generation and different levels of routing depth. It is shown that it reproduces the relevant key, statistical features of Internet's traffic. Moreover, we also report the existence of a critical path horizon defining a transition from low-efficient traffic to highly efficient flow. This transition is actually a direct consequence of the web's small world architecture exploited by the routing algorithm. Once routing tables reach the network diameter, the traffic experiences a sudden transition from a low-efficient to a highly-efficient behavior. It is conjectured that routing policies might have spontaneously reached such a compromise in a distributed manner. Internet would thus be operating close to such critical path horizon.

  15. Parallel Evolutionary Peer-to-Peer Networking in Realistic Environments

    Directory of Open Access Journals (Sweden)

    Kei Ohnishi

    2017-01-01

    Full Text Available In the present paper we first conduct simulations of the parallel evolutionary peer-to-peer (P2P networking technique (referred to as P-EP2P that we previously proposed using models of realistic environments to examine if P-EP2P is practical. Environments are here represented by what users have and want in the network, and P-EP2P adapts the P2P network topologies to the present environment in an evolutionary manner. The simulation results show that P-EP2P is hard to adapt the network topologies to some realistic environments. Then, based on the discussions of the results, we propose a strategy for better adaptability of P-EP2P to the realistic environments. The strategy first judges if evolutionary adaptation of the network topologies is likely to occur in the present environment, and if it judges so, it actually tries to achieve evolutionary adaptation of the network topologies. Otherwise, it brings random change to the network topologies. The simulation results indicate that P-EP2P with the proposed strategy can better adapt the network topologies to the realistic environments. The main contribution of the study is to present such a promising way to realize an evolvable network in which the evolution direction is given by users.

  16. The evolutionary psychology of human mating: a response to Buller's critique.

    Science.gov (United States)

    Klasios, John

    2014-09-01

    In this paper, I critique arguments made by philosopher David Buller against central evolutionary-psychological explanations of human mating. Specifically, I aim to rebut his criticisms of Evolutionary Psychology regarding (1) women's long-term mating preferences for high-status men; (2) the evolutionary rationale behind men's provisioning of women; (3) men's mating preferences for young women; (4) women's adaptation for extra-pair sex; (5) the sex-differentiated evolutionary theory of human jealousy; and (6) the notion of mate value. In sum, I aim to demonstrate that Buller's arguments contra Evolutionary Psychologists are left wanting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Path dependence and creation

    DEFF Research Database (Denmark)

    Garud, Raghu; Karnøe, Peter

    , biotechnology and semi-conductor industries in a new light. It also invites the reader to learn more about medical practices, wind power, lasers and synthesizers. Primarily for academicians, researchers and PhD students in fields related to technology management, this book is a research-oriented textbook...... and it should appeal to managers in the field of technology. Primarily for academicians, researchers and PhD students in fields related to technology management, this book is a research-oriented textbook and it should appeal to managers in the field of technology.......This edited volume stems from a conference held in Copenhagen that the authors ran in August of 1997. The authors, aware of the recent work in evolutionary theory and the science of chaos and complexity, challenge the sometimes deterministic flavour of this work. They are interested in uncovering...

  18. A framework for evolutionary systems biology.

    Science.gov (United States)

    Loewe, Laurence

    2009-02-24

    Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.

  19. A framework for evolutionary systems biology

    Directory of Open Access Journals (Sweden)

    Loewe Laurence

    2009-02-01

    Full Text Available Abstract Background Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Results Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. Conclusion EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.

  20. General Intelligence as a Domain-Specific Adaptation

    Science.gov (United States)

    Kanazawa, Satoshi

    2004-01-01

    General intelligence (g) poses a problem for evolutionary psychology's modular view of the human brain. The author advances a new evolutionary psychological theory of the evolution of general intelligence and argues that general intelligence evolved as a domain-specific adaptation for the originally limited sphere of evolutionary novelty in the…

  1. pathChirp: Efficient Available Bandwidth Estimation for Network Paths

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, Les

    2003-04-30

    This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sender and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.

  2. Total Integrative Evolutionary Communication

    DEFF Research Database (Denmark)

    Nedergaard Thomsen, Ole; Brier, Søren

    2014-01-01

    In this paper we outline a cybersemiotic foundation for the trend of pragmatics-based functional linguistics, Functional Discourse Grammar. Cybersemiotics is a substantial inter- and transdisciplinary semiotic theory which integrates, on the one hand, second-order cybernetics and autopoiesis theory...... and, on the other, Peircean biosemiotics. According to Cybersemiotics, language is primarily a creative process of total integrative evolutionary communication. It comprises three evolutionary stages: (1) biological reflexive languaging (the reflexive foundation of social coordination), (2......). In this inclusive hierarchy language games subsume the other stages, and thus human evolutionary communication is primarily a symbolic-conventional practice. It is intertwined with the practice of living, that is, with different life forms, including other forms of semiotic behavior. Together they form a coherent...

  3. Teaching evolutionary biology

    Directory of Open Access Journals (Sweden)

    Rosana Tidon

    2004-01-01

    Full Text Available Evolutionary Biology integrates several disciplines of Biology in a complex and interactive manner, where a deep understanding of the subject demands knowledge in diverse areas. Since this knowledge is often inaccessible to the majority of specialized professionals, including the teachers, we present some reflections in order to stimulate discussions aimed at the improvement of the conditions of education in this area. We examine the profile of evolutionary teaching in Brazil, based on questionnaires distributed to teachers in Secondary Education in the Federal District, on data provided by the "National Institute for Educational Studies and Research", and on information collected from teachers working in various regions of this country. Issues related to biological misconceptions, curriculum and didactic material are discussed, and some proposals are presented with the objective of aiding discussions aimed at the improvement of the teaching of evolutionary biology.

  4. Evolutionary Design in Art

    Science.gov (United States)

    McCormack, Jon

    Evolution is one of the most interesting and creative processes we currently understand, so it should come as no surprise that artists and designers are embracing the use of evolution in problems of artistic creativity. The material in this section illustrates the diversity of approaches being used by artists and designers in relation to evolution at the boundary of art and science. While conceptualising human creativity as an evolutionary process in itself may be controversial, what is clear is that evolutionary processes can be used to complement, even enhance human creativity, as the chapters in this section aptly demonstrate.

  5. Evolutionary Statistical Procedures

    CERN Document Server

    Baragona, Roberto; Poli, Irene

    2011-01-01

    This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a

  6. Evolutionary dynamics under interactive diversity

    Science.gov (United States)

    Su, Qi; Li, Aming; Wang, Long

    2017-10-01

    As evidenced by many cases in human societies, individuals often make different behavior decisions in different interactions, and adaptively adjust their behavior in changeable interactive scenarios. However, up to now, how such diverse interactive behavior affects cooperation dynamics has still remained unknown. Here we develop a general framework of interactive diversity, which models individuals’ separated behavior against distinct opponents and their adaptive adjustment in response to opponents’ strategies, to explore the evolution of cooperation. We find that interactive diversity enables individuals to reciprocate every single opponent, and thus sustains large-scale reciprocal interactions. Our work witnesses an impressive boost of cooperation for a notably extensive range of parameters and for all pairwise games. These results are robust against well-mixed and various networked populations, and against degree-normalized and cumulative payoff patterns. From the perspective of network dynamics, distinguished from individuals competing for nodes in most previous work, in this paper, the system evolves in the form of behavior disseminating along edges. We propose a theoretical method based on evolution of edges, which predicts well both the frequency of cooperation and the compact cooperation clusters. Our thorough investigation clarifies the positive role of interactive diversity in resolving social dilemmas and highlights the significance of understanding evolutionary dynamics from the viewpoint of edge dynamics.

  7. The mathematical law of evolutionary information dynamics and an observer's evolution regularities

    CERN Document Server

    Lerner, Vladimir S

    2011-01-01

    An interactive stochastics, evaluated by an entropy functional (EF) of a random field and informational process' path functional (IPF), allows us modeling the evolutionary information processes and revealing regularities of evolution dynamics. Conventional Shannon's information measure evaluates a sequence of the process' static events for each information state and do not reveal hidden dynamic connections between these events. The paper formulates the mathematical forms of the information regularities, based on a minimax variation principle (VP) for IPF, applied to the evolution's both random microprocesses and dynamic macroprocesses. The paper shows that the VP single form of the mathematical law leads to the following evolutionary regularities: -creation of the order from stochastics through the evolutionary macrodynamics, described by a gradient of dynamic potential, evolutionary speed and the evolutionary conditions of a fitness and diversity; -the evolutionary hierarchy with growing information values a...

  8. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    Science.gov (United States)

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  9. Steered transition path sampling.

    Science.gov (United States)

    Guttenberg, Nicholas; Dinner, Aaron R; Weare, Jonathan

    2012-06-21

    We introduce a path sampling method for obtaining statistical properties of an arbitrary stochastic dynamics. The method works by decomposing a trajectory in time, estimating the probability of satisfying a progress constraint, modifying the dynamics based on that probability, and then reweighting to calculate averages. Because the progress constraint can be formulated in terms of occurrences of events within time intervals, the method is particularly well suited for controlling the sampling of currents of dynamic events. We demonstrate the method for calculating transition probabilities in barrier crossing problems and survival probabilities in strongly diffusive systems with absorbing states, which are difficult to treat by shooting. We discuss the relation of the algorithm to other methods.

  10. When development matters: From evolutionary psychology to evolutionary developmental psychology

    OpenAIRE

    Hernández Blasi, Carlos; Gardiner, Amy K.; Bjorklund, David F.

    2008-01-01

    This article presents evolutionary developmental psychology (EDP) as an emerging field of evolutionary psychology (EP). In describing the core tenets of both approaches and the differences between them, we emphasize the important roles that evolution and development have in understanding human behaviour. We suggest that developmental psychologists should pay more attention to evolutionary issues and, conversely, evolutionary psychologists should take development seriously. Key words: evol...

  11. Path integral in Snyder space

    Energy Technology Data Exchange (ETDEWEB)

    Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)

    2016-04-29

    The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.

  12. Adaptive speciation theory : A conceptual review

    NARCIS (Netherlands)

    Weissing, Franz J.; Edelaar, Pim; van Doorn, G. Sander

    Speciation-the origin of new species-is the source of the diversity of life. A theory of speciation is essential to link poorly understood macro-evolutionary processes, such as the origin of biodiversity and adaptive radiation, to well understood micro-evolutionary processes, such as allele

  13. Origins of evolutionary transitions

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... I define an evolutionary transition as a shift in the hierarchical level at which heritable fitness variance ... life, for example in eusocial insects, around 150 million years ago. None of these transformations was ...... affecting and heritable trait, and to introduce a mechanism which inhibits them from subsequent ...

  14. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    IAS Admin

    After Maynard-Smith and Price [1] mathematically derived why a given behaviour or strategy was adopted by a certain proportion of the population at a given time, it was shown that a strategy which is currently stable in a population need not be stable in evolutionary time (across generations). Additionally it was sug-.

  15. Evolutionary trends in Heteroptera

    NARCIS (Netherlands)

    Cobben, R.H.

    1968-01-01

    1. This work, the first volume of a series dealing with evolutionary trends in Heteroptera, is concerned with the egg system of about 400 species. The data are presented systematically in chapters 1 and 2 with a critical review of the literature after each family.

    2. Chapter 3 evaluates facts

  16. Origins of evolutionary transitions.

    Science.gov (United States)

    Clarke, Ellen

    2014-04-01

    An 'evolutionary transition in individuality' or 'major transition' is a transformation in the hierarchical level at which natural selection operates on a population. In this article I give an abstract (i.e. level-neutral and substrate-neutral) articulation of the transition process in order to precisely understand how such processes can happen, especially how they can get started.

  17. Optimal Mixing Evolutionary Algorithms

    NARCIS (Netherlands)

    D. Thierens (Dirk); P.A.N. Bosman (Peter); N. Krasnogor

    2011-01-01

    htmlabstractA key search mechanism in Evolutionary Algorithms is the mixing or juxtaposing of partial solutions present in the parent solutions. In this paper we look at the efficiency of mixing in genetic algorithms (GAs) and estimation-of-distribution algorithms (EDAs). We compute the mixing

  18. Learning: An Evolutionary Analysis

    Science.gov (United States)

    Swann, Joanna

    2009-01-01

    This paper draws on the philosophy of Karl Popper to present a descriptive evolutionary epistemology that offers philosophical solutions to the following related problems: "What happens when learning takes place?" and "What happens in human learning?" It provides a detailed analysis of how learning takes place without any direct transfer of…

  19. Evolutionary mysteries in meiosis

    NARCIS (Netherlands)

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E.; Wijnker, Erik; Haag, Christoph R.

    2016-01-01

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these

  20. Editorial overview: Evolutionary psychology

    NARCIS (Netherlands)

    Gangestad, S.W.; Tybur, J.M.

    2016-01-01

    Functional approaches in psychology - which ask what behavior is good for - are almost as old as scientific psychology itself. Yet sophisticated, generative functional theories were not possible until developments in evolutionary biology in the mid-20th century. Arising in the last three decades,

  1. Origins of evolutionary transitions

    Indian Academy of Sciences (India)

    An `evolutionary transition in individuality' or `major transition' is a transformation in the hierarchical level at which natural selection operates on a population. In this article I give an abstract (i.e. level-neutral and substrate-neutral) articulation of the transition process in order to precisely understand how such processes can ...

  2. Evolutionary Theory under Fire.

    Science.gov (United States)

    Lewin, Roger

    1980-01-01

    Summarizes events of a conference on evolutionary biology in Chicago entitled: "Macroevolution." Reviews the theory of modern synthesis, a term used to explain Darwinism in terms of population biology and genetics. Issues presented at the conference are discussed in detail. (CS)

  3. Evolutionary Theories of Detection

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, J P

    2005-04-29

    Current, mid-term and long range technologies for detection of pathogens and toxins are briefly described in the context of performance metrics and operational scenarios. Predictive (evolutionary) and speculative (revolutionary) assessments are given with trade-offs identified, where possible, among competing performance goals.

  4. The evolutionary diagnosis of mental disorder.

    Science.gov (United States)

    Troisi, Alfonso

    2015-01-01

    Medicalization of human behavioral diversity is a recurrent theme in the history of psychiatry, and the problem of defining what is a genuine mental disorder is an unresolved question since the origins of clinical psychopathology. Darwinian psychiatry can formulate a definition of mental disorder that is value free and based on factual criteria. From an evolutionary perspective, genuine mental disorders are maladaptive conditions. The ultimate function of an adaptation is gene propagation via maximization of survival and reproduction. It follows that a distressing and/or disabling psychological or behavioral syndrome is a psychiatric disorder only if it impacts negatively on the individual's inclusive fitness. However, in many cases, an evolutionary definition of disorder cannot be reconciled with current social values. Thus, clinicians adopting the evolutionary approach should conform to the prevailing trend of contemporary medicine and accept that their task is to be healers of the distressed, not watchdogs of biological adaptation. These pragmatic considerations do not minimize the scientific validity of the Darwinian definition of mental disorders. Probably, its major contribution to psychiatric theory is the elimination of the necessity to find a brain lesion or dysfunctional mechanism to validate the distinction between disorders and non-disorders. © 2015 John Wiley & Sons, Ltd.

  5. Evolutionary Thinking in Environmental Economics

    NARCIS (Netherlands)

    van den Bergh, J.C.J.M.

    2007-01-01

    Evolutionary and environmental economics have a potentially close relationship. This paper reviews past and identifies potential applications of evolutionary concepts and methods to environmental economics. This covers a number of themes: resource use and ecosystem management; growth and

  6. Designing the Alluvial Riverbeds in Curved Paths

    Science.gov (United States)

    Macura, Viliam; Škrinár, Andrej; Štefunková, Zuzana; Muchová, Zlatica; Majorošová, Martina

    2017-10-01

    The paper presents the method of determining the shape of the riverbed in curves of the watercourse, which is based on the method of Ikeda (1975) developed for a slightly curved path in sandy riverbed. Regulated rivers have essentially slightly and smoothly curved paths; therefore, this methodology provides the appropriate basis for river restoration. Based on the research in the experimental reach of the Holeška Brook and several alluvial mountain streams the methodology was adjusted. The method also takes into account other important characteristics of bottom material - the shape and orientation of the particles, settling velocity and drag coefficients. Thus, the method is mainly meant for the natural sand-gravel material, which is heterogeneous and the particle shape of the bottom material is very different from spherical. The calculation of the river channel in the curved path provides the basis for the design of optimal habitat, but also for the design of foundations of armouring of the bankside of the channel. The input data is adapted to the conditions of design practice.

  7. Emotional Intelligence Abilities and Traits in Different Career Paths

    Science.gov (United States)

    Kafetsios, Konstantinos; Maridaki-Kassotaki, Aikaterini; Zammuner, Vanda L.; Zampetakis, Leonidas A.; Vouzas, Fotios

    2009-01-01

    Two studies tested hypotheses about differences in emotional intelligence (EI) abilities and traits between followers of different career paths. Compared to their social science peers, science students had higher scores in adaptability and general mood traits measured with the Emotion Quotient Inventory, but lower scores in strategic EI abilities…

  8. Human nature, cultural diversity and evolutionary theory.

    Science.gov (United States)

    Plotkin, Henry

    2011-02-12

    Incorporating culture into an expanded theory of evolution will provide the foundation for a universal account of human diversity. Two requirements must be met. The first is to see learning as an extension of the processes of evolution. The second is to understand that there are specific components of human culture, viz. higher order knowledge structures and social constructions, which give rise to culture as invented knowledge. These components, which are products of psychological processes and mechanisms, make human culture different from the forms of shared knowledge observed in other species. One serious difficulty for such an expanded theory is that social constructions may not add to the fitness of all humans exposed to them. This may be because human culture has existed for only a relatively short time in evolutionary terms. Or it may be that, as some maintain, adaptation is a limited, even a flawed, aspect of evolutionary theory.

  9. Were there evolutionary advantages to premenstrual syndrome?

    Science.gov (United States)

    Gillings, Michael R

    2014-09-01

    Premenstrual syndrome (PMS) affects up to 80% of women, often leading to significant personal, social and economic costs. When apparently maladaptive states are widespread, they sometimes confer a hidden advantage, or did so in our evolutionary past. We suggest that PMS had a selective advantage because it increased the chance that infertile pair bonds would dissolve, thus improving the reproductive outcomes of women in such partnerships. We confirm predictions arising from the hypothesis: PMS has high heritability; gene variants associated with PMS can be identified; animosity exhibited during PMS is preferentially directed at current partners; and behaviours exhibited during PMS may increase the chance of finding a new partner. Under this view, the prevalence of PMS might result from genes and behaviours that are adaptive in some societies, but are potentially less appropriate in modern cultures. Understanding this evolutionary mismatch might help depathologize PMS, and suggests solutions, including the choice to use cycle-stopping contraception.

  10. SPICA/SAFARI Fourier transform spectrometer mechanism evolutionary design

    Science.gov (United States)

    van den Dool, Teun C.; Kruizinga, Bob; Braam, Ben C.; Hamelinck, Roger F. M. M.; Loix, Nicolas; Van Loon, Dennis; Dams, Johan

    2012-09-01

    TNO, together with its partners, have designed a cryogenic scanning mechanism for use in the SAFARI1 Fourier Transform Spectrometer (FTS) on board of the SPICA mission. SPICA is one of the M-class missions competing to be launched in ESA's Cosmic Vision Programme2 in 2022. JAXA3 leads the development of the SPICA satellite and SRON is the prime investigator of the Safari instrument. The FTS scanning mechanism (FTSM) has to meet a 35 mm stroke requirement with an Optical Path Difference resolution of less then 15 nm and must fit in a small volume. It consists of two back-to-back roof-top mirrors mounted on a small carriage, which is moved using a magnetic bearing linear guiding system in combination with a magnetic linear motor serving as the OPD actuator. The FTSM will be used at cryogenic temperatures of 4 Kelvin inducing challenging requirements on the thermal power dissipation and heat leak. The magnetic bearing enables movements over a scanning stroke of 35.5 mm in a small volume. It supports the optics in a free-floating way with no friction, or other non-linearities, with sub-nanometer accuracy. This solution is based on the design of the breadboard ODL (Optical Delay Line) developed for the ESA Darwin mission4 and the MABE mechanism developed by Micromega Dynamics. During the last couple of years the initial design of the SAFARI instrument, as described in an earlier SPIE 2010 paper5, was adapted by the SAFARI team in an evolutionary way to meet the changing requirements of the SPICA payload module. This presentation will focus on the evolution of the FTSM to meet these changing requirements. This work is supported by the Netherlands Space Office (NSO).

  11. Sustainable Energy Path

    Directory of Open Access Journals (Sweden)

    Hiromi Yamamoto

    2005-12-01

    Full Text Available The uses of fossil fuels cause not only the resources exhaustion but also the environmental problems such as global warming. The purposes of this study are to evaluate paths toward sustainable energy systems and roles of each renewable. In order to realize the purposes, the authors developed the global land use and energy model that figured the global energy supply systems in the future considering the cost minimization. Using the model, the authors conducted a simulation in C30R scenario, which is a kind of strict CO2 emission limit scenarios and reduced CO2 emissions by 30% compared with Kyoto protocol forever scenario, and obtained the following results. In C30R scenario bioenergy will supply 33% of all the primary energy consumption. However, wind and photovoltaic will supply 1.8% and 1.4% of all the primary energy consumption, respectively, because of the limits of power grid stability. The results imply that the strict limits of CO2 emissions are not sufficient to achieve the complete renewable energy systems. In order to use wind and photovoltaic as major energy resources, we need not only to reduce the plant costs but also to develop unconventional renewable technologies.

  12. Behavior Emergence in Autonomous Robot Control by Means of Evolutionary Neural Networks

    Science.gov (United States)

    Neruda, Roman; Slušný, Stanislav; Vidnerová, Petra

    We study the emergence of intelligent behavior of a simple mobile robot. Robot control system is realized by mechanisms based on neural networks and evolutionary algorithms. The evolutionary algorithm is responsible for the adaptation of a neural network parameters based on the robot's performance in a simulated environment. In experiments, we demonstrate the performance of evolutionary algorithm on selected problems, namely maze exploration and discrimination of walls and cylinders. A comparison of different networks architectures is presented and discussed.

  13. Adaptive Rationality, Adaptive Behavior and Institutions

    Directory of Open Access Journals (Sweden)

    Volchik Vyacheslav, V.

    2015-12-01

    Full Text Available The economic literature focused on understanding decision-making and choice processes reveals a vast collection of approaches to human rationality. Theorists’ attention has moved from absolutely rational, utility-maximizing individuals to boundedly rational and adaptive ones. A number of economists have criticized the concepts of adaptive rationality and adaptive behavior. One of the recent trends in the economic literature is to consider humans irrational. This paper offers an approach which examines adaptive behavior in the context of existing institutions and constantly changing institutional environment. It is assumed that adaptive behavior is a process of evolutionary adjustment to fundamental uncertainty. We emphasize the importance of actors’ engagement in trial and error learning, since if they are involved in this process, they obtain experience and are able to adapt to existing and new institutions. The paper aims at identifying relevant institutions, adaptive mechanisms, informal working rules and practices that influence actors’ behavior in the field of Higher Education in Russia (Rostov Region education services market has been taken as an example. The paper emphasizes the application of qualitative interpretative methods (interviews and discourse analysis in examining actors’ behavior.

  14. Path integrals as discrete sums

    Science.gov (United States)

    Bitar, Khalil; Khuri, N. N.; Ren, H. C.

    1991-08-01

    We present a new formulation of Feynman's path integral, based on Voronin's theorems on the universality of the Riemann zeta function. The result is a discrete sum over ``paths,'' each given by a zeta function. A new measure which leads to the correct quantum mechanics is explicitly given.

  15. Rainbow paths with prescribed ends

    DEFF Research Database (Denmark)

    Alishahi, Meysam; Taherkhani, Ali; Thomassen, Carsten

    2011-01-01

    It was conjectured in [S. Akbari, F. Khaghanpoor, and S. Moazzeni. Colorful paths in vertex coloring of graphs. Preprint] that, if G is a connected graph distinct from C-7, then there is a chi(G)-coloring of G in which every vertex v is an element of V(G) is an initial vertex of a path P with chi...

  16. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...

  17. Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions

    Science.gov (United States)

    Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.

    2014-01-01

    In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.

  18. The role of natural resources in path development. The case of the bioeconomy

    DEFF Research Database (Denmark)

    Hansen, Teis; Klikou, Antje; Tanner, Anne Nygaard

    grand challenges (Coenen, Hansen, & Rekers, 2015), in particular climate change, health and energy security (Ollikainen, 2014; Pülzl, Kleinschmit, & Arts, 2014). However, opportunities for economic development associated with the transition to a bioeconomy are also repeatedly emphasised (Bugge et al...... in economic geography to understand such industrial development processes is the concepts of path creation and path renewal. Insights from evolutionary economic geography have in particular highlighted that new industrial paths are likely to appear through a branching process where existing technological...... the accessibility to other resources needed for bioeconomy path renewal. Empirically, we analyse path development in the forest industry in the South of Norway by examining on the process of turning a former pulp and paper mill near the city of Hønefoss into a production facility for multiple new wood...

  19. Studies in evolutionary agroecology

    DEFF Research Database (Denmark)

    Wille, Wibke

    Darwinian evolution by natural selection is driven primarily by differential survival and reproduction among individuals in a population. When the evolutionary interest of an individual is in conflict with the interests of the population, the genes increasing individual fitness at the cost...... performance are not in conflict, it is unlikely that plant breeding can radically improve the results of millions of years of evolution through natural selection. However, efforts to improve crops can be very successful, when breeding is directed towards goals diverging from natural selection. The potential...... of Evolutionary Agroecology that the highest yielding individuals do not necessarily perform best as a population. The investment of resources into strategies and structures increasing individual competitive ability carries a cost. If a whole population consists of individuals investing resources to compete...

  20. Evolutionary game theory as a framework for studying biological invasions.

    Science.gov (United States)

    Pintor, Lauren M; Brown, Joel S; Vincent, Thomas L

    2011-04-01

    Although biological invasions pose serious threats to biodiversity, they also provide the opportunity to better understand interactions between the ecological and evolutionary processes structuring populations and communities. However, ecoevolutionary frameworks for studying species invasions are lacking. We propose using game theory and the concept of an evolutionarily stable strategy (ESS) as a conceptual framework for integrating the ecological and evolutionary dynamics of invasions. We suggest that the pathways by which a recipient community may have no ESS provide mechanistic hypotheses for how such communities may be vulnerable to invasion and how invaders can exploit these vulnerabilities. We distinguish among these pathways by formalizing the evolutionary contexts of the invader relative to the recipient community. We model both the ecological and the adaptive dynamics of the interacting species. We show how the ESS concept provides new mechanistic hypotheses for when invasions result in long- or short-term increases in biodiversity, species replacement, and subsequent evolutionary changes.

  1. Invisible hand effect in an evolutionary minority game model

    Science.gov (United States)

    Sysi-Aho, Marko; Saramäki, Jari; Kaski, Kimmo

    2005-03-01

    In this paper, we study the properties of a minority game with evolution realized by using genetic crossover to modify fixed-length decision-making strategies of agents. Although the agents in this evolutionary game act selfishly by trying to maximize their own performances only, it turns out that the whole society will eventually be rewarded optimally. This “invisible hand” effect is what Adam Smith over two centuries ago expected to take place in the context of free market mechanism. However, this behaviour of the society of agents is realized only under idealized conditions, where all agents are utilizing the same efficient evolutionary mechanism. If on the other hand part of the agents are adaptive, but not evolutionary, the system does not reach optimum performance, which is also the case if part of the evolutionary agents form a uniformly acting “cartel”.

  2. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties.

    Science.gov (United States)

    Cakar, Z Petek; Turanli-Yildiz, Burcu; Alkim, Ceren; Yilmaz, Ulkü

    2012-03-01

    This article reviews evolutionary engineering of Saccharomyces cerevisiae. Following a brief introduction to the 'rational' metabolic engineering approach and its limitations such as extensive genetic and metabolic information requirement on the organism of interest, complexity of cellular physiological responses, and difficulties of cloning in industrial strains, evolutionary engineering is discussed as an alternative, inverse metabolic engineering strategy. Major evolutionary engineering applications with S. cerevisiae are then discussed in two general categories: (1) evolutionary engineering of substrate utilization and product formation and (2) evolutionary engineering of stress resistance. Recent developments in functional genomics methods allow rapid identification of the molecular basis of the desired phenotypes obtained by evolutionary engineering. To conclude, when used alone or in combination with rational metabolic engineering and/or computational methods to study and analyze processes of adaptive evolution, evolutionary engineering is a powerful strategy for improvement in industrially important, complex properties of S. cerevisiae. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Anxiety: an evolutionary approach.

    OpenAIRE

    Bateson, M; Brilot, B; Nettle, D.

    2011-01-01

    Anxiety disorders are among the most common mental illnesses, with huge attendant suffering. Current treatments are not universally effective, suggesting that a deeper understanding of the causes of anxiety is needed. To understand anxiety disorders better, it is first necessary to understand the normal anxiety response. This entails considering its evolutionary function as well as the mechanisms underlying it. We argue that the function of the human anxiety response, and homologues in other ...

  4. Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods

    Directory of Open Access Journals (Sweden)

    Klug Christian

    2011-04-01

    Full Text Available Abstract Background A major goal in evolutionary biology is to understand the processes that shape the evolutionary trajectory of clades. The repeated and similar large-scale morphological evolutionary trends of distinct lineages suggest that adaptation by means of natural selection (functional constraints is the major cause of parallel evolution, a very common phenomenon in extinct and extant lineages. However, parallel evolution can result from other processes, which are usually ignored or difficult to identify, such as developmental constraints. Hence, understanding the underlying processes of parallel evolution still requires further research. Results Herein, we present a possible case of parallel evolution between two ammonoid lineages (Auguritidae and Pinacitidae of Early-Middle Devonian age (405-395 Ma, which are extinct cephalopods with an external, chambered shell. In time and through phylogenetic order of appearance, both lineages display a morphological shift toward more involute coiling (i.e. more tightly coiled whorls, larger adult body size, more complex suture line (the folded walls separating the gas-filled buoyancy-chambers, and the development of an umbilical lid (a very peculiar extension of the lateral shell wall covering the umbilicus in the most derived taxa. Increased involution toward shells with closed umbilicus has been demonstrated to reflect improved hydrodynamic properties of the shell and thus likely results from similar natural selection pressures. The peculiar umbilical lid might have also added to the improvement of the hydrodynamic properties of the shell. Finally, increasing complexity of suture lines likely results from covariation induced by trends of increasing adult size and whorl overlap given the morphogenetic properties of the suture. Conclusions The morphological evolution of these two Devonian ammonoid lineages follows a near parallel evolutionary path for some important shell characters during several

  5. Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods.

    Science.gov (United States)

    Monnet, Claude; De Baets, Kenneth; Klug, Christian

    2011-04-29

    A major goal in evolutionary biology is to understand the processes that shape the evolutionary trajectory of clades. The repeated and similar large-scale morphological evolutionary trends of distinct lineages suggest that adaptation by means of natural selection (functional constraints) is the major cause of parallel evolution, a very common phenomenon in extinct and extant lineages. However, parallel evolution can result from other processes, which are usually ignored or difficult to identify, such as developmental constraints. Hence, understanding the underlying processes of parallel evolution still requires further research. Herein, we present a possible case of parallel evolution between two ammonoid lineages (Auguritidae and Pinacitidae) of Early-Middle Devonian age (405-395 Ma), which are extinct cephalopods with an external, chambered shell. In time and through phylogenetic order of appearance, both lineages display a morphological shift toward more involute coiling (i.e. more tightly coiled whorls), larger adult body size, more complex suture line (the folded walls separating the gas-filled buoyancy-chambers), and the development of an umbilical lid (a very peculiar extension of the lateral shell wall covering the umbilicus) in the most derived taxa. Increased involution toward shells with closed umbilicus has been demonstrated to reflect improved hydrodynamic properties of the shell and thus likely results from similar natural selection pressures. The peculiar umbilical lid might have also added to the improvement of the hydrodynamic properties of the shell. Finally, increasing complexity of suture lines likely results from covariation induced by trends of increasing adult size and whorl overlap given the morphogenetic properties of the suture. The morphological evolution of these two Devonian ammonoid lineages follows a near parallel evolutionary path for some important shell characters during several million years and through their phylogeny. Evolution

  6. How Cultural Evolutionary Theory Can Inform Social Psychology and Vice Versa

    Science.gov (United States)

    Mesoudi, Alex

    2009-01-01

    Cultural evolutionary theory is an interdisciplinary field in which human culture is viewed as a Darwinian process of variation, competition, and inheritance, and the tools, methods, and theories developed by evolutionary biologists to study genetic evolution are adapted to study cultural change. It is argued here that an integration of the…

  7. Beyond the Pleistocene: Using Phylogeny and Constraint to Inform the Evolutionary Psychology of Human Mating

    Science.gov (United States)

    Eastwick, Paul W.

    2009-01-01

    Evolutionary psychologists explore the adaptive function of traits and behaviors that characterize modern Homo sapiens. However, evolutionary psychologists have yet to incorporate the phylogenetic relationship between modern Homo sapiens and humans' hominid and pongid relatives (both living and extinct) into their theorizing. By considering the…

  8. Asymmetric Evolutionary Games.

    Directory of Open Access Journals (Sweden)

    Alex McAvoy

    2015-08-01

    Full Text Available Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  9. Evolutionary theory and teleology.

    Science.gov (United States)

    O'Grady, R T

    1984-04-21

    The order within and among living systems can be explained rationally by postulating a process of descent with modification, effected by factors which are extrinsic or intrinsic to the organisms. Because at the time Darwin proposed his theory of evolution there was no concept of intrinsic factors which could evolve, he postulated a process of extrinsic effects--natural selection. Biological order was thus seen as an imposed, rather than an emergent, property. Evolutionary change was seen as being determined by the functional efficiency (adaptedness) of the organism in its environment, rather than by spontaneous changes in intrinsically generated organizing factors. The initial incompleteness of Darwin's explanatory model, and the axiomatization of its postulates in neo-Darwinism, has resulted in a theory of functionalism, rather than structuralism. As such, it introduces an unnecessary teleology which confounds evolutionary studies and reduces the usefulness of the theory. This problem cannot be detected from within the neo-Darwinian paradigm because the different levels of end-directed activity--teleomatic, teleonomic, and teleological--are not recognized. They are, in fact, considered to influence one another. The theory of nonequilibrium evolution avoids these problems by returning to the basic principles of biological order and developing a structuralist explanation of intrinsically generated change. Extrinsic factors may affect the resultant evolutionary pattern, but they are neither necessary nor sufficient for evolution to occur.

  10. Evolutionary mysteries in meiosis.

    Science.gov (United States)

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E; Wijnker, Erik; Haag, Christoph R

    2016-10-19

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  11. Asymmetric Evolutionary Games.

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-08-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  12. Adaptive evolution in ecological communities.

    Directory of Open Access Journals (Sweden)

    Martin M Turcotte

    Full Text Available Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.

  13. Adaptive evolution in ecological communities.

    Science.gov (United States)

    Turcotte, Martin M; Corrin, Michael S C; Johnson, Marc T J

    2012-01-01

    Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.

  14. Environment determines evolutionary trajectory in a constrained phenotypic space.

    Science.gov (United States)

    Fraebel, David T; Mickalide, Harry; Schnitkey, Diane; Merritt, Jason; Kuhlman, Thomas E; Kuehn, Seppe

    2017-03-27

    Constraints on phenotypic variation limit the capacity of organisms to adapt to the multiple selection pressures encountered in natural environments. To better understand evolutionary dynamics in this context, we select Escherichia coli for faster migration through a porous environment, a process which depends on both motility and growth. We find that a trade-off between swimming speed and growth rate constrains the evolution of faster migration. Evolving faster migration in rich medium results in slow growth and fast swimming, while evolution in minimal medium results in fast growth and slow swimming. In each condition parallel genomic evolution drives adaptation through different mutations. We show that the trade-off is mediated by antagonistic pleiotropy through mutations that affect negative regulation. A model of the evolutionary process shows that the genetic capacity of an organism to vary traits can qualitatively depend on its environment, which in turn alters its evolutionary trajectory.

  15. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology.

    Science.gov (United States)

    Wideman, Jeremy G; Muñoz-Gómez, Sergio A

    2016-08-01

    The ER-mitochondria organizing network (ERMIONE) in Saccharomyces cerevisiae is involved in maintaining mitochondrial morphology and lipid homeostasis. ERMES and MICOS are two scaffolding complexes of ERMIONE that contribute to these processes. ERMES is ancient but has been lost in several lineages including animals, plants, and SAR (stramenopiles, alveolates and rhizaria). On the other hand, MICOS is ancient and has remained present in all organisms bearing mitochondrial cristae. The ERMIONE precursor evolved in the α-proteobacterial ancestor of mitochondria which had the central subunit of MICOS, Mic60. The subsequent evolution of ERMIONE and its interactors in eukaryotes reflects the integrative co-evolution of mitochondria and their hosts and the adaptive paths that some lineages have followed in their specialization to certain environments. By approaching the ERMIONE from a perspective of comparative evolutionary cell biology, we hope to shed light on not only its evolutionary history, but also how ERMIONE components may function in organisms other than S. cerevisiae. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evolutionary response to global change: Climate and land use interact to shape color polymorphism in a woodland salamander.

    Science.gov (United States)

    Cosentino, Bradley J; Moore, Jean-David; Karraker, Nancy E; Ouellet, Martin; Gibbs, James P

    2017-07-01

    Evolutionary change has been demonstrated to occur rapidly in human-modified systems, yet understanding how multiple components of global change interact to affect adaptive evolution remains a critical knowledge gap. Climate change is predicted to impose directional selection on traits to reduce thermal stress, but the strength of directional selection may be mediated by changes in the thermal environment driven by land use. We examined how regional climatic conditions and land use interact to affect genetically based color polymorphism in the eastern red-backed salamander ( Plethodon cinereus ). P. cinereus is a woodland salamander with two primary discrete color morphs (striped, unstriped) that have been associated with macroclimatic conditions. Striped individuals are most common in colder regions, but morph frequencies can be variable within climate zones. We used path analysis to analyze morph frequencies among 238,591 individual salamanders across 1,170 sites in North America. Frequency of striped individuals was positively related to forest cover in populations occurring in warmer regions (>7°C annually), a relationship that was weak to nonexistent in populations located in colder regions (≤7°C annually). Our results suggest that directional selection imposed by climate warming at a regional scale may be amplified by forest loss and suppressed by forest persistence, with a mediating effect of land use that varies geographically. Our work highlights how the complex interaction of selection pressures imposed by different components of global change may lead to divergent evolutionary trajectories among populations.

  17. Pathways with PathWhiz.

    Science.gov (United States)

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S

    2015-07-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Evolutionary change and phylogenetic relationships in light of ...

    Indian Academy of Sciences (India)

    2015-04-20

    Apr 20, 2015 ... niches speeding up the rate of evolutionary change. A considerable amount of empirical evidence supports the rapid spread of acquired genes and the fast evolution following. HGT, from the spread of antibiotic resistance genes among pathogenic bacteria to the adaptation to plant feeding lifestyles.

  19. Limb, tooth, beak: Three modes of development and evolutionary ...

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... change for incremental adaptive advantage is only one of the possible modes of morphological evolution. [Linde-Medina M and Newman SA 2014 Limb, tooth, beak: Three modes of development and evolutionary innovation of form. J. Biosci. 39 211–223]. DOI 10.1007/s12038-013-9355-2. 1. Introduction.

  20. The Many Faces of Leadership: An Evolutionary-Psychology Approach

    NARCIS (Netherlands)

    van Vugt, M.; Grabo, A.E.

    2015-01-01

    Many psychological studies have shown that facial appearance matters in the people we select as leaders. An evolutionary-psychology approach suggests that facial cues serve as inputs into an adaptive, context-sensitive followership psychology. That is, leadership suitability may be contingent upon

  1. Evolutionary Psychology: A Natural Selection for Music Education?

    Science.gov (United States)

    Graham, Rodger

    2006-01-01

    In this viewpoint it is suggested that recent research and authorship in the evolutionary psychology (EP) of music can provide musicians and educators with an enriched understanding of the adaptive role of music in human life. Within a climate of continual educational reform in which music is often marginalised from other mainstream curricular…

  2. Evolutionary Developmental Psychology: Contributions from Comparative Research with Nonhuman Primates

    Science.gov (United States)

    Maestripieri, Dario; Roney, James R.

    2006-01-01

    Evolutionary developmental psychology is a discipline that has the potential to integrate conceptual approaches to the study of behavioral development derived from psychology and biology as well as empirical data from humans and animals. Comparative research with animals, and especially with nonhuman primates, can provide evidence of adaptation in…

  3. Limb, tooth, beak: Three modes of development and evolutionary ...

    Indian Academy of Sciences (India)

    The standard model of evolutionary change of form, deriving from Darwin's theory via the Modern Synthesis, assumes a gradualistic reshaping of anatomical structures, with major changes only occurring by many cycles of natural selection for marginal adaptive advantage. This model, with its assertion that a single ...

  4. Advances of evolutionary computation methods and operators

    CERN Document Server

    Cuevas, Erik; Oliva Navarro, Diego Alberto

    2016-01-01

    The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be effective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.

  5. Information theory, evolutionary innovations and evolvability.

    Science.gov (United States)

    Wagner, Andreas

    2017-12-05

    How difficult is it to 'discover' an evolutionary adaptation or innovation? I here suggest that information theory, in combination with high-throughput DNA sequencing, can help answer this question by quantifying a new phenotype's information content. I apply this framework to compute the phenotypic information associated with novel gene regulation and with the ability to use novel carbon sources. The framework can also help quantify how DNA duplications affect evolvability, estimate the complexity of phenotypes and clarify the meaning of 'progress' in Darwinian evolution.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).

  6. Adaptive multiresolution methods

    Directory of Open Access Journals (Sweden)

    Schneider Kai

    2011-12-01

    Full Text Available These lecture notes present adaptive multiresolution schemes for evolutionary PDEs in Cartesian geometries. The discretization schemes are based either on finite volume or finite difference schemes. The concept of multiresolution analyses, including Harten’s approach for point and cell averages, is described in some detail. Then the sparse point representation method is discussed. Different strategies for adaptive time-stepping, like local scale dependent time stepping and time step control, are presented. Numerous numerical examples in one, two and three space dimensions validate the adaptive schemes and illustrate the accuracy and the gain in computational efficiency in terms of CPU time and memory requirements. Another aspect, modeling of turbulent flows using multiresolution decompositions, the so-called Coherent Vortex Simulation approach is also described and examples are given for computations of three-dimensional weakly compressible mixing layers. Most of the material concerning applications to PDEs is assembled and adapted from previous publications [27, 31, 32, 34, 67, 69].

  7. Path integrals and quantum processes

    CERN Document Server

    Swanson, Marc S

    1992-01-01

    In a clearly written and systematic presentation, Path Integrals and Quantum Processes covers all concepts necessary to understand the path integral approach to calculating transition elements, partition functions, and source functionals. The book, which assumes only a familiarity with quantum mechanics, is ideal for use as a supplemental textbook in quantum mechanics and quantum field theory courses. Graduate and post-graduate students who are unfamiliar with the path integral will also benefit from this contemporary text. Exercise sets are interspersed throughout the text to facilitate self-

  8. Optical Scintillation on Folded Paths.

    Science.gov (United States)

    1982-03-01

    8 (+ boundazy conditions) (11-16) where # is the probability amplitude function. We know that for a free particle in a one dimension motion, 20 $1_...path. Since the total probability amplitude is the sum of the contributions from all possible paths, it is given by I. *(a,b) = JD (paths) exp[is(a,b...2 L = - - and the action integral is given by tb S - L dt (11-17) ta Starting from Feynman’s basic assumption, namely that the probability

  9. Path lengths in tree-child time consistent hybridization networks

    CERN Document Server

    Cardona, Gabriel; Rossello, Francesc; Valiente, Gabriel

    2008-01-01

    Hybridization networks are representations of evolutionary histories that allow for the inclusion of reticulate events like recombinations, hybridizations, or lateral gene transfers. The recent growth in the number of hybridization network reconstruction algorithms has led to an increasing interest in the definition of metrics for their comparison that can be used to assess the accuracy or robustness of these methods. In this paper we establish some basic results that make it possible the generalization to tree-child time consistent (TCTC) hybridization networks of some of the oldest known metrics for phylogenetic trees: those based on the comparison of the vectors of path lengths between leaves. More specifically, we associate to each hybridization network a suitably defined vector of `splitted' path lengths between its leaves, and we prove that if two TCTC hybridization networks have the same such vectors, then they must be isomorphic. Thus, comparing these vectors by means of a metric for real-valued vecto...

  10. Evolutionary change in physiological phenotypes along the human lineage.

    Science.gov (United States)

    Vining, Alexander Q; Nunn, Charles L

    2016-01-01

    Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  11. Shortest-Path Network Interdiction

    National Research Council Canada - National Science Library

    Israeli, Eltan; Wood, R. K

    2002-01-01

    We study the problem of interdicting the arcs in a network in order to maximize the shortest s-t path length "Interdiction" is an attack on an arc that destroys the arc or increases its effective length...

  12. Evolutionary process of deep-sea bathymodiolus mussels.

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Miyazaki

    Full Text Available BACKGROUND: Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. METHODOLOGY/PRINCIPAL FINDING: We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI and NADH dehydrogenase subunit 4 (ND4 genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. CONCLUSIONS/SIGNIFICANCE: The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of

  13. Path-based Queries on Trajectory Data

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Pelekis, Nikos; Theodoridis, Yannis

    2014-01-01

    In traffic research, management, and planning a number of path-based analyses are heavily used, e.g., for computing turn-times, evaluating green waves, or studying traffic flow. These analyses require retrieving the trajectories that follow the full path being analyzed. Existing path queries cannot...... sufficiently support such path-based analyses because they retrieve all trajectories that touch any edge in the path. In this paper, we define and formalize the strict path query. This is a novel query type tailored to support path-based analysis, where trajectories must follow all edges in the path....... To efficiently support strict path queries, we present a novel NETwork-constrained TRAjectory index (NETTRA). This index enables very efficient retrieval of trajectories that follow a specific path, i.e., strict path queries. NETTRA uses a new path encoding scheme that can determine if a trajectory follows...

  14. Paths into Professional School: A Research Note

    Science.gov (United States)

    Helfrich, Margaret L.

    1975-01-01

    The literature of occupations and professions implies that there may be different paths into given work activities. Four different paths into dental school are described and illustrated, and different conditions are associated with each path. (Author/BP)

  15. Formal language constrained path problems

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, C.; Jacob, R.; Marathe, M.

    1997-07-08

    In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.

  16. Evolutionary plant physiology: Charles Darwin's forgotten synthesis

    Science.gov (United States)

    Kutschera, Ulrich; Niklas, Karl J.

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin’s son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin’s work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  17. An Evolutionary Perspective on Toxic Leadership

    Directory of Open Access Journals (Sweden)

    Lucia Ovidia VREJA

    2016-12-01

    Full Text Available Charles Darwin’s prediction from 1859, that future psychology was going to be built on principles derived from evolutionary theory came at last to be fulfilled. Nowadays, there are at least four disciplines that attempt to explain human behaviours as evolutionary adaptations (or maladaptations to the natural and/or social environment: human sociobiology, human behavioural ecology, evolutionary psychology, memetics and gene–culture coevolution theory (in our view, the most adequate of all. According to gene–culture coevolution theory, articulated language was the singular phenomenon that permitted humans to become a cultural species, and from that moment on culture become itself a selection factor. Culture means transmission of information from one generation to the next and learning from other individuals’ experiences, trough language. So, it is of critical importance to have good criteria for the selection of those individuals from whom we should learn. Yet when humans also choose their leaders from among those role-models, according to the same criteria, this mechanism can become a maladaptation and the result can be toxic leadership.

  18. Evolutionary Cost-Sensitive Extreme Learning Machine.

    Science.gov (United States)

    Zhang, Lei; Zhang, David

    2017-12-01

    Conventional extreme learning machines (ELMs) solve a Moore-Penrose generalized inverse of hidden layer activated matrix and analytically determine the output weights to achieve generalized performance, by assuming the same loss from different types of misclassification. The assumption may not hold in cost-sensitive recognition tasks, such as face recognition-based access control system, where misclassifying a stranger as a family member may result in more serious disaster than misclassifying a family member as a stranger. Though recent cost-sensitive learning can reduce the total loss with a given cost matrix that quantifies how severe one type of mistake against another, in many realistic cases, the cost matrix is unknown to users. Motivated by these concerns, this paper proposes an evolutionary cost-sensitive ELM, with the following merits: 1) to the best of our knowledge, it is the first proposal of ELM in evolutionary cost-sensitive classification scenario; 2) it well addresses the open issue of how to define the cost matrix in cost-sensitive learning tasks; and 3) an evolutionary backtracking search algorithm is induced for adaptive cost matrix optimization. Experiments in a variety of cost-sensitive tasks well demonstrate the effectiveness of the proposed approaches, with about 5%-10% improvements.

  19. Evolutionary genomics of Entamoeba

    Science.gov (United States)

    Weedall, Gareth D.; Hall, Neil

    2011-01-01

    Entamoeba histolytica is a human pathogen that causes amoebic dysentery and leads to significant morbidity and mortality worldwide. Understanding the genome and evolution of the parasite will help explain how, when and why it causes disease. Here we review current knowledge about the evolutionary genomics of Entamoeba: how differences between the genomes of different species may help explain different phenotypes, and how variation among E. histolytica parasites reveals patterns of population structure. The imminent expansion of the amount genome data will greatly improve our knowledge of the genus and of pathogenic species within it. PMID:21288488

  20. Making evolutionary history count: biodiversity planning for coral reef fishes and the conservation of evolutionary processes

    Science.gov (United States)

    von der Heyden, Sophie

    2017-03-01

    Anthropogenic activities are having devastating impacts on marine systems with numerous knock-on effects on trophic functioning, species interactions and an accelerated loss of biodiversity. Establishing conservation areas can not only protect biodiversity, but also confer resilience against changes to coral reefs and their inhabitants. Planning for protection and conservation in marine systems is complex, but usually focuses on maintaining levels of biodiversity and protecting special and unique landscape features while avoiding negative impacts to socio-economic benefits. Conversely, the integration of evolutionary processes that have shaped extant species assemblages is rarely taken into account. However, it is as important to protect processes as it is to protect patterns for maintaining the evolutionary trajectories of populations and species. This review focuses on different approaches for integrating genetic analyses, such as phylogenetic diversity, phylogeography and the delineation of management units, temporal and spatial monitoring of genetic diversity and quantification of adaptive variation for protecting evolutionary resilience, into marine spatial planning, specifically for coral reef fishes. Many of these concepts are not yet readily applied to coral reef fish studies, but this synthesis highlights their potential and the importance of including historical processes into systematic biodiversity planning for conserving not only extant, but also future, biodiversity and its evolutionary potential.

  1. An Optimized Hybrid Approach for Path Finding

    OpenAIRE

    Ansari, Ahlam; Sayyed, Mohd Amin; Ratlamwala, Khatija; Shaikh, Parvin

    2015-01-01

    Path finding algorithm addresses problem of finding shortest path from source to destination avoiding obstacles. There exist various search algorithms namely A*, Dijkstra's and ant colony optimization. Unlike most path finding algorithms which require destination co-ordinates to compute path, the proposed algorithm comprises of a new method which finds path using backtracking without requiring destination co-ordinates. Moreover, in existing path finding algorithm, the number of iterations req...

  2. Evolutionary design assistants for architecture

    Directory of Open Access Journals (Sweden)

    N. Onur Sönmez

    2015-04-01

    existing literature and the proposals and applications of the thesis; secondly, proposals for descriptive and prescriptive models, mappings, summary illustrations, task structures, decomposition schemes, and integratory frameworks; and finally, experimental applications of these proposals. This tripartite progression allows an evaluation of each proposal both conceptually and practically; thereby, enabling a progressive improvement of the understanding regarding the research question, while producing concrete outputs on the way. Besides theoretical and interpretative examinations, the thesis investigates its subject through a set of practical and speculative proposals, which function as both research instruments and the outputs of the study. The first main output of the study is the “design_proxy” approach (d_p, which is an integrated approach for draft making design assistants. It is an outcome of both theoretical examinations and experimental applications, and proposes an integration of, (1 flexible and relaxed task definitions and representations (instead of strict formalisms, (2 intuitive interfaces that make use of usual design media, (3 evaluation of solution proposals through their similarity to given examples, and (4 a dynamic evolutionary approach for solution generation. The design_proxy approach may be useful for AD researchers that aim at developing practical design assistants, as has been examined and demonstrated with the two applications, i.e., design_proxy.graphics and design_proxy.layout. The second main output, the “Interleaved Evolutionary Algorithm” (IEA, or Interleaved EA is a novel evolutionary algorithm proposed and used as the underlying generative mechanism of design_proxybased design assistants. The Interleaved EA is a dynamic, adaptive, and multi-objective EA, in which one of the objectives leads the evolution until its fitness progression stagnates; in the sense that the settings and fitness values of this objective is used for most

  3. Evolutionary design assistants for architecture

    Directory of Open Access Journals (Sweden)

    N. Onur Sönmez

    2015-04-01

    literature and the proposals and applications of the thesis; secondly, proposals for descriptive and prescriptive models, mappings, summary illustrations, task structures, decomposition schemes, and integratory frameworks; and finally, experimental applications of these proposals. This tripartite progression allows an evaluation of each proposal both conceptually and practically; thereby, enabling a progressive improvement of the understanding regarding the research question, while producing concrete outputs on the way. Besides theoretical and interpretative examinations, the thesis investigates its subject through a set of practical and speculative proposals, which function as both research instruments and the outputs of the study.The first main output of the study is the “design_proxy” approach (d_p, which is an integrated approach for draft making design assistants. It is an outcome of both theoretical examinations and experimental applications, and proposes an integration of, (1 flexible and relaxed task definitions and representations (instead of strict formalisms, (2 intuitive interfaces that make use of usual design media, (3 evaluation of solution proposals through their similarity to given examples, and (4 a dynamic evolutionary approach for solution generation. The design_proxy approach may be useful for AD researchers that aim at developing practical design assistants, as has been examined and demonstrated with the two applications, i.e., design_proxy.graphics and design_proxy.layout.The second main output, the “Interleaved Evolutionary Algorithm” (IEA, or Interleaved EA is a novel evolutionary algorithm proposed and used as the underlying generative mechanism of design_proxybased design assistants. The Interleaved EA is a dynamic, adaptive, and multi-objective EA, in which one of the objectives leads the evolution until its fitness progression stagnates; in the sense that the settings and fitness values of this objective is used for most evolutionary

  4. The Depressed Brain: An Evolutionary Systems Theory.

    Science.gov (United States)

    Badcock, Paul B; Davey, Christopher G; Whittle, Sarah; Allen, Nicholas B; Friston, Karl J

    2017-03-01

    Major depression is a debilitating condition characterised by diverse neurocognitive and behavioural deficits. Nevertheless, our species-typical capacity for depressed mood implies that it serves an adaptive function. Here we apply an interdisciplinary theory of brain function to explain depressed mood and its clinical manifestations. Combining insights from the free-energy principle (FEP) with evolutionary theorising in psychology, we argue that depression reflects an adaptive response to perceived threats of aversive social outcomes (e.g., exclusion) that minimises the likelihood of surprising interpersonal exchanges (i.e., those with unpredictable outcomes). We suggest that psychopathology typically arises from ineffectual attempts to alleviate interpersonal difficulties and/or hyper-reactive neurobiological responses to social stress (i.e., uncertainty), which often stems from early experience that social uncertainty is difficult to resolve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Comparative genomics and evolutionary biology.

    Science.gov (United States)

    Kondrashov, A S

    1999-12-01

    Data of large-scale DNA sequencing are relevant to some of the most fundamental issues in evolutionary biology: suboptimality, homology, hierarchy, ancestry, novelties, the role of natural selection, and the relative importance of directional versus stabilizing selection. Already, these data provided the best available evidence for some evolutionary phenomena, and in several cases led to refinement of old concepts. Still, the Darwinian evolutionary paradigm will successfully accommodate comparative genomics.

  6. Evolutionary history of lorisiform primates.

    Science.gov (United States)

    Rasmussen, D T; Nekaris, K A

    1998-01-01

    be integrated with behavioral and morphological features to develop an adaptive model of lorisoid divergence. By specializing on two different foraging modes early in their radiation, lorisines and galagines subsequently underwent a chain of integrated evolutionary changes eventually having an impact on many components of locomotor behavior, anatomy, physiology, reproduction, life history, and social behavior. Ongoing evolutionary studies of extant galagines are illuminating population phenomena and processes of speciation in an ecological context.

  7. Adapted Minds and Evolved Schools

    Science.gov (United States)

    Keil, Frank C.

    2008-01-01

    Evolutionary psychology raises questions about how cognitive adaptations might be related to the emergence of formal schooling. Is there a special role for natural domains of cognition such as folk physics, folk psychology and folk biology? These domains may vary from small fragments of reasoning to large integrated systems. This heterogeneity…

  8. Asteroidal Quadruples in non Rooted Path Graphs

    Directory of Open Access Journals (Sweden)

    Gutierrez Marisa

    2015-11-01

    Full Text Available A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted path graphs. For this purpose, we are studying in this paper directed path graphs that are non rooted path graphs. We prove that such graphs always contain an asteroidal quadruple.

  9. [Evolutionary medicine: the future looking at the past].

    Science.gov (United States)

    Carvalho, Serafim; Rosado, Margarida

    2008-01-01

    Evolutionary medicine is an emergent basic science that offers new and varied perspectives to the comprehension of the human health and disease, considering them as a result of a gap between our modern lives and the environment where human beings evolve. This work's goals are to understand the importance of the evolutionary theories on concepts of health and disease, providing a new insight on medicine investigation. This bibliography review is based on Medline and PsycINFO articles research between 1996 and 2007 about review and experimental studies published in English, using the key words evolutionary and medicine, psychiatry, psychology, behaviour, health, disease, gene. There were selected forty-five articles based on and with special interest on the authors' practice. There were also consulted some allusive books. The present human genome and phenotypes are essentially Palaeolithic ones: they are not adapted to the modern life style, thus favouring the so called diseases of civilization. Fitting evolutionary strategies, apparently protective ones, when excessive, are the core syndromes of many emotional disruptive behaviours and diseases. Having the stone age's genes, we are obliged to live in the space age. With the evolutionary approach, postmodern medicine is detecting better the vulnerabilities, restrictions, biases, adaptations and maladaptations of human body, its actual diseases and its preventions and treatment.

  10. The evolutionary ecology of clonally propagated domesticated plants.

    Science.gov (United States)

    McKey, Doyle; Elias, Marianne; Pujol, Benoît; Duputié, Anne

    2010-04-01

    While seed-propagated crops have contributed many evolutionary insights, evolutionary biologists have often neglected clonally propagated crops. We argue that widespread notions about their evolution under domestication are oversimplified, and that they offer rich material for evolutionary studies. The diversity of their wild ancestors, the diverse ecologies of the crop populations themselves, and the intricate mix of selection pressures, acting not only on the parts harvested but also on the parts used by humans to make clonal propagules, result in complex and diverse evolutionary trajectories under domestication. We examine why farmers propagate some plants clonally, and discuss the evolutionary dynamics of sexual reproduction in clonal crops. We explore how their mixed clonal/sexual reproductive systems function, based on the sole example studied in detail, cassava (Manihot esculenta). Biotechnology is now expanding the number of clonal crops, continuing the 10 000-yr-old trend to increase crop yields by propagating elite genotypes. In an era of rapid global change, it is more important than ever to understand how the adaptive potential of clonal crops can be maintained. A key component of strategies for preserving this adaptive potential is the maintenance of mixed clonal/sexual systems, which can be achieved by encouraging and valuing farmer knowledge about the sexual reproductive biology of their clonal crops.

  11. Evolutionary status of Polaris

    Science.gov (United States)

    Fadeyev, Yu. A.

    2015-05-01

    Hydrodynamic models of short-period Cepheids were computed to determine the pulsation period as a function of evolutionary time during the first and third crossings of the instability strip. The equations of radiation hydrodynamics and turbulent convection for radial stellar pulsations were solved with the initial conditions obtained from the evolutionary models of Population I stars (X = 0.7, Z = 0.02) with masses from 5.2 to 6.5 M⊙ and the convective core overshooting parameter 0.1 ≤ αov ≤ 0.3. In Cepheids with period of 4 d the rate of pulsation period change during the first crossing of the instability strip is over 50 times larger than that during the third crossing. Polaris is shown to cross the instability strip for the first time and to be the fundamental mode pulsator. The best agreement between the predicted and observed rates of period change was obtained for the model with mass of 5.4 M⊙ and the overshooting parameter αov = 0.25. The bolometric luminosity and radius are L = 1.26 × 103 L⊙ and R = 37.5 R⊙, respectively. In the HR diagram, Polaris is located at the red edge of the instability strip.

  12. Testing for Independence between Evolutionary Processes.

    Science.gov (United States)

    Behdenna, Abdelkader; Pothier, Joël; Abby, Sophie S; Lambert, Amaury; Achaz, Guillaume

    2016-09-01

    Evolutionary events co-occurring along phylogenetic trees usually point to complex adaptive phenomena, sometimes implicating epistasis. While a number of methods have been developed to account for co-occurrence of events on the same internal or external branch of an evolutionary tree, there is a need to account for the larger diversity of possible relative positions of events in a tree. Here we propose a method to quantify to what extent two or more evolutionary events are associated on a phylogenetic tree. The method is applicable to any discrete character, like substitutions within a coding sequence or gains/losses of a biological function. Our method uses a general approach to statistically test for significant associations between events along the tree, which encompasses both events inseparable on the same branch, and events genealogically ordered on different branches. It assumes that the phylogeny and themapping of branches is known without errors. We address this problem from the statistical viewpoint by a linear algebra representation of the localization of the evolutionary events on the tree.We compute the full probability distribution of the number of paired events occurring in the same branch or in different branches of the tree, under a null model of independence where each type of event occurs at a constant rate uniformly inthephylogenetic tree. The strengths andweaknesses of themethodare assessed via simulations;we then apply the method to explore the loss of cell motility in intracellular pathogens. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Evolutionary Origins and Dynamics of Octoploid Strawberry Subgenomes Revealed by Dense Targeted Capture Linkage Maps

    Science.gov (United States)

    Tennessen, Jacob A.; Govindarajulu, Rajanikanth; Ashman, Tia-Lynn; Liston, Aaron

    2014-01-01

    Whole-genome duplications are radical evolutionary events that have driven speciation and adaptation in many taxa. Higher-order polyploids have complex histories often including interspecific hybridization and dynamic genomic changes. This chromosomal reshuffling is poorly understood for most polyploid species, despite their evolutionary and agricultural importance, due to the challenge of distinguishing homologous sequences from each other. Here, we use dense linkage maps generated with targeted sequence capture to improve the diploid strawberry (Fragaria vesca) reference genome and to disentangle the subgenomes of the wild octoploid progenitors of cultivated strawberry, Fragaria virginiana and Fragaria chiloensis. Our novel approach, POLiMAPS (Phylogenetics Of Linkage-Map-Anchored Polyploid Subgenomes), leverages sequence reads to associate informative interhomeolog phylogenetic markers with linkage groups and reference genome positions. In contrast to a widely accepted model, we find that one of the four subgenomes originates with the diploid cytoplasm donor F. vesca, one with the diploid Fragaria iinumae, and two with an unknown ancestor close to F. iinumae. Extensive unidirectional introgression has converted F. iinumae-like subgenomes to be more F. vesca-like, but never the reverse, due either to homoploid hybridization in the F. iinumae-like diploid ancestors or else strong selection spreading F. vesca-like sequence among subgenomes through homeologous exchange. In addition, divergence between homeologous chromosomes has been substantially augmented by interchromosomal rearrangements. Our phylogenetic approach reveals novel aspects of the complicated web of genetic exchanges that occur during polyploid evolution and suggests a path forward for unraveling other agriculturally and ecologically important polyploid genomes. PMID:25477420

  14. The adaptive value of shoot differentiation in deciduous trees and its evolutionary relevance Valor adaptativo de la diferenciación de brotes en árboles deciduos y su relevancia evolutiva

    Directory of Open Access Journals (Sweden)

    Veit M. Dörken

    2009-12-01

    Full Text Available Pronounced long shoot/short shoot differentiation is typical for deciduous angiosperm trees. It also occurs in a number of gymnosperms and very few evergreen angiosperm trees. The study of 719 angiosperm tree species (602 deciduous and 117 evergreen species demonstrated that the deciduous condition is nearly always associated with shoot differentiation. Detailed measurements in 38 angiosperms showed that the leaf area of an entire short shoot equals the leaf area of a single long shoot leaf of the same species and individual. In the few cases where the leaf area of the short shoot is slightly larger than that of a single long-shoot leaf, the short shoot leaves shade each other and the projection of the short shoot equals the area of a single long shoot leaf. Calculations of the stem biomass needed to expose a given assimilatory surface show two interesting aspects. First, the stem biomass (dry weight to expose leaf surface is about 10 times less in short shoots than in long shoots. Second, this biomass in long shoots and short shoots appears to be species independent. Regarding shoot structure efficiency, leaf size and shape do not matter. Some evergreen species resemble in all parameters more to deciduous species than to typical evergreen species. Phytogeographical data as well as morphological data suggest that these atypical evergreen species are derived from deciduous ancestors. As measured parameters differ markedly between all gymnosperms, except Ginkgo, and angiosperms, we suppose that the evolutionary pathway leading to shoot differentiation was different for gymnosperms and angiosperms.En Angiospermas arbóreas deciduas, es común encontrar un alto grado de diferenciación entre brotes largos y brotes cortos. También se presenta esta característica en un número de gimnospermas y en muy pocas angiospermas arbóreas siempreverdes. El estudio de 719 especies de angiospermas arbóreas (602 deciduas y 117 siempreverdes demostró que la

  15. Invasive species as drivers of evolutionary change: cane toads in tropical Australia.

    Science.gov (United States)

    Shine, Richard

    2012-02-01

    The arrival of an invasive species can have wide-ranging ecological impacts on native taxa, inducing rapid evolutionary responses in ways that either reduce the invader's impact or exploit the novel opportunity that it provides. The invasion process itself can cause substantial evolutionary shifts in traits that influence the invader's dispersal rate (via both adaptive and non-adaptive mechanisms) and its ability to establish new populations. I briefly review the nature of evolutionary changes likely to be set in train by a biological invasion, with special emphasis on recent results from my own research group on the invasion of cane toads (Rhinella marina) through tropical Australia. The toads' invasion has caused evolutionary changes both in the toads and in native taxa. Many of those changes are adaptive, but others may result from non-adaptive evolutionary processes: for example, the evolved acceleration in toad dispersal rates may be due to spatial sorting of dispersal-enhancing genes, rather than fitness advantages to faster-dispersing individuals. Managers need to incorporate evolutionary dynamics into their conservation planning, because biological invasions can affect both the rates and the trajectories of evolutionary change.

  16. Evolutionary biology today and the call for an extended synthesis.

    Science.gov (United States)

    Futuyma, Douglas J

    2017-10-06

    Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an 'extended evolutionary synthesis'. 'Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected 'process' of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation

  17. Evolutionary lessons from California plant phylogeography

    Science.gov (United States)

    Sork, Victoria L.; Chen, Jin-Ming

    2016-01-01

    Phylogeography documents the spatial distribution of genetic lineages that result from demographic processes, such as population expansion, population contraction, and gene movement, shaped by climate fluctuations and the physical landscape. Because most phylogeographic studies have used neutral markers, the role of selection may have been undervalued. In this paper, we contend that plants provide a useful evolutionary lesson about the impact of selection on spatial patterns of neutral genetic variation, when the environment affects which individuals can colonize new sites, and on adaptive genetic variation, when environmental heterogeneity creates divergence at specific loci underlying local adaptation. Specifically, we discuss five characteristics found in plants that intensify the impact of selection: sessile growth form, high reproductive output, leptokurtic dispersal, isolation by environment, and the potential to evolve longevity. Collectively, these traits exacerbate the impact of environment on movement between populations and local selection pressures—both of which influence phylogeographic structure. We illustrate how these unique traits shape these processes with case studies of the California endemic oak, Quercus lobata, and the western North American lichen, Ramalina menziesii. Obviously, the lessons we learn from plant traits are not unique to plants, but they highlight the need for future animal, plant, and microbe studies to incorporate its impact. Modern tools that generate genome-wide sequence data are now allowing us to decipher how evolutionary processes affect the spatial distribution of different kinds of genes and also to better model future spatial distribution of species in response to climate change. PMID:27432984

  18. Evolutionary explanations for natural language: criteria from evolutionary biology

    NARCIS (Netherlands)

    Zuidema, W.; de Boer, B.

    2008-01-01

    Theories of the evolutionary origins of language must be informed by empirical and theoretical results from a variety of different fields. Complementing recent surveys of relevant work from linguistics, animal behaviour and genetics, this paper surveys the requirements on evolutionary scenarios that

  19. Using Evolutionary Theory to Guide Mental Health Research.

    Science.gov (United States)

    Durisko, Zachary; Mulsant, Benoit H; McKenzie, Kwame; Andrews, Paul W

    2016-03-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating "normally" (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. © The Author(s) 2016.

  20. Path Following Control of the Underactuated USV Based On the Improved Line-of-Sight Guidance Algorithm

    Directory of Open Access Journals (Sweden)

    Liu Tao

    2017-03-01

    Full Text Available The path following control problem of the underactuated unmanned surface vessel (USV is studied in this paper. An improved line-of-sight (LOS guidance algorithm is proposed which can adjust adaptively based on the path following error. The global asymptotically stable path following controller is designed based on the nonlinear backstepping method and the Lyapunov stability theory. Firstly, the USV path following error model is established in the Serret-Frenet (SF coordinate frame. The path following error in the inertial coordinate frame is transformed into the SF coordinate frame, which is used to define the path following control problem. Secondly, inspired by the traditional LOS guidance algorithm, the longitudinal path following error in the SF coordinate frame is introduced into the improved LOS guidance algorithm. This allows the algorithm to adjust adaptively to the desired path. Thirdly, in order to solve the underactuated problem of the USV path following control system, the tangential velocity of the desired path is designed as a virtual input. The underactuated problem is converted to a virtual fully actuated problem by designing the virtual control law for the tangential velocity. Finally, by combining backstepping design principles and the Lyapunov stability theory, the longitudinal thrust control law and the yaw torque control law are designed for the underactuated USV. Meanwhile, the global asymptotic stability of the path following error is proved. Simulation experiments demonstrate the effectiveness and reliability of the improved LOS guidance algorithm and the path following controller.