WorldWideScience

Sample records for evolution driving forces

  1. Solar Radiation as Driving Force In Early Evolution

    Science.gov (United States)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    2002-01-01

    Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.

  2. Autoimmunity as a Driving Force of Cognitive Evolution

    Directory of Open Access Journals (Sweden)

    Serge Nataf

    2017-10-01

    Full Text Available In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated “brain superautoantigens” theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to “neuroimmune co-pathologies” i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific

  3. Driving Forces of Plate Tectonics and Evolution of the Oceanic Lithosphere and Asthenosphere

    Science.gov (United States)

    Forsyth, D. W.

    2017-12-01

    As plate tectonics became established as an excellent kinematic description of the relative motions of different blocks of the Earth's lithosphere, many investigators also began exploring the forces involved in driving the plate motions. Because the plates move at nearly constant velocities over long periods of time and inertial terms are unimportant, driving forces must always be balanced by resisting forces in a way that regulates the velocities. Forsyth and Uyeda (1975) incorporated the balancing of torques on the individual plates to help constrain the relative importance of the driving and resisting forces, as parameterized in a way based on prior model investigations of individual parts of the convecting system. We found that the primary driving force was sinking of subducting lithosphere at trenches, balanced largely by viscous resisting forces in the sub-asthenospheric mantle; that viscous drag beneath the oceanic plates was negligible; and that mid-ocean ridges provided a relatively small push. One of the early questions was whether there was buoyant upwelling on a large scale beneath mid-ocean ridges as part of a whole mantle convection system with subduction of the plates representing the downwelling limb. If so, then it would be likely that the plates were just riding on top of large convection cells. Seismic tomography has demonstrated that, on average, there are no deep roots beneath mid-ocean ridges, so that active, buoyant upwelling from the deep mantle does not exist beneath spreading centers. However, more recent tomographic studies have found asymmetry of the shear velocity structure beneath ridges in some areas, pointing to a smaller scale of active convection in the shallow mantle perhaps induced by melt retention buoyancy or the local effects of ridge/hotspot interaction.

  4. Gravity: one of the driving forces for evolution.

    Science.gov (United States)

    Volkmann, D; Baluska, F

    2006-12-01

    Mechanical load is 10(3) larger for land-living than for water-living organisms. As a consequence, antigravitational material in form of compound materials like lignified cell walls in plants and mineralised bones in animals occurs in land-living organisms preferentially. Besides cellulose, pectic substances of plant cell walls seem to function as antigravitational material in early phases of plant evolution and development. A testable hypothesis including vesicular recycling processes into the tensegrity concept is proposed for both sensing of gravitational force and responding by production of antigravitational material at the cellular level.

  5. Empirical Validation of a Hypothesis of the Hormetic Selective Forces Driving the Evolution of Longevity Regulation Mechanisms

    Directory of Open Access Journals (Sweden)

    Alejandra Gomez-Perez

    2016-12-01

    Full Text Available Exogenously added lithocholic bile acid and some other bile acids slow down yeast chronological aging by eliciting a hormetic stress response and altering mitochondrial functionality. Unlike animals, yeast cells do not synthesize bile acids. We therefore hypothesized that bile acids released into an ecosystem by animals may act as interspecies chemical signals that generate selective pressure for the evolution of longevity regulation mechanisms in yeast within this ecosystem. To empirically verify our hypothesis, in this study we carried out a 3-step process for the selection of long-lived yeast species by a long-term exposure to exogenous lithocholic bile acid. Such experimental evolution yielded 20 long-lived mutants, 3 of which were capable of sustaining their considerably prolonged chronological lifespans after numerous passages in medium without lithocholic acid. The extended longevity of each of the 3 long-lived yeast species was a dominant polygenic trait caused by mutations in more than two nuclear genes. Each of the 3 mutants displayed considerable alterations to the age-related chronology of mitochondrial respiration and showed enhanced resistance to chronic oxidative, thermal and osmotic stresses. Our findings empirically validate the hypothesis suggesting that hormetic selective forces can drive the evolution of longevity regulation mechanisms within an ecosystem.

  6. Microorganism and filamentous fungi drive evolution of plant synapses.

    Science.gov (United States)

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell-cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.

  7. Chemical driving force for rafting in superalloys

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1997-08-15

    Full Text Available The author provides a brief overview of the chemical driving forces for rafting in superalloys. Until recently, all theories of the driving force for rafting have considered the compositions of the two phases to be fixed, although accepting...

  8. Glenohumeral contact force during flat and topspin tennis forehand drives.

    Science.gov (United States)

    Blache, Yoann; Creveaux, Thomas; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle

    2017-03-01

    The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.

  9. Mining spatial information to investigate the evolution of karst rocky desertification and its human driving forces in Changshun, China.

    Science.gov (United States)

    Xu, Erqi; Zhang, Hongqi; Li, Mengxian

    2013-08-01

    The processes of karst rocky desertification (KRD) have been found to cause the most severe environmental degradation in southwestern China. Understanding the driving forces that cause KRD is essential for managing and restoring the areas that it impacts. Studies of the human driving forces of KRD are limited to the county level, a specific administrative unit in China; census data are acquired at this scale, which can lead to scale biases. Changshun County is studied here as a representative area and anthropogenic influences in the county are accounted for by using Euclidean distances for the proximity to roads and settlements. We propose a standard coefficient of human influence (SOI) that standardizes the Euclidean distances for different KRD transformations to compare the effects of human activities in different areas. In Changshun County, the individual influences of roads and settlements share similar characteristics. The SOIs of improved KRD transformation types are almost negative, but the SOIs of deteriorated types are nearly positive except for one form of KRD turning to the extremely severe KRD. The results indicated that the distribution and evolution of the KRD areas from 2000 to 2010 in Changshun were affected positively by human activities (e.g., KRD restoration projects) and also negatively (e.g., by intense and irrational land use). Our results demonstrate that the spatial techniques and SOI used in this study can effectively incorporate information concerning human influences and internal KRD transformations. This provides a suitable approach for studying the relationships between human activities and KRD processes at fine scales. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Driving Force Filtering and Driving Mechanism Analysis of Urban Agricultural Development in Weifang County, China

    Directory of Open Access Journals (Sweden)

    SUI Fei-fei

    2016-03-01

    Full Text Available As an agricultural nation, the agricultural landscape is the basic appearance and existence in China, but the common existence often be neglected and contempted. As a new type of design and ideology, the development of urban agricultural landscape will greatly affect the texture and structure of the urban space. According to the urban agricultural production data and the socio-economic data of Weifang County, a set of evaluation index system that could analyze quantitatively the driving force of urban agricultural production changes and the internal drive mechanism was built. The original driving force indicators of economy, society, resources and environment from the time-series were chosen, and then 15 driving forces from the original driving forces by correlation analysis and principal component analysis were selected. The degree of influence was analyzed and the driving forces model by means of partial least squares(PLS was built. The results demonstrated that the factors greatly influenced the increase of urban agricultural output value in Weifang County were per capita net income of rural residents, agricultural machinery total power, effective irrigation area, centralized treatment rate of urban sewage, with the driving exponents 0.2509, 0.1019, 0.1655, 0.1332, respectively. The negative influence factor was the use amount of agricultural plastic film and the driving exponent was-0.2146. The research provides a reference for the development of urban agriculture, as well as a reference for the related study.

  11. Solvent driving force ensures fast formation of a persistent and well-separated radical pair in plant cryptochrome

    DEFF Research Database (Denmark)

    Lüdemann, Gesa; Solov'yov, Ilia; Kubar, Tomás

    2015-01-01

    upon the electron transfer. This approach allows us to follow the time evolution of the electron transfer in an unbiased fashion and to reveal the molecular driving force which ensures fast electron transfer in cryptochrome guaranteeing formation of a persistent radical pair suitable...

  12. Reconstruction of driving forces through recurrence plots

    International Nuclear Information System (INIS)

    Tanio, Masaaki; Hirata, Yoshito; Suzuki, Hideyuki

    2009-01-01

    We consider the problem of reconstructing one-dimensional driving forces only from the observations of driven systems. We extend the approach presented in a seminal paper [M.C. Casdagli, Physica D 108 (1997) 12] and propose a method that is robust and has wider applicability. By reinterpreting the work of Thiel et al. [M. Thiel, M.C. Romano, J. Kurths, Phys. Lett. A 330 (2004) 343], we formulate the reconstruction problem as a combinatorial optimization problem and relax conditions by assuming that a driving force is continuous. The method is demonstrated by using a tent map driven by an external force.

  13. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    Science.gov (United States)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  14. Remark on the role of the driving force in BWR instability

    International Nuclear Information System (INIS)

    Dykin, V.; Pazsit, I.

    2009-01-01

    Simple models of BWR instability, used e.g. in understanding the role of the various oscillation modes in the overall stability of the plant, assume that each oscillation mode can be described by a second order system (a damped harmonic oscillator) driven by a white noise driving force. Change of the decay ratio (DR) of the observed signal is, as a rule, associated with the changing of the parameters of the damped oscillator, mainly its damping coefficient, and is interpreted in terms of the change of the stability of the system. However, conceptually, one cannot exclude cases when the change of the response of a driven damped oscillator is due to the change of the properties of the driving force. In this work we investigate the effect of a non-white driving force on the behaviour of the system. A question of interest is how changes of the spectrum of the driving force influence the observed autocorrelation function (ACF) of the resulting signal. Hence we calculate the response of a damped harmonic oscillator driven by a non-white driving force, corresponding to the reactivity effect of propagating density fluctuations in two-phase flow. It is shown how in some special cases such a driving force, when interpreting the neutron noise as if induced by a white noise driving source, can lead to an erroneous conclusion regarding the stability of the system. It is also concluded that in the practically interesting cases the effect of the coloured driving force, arising from propagating density fluctuations, is negligible.

  15. Processes and driving forces in changing cultural landscapes across Europe

    DEFF Research Database (Denmark)

    Bürgi, Matthias; Bieling, Claudia; Von Hackwitz, Kim

    2017-01-01

    Context: Cultural landscapes evolve over time. However, the rate and direction of change might not be in line with societal needs and more information on the forces driving these changes are therefore needed. Objectives: Filling the gap between single case studies and meta-analyses, we present...... perceived landscape changes, and remembered driving forces. Land cover and landscape changes were analysed regarding change, conversions and processes. For all case study areas, narratives on mapped land cover change, perceived landscape changes and driving forces were compiled. Results: Despite a very high...... diversity in extent, direction and rates of change, a few dominant processes and widespread factors driving the changes could be identified in the six case study areas, i.e. access and infrastructure, political shifts, labor market, technological innovations, and for the more recent period climate change...

  16. The Secret Driving Force Behind Mongolia’s Successful Democracy

    Science.gov (United States)

    2016-03-01

    the nation’s democracy movement its earliest stages. Courtesy of the Democratic Union of Mongolia PRISM 6, no. 1 FROM THE FIELD | 141 The Secret Driving...assistance and trade. Our state budget PRISM 6, no. 1 FROM THE FIELD | 143 THE SECRET DRIVING FORCE BEHIND MONGOLIA’S SUCCESSFUL DEMOCRACY collapsed; we...O yungerel Tsedevdam ba (2006) PRISM 6, no. 1 FROM THE FIELD | 145 THE SECRET DRIVING FORCE BEHIND MONGOLIA’S SUCCESSFUL DEMOCRACY significantly as

  17. A guide for statewide impaired-driving task forces.

    Science.gov (United States)

    2009-09-01

    The purpose of the guide is to assist State officials and other stakeholders who are interested in establishing an : Impaired-Driving Statewide Task Force or who are exploring ways to improve their current Task Force. The guide : addresses issues suc...

  18. Driving forces for texture transformation in thin Ag films

    International Nuclear Information System (INIS)

    Ellis, Elizabeth A.; Chmielus, Markus; Lin, Ming-Tzer; Joress, Howie; Visser, Kyle; Woll, Arthur; Vinci, Richard P.; Brown, Walter L.; Baker, Shefford P.

    2016-01-01

    The well-known thickness-dependent (111)-to-(100) texture transformation in thin FCC films is usually attributed to a competition between interface and strain energies. In this model, thin films retain their (111) texture due to the lower energy of the (111) interface, while thick films transform to (100) due to the lower stiffness and thus strain energy of a (100) film. However, recent work has called this model into question, suggesting that neither the stress nor the interface energy play a dominant role in texture transformation. We investigated the driving forces involved in this transformation by using a bulge test apparatus to induce different stresses in thin Ag films under identical annealing conditions. In situ synchrotron XRD measurements show the change in texture during annealing, and reveal that applied stresses have no effect on the transformation. Stress analysis shows that differences in driving forces for texture transformation due to applied bulge pressure were significant (≈200 kJ/m 3 ), suggesting that a different, much larger driving force must be responsible. Reduction in defect energy has been proposed as an alternative. However, vacancy and dislocation densities must be exceptionally high to significantly exceed the strain energy and do not provide obvious orientation selection mechanisms. Nanotwins in reported densities are shown to provide greater driving force (≈1000 kJ/m 3 ) and may account for orientation selection. The large difference between the calculated strain and defect energies and the driving force for grain growth (21,100 kJ/m 3 ) casts doubt on the applicability of a simple thermodynamic model of texture transformation.

  19. SINEs as driving forces in genome evolution.

    Science.gov (United States)

    Schmitz, J

    2012-01-01

    SINEs are short interspersed elements derived from cellular RNAs that repetitively retropose via RNA intermediates and integrate more or less randomly back into the genome. SINEs propagate almost entirely vertically within their host cells and, once established in the germline, are passed on from generation to generation. As non-autonomous elements, their reverse transcription (from RNA to cDNA) and genomic integration depends on the activity of the enzymatic machinery of autonomous retrotransposons, such as long interspersed elements (LINEs). SINEs are widely distributed in eukaryotes, but are especially effectively propagated in mammalian species. For example, more than a million Alu-SINE copies populate the human genome (approximately 13% of genomic space), and few master copies of them are still active. In the organisms where they occur, SINEs are a challenge to genomic integrity, but in the long term also can serve as beneficial building blocks for evolution, contributing to phenotypic heterogeneity and modifying gene regulatory networks. They substantially expand the genomic space and introduce structural variation to the genome. SINEs have the potential to mutate genes, to alter gene expression, and to generate new parts of genes. A balanced distribution and controlled activity of such properties is crucial to maintaining the organism's dynamic and thriving evolution. Copyright © 2012 S. Karger AG, Basel.

  20. Forces that Drive Nanoscale Self-assembly on Solid Surfaces

    International Nuclear Information System (INIS)

    Suo, Z.; Lu, W.

    2000-01-01

    Experimental evidence has accumulated in the recent decade that nanoscale patterns can self-assemble on solid surfaces. A two-component monolayer grown on a solid surface may separate into distinct phases. Sometimes the phases select sizes about 10 nm, and order into an array of stripes or disks. This paper reviews a model that accounts for these behaviors. Attention is focused on thermodynamic forces that drive the self-assembly. A double-welled, composition-dependent free energy drives phase separation. The phase boundary energy drives phase coarsening. The concentration-dependent surface stress drives phase refining. It is the competition between the coarsening and the refining that leads to size selection and spatial ordering. These thermodynamic forces are embodied in a nonlinear diffusion equation. Numerical simulations reveal rich dynamics of the pattern formation process. It is relatively fast for the phases to separate and select a uniform size, but exceedingly slow to order over a long distance, unless the symmetry is suitably broken

  1. Controlling Casimir force via coherent driving field

    Science.gov (United States)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  2. OSHA Laboratory Standard: Driving Force for Laboratory Safety!

    Science.gov (United States)

    Roy, Kenneth R.

    2000-01-01

    Discusses the Occupational Safety and Health Administration's (OSHA's) Laboratory Safety Standards as the major driving force in establishing and maintaining a safe working environment for teachers and students. (Author)

  3. Evolution of wave turbulence under "gusty" forcing.

    Science.gov (United States)

    Annenkov, S Y; Shrira, V I

    2011-09-09

    We consider nonlinear evolution of a random wave field under gusty forcing, fluctuating around a constant mean. Here the classical wave turbulence theory that assumes a proximity to stationarity is not applicable. We show by direct numerical simulation that the self-similarity of wave field evolution survives under fluctuating forcing. The wave field statistical characteristics averaged over fluctuations of forcing evolve as if there were a certain constant "effective wind." The results justify the use of the kinetic equations with forcing averaged over gusts as a good first approximation.

  4. Salticid predation as one potential driving force of ant mimicry in jumping spiders

    Science.gov (United States)

    Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min

    2011-01-01

    Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods. PMID:20961898

  5. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    Science.gov (United States)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  6. On Optimizing Steering Performance of Multi-axle Vehicle Based on Driving Force Control

    Directory of Open Access Journals (Sweden)

    Wu Zhicheng

    2017-01-01

    Full Text Available The steering performance of multi-axle vehicle with independent driving system is affected by the distribution of the wheel driving force. A nonlinear vehicle dynamics model including magic formula tire model for describing 11 DoF four-axle vehicle with dual-front-axle-steering (DFAS system was presented. The influence of different driving force distribution scheme on the steering performance of the vehicle was analyzed. A control strategy for improving the steady response and transient response of the vehicle steering is proposed. The results show: For the steady response, setting different drive force for internal and external wheels according to the actual steering characteristics of the vehicle can effectively improve its steering characteristics; For the transient response, adopting the zero sideslip angle control strategy and using the PID control algorithm to control the driving force of the outside wheel of tear-two-axle, under angle step input, the vehicle sideslip angle can quickly stabilize to 0 and yaw rate also significantly decreases.

  7. Information driving force and its application in agent-based modeling

    Science.gov (United States)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2018-04-01

    Exploring the scientific impact of online big-data has attracted much attention of researchers from different fields in recent years. Complex financial systems are typical open systems profoundly influenced by the external information. Based on the large-scale data in the public media and stock markets, we first define an information driving force, and analyze how it affects the complex financial system. The information driving force is observed to be asymmetric in the bull and bear market states. As an application, we then propose an agent-based model driven by the information driving force. Especially, all the key parameters are determined from the empirical analysis rather than from statistical fitting of the simulation results. With our model, both the stationary properties and non-stationary dynamic behaviors are simulated. Considering the mean-field effect of the external information, we also propose a few-body model to simulate the financial market in the laboratory.

  8. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  9. Delegation to automaticity: the driving force for cognitive evolution?

    Science.gov (United States)

    Shine, J M; Shine, R

    2014-01-01

    The ability to delegate control over repetitive tasks from higher to lower neural centers may be a fundamental innovation in human cognition. Plausibly, the massive neurocomputational challenges associated with the mastery of balance during the evolution of bipedality in proto-humans provided a strong selective advantage to individuals with brains capable of efficiently transferring tasks in this way. Thus, the shift from quadrupedal to bipedal locomotion may have driven the rapid evolution of distinctive features of human neuronal functioning. We review recent studies of functional neuroanatomy that bear upon this hypothesis, and identify ways to test our ideas.

  10. Driving reconnection in sheared magnetic configurations with forced fluctuations

    Science.gov (United States)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  11. Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces.

    Directory of Open Access Journals (Sweden)

    Yonatan Berman

    Full Text Available Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors' long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI, an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors-the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress.

  12. [The motive force of evolution based on the principle of organismal adjustment evolution.].

    Science.gov (United States)

    Cao, Jia-Shu

    2010-08-01

    From the analysis of the existing problems of the prevalent theories of evolution, this paper discussed the motive force of evolution based on the knowledge of the principle of organismal adjustment evolution to get a new understanding of the evolution mechanism. In the guide of Schrodinger's theory - "life feeds on negative entropy", the author proposed that "negative entropy flow" actually includes material flow, energy flow and information flow, and the "negative entropy flow" is the motive force for living and development. By modifying my own theory of principle of organismal adjustment evolution (not adaptation evolution), a new theory of "regulation system of organismal adjustment evolution involved in DNA, RNA and protein interacting with environment" is proposed. According to the view that phylogenetic development is the "integral" of individual development, the difference of negative entropy flow between organisms and environment is considered to be a motive force for evolution, which is a new understanding of the mechanism of evolution. Based on such understanding, evolution is regarded as "a changing process that one subsystem passes all or part of its genetic information to the next generation in a larger system, and during the adaptation process produces some new elements, stops some old ones, and thereby lasts in the larger system". Some other controversial questions related to evolution are also discussed.

  13. Multiregional Input-Output Analysis of Spatial-Temporal Evolution Driving Force for Carbon Emissions Embodied in Interprovincial Trade and Optimization Policies: Case Study of Northeast Industrial District in China.

    Science.gov (United States)

    Cheng, Hao; Dong, Suocheng; Li, Fujia; Yang, Yang; Li, Shantong; Li, Yu

    2018-01-02

    In the counties with rapid economy and carbon emissions (CEs) growth, CEs embodied in interprovincial trade (CEs-PT) significantly impacts the CEs amount and structure and represents a key issue to consider in CEs reduction policies formulation. This study applied EEBT and two-stage SDA model to analyze the characteristics and driving force of spatial-temporal evolution for net CEs-PT outflow in the Northeast Industrial District of China (NID). We found that, during 1997-2007, the net CEs-PT flowed out from NID to 16 south and east provinces, then to 23 provinces all over China, and its amount has increased 216.798Mt (by 211.67% per year). The main driving forces are technology and demand (further decomposed into structure and scale matrix); the contribution are 71.6418 Mt and 145.1562 Mt. Then, we constructed coupling relationship model and took the top three industries with the greatest net CEs-PT outflow (farming, forestry, animal husbandry and fisheries, electricity and heat production and supply, petroleum processing, coking, and nuclear fuel processing) as examples, adjusted the interprovincial trade constructions, scales, and objects, to reduce the CEs-PT with lower costs, greater effect, and more equitability. The achievement could provide reference for formulating CEs reduction policies for similar areas in the world characterized by rapid growth of economy and CEs.

  14. 多倍化是杂草起源与演化的驱动力%Polyploidization, one of the driving forces for weed origin and evolution

    Institute of Scientific and Technical Information of China (English)

    李君; 强胜

    2012-01-01

    杂草及外来植物入侵给全球经济发展及生态环境都带来了严重危害,研究其起源与演化将有助于它们的管理与控制.多倍化是植物进化的主要驱动力量,然而多倍化在杂草起源与演化中的作用还停留在种类统计以及零碎的研究案例证据上.本文综述了植物多倍体基因组结构及基因表达的研究进展以及染色体加倍后的生态学效应.多倍化促进了基因组水平与表型水平的进化,影响物种或群体生存竞争能力和繁殖扩展能力,提高物种或群体生态适应性.这一遗传过程可能促使外来种在新的生境中的成功入侵进而转变为杂草,并提出重视开展对杂草及外来入侵植物的多倍化研究的设想.%Weeds and alien invasive plants have caused tremendously ecological and socio-economic damages and loses worldwide, therefore,it is important to study origin and evolution of weeds for their effective management. Polyploidy is believed to be the main driving force of plant evolution, however, its playing the role in weeds origin and evolution is poorly understood. In this paper we review the progresses on the polyploid genome structure and gene expression and the ecological consequences of chromosome doubling. The polyploidy promotes the evolution of genomic and phenotype, affects the species survival competition, reproduction and expansion capability, and improves the ecological adaptability. Polyploidization can drive the successful invasion of invasive alien species and consequently evolution into a weed in new habitats. In addition, it is proposed that the research works on invasive alien plants may focus on polyploidization function in weed evolution and alien plant invasion.

  15. Driving forces and barriers for environmental technology development

    International Nuclear Information System (INIS)

    2005-01-01

    Driving forces and barriers behind development and usage of environmental technology is discussed, and also whether there are certain characteristics related to environmental innovations compared to other innovations in general. The development of environmental technology is in principle dominated by the same drivers and barriers as any other technology, but the order and strength of the various factors may be different. This examination as well as other empirical studies shows that regulations play a greater part for environmental technology than 'pure market forces'. To many participants it is important to be one step ahead of the regulations, i.e. the expected regulations are equally important as the factual ones in driving the technology development. Players in the business community express that it is important that the authorities cooperate with them when introducing new regulations. This will increase acceptance for the regulations and facilitate the necessary adjustments. The most important barrier in the development and use of the technologies studied is probably the lack of demand

  16. Measuring Industry Coagglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Newman, Carol; Tarp, Finn

    2015-01-01

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We construct a new coagglomeration index based purely on the location of firms. We...... underlying stories at work. We conclude that in conducting analyses of this kind giving consideration to the source of agglomeration economies, employees or entrepreneurs, and finding an appropriate measure for agglomeration, are both crucial to the process of identifying agglomerative forces....

  17. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor.

    Science.gov (United States)

    Dai, Chenyun; Zheng, Yang; Hu, Xiaogang

    2018-01-01

    Robotic assistant-based therapy holds great promise to improve the functional recovery of stroke survivors. Numerous neural-machine interface techniques have been used to decode the intended movement to control robotic systems for rehabilitation therapies. In this case report, we tested the feasibility of estimating finger extensor muscle forces of a stroke survivor, based on the decoded descending neural drive through population motoneuron discharge timings. Motoneuron discharge events were obtained by decomposing high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The neural drive was extracted from the normalized frequency of the composite discharge of the motoneuron pool. The neural-drive-based estimation was also compared with the classic myoelectric-based estimation. Our results showed that the neural-drive-based approach can better predict the force output, quantified by lower estimation errors and higher correlations with the muscle force, compared with the myoelectric-based estimation. Our findings suggest that the neural-drive-based approach can potentially be used as a more robust interface signal for robotic therapies during the stroke rehabilitation.

  18. Driving forces in the Greenlandic urbanization

    DEFF Research Database (Denmark)

    Hendriksen, Kåre

    2014-01-01

    Generally urbanization is recognised as a natural development where the population is mowing into the larger towns driven by e.g. better job opportunities, larger product and service supply and better education and health services, and it is often argued that this is also the driving forces...... support and with limited export oriented value creation. It will be disused how the previous and present urbanization interact with a sustainable development and what is the core prerequisites for sustainable towns and settlements....

  19. An introductory handbook for state task forces to combat drunk driving.

    Science.gov (United States)

    1983-01-01

    In June 1982 Governor Robb created a task force to identify and assess efforts under way in Virginia to address the problem of drunken driving and to make recommendations. This booklet was prepared to assist the task force in its deliberations.

  20. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2.

    Science.gov (United States)

    Ku, Jason T; Lan, Ethan I

    2018-03-01

    Using engineered photoautotrophic microorganisms for the direct chemical synthesis from CO 2 is an attractive direction for both sustainability and CO 2 mitigation. However, the behaviors of non-native metabolic pathways may be difficult to control due to the different intracellular contexts between natural and heterologous hosts. While most metabolic engineering efforts focus on strengthening driving forces in pathway design to favor biochemical production in these organisms, excessive driving force may be detrimental to product biosynthesis due to imbalanced cellular intermediate distribution. In this study, an ATP-hydrolysis based driving force module was engineered into cyanobacterium Synechococcus elongatus PCC 7942 to produce 3-hydroxybutyrate (3HB), a valuable chemical feedstock for the synthesis of biodegradable plastics and antibiotics. However, while the ATP driving force module is effective for increasing product formation, uncontrolled accumulation of intermediate metabolites likely led to metabolic imbalance and thus to cell growth inhibition. Therefore, the ATP driving force module was reengineered by providing a reversible outlet for excessive carbon flux. Upon expression of this balanced ATP driving force module with 3HB biosynthesis, engineered strain produced 3HB with a cumulative titer of 1.2 g/L, a significant increase over the initial strain. This result highlighted the importance of pathway reversibility as an effective design strategy for balancing driving force and intermediate accumulation, thereby achieving a self-regulated control for increased net flux towards product biosynthesis. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Driving-forces model on individual behavior in scenarios considering moving threat agents

    Science.gov (United States)

    Li, Shuying; Zhuang, Jun; Shen, Shifei; Wang, Jia

    2017-09-01

    The individual behavior model is a contributory factor to improve the accuracy of agent-based simulation in different scenarios. However, few studies have considered moving threat agents, which often occur in terrorist attacks caused by attackers with close-range weapons (e.g., sword, stick). At the same time, many existing behavior models lack validation from cases or experiments. This paper builds a new individual behavior model based on seven behavioral hypotheses. The driving-forces model is an extension of the classical social force model considering scenarios including moving threat agents. An experiment was conducted to validate the key components of the model. Then the model is compared with an advanced Elliptical Specification II social force model, by calculating the fitting errors between the simulated and experimental trajectories, and being applied to simulate a specific circumstance. Our results show that the driving-forces model reduced the fitting error by an average of 33.9% and the standard deviation by an average of 44.5%, which indicates the accuracy and stability of the model in the studied situation. The new driving-forces model could be used to simulate individual behavior when analyzing the risk of specific scenarios using agent-based simulation methods, such as risk analysis of close-range terrorist attacks in public places.

  2. Position and force control of a vehicle with two or more steerable drive wheels

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Unseren, M.A.

    1992-10-01

    When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach to the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.

  3. Vehicle Dynamics Control of In-wheel Electric Motor Drive Vehicles Based on Averaging of Tire Force Usage

    Science.gov (United States)

    Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao

    For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.

  4. Human health and the water environment: using the DPSEEA framework to identify the driving forces of disease.

    Science.gov (United States)

    Gentry-Shields, Jennifer; Bartram, Jamie

    2014-01-15

    There is a growing awareness of global forces that threaten human health via the water environment. A better understanding of the dynamic between human health and the water environment would enable prediction of the significant driving forces and effective strategies for coping with or preventing them. This report details the use of the Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA) framework to explore the linkage between water-related diseases and their significant driving forces. The DPSEEA frameworks indicate that a select group of driving forces, including population growth, agriculture, infrastructure (dams and irrigation), and climate change, is at the root cause of key global disease burdens. Construction of the DPSEEA frameworks also allows for the evaluation of public health interventions. Sanitation was found to be a widely applicable and effective intervention, targeting the driver/pressure linkage of most of the water-related diseases examined. Ultimately, the DPSEEA frameworks offer a platform for constituents in both the health and environmental fields to collaborate and commit to a common goal targeting the same driving forces. © 2013.

  5. WP/084 Measuring Industry Agglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Tarp, Finn; Newman, Carol

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance of transp......Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance...... of transport costs, labour market pooling, and technology transfer for agglomeration processes. We contrast this analysis with insights from existing measures in the literature and find very different underlying stories at work. An exceptionally rich set of data from Vietnam makes us confident that our measure...

  6. A Study of the Effect of the Fringe Fields on the Electrostatic Force in Vertical Comb Drives

    Directory of Open Access Journals (Sweden)

    Else Gallagher

    2014-10-01

    Full Text Available The equation that describes the relationship between the applied voltage and the resulting electrostatic force within comb drives is often used to assist in choosing the dimensions for their design. This paper re-examines how some of these dimensions—particularly the cross-sectional dimensions of the comb teeth—affect this relationship in vertical comb drives. The electrostatic forces in several vertical comb drives fabricated for this study were measured and compared to predictions made with four different mathematical models in order to explore the amount of complexity required within a model to accurately predict the electrostatic forces in the comb drives.

  7. Modeling the Evolution of Female Meiotic Drive in Maize

    Directory of Open Access Journals (Sweden)

    David W. Hall

    2018-01-01

    Full Text Available Autosomal drivers violate Mendel’s law of segregation in that they are overrepresented in gametes of heterozygous parents. For drivers to be polymorphic within populations rather than fixing, their transmission advantage must be offset by deleterious effects on other fitness components. In this paper, we develop an analytical model for the evolution of autosomal drivers that is motivated by the neocentromere drive system found in maize. In particular, we model both the transmission advantage and deleterious fitness effects on seed viability, pollen viability, seed to adult survival mediated by maternal genotype, and seed to adult survival mediated by offspring genotype. We derive general, biologically intuitive conditions for the four most likely evolutionary outcomes and discuss the expected evolution of autosomal drivers given these conditions. Finally, we determine the expected equilibrium allele frequencies predicted by the model given recent estimates of fitness components for all relevant genotypes and show that the predicted equilibrium is within the range observed in maize land races for levels of drive at the low end of what has been observed.

  8. Emission of greenhouse gases 1990-2010. Trends and driving forces

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    Emissions of greenhouse gases in Norway from 1990-2010 - trends and driving forces, a report that presents emission trends in Norway with the analysis of the main drivers and trends, and a review and analysis of the effectiveness of implemented measures.(Author)

  9. Effect of a powered drive on pushing and pulling forces when transporting bariatric hospital beds.

    Science.gov (United States)

    Wiggermann, Neal

    2017-01-01

    Powered drives designed to assist with moving hospital beds are commercially available but no studies have evaluated whether they reduce the push and pull forces likely contributing to injury in caregivers. This study measured hand forces of 10 caregivers maneuvering a manual and powered bariatric bed through simulated hospital environments (hallway, elevator, and ramp). Peak push and pull forces exceeded previously established psychophysical limits for all activities with the manual bed. For the powered bed, peak forces were significantly (p pushing did not differ between beds. Powered drive may reduce the risk of injury or the number of caregivers needed for transport. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Technology as a driving force

    International Nuclear Information System (INIS)

    Torvund, T.

    1994-01-01

    The competitiveness of the Norwegian Continental shelf has been put firmly on the agenda in Norway since the report from a working group set up by the Ministry of Industry and Energy was released in February this year. If there is to be secured a long future for oil and gas activities, a reduction in the time and costs used in the projects of the order of 40-50%, without jeopardizing the high safety and environmental standards achieved in Norway. The paper addresses how technology can be a driving force in achieving these aims. But technology alone cannot do the job. Progress and changes in several other areas are also necessary, and the new scenario also calls for improved relations between all actors in the North Sea, authorities, oil companies, contractors and labour unions. 15 figs

  11. Technology as a driving force

    Energy Technology Data Exchange (ETDEWEB)

    Torvund, T [Norsk Hydro A/S (Norway)

    1994-12-31

    The competitiveness of the Norwegian Continental shelf has been put firmly on the agenda in Norway since the report from a working group set up by the Ministry of Industry and Energy was released in February this year. If there is to be secured a long future for oil and gas activities, a reduction in the time and costs used in the projects of the order of 40-50%, without jeopardizing the high safety and environmental standards achieved in Norway. The paper addresses how technology can be a driving force in achieving these aims. But technology alone cannot do the job. Progress and changes in several other areas are also necessary, and the new scenario also calls for improved relations between all actors in the North Sea, authorities, oil companies, contractors and labour unions. 15 figs.

  12. Drive frequency dependent phase imaging in piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Bo Huifeng; Kan Yi; Lu Xiaomei; Liu Yunfei; Peng Song; Wang Xiaofei; Cai Wei; Xue Ruoshi; Zhu Jinsong

    2010-01-01

    The drive frequency dependent piezoresponse (PR) phase signal in near-stoichiometric lithium niobate crystals is studied by piezoresponse force microscopy. It is clearly shown that the local and nonlocal electrostatic forces have a great contribution to the PR phase signal. The significant PR phase difference of the antiparallel domains are observed at the contact resonances, which is related to the electrostatic dominated electromechanical interactions of the cantilever and tip-sample system. Moreover, the modulation voltage induced frequency shift at higher eigenmodes could be attributed to the change of indention force depending on the modulation amplitude with a piezoelectric origin. The PR phase of the silicon wafer is also measured for comparison. It is certificated that the electrostatic interactions are universal in voltage modulated scanning probe microscopy and could be extended to other phase imaging techniques.

  13. A modified synthetic driving force method for molecular dynamics simulation of grain boundary migration

    International Nuclear Information System (INIS)

    Yang, Liang; Li, Saiyi

    2015-01-01

    The synthetic driving force (SDF) molecular dynamics method, which imposes crystalline orientation-dependent driving forces for grain boundary (GB) migration, has been considered deficient in many cases. In this work, we revealed the cause of the deficiency and proposed a modified method by introducing a new technique to distinguish atoms in grains and GB such that the driving forces can be imposed properly. This technique utilizes cross-reference order parameter (CROP) to characterize local lattice orientations in a bicrystal and introduces a CROP-based definition of interface region to minimize interference from thermal fluctuations in distinguishing atoms. A validation of the modified method was conducted by applying it to simulate the migration behavior of Ni 〈1 0 0〉 and Al 〈1 1 2〉 symmetrical tilt GBs, in comparison with the original method. The discrepancies between the migration velocities predicted by the two methods are found to be proportional to their differences in distinguishing atoms. For the Al 〈1 1 2〉 GBs, the modified method predicts a negative misorientation dependency for both the driving pressure threshold for initiating GB movement and the mobility, which agree with experimental findings and other molecular dynamics computations but contradict those predicted using the original method. Last, the modified method was applied to evaluate the mobility of Ni Σ5 〈1 0 0〉 symmetrical tilt GB under different driving pressure and temperature conditions. The results reveal a strong driving pressure dependency of the mobility at relatively low temperatures and suggest that the driving pressure should be as low as possible but large enough to trigger continuous migration.

  14. An arms race between producers and scroungers can drive the evolution of social cognition

    Science.gov (United States)

    2014-01-01

    The “social intelligence hypothesis” states that the need to cope with complexities of social life has driven the evolution of advanced cognitive abilities. It is usually invoked in the context of challenges arising from complex intragroup structures, hierarchies, and alliances. However, a fundamental aspect of group living remains largely unexplored as a driving force in cognitive evolution: the competition between individuals searching for resources (producers) and conspecifics that parasitize their findings (scroungers). In populations of social foragers, abilities that enable scroungers to steal by outsmarting producers, and those allowing producers to prevent theft by outsmarting scroungers, are likely to be beneficial and may fuel a cognitive arms race. Using analytical theory and agent-based simulations, we present a general model for such a race that is driven by the producer–scrounger game and show that the race’s plausibility is dramatically affected by the nature of the evolving abilities. If scrounging and scrounging avoidance rely on separate, strategy-specific cognitive abilities, arms races are short-lived and have a limited effect on cognition. However, general cognitive abilities that facilitate both scrounging and scrounging avoidance undergo stable, long-lasting arms races. Thus, ubiquitous foraging interactions may lead to the evolution of general cognitive abilities in social animals, without the requirement of complex intragroup structures. PMID:24822021

  15. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-01-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsic mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.

  16. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach

    Directory of Open Access Journals (Sweden)

    Amr T. M. Saeb

    2016-01-01

    Full Text Available Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.

  17. Study on electromagnetism force of CARR control rod drive mechanism experimental machine

    International Nuclear Information System (INIS)

    Zhu Xuewei; Zhen Jianxiao; Wang Yulin; Jia Yueguang; Yang Kun; Yin Haozhe

    2015-01-01

    With the aim of acquiring electromagnetic force and electromagnetic field distributions of control rod drive mechanism (CRDM) in China Advanced Research Reactor (CARR), the force analysis on the CRDM was taken. Manufacturing the experimental machine, the electromagnetic force experiment was taken on it. The electromagnetic field and electromagnetic force simulation analyses of experimental machine were taken, working out distribution data of electromagnetic force and magnetic induction intensity distribution curve, and the effects of permanent magnetic field on electromagnetic field and structure parameters on electromagnetic force. The simulation value is accord with experiment value, the research results provide a reference to electromagnetic force study on CRDM in CARR, and also provide a reference to design of the same type CRDM. (authors)

  18. Physical driving force of actomyosin motility based on the hydration effect.

    Science.gov (United States)

    Suzuki, Makoto; Mogami, George; Ohsugi, Hideyuki; Watanabe, Takahiro; Matubayasi, Nobuyuki

    2017-12-01

    We propose a driving force hypothesis based on previous thermodynamics, kinetics and structural data as well as additional experiments and calculations presented here on water-related phenomena in the actomyosin systems. Although Szent-Györgyi pointed out the importance of water in muscle contraction in 1951, few studies have focused on the water science of muscle because of the difficulty of analyzing hydration properties of the muscle proteins, actin, and myosin. The thermodynamics and energetics of muscle contraction are linked to the water-mediated regulation of protein-ligand and protein-protein interactions along with structural changes in protein molecules. In this study, we assume the following two points: (1) the periodic electric field distribution along an actin filament (F-actin) is unidirectionally modified upon binding of myosin subfragment 1 (M or myosin S1) with ADP and inorganic phosphate Pi (M.ADP.Pi complex) and (2) the solvation free energy of myosin S1 depends on the external electric field strength and the solvation free energy of myosin S1 in close proximity to F-actin can become the potential force to drive myosin S1 along F-actin. The first assumption is supported by integration of experimental reports. The second assumption is supported by model calculations utilizing molecular dynamics (MD) simulation to determine solvation free energies of a small organic molecule and two small proteins. MD simulations utilize the energy representation method (ER) and the roughly proportional relationship between the solvation free energy and the solvent-accessible surface area (SASA) of the protein. The estimated driving force acting on myosin S1 is as high as several piconewtons (pN), which is consistent with the experimentally observed force. © 2017 Wiley Periodicals, Inc.

  19. Current Reversal Due to Coupling Between Asymmetrical Driving Force and Ratchet Potential

    International Nuclear Information System (INIS)

    Ai Baoquan; Xie Huizhang; Liu Lianggang

    2006-01-01

    Transport of a Brownian particle moving in a periodic potential is investigated in the presence of an asymmetric unbiased external force. The asymmetry of the external force and the asymmetry of the potential are the two ways of inducing a net current. It is found that the competition of the spatial asymmetry of potential with the temporal asymmetry of the external force leads to the phenomena like current reversal. The competition between the two opposite driving factors is a necessary but not a sufficient condition for current reversals.

  20. Driving forces of main landscape change processes from past 200 years in Central Europe - differences between old democratic and post-socialist countries

    Directory of Open Access Journals (Sweden)

    Skokanová Hana

    2016-03-01

    Full Text Available The article compares and points out differences in driving forces of four main landscape change processes that shaped post-socialist countries and old democratic countries of Central Europe during the last two centuries. Studying landscape change processes and corresponding driving forces helps in understanding patterns of present landscape and can help among others in better prediction of future landscape change trends. Here, the presented results are based on review of scientific articles published in peer-reviewed journals between 2000 and 2014. Driving forces affecting these processes were grouped into four categories. Economic forces drove mainly agricultural intensification; agricultural land abandonment and urbanisation and were pronounced especially in the second half of the 20th century and at the beginning of the 21st century. Technological driving forces affected agricultural intensification especially in the 19th century and the second half of the 20th century while cultural driving forces had the biggest impact on urbanisation at the beginning of the 21st century. Political driving forces affected agricultural intensification, urbanisation as well as agricultural land abandonment and were pronounced mainly during the second half of the 20th century in the post-socialist countries. Political forces in the form of subsidies drove agricultural extensification at the beginning of the 21st century. The drivers for the agricultural intensification as well as urbanisation seem to be similar for both old democratic and post-socialist countries. In contrast, agricultural land abandonment in the old democratic countries was driven by technological, cultural and economic driving forces while in the post-socialist countries the political driving forces were mainly responsible. Changes in systems for subsidies and changes in the agricultural commodity markets are also responsible for different frequencies and rates of extensification of

  1. Smaller beaks for colder winters: Thermoregulation drives beak size evolution in Australasian songbirds.

    Science.gov (United States)

    Friedman, Nicholas R; Harmáčková, Lenka; Economo, Evan P; Remeš, Vladimír

    2017-08-01

    Birds' beaks play a key role in foraging, and most research on their size and shape has focused on this function. Recent findings suggest that beaks may also be important for thermoregulation, and this may drive morphological evolution as predicted by Allen's rule. However, the role of thermoregulation in the evolution of beak size across species remains largely unexplored. In particular, it remains unclear whether the need for retaining heat in the winter or dissipating heat in the summer plays the greater role in selection for beak size. Comparative studies are needed to evaluate the relative importance of these functions in beak size evolution. We addressed this question in a clade of birds exhibiting wide variation in their climatic niche: the Australasian honeyeaters and allies (Meliphagoidea). Across 158 species, we compared species' climatic conditions extracted from their ranges to beak size measurements in a combined spatial-phylogenetic framework. We found that winter minimum temperature was positively correlated with beak size, while summer maximum temperature was not. This suggests that while diet and foraging behavior may drive evolutionary changes in beak shape, changes in beak size can also be explained by the beak's role in thermoregulation, and winter heat retention in particular. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the central Tibetan Plateau and driving force analysis

    Science.gov (United States)

    Song, C.; Sheng, Y.

    2015-12-01

    High-altitude lakes in the Tibetan Plateau (TP) showed strong spatio-temporal variability during past decades. The lake dynamics can be associated with several key factors including lake type, supply of glacial meltwater, local climate variations. It is important to differentiate these factors when analyzing the driving force of lakes dynamics. With a focus on lakes over the Tanggula Mountains of the central TP, this study investigates the temporal evolution patterns of lake area and water level of different types: glacier-fed closed lake, non-glacier-fed closed lake and upstream lake (draining into closed lakes). We collected all available Landsat archive data and quantified the inter-annual variability of lake extents. Results show accelerated expansions of both glacier-fed and non-glacier-fed lakes during 1970s-2013, and different temporal patterns of the two types of lakes: the non-glacier-fed lakes displayed a batch-wise growth pattern, with obvious growth in 2002, 2005 and 2011 and slight changes in other years, while glacier-fed lakes showed steady expanding tendency. The contrasting patterns are confirmed by the distinction of lake level change between the two groups derived from satellite altimetry during 2003-2009. The upstream lakes remained largely stable due to natural drainage regulation. The intermittent expansions for non-glacier-fed lakes were found to be related to excessive precipitation events and positive "precipitation-evaporation". In contrast, glacier-fed lake changes showed weak correlations with precipitation variations, which imply a joint contribution from glacial meltwater to water budgets. A simple estimation reveals that the increased water storage for all of examined lakes contributed from precipitation/evaporation (0.31±0.09 Gt/yr) slightly overweighed the glacial meltwater supply (0.26±0.08 Gt/yr).

  3. Impact assessment of land use planning driving forces on environment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Longgao, E-mail: chenlonggao@163.com [Institute of Land Resources, Jiangsu Normal University (JSNU), Xuzhou 221116 (China); Yang, Xiaoyan [Institute of Land Resources, Jiangsu Normal University (JSNU), Xuzhou 221116 (China); School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116 (China); Chen, Longqian [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116 (China); Li, Long [Department of Geography, Vrije Universiteit Brussel, Brussels 1050 (Belgium)

    2015-11-15

    Land use change may exert a negative impact on environmental quality. A state–impact–state (SIS) model describing a state transform under certain impacts has been integrated into land use planning (LUP) environmental impact assessment (LUPEA). This logical model is intuitive and easy to understand, but the exploration of impact is essential to establish the indicator system and to identify the scope of land use environmental impact when it is applied to a specific region. In this study, we investigated environmental driving forces from land use planning (LUPF), along with the conception, components, scope, and impact of LUPF. This method was illustrated by a case study in Zoucheng, China. Through the results, we concluded that (1) the LUPF on environment are impacts originated from the implementation of LUP on a regional environment, which are characterized by four aspects: magnitude, direction, action point, and its owner; (2) various scopes of LUPF on individual environmental elements based on different standards jointly define the final scope of LUPEA; (3) our case study in Zoucheng demonstrates the practicability of this proposed approach; (4) this method can be embedded into LUPEA with direction, magnitudes, and scopes of the LUPF on individual elements obtained, and the identified indicator system can be directly employed into LUPEA and (5) the assessment helps to identify key indicators and to set up a corresponding strategy to mitigate the negative impact of LUP on the environment, which are two important objectives of strategic environmental assessment (SEA) in LUP. - Highlights: • Environmental driving forces from land use planning (LUPF) are investigated and categorized. • Our method can obtains the direction, magnitudes and scopes of environmental driving forces. • The LUPEA scope is determined by the combination of various scopes of LUPF on individual elements. • LUPF assessment can be embedded into LUPEA. • The method can help to

  4. Spatiotemporal Variation of Driving Forces for Settlement Expansion in Different Types of Counties

    Directory of Open Access Journals (Sweden)

    Guanglong Dong

    2015-12-01

    Full Text Available Understanding the process of settlement expansion and the spatiotemporal variation of driving forces is the foundation of rational and specific planning for sustainable development. However, little attention has been paid to the spatiotemporal differences of driving forces among different counties, especially when they are representatives of different development types. This study used Guanyun, Kunshan and Changshu as case studies, and binary logistic regression was employed. The results showed that the expansion rates of Kunshan and Changshu were 5.55 and 3.93 times higher than that of Guanyun. The combinations and relative importance of drivers varied with counties and periods. The change in the number of driving forces can be divided into three stages: increasing stage, decreasing stage, and stable stage. In the relatively developed counties, Kunshan and Changshu, the importance of population is decreased, while it remain an important factor in the less developed county, Guanyun. In addition, the effect of GDP stays the same in Kunshan while it becomes the most important factor in Changshu. The distance to the main road and the distance to town are increasingly important in Kunshan and Guanyun, and distance to town has been the only common factor in the last period, indicating the discrepancy is increased. The relative importance of distance to a lake in Kunshan and Changshu increased, reflecting the role of increasing tourism in accelerating settlement expansion.

  5. The marriage between welfare services and tourism - A driving force for innovation?

    DEFF Research Database (Denmark)

    Hjalager, Anne Mette

    2006-01-01

    -based sectors are well connected with other sectors, including the voluntary sector. Both internal and external driving forces are continuously challenging the Danish welfare model. The pressures and the opportunities are transmitted to tourism, albeit not uniformly. There are good reasons for commercial...

  6. Force analysis of the advanced neutron source control rod drive latch mechanism

    International Nuclear Information System (INIS)

    Damiano, B.

    1989-01-01

    The Advanced Neutron Source reactor (ANS), a proposed Department of Energy research reactor currently undergoing conceptual design at the Oak Ridge National Laboratory (ORNL), will generate a thermal neutron flux approximating 10 30 M -2 emdash S -1 . The compact core necessary to produce this flux provides little space for the shim safety control rods, which are located in the central annulus of the core. Without proper control rod drive design, the control rod drive magnets (which hold the control rod latch in a ready-to-scram position) may be unable to support the required load due to their restricted size. This paper describes the force analysis performed on the control rod latch mechanism to determine the fraction of control rod weight transferred to the drive magnet. This information will be useful during latch, control rod drive and magnet design. 5 refs., 12 figs

  7. The driving force of the Na+/Ca2+-exchanger during metabolic inhibition

    NARCIS (Netherlands)

    Baartscheer, Antonius; Schumacher, Cees A.; Coronel, Ruben; Fiolet, Jan W. T.

    2011-01-01

    Objective: Metabolic inhibition causes a decline in mechanical performance and, if prolonged, myocardial contracture and cell death. The decline in mechanical performance is mainly due to altered intracellular calcium handling, which is under control of the Na+/Ca2+-exchanger (NCX) The driving force

  8. The Driving Forces of Cultural Complexity : Neanderthals, Modern Humans, and the Question of Population Size.

    Science.gov (United States)

    Fogarty, Laurel; Wakano, Joe Yuichiro; Feldman, Marcus W; Aoki, Kenichi

    2017-03-01

    The forces driving cultural accumulation in human populations, both modern and ancient, are hotly debated. Did genetic, demographic, or cognitive features of behaviorally modern humans (as opposed to, say, early modern humans or Neanderthals) allow culture to accumulate to its current, unprecedented levels of complexity? Theoretical explanations for patterns of accumulation often invoke demographic factors such as population size or density, whereas statistical analyses of variation in cultural complexity often point to the importance of environmental factors such as food stability, in determining cultural complexity. Here we use both an analytical model and an agent-based simulation model to show that a full understanding of the emergence of behavioral modernity, and the cultural evolution that has followed, depends on understanding and untangling the complex relationships among culture, genetically determined cognitive ability, and demographic history. For example, we show that a small but growing population could have a different number of cultural traits from a shrinking population with the same absolute number of individuals in some circumstances.

  9. Scrambling Eggs: Meiotic Drive and the Evolution of Female Recombination Rates

    Science.gov (United States)

    Brandvain, Yaniv; Coop, Graham

    2012-01-01

    Theories to explain the prevalence of sex and recombination have long been a central theme of evolutionary biology. Yet despite decades of attention dedicated to the evolution of sex and recombination, the widespread pattern of sex differences in the recombination rate is not well understood and has received relatively little theoretical attention. Here, we argue that female meiotic drivers—alleles that increase in frequency by exploiting the asymmetric cell division of oogenesis—present a potent selective pressure favoring the modification of the female recombination rate. Because recombination plays a central role in shaping patterns of variation within and among dyads, modifiers of the female recombination rate can function as potent suppressors or enhancers of female meiotic drive. We show that when female recombination modifiers are unlinked to female drivers, recombination modifiers that suppress harmful female drive can spread. By contrast, a recombination modifier tightly linked to a driver can increase in frequency by enhancing female drive. Our results predict that rapidly evolving female recombination rates, particularly around centromeres, should be a common outcome of meiotic drive. We discuss how selection to modify the efficacy of meiotic drive may contribute to commonly observed patterns of sex differences in recombination. PMID:22143919

  10. Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees.

    Science.gov (United States)

    Grüter, Christoph; Segers, Francisca H I D; Menezes, Cristiano; Vollet-Neto, Ayrton; Falcón, Tiago; von Zuben, Lucas; Bitondi, Márcia M G; Nascimento, Fabio S; Almeida, Eduardo A B

    2017-02-23

    The differentiation of workers into morphological castes represents an important evolutionary innovation that is thought to improve division of labor in insect societies. Given the potential benefits of task-related worker differentiation, it is puzzling that physical worker castes, such as soldiers, are extremely rare in social bees and absent in wasps. Following the recent discovery of soldiers in a stingless bee, we studied the occurrence of worker differentiation in 28 stingless bee species from Brazil and found that several species have specialized soldiers for colony defence. Our results reveal that worker differentiation evolved repeatedly during the last ~ 25 million years and coincided with the emergence of parasitic robber bees, a major threat to many stingless bee species. Furthermore, our data suggest that these robbers are a driving force behind the evolution of worker differentiation as targets of robber bees are four times more likely to have nest guards of increased size than non-targets. These findings reveal unexpected diversity in the social organization of stingless bees.Although common in ants and termites, worker differentiation into physical castes is rare in social bees and unknown in wasps. Here, Grüter and colleagues find a guard caste in ten species of stingless bees and show that the evolution of the guard caste is associated with parasitization by robber bees.

  11. Preliminary Experimental Results for Indirect Vector-Control of Induction Motor Drives with Forced Dynamics

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2003-01-01

    Full Text Available The contribution presents an extension of indirect vector control of electric drives employing induction motors to 'Forced Dynamic Control'. This method of control offers an accurate realisation of dynamic response profiles, which can be selected by the user. The developed system can be integrated into a drive with a shaft position encoder or a shaft sensoriess drive, in which only the stator currents are measured. The applied stator voltages are determined by a computed inverter switching algorithm. Simulation results and preliminary experimental results for indirect vector control of an idle running induction motor indicate good agreement with the theoretical predictions.

  12. Agricultural land use change and associated driving forces over the past 180 years in two municipalities of the Brazilian Cerrado

    NARCIS (Netherlands)

    Arruda, de Murilo Rodrigues; Slingerland, Maja; Santos, José Zilton Lopes; Giller, Ken E.

    2018-01-01

    This paper aims to test the hypothesis that a single driving force from the local, national, or global level is capable of triggering land use changes, including large scale deforestation, within a historical context. To reach this goal we describe and explain the driving forces from the global to

  13. Development of an innovative reflector drive mechanism using magnetic repulsion force for 4S reactor

    International Nuclear Information System (INIS)

    Tsuji, K.; Watanabe, M.; Inagaki, H.; Nishikawa, A.; Takahashi, H.; Wakamatsu, M.; Matsumiya, H.; Nishiguchi, Y.

    2001-01-01

    A small sized fast reactor 4S: (Super Safe Small and Simple) which has a core of 10 - 30 years life time is controlled by reflectors. The reflector is required to be risen at very low speed to make up for the reactivity swing during operation. This report shows the development of an innovative reflector drive mechanism using magnetic repulsion force that can move at a several micrometer per one step. This drive mechanism has a passive shut down capability, and can eliminate reflector drive line. (author)

  14. Driving forces behind the Chinese public's demand for improved environmental safety.

    Science.gov (United States)

    Wen, Ting; Wang, Jigan; Ma, Zongwei; Bi, Jun

    2017-12-15

    Over the past decades, the public demand for improved environmental safety keeps increasing in China. This study aims to assess the driving forces behind the increasing public demand for improved environmental safety using a provincial and multi-year (1995, 2000, 2005, 2010, and 2014) panel data and the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model. The potential driving forces investigated included population size, income levels, degrees of urbanization, and educational levels. Results show that population size and educational level are positively (Pdemand for improved environmental safety. No significant impact on demand was found due to the degree of urbanization. For the impact due to income level, an inverted U-shaped curve effect with the turning point of ~140,000 CNY GDP per capita is indicated. Since per capita GDP of 2015 in China was approximately 50,000 CNY and far from the turning point, the public demand for improved environmental safety will continue rising in the near future. To meet the increasing public demand for improved environmental safety, proactive and risk prevention based environmental management systems coupled with effective environmental risk communication should be established. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Remote sensing monitoring and driving force analysis to forest and greenbelt in Zhuhai

    Science.gov (United States)

    Yuliang Qiao, Pro.

    As an important city in the southern part of Chu Chiang Delta, Zhuhai is one of the four special economic zones which are opening up to the outside at the earliest in China. With pure and fresh air and trees shading the street, Zhuhai is a famous beach port city which is near the mountain and by the sea. On the basis of Garden City, the government of Zhuhai decides to build National Forest City in 2011, which firstly should understand the situation of greenbelt in Zhuhai in short term. Traditional methods of greenbelt investigation adopt the combination of field surveying and statistics, whose efficiency is low and results are not much objective because of artificial influence. With the adventure of the information technology such as remote sensing to earth observation, especially the launch of many remote sensing satellites with high resolution for the past few years, kinds of urban greenbelt information extraction can be carried out by using remote sensing technology; and dynamic monitoring to spatial pattern evolvement of forest and greenbelt in Zhuhai can be achieved by the combination of remote sensing and GIS technology. Taking Landsat5 TM data in 1995, Landsat7 ETM+ data in 2002, CCD and HR data of CBERS-02B in 2009 as main information source, this research firstly makes remote sensing monitoring to dynamic change of forest and greenbelt in Zhuhai by using the combination of vegetation coverage index and three different information extraction methods, then does a driving force analysis to the dynamic change results in 3 months. The results show: the forest area in Zhuhai shows decreasing tendency from 1995 to 2002, increasing tendency from 2002 to 2009; overall, the forest area show a small diminution tendency from 1995 to 2009. Through the comparison to natural and artificial driving force, the artificial driving force is the leading factor to the change of forest and greenbelt in Zhuhai. The research results provide a timely and reliable scientific basis

  16. Quantifying Selective Pressures Driving Bacterial Evolution Using Lineage Analysis

    Science.gov (United States)

    Lambert, Guillaume; Kussell, Edo

    2015-01-01

    Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population's rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages—i.e., the life histories of individuals and their ancestors—to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to Escherichia coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems.

  17. Cultural selection drives the evolution of human communication systems.

    Science.gov (United States)

    Tamariz, Monica; Ellison, T Mark; Barr, Dale J; Fay, Nicolas

    2014-08-07

    Human communication systems evolve culturally, but the evolutionary mechanisms that drive this evolution are not well understood. Against a baseline that communication variants spread in a population following neutral evolutionary dynamics (also known as drift models), we tested the role of two cultural selection models: coordination- and content-biased. We constructed a parametrized mixed probabilistic model of the spread of communicative variants in four 8-person laboratory micro-societies engaged in a simple communication game. We found that selectionist models, working in combination, explain the majority of the empirical data. The best-fitting parameter setting includes an egocentric bias and a content bias, suggesting that participants retained their own previously used communicative variants unless they encountered a superior (content-biased) variant, in which case it was adopted. This novel pattern of results suggests that (i) a theory of the cultural evolution of human communication systems must integrate selectionist models and (ii) human communication systems are functionally adaptive complex systems.

  18. Segregation in ternary alloys: an interplay of driving forces

    International Nuclear Information System (INIS)

    Luyten, J.; Helfensteyn, S.; Creemers, C.

    2003-01-01

    Monte Carlo (MC) simulations combined with the constant bond energy (CBE) model are set up to explore and understand the general segregation behaviour in ternary alloys as a function of composition and more in particular the segregation to Cu-Ni-Al (1 0 0) surfaces. Besides its simplicity, allowing swift simulations, which are necessary for a first general survey over all possible compositions, one of the advantages of the CBE model lies in the possibility to clearly identify the different driving forces for segregation. All simulations are performed in the Grand Canonical Ensemble, using a new algorithm to determine the chemical potential of the components. Notwithstanding the simplicity of the CBE model, one extra feature is evidenced: depending on the values of the interatomic interaction parameters, in some regions of the ternary diagram, a single solid solution becomes thermodynamically unstable, leading to demixing into two conjugate phases. The simulations are first done for three hypothetical systems that are however representative for real alloy systems. The three systems are characterised by different sets of interatomic interaction parameters. These extensive simulations over the entire composition range of the ternary alloy yield a 'topographical' segregation map, showing distinct regions where different species segregate. These distinct domains originate from a variable interplay between the driving forces for segregation and attractive/repulsive interactions in the bulk of the alloy. The results on these hypothetical systems are very helpful for a better understanding of the segregation behaviour in Cu-Ni-Al and other ternary alloys

  19. Temperature and Evolutionary Novelty as Forces behind the Evolution of General Intelligence

    Science.gov (United States)

    Kanazawa, Satoshi

    2008-01-01

    How did human intelligence evolve to be so high? Lynn [Lynn, R. (1991). The evolution of race differences in intelligence. Mankind Quarterly, 32, 99-173] and Rushton [Rushton, J.P. (1995). Race, evolution, and behavior: A life history perspective. New Brunswick: Transaction] suggest that the main forces behind the evolution of human intelligence…

  20. Driving force for hydrophobic interaction at different length scales.

    Science.gov (United States)

    Zangi, Ronen

    2011-03-17

    We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society

  1. Driving forces of Indian summer monsoon on Milankovitch and sub-Milankovitch time scales: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    A scientific consensus exists that tectonic evolution of Himalaya is the main cause of monsoon initiation and evolution in southeast Asia. Several forcing factors such as tectonic, solar insolation, latent heat transport, albedo of the earth surface...

  2. Force-chain evolution in a two-dimensional granular packing compacted by vertical tappings

    Science.gov (United States)

    Iikawa, Naoki; Bandi, M. M.; Katsuragi, Hiroaki

    2018-03-01

    We experimentally study the statistics of force-chain evolution in a vertically-tapped two-dimensional granular packing by using photoelastic disks. In this experiment, the tapped granular packing is gradually compacted. During the compaction, the isotropy of grain configurations is quantified by measuring the deviator anisotropy derived from fabric tensor, and then the evolution of force-chain structure is quantified by measuring the interparticle forces and force-chain orientational order parameter. As packing fraction increases, the interparticle force increases and finally saturates to an asymptotic value. Moreover, the grain configurations and force-chain structures become isotropically random as the tapping-induced compaction proceeds. In contrast, the total length of force chains remains unchanged. From the correlations of those parameters, we find two relations: (i) a positive correlation between the isotropy of grain configurations and the disordering of force-chain orientations, and (ii) a negative correlation between the increasing of interparticle forces and the disordering of force-chain orientations. These relations are universally held regardless of the mode of particle motions with or without convection.

  3. Measuring Risky Driving Behavior Using an mHealth Smartphone App: Development and Evaluation of gForce

    Science.gov (United States)

    Dave, Amisha D; Espey, Benjamin G; Stanley, Sean T; Garmendia, Marcial A; Pursley, Randall; Ehsani, Johnathon P; Simons-Morton, Bruce G; Pohida, Thomas J

    2018-01-01

    Background Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras) that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However, this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic risky driving. Objective We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute). Methods The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie, gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared. Results The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging the correlation coefficients for

  4. ANALYTICAL SYNTHESIS OF FORCED PULSE ELECTRONIC DRIVE CONTROL OF A TRACKING SYSTEM

    Directory of Open Access Journals (Sweden)

    A. S. Abufanas

    2017-01-01

    Full Text Available The problem of analytical synthesis of a control signal by a linear dynamical system is considered. As an optimization criterion, it is proposed to consider the transition time of the system from the initial state to a given final state. This type of control is called forced, providing the maximum system speed. The principle of solving this problem is considered on the basis of application of uncertain Lagrange multipliers and the Pontryagin maximum principle. Expressions are obtained for the matrix of transitions of the system and the control signal in a vector form.As an example, the electric drive described by the widespread second-order mathematical model is considered to evaluate the efficiency of the proposed method. Qualitative illustrations of the operability of the proposed approach, obtained by modeling in the Mathcad environment, and quantitative characteristics of the change in the input and output signals of the hypothetical control system are presented. It is shown that the use of forced control does not lead to the output of variables characterizing the state of the system, beyond the limits of admissible values.The use of forced control makes it possible to synthesize the control law in the form of a sequence of rectangular pulses of constant amplitude determined by the power source, variable duty cycle and polarity. This approach can be used for the control of DC-type DC motors used in various tracking systems used on unmanned aerial vehicles. Key words: forced control, target function, electric drive, pulse train. The use of forced control makes it possible to synthesize the control law in the form of a sequence of rectangular pulses of constant amplitude determined by the power source, variable duty cycle and polarity. This approach can be used for the control of DC-type DC motors used in various tracking systems used on unmanned aerial vehicles.

  5. Mechanisms driving variability in the ocean forcing of Pine Island Glacier.

    Science.gov (United States)

    Webber, Benjamin G M; Heywood, Karen J; Stevens, David P; Dutrieux, Pierre; Abrahamsen, E Povl; Jenkins, Adrian; Jacobs, Stanley S; Ha, Ho Kyung; Lee, Sang Hoon; Kim, Tae Wan

    2017-02-17

    Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS.

  6. Evaluation on driving force of natural circulation in downcomer for passive residual heat removal system in JAERI passive safety reactor JPSR

    International Nuclear Information System (INIS)

    Kunii, Katsuhiko; Iwamura, Takamichi; Murao, Yoshio

    1997-01-01

    The driving-force of the natural circulation in the residual heat removal (RHR) system for the JPSR (JAERI Passive Safety Reactor) is given as a gravity force of the density difference between hotter coolant in core and upper plenum and cooler coolant in downcomer. The amount of density difference and time to achieve the enough density difference for the RHR system change directly dependent on the thermal fluid flow pattern in downcomer of annulus flow pass. The purposes of the present study are to investigate the possibilities of the followings by evaluating the three-dimensional thermal fluid flow in downcomer by numerical analysis using the STREAM code; 1) promotion of making the flow pattern uniform in downcomer by installing a baffle, 2) achievement of an enough driving-force of the natural circulation, 3) validity of one-point assumption, that is, complete mixing down-flow assumption for the three-dimensional thermal fluid flow in downcomer to evaluate the function of the passive RHR system. The following conclusions were obtained: (1) The effect of baffle on the thermal fluid flow and driving-force is little, (2) The driving-force required for natural circulation cooling can be obtained in wide range of inlet velocity even if the flow is multi-dimensional, (3) Both in initial transient stage and in steady-state, the one-point assumption can be applied to evaluate the driving-force of natural circulation in the passive RHR system. (author)

  7. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment

    International Nuclear Information System (INIS)

    Legleiter, Justin

    2009-01-01

    In tapping mode atomic force microscopy (AFM), a sharp probe tip attached to an oscillating cantilever is allowed to intermittently strike a surface. By raster scanning the probe while monitoring the oscillation amplitude of the cantilever via a feedback loop, topographical maps of surfaces with nanoscale resolution can be acquired. While numerous studies have employed numerical simulations to elucidate the time-resolved tapping force between the probe tip and surface, until recent technique developments, specific read-outs from such models could not be experimentally verified. In this study, we explore, via numerical simulation, the impact of imaging parameters, i.e. set point ratio and drive frequency as a function of resonance, on time-varying tip-sample force interactions, which are directly compared to reconstructed tapping forces from real AFM experiments. As the AFM model contains a feedback loop allowing for the simulation of the entire scanning process, we further explore the impact that various tip-sample force have on the entire imaging process.

  8. Evolution of Land Rental Arrangements in Rural Ghana: Evidence ...

    African Journals Online (AJOL)

    zones of Ghana, their varied characters, trends of evolution, and the driving forces .... arrangements have not been given the needed attention in policy, perhaps due to ... markets follows a five-stage trajectory, which can broadly be divided into.

  9. Analysis of Vehicle Steering and Driving Bifurcation Characteristics

    Directory of Open Access Journals (Sweden)

    Xianbin Wang

    2015-01-01

    Full Text Available The typical method of vehicle steering bifurcation analysis is based on the nonlinear autonomous vehicle model deriving from the classic two degrees of freedom (2DOF linear vehicle model. This method usually neglects the driving effect on steering bifurcation characteristics. However, in the steering and driving combined conditions, the tyre under different driving conditions can provide different lateral force. The steering bifurcation mechanism without the driving effect is not able to fully reveal the vehicle steering and driving bifurcation characteristics. Aiming at the aforementioned problem, this paper analyzed the vehicle steering and driving bifurcation characteristics with the consideration of driving effect. Based on the 5DOF vehicle system dynamics model with the consideration of driving effect, the 7DOF autonomous system model was established. The vehicle steering and driving bifurcation dynamic characteristics were analyzed with different driving mode and driving torque. Taking the front-wheel-drive system as an example, the dynamic evolution process of steering and driving bifurcation was analyzed by phase space, system state variables, power spectral density, and Lyapunov index. The numerical recognition results of chaos were also provided. The research results show that the driving mode and driving torque have the obvious effect on steering and driving bifurcation characteristics.

  10. Electronic structure and driving forces in β-cyclodextrin: Diclofenac inclusion complexes

    International Nuclear Information System (INIS)

    Bogdan, Diana; Morari, C.

    2007-01-01

    We investigate the geometry and electronic structure for complexes of β-cyclodextrin with diclofenac using DFT calculations. The effect of solvent is explicitly taken into account. This investigation allows us to draw meaningful conclusions upon the stability of the complex and the nature of the driving forces leading to the complexation process. In particular we emphasize the role of the water, by pointing out the changes in the solvent's electronic structure for different docking geometries

  11. Automatic Clustering Using FSDE-Forced Strategy Differential Evolution

    Science.gov (United States)

    Yasid, A.

    2018-01-01

    Clustering analysis is important in datamining for unsupervised data, cause no adequate prior knowledge. One of the important tasks is defining the number of clusters without user involvement that is known as automatic clustering. This study intends on acquiring cluster number automatically utilizing forced strategy differential evolution (AC-FSDE). Two mutation parameters, namely: constant parameter and variable parameter are employed to boost differential evolution performance. Four well-known benchmark datasets were used to evaluate the algorithm. Moreover, the result is compared with other state of the art automatic clustering methods. The experiment results evidence that AC-FSDE is better or competitive with other existing automatic clustering algorithm.

  12. Variation along liquid isomorphs of the driving force for crystallization

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Adrjanowicz, Karolina; Niss, Kristine

    2017-01-01

    at a reference temperature. More general analysis allows interpretation of experimental data for molecular liquids such as dimethyl phthalate and indomethacin, and suggests that the isomorph scaling exponent γ in these cases is an increasing function of density, although this cannot be seen in measurements......We investigate the variation of the driving force for crystallization of a supercooled liquid along isomorphs, curves along which structure and dynamics are invariant. The variation is weak, and can be predicted accurately for the Lennard-Jones fluid using a recently developed formalism and data...

  13. Negotiating EU CO2/energy taxation. Political economic driving forces and barriers

    International Nuclear Information System (INIS)

    Klok, Jacob

    2001-11-01

    The primary objective of this project is to identify the main political economic driving forces behind and barriers against the creation of an EU agreement on CO 2 /energy taxation. The analysis is based on a theoretical framework for understanding European integration and on detailed historical investigations into a process of EU negotiations concerning CO 2 /energy taxation that took place from the 1980s to 1994. Following the historical analysis of political economic driving forces and barriers, some overall perspectives on possible future developments within the field of EU CO 2 /energy taxation are finally advanced. The secondary objective of the project is to consider the possible effects on the EU negotiation process of Danish efforts to push the CO 2 /energy tax proposal from the late 1980s to 994. This analysis is based on the preceding historical analysis of the EU negotiation process, as well as further investigations into the national Danish development within the field of CO 2 /energy taxation, including accounts of Denmark's particular relations with the EU during the period in question. Finally, based on the likely future developments in the field EU CO 2 /energy taxation. Denmark's strategic opportunities are outlined. (BA)

  14. Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis

    International Nuclear Information System (INIS)

    Liu, Zhe; Geng, Yong; Adams, Michelle; Dong, Liang; Sun, Lina; Zhao, Jingjing; Dong, Huijuan; Wu, Jiao; Tian, Xu

    2016-01-01

    Highlights: • Energy-related GHG emission trajectories, features and driving forces of CAI are analyzed from the perspective of LCA. • CAI experienced a rapid growth of energy-related GHG emissions from 2004 to 2013. • Energy-scale effect is the main driving force for energy-related GHG emissions increase in CAI. • Construction and transportation-related activities account for more than 40% of the total embodied emissions. • Policy implications such as developing secondary aluminum industry, improving energy mix etc, are raised. - Abstract: With the rapid growth of aluminum production, reducing greenhouse gas (GHG) emissions in China’s aluminum industry (CAI) is posing a significant challenge. In this study, the energy-related GHG emission trajectories, features and driving forces of CAI are analyzed from the perspective of life cycle analysis (LCA) from 2004 to 2013. Results indicate that CAI experienced a rapid growth of energy-related GHG emissions with an average annual growth of 28.5 million tons CO_2e from 2004 to 2013. Energy-scale effect is the main driving force for energy-related GHG emissions increase in CAI, while emission-factor effect of secondary aluminum production plays a marginal effect. Construction and transportation-related activities account for the bulk of the embodied emissions, accounting for more than 40% of the total embodied emissions from CAI. Policy implications for GHG mitigation within the CAI, such as developing secondary aluminum industry, improving energy mix and optimizing resource efficiency of production, are raised.

  15. Measuring Risky Driving Behavior Using an mHealth Smartphone App: Development and Evaluation of gForce.

    Science.gov (United States)

    Freidlin, Raisa Z; Dave, Amisha D; Espey, Benjamin G; Stanley, Sean T; Garmendia, Marcial A; Pursley, Randall; Ehsani, Johnathon P; Simons-Morton, Bruce G; Pohida, Thomas J

    2018-04-19

    Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras) that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However, this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic risky driving. We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute). The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie, gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared. The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging the correlation coefficients for all maneuvers, the longitudinal and

  16. Electronic structure and driving forces in {beta}-cyclodextrin: Diclofenac inclusion complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, Diana [National Institute for Research and Development of Isotopic and Molecular Technologies, Donath street 71-103, 400293 Cluj-Napoca (Romania); Morari, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, Donath street 71-103, 400293 Cluj-Napoca (Romania)]. E-mail: cristim@s3.itim-cj.ro

    2007-07-02

    We investigate the geometry and electronic structure for complexes of {beta}-cyclodextrin with diclofenac using DFT calculations. The effect of solvent is explicitly taken into account. This investigation allows us to draw meaningful conclusions upon the stability of the complex and the nature of the driving forces leading to the complexation process. In particular we emphasize the role of the water, by pointing out the changes in the solvent's electronic structure for different docking geometries.

  17. The driving forces of landscape change in Europe

    DEFF Research Database (Denmark)

    Plieninger, Tobias; Draux, Hélène; Fagerholm, Nora

    2016-01-01

    , we find that distinct combinations of mainly political/institutional, cultural, and natural/spatial underlying drivers are determining landscape change, rather than single key drivers. Our systematic review indicates knowledge gaps that can be filled by: (a) expanding the scope of studies to include...... because landscape research is spread across many domains and disciplines. We here provide a systematic synthesis of 144 studies that identify the proximate and underlying drivers of landscape change across Europe. First, we categorize how driving forces have been addressed and find that most studies......; low Gross Domestic Product; boreal, steppic, and arctic landscapes; as well as forestland systems are underrepresented in the literature. Third, our review shows that land abandonment/extensification is the most prominent (62% of cases) among multiple proximate drivers of landscape change. Fourthly...

  18. Trends and driving forces of ecological training and education in the context of ecological education environment of the technical university

    OpenAIRE

    Danilenkova V. A.

    2017-01-01

    common patterns of ecological training and education in the technical university are analyzed in this article, their descriptions are defined. Driving forces of ecological training and education in the context of ecological education environment are discovered and proved. According to conducted research the author makes a proposition to point out at ecological risks as driving forces, searching for which improves the efficiency and effectiveness of ecological education environment. The resear...

  19. Transmission of government spending shocks in the Euro area: time variation and driving forces

    NARCIS (Netherlands)

    Kirchner, M.; Cimadomo, J.; Hauptmeier, S.

    This paper applies structural vector autoregressions with time-varying parameters in order to investigate changes in the effects of government spending shocks in the euro area, and the driving forces of those changes. Our contribution is two-fold. First, we present evidence that the short-run impact

  20. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Garner, F.A.

    1991-11-01

    A new concept of point-defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The life times of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions

  1. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Singh, B.N.; Garner, F.A.

    1992-01-01

    A new concept of point defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The lifetimes of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions. (orig.)

  2. The evolution of the placenta drives a shift in sexual selection in livebearing fish

    NARCIS (Netherlands)

    Pollux, B.J.A.; Meredith, R.W.; Springer, M.S.; Garland, T.; Reznick, D.N.

    2014-01-01

    The evolution of the placenta from a non-placental ancestor causes a shift of maternal investment from pre- to post-fertilization, creating a venue for parent–offspring conflicts during pregnancy1, 2, 3, 4. Theory predicts that the rise of these conflicts should drive a shift from a reliance on

  3. The world food situation: New driving forces and required actions [In Chinese

    OpenAIRE

    von Braun, Joachim

    2008-01-01

    "The world food situation is currently being rapidly redefined by new driving forces. Income growth, climate change, high energy prices, globalization, and urbanization are transforming food consumption, production, and markets. The influence of the private sector in the world food system, especially the leverage of food retailers, is also rapidly increasing. Changes in food availability, rising commodity prices, and new producer–consumer linkages have crucial implications for the livelihoods...

  4. Selective sweeps of mitochondrial DNA can drive the evolution of uniparental inheritance.

    Science.gov (United States)

    Christie, Joshua R; Beekman, Madeleine

    2017-08-01

    Although the uniparental (or maternal) inheritance of mitochondrial DNA (mtDNA) is widespread, the reasons for its evolution remain unclear. Two main hypotheses have been proposed: selection against individuals containing different mtDNAs (heteroplasmy) and selection against "selfish" mtDNA mutations. Recently, uniparental inheritance was shown to promote adaptive evolution in mtDNA, potentially providing a third hypothesis for its evolution. Here, we explore this hypothesis theoretically and ask if the accumulation of beneficial mutations provides a sufficient fitness advantage for uniparental inheritance to invade a population in which mtDNA is inherited biparentally. In a deterministic model, uniparental inheritance increases in frequency but cannot replace biparental inheritance if only a single beneficial mtDNA mutation sweeps through the population. When we allow successive selective sweeps of mtDNA, however, uniparental inheritance can replace biparental inheritance. Using a stochastic model, we show that a combination of selection and drift facilitates the fixation of uniparental inheritance (compared to a neutral trait) when there is only a single selective mtDNA sweep. When we consider multiple mtDNA sweeps in a stochastic model, uniparental inheritance becomes even more likely to replace biparental inheritance. Our findings thus suggest that selective sweeps of beneficial mtDNA haplotypes can drive the evolution of uniparental inheritance. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Sexual antagonism and meiotic drive cause stable linkage disequilibrium and favour reduced recombination on the X chromosome.

    Science.gov (United States)

    Rydzewski, W T; Carioscia, S A; Liévano, G; Lynch, V D; Patten, M M

    2016-06-01

    Sexual antagonism and meiotic drive are sex-specific evolutionary forces with the potential to shape genomic architecture. Previous theory has found that pairing two sexually antagonistic loci or combining sexual antagonism with meiotic drive at linked autosomal loci augments genetic variation, produces stable linkage disequilibrium (LD) and favours reduced recombination. However, the influence of these two forces has not been examined on the X chromosome, which is thought to be enriched for sexual antagonism and meiotic drive. We investigate the evolution of the X chromosome under both sexual antagonism and meiotic drive with two models: in one, both loci experience sexual antagonism; in the other, we pair a meiotic drive locus with a sexually antagonistic locus. We find that LD arises between the two loci in both models, even when the two loci freely recombine in females and that driving haplotypes will be enriched for male-beneficial alleles, further skewing sex ratios in these populations. We introduce a new measure of LD, Dz', which accounts for population allele frequencies and is appropriate for instances where these are sex specific. Both models demonstrate that natural selection favours modifiers that reduce the recombination rate. These results inform observed patterns of congealment found on driving X chromosomes and have implications for patterns of natural variation and the evolution of recombination rates on the X chromosome. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  6. Homologous recombination is a force in the evolution of canine distemper virus.

    Science.gov (United States)

    Yuan, Chaowen; Liu, Wenxin; Wang, Yingbo; Hou, Jinlong; Zhang, Liguo; Wang, Guoqing

    2017-01-01

    Canine distemper virus (CDV) is the causative agent of canine distemper (CD) that is a highly contagious, lethal, multisystemic viral disease of receptive carnivores. The prevalence of CDV is a major concern in susceptible animals. Presently, it is unclear whether intragenic recombination can contribute to gene mutations and segment reassortment in the virus. In this study, 25 full-length CDV genome sequences were subjected to phylogenetic and recombinational analyses. The results of phylogenetic analysis, intragenic recombination, and nucleotide selection pressure indicated that mutation and recombination occurred in the six individual genes segment (H, F, P, N, L, M) of the CDV genome. The analysis also revealed pronounced genetic diversity in the CDV genome according to the geographically distinct lineages (genotypes), namely Asia-1, Asia-2, Asia-3, Europe, America-1, and America-2. The six recombination events were detected using SimPlot and RDP programs. The analysis of selection pressure demonstrated that a majority of the nucleotides in the CDV individual gene were under negative selection. Collectively, these data suggested that homologous recombination acts as a key force driving the genetic diversity and evolution of canine distemper virus.

  7. Natural selection drives the evolution of ant life cycles.

    Science.gov (United States)

    Wilson, Edward O; Nowak, Martin A

    2014-09-02

    The genetic origin of advanced social organization has long been one of the outstanding problems of evolutionary biology. Here we present an analysis of the major steps in ant evolution, based for the first time, to our knowledge, on combined recent advances in paleontology, phylogeny, and the study of contemporary life histories. We provide evidence of the causal forces of natural selection shaping several key phenomena: (i) the relative lateness and rarity in geological time of the emergence of eusociality in ants and other animal phylads; (ii) the prevalence of monogamy at the time of evolutionary origin; and (iii) the female-biased sex allocation observed in many ant species. We argue that a clear understanding of the evolution of social insects can emerge if, in addition to relatedness-based arguments, we take into account key factors of natural history and study how natural selection acts on alleles that modify social behavior.

  8. Discharge switch driving by Lorentz force and its characteristics

    International Nuclear Information System (INIS)

    Inoue, Kunikazu; Hasegawa, Mitsuo; Ueno, Isao

    1999-01-01

    Our newly developed 'Rotary-Arc mode Discharge Switch' have featured longer life expectancy and lower inductance-wise by extremely minimizing the insulation deterioration and consumable main electrode through installation of permanent magnet, simplified construction and careful attention on the demagnetization. Resultantly, highly efficient and larger capacitive discharge switch have been available at such economical cost. In addition, by having derived an experimental formula for the driving speed of the arc, the required design parameters of the discharge switch have been determined, and then it has been well noted that any affections of electro-magnetic Lorentz force toward the starting characteristics have been negligible small. All these have made it possible to materialize such discharge switch which will satisfy the required conditions. (author)

  9. How sexual selection can drive the evolution of costly sperm ornamentation

    Science.gov (United States)

    Lüpold, Stefan; Manier, Mollie K.; Puniamoorthy, Nalini; Schoff, Christopher; Starmer, William T.; Luepold, Shannon H. Buckley; Belote, John M.; Pitnick, Scott

    2016-05-01

    Post-copulatory sexual selection (PSS), fuelled by female promiscuity, is credited with the rapid evolution of sperm quality traits across diverse taxa. Yet, our understanding of the adaptive significance of sperm ornaments and the cryptic female preferences driving their evolution is extremely limited. Here we review the evolutionary allometry of exaggerated sexual traits (for example, antlers, horns, tail feathers, mandibles and dewlaps), show that the giant sperm of some Drosophila species are possibly the most extreme ornaments in all of nature and demonstrate how their existence challenges theories explaining the intensity of sexual selection, mating-system evolution and the fundamental nature of sex differences. We also combine quantitative genetic analyses of interacting sex-specific traits in D. melanogaster with comparative analyses of the condition dependence of male and female reproductive potential across species with varying ornament size to reveal complex dynamics that may underlie sperm-length evolution. Our results suggest that producing few gigantic sperm evolved by (1) Fisherian runaway selection mediated by genetic correlations between sperm length, the female preference for long sperm and female mating frequency, and (2) longer sperm increasing the indirect benefits to females. Our results also suggest that the developmental integration of sperm quality and quantity renders post-copulatory sexual selection on ejaculates unlikely to treat male-male competition and female choice as discrete processes.

  10. Thermal force approach to molecular evolution.

    Science.gov (United States)

    Braun, Dieter; Libchaber, Albert

    2004-06-01

    Recent experiments are discussed where temperature gradients across mesoscopic pores are shown to provide essential mechanisms for autonomous molecular evolution. On the one hand, laminar thermal convection can drive DNA replication as the molecules are continuously cycled between hot and cold regions of a chamber. On the other hand, thermophoresis can accumulate charged biopolymers in similar convection settings. The experiments show that temperature differences analogous to those across porous rocks present a robust nonequilibrium boundary condition to feed the replication and accumulation of evolving molecules. It is speculated that similar nonequilibrium conditions near porous submarine hydrothermal mounds could have triggered the origin of life. In such a scenario, the encapsulation of cells with membranes would be a later development. It is expected that detailed studies of mesoscopic boundary conditions under nonequilibrium conditions will reveal new connecting pieces in the fascinating puzzle of the origins of life.

  11. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2004-01-01

    Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.

  12. Finite Element Analysis of the Vertical Levitation Force in an Electrostatic MEMS Comb Drive Actuator

    International Nuclear Information System (INIS)

    Wooldridge, J; Blackburn, J; Muniz-Piniella, A; Stewart, M; Shean, T A V; Weaver, P M; Cain, M G

    2013-01-01

    A vertical levitation electrostatic comb drive actuator was manufactured for the purpose of measuring piezoelectric coefficients in small-scale materials and devices. Previous modelling work on comb drive levitation has focussed on control of the levitation in standard poly-silicon devices in order to minimize effects on lateral modes of operation required for the accelerometer and gyroscope applications. The actuator developed in this study was manufactured using a 20 μm electroplated Ni process with a 25 μm trench created beneath the released structure through chemical wet etching. A finite element analysis using ZINC was used to model electrostatic potential around a cross section of one static and one movable electrode, from which the net levitation force per unit electrode was calculated. The model was first verified using the electrode geometry from previously studied systems, and then used to study the variation of force as a function of decreasing substrate-electrode distance. With the top electrode surfaces collinear the calculated force density is 0.00651 ε 0 V 2 M μm −1 , equivalent to a total force for the device of 36.4 μN at an applied voltage of V M =100 V, just 16% larger than the observed value. The measured increase in force with distance was smaller than predicted with the FEA, due to the geometry of the device in which the electrodes at the anchored ends of the supporting spring structure displace by a smaller amount than those at the centre

  13. Orbital Forcing driving climate variability on Tropical South Atlantic

    Science.gov (United States)

    Oliveira, A. S.; Baker, P. A.; Silva, C. G.; Dwyer, G. S.; Chiessi, C. M.; Rigsby, C. A.; Ferreira, F.

    2017-12-01

    Past research on climate response to orbital forcing in tropical South America has emphasized on high precession cycles influencing low latitude hydrologic cycles, and driving the meridional migration of Intertropical Convergence Zone (ITCZ).However, marine proxy records from the tropical Pacific Ocean showed a strong 41-ka periodicities in Pleistocene seawater temperature and productivity related to fluctuations in Earth's obliquity. It Indicates that the western Pacific ITCZ migration was influenced by combined precession and obliquity changes. To reconstruct different climate regimes over the continent and understand the orbital cycle forcing over Tropical South America climate, hydrological reconstruction have been undertaken on sediment cores located on the Brazilian continental slope, representing the past 1.6 million years. Core CDH 79 site is located on a 2345 m deep seamount on the northern Brazilian continental slope (00° 39.6853' N, 44° 20.7723' W), 320 km from modern coastline of the Maranhão Gulf. High-resolution XRF analyses of Fe, Ti, K and Ca are used to define the changes in precipitation and sedimentary input history of Tropical South America. The response of the hydrology cycle to orbital forcing was studied using spectral analysis.The 1600 ka records of dry/wet conditions presented here indicates that orbital time-scale climate change has been a dominant feature of tropical climate. We conclude that the observed oscillation reflects variability in the ITCZ activity associated with the Earth's tilt. The prevalence of the eccentricity and obliquity signals in continental hydrology proxies (Ti/Ca and Fe/K) as implicated in our precipitation records, highlights that these orbital forcings play an important role in tropics hydrologic cycles. Throughout the Quaternary abrupt shifts of tropical variability are temporally correlated with abrupt climate changes and atmospheric reorganization during Mid-Pleistocene Transition and Mid-Brunhes Events

  14. Driving forces and barriers for environmental technology development; Drivkrefter og barrierer for utvikling av miljoeteknologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Driving forces and barriers behind development and usage of environmental technology is discussed, and also whether there are certain characteristics related to environmental innovations compared to other innovations in general. The development of environmental technology is in principle dominated by the same drivers and barriers as any other technology, but the order and strength of the various factors may be different. This examination as well as other empirical studies shows that regulations play a greater part for environmental technology than 'pure market forces'. To many participants it is important to be one step ahead of the regulations, i.e. the expected regulations are equally important as the factual ones in driving the technology development. Players in the business community express that it is important that the authorities cooperate with them when introducing new regulations. This will increase acceptance for the regulations and facilitate the necessary adjustments. The most important barrier in the development and use of the technologies studied is probably the lack of demand.

  15. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells

    International Nuclear Information System (INIS)

    Stepanenko, Aleksei; Andreieva, Svitlana; Korets, Kateryna; Mykytenko, Dmytro; Huleyuk, Nataliya; Vassetzky, Yegor; Kavsan, Vadym

    2015-01-01

    genome context. Temozolomide treatment of 293-pcDNA3.1 cells intensified the stochastic punctuated genome changes and CNAs, and significantly reduced viability and CFE. In contrast, temozolomide treatment of HeLa-CHI3L1 cells promoted the step-wise genome changes, CNAs, and increased viability and CFE, which did not correlate with the ectopic CHI3L1 production. Thus, consistent coevolution of karyotypes and phenotypes was observed. CIN as a driving force of genome evolution significantly influences growth characteristics of tumor cells and should be always taken into consideration during the different experimental manipulations

  16. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, Aleksei, E-mail: a.a.stepanenko@gmail.com [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine); Andreieva, Svitlana; Korets, Kateryna; Mykytenko, Dmytro [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine); Huleyuk, Nataliya [Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv 79008 (Ukraine); Vassetzky, Yegor [CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, Villejuif 94805 (France); Kavsan, Vadym [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine)

    2015-01-15

    genome context. Temozolomide treatment of 293-pcDNA3.1 cells intensified the stochastic punctuated genome changes and CNAs, and significantly reduced viability and CFE. In contrast, temozolomide treatment of HeLa-CHI3L1 cells promoted the step-wise genome changes, CNAs, and increased viability and CFE, which did not correlate with the ectopic CHI3L1 production. Thus, consistent coevolution of karyotypes and phenotypes was observed. CIN as a driving force of genome evolution significantly influences growth characteristics of tumor cells and should be always taken into consideration during the different experimental manipulations.

  17. Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change

    International Nuclear Information System (INIS)

    Libo Wu; Kaneko, S.; Matsuoka, S.

    2005-01-01

    It is noteworthy that income elasticity of energy consumption in China shifted from positive to negative after 1996, accompanied by an unprecedented decline in energy-related CO 2 emissions. This paper therefore investigate the evolution of energy-related CO 2 emissions in China from 1985 to 1999 and the underlying driving forces, using the newly proposed three-level 'perfect decomposition' method and provincially aggregated data. The province-based estimates and analyses reveal a 'sudden stagnancy' of energy consumption, supply and energy-related CO 2 emissions in China from 1996 to 1999. The speed of a decrease in energy intensity and a slowdown in the growth of average labor productivity of industrial enterprises may have been the dominant contributors to this 'stagnancy'. The findings of this paper point to the highest rate of deterioration of state-owned enterprises in early 1996, the industrial restructuring caused by changes in ownership, the shutdown of small-scale power plants, and the introduction of policies to improve energy efficiency as probable factors. Taking into account the characteristics of those key driving forces, we characterize China's decline of energy-related CO 2 emissions as a short-term fluctuation and incline to the likelihood that China will resume an increasing trend from a lower starting point in the near future. (author)

  18. Magnetostatic torsional actuator with embedded nickel structures for the improvement of driving force and wobble motion

    International Nuclear Information System (INIS)

    Tang, Tsung-Lin; Fang, Weileun

    2011-01-01

    This study demonstrates the magnetostatic torsional actuator consisting in a Si–Ni compound frame to significantly improve the driving force. The present design has three merits: (1) it employs a Si mold to simultaneously electroplate/pattern thick Ni, and the Ni and Si structures respectively provide magnetostatic force and superior mechanical properties, (2) the embedded Ni structures not only increase the ferromagnetic material volume but also enhance magnetization strength to enlarge magnetostatic torque, (3) the Si–Ni compound structure, which is nearly symmetric about the torsional axis in the out-of-plane direction, can decrease the moment of inertia and also reduce the wobble motion. In applications, one-axis torsional actuator is implemented and characterized. The experiments show that the Si–Ni compound scanner has an optical scan angle θ optical = 90° with the input power 81 mW. The input power is decreased as compared with the existing scanner. Moreover, the out-of-plane wobble motion is only 44 nm at θ optical = 15°. Compared with the existing designs consisted of asymmetric structures in the out-of-plane direction, such as electroplated film and silicon rib, about the torsional axis, the equivalent eccentric force is reduced nearly two-fold. In short, the proposed design not only increases the driving force but also decreases the wobble motion

  19. Transactional Infrastructure of the Economy: the Evolution of Concepts and Synthesis of Definitions

    OpenAIRE

    Maruschak Irina Valeryevna

    2017-01-01

    The overview of evolution of market infrastructure concepts is provided, the first concepts of institutional infrastructure are revealed in the paper. Evolutionarily developed narrowing of essence of infrastructure in connection with the priority analysis of its physical (material and technological) components is proved. It ignores the fact that transactional resources, being drivers (driving forces) of economic systems evolution, in turn evolve, becoming harder and harder, combining increase...

  20. SU(6) symmetry and the quark forces

    International Nuclear Information System (INIS)

    Bartnik, E.A.; Namyslowski, J.M.

    1984-01-01

    The short distance forces between 3 valence quarks in the proton are investigated in perturbative QCD formulated on the light cone. These forces are the driving terms in the Brodsky-Lepage type evolution equation for the partially decomposed distribution amplitudes. The one-gluon exchange force, which is the lowest order force in the running coupling constant αsub(s) retains the SU(6) symmetry, while the αsub(s) 2 -order force, corresponding to one Coulomb gluon and one transverse gluon, breaks the SU(6) symmetry. The latter force contributes to the deviation from 1/2 of the d/u ratio for the proton, observed experimentally. In the kinematical domain of one fast quark, the αsub(s) 2 -order force gives the leading (1-x) 3 behaviour of the deep inelastic structure function F 2 (x), in contrast to the αsub(s)-order force, which gives (1-x) 5 , for xapprox.=1. (orig.)

  1. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms

    Science.gov (United States)

    Werner, Gijsbert D. A.; Cornwell, William K.; Sprent, Janet I.; Kattge, Jens; Kiers, E. Toby

    2014-01-01

    Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis’ evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of ‘stable fixers’ (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships. PMID:24912610

  2. Driving force of PCMI failure under reactivity initiated accident conditions and influence of hydrogen embrittlement on failure limit

    International Nuclear Information System (INIS)

    Tomiyasu, Kunihiko; Sugiyama, Tomoyuki; Nakamura, Takehiko; Fuketa, Toyoshi

    2005-09-01

    In order to clarify the driving force of PCMI (Pellet/Cladding Mechanical Interaction) failure on high burnup fuels and to investigate the influence of hydrogen embrittlement on failure limit under RIA (Reactivity Initiated Accident) conditions, RIA-simulation experiments were performed on fresh fuel rods in the NSRR (Nuclear Safety Research Reactor). The driving force of PCMI was restricted only to thermal expansion of pellet by using fresh UO 2 pellets. Fresh claddings were pre-hydrided to simulate hydrogen absorption of high burnup fuel rods. In seven experiments out of fourteen, test rods resulted in PCMI failure, which has been observed in the NSRR tests on high burnup PWR fuels, in terms of the transient behavior and the fracture configuration. This indicates that the driving force of PCMI failure is sufficiently explained with thermal expansion of pellet and a contribution of fission gas on it is small. A large number of incipient cracks were generated in the outer surface of the cladding even on non-failed fuel rods, and they stopped at the boundary between hydride rim, which was a hydride layer localized in the periphery of the cladding, and metallic layer. It suggests that the integrity of the metallic layer except for the hydride rim has particular importance for failure limit. Fuel enthalpy at failure correlates with the thickness of hydride rim, and tends to decrease with thicker hydride layer. (author)

  3. Deformation-induced martensitic transformation in a 201 austenitic steel: The synergy of stacking fault energy and chemical driving force

    Energy Technology Data Exchange (ETDEWEB)

    Moallemi, M., E-mail: m.moallemi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Fould Institute of Technology, Fouladshahr, Isfahan, 8491663763 (Iran, Islamic Republic of); Rezaee, A.; Baghbadorani, H. Samaei; Nezhadfar, P. Dastranjy [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-01-20

    The present study deals with the correlation of stacking fault energy's synergy and driving force in the formation of deformation-induced martensitic transformation in a 201 austenitic stainless steel. The fraction of deformation-induced martensite was characterized by means of X-ray diffraction and magnetic induction techniques. The kinetics of the martensite formation versus applied strain was evaluated through the sigmoidal model. It was shown that the volume fraction of ά-martensite is closely related to the driving force/SFE ratio of the alloy. The results also showed that the martensite content is similar in both XRD and magnetic methods and the applied sigmoidal model was consistent with the obtained experimental data.

  4. Selection for Social Signalling Drives the Evolution of Chameleon Colour Change

    Science.gov (United States)

    Stuart-Fox, Devi; Moussalli, Adnan

    2008-01-01

    Rapid colour change is a remarkable natural phenomenon that has evolved in several vertebrate and invertebrate lineages. The two principal explanations for the evolution of this adaptive strategy are (1) natural selection for crypsis (camouflage) against a range of different backgrounds and (2) selection for conspicuous social signals that maximise detectability to conspecifics, yet minimise exposure to predators because they are only briefly displayed. Here we show that evolutionary shifts in capacity for colour change in southern African dwarf chameleons (Bradypodion spp.) are associated with increasingly conspicuous signals used in male contests and courtship. To the chameleon visual system, species showing the most dramatic colour change display social signals that contrast most against the environmental background and amongst adjacent body regions. We found no evidence for the crypsis hypothesis, a finding reinforced by visual models of how both chameleons and their avian predators perceive chameleon colour variation. Instead, our results suggest that selection for conspicuous social signals drives the evolution of colour change in this system, supporting the view that transitory display traits should be under strong selection for signal detectability. PMID:18232740

  5. Does positive selection drive transcription factor binding site turnover? A test with Drosophila cis-regulatory modules.

    Directory of Open Access Journals (Sweden)

    Bin Z He

    2011-04-01

    Full Text Available Transcription factor binding site(s (TFBS gain and loss (i.e., turnover is a well-documented feature of cis-regulatory module (CRM evolution, yet little attention has been paid to the evolutionary force(s driving this turnover process. The predominant view, motivated by its widespread occurrence, emphasizes the importance of compensatory mutation and genetic drift. Positive selection, in contrast, although it has been invoked in specific instances of adaptive gene expression evolution, has not been considered as a general alternative to neutral compensatory evolution. In this study we evaluate the two hypotheses by analyzing patterns of single nucleotide polymorphism in the TFBS of well-characterized CRM in two closely related Drosophila species, Drosophila melanogaster and Drosophila simulans. An important feature of the analysis is classification of TFBS mutations according to the direction of their predicted effect on binding affinity, which allows gains and losses to be evaluated independently along the two phylogenetic lineages. The observed patterns of polymorphism and divergence are not compatible with neutral evolution for either class of mutations. Instead, multiple lines of evidence are consistent with contributions of positive selection to TFBS gain and loss as well as purifying selection in its maintenance. In discussion, we propose a model to reconcile the finding of selection driving TFBS turnover with constrained CRM function over long evolutionary time.

  6. Blood pressure is the major driving force for plaque formation in aortic-constricted ApoE-/- mice

    DEFF Research Database (Denmark)

    Johansson, Maria E.; Wickman, Anna; Skøtt, Ole

    2006-01-01

    OBJECTIVE: Using an aortic constriction model in mice, we studied whether the increase in pressure or the activation of the renin-angiotensin system (RAS) and its main receptors is the main driving force for plaque progression. METHODS: Male ApoE mice underwent sham surgery or placement of a supr...

  7. Driving forces for adsorption of amphiphilic peptides to the air-water interface.

    Science.gov (United States)

    Engin, Ozge; Villa, Alessandra; Sayar, Mehmet; Hess, Berk

    2010-09-02

    We have studied the partitioning of amphiphilic peptides at the air-water interface. The free energy of adsorption from bulk to interface was calculated by determining the potential of mean force via atomistic molecular dynamics simulations. To this end a method is introduced to restrain or constrain the center of mass of a group of molecules in a periodic system. The model amphiphilic peptides are composed of alternating valine and asparagine residues. The decomposition of the free energy difference between the bulk and interface is studied for different peptide block lengths. Our analysis revealed that for short amphiphilic peptides the surface driving force dominantly stems from the dehydration of hydrophobic side chains. The only opposing force is associated with the loss of orientational freedom of the peptide at the interface. For the peptides studied, the free energy difference scales linearly with the size of the molecule, since the peptides mainly adopt extended conformations both in bulk and at the interface. The free energy difference depends strongly on the water model, which can be rationalized through the hydration thermodynamics of hydrophobic solutes. Finally, we measured the reduction of the surface tension associated with complete coverage of the interface with peptides.

  8. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  9. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    International Nuclear Information System (INIS)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-01-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions

  10. Parasitism drives host genome evolution: Insights from the Pasteuria ramosa-Daphnia magna system.

    Science.gov (United States)

    Bourgeois, Yann; Roulin, Anne C; Müller, Kristina; Ebert, Dieter

    2017-04-01

    Because parasitism is thought to play a major role in shaping host genomes, it has been predicted that genomic regions associated with resistance to parasites should stand out in genome scans, revealing signals of selection above the genomic background. To test whether parasitism is indeed such a major factor in host evolution and to better understand host-parasite interaction at the molecular level, we studied genome-wide polymorphisms in 97 genotypes of the planktonic crustacean Daphnia magna originating from three localities across Europe. Daphnia magna is known to coevolve with the bacterial pathogen Pasteuria ramosa for which host genotypes (clonal lines) are either resistant or susceptible. Using association mapping, we identified two genomic regions involved in resistance to P. ramosa, one of which was already known from a previous QTL analysis. We then performed a naïve genome scan to test for signatures of positive selection and found that the two regions identified with the association mapping further stood out as outliers. Several other regions with evidence for selection were also found, but no link between these regions and phenotypic variation could be established. Our results are consistent with the hypothesis that parasitism is driving host genome evolution. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  11. Driving forces shaping advanced reactor designs: Near-term and long-term prospects

    International Nuclear Information System (INIS)

    Sholly, S.C.

    1990-01-01

    This paper explores the forces which have driven and which in the opinion of the author should be driving advanced reactor development programs. Four general driving forces are identified: cost, safety, environmental concerns, and non-proliferation concerns. It is suggested that the primary driving forces should be cost and safety concerns. It is suggested that advanced reactors need to demonstrate the following characteristics: (a) A design which explicitly accounts for severe accidents, including severe external events (not necessarily limited to contemporary design basis events) and which results in a frequency of severe core damage substantially lower than in current plants. The goal for the frequency of severe core damage should reflect a reasonable assurance that a severe core damage accident will not occur during the operating lifetime of a fleet' of such plants. (b) A design which explicitly accounts for severe accidents in terms of accident mitigation, resulting in a very low conditional likelihood of a substantial fission product release given a severe accident. (c) A design which utilizes near-passive and passive concepts (whose safety and reliability are demonstrable by experiment and/or full-scale test) for both accident prevention and accident mitigation to the maximum extent feasible. (d) A design which allows f a suitably long time between refueling outages, with a balance struck between refueling outage duration and refueling outage frequency so as to maximize availability and capacity factor. (e) A design which emphasizes modular construction and exceptional quality control. (f) A design which de emphasizes the importance of maintenance and human reliability more generally to assure that safety functions are performed with acceptable reliability, and to assure that passive safety characteristics are not compromised by design, manufacturing, or installation defects. It is further suggested that key factors in gaining public acceptance are the early

  12. Driving forces shaping advanced reactor designs: Near-term and long-term prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sholly, S C [MHB Technical Associates, San Jose, CA (United States)

    1990-07-01

    This paper explores the forces which have driven and which in the opinion of the author should be driving advanced reactor development programs. Four general driving forces are identified: cost, safety, environmental concerns, and non-proliferation concerns. It is suggested that the primary driving forces should be cost and safety concerns. It is suggested that advanced reactors need to demonstrate the following characteristics: (a) A design which explicitly accounts for severe accidents, including severe external events (not necessarily limited to contemporary design basis events) and which results in a frequency of severe core damage substantially lower than in current plants. The goal for the frequency of severe core damage should reflect a reasonable assurance that a severe core damage accident will not occur during the operating lifetime of a fleet' of such plants. (b) A design which explicitly accounts for severe accidents in terms of accident mitigation, resulting in a very low conditional likelihood of a substantial fission product release given a severe accident. (c) A design which utilizes near-passive and passive concepts (whose safety and reliability are demonstrable by experiment and/or full-scale test) for both accident prevention and accident mitigation to the maximum extent feasible. (d) A design which allows f a suitably long time between refueling outages, with a balance struck between refueling outage duration and refueling outage frequency so as to maximize availability and capacity factor. (e) A design which emphasizes modular construction and exceptional quality control. (f) A design which de emphasizes the importance of maintenance and human reliability more generally to assure that safety functions are performed with acceptable reliability, and to assure that passive safety characteristics are not compromised by design, manufacturing, or installation defects. It is further suggested that key factors in gaining public acceptance are the early

  13. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion.

    Science.gov (United States)

    Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-04-20

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.

  14. Characterization of New Isolates of Apricot vein clearing-associated virus and of a New Prunus-Infecting Virus: Evidence for Recombination as a Driving Force in Betaflexiviridae Evolution.

    Directory of Open Access Journals (Sweden)

    Armelle Marais

    Full Text Available Double stranded RNAs from Prunus samples gathered from various surveys were analyzed by a deep-sequencing approach. Contig annotations revealed the presence of a potential new viral species in an Azerbaijani almond tree (Prunus amygdalus and its genome sequence was completed. Its genomic organization is similar to that of the recently described Apricot vein clearing associated virus (AVCaV for which two new isolates were also characterized, in a similar fashion, from two Japanese plums (Prunus salicina from a French germplasm collection. The amino acid identity values between the four proteins encoded by the genome of the new virus have identity levels with those of AVCaV which fall clearly outside the species demarcation criteria. The new virus should therefore be considered as a new species for which the name of Caucasus prunus virus (CPrV has been proposed. Phylogenetic relationships and nucleotide comparisons suggested that together with AVCaV, CPrV could define a new genus (proposed name: Prunevirus in the family Betaflexiviridae. A molecular test targeting both members of the new genus was developed, allowing the detection of additional AVCaV isolates, and therefore extending the known geographical distribution and the host range of AVCaV. Moreover, the phylogenetic trees reconstructed with the amino acid sequences of replicase, movement and coat proteins of representative Betaflexiviridae members suggest that Citrus leaf blotch virus (CLBV, type member of the genus Citrivirus may have evolved from a recombination event involving a Prunevirus, further highlighting the importance of recombination as a driving force in Betaflexiviridae evolution. The sequences reported in the present manuscript have been deposited in the GenBank database under accession numbers KM507061-KM504070.

  15. Adaptive evolution in ecological communities.

    Directory of Open Access Journals (Sweden)

    Martin M Turcotte

    Full Text Available Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.

  16. Photoinduced electron transfer in covalent ruthenium-anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor-bridge energy gap.

    Science.gov (United States)

    Hankache, Jihane; Wenger, Oliver S

    2012-02-28

    Four rigid rod-like molecules comprised of a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer, a 9,10-anthraquinone electron acceptor, and a molecular bridge connecting the two redox partners were synthesized and investigated by optical spectroscopic and electrochemical means. An attempt was made to assess the relative importance of driving-force, solvent polarity, and bridge variation on the rates of photoinduced electron transfer in these molecules. Expectedly, introduction of tert-butyl substituents in the bipyridine ligands of the ruthenium complex and a change in solvent from dichloromethane to acetonitrile lead to a significant acceleration of charge transfer rates. In dichloromethane, photoinduced electron transfer is not competitive with the inherent excited-state deactivation processes of the photosensitizer. In acetonitrile, an increase in driving-force by 0.2 eV through attachment of tert-butyl substituents to the bpy ancillary ligands causes an increase in electron transfer rates by an order of magnitude. Replacement of a p-xylene bridge by a p-dimethoxybenzene spacer entails an acceleration of charge transfer rates by a factor of 3.5. In the dyads from this study, the relative order of importance of individual influences on electron transfer rates is therefore as follows: solvent polarity ≥ driving-force > donor-bridge energy gap.

  17. Local deforestation patterns and their driving forces of tropical dry forest in two municipalities in Southern Oaxaca, Mexico (1985-2006

    Directory of Open Access Journals (Sweden)

    L. Galicia

    2016-11-01

    Full Text Available The tropical dry forest is an ecosystem that is undergoing rapid changes. Although global driving forces behind these changes have been addressed at a local scale, spatio-temporal dynamics are still largely unknown. The main objective of this study was to identify the causes governing the dynamics of changes in land use and land cover in the tropical dry forest in two municipalities in Southern México. Satellite imagery and air photographs were used in a GIS context to produce maps of land use and land cover for 1985, 1995 and 2006. A number of statistical methods (Markov chains, general lineal models and regression tree analysis were applied to identify the proximate and the underlying causes of deforestation, agriculture being the most important one. When agriculture is mainly for self consumption, topographic factors determine its location. Increasing job opportunities in the tourism sector has resulted in the abandonment of agricultural land; consequently, the forest has recovered. Different studies have examined the dynamics of local deforestation and its driving forces in México; however, this study considered both spatial and temporal elements in order to identify the most important underlying driving forces of deforestation and its dynamics at local scale, and also compared two neighboring municipalities.

  18. Selection for social signalling drives the evolution of chameleon colour change.

    Directory of Open Access Journals (Sweden)

    Devi Stuart-Fox

    2008-01-01

    Full Text Available Rapid colour change is a remarkable natural phenomenon that has evolved in several vertebrate and invertebrate lineages. The two principal explanations for the evolution of this adaptive strategy are (1 natural selection for crypsis (camouflage against a range of different backgrounds and (2 selection for conspicuous social signals that maximise detectability to conspecifics, yet minimise exposure to predators because they are only briefly displayed. Here we show that evolutionary shifts in capacity for colour change in southern African dwarf chameleons (Bradypodion spp. are associated with increasingly conspicuous signals used in male contests and courtship. To the chameleon visual system, species showing the most dramatic colour change display social signals that contrast most against the environmental background and amongst adjacent body regions. We found no evidence for the crypsis hypothesis, a finding reinforced by visual models of how both chameleons and their avian predators perceive chameleon colour variation. Instead, our results suggest that selection for conspicuous social signals drives the evolution of colour change in this system, supporting the view that transitory display traits should be under strong selection for signal detectability.

  19. Land use change and its driving forces toward mutual conversion in Zhangjiakou City, a farming-pastoral ecotone in Northern China.

    Science.gov (United States)

    Liu, Chao; Xu, Yueqing; Sun, Piling; Huang, An; Zheng, Weiran

    2017-09-14

    Land use/cover change (LUCC), a local environmental issue of global importance, and its driving forces have been crucial issues in geography and environmental research. Previous studies primarily focused on major driving factors in various land use types, with few explorations of differences between driving forces of mutual land use type conversions, especially in fragile eco-environments. In this study, Zhangjiakou City, in a farming-pastoral ecotone in Northern China, was taken as an example to analyze land use change between 1989 and 2015, and explore the driving forces of mutual land use type conversions using canonical correlation analysis. Satellite images and government statistics, including social-economic and natural data, were used as sources. Arable land, forestland, and grassland formed the main land use structure. From 1989 to 2015 forestland, orchard land, and construction land significantly increased, while arable land, grassland, unused land, and water areas decreased. Conversions from grassland to forestland; from arable land to orchard land, forestland and construction land; and from unused land to grassland and forestland were the primary land use changes. Among these, the conversion from grassland to forestland had the highest ranking. Average annual precipitation and per capita net income of rural residents positively affected the conversion of arable land to forestland and unused land to grassland. GDP, total population, and urbanization rate contributed most significantly to converting arable land to construction land; total retail sales of social consumer goods, average annual temperature, and GDP had important positive influences in converting arable land to orchard land.

  20. Differences in Pattern and Driving Forces between Urban and Rural Settlements in the Coastal Region of Ningbo, China

    Directory of Open Access Journals (Sweden)

    Mingxing Chen

    2014-04-01

    Full Text Available Rapid urbanization on the coast of China has attracted much attention. The objective of this study was to explore the differences in dynamics and related driving forces between urban and rural settlements. Applying the quantitative method, we demonstrate that substantial heterogeneity in settlement growth, landscape pattern metrics, change, land sources and driving forces is exhibited across the different types of urban and rural settlements. The spatial growth of urban settlements is dominated by in situ expansion, while rural settlements tend to be scattered and shrinking rapidly. The sprawl of human settlements has mainly occupied farm land, but reclamation projects are increasingly becoming important land sources for urban settlements. Local government has played a critical role in urban settlements, while the expansion of rural settlements is mainly driven by individual choice and village collective organizations. Such differences may account for differential options for the management of human settlements scientifically.

  1. Driving forces behind the construction of an eco-compensation mechanism for wetlands in China

    Science.gov (United States)

    Wang, Changhai

    2016-09-01

    This research revealed important driving forces behind the construction of an eco-compensation mechanism for wetlands (DFEMW) in China. Using China's provincial panel data from 1978 to 2008, a fixed-effects model was used to analyze the impacts of agricultural production systems on wetlands. We identified three DFEMW as follows: the change of wetland resources and protection measures in China; declaration and implementation of the provincial Wetland Protection Ordinance; and wetland degradation by agricultural production systems, which necessitated the establishment of a wetland eco-compensation mechanism. In addition to the DFEMW, a significant positive correlation between wetland area and both rural population and gross agricultural production was identified, in addition to a negative correlation with chemical fertilizer usage, reservoir storage capacity, and irrigation area. The underlying reasons for the serious degradation and inadequate protection of wetlands were market failure and government failure; these were the driving forces behind the need to establish a wetland eco-compensation mechanism. From a governmental perspective, it has been difficult to rectify market failures in resource distribution and thus to prevent wetland degradation. Factors include conflicts of interest, lack of investment, effective special laws, a simple means to protect wetlands, and a multidisciplinary management system. Therefore, the key factor is the coordination of interest relationships between those who utilize wetlands and those who seek to minimize wetland degradation and effectively protect wetlands.

  2. TSC [Tokamak Simulation Code] disruption scenarios and CIT [Compact Ignition Tokamak] vacuum vessel force evolution

    International Nuclear Information System (INIS)

    Sayer, R.O.; Peng, Y.K.M.; Strickler, D.J.; Jardin, S.C.

    1990-01-01

    The Tokamak Simulation Code and the TWIR postprocessor code have been used to develop credible plasma disruption scenarios for the Compact Ignition Tokamak (CIT) in order to predict the evolution of forces on CIT conducting structures and to provide results required for detailed structural design analysis. The extreme values of net radial and vertical vacuum vessel (VV) forces were found to be F R =-12.0 MN/rad and F Z =-3.0 MN/rad, respectively, for the CIT 2.1-m, 11-MA design. Net VV force evolution was found to be altered significantly by two mechanisms not noted previously. The first, due to poloidal VV currents arising from increased plasma paramagnetism during thermal quench, reduces the magnitude of the extreme F R by 15-50% and modifies the distribution of forces substantially. The second effect is that slower plasma current decay rates give more severe net vertical VV loads because the current decay occurs when the plasma has moved farther from midplane than is the case for faster decay rates. 7 refs., 9 figs., 1 tab

  3. The Key Driving Forces for Geo-Economic Relationships between China and ASEAN Countries

    Directory of Open Access Journals (Sweden)

    Shufang Wang

    2017-12-01

    Full Text Available With the rise of China and the implementation of the “21st Century Maritime Silk Road” strategy, research on geo-economics between China and ASEAN (Association of Southeast Asian Nations countries has become increasingly important. Current studies mainly focus on influencing factors, while there is little consideration about how these influencing factors act on geo-economic relationships. Therefore, this paper explores the key driving forces for geo-economic relationships between China and ASEAN countries by use of the structural equation modeling based on Partial Lease Squares. There are three main findings: (1 Economic factors have the greatest impact on geo-economic relationships and the total path effect is 0.778. Geo-location, geopolitics and geo-culture act on geo-economic relationships directly and indirectly. Their total path effects are 0.731, 0.645 and 0.513, respectively. (2 Indirect effects of geo-location, geopolitics and geo-culture impacting geo-economic relationships are far greater than direct effects. Geo-culture, in particular, has a vital mediating effect on geo-economic relationships. (3 Economic drivers promote geo-economic relationships through market, industrial policy, technical, network and benefit-sharing mechanisms. Political drivers improve geo-economic relationships through cooperation, negotiation, coordination and institutional mechanisms. Cultural drivers enhance geo-economic relationships through transmission mechanism. Location drivers facilitate geo-economic relationships through selection mechanism. We provide new insights on the geo-economic relationships through quantitative analysis and enrich the existing literature by revealing the key driving forces and mechanisms for geo-economic relationships.

  4. [Spatio-temporal change of sand-fixing function and its driving forces in desertification control ecological function area of Hunshandake, China].

    Science.gov (United States)

    Shen, Lu; Tian, Mei-rong; Gao, Ji-xi; Qian, Jin-ping

    2016-01-01

    Soil erosion is an important ecological and environmental problem in Hunshandake Desert, and the sand-fixing function determines the degree of ecological security in the entire region. In order to clarify the situation of windbreak and sand fixation in Hunshandake area, and to guide the prevention and treatment of desertification on regional scale, based on the meteorological and remote sensing data, this paper quantitatively analyzed the temporal and spatial pattern of windbreak and sand fixation ability between 2000-2010 by the revised wind erosion equation (RWEQ) model, meanwhile, the driving forces for each county ( or banner) in the functional zone were analyzed with the method of principal component analysis. The results showed that there was a fluctuation of the sand fixing capacity in Hunshandake over time, generally rendering a decline trend. The coniferous forest and grassland had strong windbreak and sand fixation capacity in unit area among the various land categories. In terms of spatial distribution, the windbreak and sand fixation function in western and southeastern region was weak and needed to be strengthened with ecological restoration efforts. Through the study of the social driving forces of each administrative region in the function zone, there were 3 main social driving forces of soil erosion in the administrative functions: the intensity of input-output, the level of economic development and the level of agriculture-husbandry development.

  5. Relative importance of driving force and electrostatic interactions in the reduction of multihaem cytochromes by small molecules.

    Science.gov (United States)

    Quintas, Pedro O; Cepeda, Andreia P; Borges, Nuno; Catarino, Teresa; Turner, David L

    2013-06-01

    Multihaem cytochromes are essential to the energetics of organisms capable of bioremediation and energy production. The haems in several of these cytochromes have been discriminated thermodynamically and their individual rates of reduction by small electron donors were characterized. The kinetic characterization of individual haems used the Marcus theory of electron transfer and assumed that the rates of reduction of each haem by sodium dithionite depend only on the driving force, while electrostatic interactions were neglected. To determine the relative importance of these factors in controlling the rates, we studied the effect of ionic strength on the redox potential and the rate of reduction by dithionite of native Methylophilus methylotrophus cytochrome c″ and three mutants at different pH values. We found that the main factor determining the rate is the driving force and that Marcus theory describes this satisfactorily. This validates the method of the simultaneous fitting of kinetic and thermodynamic data in multihaem cytochromes and opens the way for further investigation into the mechanisms of these proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Earth evolution as a thermal system

    Science.gov (United States)

    Tang, C.

    2014-12-01

    After fifty years of plate-tectonic theory, the reasons why earth sometime freezed as a snowball or sometime became lethally hot resulting in mass extinction remain enigmatic. This article proposes a new hypothesis on Earth evolution. The unbalance of heat between the input and output is considered as the driving force for the Earth evolution, the lithospheric expansion and associated uplift are the triggers, the self-organized progressive failure leading to collapse of the Earth are the amplifier, and the global scale response in terms of volcanism and magmatism is the globalizer. This shallow process of lithosphere may reach a critical state with a positive feedback loop, and result in the formation of no-plume original Large Igneous Provinces (NPOLIP) in a top-down pattern. Endothermic phase changes during de-compressive melting remove heat from and cool their surroundings, including the upper parts of the lithosphere. The huge loss of Earth's heat during eruption of LIPs, together with the endothermic cooling, may put the thermal cycle to an end and a new start of the cycle initiates. In summary, Earth drives itself to evolve in terms of thermal cycles. Global cooling and warming are the two stages of the many cycles during the Earth evolution. Glaciations are the extreme result of global cooling, whereas the LIPs, sometime accompanied with remarkable sea level dropping, are the extreme result of global warming, with a long recovering age, the interglacialstage, between them. They come and go as thermal cycle evolves, with climate warming, being caused by Earth itself rather than by external forces or human activities, as the most attractive prediction.

  7. Greatest Happiness Principle in a Complex System: Maximisation versus Driving Force

    Directory of Open Access Journals (Sweden)

    Katalin Martinás

    2012-06-01

    Full Text Available From philosophical point of view, micro-founded economic theories depart from the principle of the pursuit of the greatest happiness. From mathematical point of view, micro-founded economic theories depart from the utility maximisation program. Though economists are aware of the serious limitations of the equilibrium analysis, they remain in that framework. We show that the maximisation principle, which implies the equilibrium hypothesis, is responsible for this impasse. We formalise the pursuit of the greatest happiness principle by the help of the driving force postulate: the volumes of activities depend on the expected wealth increase. In that case we can get rid of the equilibrium hypothesis and have new insights into economic theory. For example, in what extent standard economic results depend on the equilibrium hypothesis?

  8. Microstructural Evolution, Thermodynamics, and Kinetics of Mo-Tm2O3 Powder Mixtures during Ball Milling

    Directory of Open Access Journals (Sweden)

    Yong Luo

    2016-10-01

    Full Text Available The microstructural evolution, thermodynamics, and kinetics of Mo (21 wt % Tm2O3 powder mixtures during ball milling were investigated using X-ray diffraction and transmission electron microscopy. Ball milling induced Tm2O3 to be decomposed and then dissolved into Mo crystal. After 96 h of ball milling, Tm2O3 was dissolved completely and the supersaturated nanocrystalline solid solution of Mo (Tm, O was obtained. The Mo lattice parameter increased with increasing ball-milling time, opposite for the Mo grain size. The size and lattice parameter of Mo grains was about 8 nm and 0.31564 nm after 96 h of ball milling, respectively. Ball milling induced the elements of Mo, Tm, and O to be distributed uniformly in the ball-milled particles. Based on the semi-experimental theory of Miedema, a thermodynamic model was developed to calculate the driving force of phase evolution. There was no chemical driving force to form a crystal solid solution of Tm atoms in Mo crystal or an amorphous phase because the Gibbs free energy for both processes was higher than zero. For Mo (21 wt % Tm2O3, it was mechanical work, not the negative heat of mixing, which provided the driving force to form a supersaturated nanocrystalline Mo (Tm, O solid solution.

  9. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    Science.gov (United States)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  10. Directed motion of spheres induced by unbiased driving forces in viscous fluids beyond the Stokes' law regime

    Science.gov (United States)

    Casado-Pascual, Jesús

    2018-03-01

    The emergence of directed motion is investigated in a system consisting of a sphere immersed in a viscous fluid and subjected to time-periodic forces of zero average. The directed motion arises from the combined action of a nonlinear drag force and the applied driving forces, in the absence of any periodic substrate potential. Necessary conditions for the existence of such directed motion are obtained and an analytical expression for the average terminal velocity is derived within the adiabatic approximation. Special attention is paid to the case of two mutually perpendicular forces with sinusoidal time dependence, one with twice the period of the other. It is shown that, although neither of these two forces induces directed motion when acting separately, when added together, the resultant force generates directed motion along the direction of the force with the shortest period. The dependence of the average terminal velocity on the system parameters is analyzed numerically and compared with that obtained using the adiabatic approximation. Among other results, it is found that, for appropriate parameter values, the direction of the average terminal velocity can be reversed by varying the forcing strength. Furthermore, certain aspects of the observed phenomenology are explained by means of symmetry arguments.

  11. Temporal genomic evolution of bird sex chromosomes

    DEFF Research Database (Denmark)

    Wang, Zongji; Zhang, Jilin; Yang, Wei

    2014-01-01

    BACKGROUND: Sex chromosomes exhibit many unusual patterns in sequence and gene expression relative to autosomes. Birds have evolved a female heterogametic sex system (male ZZ, female ZW), through stepwise suppression of recombination between chrZ and chrW. To address the broad patterns and complex...... driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. RESULTS: We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous...... ('fast-Z' evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes' enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic...

  12. Energizing porters by proton-motive force.

    Science.gov (United States)

    Nelson, N

    1994-11-01

    It is generally accepted that the chemistry of water was the most crucial determinant in shaping life on earth. Among the more important chemical features of water is its dissociation into protons and hydroxyl ions. The presence of relatively high proton concentrations in the ambient solution resulted in the evolution of proton pumps during the dawn of life on earth. These proton pumps maintained neutral pH inside the cells and generated electrochemical gradients of protons (proton-motive force) across their membranes. The existence of proton-motive force enabled the evolution of porters driven by it that are most probably among the more primitive porters in the world. The directionality of the substrate transport by the porters could be to both sides of the membranes because they can serve as proton symporters or antiporters. One of the most important subjects of this meeting is the mechanism by which proton-motive and other ion-motive forces drive the transport processes through porters. Is there a common mechanism of action for all proton-driven porters? Is there some common partial reaction by which we can identify the way that porters are energized by proton-motive force? Is there a common coupling between proton movement and uptake or secretion of certain molecules? Even a partial answer to one of these questions would advance our knowledge... or confusion. As my mentor Efraim Racker used to say: 'If you are not totally confused you do not understand the issue'.

  13. Why men matter: mating patterns drive evolution of human lifespan.

    Directory of Open Access Journals (Sweden)

    Shripad D Tuljapurkar

    2007-08-01

    Full Text Available Evolutionary theory predicts that senescence, a decline in survival rates with age, is the consequence of stronger selection on alleles that affect fertility or mortality earlier rather than later in life. Hamilton quantified this argument by showing that a rare mutation reducing survival is opposed by a selective force that declines with age over reproductive life. He used a female-only demographic model, predicting that female menopause at age ca. 50 yrs should be followed by a sharp increase in mortality, a "wall of death." Human lives obviously do not display such a wall. Explanations of the evolution of lifespan beyond the age of female menopause have proven difficult to describe as explicit genetic models. Here we argue that the inclusion of males and mating patterns extends Hamilton's theory and predicts the pattern of human senescence. We analyze a general two-sex model to show that selection favors survival for as long as men reproduce. Male fertility can only result from matings with fertile females, and we present a range of data showing that males much older than 50 yrs have substantial realized fertility through matings with younger females, a pattern that was likely typical among early humans. Thus old-age male fertility provides a selective force against autosomal deleterious mutations at ages far past female menopause with no sharp upper age limit, eliminating the wall of death. Our findings illustrate the evolutionary importance of males and mating preferences, and show that one-sex demographic models are insufficient to describe the forces that shape human senescence.

  14. Herbivory as an important selective force in the evolution of floral traits and pollinator shifts

    Science.gov (United States)

    Overson, Rick P.; Raguso, Robert A.; Skogen, Krissa A.

    2017-01-01

    Abstract Floral trait evolution is frequently attributed to pollinator-mediated selection but herbivores can play a key role in shaping plant reproductive biology. Here we examine the role of florivores in driving floral trait evolution and pollinator shifts in a recently radiated clade of flowering plants, Oenothera sect. Calylophus. We compare florivory by a specialist, internal feeder, Mompha, on closely related hawkmoth- and bee-pollinated species and document variation in damage based on floral traits within sites, species and among species. Our results show that flowers with longer floral tubes and decreased floral flare have increased Mompha damage. Bee-pollinated flowers, which have substantially smaller floral tubes, experience on average 13% less Mompha florivory than do hawkmoth-pollinated flowers. The positive association between tube length and Mompha damage is evident even within sites of some species, suggesting that Mompha can drive trait differentiation at microevolutionary scales. Given that there are at least two independent shifts from hawkmoth to bee pollination in this clade, florivore-mediated selection on floral traits may have played an important role in facilitating morphological changes associated with transitions from hawkmoth to bee pollination. PMID:28011456

  15. Force Sensitive Handles and Capacitive Touch Sensor for Driving a Flexible Haptic-Based Immersive System

    OpenAIRE

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-01-01

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object...

  16. Sex drives intracellular conflict in yeast.

    Science.gov (United States)

    Harrison, E; MacLean, R C; Koufopanou, V; Burt, A

    2014-08-01

    Theory predicts that sex can drive the evolution of conflict within the cell. During asexual reproduction, genetic material within the cell is inherited as a single unit, selecting for cooperation both within the genome as well as between the extra-genomic elements within the cell (e.g. plasmids and endosymbionts). Under sexual reproduction, this unity is broken down as parental genomes are distributed between meiotic progeny. Genetic elements able to transmit to more than 50% of meiotic progeny have a transmission advantage over the rest of the genome and are able to spread, even where they reduce the fitness of the individual as a whole. Sexual reproduction is therefore expected to drive the evolution of selfish genetic elements (SGEs). Here, we directly test this hypothesis by studying the evolution of two independent SGEs, the 2-μm plasmid and selfish mitochondria, in populations of Saccharomyces cerevisiae. Following 22 rounds of sexual reproduction, 2-μm copy number increased by approximately 13.2 (±5.6) copies per cell, whereas in asexual populations copy number decreased by approximately 5.1 (±1.5) copies per cell. Given that the burden imposed by this parasite increases with copy number, these results support the idea that sex drives the evolution of increased SGE virulence. Moreover, we found that mitochondria that are respiratory-deficient rapidly invaded sexual but not asexual populations, demonstrating that frequent outcrossed sex can drive the de novo evolution of genetic parasites. Our study highlights the genomic perils of sex and suggests that SGEs may play a key role in driving major evolutionary transitions, such as uniparental inheritance. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  17. Driving forces for home-based reablement; a qualitative study of older adults' experiences.

    Science.gov (United States)

    Hjelle, Kari Margrete; Tuntland, Hanne; Førland, Oddvar; Alvsvåg, Herdis

    2017-09-01

    As a result of the ageing population worldwide, there has been a growing international interest in a new intervention termed 'reablement'. Reablement is an early and time-limited home-based intervention with emphasis on intensive, goal-oriented and interdisciplinary rehabilitation for older adults in need of rehabilitation or at risk of functional decline. The aim of this qualitative study was to describe how older adults experienced participation in reablement. Eight older adults participated in semi-structured interviews. A qualitative content analysis was used as the analysis strategy. Four main themes emerged from the participants' experiences of participating in reablement: 'My willpower is needed', 'Being with my stuff and my people', 'The home-trainers are essential', and 'Training is physical exercises, not everyday activities'. The first three themes in particular reflected the participants' driving forces in the reablement process. Driving forces are intrinsic motivation in interaction with extrinsic motivation. Intrinsic motivation was based on the person's willpower and responsibility, and extrinsic motivation was expressed to be strengthened by being in one's home environment with 'own' people, as well as by the co-operation with the reablement team. The reablement team encouraged and supported the older adults to regain confidence in performing everyday activities as well as participating in the society. Our findings have practical significance for politicians, healthcare providers and healthcare professionals by contributing to an understanding of how intrinsic and extrinsic motivation influence reablement. Some persons need apparently more extrinsic motivational support also after the time-limited reablement period is completed. The municipal health and care services need to consider individualised follow-up programmes after the intensive reablement period in order to maintain the achieved skills to perform everyday activities and participate in

  18. Changing and Differentiated Urban Landscape in China: Spatiotemporal Patterns and Driving Forces.

    Science.gov (United States)

    Fang, Chuanglin; Li, Guangdong; Wang, Shaojian

    2016-03-01

    Urban landscape spatiotemporal change patterns and their driving mechanisms in China are poorly understood at the national level. Here we used remote sensing data, landscape metrics, and a spatial econometric model to characterize the spatiotemporal patterns of urban landscape change and investigate its driving forces in China between 1990 and 2005. The results showed that the urban landscape pattern has experienced drastic changes over the past 15 years. Total urban area has expanded approximately 1.61 times, with a 2.98% annual urban-growth rate. Compared to previous single-city studies, although urban areas are expanding rapidly, the overall fragmentation of the urban landscape is decreasing and is more irregular and complex at the national level. We also found a stair-stepping, urban-landscape changing pattern among eastern, central, and western counties. In addition, administrative level, urban size, and hierarchy have effects on the urban landscape pattern. We also found that a combination of landscape metrics can be used to supplement our understanding of the pattern of urbanization. The changes in these metrics are correlated with geographical indicators, socioeconomic factors, infrastructure variables, administrative level factors, policy factors, and historical factors. Our results indicate that the top priority should be strengthening the management of urban planning. A compact and congregate urban landscape may be a good choice of pattern for urban development in China.

  19. Quantifying the Driving Forces of Informal Urbanization in the Western Part of the Greater Cairo Metropolitan Region

    Directory of Open Access Journals (Sweden)

    Taher Osman

    2016-06-01

    Full Text Available This paper discusses the driving forces (DFs of informal urbanization (IU in the greater Cairo metropolitan region (GCMR using the Analytic Hierarchy Process (AHP. The IU patterns in the GCMR have been extremely influenced by seven DFs: geographical characteristics, availability of life facilities, economic incentives, land demand and supply, population increase, administrative function, and development plans. This research found that these forces vary significantly in how they influence urban growth in the three study sectors, namely, the middle, north, and south areas in the western part of the GCMR. The forces with the highest influence were economic incentives in the middle sector, population increase in the north sector, and the administrative function in the south sector. Due to the lower availability of buildable land in the middle sector, the land demand and supply force had a lesser influence in this sector compared to in the north and south sectors. The development plans force had medium influence in all sectors. The geographical characteristics force had little influence in both the middle and the north sectors, but higher influence than economic incentives, availability of life facilities, and development plans in the south sector. Because of the spatial variances in life facilities organizations in the GCMR, the life facilities availability force had little effect on IU in the south sector.

  20. Driving forces and barriers to improved energy performance of buildings: an analysis of energy performance of Swedish buildings, 2000-2006

    Energy Technology Data Exchange (ETDEWEB)

    Fuglseth, Bente Beckstroem

    2008-06-15

    The building sector is responsible for a substantial part of energy use and green house gas emissions in Europe. This report explores driving forces and barriers to improved energy performance of buildings, using the Swedish building sector as a case. The development of energy performance of buildings in Sweden from 2000 until 2006 is explored by applying a threefold understanding of energy performance of buildings: substitution from fossil fuels to renewable energy, conversion from electrical heating to thermal energy and reduction in energy demand. Three explanatory approaches are used to analyse driving forces and barriers to improved energy performance: the techno-economic approach stresses the physical aspects of infrastructure and technologies, the institutional approach emphasizes the role of institutional factors, while the regulative approach focuses on formal rules and laws. The study concludes that all factors have promoted substitution of fossil fuels with renewable energy, while they have prevented conversion from electrical heating to thermal energy and reduction in energy demand. (author). 95 refs

  1. Identifying the driving forces of urban expansion and its environmental impact in Jakarta-Bandung mega urban region

    Science.gov (United States)

    Pravitasari, A. E.; Rustiadi, E.; Mulya, S. P.; Setiawan, Y.; Fuadina, L. N.; Murtadho, A.

    2018-05-01

    The socio-economic development in Jakarta-Bandung Mega Urban Region (JBMUR) caused the increasing of urban expansion and led to a variety of environmental damage such as uncontrolled land use conversion and raising anthropogenic disaster. The objectives of this study are: (1) to identify the driving forces of urban expansion that occurs on JBMUR and (2) to analyze the environmental quality decline on JBMUR by producing time series spatial distribution map and spatial autocorrelation of floods and landslide as the proxy of anthropogenic disaster. The driving forces of urban expansion in this study were identified by employing Geographically Weighted Regression (GWR) model using 6 (six) independent variables, namely: population density, percentage of agricultural land, distance to the center of capital city/municipality, percentage of household who works in agricultural sector, distance to the provincial road, and distance to the local road. The GWR results showed that local demographic, social and economic factors including distance to the road spatially affect urban expansion in JBMUR. The time series spatial distribution map of floods and landslide event showed the spatial cluster of anthropogenic disaster in some areas. Through Local Moran Index, we found that environmental damage in one location has a significant impact on the condition of its surrounding area.

  2. The edge of neutral evolution in social dilemmas

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, Jonas; Frey, Erwin [Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universitaet Muenchen, Theresienstrasse 37, D-80333 Muenchen (Germany); Reichenbach, Tobias [Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)], E-mail: jonas.cremer@physik.uni-muenchen.de

    2009-09-15

    The functioning of animal as well as human societies fundamentally relies on cooperation. Yet, defection is often favorable for the selfish individual, and social dilemmas arise. Selection by individuals' fitness, usually the basic driving force of evolution, quickly eliminates cooperators. However, evolution is also governed by fluctuations that can be of greater importance than fitness differences, and can render evolution effectively neutral. Here, we investigate the effects of selection versus fluctuations in social dilemmas. By studying the mean extinction times of cooperators and defectors, a variable sensitive to fluctuations, we are able to identify and quantify an emerging 'edge of neutral evolution' that delineates regimes of neutral and Darwinian evolution. Our results reveal that cooperation is significantly maintained in the neutral regimes. In contrast, the classical predictions of evolutionary game theory, where defectors beat cooperators, are recovered in the Darwinian regimes. Our studies demonstrate that fluctuations can provide a surprisingly simple way to partly resolve social dilemmas. Our methods are generally applicable to estimate the role of random drift in evolutionary dynamics.

  3. The edge of neutral evolution in social dilemmas

    International Nuclear Information System (INIS)

    Cremer, Jonas; Frey, Erwin; Reichenbach, Tobias

    2009-01-01

    The functioning of animal as well as human societies fundamentally relies on cooperation. Yet, defection is often favorable for the selfish individual, and social dilemmas arise. Selection by individuals' fitness, usually the basic driving force of evolution, quickly eliminates cooperators. However, evolution is also governed by fluctuations that can be of greater importance than fitness differences, and can render evolution effectively neutral. Here, we investigate the effects of selection versus fluctuations in social dilemmas. By studying the mean extinction times of cooperators and defectors, a variable sensitive to fluctuations, we are able to identify and quantify an emerging 'edge of neutral evolution' that delineates regimes of neutral and Darwinian evolution. Our results reveal that cooperation is significantly maintained in the neutral regimes. In contrast, the classical predictions of evolutionary game theory, where defectors beat cooperators, are recovered in the Darwinian regimes. Our studies demonstrate that fluctuations can provide a surprisingly simple way to partly resolve social dilemmas. Our methods are generally applicable to estimate the role of random drift in evolutionary dynamics.

  4. NATURE AND DRIVING FORCES OF STRIKE MOVEMENT IN MOLDOVA IN LATE 1980S

    Directory of Open Access Journals (Sweden)

    Галина Евгеньевна Слободянюк

    2016-12-01

    Full Text Available The article discloses the nature and driving forces of the republican protest strike movement in Moldova in the period of perestroika reformsand its impact on the emergence and development of the civil conflict,which became the catalyst for the territorial division of the republic and the creation of the self-proclaimed Transnistrian statehood.In the article there is presented the analysis of the process of formationand activity of the strike movement. The author shows that the United Council of LabourUnionswas the initiator, organizer and the main acting force of the protest of the workers' movement, defending the civil and constitutional rights of the Russian-speaking population of the Transdnistrian region of the Moldavian SSR. The article allows getting an idea of the ways and methods of struggle of the working movement against the Soviet Moldavia nationalist representatives of the Popular front, which operated on the territory of the republic of Moldova. Particular attention is paid to the reasons of occurrence and major activities of the strike movement.Moreover, there are analyzed the consequences of these actions for the further political development of Moldova.

  5. Design and Synthesis of Distillation Systems using a Driving Force Based Approach

    DEFF Research Database (Denmark)

    Bek-Pedersen, Erik; Gani, Rafiqul

    2004-01-01

    A new integrated framework for synthesis, design and operation of distillation-based separation schemes is presented here. This framework is based on the driving force approach, which provides a measure of the differences in chemical/physical properties between two co-existing phases...... in a separation unit. A set of algorithms has been developed within this framework for design of simple as well as complex distillation columns, for the sequencing of distillation trains, for the determination of appropriate conditions of operation and for retrofit of distillation columns. The main feature of all...... these algorithms is that they provide a simple "visual" method to obtain near-optimal solutions in terms of energy consumption without rigorous simulation and/or optimisation. Several illustrative examples highlighting the application of the integrated approach are also presented. (C) 2003 Published by Elsevier B.V....

  6. Computational simulations of direct contact condensation as the driving force for water hammer

    International Nuclear Information System (INIS)

    Ceuca, Sabin-Cristian

    2015-01-01

    An analysis, based on Computer Simulations of the Direct Contact Condensation as the Driving Force for the Condensation Induced Water Hammer phenomenon is performed within this thesis. The goal of the work is to develop a mechanistic HTC model, with predictive capabilities for the simulation of horizontal or nearly horizontal two-phase ows with complex patterns including the e ect of interfacial heat and mass transfer. The newly developed HTC model was implemented into the system code ATHLET and into the CFD tools ANSYS CFX and OpenFOAM. Validation calculations have been performed for horizontal or nearly horizontal ows, where simulation results have been compared against the local measurement data such as void and temperature or area averaged data delivered by a wire mesh sensor.

  7. Computational simulations of direct contact condensation as the driving force for water hammer

    Energy Technology Data Exchange (ETDEWEB)

    Ceuca, Sabin-Cristian

    2015-04-27

    An analysis, based on Computer Simulations of the Direct Contact Condensation as the Driving Force for the Condensation Induced Water Hammer phenomenon is performed within this thesis. The goal of the work is to develop a mechanistic HTC model, with predictive capabilities for the simulation of horizontal or nearly horizontal two-phase ows with complex patterns including the e ect of interfacial heat and mass transfer. The newly developed HTC model was implemented into the system code ATHLET and into the CFD tools ANSYS CFX and OpenFOAM. Validation calculations have been performed for horizontal or nearly horizontal ows, where simulation results have been compared against the local measurement data such as void and temperature or area averaged data delivered by a wire mesh sensor.

  8. Control rod drive

    International Nuclear Information System (INIS)

    Hawke, B.C.

    1986-01-01

    A reactor core, one or more control rods, and a control rod drive are described for selectively inserting and withdrawing the one or more control rods into and from the reactor core, which consists of: a support structure secured beneath the reactor core; control rod positioning means supported by the support structure for movably supporting the control rod for movement between a lower position wherein the control rod is located substantially beneath the reactor core and an upper position wherein at least an upper portion of the control rod extends into the reactor core; transmission means; primary drive means connected with the control rod positioning means by the transmission means for positioning the control rod under normal operating conditions; emergency drive means for moving the control rod from the lower position to the upper position under emergency conditions, the emergency drive means including a weight movable between an upper and a lower position, means for movably supporting the weight, and means for transmitting gravitational force exerted on the weight to the control rod positioning means to move the control rod upwardly when the weight is pulled downwardly by gravity; the transmission means connecting the control rod positioning means with the emergency drive means so that the primary drive means effects movement of the weight and the control rod in opposite directions under normal conditions, thus providing counterbalancing to reduce the force required for upward movement of the control rod under normal conditions; and restraint means for restraining the fall of the weight under normal operating conditions and disengaging the primary drive means to release the weight under emergency conditions

  9. Driving forces behind the increasing cardiovascular treatment intensity.A dynamic epidemiologic model of trends in Danish cardiovascular drug utilization.

    DEFF Research Database (Denmark)

    Kildemoes, Helle Wallach; Andersen, Morten

    . Objectives: To investigate the driving forces behind the increasing treatment prevalence of cardiovascular drugs, in particular statins, by means of a dynamic epidemiologic drug utilization model. Methods: Material: All Danish residents older than 20 years by January 1, 1996 (4.0 million inhabitants), were...

  10. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    Science.gov (United States)

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  11. Stabilization of car-caravan combination using independent steer and drive/or brake forces distribution

    Directory of Open Access Journals (Sweden)

    Ossama Mokhiamar

    2015-09-01

    Full Text Available Once a combined vehicle becomes unstable, it is very difficult for a driver to stabilize it especially under severe driving conditions, such as turning with braking. This is mainly due to the effect of the towed vehicle on the towing vehicle through the hitch jackknifing. This effect makes the handling characteristics of a car-caravan combination different from those of a single vehicle. Therefore, this paper proposes a control design concept for an optimum distribution of longitudinal and lateral forces of the four tires of a towing vehicle. The mean objectives of the control system were to stabilize the motion of an articulated vehicle utilizing the tires entire ability in both longitudinal and lateral directions as well as to make the handling characteristics of an articulated vehicle similar to those of a single one. The sliding control law based on vehicle planar equations of motion is used to derive the control laws. The proposed control system is evaluated under severe driving conditions and compared with the results of integrated control systems. The robustness of the articulated vehicle motion with the proposed control against the coefficient of friction variation is discussed.

  12. Combination spindle-drive system for high precision machining

    Science.gov (United States)

    Gerth, Howard L.

    1977-07-26

    A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

  13. [Mobile genetic elements in plant sex evolution].

    Science.gov (United States)

    Gerashchenkov, G A; Rozhnova, N A

    2010-11-01

    The most significant theories of the appearance and maintenance of sex are presented. However, in the overwhelming majority of existing theories, the problem of sex, which is the central problem of evolutionary biology, is considered primarily through the prism of reproductive features of living organisms, whereas the issue of molecular driving forces of sexual reproduction id restricted to the possible role of mobile genetic elements (MGEs) in the appearance of sexual reproduction. The structural and functional significance of MGEs in the genomic organization of plants is illustrated. It is shown that MGEs could act as important molecular drivers of sex evolution in plants. The involvement of MGEs in the formation of sex chromosomes and possible participation in seeds-without-sex reproduction (apomixis) is discussed. Thus, the hypothesis on the active MGE participation in sex evolution is in good agreement with the modern views on pathways and directions of sex evolution in plants.

  14. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8¿ T cells in early viral evolution

    DEFF Research Database (Denmark)

    Callendret, Benoît; Bukh, Jens; Eccleston, Heather B

    2011-01-01

    occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic......The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid...... replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered...

  15. Climatic driving forces in inter-annual variation of global FPAR

    Science.gov (United States)

    Peng, Dailiang; Liu, Liangyun; Yang, Xiaohua; Zhou, Bin

    2012-09-01

    Fraction of Absorbed Photosynthetically Active Radiation (FPAR) characterizes vegetation canopy functioning and its energy absorption capacity. In this paper, we focus on climatic driving forces in inter-annual variation of global FPAR from 1982 to 2006 by Global Historical Climatology Network (GHCN-Monthly) data. Using FPAR-Simple Ratio Vegetation Index (SR) relationship, Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) was used to estimate FPAR at the global scale. The correlation between inter-annual variation of FPAR and temperature, precipitation derived from GHCN-Monthly was examined, during the periods of March-May (MAM), June-August (JJA), September-November (SON), and December-February (DJF) over from 1982 to 2006. The analysis of climatic influence on global FPAR revealed the significant correlation with temperature and precipitation in some meteorological stations area, and a more significant correlation with precipitation was found than which with temperature. Some stations in the regions between 30° N and 60° N and around 30° S in South America, where the annual FPAR variation showed a significant positive correlation with temperature (P forest of Africa and Amazon during the dry season of JJA and SON.

  16. Petroleum Development in Russian Barents sea: Driving Forces and Constraints

    International Nuclear Information System (INIS)

    Moe, Arild; Joergensen, Anne-Kristin

    2000-01-01

    The potential of the Barents Sea for petroleum production has attracted interest for many years. In the Russian sector of this ocean, enormous gas finds and substantial oil resources have now been proven, and the first real licensing for field development in the area has just begun. Despite the area's potential, there are strong conflicts of interest. The report examines the forces alternatively driving and hindering offshore hydrocarbon development in the Russian sector of the Barents Sea. It describes exploration activities beginning during the Soviet period and extending to the present. The status of the major development projects financed in part with foreign capital, and conflicting regional and central government interests involved in such development, is described and evaluated. Coverage includes a discussion of the various regional interests in petroleum activities, with a particular focus on the conversion of naval yards in the area and the emergence of Rosshelf, an oil/gas conglomerate formed to facilitate such conversion. It also reviews the planned licensing rounds and the results of the first round. Finally, it discusses supplies from the Barents Sea in the context of overall Russian energy supply and energy development strategies. (author)

  17. Control rod drive

    International Nuclear Information System (INIS)

    Watando, Kosaku; Tanaka, Yuzo; Mizumura, Yasuhiro; Hosono, Kazuya.

    1975-01-01

    Object: To provide a simple and compact construction of an apparatus for driving a drive shaft inside with a magnetic force from the outside of the primary system water side. Structure: The weight of a plunger provided with an attraction plate is supported by a plunger lift spring means so as to provide a buffer action at the time of momentary movement while also permitting the load on lift coil to be constituted solely by the load on the drive shaft. In addition, by arranging the attraction plate and lift coil so that they face each other with a small gap there-between, it is made possible to reduce the size and permit efficient utilization of the attracting force. Because of the small size, cooling can be simply carried out. Further, since there is no mechanical penetration portion, there is no possibility of leakage of the primary system water. Furthermore, concentration of load on a latch pin is prevented by arranging so that with a structure the load of the control rod to be directly beared through the scrum latch. (Kamimura, M.)

  18. Impeller radial force evolution in a large double-suction centrifugal pump during startup at the shut-off condition

    International Nuclear Information System (INIS)

    Zou, Zhichao; Wang, Fujun; Yao, Zhifeng; Tao, Ran; Xiao, Ruofu; Li, Huaicheng

    2016-01-01

    Highlights: • Conclude the characteristics of transient radial force in the startup process for a large double-suction centrifugal pump. • The overall direction of the radial force during startup process is also confirmed. • A formula used to calculate the transient radial force during startup process is proposed. • A relationship between radial force variation and axial vortex development in blade channel during the startup process is established. The mechanism of the radial force evolution is revealed. - Abstract: Double-suction centrifugal pumps play an important role in the main feedwater systems of nuclear power plant. The impeller radial force in a centrifugal pump varies dramatically during startup at the shut-off condition. In this study, the startup process of a large double-suction centrifugal pump is investigated using CFD. During testing, the impeller speed is accelerated from zero to its rated speed in 1.0 s (marked as t_0) and is then maintained at the rated speed. The results show that the radial force increase lags behind the impeller speed increase. At 0–0.4t_0, the radial force is small (approaching zero). At 0.4–1.4t_0, the radial force increases rapidly. After 1.4t_0, the average radial force stabilizes and reaches its maximum value of 55,619 N. The observed maximum radial force value during startup is approximately nine times as high as the radial force under rated condition. During startup, the overall radial force direction is proximate to the radial line located 25° from the volute tongue along circumferential direction. A transient radial force formula is proposed to evaluate the changes in radial force during startup. The streamline distribution in impeller passages and the impeller outlet pressure profile varying over time are produced. The relationship between radial force evolution and the varying axial-to-spiral vortex structure is analyzed. The radial force change mechanism is revealed. This research provides a scientific

  19. Impeller radial force evolution in a large double-suction centrifugal pump during startup at the shut-off condition

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhichao [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Wang, Fujun, E-mail: wangfj@cau.edu.cn [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083 (China); Yao, Zhifeng [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083 (China); Tao, Ran [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Xiao, Ruofu [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083 (China); Li, Huaicheng [Shanghai Liancheng (Group) Co., Ltd., Shanghai 201812 (China)

    2016-12-15

    Highlights: • Conclude the characteristics of transient radial force in the startup process for a large double-suction centrifugal pump. • The overall direction of the radial force during startup process is also confirmed. • A formula used to calculate the transient radial force during startup process is proposed. • A relationship between radial force variation and axial vortex development in blade channel during the startup process is established. The mechanism of the radial force evolution is revealed. - Abstract: Double-suction centrifugal pumps play an important role in the main feedwater systems of nuclear power plant. The impeller radial force in a centrifugal pump varies dramatically during startup at the shut-off condition. In this study, the startup process of a large double-suction centrifugal pump is investigated using CFD. During testing, the impeller speed is accelerated from zero to its rated speed in 1.0 s (marked as t{sub 0}) and is then maintained at the rated speed. The results show that the radial force increase lags behind the impeller speed increase. At 0–0.4t{sub 0}, the radial force is small (approaching zero). At 0.4–1.4t{sub 0}, the radial force increases rapidly. After 1.4t{sub 0}, the average radial force stabilizes and reaches its maximum value of 55,619 N. The observed maximum radial force value during startup is approximately nine times as high as the radial force under rated condition. During startup, the overall radial force direction is proximate to the radial line located 25° from the volute tongue along circumferential direction. A transient radial force formula is proposed to evaluate the changes in radial force during startup. The streamline distribution in impeller passages and the impeller outlet pressure profile varying over time are produced. The relationship between radial force evolution and the varying axial-to-spiral vortex structure is analyzed. The radial force change mechanism is revealed. This research

  20. CLIMATE CHANGE. Long-term climate forcing by atmospheric oxygen concentrations.

    Science.gov (United States)

    Poulsen, Christopher J; Tabor, Clay; White, Joseph D

    2015-06-12

    The percentage of oxygen in Earth's atmosphere varied between 10% and 35% throughout the Phanerozoic. These changes have been linked to the evolution, radiation, and size of animals but have not been considered to affect climate. We conducted simulations showing that modulation of the partial pressure of oxygen (pO2), as a result of its contribution to atmospheric mass and density, influences the optical depth of the atmosphere. Under low pO2 and a reduced-density atmosphere, shortwave scattering by air molecules and clouds is less frequent, leading to a substantial increase in surface shortwave forcing. Through feedbacks involving latent heat fluxes to the atmosphere and marine stratus clouds, surface shortwave forcing drives increases in atmospheric water vapor and global precipitation, enhances greenhouse forcing, and raises global surface temperature. Our results implicate pO2 as an important factor in climate forcing throughout geologic time. Copyright © 2015, American Association for the Advancement of Science.

  1. Exciplexes versus Loose Ion Pairs: How Does the Driving Force Impact the Initial Product Ratio of Photoinduced Charge Separation Reactions?

    Science.gov (United States)

    2014-01-01

    Many donor–acceptor systems can undergo a photoinduced charge separation reaction, yielding loose ion pairs (LIPs). LIPs can be formed either directly via (distant) electron transfer (ET) or indirectly via the dissociation of an initially formed exciplex or tight ion pair. Establishing the prevalence of one of the reaction pathways is challenging because differentiating initially formed exciplexes from LIPs is difficult due to similar spectroscopic footprints. Hence, no comprehensive reaction model has been established for moderately polar solvents. Here, we employ an approach based on the time-resolved magnetic field effect (MFE) of the delayed exciplex luminescence to distinguish the two reaction channels. We focus on the effects of the driving force of ET and the solvent permittivity. We show that, surprisingly, the exciplex channel is significant even for an exergonic ET system with a free energy of ET of −0.58 eV and for the most polar solutions studied (butyronitrile). Our findings demonstrate that exciplexes play a crucial role even in polar solvents and at moderate driving forces, contrary to what is usually assumed. PMID:25243054

  2. The evolution of "Life": A Metadarwinian integrative approach.

    Science.gov (United States)

    De Loof, Arnold

    2017-01-01

    It is undeniably very logical to first formulate an unambiguous definition of "Life" before engaging in defining the parameters instrumental to Life's evolution. Because nearly everybody assumes, erroneously in my opinion, that catching Life's essence in a single sentence is impossible, this way of thinking remained largely unexplored in evolutionary theory. Upon analyzing what exactly happens at the transition from "still alive" to "just dead," the following definition emerged. What we call "Life" (L) is an activity . It is nothing other than the total sum (∑) of all communication acts (C) executed, at moment t, by entities organized as sender-receiver compartments: L = ∑C Such "living" entities are self-electrifying and talking ( = communicating) aggregates of fossil stardust operating in an environment heavily polluted by toxic calcium. Communication is a multifaceted, complex process that is seldom well explained in introductory textbooks of biology. Communication is instrumental to adaptation because, at the cellular level, any act of communication is in fact a problem-solving act. It can be logically deduced that not Natural Selection itself but communication/problem-solving activity preceding selection is the universal driving force of evolution. This is against what textbooks usually claim, although doubt on the status of Natural Selection as driving force has been around for long. Finally, adopting the sender-receiver with its 2 memory systems (genetic and cognitive, both with their own rules) and 2 types of progeny ("physical children" and "pupils") as the universal unit of architecture and function of all living entities, also enables the seamless integration of cultural and organic evolution, another long-standing tough problem in evolutionary theory. Paraphrasing Theodosius Dobzhansky, the very essence of biology is: "Nothing in biology and evolutionary theory makes sense except in the light of the ability of living matter to communicate, and by

  3. The Driving Forces for the Practice of Strategic Planning in SMEs: Evidence from Harare Metropolitan Province, Zimbabwe

    OpenAIRE

    Maxwell Sandada; Raynold Tinomudaishe Chikwama

    2016-01-01

    Despite Zimbabwe sharing with the rest of the world, the notion that SMEs are the impeccable engines to economic revival, growth and development, many of the nation`s SMEs are plagued with high failure rates. Previous studies carried out in most foreign countries suggested that the high failure rate of SMEs was attributable to lack of strategic planning among a host of other factors. Against this backdrop, the purpose of this study was to examine the driving forces for the practic...

  4. EXTERNAL FORCES DRIVING CHANGE IN THE ROMANIAN SMALL AND MEDIUM SIZED ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Roiban Roxana Nadina

    2012-07-01

    Full Text Available Change is a constant in everyday life confronting organizations to continuously adapt their strategy, structure, processes, and culture in order to survive and stay competitive on the market. Implementing organizational change is one of the most important skills required for managers and in the meantime the most difficult one. The forces driving change within an organization, that can be either external or internal, are those that propel a company forward towards change and in order to identify the need for change and make the proper changes, managers have to develop a tool that allows them to analyze how does the environment influence their business activities. A vision for change will clarify the directions in which the organization needs to move, starting from its current state and taking in consideration the existing opportunities and threats from the environment that allow to move to a future desired state. The purpose of this paper is to identify the concern for change in the Romanian small and medium sized enterprises by presenting and explaining the past and present influences of the main external forces that have determined the need for change in the last 3-5 years and to make recommendations about future possible changes that have to be performed by managers for a better harmonization with the environment. The research method used for this study is the interview on a sample that contains some of the most relevant SME’s from the western side of Romania, from different industries. We analyzed the main external forces that had an impact on the small and medium sized enterprises and how were they generating the need for organizational change, in order to see which present and future changes are required.

  5. New active machine tool drive mounting on the frame

    Directory of Open Access Journals (Sweden)

    Švéda J.

    2007-10-01

    Full Text Available The paper deals with the new active mounting of the machine tool drives. The commonly used machine tools are at this time mainly equipped with fix-mounting of the feed drives. This structure causes full transmission of the force shocks to the machine bed and thereby restricts the dynamic properties of the motion axis and the whole machine. The spring-mounting of the feed drives is one of the possibilities how to partially suppress the vibrations. The force that reacts to the machine tool bed is transformed thereby the vibrations are lightly reduced. Unfortunately the transformation is not fully controlled. The new active mounting of the machine tool drives allows to fully control the force behaviour that react to the machine body. Thereby the number of excited frequencies on the machine tool bed is significantly reduced. The active variant of the feed drive mounting is characterized by the synergistic cooperation between two series-connected actuators (“motor on motor”. The paper briefly describes design, control techniques and optimization of the feed drives with the new active mounting conception.

  6. Evolution as a molecular cooperative phenomenon

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1991-06-01

    We discuss an hypothesis according to which microscopic mechanisms due to cooperation, at the molecular level, may have been key factors in the evolution of life on Earth. We view our hypothesis as a natural extension to the molecular level of viewing cooperation (symbiosis) as an evolutionary driving force; this does not restrict the interpretation of the evolutionary process to be the result of slow accumulation of mutations in the DNA. Some evidence supporting this hypothesis is discussed: (a) The Salam enhancement factor. This molecular phenomenon was recently introduced in order to understand the bases of the first unifying principle of biochemistry, namely that transcription of all known genes in prokaryotes, protists, metazoan, and metaphytes are translated into L-amino acids, except for some bacterial membrane proteins. (b) The role that cooperative phenomena may have played in the origin of evolution itself, i.e., in the resolution of Sagan's ultraviolet paradox. (c) The relationship between evolution and the constraints imposed by embryonic development. This is considered from the point of view of molecular cooperative phenomena. (author). Refs

  7. On the Evolution of Pulsatile Flow Subject to a Transverse Impulse Body Force

    Science.gov (United States)

    di Labbio, Giuseppe; Keshavarz-Motamed, Zahra; Kadem, Lyes

    2014-11-01

    In the event of an unexpected abrupt traffic stop or car accident, automotive passengers will experience an abrupt body deceleration. This may lead to tearing or dissection of the aortic wall known as Blunt Traumatic Aortic Rupture (BTAR). BTAR is the second leading cause of death in automotive accidents and, although quite frequent, the mechanisms leading to BTAR are still not clearly identified, particularly the contribution of the flow field. As such, this work is intended to provide a fundamental framework for the investigation of the flow contribution to BTAR. In this fundamental study, pulsatile flow in a three-dimensional, straight pipe of circular cross-section is subjected to a unidirectional, transverse, impulse body force applied on a strictly bounded volume of fluid. These models were simulated using the Computational Fluid Dynamics (CFD) software FLUENT. The evolution of fluid field characteristics was investigated during and after the application of the force. The application of the force significantly modified the flow field. The force induces a transverse pressure gradient causing the development of secondary flow structures that dissipate the energy added by the acceleration. Once the force ceases to act, these structures are carried downstream and gradually dissipate their excess energy.

  8. Otolith shape lends support to the sensory drive hypothesis in rockfishes.

    Science.gov (United States)

    Tuset, V M; Otero-Ferrer, J L; Gómez-Zurita, J; Venerus, L A; Stransky, C; Imondi, R; Orlov, A M; Ye, Z; Santschi, L; Afanasiev, P K; Zhuang, L; Farré, M; Love, M S; Lombarte, A

    2016-10-01

    The sensory drive hypothesis proposes that environmental factors affect both signalling dynamics and the evolution of signals and receivers. Sound detection and equilibrium in marine fishes are senses dependent on the sagittae otoliths, whose morphological variability appears intrinsically linked to the environment. The aim of this study was to understand if and which environmental factors could be conditioning the evolution of this sensory structure, therefore lending support to the sensory drive hypothesis. Thus, we analysed the otolith shape of 42 rockfish species (Sebastes spp.) to test the potential associations with the phylogeny, biological (age), ecological (feeding habit and depth distribution) and biogeographical factors. The results showed strong differences in the otolith shapes of some species, noticeably influenced by ecological and biogeographical factors. Moreover, otolith shape was clearly conditioned by phylogeny, but with a strong environmental effect, cautioning about the use of this structure for the systematics of rockfishes or other marine fishes. However, our most relevant finding is that the data supported the sensory drive hypothesis as a force promoting the radiation of the genus Sebastes. This hypothesis holds that adaptive divergence in communication has significant influence relative to other life history traits. It has already been established in Sebastes for visual characters and organs; our results showed that it applies to otolith transformations as well (despite the clear influence of feeding and depth), expanding the scope of the hypothesis to other sensory structures. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  9. Entropic forces drive contraction of cytoskeletal networks

    Czech Academy of Sciences Publication Activity Database

    Braun, M.; Lánský, Zdeněk; Hilitski, F.; Dogic, Z.; Diez, S.

    2016-01-01

    Roč. 38, č. 5 (2016), s. 474-481 ISSN 0265-9247 R&D Projects: GA ČR(CZ) GA15-17488S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : cytoskeleton * depletion forces * entropic forces Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.441, year: 2016

  10. Evolution of strategies and competition in the international airline industry: a practical analysis using porter's competitive forces model

    OpenAIRE

    Zannoni, Niccolò

    2013-01-01

    This master thesis describes the evolution of the competition and strategies in the international airline industry. It studies the industry before and after deregulation, using the competitive forces model.

  11. The evolution of Soviet forces, strategy, and command

    International Nuclear Information System (INIS)

    Ball, D.; Bethe, H.A.; Blair, B.G.; Bracken, P.; Carter, A.B.; Dickinson, H.; Garwin, R.L.; Holloway, D.; Kendall, H.W.

    1988-01-01

    This paper reports on the evolution of Soviet forces, strategy and command. Soviet leaders have repeatedly emphasized that it would be tantamount to suicide to start a nuclear war. Mutual deterrence, however, does not make nuclear was impossible. The danger remains that a large-scale nuclear was could start inadvertently in an intense crisis, or by escalation out of a conventional war, or as an unforeseen combination of these. For these reasons crisis management has become a central issue in the United States, but the standard Soviet response to this Western interest has been to say that what is needed is crisis avoidance, not recipes for brinkmanship masquerading under another name. There is much sense in this view. Nevertheless, this demeanor does not mean that the Soviet Union has given no thought to the danger that a crisis might lead to nuclear war, only that Soviet categories for thinking about such matters differ from those employed in the United States

  12. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    International Nuclear Information System (INIS)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-01-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition. (paper)

  13. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    Science.gov (United States)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-11-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.

  14. Structure and relative importance of ponderomotive forces and current drive generated by converted fast waves in pre-heated low aspect ratio tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuperman, S.; Bruma, C.; Komoshvili, K

    2003-05-12

    The generation in low aspect ratio tokamaks (LARTs) of ponderomotive forces and non-inductive current drive by the resonant fast wave-plasma interaction with mode conversion to kinetic Alfven waves (KAWs) and subsequent deposition, mainly by resonant electron Landau damping, is considered. The calculations follow the rigorous solution of the full wave equations upon using a dielectric tensor operator consisting of (i) a parallel conductivity including both kinetic effects (collisionless Landau damping on passing electrons) and collisional damping on both trapped electrons and passing electrons+ions and (ii) perpendicular components provided by the resistive two-fluid model equations. The fast waves are launched by an antenna located on the low field side and extending {+-}45 deg. about the equatorial plane. A parametric investigation of the structure and importance of the various components of the ponderomotive forces and current drive generated in START-like plasmas is carried out and their suitability for supplementing the required non-rf toroidal equilibrium current is demonstrated.

  15. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive.

    Science.gov (United States)

    Larracuente, Amanda M

    2014-11-25

    Satellite DNA can make up a substantial fraction of eukaryotic genomes and has roles in genome structure and chromosome segregation. The rapid evolution of satellite DNA can contribute to genomic instability and genetic incompatibilities between species. Despite its ubiquity and its contribution to genome evolution, we currently know little about the dynamics of satellite DNA evolution. The Responder (Rsp) satellite DNA family is found in the pericentric heterochromatin of chromosome 2 of Drosophila melanogaster. Rsp is well-known for being the target of Segregation Distorter (SD)- an autosomal meiotic drive system in D. melanogaster. I present an evolutionary genetic analysis of the Rsp family of repeats in D. melanogaster and its closely-related species in the melanogaster group (D. simulans, D. sechellia, D. mauritiana, D. erecta, and D. yakuba) using a combination of available BAC sequences, whole genome shotgun Sanger reads, Illumina short read deep sequencing, and fluorescence in situ hybridization. I show that Rsp repeats have euchromatic locations throughout the D. melanogaster genome, that Rsp arrays show evidence for concerted evolution, and that Rsp repeats exist outside of D. melanogaster, in the melanogaster group. The repeats in these species are considerably diverged at the sequence level compared to D. melanogaster, and have a strikingly different genomic distribution, even between closely-related sister taxa. The genomic organization of the Rsp repeat in the D. melanogaster genome is complex-it exists of large blocks of tandem repeats in the heterochromatin and small blocks of tandem repeats in the euchromatin. My discovery of heterochromatic Rsp-like sequences outside of D. melanogaster suggests that SD evolved after its target satellite and that the evolution of the Rsp satellite family is highly dynamic over a short evolutionary time scale (<240,000 years).

  16. Probabilistic analysis for identifying the driving force of protein folding

    Science.gov (United States)

    Tokunaga, Yoshihiko; Yamamori, Yu; Matubayasi, Nobuyuki

    2018-03-01

    Toward identifying the driving force of protein folding, energetics was analyzed in water for Trp-cage (20 residues), protein G (56 residues), and ubiquitin (76 residues) at their native (folded) and heat-denatured (unfolded) states. All-atom molecular dynamics simulation was conducted, and the hydration effect was quantified by the solvation free energy. The free-energy calculation was done by employing the solution theory in the energy representation, and it was seen that the sum of the protein intramolecular (structural) energy and the solvation free energy is more favorable for a folded structure than for an unfolded one generated by heat. Probabilistic arguments were then developed to determine which of the electrostatic, van der Waals, and excluded-volume components of the interactions in the protein-water system governs the relative stabilities between the folded and unfolded structures. It was found that the electrostatic interaction does not correspond to the preference order of the two structures. The van der Waals and excluded-volume components were shown, on the other hand, to provide the right order of preference at probabilities of almost unity, and it is argued that a useful modeling of protein folding is possible on the basis of the excluded-volume effect.

  17. Correlated evolution of male and female reproductive traits drive a cascading effect of reinforcement in Drosophila yakuba

    Science.gov (United States)

    Comeault, Aaron A.; Venkat, Aarti; Matute, Daniel R.

    2016-01-01

    Selection against maladaptive hybridization can drive the evolution of reproductive isolation in a process called reinforcement. While the importance of reinforcement in evolution has been historically debated, many examples now exist. Despite these examples, we typically lack a detailed understanding of the mechanisms limiting the spread of reinforced phenotypes throughout a species' range. Here we address this issue in the fruit fly Drosophila yakuba, a species that hybridizes with its sister species D. santomea and is undergoing reinforcement in a well-defined hybrid zone on the island of São Tomé. Within this region, female D. yakuba show increased postmating-prezygotic (gametic) isolation towards D. santomea when compared with females from allopatric populations. We use a combination of natural collections, fertility assays, and experimental evolution to understand why reinforced gametic isolation in D. yakuba is confined to this hybrid zone. We show that, among other traits, D. yakuba males from sympatric populations sire fewer progeny than allopatric males when mated to allopatric D. yakuba females. Our results provide a novel example of reinforcement acting on a postmating-prezygotic trait in males, resulting in a cascade of reproductive isolation among conspecific populations. PMID:27440664

  18. A liquid helium piston pump with a superconducting drive

    International Nuclear Information System (INIS)

    Schmidt, C.

    1984-01-01

    This chapter describes a bellows pump where the driving force is achieved by an arrangement of three superconducting coils. The pump was designed for use in the supercritical helium flow circuit of the LCT-conductor test facility. The main advantage of the superconducting drive, compared to conventional pumps with external drive, is the compact design. Force transferring parts between 4.2 K and room temperature are not necessary. The pump was tested in a closed loop arrangement. The superconducting drive for a piston pump consists of a moving coil in a constant background field. Other coil configurations and the upscaling of the pump design are discussed

  19. DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement

    International Nuclear Information System (INIS)

    Fobel, Ryan; Fobel, Christian; Wheeler, Aaron R.

    2013-01-01

    We introduce DropBot: an open-source instrument for digital microfluidics (http://microfluidics.utoronto.ca/dropbot). DropBot features two key functionalities for digital microfluidics: (1) real-time monitoring of instantaneous drop velocity (which we propose is a proxy for resistive forces), and (2) application of constant electrostatic driving forces through compensation for amplifier-loading and device capacitance. We anticipate that this system will enhance insight into failure modes and lead to new strategies for improved device reliability, and will be useful for the growing number of users who are adopting digital microfluidics for automated, miniaturized laboratory operation.

  20. Coherent structures and turbulence evolution in magnetized non-neutral plasmas

    Science.gov (United States)

    Romé, M.; Chen, S.; Maero, G.

    2018-01-01

    The evolution of turbulence of a magnetized pure electron plasma confined in a Penning-Malmberg trap is investigated by means of a two-dimensional particle-in-cell numerical code. The transverse plasma dynamics is studied both in the case of free evolution and under the influence of non-axisymmetric, multipolar radio-frequency drives applied on the circular conducting boundary. In the latter case the radio-frequency fields are chosen in the frequency range of the low-order azimuthal (diocotron) modes of the plasma in order to investigate their effect on the insurgence of azimuthal instabilities and the formation and evolution of coherent structures, possibly preventing the relaxation to a fully-developed turbulent state. Different initial density distributions (rings and spirals) are considered, so that evolutions characterized by different levels of turbulence and intermittency are obtained. The time evolution of integral and spectral quantities of interest are computed using a multiresolution analysis based on a wavelet decomposition of density maps. Qualitative features of turbulent relaxation are found to be similar in conditions of both free and forced evolution, but the analysis allows one to highlight fine details of the flow beyond the self-similarity turbulence properties, so that the influence of the initial conditions and the effect of the external forcing can be distinguished. In particular, the presence of small inhomogeneities in the initial density configuration turns out to lead to quite different final states, especially in the presence of competing unstable diocotron modes characterized by similar growth rates.

  1. Driving forces behind the increasing cardiovascular treatment intensity.A dynamic epidemiologic model of trends in Danish cardiovascular drug utilization.

    DEFF Research Database (Denmark)

    Kildemoes, Helle Wallach; Andersen, Morten

    . Objectives: To investigate the driving forces behind the increasing treatment prevalence of cardiovascular drugs, in particular statins, by means of a dynamic epidemiologic drug utilization model. Methods: Material: All Danish residents older than 20 years by January 1, 1996 (4.0 million inhabitants), were...

  2. Current profile evolution during fast wave current drive on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Forest, C.B.; Baity, F.W.

    1995-06-01

    The effect of co and counter fast wave current drive (FWCD) on the plasma current profile has been measured for neutral beam heated plasmas with reversed magnetic shear on the DIII-D tokamak. Although the response of the loop voltage profile was consistent with the application of co and counter FWCD, little difference was observed between the current profiles for the opposite directions of FWCD. The evolution of the current profile was successfully modeled using the ONETWO transport code. The simulation showed that the small difference between the current profiles for co and counter FWCD was mainly due to an offsetting change in the o at sign c current proffie. In addition, the time scale for the loop voltage to reach equilibrium (i.e., flatten) was found to be much longer than the FWCD pulse, which limited the ability of the current profile to fully respond to co or counter FWCD

  3. FDR (drive-dynamics-control) - a new driving safety system with active control of brake and drive forces in the dynamic fringe range; FDR, ein neues Fahrsicherheitssystem mit aktiver Regelung der Brems- und Antriebskraefte im fahrdynamischen Grenzbereich

    Energy Technology Data Exchange (ETDEWEB)

    Erhardt, R. [Bosch (R.) GmbH, Stuttgart (Germany); Zanten, A.T. van [Bosch (R.) GmbH, Stuttgart (Germany)

    1995-12-31

    BOSCH is going to introduce a new driving safety system in 1995, the FDR (drive-dynamics-control). Using the measured and estimated dynamic magnitudes as a basis, the system calculates inhowfar the actual vehicle motion differs from the desired stable trace- and direction-consistent handling properties. Depending on the driving situation and driver`s wishes the braking and driving forces at the wheels are adjusted with a considerable divergence in order to achieve the desired handling properties. The system improves the driving stability in all operating states as soon as the dynamic limiting range is reached. It even reduces the risk of skidding in case of extreme steering manoeuvres and also enables the safe control of the vehicle in critical traffic situations. Furthermore the system offers improved basic anti-skid braking system and anti-slip control functions. Due to these advantages it can be expected that the FDR is going to make an important contribution to avoiding accidents and reducing damage. (orig.) [Deutsch] Mit FDR (Fahr-Dynamik-Regelung) wird BOSCH 1995 ein neues Fahrsicherheitssystem einfuehren. Das System berechnet auf der Basis gemessener und geschaetzter fahrdynamischer Groessen, wie stark die tatsaechliche Fahrzeugbewegung von einem gewuenschten stabilen, spur- und richtungstreuen Fahrverhalten abweicht. Die Brems- und Antriebskraefte an den Raedern werden bei deutlicher Abweichung abhaengig von Fahrsituation und Fahrerwunsch so eingestellt, dass die Abweichung minimiert und das gewuenschte Fahrverhalten weitgehend erreicht wird. Das System verbessert die Fahrstabilitaet in allen Betriebszustaenden, sobald der fahrdynamische Grenzbereich erreicht wird. Es reduziert selbst bei extremen Lenkmanoevern die Schleudergefahr drastisch und ermoeglicht auch in kritischen Verkehrssituationen die sicherere Beherrschung des Fahrzeugs. Darueberhinaus bietet das System verbesserte ABS- und ASR-Grundfunktionen. Diese Vorteile lassen erwarten, dass FDR einen

  4. On the driving force for crack growth during thermal actuation of shape memory alloys

    Science.gov (United States)

    Baxevanis, T.; Parrinello, A. F.; Lagoudas, D. C.

    2016-04-01

    The effect of thermomechanically induced phase transformation on the driving force for crack growth in polycrystalline shape memory alloys is analyzed in an infinite center-cracked plate subjected to a thermal actuation cycle under mechanical load in plain strain. Finite element calculations are carried out to determine the mechanical fields near the static crack and the crack-tip energy release rate using the virtual crack closure technique. A substantial increase of the energy release rate - an order of magnitude for some material systems - is observed during the thermal cycle due to the stress redistribution induced by large scale phase transformation. Thus, phase transformation occurring due to thermal variations under mechanical load may result in crack growth if the crack-tip energy release rate reaches a material specific critical value.

  5. Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions

    Science.gov (United States)

    Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta

    2018-03-01

    Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.

  6. Casualisation of the nursing workforce in Australia: driving forces and implications.

    Science.gov (United States)

    Creegan, Reta; Duffield, Christine; Forrester, Kim

    2003-01-01

    This article provides an overview of the extent of casualisation of the nursing workforce in Australia, focusing on the impact for those managing the system. The implications for nurse managers in particular are considerable in an industry where service demand is difficult to control and where individual nurses are thought to be increasingly choosing to work casually. While little is known of the reasons behind nurses exercising their preference for casual work arrangements, some reasons postulated include visa status (overseas trained nurses on holiday/working visas); permanent employees taking on additional shifts to increase their income levels; and those who elect to work under casual contracts for lifestyle reasons. Unknown is the demography of the casual nursing workforce, how these groups are distributed within the workforce, and how many contracts of employment they have across the health service--either through privately managed nursing agencies or hospital managed casual pools. A more detailed knowledge of the forces driving the decisions of this group is essential if health care organisations are to equip themselves to manage this changing workforce and maintain a standard of patient care that is acceptable to the community.

  7. On the forces that drive and resist deformation of the south-central Mediterranean: a mechanical model study

    Science.gov (United States)

    Nijholt, Nicolai; Govers, Rob; Wortel, Rinus

    2018-04-01

    The geodynamics of the Mediterranean comprises a transitional setting in which slab rollback and plate convergence compete to shape the region. In the central Mediterranean, where the balance of driving and resisting forces changes continuously and rapidly since the Miocene, both kinematic and seismo-tectonic observations display a strong variation in deformation style and, therefore possibly, lithospheric forces. We aim to understand the current kinematics in southern Italy and Sicily in terms of lithospheric forces that cause them. The strong regional variation of geodetic velocities appears to prohibit such simple explanation. We use mechanical models to quantify the deformation resulting from large-scale Africa-Eurasia convergence, ESE retreat of the Calabrian subduction zone, pull by the Aegean slab, and regional variations in gravitational potential energy (topography). A key model element is the resistance to slip on major regional fault zones. We show that geodetic velocities, seismicity and sense of slip on regional faults can be understood to result from lithospheric forces. Our most important new finding is that regional variations in resistive tractions are required to fit the observations, with notably very low tractions on the Calabrian subduction contact, and a buildup towards a significant earthquake in the Calabrian fore-arc. We also find that the Calabrian net slab pull force is strongly reduced (compared to the value possible in view of the slab's dimensions) and that trench suction tractions are negligible. Such very small contributions to the present-day force balance in the south-central Mediterranean suggest that the Calabrian arc is now further transitioning towards a setting dominated by Africa-Eurasia plate convergence, whereas during the past 30 Myrs slab retreat continually was the dominant factor.

  8. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    Science.gov (United States)

    Hagman, Arne; Piškur, Jure

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that were semi-anaerobic.

  9. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    Directory of Open Access Journals (Sweden)

    Arne Hagman

    Full Text Available Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that

  10. Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database

  11. Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database.

  12. Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force

    Science.gov (United States)

    Leung, Pak Hong; Landsman, Kevin A.; Figgatt, Caroline; Linke, Norbert M.; Monroe, Christopher; Brown, Kenneth R.

    2018-01-01

    In an ion trap quantum computer, collective motional modes are used to entangle two or more qubits in order to execute multiqubit logical gates. Any residual entanglement between the internal and motional states of the ions results in loss of fidelity, especially when there are many spectator ions in the crystal. We propose using a frequency-modulated driving force to minimize such errors. In simulation, we obtained an optimized frequency-modulated 2-qubit gate that can suppress errors to less than 0.01% and is robust against frequency drifts over ±1 kHz . Experimentally, we have obtained a 2-qubit gate fidelity of 98.3(4)%, a state-of-the-art result for 2-qubit gates with five ions.

  13. An analysis of the driving forces of CO2 emissions embodied in Japan-China trade

    International Nuclear Information System (INIS)

    Dong Yanli; Ishikawa, Masanobu; Liu Xianbing; Wang Can

    2010-01-01

    By using the latest China-Japan input-output data sets and the index decomposition analysis (IDA) approach, this article analyzes the driving forces of CO 2 emissions embodied in trade between the two countries during 1990-2000. We found that the growth of trade volume had a large influence on the increase of CO 2 emissions embodiments in bilateral trade. The dramatic decline in carbon intensity of the Chinese economy is a primary cause in offsetting CO 2 emissions exported from China to Japan over 1995-2000. We argue that a better understanding of the factors affecting CO 2 emissions embodied in international trade will assist in seeking more effective climate policies with wider participation in the post-Kyoto regime.

  14. Land use changes and its driving forces in hilly ecological restoration area based on gis and rs of northern china

    Science.gov (United States)

    Gao, Peng; Niu, Xiang; Wang, Bing; Zheng, Yunlong

    2015-01-01

    Land use change is one of the important aspects of the regional ecological restoration research. With remote sensing (RS) image in 2003, 2007 and 2012, using geographic information system (GIS) technologies, the land use pattern changes in Yimeng Mountain ecological restoration area in China and its driving force factors were studied. Results showed that: (1) Cultivated land constituted the largest area during 10 years, and followed by forest land and grass land; cultivated land and unused land were reduced by 28.43% and 44.32%, whereas forest land, water area and land for water facilities and others were increased. (2) During 2003–2007, forest land change showed the largest, followed by unused land and grass land; however, during 2008–2012, water area and land for water facilities change showed the largest, followed by grass land and unused land. (3) Land use degree was above the average level, it was in the developing period during 2003–2007 and in the degenerating period during 2008–2012. (4) Ecological Restoration Projects can greatly change the micro topography, increase vegetation coverage, and then induce significant changes in the land use distribution, which were the main driving force factors of the land use pattern change in the ecological restoration area. PMID:26047160

  15. Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Wu, Jung-Hua

    2013-01-01

    Between 1996 and 2006, CO 2 emissions in Taiwan increased by approximately 60%, with the industrial sector accounting for 50% of that increase. Among all industrial sectors, iron and steel, petrochemicals, electronics, textiles, pulp and paper and cement accounted for approximately three-quarters of the total industrial CO 2 emissions. Identifying the driving forces behind increased CO 2 emissions in these six sectors could be valuable for the development of effective environmental policy. This study used two-tier KLEM input–output structural decomposition analysis (I-O SDA) to analyze the factors that lead to changes in CO 2 emissions. Empirical results obtained in Taiwan reveal that increased exports level and elevated domestic autonomous final demand level were the main reasons for increases in CO 2 emissions. Technological changes in materials and labor tended to decrease CO 2 emissions, while the power generation mix contributed significantly to the increase. Relevant strategies for reducing CO 2 emissions from energy-intensive sectors are also highlighted. - Highlights: • Identifying the driving forces behind increased CO 2 emissions is important. • This study uses two-tier KLEM I-O SDA to analyze the changes in CO 2 emissions. • Three issues are identified to achieve future CO 2 emissions reduction in Taiwan

  16. Rotating magnetic field current drive-theory and experiment

    International Nuclear Information System (INIS)

    Donnelly, I.J.

    1989-01-01

    Rotating magnetic fields have been used to drive plasma current and establish a range of compact torus configurations, named rotamaks. The current drive mechanism involves a ponderomotive force acting on the electron fluid. Recent extensions of the theory indicate that this method is most suitable for driving currents in directions perpendicular to the steady magnetic fields

  17. Evolution Engines and Artificial Intelligence

    Science.gov (United States)

    Hemker, Andreas; Becks, Karl-Heinz

    In the last years artificial intelligence has achieved great successes, mainly in the field of expert systems and neural networks. Nevertheless the road to truly intelligent systems is still obscured. Artificial intelligence systems with a broad range of cognitive abilities are not within sight. The limited competence of such systems (brittleness) is identified as a consequence of the top-down design process. The evolution principle of nature on the other hand shows an alternative and elegant way to build intelligent systems. We propose to take an evolution engine as the driving force for the bottom-up development of knowledge bases and for the optimization of the problem-solving process. A novel data analysis system for the high energy physics experiment DELPHI at CERN shows the practical relevance of this idea. The system is able to reconstruct the physical processes after the collision of particles by making use of the underlying standard model of elementary particle physics. The evolution engine acts as a global controller of a population of inference engines working on the reconstruction task. By implementing the system on the Connection Machine (Model CM-2) we use the full advantage of the inherent parallelization potential of the evolutionary approach.

  18. Rising electricity consumption: Driving forces and consequences. The case of rural Zanzibar

    Energy Technology Data Exchange (ETDEWEB)

    Winther, Tanja [Centre for Development and the Environment (SUM), Univ. of Oslo (Norway)

    2007-07-01

    The paper addresses the current, rising electricity consumption in the southern, rural locality of Zanzibar and seeks to account for the range of driving forces behind people's changed practices. The author argues that these forces are, on the one hand, determined by the availability of new technologies and through global and national institutions and influences such as Islam, commercials and changes in the governmental sector (health, education). On the other hand, the paper explores the way such influences interplay with the internal dynamics related to increasing consumption. Through an analysis of the particular character and dynamics of social and cultural life in this region, the author explains why some practices are less likely to change than other practices. For example, people in Zanzibar keep electricity (freezers and stoves) at a distance from their food. By contrast, electric light is perceived as intimately related to education, as illustrated when school children are sent to school for night classes before important exams. To which extent may general approaches to the study of energy consumption draw on this empirical case from Zanzibar? In other contexts, the patterns of people's electricity use certainly differ. In terms of sustainable energy policies, each locality has a particular set of challenges and goals, which to varying degree may be related to poverty reduction and concern for the environment. Methodologically, however, the author argues that the phenomenon of energy consumption may be studied and understood within the same framework of analysis; one that pays attention to both external and internal dynamics, the material and social aspects of technologies and the importance of power relations, gender and negotiations.

  19. Control rod drive mechanism

    International Nuclear Information System (INIS)

    Mizuno, Katsuyuki.

    1976-01-01

    Object: To restrict the reduction in performance due to stress corrosion cracks by making use of condensate produced in a turbine steam condenser. Structure: Water produced in a turbine steam condenser is forced into a condensed water desalting unit by low pressure condensate pump. The condensate is purified and then forced by a high pressure condensate pump into a feedwater heater for heating before it is returned to the reactor by a feedwater pump. Part of the condensate issuing from the condensate desalting unit is branched from the remaining portion at a point upstream the pump and is withdrawn into a control rod drive water pump after passing through a motordriven bypass valve, an orifice and a condenser water level control valve, is pressurized in the control rod drive water desalting unit and supplied to a control rod drive water pressure system. The control rod is vertically moved by the valve operation of the water pressure system. Since water of high oxygen concentration does not enter during normal operation, it is possible to prevent the stress cracking of the stainless steel apparatus. (Nakamura, S.)

  20. Study on Law of Groundwater Evolution under Natural and Artificial Forcing with Case study of Haihe River Basin

    Science.gov (United States)

    You, Jinjun; Gan, Hong; Wang, Lin; Bi, Xue; Du, Sisi

    2010-05-01

    The evolution of groundwater is one of the key problems of water cycle study. It is a result of joint effect of natural condition and human activities, but until now the driving forces of groundwater system evolution were not fully understood due to the complexity of groundwater system structures and the uncertainty of affecting factors. Geology, precipitation and human activity are the main factors affecting the groundwater system evolution and interact each other, but the influence of such three factors on groundwater system are not clarified clearly on a macroscopic scale. The precipitation changes the volume of water recharge and the groundwater pumping effect the discharge of groundwater. Another important factor influencing balance of groundwater storage is the underlaying that affects the renewablility of groundwater. The underlaying is decided mainly by geological attributes but also influenced by human activited. The macroscopic environment of groundwater evolves under the natural and anthropic factors. This paper study the general law of groundwater evolution among the factors based on the case study in Haihe River Basin, a typical area with dramatic groundwater change under natural precipitation attenuation and gradually increase of water suuply. Haihe River Basin is located in north-China, covers an area of 320,041 km2 with over 40% plain areas. The plain area of Haihe Basin is densely populated with many large and medium-sized cities, including metropolis of Beijing and Tianjin, and concentrated irrigated areas, playing important roles in China's economy and food production. It is the unique basin where groundwater occupies majority of total water supply in China. Long-term groundwater over-exploitation causes a series of ecological and environmental problems that threats the sustainable development. In this paper, the historical process of groundwater balance in Haihe Basin is divided into three phases by decrease of rainfall and increase of water

  1. Driving forces of organic carbon spatial distribution in the tropical seascape

    Science.gov (United States)

    Gillis, L. G.; Belshe, F. E.; Ziegler, A. D.; Bouma, T. J.

    2017-02-01

    An important ecosystem service of tropical coastal vegetation including seagrass beds and mangrove forests is their ability to accumulate carbon. Here we attempt to establish the driving forces for the accumulation of surface organic carbon in southern Thailand coastal systems. Across 12 sites we found that in line with expectations, seagrass beds (0.6 ± 0.09%) and mangrove forests (0.9 ± 0.3%) had higher organic carbon in the surface (top 5 cm) sediment than un-vegetated mudflats (0.4 ± 0.04%). Unexpectedly, however, mangrove forests in this region retained organic carbon, rather than outwell it, under normal tidal conditions. No relationship was found between organic carbon and substrate grain size. The most interesting finding of our study was that climax and pioneer seagrass species retained more carbon than mixed-species meadows, suggesting that plant morphology and meadow characteristics can be important factors in organic carbon accumulation. Insights such as these are important in developing carbon management strategies involving coastal ecosystems such as offsetting of carbon emissions. The ability of tropical coastal vegetation to sequester carbon is an important aspect for valuing the ecosystems. Our results provide some initial insight into the factors affecting carbon sequestration in these ecosystems, but also highlight the need for further research on a global scale.

  2. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).

    Science.gov (United States)

    Bravo, Gustavo A; Remsen, J V; Brumfield, Robb T

    2014-10-01

    Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  3. Morpho morphometrics: Shared ancestry and selection drive the evolution of wing size and shape in Morpho butterflies.

    Science.gov (United States)

    Chazot, Nicolas; Panara, Stephen; Zilbermann, Nicolas; Blandin, Patrick; Le Poul, Yann; Cornette, Raphaël; Elias, Marianne; Debat, Vincent

    2016-01-01

    Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  4. Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow.

    Science.gov (United States)

    Thrift, William J; Nguyen, Cuong Q; Darvishzadeh-Varcheie, Mahsa; Zare, Siavash; Sharac, Nicholas; Sanderson, Robert N; Dupper, Torin J; Hochbaum, Allon I; Capolino, Filippo; Abdolhosseini Qomi, Mohammad Javad; Ragan, Regina

    2017-11-28

    Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm 2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.

  5. Counterevidence to the ion hammering scenario as a driving force for the shape elongation of embedded nanoparticles

    Science.gov (United States)

    Amekura, H.; Okubo, N.; Tsuya, D.; Ishikawa, N.

    2017-08-01

    Counterevidence is provided in the ion-hammering scenario as a driving force for the shape elongation of embedded nanoparticles (NPs) under swift heavy ion irradiation (SHII). Ion-induced compaction and the hammering, which are both induced in silica under SHII, dominate at low and high fluences, respectively, causing a crossover between them around a fluence of ˜4 × 1012 ions/cm2. Nevertheless, the shape elongation of NPs detected by the optical dichroism exhibits nearly linear dependence in a wide fluence range between ˜1 × 1011 and 2 × 1013 ions/cm2, indicating that the hammering does not play an important role.

  6. Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.

    Science.gov (United States)

    Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich

    2004-03-01

    By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix-loop-helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks emerging through single-gene duplications, the dominant importance of molecular modularity in the bottom-up construction of complex biological entities, and the convergent evolution of networks.

  7. Principle and analysis of a linear motor driving system for HTS levitation applications

    International Nuclear Information System (INIS)

    Jin, Jian X.; Guo, You G.; Zhu, Jian G.

    2007-01-01

    High temperature superconductor (HTS) high levitation force density with passive and self-stabilizing features allows a number of special applications to be developed. Linear motor driving systems are commonly required for those applications such as levitated transport systems. In this paper a prototype linear motor driving system with HTS is analyzed with calculation details including its magnetic fields and driving forces presented in the paper

  8. Low-Resolution Vision-at the Hub of Eye Evolution.

    Science.gov (United States)

    Nilsson, Dan-E; Bok, Michael J

    2017-11-01

    Simple roles for photoreception are likely to have preceded more demanding ones such as vision. The driving force behind this evolution is the improvement and elaboration of animal behaviors using photoreceptor input. Because the basic role for all senses aimed at the external world is to guide behavior, we argue here that understanding this "behavioral drive" is essential for unraveling the evolutionary past of the senses. Photoreception serves many different types of behavior, from simple shadow responses to visual communication. Based on minimum performance requirements for different types of tasks, photoreceptors have been argued to have evolved from non-directional receptors, via directional receptors, to low-resolution vision, and finally to high-resolution vision. Through this sequence, the performance requirements on the photoreceptors have gradually changed from broad to narrow angular sensitivity, from slow to fast response, and from low to high contrast sensitivity during the evolution from simple to more advanced and demanding behaviors. New behaviors would only evolve if their sensory performance requirements to some degree overlap with the requirements of already existing behaviors. This need for sensory "performance continuity" must have determined the order by which behaviors have evolved and thus been an important factor guiding animal evolution. Naturally, new behaviors are most likely to evolve from already existing behaviors with similar neural processing needs and similar motor responses, pointing to "neural continuity" as another guiding factor in sensory evolution. Here we use these principles to derive an evolutionary tree for behaviors driven by photoreceptor input. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Current Drive in a Ponderomotive Potential with Sign Reversal

    Energy Technology Data Exchange (ETDEWEB)

    N.J. Fisch; J.M. Rax; I.Y. Dodin

    2003-07-30

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect can practiced upon both ions and electrons. The current drive efficiencies, in principle, might be higher than those possible with conventional radio-frequency current-drive techniques, since different considerations come into play.

  10. Current Drive in a Ponderomotive Potential with Sign Reversal

    International Nuclear Information System (INIS)

    Fisch, N.J.; Rax, J.M.; Dodin, I.Y.

    2003-01-01

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect can practiced upon both ions and electrons. The current drive efficiencies, in principle, might be higher than those possible with conventional radio-frequency current-drive techniques, since different considerations come into play

  11. Trophic specialization influences the rate of environmental niche evolution in damselfishes (Pomacentridae).

    Science.gov (United States)

    Litsios, Glenn; Pellissier, Loïc; Forest, Félix; Lexer, Christian; Pearman, Peter B; Zimmermann, Niklaus E; Salamin, Nicolas

    2012-09-22

    The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs.

  12. Neuromorphic meets neuromechanics, part II: the role of fusimotor drive

    Science.gov (United States)

    Jalaleddini, Kian; Minos Niu, Chuanxin; Chakravarthi Raja, Suraj; Sohn, Won Joon; Loeb, Gerald E.; Sanger, Terence D.; Valero-Cuevas, Francisco J.

    2017-04-01

    Objective. We studied the fundamentals of muscle afferentation by building a Neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. Approach. As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bi-directional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. Main results. We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. Significance. We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our Neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function—and its

  13. DRIVING TURBULENCE AND TRIGGERING STAR FORMATION BY IONIZING RADIATION

    International Nuclear Information System (INIS)

    Gritschneder, Matthias; Naab, Thorsten; Walch, Stefanie; Burkert, Andreas; Heitsch, Fabian

    2009-01-01

    We present high-resolution simulations on the impact of ionizing radiation of massive O stars on the surrounding turbulent interstellar medium (ISM). The simulations are performed with the newly developed software iVINE which combines ionization with smoothed particle hydrodynamics (SPH) and gravitational forces. We show that radiation from hot stars penetrates the ISM, efficiently heats cold low-density gas and amplifies overdensities seeded by the initial turbulence. The formation of observed pillar-like structures in star-forming regions (e.g. in M16) can be explained by this scenario. At the tip of the pillars gravitational collapse can be induced, eventually leading to the formation of low-mass stars. Detailed analysis of the evolution of the turbulence spectra shows that UV radiation of O stars indeed provides an excellent mechanism to sustain and even drive turbulence in the parental molecular cloud.

  14. PMBLDC motor drive with power factor correction controller

    DEFF Research Database (Denmark)

    George, G.J.; Ramachandran, Rakesh; Arun, N.

    2012-01-01

    reliability, and low maintenance requirements. The proposed Power Factor Controller topology improves power quality by improving performance of PMBLDCM drive, such as reduction of AC main current harmonics, near unity power factor. PFC converter forces the drive to draw sinusoidal supply current in phase...

  15. Toxin structures as evolutionary tools: Using conserved 3D folds to study the evolution of rapidly evolving peptides.

    Science.gov (United States)

    Undheim, Eivind A B; Mobli, Mehdi; King, Glenn F

    2016-06-01

    Three-dimensional (3D) structures have been used to explore the evolution of proteins for decades, yet they have rarely been utilized to study the molecular evolution of peptides. Here, we highlight areas in which 3D structures can be particularly useful for studying the molecular evolution of peptide toxins. Although we focus our discussion on animal toxins, including one of the most widespread disulfide-rich peptide folds known, the inhibitor cystine knot, our conclusions should be widely applicable to studies of the evolution of disulfide-constrained peptides. We show that conserved 3D folds can be used to identify evolutionary links and test hypotheses regarding the evolutionary origin of peptides with extremely low sequence identity; construct accurate multiple sequence alignments; and better understand the evolutionary forces that drive the molecular evolution of peptides. Also watch the video abstract. © 2016 WILEY Periodicals, Inc.

  16. The Driving Forces of Subsidiary Absorptive Capacity

    DEFF Research Database (Denmark)

    Schleimer, Stephanie C.; Pedersen, Torben

    2013-01-01

    The study investigates how a multinational corporation (MNC) can promote the absorptive capacity of its subsidiaries. The focus is on what drives the MNC subsidiary's ability to absorb marketing strategies that are initiated by the MNC parent, as well as how the subsidiary enacts on this absorptive...... as a purposeful response to this dual embeddedness. An analysis of marketing strategy absorptions undertaken by 213 subsidiaries reveals that MNCs can assist their subsidiaries to compete in competitive and dynamic focal markets by forming specific organizational mechanisms that are conducive to the development...

  17. Formation and Evolution of Binary Asteroids

    Science.gov (United States)

    Walsh, K. J.; Jacobson, S. A.

    Satellites of asteroids have been discovered in nearly every known small-body population, and a remarkable aspect of the known satellites is the diversity of their properties. They tell a story of vast differences in formation and evolution mechanisms that act as a function of size, distance from the Sun, and the properties of their nebular environment at the beginning of solar system history and their dynamical environment over the next 4.5 G.y. The mere existence of these systems provides a laboratory to study numerous types of physical processes acting on asteroids, and their dynamics provide a valuable probe of their physical properties otherwise possible only with spacecraft. Advances in understanding the formation and evolution of binary systems have been assisted by (1) the growing catalog of known systems, increasing from 33 to ~250 between the Merline et al. (2002) chapter in Asteroids III and now; (2) the detailed study and long-term monitoring of individual systems such as 1999 KW4 and 1996 FG3, (3) the discovery of new binary system morphologies and triple systems, (4) and the discovery of unbound systems that appear to be end-states of binary dynamical evolutionary paths. Specifically for small bodies (diameter smaller than 10 km), these observations and discoveries have motivated theoretical work finding that thermal forces can efficiently drive the rotational disruption of small asteroids. Long-term monitoring has allowed studies to constrain the system's dynamical evolution by the combination of tides, thermal forces, and rigid-body physics. The outliers and split pairs have pushed the theoretical work to explore a wide range of evolutionary end-states.

  18. Prebiological evolution and the metabolic origins of life.

    Science.gov (United States)

    Pratt, Andrew J

    2011-01-01

    The chemoton model of cells posits three subsystems: metabolism, compartmentalization, and information. A specific model for the prebiological evolution of a reproducing system with rudimentary versions of these three interdependent subsystems is presented. This is based on the initial emergence and reproduction of autocatalytic networks in hydrothermal microcompartments containing iron sulfide. The driving force for life was catalysis of the dissipation of the intrinsic redox gradient of the planet. The codependence of life on iron and phosphate provides chemical constraints on the ordering of prebiological evolution. The initial protometabolism was based on positive feedback loops associated with in situ carbon fixation in which the initial protometabolites modified the catalytic capacity and mobility of metal-based catalysts, especially iron-sulfur centers. A number of selection mechanisms, including catalytic efficiency and specificity, hydrolytic stability, and selective solubilization, are proposed as key determinants for autocatalytic reproduction exploited in protometabolic evolution. This evolutionary process led from autocatalytic networks within preexisting compartments to discrete, reproducing, mobile vesicular protocells with the capacity to use soluble sugar phosphates and hence the opportunity to develop nucleic acids. Fidelity of information transfer in the reproduction of these increasingly complex autocatalytic networks is a key selection pressure in prebiological evolution that eventually leads to the selection of nucleic acids as a digital information subsystem and hence the emergence of fully functional chemotons capable of Darwinian evolution.

  19. The driving forces for nitrogen and phosphorus flows in the food chain of china, 1980 to 2010.

    Science.gov (United States)

    Hou, Y; Ma, L; Gao, Z L; Wang, F H; Sims, J T; Ma, W Q; Zhang, F S

    2013-07-01

    Nitrogen (N) and phosphorus (P) use and losses in China's food chain have accelerated in the past three decades, driven by population growth, rapid urbanization, dietary transition, and changing nutrient management practice. There has been little detailed quantitative analysis of the relative magnitude of these driving forces throughout this period. Therefore, we analyzed changes in N and P flows and key drivers behind changes in the food (production and consumption) chain at the national scale from 1980 to 2010. Food (N and P) consumption increased by about fivefold in urban settings over this period but has decreased in rural settings since the 1990s. For urban settings, the integrated driving forces for increased food consumption were population growth, which accounted for ∼60%, and changing urban diets toward a greater emphasis on the consumption of animal products. Nutrient inputs and losses in crop and animal productions have continuously increased from 1980 to 2010, but the rates of decadal increase were greatly different. Increased total inputs and losses in crop production were primarily driven by increased crop production for food demand (68-96%) in the 1980s but were likely offset in the 2000s by improved nutrient management practices, as evidenced by decreased total inputs to and losses from cropland for harvesting per nutrient in crop. The contributions of animal production to total N and P losses to waters from the food chain increased by 34 and 60% from 1980 to 2010. These increases were caused mainly by decreased ratios of manure returned to cropland. Our study highlights a larger impact of changing nutrient management practice than population growth on elevated nutrient flows in China's food chain. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. CAE DEVELOPMENT OF PRECESSIONAL DRIVES USING AUTODESK INVENTOR PLATFORM

    Directory of Open Access Journals (Sweden)

    Ion BOSTAN

    2010-06-01

    Full Text Available The paper presents the modelling and simulation of precessional drives designed in two variants capable of high transmission ratio and torque for one stage compact construction. The constructions were designed in Inventor and also as multi body systems in otionInventor. The simulations of the drives provide information concerning positions, velocities, accelerations, point trajectories, forces and moments, energies, as well as contact forces at the contact between gear teeth and satellite teeth and other data concerning the system.

  1. The effect of electric field geometry on the performance of electromembrane extraction systems: Footprints of a third driving force along with migration and diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Moazami, Hamid Reza [School of Physics and Accelerators, NSTRI, P. O. Box, 11365-8486, Tehran (Iran, Islamic Republic of); Hosseiny Davarani, Saied Saeed, E-mail: ss-hosseiny@sbu.ac.ir [Faculty of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran (Iran, Islamic Republic of); Mohammadi, Jamil; Nojavan, Saeed [Faculty of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran (Iran, Islamic Republic of); Abrari, Masoud [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran (Iran, Islamic Republic of)

    2015-09-03

    The distribution of electric field vectors was first calculated for electromembrane extraction (EME) systems in classical and cylindrical electrode geometries. The results showed that supported liquid membrane (SLM) has a general field amplifying effect due to its lower dielectric constant in comparison with aqueous donor/acceptor solutions. The calculated norms of the electric field vector showed that a DC voltage of 50 V can create huge electric field strengths up to 64 kV m{sup −1} and 111 kV m{sup −1} in classical and cylindrical geometries respectively. In both cases, the electric field strength reached its peak value on the inner wall of the SLM. In the case of classical geometry, the field strength was a function of the polar position of the SLM whereas the field strength in cylindrical geometry was angularly uniform. In order to investigate the effect of the electrode geometry on the performance of real EME systems, the analysis was carried out in three different geometries including classical, helical and cylindrical arrangements using naproxen and sodium diclofenac as the model analytes. Despite higher field strength and extended cross sectional area, the helical and cylindrical geometries gave lower recoveries with respect to the classical EME. The observed decline of the signal was proved to be against the relations governing migration and diffusion processes, which means that a third driving force is involved in EME. The third driving force is the interaction between the radially inhomogeneous electric field and the analyte in its neutral form. - Highlights: • Electric field vectors have been calculated in EME systems. • A new driving force has been proposed in EME systems. • EME can be theoretically applied to nonionic polarizable analytes.

  2. The effect of electric field geometry on the performance of electromembrane extraction systems: Footprints of a third driving force along with migration and diffusion

    International Nuclear Information System (INIS)

    Moazami, Hamid Reza; Hosseiny Davarani, Saied Saeed; Mohammadi, Jamil; Nojavan, Saeed; Abrari, Masoud

    2015-01-01

    The distribution of electric field vectors was first calculated for electromembrane extraction (EME) systems in classical and cylindrical electrode geometries. The results showed that supported liquid membrane (SLM) has a general field amplifying effect due to its lower dielectric constant in comparison with aqueous donor/acceptor solutions. The calculated norms of the electric field vector showed that a DC voltage of 50 V can create huge electric field strengths up to 64 kV m −1 and 111 kV m −1 in classical and cylindrical geometries respectively. In both cases, the electric field strength reached its peak value on the inner wall of the SLM. In the case of classical geometry, the field strength was a function of the polar position of the SLM whereas the field strength in cylindrical geometry was angularly uniform. In order to investigate the effect of the electrode geometry on the performance of real EME systems, the analysis was carried out in three different geometries including classical, helical and cylindrical arrangements using naproxen and sodium diclofenac as the model analytes. Despite higher field strength and extended cross sectional area, the helical and cylindrical geometries gave lower recoveries with respect to the classical EME. The observed decline of the signal was proved to be against the relations governing migration and diffusion processes, which means that a third driving force is involved in EME. The third driving force is the interaction between the radially inhomogeneous electric field and the analyte in its neutral form. - Highlights: • Electric field vectors have been calculated in EME systems. • A new driving force has been proposed in EME systems. • EME can be theoretically applied to nonionic polarizable analytes.

  3. Ameliorative design for CARR safety rod drive mechanism

    International Nuclear Information System (INIS)

    Zhu Xuewei; Luo Zhong; Zhen Jianxiao; Wang Yulin

    2014-01-01

    The problem of safety rod accident dropped during C commissioning phase for China Advanced Research Reactor (CARR) was analyzed, and the reason was that the solenoid valve in safety rod drive mechanism (SRDM) driven loop was breakdown because of long-playing work. To solve this safe hidden trouble, SRDM was redesigned, and a new type of 'hydro lifting-hydro and electromagnetic holding' SRDM was presented, using Ansoft Maxwell to make a finite element analysis on new SRDM, working out electromagnetic field distribution and electromagnetic force of new SRDM. The results show that the value of electromagnetic force produced by electromagnetic force holding unit reaches 2.12 times about the weight of safety rod drive line, and it has some margins. (authors)

  4. Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume.

    Science.gov (United States)

    Maslin, Mark A; Christensen, Beth

    2007-11-01

    The late Cenozoic climate of Africa is a critical component for understanding human evolution. African climate is controlled by major tectonic changes, global climate transitions, and local variations in orbital forcing. We introduce the special African Paleoclimate Issue of the Journal of Human Evolution by providing a background for and synthesis of the latest work relating to the environmental context for human evolution. Records presented in this special issue suggest that the regional tectonics, appearance of C(4) plants in East Africa, and late Cenozoic global cooling combined to produce a long-term drying trend in East Africa. Of particular importance is the uplift associated with the East African Rift Valley formation, which altered wind flow patterns from a more zonal to more meridinal direction. Results in this volume suggest a marked difference in the climate history of southern and eastern Africa, though both are clearly influenced by the major global climate thresholds crossed in the last 3 million years. Papers in this volume present lake, speleothem, and marine paleoclimate records showing that the East African long-term drying trend is punctuated by episodes of short, alternating periods of extreme wetness and aridity. These periods of extreme climate variability are characterized by the precession-forced appearance and disappearance of large, deep lakes in the East African Rift Valley and paralleled by low and high wind-driven dust loads reaching the adjacent ocean basins. Dating of these records show that over the last 3 million years such periods only occur at the times of major global climatic transitions, such as the intensification of Northern Hemisphere Glaciation (2.7-2.5 Ma), intensification of the Walker Circulation (1.9-1.7 Ma), and the Mid-Pleistocene Revolution (1-0.7 Ma). Authors in this volume suggest this onset occurs as high latitude forcing in both Hemispheres compresses the Intertropical Convergence Zone so that East Africa

  5. Is a larger refuge always better? Dispersal and dose in pesticide resistance evolution.

    Science.gov (United States)

    Takahashi, Daisuke; Yamanaka, Takehiko; Sudo, Masaaki; Andow, David A

    2017-06-01

    The evolution of resistance against pesticides is an important problem of modern agriculture. The high-dose/refuge strategy, which divides the landscape into treated and nontreated (refuge) patches, has proven effective at delaying resistance evolution. However, theoretical understanding is still incomplete, especially for combinations of limited dispersal and partially recessive resistance. We reformulate a two-patch model based on the Comins model and derive a simple quadratic approximation to analyze the effects of limited dispersal, refuge size, and dominance for high efficacy treatments on the rate of evolution. When a small but substantial number of heterozygotes can survive in the treated patch, a larger refuge always reduces the rate of resistance evolution. However, when dominance is small enough, the evolutionary dynamics in the refuge population, which is indirectly driven by migrants from the treated patch, mainly describes the resistance evolution in the landscape. In this case, for small refuges, increasing the refuge size will increase the rate of resistance evolution. Our analysis distils major driving forces from the model, and can provide a framework for understanding directional selection in source-sink environments. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  6. Model for evolution of grain size in the rim region of high burnup UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hongxing, E-mail: xiaohongxing2003@163.com; Long, Chongsheng; Chen, Hongsheng

    2016-04-01

    The restructuring process of the high burnup structure (HBS) formation in UO{sub 2} fuel results in sub-micron size grains that accelerate the fission gas swelling, which will raise some concern over the safety of extended the nuclear fuel operation life in the reactor. A mechanistic and engineering model for evolution of grain size in the rim region of high burnup UO{sub 2} fuel based on the experimental observations of the HBS in the literature is presented. The model takes into account dislocations evolution under irradiation and the grain subdivision occur successively at increasing local burnup. It is assumed that the original driving force for subdivision of grain in the HBS of UO{sub 2} fuel is the production and accumulation of dislocation loops during irradiation. The dislocation loops can also be annealed through thermal diffusion when the temperature is high enough. The capability of this model is validated by the comparison with the experimental data of temperature threshold of subdivision, dislocation density and sub-grain size as a function of local burnup. It is shown that the calculated results of the dislocation density and subdivided grain size as a function of local burnup are in good agreement with the experimental results. - Highlights: • A model for evolution of dislocation density and grain size in HBS is proposed. • The dislocation can also be annealed when the temperature is high enough. • Original driving force for subdivision is mostly accumulation of dislocation loops. • The temperature threshold of the subdivision is predicted at 1300–1400 K.

  7. From genes to games: cooperation and cyclic dominance in meiotic drive.

    Science.gov (United States)

    Traulsen, Arne; Reed, Floyd A

    2012-04-21

    Evolutionary change can be described on a genotypic level or a phenotypic level. Evolutionary game theory is typically thought of as a phenotypic approach, although it is frequently argued that it can also be used to describe population genetic evolution. Interpreting the interaction between alleles in a diploid genome as a two player game leads to interesting alternative perspectives on genetic evolution. Here we focus on the case of meiotic drive and illustrate how meiotic drive can be directly and precisely interpreted as a social dilemma, such as the prisoners dilemma or the snowdrift game, in which the drive allele takes more than its fair share. Resistance to meiotic drive can lead to the well understood cyclic dominance found in the rock-paper-scissors game. This perspective is well established for the replicator dynamics, but there is still considerable ground for mutual inspiration between the two fields. For example, evolutionary game theorists can benefit from considering the stochastic evolutionary dynamics arising from finite population size. Population geneticists can benefit from game theoretic tools and perspectives on genetic evolution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Preliminary measurement of the drag force on a porous cylinder with fluid evolution under conditions relevant to pulverised-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Dijan Supramono; Graham J. Nathan; Peter J. Ashman; Peter J. Mullinger [University of Adelaide, Adelaide, SA (Australia). Cooperative Research Centre for Clean Power from Lignite, Schools of Chemical Engineering and Mechanical Engineering

    2003-07-01

    The trajectories of the particles in pulverised coal combustion systems determine their residence times and reaction environments, and hence coal burnout and flame length. The trajectories, in turn, depend upon the drag coefficient of the particle. The effect of the evolution of fluid from the surface of the particle on this coefficient has never been measured before, particularly at the low particle Reynolds numbers that apply during coal combustion. Therefore mathematical models must rely on assumed sphere drag coefficients, which do not account for the effect of fluid evolving from the surface. A technique of using a porous cylinder mounted on a pendulum, instead of a sphere, through which fluid can be forced to evolve, simulating fluid evolution in coal devolatilisation and char burning, is used. The pendulum is capable of measuring drag forces of the order of 10-5 to 10-6 Newton, at Reynolds numbers similar to that experienced by coal particles. This paper presents preliminary measurements of drag force at relevant conditions. The working fluid is water in the first instance, although it will be extended to diluted glycerine in the future. The cross flow is provided by a water tunnel and the ejected fluid is induced by a separate pump. Both the Reynolds number and the ratio of evolution velocity to free-stream velocity are chosen to span conditions relevant to pulverised coal combustion. 16 refs., 5 figs., 2 tabs.

  9. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  10. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Science.gov (United States)

    Léotard, Guillaume; Debout, Gabriel; Dalecky, Ambroise; Guillot, Sylvain; Gaume, Laurence; McKey, Doyle; Kjellberg, Finn

    2009-01-01

    Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions. We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants. Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated with dispersal are

  11. Orbital evolution of a test particle around a black hole: indirect determination of the self-force in the post-Newtonian approximation

    International Nuclear Information System (INIS)

    Burko, Lior M

    2006-01-01

    Comparing the corrections to Kepler's law with orbital evolution under a self-force, we extract the finite, already regularized part of the latter in a specific gauge. We apply this method to a quasi-circular orbit around a Schwarzschild black hole of an extreme mass ratio binary, and determine the first- and second-order conservative gravitational self-force in a post-Newtonian expansion. We use these results in the construction of the gravitational waveform, and revisit the question of the relative contribution of the self-force and spin-orbit coupling

  12. Marine turtle mitogenome phylogenetics and evolution

    DEFF Research Database (Denmark)

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Luis Alonso

    2012-01-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae...... distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses...... to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all...

  13. Analysis of Urban-Rural Land-Use Change during 1995-2006 and Its Policy Dimensional Driving Forces in Chongqing, China

    Directory of Open Access Journals (Sweden)

    Guihua Dong

    2008-02-01

    Full Text Available This paper analyzes the urban-rural land-use change of Chongqing and its policydimensional driving forces from 1995 to 2006, using high-resolution Landsat TM(Thematic Mapper data of 1995, 2000 and 2006, and socio-economic data from bothresearch institutes and government departments. The outcomes indicated that urban-ruralland-use change in Chongqing can be characterized by two major trends: First, thenon-agricultural land increased substantially from 1995 to 2006, thus causing agriculturalland especially farmland to decrease continuously. Second, the aggregation index of urbansettlements and rural settlements shows that local urban-rural development experienced aprocess of changing from aggregation (1995-2000 to decentralization (2000-2006.Chongqing is a special area getting immersed in many important policies, which includethe establishment of the municipality directly under the Central Government, the buildingof Three Gorges Dam Project, the Western China Development Program and theGrain-for-Green Programme, and bring about tremendous influences on its land-usechange. By analyzing Chongqing’s land-use change and its policy driving forces, someimplications for its new policy of ‘Urban-rural Integrated Reform’ are obtained. That ismore attentions need to be paid to curbing excessive and idle rural housing andconsolidating rural construction land, and to laying out a scientific land-use plan for its rural areas taking such rural land-use issues as farmland occupation and rural housing landmanagement into accounts, so as to coordinate and balance the urban-rural development.

  14. Evolution of Wigner function in laser process under the action of linear resonance force and its application

    Science.gov (United States)

    Dao-ming, Lu

    2018-05-01

    The negativity of Wigner function (WF) is one of the important symbols of non-classical properties of light field. Therefore, it is of great significance to study the evolution of WF in dissipative process. The evolution formula of WF in laser process under the action of linear resonance force is given by virtue of thermo entangled state representation and the technique of integration within an ordered product of operator. As its application, the evolution of WF of thermal field and that of single-photon-added coherent state are discussed. The results show that the WF of thermal field maintains its original character. On the other hand, the negative region size and the depth of negativity of WF of single- photon-added coherent state decrease until it vanishes with dissipation. This shows that the non-classical property of single-photon-added coherent state is weakened, until it disappears with dissipation time increasing.

  15. Study on anti-seismic test of control rod driving system suspended by magnetic force

    International Nuclear Information System (INIS)

    Zhang Zhihua; Qian Dazhi; Xu Xianqi; Huang Hongwen; Zhang Zhengming; Wu Xinxin; Hu Xiao

    2012-01-01

    To verify the stability, reliability and security function in extreme conditions, the anti-seismic test of control rod drive line was conducted. Drop-time of control rod drive line in different earthquake intensities was got. The response and strain values of control rod drive line acceleration on SL-1, SL-2 level were measured. Safety functions of control rod drive line were validated in different work conditions. Anti-seismic test data shows that the driving system can keep the structure's integrality and realize operation function under OBE and SSE. (authors)

  16. United theory of biological evolution: Disaster-forced evolution through Supernova, radioactive ash fall-outs, genome instability, and mass extinctions

    Directory of Open Access Journals (Sweden)

    Toshikazu Ebisuzaki

    2015-01-01

    Full Text Available We present the disaster-forced biological evolution model as a general framework that includes Darwinian “phylogenic gradualism”, Eldredge-Gould's “punctuated equilibrium”, mass extinctions, and allopatric, parapatric, and sympatric speciation. It describes how reproductive isolation of organisms is established through global disasters due to supernova encounters and local disasters due to radioactive volcanic ash fall-outs by continental alkaline volcanism. Our new evolution model uniquely highlights three major factors of disaster-forced speciation: enhanced mutation rate by higher natural radiation level, smaller population size, and shrunken habitat size (i.e., isolation among the individual populations. We developed a mathematical model describing speciation of a half-isolated group from a parental group, taking into account the population size (Ne, immigration rate (m, and mutation rate (μ. The model gives a quantitative estimate of the speciation, which is consistent with the observations of speciation speed. For example, the speciation takes at least 105 generations, if mutation rate is less than 10−3 per generation per individual. This result is consistent with the previous studies, in which μ is assumed to be 10−3–10−5. On the other hand, the speciation is much faster (less than 105 generations for the case that μ is as large as 0.1 in parapatric conditions (m < μ. Even a sympatric (m ~ 1 speciation can occur within 103 generations, if mutation rate is very high (μ ~ 1 mutation per individual per generation, and if Ne < 20–30. Such a high mutation rate is possible during global disasters due to supernova encounters and local disasters due to radioactive ash fall-outs. They raise natural radiation level by a factor of 100–1000. Such rapid speciation events can also contribute to macro-evolution during mass extinction events, such as observed during the Cambrian explosion of biodiversity. A

  17. Consistent Automation Solutions for Electrohydraulic Drives in Times of Industry 4.0

    OpenAIRE

    Köckemann, Albert; Birke, Benno

    2016-01-01

    Electrohydraulic drives are primarily used whenever a low power/weight ratio, a compact build and/or large forces are required for individual applications. These drives are often used together with electric drive technology in machines. However, in terms of automation, unlike electric drives, electrohydraulic drives are still largely connected via analog interfaces and centralized closed control loops today. To compensate for this competitive disadvantage of hydraulic drive technology and, at...

  18. Evolution of phase structure and giant strain at low driving fields in Bi-based lead-free incipient piezoelectrics

    International Nuclear Information System (INIS)

    Maqbool, Adnan; Hussain, Ali; Malik, Rizwan Ahmed; Rahman, Jamil Ur; Zaman, Arif; Song, Tae Kwon; Kim, Won-Jeong; Kim, Myong-Ho

    2015-01-01

    Graphical abstract: - Highlights: • Nb-doped BNBT–SZ ceramics were prepared by conventional solid state method. • A giant normalized strain of 825 pm/V at 4 kV/mm was achieved. • A large strain of 0.20% triggered at a relatively low field of 3 kV/mm. • Highest strain obtained in BNT-based ceramics at such a low driving field. • Ferroelectric to ergodic-relaxor phase transition occurred with Nb-doping. - Abstract: Lead-free 0.99[(Bi 0.5 Na 0.5 ) 0.935 Ba 0.065 Ti (1–x) Nb x O 3 ]–0.01SrZrO 3 (BNBTNb100x–SZ, with Nb100x = 0–1) ceramics were prepared by the conventional mixed oxide route. X-ray diffraction and Raman scattering was utilized for the structural evolution of Nb-modified BNBT–SZ ceramics at average and short-scale localized structure. Temperature dependent dielectric properties showed ferroelectric–ergodic relaxor (FE–ER) transition in Nb-modified BNBT–SZ ceramics by producing a significant disruption of the long-range FE order. A giant normalized strain of 825 pm/V at 4 kV/mm was achieved at Nb1.0. Interestingly, at a relatively low applied field of 3 kV/mm, the Nb0.75 sample displayed a large electric field-induced strain (EFIS) response of 0.20%, which is highest value obtained in non-textured lead-free BNT-based ceramics at such low driving field. The structural distortion induced by doping and electric poling is correlated with the dielectric, ferroelectric and EFIS response, and the evolution of giant strain was ascribed to reversible field induced phase transition from ER–FE phase

  19. Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden

    International Nuclear Information System (INIS)

    Thollander, Patrik; Backlund, Sandra; Trianni, Andrea; Cagno, Enrico

    2013-01-01

    Highlights: • Results are based on a questionnaire in the European foundry industry. • The energy efficiency potential is assed to be 7.5% of the total energy use. • Most important drivers to and barriers for energy efficiency are financial followed by organizational. • EPC is used among 23% of the foundries, third party financing among 12%. • Large energy management improvement potentials are uncovered. - Abstract: Energy management plays an important role in the transformation of industrial energy systems towards improved energy efficiency and increased sustainability. This paper aims to study driving forces for improved energy efficiency in some European energy-intensive foundry industries. The investigation has been conducted as a multiple case study involving 65 foundries located in Finland, France, Germany, Italy, Poland, Spain, and Sweden. The most relevant perceived driving forces were found to be financially related, followed by organizational driving forces. Nevertheless, some differences can be appreciated according to the firm’s size and country. Almost half of the studied foundries lack a long-term energy strategy, about one-fourth stated that they have used Energy Performance Contracting (EPC), and only approximately one in ten foundries have used Third Party Financing (TPF). Among the studied foundries, three out of five have conducted an energy audit. On average, the energy saving potential according to the respondents is stated to be 7.5%. In conclusion, energy management in the European foundry industry, despite increasing energy prices and extensive energy policy actions taken by the EU, still seems to have great improvement potential, calling for future research and policy actions in the field

  20. Can foraging ecology drive the evolution of body size in a diving endotherm?

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  1. The role of meiotic drive in hybrid male sterility.

    Science.gov (United States)

    McDermott, Shannon R; Noor, Mohamed A F

    2010-04-27

    Meiotic drive causes the distortion of allelic segregation away from Mendelian expected ratios, often also reducing fecundity and favouring the evolution of drive suppressors. If different species evolve distinct drive-suppressor systems, then hybrid progeny may be sterile as a result of negative interactions of these systems' components. Although the hypothesis that meiotic drive may contribute to hybrid sterility, and thus species formation, fell out of favour early in the 1990s, recent results showing an association between drive and sterility have resurrected this previously controversial idea. Here, we review the different forms of meiotic drive and their possible roles in speciation. We discuss the recent empirical evidence for a link between drive and hybrid male sterility, also suggesting a possible mechanistic explanation for this link in the context of chromatin remodelling. Finally, we revisit the population genetics of drive that allow it to contribute to speciation.

  2. Classical-driving-assisted entanglement dynamics control

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying-Jie, E-mail: yingjiezhang@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Han, Wei [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Xia, Yun-Jie, E-mail: yjxia@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing, 100190 (China)

    2017-04-15

    We propose a scheme of controlling entanglement dynamics of a quantum system by applying the external classical driving field for two atoms separately located in a single-mode photon cavity. It is shown that, with a judicious choice of the classical-driving strength and the atom–photon detuning, the effective atom–photon interaction Hamiltonian can be switched from Jaynes–Cummings model to anti-Jaynes–Cummings model. By tuning the controllable atom–photon interaction induced by the classical field, we illustrate that the evolution trajectory of the Bell-like entanglement states can be manipulated from entanglement-sudden-death to no-entanglement-sudden-death, from no-entanglement-invariant to entanglement-invariant. Furthermore, the robustness of the initial Bell-like entanglement can be improved by the classical driving field in the leaky cavities. This classical-driving-assisted architecture can be easily extensible to multi-atom quantum system for scalability.

  3. Output Force Enhancement of Scratch Drive Actuator in Low-Voltage Region by Using Flexible Joint

    Directory of Open Access Journals (Sweden)

    Shawn CHEN

    2010-04-01

    Full Text Available Here a low-voltage scratch drive actuator (LVSDA is proposed by incorporating flexible joint into the conventional SDA to improve performance in low-voltage region. Experimental results show that, at the same total plate length of 80 mm and width of 65 mm, the proposed LVSDA can be actuated as low as 40 V, much lower than 80 V, the minimum required input voltage of the conventional SDA. From finite element analysis by CosmosWorks, yielding effect is found to be a critical factor. Before yielding, LVSDA can provide better performance than SDA at the same input voltage. However, the yielding stress in flexible joint would limit the achievable maximum output force in high-voltage region. By varying joint length, width, or location, LVSDA is shown to be operated in low-voltage region where the conventional SDA can not be operated, and can still provide comparable performance as SDA in high-voltage region.

  4. Driving Forces of Dynamic Changes in Soil Erosion in the Dahei Mountain Ecological Restoration Area of Northern China Based on GIS and RS.

    Science.gov (United States)

    Li, Xiao; Niu, Xiang; Wang, Bing; Gao, Peng; Liu, Yu

    2016-01-01

    Dynamic change in soil erosion is an important focus of regional ecological restoration research. Here, the dynamic changes of soil erosion and its driving forces in the Dahei Mountain ecological restoration area of northern China were analyzed by LANDSAT TM remote sensing captured via geographic information system (GIS) technologies during three typical periods in 2004, 2008 and 2013. The results showed the following: (1) a decrease in intensive erosion and moderate erosion areas, as well as an increase in light erosion areas, was observed during two periods: one from 2004 to 2008 and the other from 2008 to 2013. (2) Between 2004 and 2008, the variation in the range of slight erosion was the largest (24.28%), followed by light erosion and intensive erosion; between 2008 and 2013, the variation in the range of intensive erosion area was the largest (9.89%), followed by slight erosion and moderate erosion. (3) Socioeconomic impact, accompanied by natural environmental factors, was the main driving force underlying the change in soil erosion within the ecological restoration area. In particular, the socioeconomic factors of per capita forest area and land reclamation rate, as well as the natural environmental factor of terrain slope, significantly influenced soil erosion changes within the ecological restoration area.

  5. Proceedings of the international conference on maglev and linear drives

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This book contains papers presented at a conference on Maglev and linear drives. Topics covered include: Development of superconducting magnets for the Canadian electrodynamic Maglev vehicle; Power supply system to drive HSST - Expo '86; and Thrust and levitation force characteristics of linear synchronous motors

  6. Hierarchical theory of quantum adiabatic evolution

    International Nuclear Information System (INIS)

    Zhang, Qi; Wu, Biao; Gong, Jiangbin

    2014-01-01

    Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau–Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory. (paper)

  7. Modeling human-water-systems: towards a comprehensive and spatially distributed assessment of co-evolutions for river basins in Central Europe

    OpenAIRE

    P. Krahe; E. Nilson; M. Knoche; A.-D. Ebner von Eschenbach

    2016-01-01

    In the context of river basin and flood risk management there is a growing need to improve the understanding of and the feedbacks between the driving forces “climate and socio-economy” and water systems. We make use of a variety of data resources to illustrate interrelationships between different constituents of the human-water-systems. Taking water storage for energy production as an example we present a first analysis on the co-evolution of socio-economic and hydrological ...

  8. Full drive-by-wire dynamic control for four-wheel-steer all-wheel-drive vehicles

    Science.gov (United States)

    Fahimi, Farbod

    2013-03-01

    Most of the controllers introduced for four-wheel-steer (4WS) vehicles are derived with the assumption that the longitudinal speed of the vehicle is constant. However, in real applications, the longitudinal speed varies, and the longitudinal, lateral, and yaw dynamics are coupled. In this paper, the longitudinal dynamics of the vehicle as well as its lateral and yaw motions are controlled simultaneously. This way, the effect of driving/braking forces of the tires on the lateral and yaw motions of the vehicle are automatically included in the control laws. To address the dynamic parameter uncertainty of the vehicle, a chatter-free variable structure controller is introduced. Elimination of chatter is achieved by introducing a dynamically adaptive boundary layer thickness. It is shown via simulations that the proposed control approach performs more robustly than the controllers developed based on dynamic models, in which longitudinal speed is assumed to be constant, and only lateral speed and yaw rate are used as system states. Furthermore, this approach supports all-wheel-drive vehicles. Front-wheel-drive or rear-wheel-drive vehicles are also supported as special cases of an all-wheel-drive vehicle.

  9. Study on the effect of driving cycles on energy efficiency of electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ji Fenzhu; Xu Licong [School of Transportation Science and Engineering of Beihang Univ., BJ (China); Wu Zhixin [Tianjin Qing Yuan Electric Vehicle Corp. Ltd., TJ (China)

    2009-07-01

    The energy usage efficiency of electric vehicles (EVS) and evaluation index of electromotor efficiency were studied. The idea of ''interval usage percentage of energy efficiency'' and ''exertion degree of energy efficiency'' of electromotor was brought forward. The effect of driving cycles on the distribution of running status of electromotor and its efficiency was investigated. The electromotor efficiency and the variety trend of average driving force at different driving cycles were discussed. Based on several typical domestic and foreign driving cycles, the exertion degree of energy efficiency and the whole efficiency of power train on some types of EVS were analyzed and calculated. The result indicates that there is a difference of 9.64% in exertion degree of energy efficiency of electromotor at different driving cycles. The efficiency distribution of electromotor and control system is different, and the average driving force is different, too. That cause the great variety in driving range. The idiographic reference data are provided to the establishment of driving cycles' criterion of EVS in our country. (orig.)

  10. Optimization of spent fuel pool weir gate driving mechanism

    Science.gov (United States)

    Liu, Chao; Du, Lin; Tao, Xinlei; Wang, Shijie; Shang, Ertao; Yu, Jianjiang

    2018-04-01

    Spent fuel pool is crucial facility for fuel storage and nuclear safety, and the spent fuel pool weir gate is the key related equipment. In order to achieve a goal of more efficient driving force transfer, loading during the opening/closing process is analyzed and an optimized calculation method for dimensions of driving mechanism is proposed. The result of optimizing example shows that the method can be applied to weir gates' design with similar driving mechanism.

  11. Current drive in a ponderomotive potential with sign reversal

    International Nuclear Information System (INIS)

    Fisch, N.J.; Dodin, I.Y.; Rax, J.M.

    2003-01-01

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect, which operates somewhat like a Maxwell demon, can be practiced upon both ions and electrons. The current-drive efficiencies, in principle, might be higher than those possible with conventional rf current-drive techniques. It remains, however, for us to identify how the effect might be implemented in a magnetic fusion device in a practical manner

  12. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Directory of Open Access Journals (Sweden)

    Guillaume Léotard

    Full Text Available Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions.We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants.Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated

  13. Nonlinear nonresonant forces by radio-frequency waves in plasmas

    International Nuclear Information System (INIS)

    Gao Zhe; Fisch, Nathaniel J.; Qin, Hong; Myra, J. R.

    2007-01-01

    Nonresonant forces by applied rf waves in plasmas are analyzed. Along the background dc magnetic field, the force arises from the gradient of the ponderomotive potential. Only when the dc magnetic field is straight, however, is this parallel force completely consistent with that from the single particle picture, where the ponderomotive force depends on the gradients of rf fields only. Across the dc magnetic field, besides the ponderomotive force from the particle picture, additional Reynolds stress and polarization stress contribute to the total force. For waves with frequency much lower than the cyclotron frequency, the perpendicular forces from the particle and fluid pictures can have opposite signs. In plasmas with a symmetry angle (e.g., toroidal systems), nonresonant forces cannot drive net flow or current in the flux surface, but the radial force may influence macroscopic behavior of plasma. Moreover, nonresonant forces may drive flow or current in linear plasmas or in a localized region of toroidal plasmas

  14. THE ANALISYS OF RAILWAY MULTI MOTORS ELECTRICAL DRIVE DYNAMIC

    Directory of Open Access Journals (Sweden)

    V. I. Khilmon

    2015-01-01

    Full Text Available The importance of multi motors electrical traction drive dynamic analysis is denoted by its large application in electrical driving railway vehicles. In this paper an analysis is presented for two inducton motors traction drive with frequency inverter, vector control, and speed sensors of each electrical drive. The goal of this work is the analysis of two induction motors electrical drive, taking into account parametric perturbations and also a limited moment of wheel-rail adhesion, by laboratory study and simulation. Because of difference between motor’s parameters, it is necessary for parallel work to select motors with identical resistances and inductive winding. For this purpose the parametric identification method was used for each electrical drive, and also for two parallel motors. The result of identification was used in control setting.The  slippage  of  the  traction  drives  is  difficult  to  reproduce  in  laboratory;  therefore a mathematical modeling and simulation of mechanical part with a traction force restriction, specific for railway transport, were carried out. The suggested simulation is built with account of elastic deformations in kinetic chain, transforming traction force. The model permits to study a dynamic system in various circumstances.The results of laboratory investigations and simulation of dynamic regimes for two motor electrical drives are presented in this article. The results of analysis show, that a minimal difference between any parameters of two motors, parallel connected to convertor, is important for the slippage stability.

  15. Thermodynamic Description of Synergy in Solvent Extraction: II Thermodynamic Balance of Driving Forces Implied in Synergistic Extraction.

    Science.gov (United States)

    Rey, J; Bley, M; Dufrêche, J-F; Gourdin, S; Pellet-Rostaing, S; Zemb, T; Dourdain, S

    2017-11-21

    In the second part of this study, we analyze the free energy of transfer in the case of synergistic solvent extraction. This free energy of the transfer of an ion in dynamic equilibrium between two coexisting phases is decomposed into four driving forces combining long-range interactions with the classical complexation free energy associated with the nearest neighbors. We demonstrate how the organometallic complexation is counterbalanced by the cost in free energy related to structural change on the colloidal scale in the solvent phase. These molecular forces of synergistic extraction are driven not only by the entropic term associated with the tight packing of electrolytes in the solvent and by the free energy cost of coextracting water toward the hydrophilic core of the reverse aggregates present but also by the entropic costs in the formation of the reverse aggregate and by the interfacial bending energy of the extractant molecules packed around the extracted species. Considering the sum of the terms, we can rationalize the synergy observed, which cannot be explained by classical extraction modeling. We show an industrial synergistic mixture combining an amide and a phosphate complexing site, where the most efficient/selective mixture is observed for a minimal bending energy and maximal complexation energy.

  16. Driving forces: Motor vehicle trends and their implications for global warming, energy strategies, and transportation planning

    International Nuclear Information System (INIS)

    MacKenzie, J.J.; Walsh, M.P.

    1990-01-01

    Cars, trucks, and other vehicles have long been linked to smog and other urban pollution, but the part they play in the larger complex of atmospheric and energy ills that we now face is often overlooked. In Driving Forces: Motor Vehicle Trends and Their Implications for Global Warming, Energy Strategies, and Transportation Planning, James J. MacKenzie, senior associate in World Resources Institute's Program in Climate, Energy, and Pollution, and Michael P. Walsh, an international consultant on transportation and environmental issues, fill in this knowledge gap with new data and analyses. They spell out four policy shifts that can help hold the line on global warming: improve new-vehicle efficiency; make transportation more efficient; cut other greenhouse gas emissions; create the green car of the future. The report focuses especially on the US, which pioneered the automotive revolution and leads the world in oil imports and emissions

  17. Ratchet baryogenesis and an analogy with the forced pendulum

    Science.gov (United States)

    Bamba, Kazuharu; Barrie, Neil D.; Sugamoto, Akio; Takeuchi, Tatsu; Yamashita, Kimiko

    2018-06-01

    A new scenario of baryogenesis via the ratchet mechanism is proposed based on an analogy with the forced pendulum. The oscillation of the inflaton field during the reheating epoch after inflation plays the role of the driving force, while the phase 𝜃 of a scalar baryon field (a complex scalar field with baryon number) plays the role of the angle of the pendulum. When the inflaton is coupled to the scalar baryon, the behavior of the phase 𝜃 can be analogous to that of the angle of the forced pendulum. If the oscillation of the driving force is adjusted to the pendulum’s motion, a directed rotation of the pendulum is obtained with a nonvanishing value of 𝜃˙, which models successful baryogenesis since 𝜃˙ is proportional to the baryon number density. Similar ratchet models which lead to directed motion have been used in the study of molecular motors in biology. There, the driving force is supplied by chemical reactions, while in our scenario this role is played by the inflaton during the reheating epoch.

  18. [Ecological Footprint Evolution Characteristics and Its Influencing Factors in China from 2000 to 2010].

    Science.gov (United States)

    Huang, Bao-rong; Cui, Shu-hong; Li, Ying-ming

    2016-02-15

    According to global average land productivities in 2000, this study calculated ecological footprint (EF) in China from 2000 to 2010, and analyzed its dynamic characteristics and socio-economic driving forces. The results showed that the total EF in China increased from 1.769 to 3.259 billion global hectares (gha) from 2000 to 2010, and its annual growth rate was 6.30%. Carbon Footprint was the fastest growth type of EF. It increased from 0.742 to 1.805 billion gha, and its annual growth rate was 9.29%. The net increase of cropland Footprint was also large in comparison to other types of Footprint. It increased from 0.678 to 0.891 billion gha. Per capita EF in China increased from 1.40 to 2.43 gha in this period. Although it was still below the world average level, it was far beyond per capita ecological carrying capacity in China, which led to serious ecological deficit and severe ecological crisis in China. The fast growth of per capita EF was the main driving force for the growth of total EF in China during the study period. Further, the growth of per capita EF was positively influenced by the growth of per capita consumption of products and severs, which was driven by economic growth and urbanization. Meanwhile, a large amount of exports of resource-intensive products in international trade was also an important driving force for EF growth. According to the evolution route of per capita EF in developed countries, along with China moving from middle-income to high-income country, per capita EF will maintain rapid growth, and ecological deficit in China will further exacerbate.

  19. Exotic Nuclei and Yukawa's Forces

    International Nuclear Information System (INIS)

    Otsuka, Takaharu; Suzuki, Toshio; Utsuno, Yutaka

    2008-01-01

    In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, ... This turned out to be changed, once we entered the regime of exotic nuclei. This shell evolution develops at many places on the nuclear chart in various forms. For example, superheavy magic numbers may be altered. Thus, we are led to a new paradigm as to how and where the nuclear shell evolves, and what consequences arise. The evolution of the shell affects weak process transitions, and plays a crucial role in deformation. The π and ρ mesons generate tensor forces, and are the fundamental elements of such intriguing phenomena. Thus, physics of exotic nuclei arises as a manifestation of Yukawa's forces

  20. Effects of electron cyclotron current drive on the evolution of double tearing mode

    International Nuclear Information System (INIS)

    Sun, Guanglan; Dong, Chunying; Duan, Longfang

    2015-01-01

    The effects of electron cyclotron current drive (ECCD) on the double tearing mode (DTM) in slab geometry are investigated by using two-dimensional compressible magnetohydrodynamics equations. It is found that, mainly, the double tearing mode is suppressed by the emergence of the secondary island, due to the deposition of driven current on the X-point of magnetic island at one rational surface, which forms a new non-complete symmetric magnetic topology structure (defined as a non-complete symmetric structure, NSS). The effects of driven current with different parameters (magnitude, initial time of deposition, duration time, and location of deposition) on the evolution of DTM are analyzed elaborately. The optimal magnitude or optimal deposition duration of driven current is the one which makes the duration of NSS the longest, which depends on the mutual effect between ECCD and the background plasma. Moreover, driven current introduced at the early Sweet-Parker phase has the best suppression effect; and the optimal moment also exists, depending on the duration of the NSS. Finally, the effects varied by the driven current disposition location are studied. It is verified that the favorable location of driven current is the X-point which is completely different from the result of single tearing mode

  1. Effects of electron cyclotron current drive on the evolution of double tearing mode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Guanglan, E-mail: sunguanglan@nciae.edu.cn; Dong, Chunying [Basic Science Section, North China Institute of Aerospace Engineering, Langfang 065000 (China); Duan, Longfang [School of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering, Langfang 065000 (China)

    2015-09-15

    The effects of electron cyclotron current drive (ECCD) on the double tearing mode (DTM) in slab geometry are investigated by using two-dimensional compressible magnetohydrodynamics equations. It is found that, mainly, the double tearing mode is suppressed by the emergence of the secondary island, due to the deposition of driven current on the X-point of magnetic island at one rational surface, which forms a new non-complete symmetric magnetic topology structure (defined as a non-complete symmetric structure, NSS). The effects of driven current with different parameters (magnitude, initial time of deposition, duration time, and location of deposition) on the evolution of DTM are analyzed elaborately. The optimal magnitude or optimal deposition duration of driven current is the one which makes the duration of NSS the longest, which depends on the mutual effect between ECCD and the background plasma. Moreover, driven current introduced at the early Sweet-Parker phase has the best suppression effect; and the optimal moment also exists, depending on the duration of the NSS. Finally, the effects varied by the driven current disposition location are studied. It is verified that the favorable location of driven current is the X-point which is completely different from the result of single tearing mode.

  2. Mean-field Ohm's law and coaxial helicity injection in force-free plasmas

    International Nuclear Information System (INIS)

    Weening, R. H.

    2011-01-01

    A theoretical analysis of steady-state coaxial helicity injection (CHI) in force-free plasmas is presented using a parallel mean-field Ohm's law that includes resistivity η and hyper-resistivity Λ terms. Using Boozer coordinates, a partial differential equation is derived for the time evolution of the mean-field poloidal magnetic flux, or magnetic Hamiltonian function, from the parallel mean-field Ohm's law. A general expression is obtained from the mean-field theory for the efficiency of CHI current drive in force-free plasmas. Inductances of internal energy, magnetic helicity, and poloidal magnetic flux are used to characterize axisymmetric plasma equilibria that have a model current profile. Using the model current profile, a method is suggested to determine the level of magnetohydrodynamic activity at the magnetic axis and the consequent deviation from the completely relaxed Taylor state. The mean-field Ohm's law model suggests that steady-state CHI can be viewed most simply as a boundary layer problem.

  3. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    Science.gov (United States)

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  4. Evolution of gigantism in nine-spined sticklebacks.

    Science.gov (United States)

    Herczeg, Gábor; Gonda, Abigél; Merilä, Juha

    2009-12-01

    The relaxation of predation and interspecific competition are hypothesized to allow evolution toward "optimal" body size in island environments, resulting in the gigantism of small organisms. We tested this hypothesis by studying a small teleost (nine-spined stickleback, Pungitius pungitius) from four marine and five lake (diverse fish community) and nine pond (impoverished fish community) populations. In line with theory, pond fish tended to be larger than their marine or lake conspecifics, sometimes reaching giant sizes. In two geographically independent cases when predatory fish had been introduced into ponds, fish were smaller than those in nearby ponds lacking predators. Pond fish were also smaller when found in sympatry with three-spined stickleback (Gasterosteus aculeatus) than those in ponds lacking competitors. Size-at-age analyses demonstrated that larger size in ponds was achieved by both increased growth rates and extended longevity of pond fish. Results from a common garden experiment indicate that the growth differences had a genetic basis: pond fish developed two to three times higher body mass than marine fish during 36 weeks of growth under similar conditions. Hence, reduced risk of predation and interspecific competition appear to be chief forces driving insular body size evolution toward gigantism.

  5. Quantifying adaptive evolution in the Drosophila immune system.

    Directory of Open Access Journals (Sweden)

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  6. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition.

    Science.gov (United States)

    Chekmarev, Sergei F

    2013-03-01

    The transition from laminar to turbulent fluid motion occurring at large Reynolds numbers is generally associated with the instability of the laminar flow. On the other hand, since the turbulent flow characteristically appears in the form of spatially localized structures (e.g., eddies) filling the flow field, a tendency to occupy such a structured state of the flow cannot be ruled out as a driving force for turbulent transition. To examine this possibility, we propose a simple analytical model that treats the flow as a collection of localized spatial structures, each of which consists of elementary cells in which the behavior of the particles (atoms or molecules) is uncorrelated. This allows us to introduce the Reynolds number, associating it with the ratio between the total phase volume for the system and that for the elementary cell. Using the principle of maximum entropy to calculate the most probable size distribution of the localized structures, we show that as the Reynolds number increases, the elementary cells group into the localized structures, which successfully explains turbulent transition and some other general properties of turbulent flows. An important feature of the present model is that a bridge between the spatial-statistical description of the flow and hydrodynamic equations is established. We show that the basic assumptions underlying the model, i.e., that the particles are indistinguishable and elementary volumes of phase space exist in which the state of the particles is uncertain, are involved in the derivation of the Navier-Stokes equation. Taking into account that the model captures essential features of turbulent flows, this suggests that the driving force for the turbulent transition is basically the same as in the present model, i.e., the tendency of the system to occupy a statistically dominant state plays a key role. The instability of the flow at high Reynolds numbers can then be a mechanism to initiate structural rearrangement of

  7. Island Rule, quantitative genetics and brain-body size evolution in Homo floresiensis.

    Science.gov (United States)

    Diniz-Filho, José Alexandre Felizola; Raia, Pasquale

    2017-06-28

    Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis , a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60-90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus , which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. © 2017 The Author(s).

  8. Gravity drives the evolution of infrared dark hubs: JVLA observations of SDC13

    Science.gov (United States)

    Williams, G. M.; Peretto, N.; Avison, A.; Duarte-Cabral, A.; Fuller, G. A.

    2018-05-01

    Context. Converging networks of interstellar filaments, that is hubs, have been recently linked to the formation of stellar clusters and massive stars. Understanding the relationship between the evolution of these systems and the formation of cores and stars inside them is at the heart of current star formation research. Aims: The goal is to study the kinematic and density structure of the SDC13 prototypical hub at high angular resolution to determine what drives its evolution and fragmentation. Methods: We have mapped SDC13, a 1000 M⊙ infrared dark hub, in NH3(1,1) and NH3(2,2) emission lines, with both the Jansky Very Large Array and Green Bank Telescope. The high angular resolution achieved in the combined dataset allowed us to probe scales down to 0.07 pc. After fitting the ammonia lines, we computed the integrated intensities, centroid velocities and line widths, along with gas temperatures and H2 column densities. Results: The mass-per-unit-lengths of all four hub filaments are thermally super-critical, consistent with the presence of tens of gravitationally bound cores identified along them. These cores exhibit a regular separation of 0.37 ± 0.16 pc suggesting gravitational instabilities running along these super-critical filaments are responsible for their fragmentation. The observed local increase of the dense gas velocity dispersion towards starless cores is believed to be a consequence of such fragmentation process. Using energy conservation arguments, we estimate that the gravitational to kinetic energy conversion efficiency in the SDC13 cores is 35%. We see velocity gradient peaks towards 63% of cores as expected during the early stages of filament fragmentation. Another clear observational signature is the presence of the most massive cores at the filaments' junction, where the velocity dispersion is largest. We interpret this as the result of the hub morphology generating the largest acceleration gradients near the hub centre. Conclusions: We

  9. Electromagnetic design calculation of the control rod drive mechanism

    International Nuclear Information System (INIS)

    Zhu Qirong; Zhu Jingchang

    1991-01-01

    Electromagnetic design calculation of the step-by-step magnetic jacking control rod drive mechanism includes magnetic field force calculation and design calculation of magnetomotive force for three electromagnetic iron and their coilds. The basic principle and method of electromagnetic design calculation had been expounded to take the lift magnet and lift coil for example

  10. Bursts of transposable elements as an evolutionary driving force

    Czech Academy of Sciences Publication Activity Database

    Belyayev, Alexander

    2014-01-01

    Roč. 27, č. 12 (2014), s. 2573-2584 ISSN 1010-061X Institutional support: RVO:67985939 Keywords : evolution * genome * marginal populations * speciation * transposable elements Subject RIV: EF - Botanics Impact factor: 3.232, year: 2014

  11. Research Problems Associated with Limiting the Applied Force in Vibration Tests and Conducting Base-Drive Modal Vibration Tests

    Science.gov (United States)

    Scharton, Terry D.

    1995-01-01

    The intent of this paper is to make a case for developing and conducting vibration tests which are both realistic and practical (a question of tailoring versus standards). Tests are essential for finding things overlooked in the analyses. The best test is often the most realistic test which can be conducted within the cost and budget constraints. Some standards are essential, but the author believes more in the individual's ingenuity to solve a specific problem than in the application of standards which reduce problems (and technology) to their lowest common denominator. Force limited vibration tests and base-drive modal tests are two examples of realistic, but practical testing approaches. Since both of these approaches are relatively new, a number of interesting research problems exist, and these are emphasized herein.

  12. Active mechanics in living oocytes reveal molecular-scale force kinetics

    Science.gov (United States)

    Ahmed, Wylie; Fodor, Etienne; Almonacid, Maria; Bussonnier, Matthias; Verlhac, Marie-Helene; Gov, Nir; Visco, Paolo; van Wijland, Frederic; Betz, Timo

    Unlike traditional materials, living cells actively generate forces at the molecular scale that change their structure and mechanical properties. This nonequilibrium activity is essential for cellular function, and drives processes such as cell division. Single molecule studies have uncovered the detailed force kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the complex environment inside the cell. Here, we quantify active forces and intracellular mechanics in living oocytes using in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the underlying molecular- scale force kinetics. Our results show that force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environment. In vivo myosin-V activity generates a force of F ~ 0 . 4 pN, with a power-stroke of length Δx ~ 20 nm and duration τ ~ 300 μs, that drives vesicle motion at vv ~ 320 nm/s. This framework is widely applicable to characterize living cells and other soft active materials.

  13. Leveraging intellectual capital through Lewin's Force Field Analysis: The case of software development companies

    Directory of Open Access Journals (Sweden)

    Alexandru Capatina

    2017-09-01

    Full Text Available This article presents an original conceptual framework for the strategic management of intellectual capital assets in software development companies. The framework is based on Lewin's Force Field Analysis. The framework makes it possible to assess software company managers’ opinions regarding the way driving and restraining forces affect the pillars of intellectual capital. The capacity to adapt to change is vital for companies in knowledge-intensive industries. Accordingly, this study examined a sample of 74 Romanian software development companies. The aim was to help companies benefit from managing the driving and restraining forces acting upon the pillars of intellectual capital (human, structural, and relational. The effects of the driving forces, quantified by PathMaker software's Force Field Tool, were observed to be greater than the restraining forces for each pillar of intellectual capital. This paper contributes by showing the explanatory power of this framework. The framework thus offers a tool that helps managers drive change in their organizations through effective intellectual capital management. Furthermore, this article describes how to encourage the implementation of changes that create value for software development companies.

  14. Optimality models in the age of experimental evolution and genomics.

    Science.gov (United States)

    Bull, J J; Wang, I-N

    2010-09-01

    Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well-researched organism allows dissection of the evolutionary process to identify causes of model failure--whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation--an especially useful augmentation to well-researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution.

  15. Social Innovation : Driving Forces of Social Innovation in MNC

    OpenAIRE

    Tam, Hoising; Osadcha, Liudmyla

    2017-01-01

    Multinational Corporations (MNCs) currently face not only a dynamic business environment and challenging profit target, but also increased expectations from the public to take responsibility for addressing social, economic, and environmental issues. There is a tendency that the leading companies in the global market, especially MNCs, put more effort to the Social Innovation (SI). This study is to investigate what drives the MNCs to be involved in social innovation. In order to find out the re...

  16. Electron cyclotron resonance heating and current drive

    Energy Technology Data Exchange (ETDEWEB)

    Fidone, I.; Castejon, F.

    1992-07-01

    A brief summary of the theory and experiments on electron- cyclotron heating and current drive is presented. The general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D- III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave, damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (Author) 13 refs.

  17. Electron - cyclotron resonance heating and current drive

    International Nuclear Information System (INIS)

    Fidone, I.; Castejon, F.

    1992-01-01

    A brief summary of the theory and experiments on electron- cyclotron heating and current drive is presented. The general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D- III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave, damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (Author) 13 refs

  18. Electron-cyclotron resonance heating and current drive

    International Nuclear Information System (INIS)

    Filone, I.

    1992-01-01

    A brief summary of the theory and experiments on electron-cyclotron heating and current drive is presented. the general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D-III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (author) 8 fig. 13 ref

  19. Bite force and occlusal stress production in hominin evolution.

    Science.gov (United States)

    Eng, Carolyn M; Lieberman, Daniel E; Zink, Katherine D; Peters, Michael A

    2013-08-01

    Maximum bite force affects craniofacial morphology and an organism's ability to break down foods with different material properties. Humans are generally believed to produce low bite forces and spend less time chewing compared with other apes because advances in mechanical and thermal food processing techniques alter food material properties in such a way as to reduce overall masticatory effort. However, when hominins began regularly consuming mechanically processed or cooked diets is not known. Here, we apply a model for estimating maximum bite forces and stresses at the second molar in modern human, nonhuman primate, and hominin skulls that incorporates skeletal data along with species-specific estimates of jaw muscle architecture. The model, which reliably estimates bite forces, shows a significant relationship between second molar bite force and second molar area across species but does not confirm our hypothesis of isometry. Specimens in the genus Homo fall below the regression line describing the relationship between bite force and molar area for nonhuman anthropoids and australopiths. These results suggest that Homo species generate maximum bite forces below those predicted based on scaling among australopiths and nonhuman primates. Because this decline occurred before evidence for cooking, we hypothesize that selection for lower bite force production was likely made possible by an increased reliance on nonthermal food processing. However, given substantial variability among in vivo bite force magnitudes measured in humans, environmental effects, especially variations in food mechanical properties, may also be a factor. The results also suggest that australopiths had ape-like bite force capabilities. Copyright © 2013 Wiley Periodicals, Inc.

  20. Phase-locking of driven vortex lattices with transverse ac force and periodic pinning

    International Nuclear Information System (INIS)

    Reichhardt, Charles; Kolton, Alejandro B.; Dominguez, Daniel; Gronbech-Jensen, Niels

    2001-01-01

    For a vortex lattice moving in a periodic array we show analytically and numerically that a new type of phase locking occurs in the presence of a longitudinal dc driving force and a transverse ac driving force. This phase locking is distinct from the Shapiro step phase locking found with longitudinal ac drives. We show that an increase in critical current and a fundamental phase-locked step width scale with the square of the driving ac amplitude. Our results should carry over to other systems such as vortex motion in Josephson-junction arrays

  1. Transitionless driving on adiabatic search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sangchul, E-mail: soh@qf.org.qa [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Kais, Sabre, E-mail: kais@purdue.edu [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  2. Effects of a Finger Tapping Fatiguing Task on M1-Intracortical Inhibition and Central Drive to the Muscle.

    Science.gov (United States)

    Madrid, Antonio; Madinabeitia-Mancebo, Elena; Cudeiro, Javier; Arias, Pablo

    2018-06-19

    The central drive to the muscle reduces when muscle force wanes during sustained MVC, and this is generally considered the neurophysiological footprint of central fatigue. The question is if force loss and the failure of central drive to the muscle are responsible mechanisms of fatigue induced by un-resisted repetitive movements. In various experimental blocks, we validated a 3D-printed hand-fixation system permitting the execution of finger-tapping and maximal voluntary contractions (MVC). Subsequently, we checked the suitability of the system to test the level of central drive to the muscle and developed an algorithm to test it at the MVC force plateau. Our main results show that the maximum rate of finger-tapping dropped at 30 s, while the excitability of inhibitory M1-intracortical circuits and corticospinal excitability increased (all by approximately 15%). Furthermore, values obtained immediately after finger-tapping showed that MVC force and the level of central drive to the muscle remained unchanged. Our data suggest that force and central drive to the muscle are not determinants of fatigue induced by short-lasting un-resisted repetitive finger movements, even in the presence of increased inhibition of the motor cortex. According to literature, this profile might be different in longer-lasting, more complex and/or resisted repetitive movements.

  3. Selection of Belt Conveyors Drive Units Number by Technical –Economical Analysis

    OpenAIRE

    Despodov, Zoran; Mijalkovski, Stojance; Adjiski, Vancho; Panov, Zoran

    2014-01-01

    In this paper is presented a methodology for selection of belt conveyor drive units number by technical - economical analysis of their parameters. Belt Conveyors with follow drive arrangement will be considered: one, two, three and four drive units. In the technical - economical analysis are including: Tension forces, Power of belt conveyor, Costs for belt, Costs for power and reducers, Total cost for belt conveyor system.

  4. Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, G.Y. [Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Kim, Yeon Soo; Jamison, L.M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Lee, K.H. [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Sohn, Dong-Seong, E-mail: dssohn@unist.ac.kr [Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2017-04-15

    U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes including deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling resulting from a combination of fuel particle swelling and interaction layer (IL) growth. In some cases, pore growth in the interaction layers also contributed to meat swelling. The main objective of this work was to determine the stress distribution within the fuel meat that caused these phenomena. A mechanical equilibrium between the stress generated by fuel meat swelling and the stress relieved by fission-induced creep in the meat constituents (U-Mo particles, Al matrix, and IL) was considered. Test plates with well-recorded fabrication data and irradiation conditions were used, and their post-irradiation examination (PIE) data was obtained. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. The simulation results allowed for the determination of effective stress and hydrostatic stress exerted on the meat constituents. The effects of fabrication and irradiation parameters on the stress distribution that drives microstructural evolutions, such as pore growth in the IL and Al matrix rupture, were investigated. - Highlights: •Post-irradiation data for irradiated miniplates were analyzed by using their optical microscopy images. •ABAQUS finite element analysis (FEA) package was utilized to simulate the microstructural evolution of the selected plates. •Stresses were assessed to analyze their effects on microstructural changes during irradiation.

  5. The death drive in tourism studies

    NARCIS (Netherlands)

    Buda, Dorina Maria

    2015-01-01

    The psychoanalytical concept of the death drive postulated by Freud and Lacan refers to a constant force at the junction between life and death, which is not understood in a biological sense of physical demise of the body, nor in opposition to life. Tourist experiences in conflict zones can be more

  6. Dehydrogenation Kinetics and Modeling Studies of MgH2 Enhanced by Transition Metal Oxide Catalysts Using Constant Pressure Thermodynamic Driving Forces

    Directory of Open Access Journals (Sweden)

    Saidi Temitope Sabitu

    2012-06-01

    Full Text Available The influence of transition metal oxide catalysts (ZrO2, CeO2, Fe3O4 and Nb2O5 on the hydrogen desorption kinetics of MgH2 was investigated using constant pressure thermodynamic driving forces in which the ratio of the equilibrium plateau pressure (pm to the opposing plateau (pop was the same in all the reactions studied. The results showed Nb2O5 to be vastly superior to other catalysts for improving the thermodynamics and kinetics of MgH2. The modeling studies showed reaction at the phase boundary to be likely process controlling the reaction rates of all the systems studied.

  7. Resonant driving of a nonlinear Hamiltonian system

    International Nuclear Information System (INIS)

    Palmisano, Carlo; Gervino, Gianpiero; Balma, Massimo; Devona, Dorina; Wimberger, Sandro

    2013-01-01

    As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.

  8. An Equatorial Contractile Mechanism Drives Cell Elongation but not Cell Division

    Science.gov (United States)

    Denker, Elsa; Bhattachan, Punit; Deng, Wei; Mathiesen, Birthe T.; Jiang, Di

    2014-01-01

    Cell shape changes and proliferation are two fundamental strategies for morphogenesis in animal development. During embryogenesis of the simple chordate Ciona intestinalis, elongation of individual notochord cells constitutes a crucial stage of notochord growth, which contributes to the establishment of the larval body plan. The mechanism of cell elongation is elusive. Here we show that although notochord cells do not divide, they use a cytokinesis-like actomyosin mechanism to drive cell elongation. The actomyosin network forming at the equator of each notochord cell includes phosphorylated myosin regulatory light chain, α-actinin, cofilin, tropomyosin, and talin. We demonstrate that cofilin and α-actinin are two crucial components for cell elongation. Cortical flow contributes to the assembly of the actomyosin ring. Similar to cytokinetic cells, membrane blebs that cause local contractions form at the basal cortex next to the equator and participate in force generation. We present a model in which the cooperation of equatorial actomyosin ring-based constriction and bleb-associated contractions at the basal cortex promotes cell elongation. Our results demonstrate that a cytokinesis-like contractile mechanism is co-opted in a completely different developmental scenario to achieve cell shape change instead of cell division. We discuss the occurrences of actomyosin rings aside from cell division, suggesting that circumferential contraction is an evolutionally conserved mechanism to drive cell or tissue elongation. PMID:24503569

  9. Current drive by Alfven waves in elongated cross section tokamak

    International Nuclear Information System (INIS)

    Tsypin, V.S.; Elfimov, A.G.; Nekrasov, F.M.; Azevedo, C.A.; Assis, A.S. de

    1997-01-01

    Full text. The problem of the noninductive current drive in cylindrical plasma model and in circular cross-section tokamaks had been already discussed intensively. At the beginning of the study of this problem it have been clear that there are significant difficulties in using of the current-drive in toroidal magnetic traps, especially in a tokamak reactor. Thus, in the case of the lower-hybrid current-drive the efficiency of this current-drive drops strongly as the plasma density increases. For the Alfven waves, there is an opinion that the efficiency of the current-drive drops as a result of waves absorption by the trapped particles 1,2. Okhawa proposed that the current in a magnetized plasma can be maintained also by means of forces, depending on the radiofrequency (rf) field amplitude gradients (the helicity injection). This idea was developed later, some new hopes appeared, connected with the possibility of the current-drive efficiency increasing. It was shown that for the cylindrical plasmas the local efficiency of Alfev wave current drive can be increased by one order of magnitude due to gradient forces, for the kinetic Alfven waves (KAW) and the global Alfven waves 9GAW) at some range of the phase velocity. For tokamaks, this additional nonresonant current drive does not depend on the trapped particle effects, which reduce strongly the Alfven current drive efficiency in tokamaks, as it is supposed. Now, the theory development of the Alfven wave (AW) current drive is very important in the cource of the future experiments on the TCA/BR tokamak (Brazil). In this paper, an attempt is made to clarify some general aspects of this problems for magnetic traps. For large aspects ratio tokamaks, with an elongated cross-section, some general formulas concerning the untrapped and trapped particles dynamics and their input to the Landau damping of the Alfven waves, are presented. They are supposed to be used for the further development of the Alfven current drive theory

  10. Current drive by Alfven waves in elongated cross section tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Tsypin, V.S.; Elfimov, A.G.; Nekrasov, F.M.; Azevedo, C.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Assis, A.S. de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. The problem of the noninductive current drive in cylindrical plasma model and in circular cross-section tokamaks had been already discussed intensively. At the beginning of the study of this problem it have been clear that there are significant difficulties in using of the current-drive in toroidal magnetic traps, especially in a tokamak reactor. Thus, in the case of the lower-hybrid current-drive the efficiency of this current-drive drops strongly as the plasma density increases. For the Alfven waves, there is an opinion that the efficiency of the current-drive drops as a result of waves absorption by the trapped particles 1,2. Okhawa proposed that the current in a magnetized plasma can be maintained also by means of forces, depending on the radiofrequency (rf) field amplitude gradients (the helicity injection). This idea was developed later, some new hopes appeared, connected with the possibility of the current-drive efficiency increasing. It was shown that for the cylindrical plasmas the local efficiency of Alfev wave current drive can be increased by one order of magnitude due to gradient forces, for the kinetic Alfven waves (KAW) and the global Alfven waves (GAW) at some range of the phase velocity. For tokamaks, this additional nonresonant current drive does not depend on the trapped particle effects, which reduce strongly the Alfven current drive efficiency in tokamaks, as it is supposed. Now, the theory development of the Alfven wave (AW) current drive is very important in the cource of the future experiments on the TCA/BR tokamak (Brazil). In this paper, an attempt is made to clarify some general aspects of this problems for magnetic traps. For large aspects ratio tokamaks, with an elongated cross-section, some general formulas concerning the untrapped and trapped particles dynamics and their input to the Landau damping of the Alfven waves, are presented. They are supposed to be used for the further development of the Alfven current drive theory

  11. 'Outsmarting Traffic, Together': Driving as Social Navigation

    Directory of Open Access Journals (Sweden)

    Sam Hind

    2014-04-01

    Full Text Available The automotive world is evolving. Ten years ago Nigel Thrift (2004: 41 made the claim that the experience of driving was slipping into our 'technological unconscious'. Only recently the New York Times suggested that with the rise of automated driving, standalone navigation tools as we know them would cease to exist, instead being 'fully absorbed into the machine' (Fisher, 2013. But in order to bridge the gap between past and future driving worlds, another technological evolution is emerging. This short, critical piece charts the rise of what has been called 'social navigation' in the industry; the development of digital mapping platforms designed to foster automotive sociality. It makes two provisional points. Firstly, that 'ludic' conceptualisations can shed light on the ongoing reconfiguration of drivers, vehicles, roads and technological aids such as touch-screen satellite navigation platforms. And secondly, that as a result of this, there is a coming-into-being of a new kind of driving politics; a 'casual politicking' centred on an engagement with digital interfaces. We explicate both by turning our attention towards Waze; a social navigation application that encourages users to interact with various driving dynamics.

  12. PARALLEL EVOLUTION OF QUASI-SEPARATRIX LAYERS AND ACTIVE REGION UPFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Mandrini, C. H.; Cristiani, G. D.; Nuevo, F. A.; Vásquez, A. M. [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC. 67, Suc. 28 Buenos Aires, 1428 (Argentina); Baker, D.; Driel-Gesztelyi, L. van [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Démoulin, P.; Pick, M. [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); Vargas Domínguez, S. [Observatorio Astronómico Nacional, Universidad Nacional de Colombia, Bogotá (Colombia)

    2015-08-10

    Persistent plasma upflows were observed with Hinode’s EUV Imaging Spectrometer (EIS) at the edges of active region (AR) 10978 as it crossed the solar disk. We analyze the evolution of the photospheric magnetic and velocity fields of the AR, model its coronal magnetic field, and compute the location of magnetic null-points and quasi-sepratrix layers (QSLs) searching for the origin of EIS upflows. Magnetic reconnection at the computed null points cannot explain all of the observed EIS upflow regions. However, EIS upflows and QSLs are found to evolve in parallel, both temporarily and spatially. Sections of two sets of QSLs, called outer and inner, are found associated to EIS upflow streams having different characteristics. The reconnection process in the outer QSLs is forced by a large-scale photospheric flow pattern, which is present in the AR for several days. We propose a scenario in which upflows are observed, provided that a large enough asymmetry in plasma pressure exists between the pre-reconnection loops and lasts as long as a photospheric forcing is at work. A similar mechanism operates in the inner QSLs; in this case, it is forced by the emergence and evolution of the bipoles between the two main AR polarities. Our findings provide strong support for the results from previous individual case studies investigating the role of magnetic reconnection at QSLs as the origin of the upflowing plasma. Furthermore, we propose that persistent reconnection along QSLs does not only drive the EIS upflows, but is also responsible for the continuous metric radio noise-storm observed in AR 10978 along its disk transit by the Nançay Radio Heliograph.

  13. Force Sensitive Handles and Capacitive Touch Sensor for Driving a Flexible Haptic-Based Immersive System

    Directory of Open Access Journals (Sweden)

    Umberto Cugini

    2013-10-01

    Full Text Available In this article, we present an approach that uses both two force sensitive handles (FSH and a flexible capacitive touch sensor (FCTS to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object. Specifically, the user interacts with the FSH to move the virtual object and to appropriately position the haptic interface for retrieving the six degrees of freedom required for both manipulation and modification modalities. The FCTS allows the system to track the movement and position of the user’s fingers on the strip, which is used for rendering visual and sound feedback. Two evaluation experiments are described, which involve both the evaluation and the modification of a 3D shape. Results show that the use of the haptic strip for the evaluation of aesthetic shapes is effective and supports product designers in the appreciation of the aesthetic qualities of the shape.

  14. Force sensitive handles and capacitive touch sensor for driving a flexible haptic-based immersive system.

    Science.gov (United States)

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-10-09

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object. Specifically, the user interacts with the FSH to move the virtual object and to appropriately position the haptic interface for retrieving the six degrees of freedom required for both manipulation and modification modalities. The FCTS allows the system to track the movement and position of the user's fingers on the strip, which is used for rendering visual and sound feedback. Two evaluation experiments are described, which involve both the evaluation and the modification of a 3D shape. Results show that the use of the haptic strip for the evaluation of aesthetic shapes is effective and supports product designers in the appreciation of the aesthetic qualities of the shape.

  15. Software Process Improvement Using Force Field Analysis ...

    African Journals Online (AJOL)

    An improvement plan is then drawn and implemented. This paper studied the state of Nigerian software development organizations based on selected attributes. Force field analysis is used to partition the factors obtained into driving and restraining forces. An attempt was made to improve the software development process ...

  16. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations.

    Directory of Open Access Journals (Sweden)

    Jackson Champer

    2017-07-01

    Full Text Available A functioning gene drive system could fundamentally change our strategies for the control of vector-borne diseases by facilitating rapid dissemination of transgenes that prevent pathogen transmission or reduce vector capacity. CRISPR/Cas9 gene drive promises such a mechanism, which works by converting cells that are heterozygous for the drive construct into homozygotes, thereby enabling super-Mendelian inheritance. Although CRISPR gene drive activity has already been demonstrated, a key obstacle for current systems is their propensity to generate resistance alleles, which cannot be converted to drive alleles. In this study, we developed two CRISPR gene drive constructs based on the nanos and vasa promoters that allowed us to illuminate the different mechanisms by which resistance alleles are formed in the model organism Drosophila melanogaster. We observed resistance allele formation at high rates both prior to fertilization in the germline and post-fertilization in the embryo due to maternally deposited Cas9. Assessment of drive activity in genetically diverse backgrounds further revealed substantial differences in conversion efficiency and resistance rates. Our results demonstrate that the evolution of resistance will likely impose a severe limitation to the effectiveness of current CRISPR gene drive approaches, especially when applied to diverse natural populations.

  17. Evolution of resistance against CRISPR/Cas9 gene drive

    OpenAIRE

    Clark, Andrew; Unckless, Robert; Messer, Philipp

    2016-01-01

    CRISPR/Cas9 gene drive (CGD) promises to be a highly adaptable approach for spreading genetically engineered alleles throughout a species, even if those alleles impair reproductive success. CGD has been shown to be effective in laboratory crosses of insects, yet it remains unclear to what extent potential resistance mechanisms will affect the dynamics of this process in large natural populations. Here we develop a comprehensive population genetic framework for modeling CGD dynamics, which inc...

  18. Analyzing driving forces behind changes in energy vulnerability of Spanish electricity generation through a Divisia index-based method

    International Nuclear Information System (INIS)

    Fernández González, P.; Moreno, B.

    2015-01-01

    Highlights: • We propose and develop the LMDI approach to factorize changes in electricity bill vulnerability. • Spanish vulnerability (1995–2011) markedly grew mainly by increasing gas dependence. • Fuel price increase and growing importance of electricity damage energy security. • Energy intensity advances & fuel diversification: insufficient to drive vulnerability. • Main recommendation: enhance internal energy market and common external EU strategy. - Abstract: High energy dependence on fossil raises vulnerability concerns about security of supply and energy cost. This research examines the impact of high dependence of imported fuels for power generation in Spain through the quantification and analysis of the driving forces behind the change in its electricity bill. Following logarithmic mean Divisia indexes approach, we present and perform a new method that enables a complete decomposition of changes in electricity vulnerability into contributions from several drivers. In fact, we identify five predefined factors behind the variations in vulnerability in Spain during the 1998–2011 period: fuel price, average heat rate, fuel dependence, degree of electricity importance and energy intensity. The application of this approach reveals a significant increase in Spanish vulnerability in the last two decades, promoted by increments in fuel price and importance of electricity over the primary energy consumption, but especially by increasing fuel dependence (particularly gas dependence). Therefore, findings mainly advocate for those strategies aimed at reducing Spanish energy dependence. Also those improving thermal efficiency and energy intensity are indicated

  19. Trophic specialization drives morphological evolution in sea snakes.

    Science.gov (United States)

    Sherratt, Emma; Rasmussen, Arne R; Sanders, Kate L

    2018-03-01

    Viviparous sea snakes are the most rapidly speciating reptiles known, yet the ecological factors underlying this radiation are poorly understood. Here, we reconstructed dated trees for 75% of sea snake species and quantified body shape (forebody relative to hindbody girth), maximum body length and trophic diversity to examine how dietary specialization has influenced morphological diversification in this rapid radiation. We show that sea snake body shape and size are strongly correlated with the proportion of burrowing prey in the diet. Specialist predators of burrowing eels have convergently evolved a 'microcephalic' morphotype with dramatically reduced forebody relative to hindbody girth and intermediate body length. By comparison, snakes that predominantly feed on burrowing gobies are generally short-bodied and small-headed, but there is no evidence of convergent evolution. The eel specialists also exhibit faster rates of size and shape evolution compared to all other sea snakes, including those that feed on gobies. Our results suggest that trophic specialization to particular burrowing prey (eels) has invoked strong selective pressures that manifest as predictable and rapid morphological changes. Further studies are needed to examine the genetic and developmental mechanisms underlying these dramatic morphological changes and assess their role in sea snake speciation.

  20. Dynamic force spectroscopy of oppositely charged polyelectrolyte brushes

    NARCIS (Netherlands)

    Spruijt, E.; Cohen Stuart, M.A.; Gucht, van der J.

    2010-01-01

    Ion pairing is the main driving force in the formation of polyelectrolyte complexes, which find widespread use in micellar assemblies, drug carriers, and coatings. In this paper we examine the actual ion pairing forces in a polyelectrolyte complex between two oppositely charged polyelectrolyte

  1. Electromotor control rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    Baker, S.M.

    1975-01-01

    The positioning of a control rod arranged in a pressure vessel takes place with a drive. This protrudes out of the pressure vessel through a support and is formed from a rotating field motor with energy source, e.g. alternating current connection. Its stator surrounds a section of a pressure casing which covers the length of the drive. The rotor is arranged in the pressure casing and interacts with a shaft lying in the rotation axis. Furthermore, segments are hinged on it, each of which forms two arms of a rocker. Each segment can be revolved against a storing force in a plane containing the rotation axis, through the stator field acting on one of the rocker arms. In order that the drive motor is automatically blocked should the electricity supply fail, the other rocker arm can be connected with a fixed cased component of the drive having the effect of a friction break or a form-locking mechanical catch. (DG/LH) [de

  2. Analysis and optimization of kinematic pair force in control rod drive mechanism

    International Nuclear Information System (INIS)

    Sun Zhenguo; Liu Sen; Ran Xiaobing; Dai Changnian; Li Yuezhong

    2015-01-01

    Function expressions of kinematic pair force with latch dimensions, friction coefficient, link angle and external load was obtained by theoretical analysis, and the expression was verified by the motion analysis software. Key parameters of kinematic pair were confirmed, and their effect trends with force of parts were obtained. They show that the available method of kinematic pair optimization is increasing the space of latch holes. Using the motion analysis software, the forces of parts before and after optimization was compared. The result shows that the forces of parts were improved after the optimization. (authors)

  3. Contact force structure and force chains in 3D sheared granular systems

    Science.gov (United States)

    Mair, Karen; Jettestuen, Espen; Abe, Steffen

    2010-05-01

    Faults often exhibit accumulations of granular debris, ground up to create a layer of rock flour or fault gouge separating the rigid fault walls. Numerical simulations and laboratory experiments of sheared granular materials, suggest that applied loads are preferentially transmitted across such systems by transient force networks that carry enhanced forces. The characterisation of such features is important since their nature and persistence almost certainly influence the macroscopic mechanical stability of these systems and potentially that of natural faults. 3D numerical simulations of granular shear are a valuable investigation tool since they allow us to track individual particle motions, contact forces and their evolution during applied shear, that are difficult to view directly in laboratory experiments or natural fault zones. In characterising contact force distributions, it is important to use global structure measures that allow meaningful comparisons of granular systems having e.g. different grain size distributions, as may be expected at different stages of a fault's evolution. We therefore use a series of simple measures to characterise the structure, such as distributions and correlations of contact forces that can be mapped onto a force network percolation problem as recently proposed by Ostojic and coworkers for 2D granular systems. This allows the use of measures from percolation theory to both define and characterise the force networks. We demonstrate the application of this method to 3D simulations of a sheared granular material. Importantly, we then compare our measure of the contact force structure with macroscopic frictional behaviour measured at the boundaries of our model to determine the influence of the force networks on macroscopic mechanical stability.

  4. The asymmetric evolution of the Colombian Eastern Cordillera. Tectonic inheritance or climatic forcing? New evidence from thermochronology and sedimentology

    Science.gov (United States)

    Ramirez-Arias, Juan Carlos; Mora, Andrés; Rubiano, Jorge; Duddy, Ian; Parra, Mauricio; Moreno, Nestor; Stockli, Daniel; Casallas, Wilson

    2012-11-01

    New thermochronological data, facies, paleocurrents and provenance allow us to refine the chronology of deformation in the central segment of the Colombian Eastern Cordillera. Based on a new extensive AFT dataset, we document the spatial evolution of active deformation, from the axial zone of the Eastern Cordillera at about 50 Ma in to active growth of the frontal thin skinned structures in Late Miocene time. Paleocurrents allow us to push backwards into the Middle to Early Late-Miocene the emergence of the easternmost frontal thrust; whereas careful assessment of exposure gates tied to AFT data enable to refine the unroofing history for Eocene to Miocene times. Based on that, we produced a kinematically restored cross section with higher resolution than previous assessments. Using these datasets, we compare the evolution of the central segment of the Eastern Cordillera in this region with the evolution of adjacent areas in the context of climatic forcing of orogenic evolution. We find that in this region and, in the Eastern Cordillera in general, tectonic inheritance and transpression exert an initial dominant control on the initial orogen asymmetry, which is later enhanced due to an orographically-focused erosion. We therefore suggest that it is not climate alone the factor controlling orogenic asymmetry in the Eastern Cordillera of Colombia.

  5. Nonlinear evolution of magnetic islands in a two fluid torus

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Park, W.

    1996-01-01

    A numerical model MH3D-T for the two fluid description of macroscopic evolution in a full three dimensional torus has been developed. Based on the perturbative drift ordering, generalized to arbitrary perturbation size, the model follows the full temperature evolution, including the thermal equilibration along the magnetic field. It contains the diamagnetic drifts, ion gyroviscous stress tensor, and the Hall term in Ohm's law. Electron inertia is neglected. The numerical model solves the same equations in a torus and in several simplified configurations. It has been benchmarked against the diamagnetic ω* i stabilization of the resistive m = 1, n = 1 reconnecting mode in a cylinder. The nonlinear evolution of resistive magnetic islands with m,n ≠ 1,1 in a cylinder is found to agree with previous analytic and reduced-torus results, which show that the diamagnetic rotation vanishes early in the island evolution and the saturated island size is determined by the same external driving factor Δ' as in MHD. The two fluid evolution in a full torus, however, differs from that in a cylinder and from the resistive MHD evolution. The poloidal rotation velocity undergoes a degree of poloidal momentum damping in the torus, even without neoclassical effects. The two fluid magnetic island grows faster, nonlinearly, than the resistive MHD island, and also couples different toroidal harmonics more effectively. Plasma compressibility and processes operating along the magnetic field play a much more important role than in MHD or in simple geometry. The two fluid model contains all the important neoclassical fluid effects except for the b circ ∇ circ Π parallelj viscous force terms. The addition of these terms is in progress

  6. An examination of the concept of driving point receptance

    Science.gov (United States)

    Sheng, X.; He, Y.; Zhong, T.

    2018-04-01

    In the field of vibration, driving point receptance is a well-established and widely applied concept. However, as demonstrated in this paper, when a driving point receptance is calculated using the finite element (FE) method with solid elements, it does not converge as the FE mesh becomes finer, suggesting that there is a singularity. Hence, the concept of driving point receptance deserves a rigorous examination. In this paper, it is firstly shown that, for a point harmonic force applied on the surface of an elastic half-space, the Boussinesq formula can be applied to calculate the displacement amplitude of the surface if the response point is sufficiently close to the load. Secondly, by applying the Betti reciprocal theorem, it is shown that the displacement of an elastic body near a point harmonic force can be decomposed into two parts, with the first one being the displacement of an elastic half-space. This decomposition is useful, since it provides a solid basis for the introduction of a contact spring between a wheel and a rail in interaction. However, according to the Boussinesq formula, this decomposition also leads to the conclusion that a driving point receptance is infinite (singular), and would be undefinable. Nevertheless, driving point receptances have been calculated using different methods. Since the singularity identified in this paper was not appreciated, no account was given to the singularity in these calculations. Thus, the validity of these calculation methods must be examined. This constructs the third part of the paper. As the final development of the paper, the above decomposition is utilised to define and determine driving point receptances required for dealing with wheel/rail interactions.

  7. Pattern-formation under acoustic driving forces

    Science.gov (United States)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  8. Urban Evolution: The Role of Water

    Directory of Open Access Journals (Sweden)

    Sujay S. Kaushal

    2015-07-01

    Full Text Available The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth’s population grows, infrastructure ages, and sociopolitical values alter them. In order to systematically study changes over time, the concept of “urban evolution” was proposed. It allows urban planning, management, and restoration to move beyond reactive management to predictive management based on past observations of consistent patterns. Here, we define and review a glossary of core concepts for studying urban evolution, which includes the mechanisms of urban selective pressure and urban adaptation. Urban selective pressure is an environmental or societal driver contributing to urban adaptation. Urban adaptation is the sequential process by which an urban structure, function, or services becomes more fitted to its changing environment or human choices. The role of water is vital to driving urban evolution as demonstrated by historical changes in drainage, sewage flows, hydrologic pulses, and long-term chemistry. In the current paper, we show how hydrologic traits evolve across successive generations of urban ecosystems via shifts in selective pressures and adaptations over time. We explore multiple empirical examples including evolving: (1 urban drainage from stream burial to stormwater management; (2 sewage flows and water quality in response to wastewater treatment; (3 amplification of hydrologic pulses due to the interaction between urbanization and climate variability; and (4 salinization and alkalinization of fresh water due to human inputs and accelerated weathering. Finally, we propose a new conceptual model for the evolution of urban waters from the Industrial Revolution to the present day based on empirical trends and historical information. Ultimately, we propose that water itself is a critical driver of urban evolution that forces urban adaptation, which transforms the structure, function, and services of urban

  9. Gene duplication and adaptive evolution of digestive proteases in Drosophila arizonae female reproductive tracts.

    Directory of Open Access Journals (Sweden)

    Erin S Kelleher

    2007-08-01

    Full Text Available It frequently has been postulated that intersexual coevolution between the male ejaculate and the female reproductive tract is a driving force in the rapid evolution of reproductive proteins. The dearth of research on female tracts, however, presents a major obstacle to empirical tests of this hypothesis. Here, we employ a comparative EST approach to identify 241 candidate female reproductive proteins in Drosophila arizonae, a repleta group species in which physiological ejaculate-female coevolution has been documented. Thirty-one of these proteins exhibit elevated amino acid substitution rates, making them candidates for molecular coevolution with the male ejaculate. Strikingly, we also discovered 12 unique digestive proteases whose expression is specific to the D. arizonae lower female reproductive tract. These enzymes belong to classes most commonly found in the gastrointestinal tracts of a diverse array of organisms. We show that these proteases are associated with recent, lineage-specific gene duplications in the Drosophila repleta species group, and exhibit strong signatures of positive selection. Observation of adaptive evolution in several female reproductive tract proteins indicates they are active players in the evolution of reproductive tract interactions. Additionally, pervasive gene duplication, adaptive evolution, and rapid acquisition of a novel digestive function by the female reproductive tract points to a novel coevolutionary mechanism of ejaculate-female interaction.

  10. Electromagnetic analysis of control element drive mechanism for KSNP

    International Nuclear Information System (INIS)

    Kim, H. M.; Kim, I. G.; Kim, I. Y.

    2002-01-01

    The magnetic jack type Control Element Drive Mechanism (CEDM) for Korean Standard Nuclear Power Plant (KSNP) is an electromechanical device which provides controlled linear motion to the Control Element Assembly (CEA) through the Extension Shaft Assembly (ESA) in response to operational signals received from the Control Element Drive Mechanism Control System (CEDMCS). The CEDM is operated by applying localized magnetic flux fields to movable latch and lift magnets, which are in the coolant pressure boundary. The CEDM design had been developed through electromechanical testing of the system including the magnetic force lifting the ESA. But it will be inefficient if parametric studies should be performed to improve the CEDM by test due to the consumption of high cost and long duration. So it becomes necessary to develop a computational model to simulate the electromagnetic characteristics of the CEDM to improve the CEDM design efficiently. In this paper, the electromagnetic analysis using a 2D finite element model has been carried out to simulate magnetic force of the lift magnet of the CEDM, to provide effective evaluation between leakage flux and lift force and to compare with test results. Analysis results show the lift force satisfied the test results and design requirement and the lift force depend on the shape of the components, leakage flux and B-H curve

  11. Study of lattice strain evolution during biaxial deformation of stainless steel using a finite element and fast Fourier transform based multi-scale approach

    International Nuclear Information System (INIS)

    Upadhyay, M.V.; Van Petegem, S.; Panzner, T.; Lebensohn, R.A.; Van Swygenhoven, H.

    2016-01-01

    A multi-scale elastic-plastic finite element and fast Fourier transform based approach is proposed to study lattice strain evolution during uniaxial and biaxial loading of stainless steel cruciform shaped samples. At the macroscale, finite element simulations capture the complex coupling between applied forces in the arms and gauge stresses induced by the cruciform geometry. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale elasto-viscoplastic fast Fourier transform model, from which lattice strains are calculated for particular grain families. The calculated lattice strain evolution matches well with experimental values from in-situ neutron diffraction measurements and demonstrates that the spread in lattice strain evolution between different grain families decreases with increasing biaxial stress ratio. During equibiaxial loading, the model reveals that the lattice strain evolution in all grain families, and not just the 311 grain family, is representative of the polycrystalline response. A detailed quantitative analysis of the 200 and 220 grain family reveals that the contribution of elastic and plastic anisotropy to the lattice strain evolution significantly depends on the applied stress ratio.

  12. Smart management - Driving forces and conditions for the development of advanced electricity networks; Smart ledning - Drivkrafter och foerutsaettningar foer utveckling av avancerade elnaet

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Oerjan; Staahl, Benjamin (Blue Inst., Stockholm (Sweden))

    2011-02-15

    This report describes the development of Intelligent Networks, or Smart Grids. It is divided into two sections. The first section highlights the basics of what is called 'smart' grid technology, what the underlying driving forces are and how the conditions for market looks like. It also depicts the impact on consumers, emerging business logics and ongoing investment and incentives in the world. The first part ends with an operator map of the market. The second part takes a closer look on some key areas and includes a simple reminder of technology related to smart grids

  13. Decomposing changes in the aggregate labor force participation rate

    OpenAIRE

    Hotchkiss, Julie L.

    2009-01-01

    This paper presents a simple methodology for decomposing changes in the aggregate labor force participation rate (LFPR) over time into demographic group changes in labor force participation behavior and in population share. The purpose is to identify the relative importance of behavioral changes and population changes as driving forces behind changes in the aggregate LFPR.

  14. Small and Medium Sized Reactors: Driving Forces and Technology Development

    International Nuclear Information System (INIS)

    Gowin, P.J.; Kupitz, J.

    2002-01-01

    There will be growing demands for energy in the coming decades. One aspect of particular importance is that prospects for nuclear energy will to a considerable extent be influenced by developing countries. Since population growth will occur primarily in developing countries nuclear energy cannot play a significant global role without being a viable option in these countries. Since new power plants to be built will have to be compatible with regional electricity grids, this may result in a greater focus on plants in the small and medium range, defined by the International Atomic Energy Agency (IAEA) to produce up to 700 Megawatt of electrical power. This paper first examines the driving forces that could influence the development of nuclear energy in general and of Small and Medium Sized Reactors (SMRs) in particular in the next decades and identifies key factors in that process. Concerns over climate change may to a certain extent influence the discussion on future energy options. Other factors of equal importance for the future of nuclear are a continued emphasis on maintaining high safety standards, the implementation of acceptable solutions for spent fuel and radioactive waste disposal and a globally accepted non-proliferation regime, factors that may in turn have an impact on public acceptance. Economic competitiveness of nuclear energy is an additional important factor, and without being commercially viable, no energy source can in the long run represent a major and stable component in a competitive energy sector. The introduction of SMRs in developing countries poses additional challenges, such as investment limitations. Technology development plays an important role in keeping the nuclear option open for countries wishing to use nuclear reactors to meet their energy needs, and advances in reactor design will be important to enable a significant nuclear component in developing countries. This paper considers the contribution that nuclear science and

  15. Tensor force effect on the evolution of single-particle energies in some isotopic chains in the relativistic Hartree-Fock approximation

    Science.gov (United States)

    López-Quelle, M.; Marcos, S.; Niembro, R.; Savushkin, L. N.

    2018-03-01

    Within a nonlinear relativistic Hartree-Fock approximation combined with the BCS method, we study the effect of the nucleon-nucleon tensor force of the π-exchange potential on the spin- and pseudospin-orbit doublets along the Ca and Sn isotopic chains. We show how the self-consistent tensor force effect modifies the splitting of both kinds of doublets in an interdependent form, leading, quite generally, to opposite effects in the accomplishment of the spin and pseudospin symmetries (the one is restored, the other one deteriorates and vice versa). The ordering of the single-particle energy levels is crucial to this respect. Also, we observe a mutual dependence on the evolution of the shell closure gap Z = 50 and the energy band outside the core, along the Sn chain, as due to the tensor force. In fact, when the shell gap is quenched the outside energy band is enlarged, and vice versa. A reduction of the strength of the pion tensor force with respect to its experimental value from the nucleon-nucleon scattering is needed to get results closer to the experiment. Pairing correlations act to some extent in the opposite direction of the tensor term of the one-pion-exchange force.

  16. COMPETITIVENESS IN SERVICES, DRIVING FORCE OF ECONOMIC DEVELOPMENT

    OpenAIRE

    RAMONA PÎRVU; MARIA DANATIE ENESCU

    2012-01-01

    The competitiveness of a nation is ensured by the profitable activity of firms. They strengthen their position in the domestic and international markets through global strategies whose purpose is to increase productivity and maintain it at a high level. For this, the company must take into account both the internal economic environment which ensures operating conditions and the external economic environment’s development. The five competitive forces determine the industry’s profitability beca...

  17. A Quadruped Micro-Robot Based on Piezoelectric Driving

    Directory of Open Access Journals (Sweden)

    Qi Su

    2018-03-01

    Full Text Available Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.

  18. Thermal Casimir-Polder forces on a V-type three-level atom

    Science.gov (United States)

    Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping

    2017-09-01

    We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.

  19. Stepping movement analysis of control rod drive mechanism

    International Nuclear Information System (INIS)

    Xu Yantao; Zu Hongbiao

    2013-01-01

    Background: Control rod drive mechanism (CRDM) is one of the important safety-related equipment for nuclear power plants. Purpose: The operating parameters of stepping movement, including lifting loads, step distance and step velocity, are all critical design targets. Methods: FEA and numerical simulation are used to analyze stepping movement separately. Results: The motion equations of the movable magnet in stepping movement are established by load analysis. Gravitation, magnetic force, fluid resistance and spring force are all in consideration in the load analysis. The operating parameters of stepping movement are given. Conclusions: The results, including time history curves of force, speed and etc, can positively used in the design of CRDM. (authors)

  20. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator

    Directory of Open Access Journals (Sweden)

    Keng Huat Koh

    2014-06-01

    Full Text Available This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force and V (driving voltage within the 2 kV range. After this range, the F-V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.

  1. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator.

    Science.gov (United States)

    Koh, Keng Huat; Sreekumar, M; Ponnambalam, S G

    2014-06-25

    This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F - V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.

  2. Q-profile evolution and improved core electron confinement in the full current drive operation on Tore Supra

    International Nuclear Information System (INIS)

    Litaudon, X.; Peysson, Y.; Aniel, T.; Huysmans, G.; Imbeaux, F.; Joffrin, E.; Lasalle, J.; Lotte, Ph.; Schunke, B.; Segui, J.; Tresset, G.; Zabiego, M.

    2000-12-01

    The formation of a core region with improved electron confinement is reported in the recent full current drive operation of Tore Supra where the plasma current is sustained with the Lower Hybrid, LH, wave. Current profile evolution and thermal electron transport coefficients are directly assessed using the data of the new fast electron Bremsstrahlung tomography that provides the most accurate determination of the LH current and power deposition profiles. The spontaneous rise of the core electron temperature observed a few seconds after the application of the LH power is ascribed to a bifurcation towards a state of reduced electron transport. The role of the magnetic shear is invoked to partly stabilize the anomalous electron turbulence. The electron temperature transition occurs when the q-profile evolves towards a non-inductive state with a non-monotonic shape i.e. when the magnetic shear is reduced close to zero in the plasma core. The improved core confinement phase is often terminated by a sudden MHD activity when the minimum q approaches two. (authors)

  3. Landscape evolution by subglacial quarrying

    DEFF Research Database (Denmark)

    Ugelvig, Sofie Vej; Egholm, D.L.; Iverson, Neal R.

    In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified for bedrock abrasion because rock debris transported in the basal ice drives the erosion. However, a simple relation between rates of ...... evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005). Jaeger, J.C., and Cook, N.G.W. Fundamentals of rock mechanics: New York, Chapman and Hall, 593 p. (1979)......In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified for bedrock abrasion because rock debris transported in the basal ice drives the erosion. However, a simple relation between rates...... of sliding and erosion is not well supported when considering models for quarrying of rock blocks from the bed. Iverson (2012) introduced a new subglacial quarrying model that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential...

  4. Assembly constraints drive co-evolution among ribosomal constituents.

    Science.gov (United States)

    Mallik, Saurav; Akashi, Hiroshi; Kundu, Sudip

    2015-06-23

    Ribosome biogenesis, a central and essential cellular process, occurs through sequential association and mutual co-folding of protein-RNA constituents in a well-defined assembly pathway. Here, we construct a network of co-evolving nucleotide/amino acid residues within the ribosome and demonstrate that assembly constraints are strong predictors of co-evolutionary patterns. Predictors of co-evolution include a wide spectrum of structural reconstitution events, such as cooperativity phenomenon, protein-induced rRNA reconstitutions, molecular packing of different rRNA domains, protein-rRNA recognition, etc. A correlation between folding rate of small globular proteins and their topological features is known. We have introduced an analogous topological characteristic for co-evolutionary network of ribosome, which allows us to differentiate between rRNA regions subjected to rapid reconstitutions from those hindered by kinetic traps. Furthermore, co-evolutionary patterns provide a biological basis for deleterious mutation sites and further allow prediction of potential antibiotic targeting sites. Understanding assembly pathways of multicomponent macromolecules remains a key challenge in biophysics. Our study provides a 'proof of concept' that directly relates co-evolution to biophysical interactions during multicomponent assembly and suggests predictive power to identify candidates for critical functional interactions as well as for assembly-blocking antibiotic target sites. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets.

    Science.gov (United States)

    Pekár, Stano; Coddington, Jonathan A; Blackledge, Todd A

    2012-03-01

    Stenophagy (narrow diet breadth) represents an extreme of trophic specialization in carnivores, but little is known about the forces driving its evolution. We used spiders, the most diversified group of terrestrial predators, to investigate whether stenophagy (1) promoted diversification; (2) was phylogenetically conserved and evolutionarily derived state; and (3) was determined either by geographical distribution and foraging guild. We used published data on the prey of almost 600 species. Six categories of stenophagy were found: myrmecophagy, araneophagy, lepidopterophagy, termitophagy, dipterophagy, and crustaceophagy. We found that the species diversity of euryphagous genera and families was similar to stenophagous genera and families. At the family level, stenophagy evolved repeatedly and independently. Within families, the basal condition was oligophagy or euryphagy. Most types of stenophagy were clearly derived: myrmecophagy in Zodariidae; lepidopterophagy in Araneidae; dipterophagy in Theridiidae. In contrast, araneophagy was confined to basal and intermediate lineages, suggesting its ancestral condition. The diet breadth of species from the tropics and subtropics was less diverse than species from the temperate zone. Diet breadth was lower in cursorial spiders compared to web-building species. Thus, the evolution of stenophagy in spiders appears to be complex and governed by phylogeny as well as by ecological determinants. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  6. Control rod drives

    International Nuclear Information System (INIS)

    Furumitsu, Yutaka.

    1981-01-01

    Purpose: To improve the reliability of a device for driving an LMFBR type reactor control rod by providing a buffer unit having a stationary electromagnetic coil and a movable electromagnetic coil in the device to thereby avord impact stress at scram time and to simplify the structure of the buffer unit. Constitution: A non-contact type buffer unit is constructed with a stationary electromagnetic coil, a cable for the stationary coil, a movable electromagnetic coil, a spring cable for the movable coil, and a backup coil spring or the like. Force produced at scram time is delivered without impact by the attracting or repelling force between the stationary coil and the movable coil of the buffer unit. Accordingly, since the buffer unit is of a non-contact type, there is no mechanical impact and thus no large impact stress, and as it has simple configuration, the reliability is improved and the maintenance can be conducted more easily. (Yoshihara, H.)

  7. Meiotic drive influences the outcome of sexually antagonistic selection at a linked locus.

    Science.gov (United States)

    Patten, M M

    2014-11-01

    Most meiotic drivers, such as the t-haplotype in Mus and the segregation distorter (SD) in Drosophila, act in a sex-specific manner, gaining a transmission advantage through one sex although suffering only the fitness costs associated with the driver in the other. Their inheritance is thus more likely through one of the two sexes, a property they share with sexually antagonistic alleles. Previous theory has shown that pairs of linked loci segregating for sexually antagonistic alleles are more likely to remain polymorphic and that linkage disequilibrium accrues between them. I probe this similarity between drive and sexual antagonism and examine the evolution of chromosomes experiencing these selection pressures simultaneously. Reminiscent of previous theory, I find that: the opportunity for polymorphism increases for a sexually antagonistic locus that is physically linked to a driving locus; the opportunity for polymorphism at a driving locus also increases when linked to a sexually antagonistic locus; and stable linkage disequilibrium accompanies any polymorphic equilibrium. Additionally, I find that drive at a linked locus favours the fixation of sexually antagonistic alleles that benefit the sex in which drive occurs. Further, I show that under certain conditions reduced recombination between these two loci is selectively favoured. These theoretical results provide clear, testable predictions about the nature of sexually antagonistic variation on driving chromosomes and have implications for the evolution of genomic architecture. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  8. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field

    International Nuclear Information System (INIS)

    Qian Yi; Xu Jing-Bo

    2012-01-01

    We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined. (general)

  9. Transactional Infrastructure of the Economy: the Evolution of Concepts and Synthesis of Definitions

    Directory of Open Access Journals (Sweden)

    Maruschak Irina Valeryevna

    2017-03-01

    Full Text Available The overview of evolution of market infrastructure concepts is provided, the first concepts of institutional infrastructure are revealed in the paper. Evolutionarily developed narrowing of essence of infrastructure in connection with the priority analysis of its physical (material and technological components is proved. It ignores the fact that transactional resources, being drivers (driving forces of economic systems evolution, in turn evolve, becoming harder and harder, combining increase in efficiency of the elements and strengthening of heterogeneity and discrepancy of their structure. Transactional evolution of economy in general and evolution of separate transactional resources of production are the perspective directions of the special analysis. Transactional infrastructure is considered as the integrated complex of institutional, organizational (relational and information infrastructures. The problems of the first concepts of transactional infrastructure connected with difficulties of differentiation of its subsystems always operating jointly are revealed. Prospect of transition from the isolated analysis of separate resources of transactional type (institutes, organizations, information, social capital, trust, etc. to studying corresponding specific software infrastructures and to the system analysis of integrated transactional infrastructure of economy are argued. The transactional sector (as set of the specialized industries and the appropriate collective and individual subjects providing with resources market transaction is offered to be considered as transactional structure of economy. Transactional infrastructure is treated as critically significant factor of economic evolution which in the conditions of post-industrial type of economy gradually purchases transactional nature.

  10. The Driving Forces for the Practice of Strategic Planning in SMEs: Evidence from Harare Metropolitan Province, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Maxwell Sandada

    2016-08-01

    Full Text Available Despite Zimbabwe sharing with the rest of the world, the notion that SMEs are the impeccable engines to economic revival, growth and development, many of the nation`s SMEs are plagued with high failure rates. Previous studies carried out in most foreign countries suggested that the high failure rate of SMEs was attributable to lack of strategic planning among a host of other factors. Against this backdrop, the purpose of this study was to examine the driving forces for the practice of strategic planning in SMEs. A quantitative cross sectional study was conducted among active SMEs who are registered with the Ministry of Small and Medium Enterprises and Cooperative Development in Zimbabwe. The study revealed that globalisation, business ownership motivations, environmental dynamism and innovation & technological advancement have a positive and statistically significant influence on the adoption or practice of strategic planning among SMEs. The study has important implications for the practice and implementation of strategic planning among SMEs especially in the context of a developing country such as Zimbabwe.

  11. Social and genetic interactions drive fitness variation in a free-living dolphin population.

    Science.gov (United States)

    Frère, Celine H; Krützen, Michael; Mann, Janet; Connor, Richard C; Bejder, Lars; Sherwin, William B

    2010-11-16

    The evolutionary forces that drive fitness variation in species are of considerable interest. Despite this, the relative importance and interactions of genetic and social factors involved in the evolution of fitness traits in wild mammalian populations are largely unknown. To date, a few studies have demonstrated that fitness might be influenced by either social factors or genes in natural populations, but none have explored how the combined effect of social and genetic parameters might interact to influence fitness. Drawing from a long-term study of wild bottlenose dolphins in the eastern gulf of Shark Bay, Western Australia, we present a unique approach to understanding these interactions. Our study shows that female calving success depends on both genetic inheritance and social bonds. Moreover, we demonstrate that interactions between social and genetic factors also influence female fitness. Therefore, our study represents a major methodological advance, and provides critical insights into the interplay of genetic and social parameters of fitness.

  12. Control rod drives

    International Nuclear Information System (INIS)

    Oonuki, Koji.

    1981-01-01

    Purpose: To increase the driving speed of control rods at rapid insertion with an elongate control rod and an extension pipe while ensuring sufficient buffering performance in a short buffering distance, by providing a plurality of buffers to an extension pipe between a control rod drive source and a control rod in LMFBR type reactor. Constitution: First, second and third buffers are respectively provided to an acceleration piston, an extension pipe and a control rod respectively and the insertion positions for each of the buffers are displaced orderly from above to below. Upon disconnection of energizing current for an electromagnet, the acceleration piston, the extension pipe and the control rod are rapidly inserted in one body. The first, second and third buffers are respectively actuated at each of their falling strokes upon rapid insertion respectively, and the acceleration piston, the extension pipe and the control rod receive the deceleration effect in the order correspondingly. Although the compression force is applied to the control rod only near the stroke end, it does not cause deformation. (Kawakami, Y.)

  13. Bringing MapReduce Closer To Data With Active Drives

    Science.gov (United States)

    Golpayegani, N.; Prathapan, S.; Warmka, R.; Wyatt, B.; Halem, M.; Trantham, J. D.; Markey, C. A.

    2017-12-01

    Moving computation closer to the data location has been a much theorized improvement to computation for decades. The increase in processor performance, the decrease in processor size and power requirement combined with the increase in data intensive computing has created a push to move computation as close to data as possible. We will show the next logical step in this evolution in computing: moving computation directly to storage. Hypothetical systems, known as Active Drives, have been proposed as early as 1998. These Active Drives would have a general-purpose CPU on each disk allowing for computations to be performed on them without the need to transfer the data to the computer over the system bus or via a network. We will utilize Seagate's Active Drives to perform general purpose parallel computing using the MapReduce programming model directly on each drive. We will detail how the MapReduce programming model can be adapted to the Active Drive compute model to perform general purpose computing with comparable results to traditional MapReduce computations performed via Hadoop. We will show how an Active Drive based approach significantly reduces the amount of data leaving the drive when performing several common algorithms: subsetting and gridding. We will show that an Active Drive based design significantly improves data transfer speeds into and out of drives compared to Hadoop's HDFS while at the same time keeping comparable compute speeds as Hadoop.

  14. Evolution of transgenerational immunity in invertebrates

    OpenAIRE

    Pigeault, R.; Garnier, R.; Rivero, A.; Gandon, S.

    2016-01-01

    Over a decade ago, the discovery of transgenerational immunity in invertebrates shifted existing paradigms on the lack of sophistication of their immune system. Nonetheless, the prevalence of this trait and the ecological factors driving its evolution in invertebrates remain poorly understood. Here, we develop a theoretical host–parasite model and predict that long lifespan and low dispersal should promote the evolution of transgenerational immunity. We also predict that in species that produ...

  15. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Longlu; Duan, Xidong; Liu, Chengbin; Zhang, Shuqu; Zeng, Yunxiong [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha (China); Liu, Xia; Pei, Yong [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University (China); Luo, Jinming; Crittenden, John [Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Duan, Xiangfeng [Department of Chemistry and Biochemistry, University of California, Los Angeles, CA (United States)

    2017-06-19

    The metallic 1T-MoS{sub 2} has attracted considerable attention as an effective catalyst for hydrogen evolution reactions (HERs). However, the fundamental mechanism about the catalytic activity of 1T-MoS{sub 2} and the associated phase evolution remain elusive and controversial. Herein, we prepared the most stable 1T-MoS{sub 2} by hydrothermal exfoliation of MoS{sub 2} nanosheets vertically rooted into rigid one-dimensional TiO{sub 2} nanofibers. The 1T-MoS{sub 2} can keep highly stable over one year, presenting an ideal model system for investigating the HER catalytic activities as a function of the phase evolution. Both experimental studies and theoretical calculations suggest that 1T phase can be irreversibly transformed into a more active 1T' phase as true active sites in photocatalytic HERs, resulting in a ''catalytic site self-optimization''. Hydrogen atom adsorption is the major driving force for this phase transition. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Energy analysis of control rod drive mechanism in HTR-10

    International Nuclear Information System (INIS)

    Bo Hanliang; Wu Yuanqiang

    2000-01-01

    This paper presents a theoretical model for the control rod drive mechanism for the 10 MW High Temperature Gas Cooled Reactor (HTR-10) and analyzes accidents which may occur in the drive mechanism, for example, chain break, coupling damage and other damage scenarios. The results show that the matching problem between buffer capability and coupling strength is the main reason for coupling damage; increased temperatures would reduce eddy damping and cause a mismatch between buffer capability and coupling strength; and the displacement of the buffer spring will affect the coupling force. The results provide a theoretical basis for the design of the control rod drive mechanism for HTR-10

  17. Positive Selection Driving Cytoplasmic Genome Evolution of the Medicinally Important Ginseng Plant Genus Panax.

    Science.gov (United States)

    Jiang, Peng; Shi, Feng-Xue; Li, Ming-Rui; Liu, Bao; Wen, Jun; Xiao, Hong-Xing; Li, Lin-Feng

    2018-01-01

    Panax L. (the ginseng genus) is a shade-demanding group within the family Araliaceae and all of its species are of crucial significance in traditional Chinese medicine. Phylogenetic and biogeographic analyses demonstrated that two rounds of whole genome duplications accompanying with geographic and ecological isolations promoted the diversification of Panax species. However, contributions of the cytoplasmic genomes to the adaptive evolution of Panax species remained largely uninvestigated. In this study, we sequenced the chloroplast and mitochondrial genomes of 11 accessions belonging to seven Panax species. Our results show that heterogeneity in nucleotide substitution rate is abundant in both of the two cytoplasmic genomes, with the mitochondrial genome possessing more variants at the total level but the chloroplast showing higher sequence polymorphisms at the genic regions. Genome-wide scanning of positive selection identified five and 12 genes from the chloroplast and mitochondrial genomes, respectively. Functional analyses further revealed that these selected genes play important roles in plant development, cellular metabolism and adaptation. We therefore conclude that positive selection might be one of the potential evolutionary forces that shaped nucleotide variation pattern of these Panax species. In particular, the mitochondrial genes evolved under stronger selective pressure compared to the chloroplast genes.

  18. Linear Motor for Drive of Belt Conveyor

    Directory of Open Access Journals (Sweden)

    Milan Krasl

    2006-01-01

    Full Text Available This paper introduces a novel approach on the design of a linear motor for drive of belt conveyor (LMBC. The motor is a simple combination of asynchronous motor in plane. The electromagnetic forces is one of the most important parameters of electrical machines. This parameter is necessary for the checking of the design. This paper describes several variants: linear motor with slots in platens, slots in one half of platens and optimization of slots. The electromagnetic force can be found with the help of a Finite Elements Method – based program. For solution was used QuickField program.

  19. Noninductive current drive for INTOR: A comparison of four driver options

    International Nuclear Information System (INIS)

    Ehst, D.A.; Evans, K. Jr.; Mikkelsen, D.R.; Ignat, D.W.; Mau, T.K.

    1987-01-01

    The current drive power and normalized efficiency are calculated for the INTOR tokamak, including spatial profiles of the plasma and current density. Current drive requirements are computed for purely steady state operation with no electromotive force and also in the presence of a reversed emf typical of start-up or transformer recharging. Results are obtained for lower-hybrid-waves, high frequency fast waves, low frequency fast waves and neutral beam injection

  20. Examination of China's performance and thematic evolution in quantum cryptography research using quantitative and computational techniques.

    Science.gov (United States)

    Olijnyk, Nicholas V

    2018-01-01

    This study performed two phases of analysis to shed light on the performance and thematic evolution of China's quantum cryptography (QC) research. First, large-scale research publication metadata derived from QC research published from 2001-2017 was used to examine the research performance of China relative to that of global peers using established quantitative and qualitative measures. Second, this study identified the thematic evolution of China's QC research using co-word cluster network analysis, a computational science mapping technique. The results from the first phase indicate that over the past 17 years, China's performance has evolved dramatically, placing it in a leading position. Among the most significant findings is the exponential rate at which all of China's performance indicators (i.e., Publication Frequency, citation score, H-index) are growing. China's H-index (a normalized indicator) has surpassed all other countries' over the last several years. The second phase of analysis shows how China's main research focus has shifted among several QC themes, including quantum-key-distribution, photon-optical communication, network protocols, and quantum entanglement with an emphasis on applied research. Several themes were observed across time periods (e.g., photons, quantum-key-distribution, secret-messages, quantum-optics, quantum-signatures); some themes disappeared over time (e.g., computer-networks, attack-strategies, bell-state, polarization-state), while others emerged more recently (e.g., quantum-entanglement, decoy-state, unitary-operation). Findings from the first phase of analysis provide empirical evidence that China has emerged as the global driving force in QC. Considering China is the premier driving force in global QC research, findings from the second phase of analysis provide an understanding of China's QC research themes, which can provide clarity into how QC technologies might take shape. QC and science and technology policy researchers

  1. Examination of China's performance and thematic evolution in quantum cryptography research using quantitative and computational techniques.

    Directory of Open Access Journals (Sweden)

    Nicholas V Olijnyk

    Full Text Available This study performed two phases of analysis to shed light on the performance and thematic evolution of China's quantum cryptography (QC research. First, large-scale research publication metadata derived from QC research published from 2001-2017 was used to examine the research performance of China relative to that of global peers using established quantitative and qualitative measures. Second, this study identified the thematic evolution of China's QC research using co-word cluster network analysis, a computational science mapping technique. The results from the first phase indicate that over the past 17 years, China's performance has evolved dramatically, placing it in a leading position. Among the most significant findings is the exponential rate at which all of China's performance indicators (i.e., Publication Frequency, citation score, H-index are growing. China's H-index (a normalized indicator has surpassed all other countries' over the last several years. The second phase of analysis shows how China's main research focus has shifted among several QC themes, including quantum-key-distribution, photon-optical communication, network protocols, and quantum entanglement with an emphasis on applied research. Several themes were observed across time periods (e.g., photons, quantum-key-distribution, secret-messages, quantum-optics, quantum-signatures; some themes disappeared over time (e.g., computer-networks, attack-strategies, bell-state, polarization-state, while others emerged more recently (e.g., quantum-entanglement, decoy-state, unitary-operation. Findings from the first phase of analysis provide empirical evidence that China has emerged as the global driving force in QC. Considering China is the premier driving force in global QC research, findings from the second phase of analysis provide an understanding of China's QC research themes, which can provide clarity into how QC technologies might take shape. QC and science and technology

  2. VEHICLE DRIVING CYCLE OPTIMISATION ON THE HIGHWAY

    Directory of Open Access Journals (Sweden)

    Zinoviy STOTSKO

    2016-06-01

    Full Text Available This paper is devoted to the problem of reducing vehicle energy consumption. The authors consider the optimisation of highway driving cycle a way to use the kinetic energy of a car more effectively at various road conditions. The model of a vehicle driving control at the highway which consists of elementary cycles, such as accelerating, free rolling and deceleration under forces of external resistance, was designed. Braking, as an energy dissipation regime, was not included. The influence of the various longitudinal profiles of the road was taken into consideration and included in the model. Ways to use the results of monitoring road and traffic conditions are presented. The method of non-linear programming is used to design the optimal vehicle control function and phase trajectory. The results are presented by improved typical driving cycles that present energy saving as a subject of choice at a specified schedule.

  3. Assessing LULC changes over Chilika Lake watershed in Eastern India using Driving Force Analysis

    Science.gov (United States)

    Jadav, S.; Syed, T. H.

    2017-12-01

    Rapid population growth and industrial development has brought about significant changes in Land Use Land Cover (LULC) of many developing countries in the world. This study investigates LULC changes in the Chilika Lake watershed of Eastern India for the period of 1988 to 2016. The methodology involves pre-processing and classification of Landsat satellite images using support vector machine (SVM) supervised classification algorithm. Results reveal that `Cropland', `Emergent Vegetation' and `Settlement' has expanded over the study period by 284.61 km², 106.83 km² and 98.83 km² respectively. Contemporaneously, `Lake Area', `Vegetation' and `Scrub Land' have decreased by 121.62 km², 96.05 km² and 80.29 km² respectively. This study also analyzes five major driving force variables of socio-economic and climatological factors triggering LULC changes through a bivariate logistic regression model. The outcome gives credible relative operating characteristics (ROC) value of 0.76 that indicate goodness fit of logistic regression model. In addition, independent variables like distance to drainage network and average annual rainfall have negative regression coefficient values that represent decreased rate of dependent variable (changed LULC) whereas independent variables (population density, distance to road and distance to railway) have positive regression coefficient indicates increased rate of changed LULC . Results from this study will be crucial for planning and restoration of this vital lake water body that has major implications over the society and environment at large.

  4. Boomers and seniors: The driving force behind leisure participation

    Science.gov (United States)

    Lynda J. Sperazza; Priya Banerjee

    2010-01-01

    The 76 million Americans in the Baby Boomer population are the force behind the changing demographic picture of society today. Boomers' spending habits and lifestyle choices will also have a powerful influence on retirement and leisure in the coming decades. Boomers will redefine retirement and are expected to demand more than current senior programs and...

  5. Selective forces and mutational biases drive stop codon usage in the human genome: a comparison with sense codon usage.

    Science.gov (United States)

    Trotta, Edoardo

    2016-05-17

    The three stop codons UAA, UAG, and UGA signal the termination of mRNA translation. As a result of a mechanism that is not adequately understood, they are normally used with unequal frequencies. In this work, we showed that selective forces and mutational biases drive stop codon usage in the human genome. We found that, in respect to sense codons, stop codon usage was affected by stronger selective forces but was less influenced by neutral mutational biases. UGA is the most frequent termination codon in human genome. However, UAA was the preferred stop codon in genes with high breadth of expression, high level of expression, AT-rich coding sequences, housekeeping functions, and in gene ontology categories with the largest deviation from expected stop codon usage. Selective forces associated with the breadth and the level of expression favoured AT-rich sequences in the mRNA region including the stop site and its proximal 3'-UTR, but acted with scarce effects on sense codons, generating two regions, upstream and downstream of the stop codon, with strongly different base composition. By favouring low levels of GC-content, selection promoted labile local secondary structures at the stop site and its proximal 3'-UTR. The compositional and structural context favoured by selection was surprisingly emphasized in the class of ribosomal proteins and was consistent with sequence elements that increase the efficiency of translational termination. Stop codons were also heterogeneously distributed among chromosomes by a mechanism that was strongly correlated with the GC-content of coding sequences. In human genome, the nucleotide composition and the thermodynamic stability of stop codon site and its proximal 3'-UTR are correlated with the GC-content of coding sequences and with the breadth and the level of gene expression. In highly expressed genes stop codon usage is compositionally and structurally consistent with highly efficient translation termination signals.

  6. Synchronous Switching of Non-Line-Start Permanent Magnet Synchronous Machines between Inverter to Grid Drives

    DEFF Research Database (Denmark)

    Ni, Ronggang; Xu, Dianguo; Blaabjerg, Frede

    2016-01-01

    tracking. Furthermore, the method of switching the NLSPMSMs from grid to inverter drives, which is named as backward switching is also proposed. No position sensors are used, and the extended ElectroMotive Force (EMF) based position sensorless control algorithm is adopted during inverter drive. Experiments...

  7. Hosting Early Evolution in Heated Pores of Rock

    Science.gov (United States)

    Mast, C. B.; Möller, F.; Lanzmich, S.; Keil, L.; Braun, D.

    2017-07-01

    Recent experiments with non-equilibrium micro­systems suggest that porous rock conditions drive early molecular evolution in many ways, including accumulation, polymerization, replication, length selection and gelation.

  8. Manipulation of quantum evolution

    Science.gov (United States)

    Cabera, David Jose Fernandez; Mielnik, Bogdan

    1994-01-01

    The free evolution of a non-relativistic charged particle is manipulated using time-dependent magnetic fields. It is shown that the application of a programmed sequence of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 'go back in time' to recover its past shape. The possibility of more general operations upon the Schrodinger wave packet is discussed.

  9. Fundamental limitations on 'warp drive' spacetimes

    International Nuclear Information System (INIS)

    Lobo, Francisco S N; Visser, Matt

    2004-01-01

    'Warp drive' spacetimes are useful as 'gedanken-experiments' that force us to confront the foundations of general relativity, and among other things, to precisely formulate the notion of 'superluminal' communication. After carefully formulating the Alcubierre and Natario warp drive spacetimes, and verifying their non-perturbative violation of the classical energy conditions, we consider a more modest question and apply linearized gravity to the weak-field warp drive, testing the energy conditions to first and second orders of the warp-bubble velocity, v. Since we take the warp-bubble velocity to be non-relativistic, v << c, we are not primarily interested in the 'superluminal' features of the warp drive. Instead we focus on a secondary feature of the warp drive that has not previously been remarked upon-the warp drive (if it could be built) would be an example of a 'reaction-less drive'. For both the Alcubierre and Natario warp drives we find that the occurrence of significant energy condition violations is not just a high-speed effect, but that the violations persist even at arbitrarily low speeds. A particularly interesting feature of this construction is that it is now meaningful to think of placing a finite mass spaceship at the centre of the warp bubble, and then see how the energy in the warp field compares with the mass-energy of the spaceship. There is no hope of doing this in Alcubierre's original version of the warp field, since by definition the point at the centre of the warp bubble moves on a geodesic and is 'massless'. That is, in Alcubierre's original formalism and in the Natario formalism the spaceship is always treated as a test particle, while in the linearized theory we can treat the spaceship as a finite mass object. For both the Alcubierre and Natario warp drives we find that even at low speeds the net (negative) energy stored in the warp fields must be a significant fraction of the mass of the spaceship

  10. Driving Control for Electric Power Assisted Wheelchair Based on Regenerative Brake

    Science.gov (United States)

    Seki, Hirokazu; Takahashi, Kazuki; Tadakuma, Susumu

    This paper describes a novel safety driving control scheme for electric power assisted wheelchairs based on the regenerative braking system. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the safe and secure driving performance especially on downhill roads must be further improved because electric power assisted wheelchairs have no braking devices. The proposed control system automatically switches the driving mode, from “assisting mode” to “braking mode”, based on the wheelchair's velocity and the declined angle and smoothly suppresses the wheelchair's acceleration based on variable duty ratio control in order to realize the safety driving and to improve the ride quality. Some experiments on the practical roads and subjective evaluation show the effectiveness of the proposed control system.

  11. The soils of Champaign are still alive. An assessment of socio-ecological co-evolution in viticulture using DPSIR framework.

    Science.gov (United States)

    Nicolai, Annegret; Cluzeau, Daniel; Descotes, Arnaud; Georget, Cédric; Chaussod, Rémi; Nouaim-Chaussod, Rachida; Peres, Guénola; Guernion, Muriel; Cylly, Daniel; Rougé, Laurence; Garcia, Olivier; Panigai, Laurent; Moncomble, Dominique

    2016-04-01

    Conventional agricultural practices have lead to a loss of ecosystem services, such as soil fertility and soil integrity, water quality, and carbon storage. The importance of soil health to sustain agriculture in the future has raised sociological and political awareness. Wine growers in the Champaign have been the top one users of pesticides in France, and soils were declared by media "being dead" in the 1980ies. Using the DPSIR framework (Driving forces, Pressure, State, Impact, Response circle) we show the mechanism for the evolution of practices in viticulture between 1990 and 2010 in this region. The observed change from 90% to 33% conventional pesticide use is the result of the interaction between scientists and stakeholders via impact studies and technical advices, thereby modulating socio-economic driving forces. Until 1995, 100% of newly planted vineyard were subjected to fumigation by nematicides which represented the highest pressure in Champaign observed through the negative impact on Lombricidae biomass and diversity as well as on aging of vine. In response, a first warning message was published in 1993 in the Professional Technical Guide for Champaign's Viticulture followed by systematic yearly recommendation of alternative practices, such as 3 years of fallow before plantation. The increased fear of economic losses for vine farmers drove the nematicide treatment gradually down to 1% in 2010. The restoration of the soil's biological activities was observed progressively since 2000, associated to an improvement in ecosystem services. The assessment of Champaign's viticulture show, how studying and communicating indicators within a DPSIR framework at a regional scale allow for a directed evolution of management measures in socio-ecosystems.

  12. Controlled experiments of hillslope co-evolution at the Biosphere 2 Landscape Evolution Observatory: toward prediction of coupled hydrological, biogeochemical, and ecological change

    Science.gov (United States)

    Volkmann, T. H. M.; Sengupta, A.; Pangle, L.; Abramson, N.; Barron-Gafford, G.; Breshears, D. D.; Bugaj, A.; Chorover, J.; Dontsova, K.; Durcik, M.; Ferre, T. P. A.; Harman, C. J.; Hunt, E.; Huxman, T. E.; Kim, M.; Maier, R. M.; Matos, K.; Alves Meira Neto, A.; Meredith, L. K.; Monson, R. K.; Niu, G. Y.; Pelletier, J. D.; Rasmussen, C.; Ruiz, J.; Saleska, S. R.; Schaap, M. G.; Sibayan, M.; Tuller, M.; Van Haren, J. L. M.; Wang, Y.; Zeng, X.; Troch, P. A.

    2017-12-01

    Understanding the process interactions and feedbacks among water, microbes, plants, and porous geological media is crucial for improving predictions of the response of Earth's critical zone to future climatic conditions. However, the integrated co-evolution of landscapes under change is notoriously difficult to investigate. Laboratory studies are typically limited in spatial and temporal scale, while field studies lack observational density and control. To bridge the gap between controlled lab and uncontrolled field studies, the University of Arizona - Biosphere 2 built a macrocosm experiment of unprecedented scale: the Landscape Evolution Observatory (LEO). LEO consists of three replicated, 330-m2 hillslope landscapes inside a 5000-m2 environmentally controlled facility. The engineered landscapes contain 1-m depth of basaltic tephra ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a dense sensor network capable of resolving water, carbon, and energy cycling processes at sub-meter to whole-landscape scale. Embedded sampling devices allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers applied with the artificial rainfall. LEO is now fully operational and intensive forcing experiments have been launched. While operating the massive infrastructure poses significant challenges, LEO has demonstrated the capacity of tracking multi-scale matter and energy fluxes at a level of detail impossible in field experiments. Initial sensor, sampler, and restricted soil coring data are already providing insights into the tight linkages between water flow, weathering, and (micro-) biological community development during incipient landscape evolution. Over the years to come, these interacting processes are anticipated to drive the model systems to increasingly complex states, potentially perturbed by changes in climatic forcing. By intensively monitoring

  13. Base drive for paralleled inverter systems

    Science.gov (United States)

    Nagano, S. (Inventor)

    1980-01-01

    In a paralleled inverter system, a positive feedback current derived from the total current from all of the modules of the inverter system is applied to the base drive of each of the power transistors of all modules, thereby to provide all modules protection against open or short circuit faults occurring in any of the modules, and force equal current sharing among the modules during turn on of the power transistors.

  14. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Paola eGamba

    2015-06-01

    Full Text Available Alzheimer’s disease (AD, the most common neurodegenerative disorder associated with dementia, is typified by the pathological accumulation of amyloid β peptides and neurofibrillary tangles within the brain. Considerable evidence indicates that many events contribute to AD progression, including oxidative stress, inflammation, and altered cholesterol metabolism.The brain’s high lipid content makes it particularly vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation and cholesterol oxidation, and the subsequent formation of end products, mainly 4-hydroxynonenal and oxysterols, respectively from the two processes. The chronic inflammatory events observed in the AD brain include activation of microglia and astrocytes, together with enhancement of inflammatory molecule and free radical release. Along with glial cells, neurons themselves have been found to contribute to neuroinflammation in the AD brain, by serving as sources of inflammatory mediators. Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has been found to connect oxidative stress and inflammation in AD. Alongside oxidative stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also significantly contribute to neuronal damage and to progression of AD. Increasing evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force behind the development of AD, and that oxysterols are the link connecting the disease to altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier. The key role of oxysterols in AD pathogenesis has been strongly supported by research pointing to their involvement in modulating neuroinflammation, Aβ accumulation, and cell death.This review highlights the key role played by cholesterol and oxysterols in the brain in AD pathogenesis.

  15. A drastic reorganization of industry in the world.What is the driving force

    Directory of Open Access Journals (Sweden)

    Shinji Naruo

    2010-05-01

    Full Text Available The purpose of this paper is to show the method and model to analyze the driving force to reorganize the industry. Due to the global economy, many large scale M&A and affiliations are happening in the world. The business alliance and integration are happening in the advanced countries, the transition countries, and the developing countries. There are some factors to impact the reorganization of industry. One is government policy. Another is the market economy. The government has the industrial policy. It guides and leads the industrial structure of the country. Advanced countries had experienced the advancement of industrial structure. On the process of industrial structure advancement, the country improved national income (GNP. Through the process, the enterprise in the industry had experienced integration and separation in the industry. The theory of industrial structure supports the framework of this approach.On the other hand, the market economy also had influenced to the reorganization of industry. Business cycle, competition, and innovation had influenced the reorganization of industry. In capitalism, the shareholder of the company pushes the company to maximize the profit. The shareholder’s pressure could influence the decision of M&A.The theory of industrial organization supports the framework of this approach.The enterprise is in the business environment. Top management of the company is responsible to make a decision to merge or acquire the company. However, the decision is affected by other factors out of business environment. The shareholder influenced the individual enterprise decision. The government policy influenced the industrial structure. This could impose the enterprise to accept the amalgamation in the industry.Both of two influence the reorganization of industry.

  16. Inverse Dynamic Analysis for Various Drivings in Kinematic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Hoon [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-09-15

    Analysis of actuating forces and joint reaction forces are essential to determine the capacity of actuators, to control the mechanical system and to design its components. This paper presents an algorithm that calculates actuating forces(or torques), depending on the various types of driving constraints, in order to produce a given system motion in the joint coordinate space. The joint coordinates are used as the generalized coordinates of a kinematic system. System equations of motion and constraint acceleration equations are transformed from the Cartesian coordinate space to the joint coordinate space using the velocity transformation method. A numerical example is carried out to verify the algorithm proposed.

  17. Evaluating the Energetic Driving Force for Cocrystal Formation.

    Science.gov (United States)

    Taylor, Christopher R; Day, Graeme M

    2018-02-07

    We present a periodic density functional theory study of the stability of 350 organic cocrystals relative to their pure single-component structures, the largest study of cocrystals yet performed with high-level computational methods. Our calculations demonstrate that cocrystals are on average 8 kJ mol -1 more stable than their constituent single-component structures and are very rarely (intuition, the presence of hydrogen or halogen bond interactions is not necessarily a good predictor of stability. Finally, we investigate the correlation of the relative stability with simple chemical descriptors: changes in packing efficiency and hydrogen bond strength. We find some broad qualitative agreement with chemical intuition-more densely packed cocrystals with stronger hydrogen bonding tend to be more stable-but the relationship is weak, suggesting that such simple descriptors do not capture the complex balance of interactions driving cocrystallization. Our conclusions suggest that while cocrystallization is often a thermodynamically favorable process, it remains difficult to formulate general rules to guide synthesis, highlighting the continued importance of high-level computation in predicting and rationalizing such systems.

  18. Extended driving impairs nocturnal driving performances.

    Directory of Open Access Journals (Sweden)

    Patricia Sagaspe

    Full Text Available Though fatigue and sleepiness at the wheel are well-known risk factors for traffic accidents, many drivers combine extended driving and sleep deprivation. Fatigue-related accidents occur mainly at night but there is no experimental data available to determine if the duration of prior driving affects driving performance at night. Participants drove in 3 nocturnal driving sessions (3-5 am, 1-5 am and 9 pm-5 am on open highway. Fourteen young healthy men (mean age [+/-SD] = 23.4 [+/-1.7] years participated Inappropriate line crossings (ILC in the last hour of driving of each session, sleep variables, self-perceived fatigue and sleepiness were measured. Compared to the short (3-5 am driving session, the incidence rate ratio of inappropriate line crossings increased by 2.6 (95% CI, 1.1 to 6.0; P<.05 for the intermediate (1-5 am driving session and by 4.0 (CI, 1.7 to 9.4; P<.001 for the long (9 pm-5 am driving session. Compared to the reference session (9-10 pm, the incidence rate ratio of inappropriate line crossings were 6.0 (95% CI, 2.3 to 15.5; P<.001, 15.4 (CI, 4.6 to 51.5; P<.001 and 24.3 (CI, 7.4 to 79.5; P<.001, respectively, for the three different durations of driving. Self-rated fatigue and sleepiness scores were both positively correlated to driving impairment in the intermediate and long duration sessions (P<.05 and increased significantly during the nocturnal driving sessions compared to the reference session (P<.01. At night, extended driving impairs driving performances and therefore should be limited.

  19. Tape edge study in a linear tape drive with single-flanged guides

    International Nuclear Information System (INIS)

    Goldade, A.V.; Bhushan, Bharat

    2004-01-01

    Improved tape guiding and tape dimensional stability are essential for magnetic tape linear recoding formats to take advantage of vastly increased track density and thereby achieve higher storage capacities. Tape guiding is dependent on numerous parameters, such as type of the guides and tape path geometry, quality of virgin tape edge, drive operating parameters (e.g., tape speed and tape tension), mechanical properties of the tape, and tape geometry (e.g., cupping and curvature). The objective of the present study is to evaluate guiding and tribological performance of single-flanged guides with porous air bearings in a linear tape drive. A comparison of guiding performance of the dual flanged stationary guides and single-flanged guides with porous air bearings is performed. The effect of tape path geometry, drive operating conditions (speed and tension) and tape edge quality of factory-slit tapes on tape guiding are evaluated during short-term tests. A lateral force measurement technique is used to measure the force exerted by the tape edge on the guide flange. A technique for the lateral tape motion measurement is used to study the effect of continuous sliding on tape guiding. Wear tests up to 5000 cycles are conducted and coefficient of friction and lateral tape motion are monitored to study the effect of drive operating conditions (speed and tension), edge quality of factory-slit tapes and tape thickness on tape guiding. Optical microscopy, atomic force microscopy and scanning electron microscopy are employed to study and quantify the quality of tape edge

  20. Motive, desire, drive: the discourse of force

    Directory of Open Access Journals (Sweden)

    Alan Blum

    2013-12-01

    Full Text Available A review of the original paper on motive by Blum and McHugh (1971 is used as an occasion to make transparent an approach to social theory as it has developed over the years in their work. This method, in treating motive as an illustration, engages it as an example of the status of the signifier as a symptom of interpretive conflict endemic to any situation of action, always inviting an analysis of the symbolic order and imaginative structure that sustains the distinction as a force in social life. In this paper, motive in particular is unpacked to show how it serves as an indication of fundamental ambiguity with respect to a problem-solving situation, revealing in this case constant perplexity in relation to the enigmatic character of what comes to view on any occasion and the recurrent contestation that is released.

  1. Spontaneous formation of small unilamellar vesicles by pH jump: A pH gradient across the bilayer membrane as the driving force

    International Nuclear Information System (INIS)

    Hauser, H.; Mantsch, H.H.; Casal, H.L.

    1990-01-01

    31 P NMR and infrared spectroscopic methods have been used to study the formation of small unilamellar vesicles by the pH-jump method. It is shown that increasing the pH of different lamellar phospholipid dispersions (phosphatidic acids and phosphatidylserines) induces a pH gradient. This pH gradient is estimated to be 4 ± 1 pH units, and its direction is such that the inner monolayer of the vesicles is at lower pH. There is spectroscopic evidence for tighter packing of the lipid hydrocarbon chains in the inner monolayer, probably due to the constraints imposed by the high curvature of the small vesicles formed. These results are discussed in terms of the driving force of the spontaneous vesiculation

  2. Friction Force: From Mechanics to Thermodynamics

    Science.gov (United States)

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  3. Is personality a driving force for socioeconomic differences in young adults' health care use? A prospective cohort study.

    Science.gov (United States)

    Kraft, Maren; Arts, Koos; Traag, Tanja; Otten, Ferdy; Bosma, Hans

    2017-09-01

    To relate personality characteristics at the age of 12 to socioeconomic differences in health care use in young adulthood. And thereby examining the extent to which socioeconomic differences in the use of health care in young adulthood are based on differences in personality characteristics, independent of the (parental) socioeconomic background. Personality of more than 13,000 Dutch 12-year old participants was related to their health and socioeconomic position after a follow-up of 13 years (when the participants had become young adults). In young adulthood, low socioeconomic status was related to high health care use (e.g. low education -hospital admission: OR = 2.21; low income -GP costs: OR = 1.25). Odds ratios (for the socioeconomic health differences) did not decrease when controlled for personality. In this Dutch sample of younger people, personality appeared not to be a driving force for socioeconomic differences in health care use. Findings thus do not support the personality-related, indirect selection perspective on the explanation of socioeconomic differences in health.

  4. Drive Control Scheme of Electric Power Assisted Wheelchair Based on Neural Network Learning of Human Wheelchair Operation Characteristics

    Science.gov (United States)

    Tanohata, Naoki; Seki, Hirokazu

    This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.

  5. Regulation of cell cycle progression by cell-cell and cell-matrix forces

    NARCIS (Netherlands)

    Uroz, Marina; Wistorf, Sabrina; Serra-Picamal, Xavier; Conte, Vito; Sales-Pardo, Marta; Roca-Cusachs, Pere; Guimerà, Roger; Trepat, Xavier

    2018-01-01

    It has long been proposed that the cell cycle is regulated by physical forces at the cell-cell and cell-extracellular matrix (ECM) interfaces 1-12 . However, the evolution of these forces during the cycle has never been measured in a tissue, and whether this evolution affects cell cycle progression

  6. Spin Modes in Nuclei and Nuclear Forces

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Otsuka, Takaharu

    2011-01-01

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in 12 C and 14 C and an anomalous M1 transition in 17 C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by Δ excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  7. How metal films de-wet substrates-identifying the kinetic pathways and energetic driving forces

    International Nuclear Information System (INIS)

    McCarty, Kevin F; Hamilton, John C; Thuermer, Konrad; Jones, Frank; Talin, A Alec; Bartelt, Norman C; Sato, Yu; K Schmid, Andreas; Saa, Angela; Figuera, Juan de la; Stumpf, Roland

    2009-01-01

    We study how single-crystal chromium films of uniform thickness on W(110) substrates are converted to arrays of three-dimensional (3D) Cr islands during annealing. We use low-energy electron microscopy (LEEM) to directly observe a kinetic pathway that produces trenches that expose the wetting layer. Adjacent film steps move simultaneously uphill and downhill relative to the staircase of atomic steps on the substrate. This step motion thickens the film regions where steps advance. Where film steps retract, the film thins, eventually exposing the stable wetting layer. Since our analysis shows that thick Cr films have a lattice constant close to bulk Cr, we propose that surface and interface stress provide a possible driving force for the observed morphological instability. Atomistic simulations and analytic elastic models show that surface and interface stress can cause a dependence of film energy on thickness that leads to an instability to simultaneous thinning and thickening. We observe that de-wetting is also initiated at bunches of substrate steps in two other systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are converted into patterns of unidirectional stripes as the trenches that expose the wetting layer lengthen along the W[001] direction. Finally, we observe how 3D Cr islands form directly during film growth at elevated temperature. The Cr mesas (wedges) form as Cr film steps advance down the staircase of substrate steps, another example of the critical role that substrate steps play in 3D island formation.

  8. Energy self-sufficient sensory ball screw drive; Energieautarker sensorischer Kugelgewindetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, Oliver

    2012-07-01

    Nowadays the availability of machine tools plays a decisive role in competition to increase in productivity. From state of the art it arises, that ball screw drives are the most abusive component in feed drives because of abrasive wear. Furthermore condition monitoring enables avoiding unplanned machine failure and increasing the availability of the deployed production facility. Thereby the application of additional sensors allows the direct acquisition of wear correlative measurements. To reduce the required effort for integration and increase the robustness, reliability and clarity in industrial environment energy self-sufficient sensor systems can be applied. In this thesis the development and investigation of an energy self-sufficient sensory ball screw drive with direct measurement of wear correlative pretension for condition monitoring application is described. The prototype measures the pretension with force sensors based on strain gauges. The sensor system includes microcontroller-based electronics for signal processing as well as wireless data transmission with ZigBee-standard. A hybrid system assures the energy supply of the sensor system. On the one hand a stepper motor generator produces electrical energy from the motion energy of the ball screw drive. On the other hand an energy buffer based on super caps is reloaded in stationary position by wireless energy transmission. For verification a prototype system is build up. In measurements the sensory and energetic characteristics of the energy self-sufficient sensor systems are analyzed. Moreover, the functionality of the ball screw drive as well as the signal characteristics of the force sensors are examined for different pretensions. In addition, pretension losses due to wear are established in realized endurance trials, which means that timely maintenance can be planned.

  9. Patterns and Processes of Vertebrate Evolution

    Science.gov (United States)

    Carroll, Robert Lynn

    1997-04-01

    This new text provides an integrated view of the forces that influence the patterns and rates of vertebrate evolution from the level of living populations and species to those that resulted in the origin of the major vertebrate groups. The evolutionary roles of behavior, development, continental drift, and mass extinctions are compared with the importance of variation and natural selection that were emphasized by Darwin. It is extensively illustrated, showing major transitions between fish and amphibians, dinosaurs and birds, and land mammals to whales. No book since Simpson's Major Features of Evolution has attempted such a broad study of the patterns and forces of evolutionary change. Undergraduate students taking a general or advanced course on evolution, and graduate students and professionals in evolutionary biology and paleontology will find the book of great interest.

  10. INFLUENCE OF MOBILE PHONE USE WHILE DRIVING

    Directory of Open Access Journals (Sweden)

    T. Hugh WOO, Ph.D., P.E.

    2001-01-01

    Based on the conclusions of this study, the Legislative Yuan of Taiwan passed a law to ban the use of handheld mobile phones while driving in January 2, 2001. For a compulsory three-month campaign, the regulation will be in force from September 1, with a violation fine of NT$3,000 (approximate to US$90 for drivers and NT$1,000 for motorcyclists.

  11. Tuning CRISPR-Cas9 Gene Drives in Saccharomyces cerevisiae

    Science.gov (United States)

    Roggenkamp, Emily; Giersch, Rachael M.; Schrock, Madison N.; Turnquist, Emily; Halloran, Megan; Finnigan, Gregory C.

    2018-01-01

    Control of biological populations is an ongoing challenge in many fields, including agriculture, biodiversity, ecological preservation, pest control, and the spread of disease. In some cases, such as insects that harbor human pathogens (e.g., malaria), elimination or reduction of a small number of species would have a dramatic impact across the globe. Given the recent discovery and development of the CRISPR-Cas9 gene editing technology, a unique arrangement of this system, a nuclease-based “gene drive,” allows for the super-Mendelian spread and forced propagation of a genetic element through a population. Recent studies have demonstrated the ability of a gene drive to rapidly spread within and nearly eliminate insect populations in a laboratory setting. While there are still ongoing technical challenges to design of a more optimal gene drive to be used in wild populations, there are still serious ecological and ethical concerns surrounding the nature of this powerful biological agent. Here, we use budding yeast as a safe and fully contained model system to explore mechanisms that might allow for programmed regulation of gene drive activity. We describe four conserved features of all CRISPR-based drives and demonstrate the ability of each drive component—Cas9 protein level, sgRNA identity, Cas9 nucleocytoplasmic shuttling, and novel Cas9-Cas9 tandem fusions—to modulate drive activity within a population. PMID:29348295

  12. Evolution of etched nuclear track profiles of alpha particles in CR-39 by atomic force microscopy

    International Nuclear Information System (INIS)

    Félix-Bautista, R.; Hernández-Hernández, C.; Zendejas-Leal, B.E.; Fragoso, R.; Golzarri, J.I.; Vázquez-López, C.; Espinosa, G.

    2013-01-01

    A series of atomic force microscopy (AFM) images of etched nuclear tracks has been obtained and used to calculate the nuclear track registration sensitivity parameter V(x) = Vt(x)/Vb. Due to the AFM limitations the samples were irradiated normally to the surface, and with energies attenuated in order to include the Bragg peak region in the AFM piezo-scanner z movement range. The simulation of the track profile evolution was then obtained. The different stages of etched nuclear track profiles were rendered. - Highlights: ► Using AFM we reach that Bragg peak region of etched tracks in CR-39. ► The etched track sensitivity V was calculated by data obtained by AFM. ► The evolucion of etched nuclear tracks was simulated by data achieved by AFM

  13. Efficiency of LH current drive in tokamaks featuring an internal transport barrier

    International Nuclear Information System (INIS)

    Oliveira, C I de; Ziebell, L F; Rosa, P R da S

    2005-01-01

    In this paper, we study the effects of the occurrence of radial transport of particles in a tokamak on the efficiency of the current drive by lower hybrid (LH) waves, in the presence of an internal transport barrier. The results are obtained by numerical solution of the Fokker-Planck equation which rules the evolution of the electron distribution function. We assume that the radial transport of particles can be due to magnetic or electrostatic fluctuations. In both cases the efficiency of the current drive is shown to increase with the increase of the fluctuations that originate the transport. The dependence of the current drive efficiency on the depth and position of the barrier is also investigated

  14. APPLIED PROBLEMS OF CURVILINEAR MOTION DYNAMICS OF ALL-WHEEL DRIVE TRACTION MEANS

    Directory of Open Access Journals (Sweden)

    G. S. Gorin

    2014-01-01

    Full Text Available Fundamental principles for hybrid theory on turning of an all-wheel drive system are given in the paper. The paper shows expediency of accounting longitudinal additional tangential reactions (parasitic forces in contacts of central and lateral wheels with foundation. Algorithms for calculating additional tangential reactions have been proposed in the paper. The paper presents calculation kinematics model for turning of steered and rigid bogie with inter-wheel differential at various axial drive.

  15. Natural Frequencies and Vibrating Modes for a Magnetic Planetary Gear Drive

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2012-01-01

    Full Text Available In this paper, a dynamic model for a magnetic planetary gear drive is proposed. Based on the model, the dynamic equations for the magnetic planetary gear drive are given. From the magnetic meshing forces and torques between the elements for the drive system, the tangent and radial magnetic meshing stiffness is obtained. Using these equations, the natural frequencies and the modes of the magnetic planetary gear drive are investigated. The sensitivity of the natural frequencies to the system parameters is discussed. Results show that the pole pair number and the air gap have obvious effects on the natural frequencies. For the planetary gear number larger than two, the vibrations of the drive system include the torsion mode of the center elements, the translation mode of the center elements, and the planet modes. For the planetary gear number equal to two, the planet mode does not occur, the crown mode and the sun gear mode occur.

  16. Electromagnetic analysis of locking device for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Heo, H.; Kim, J. I.; Kim, J. H.; Kim, Y. W.; Park, J. S.

    1998-01-01

    A numerical electromagnetic analysis was performed for the control rod locking device which is installed in the control element drive mechanism of integral reactor, SMART. A plunger model for the electromagnetic analysis of the locking device was developed and theoretical bases for the model were established. Design parameters related to plunger pushing force were identified, and the optimum design point was determined by analyzing the trend of the plunger pushing force with finite element method

  17. External and internal influences as driving forces and/or stumbling ...

    African Journals Online (AJOL)

    The development of national and institutional quality assurance and management systems is often forced (rightfully or wrongly) into a specific direction by external and internal environmental influences. In South Africa such influences play a major role in both the national higher education policy developments and the ...

  18. Note: A rigid piezo motor with large output force and an effective method to reduce sliding friction force

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ying; Lu, Qingyou, E-mail: qxl@ustc.edu.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou, Yubin [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-05-15

    We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is <10% of the total static friction force, which can help increase output force greatly. The piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope.

  19. Note: A rigid piezo motor with large output force and an effective method to reduce sliding friction force

    International Nuclear Information System (INIS)

    Guo, Ying; Lu, Qingyou; Hou, Yubin

    2014-01-01

    We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is <10% of the total static friction force, which can help increase output force greatly. The piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope

  20. Control rod driving mechanism of reactor, control device and operation method therefor

    International Nuclear Information System (INIS)

    Ariyoshi, Masahiko; Matsumoto, Fujio; Matsumoto, Koji; Kinugasa, Kunihiko; Nara, Yoshihiko; Otama, Kiyomaro; Mikami, Takao

    1998-01-01

    The present invention provides a device for and a method of directly driving control rods of an FBR type reactor linearly by a cylinder type linear motor while having a driving shaft as an electric conductor. Namely, a linear induction motor drives a driving shaft connected with a control rod and vertically moving the control rod by electromagnetic force as an electric conductor. The position of the control rod is detected by a position detector. The driving shaft is hung by a wire by way of an electromagnet which is attachably/detachably held. With such a constitution, the driving shaft connected with the control rod can be vertically moved linearly, stopped or kept. Since they can be driven smoothly at a wide range speed, the responsibility and reliability of the reactor operation can be improved. In addition, since responsibility of the control rod operation is high, scram can be conducted by the linear motor. Since the driving mechanism can be simplified, maintenance and inspection operation can be mitigated. (I.S.)

  1. Electrodynamic forces and plasma conductivity inside the current sheet

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Frank, A.G.; Markov, V.S.

    1985-01-01

    The process of accumulation and explosive release of magnetic energy was studied in a current sheet of plasma of a high-current linear discharge. The distribution of current density and of electrodynamic forces were measured and the time evolution of these quantities was determined. The evolution of the plasma conductivity was also obtained. The measured and calculated electrodynamic forces may explain the plasma acceleration up to the velocities about 3x10 4 m/s only near the sheet edges. (D.Gy.)

  2. Glaucoma and Driving: On-Road Driving Characteristics

    Science.gov (United States)

    Wood, Joanne M.; Black, Alex A.; Mallon, Kerry; Thomas, Ravi; Owsley, Cynthia

    2016-01-01

    Purpose To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment. Methods Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years) with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB) and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years). On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire. Results Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability. Conclusions Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness. PMID:27472221

  3. Glaucoma and Driving: On-Road Driving Characteristics.

    Directory of Open Access Journals (Sweden)

    Joanne M Wood

    Full Text Available To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment.Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years. On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire.Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability.Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness.

  4. Glaucoma and Driving: On-Road Driving Characteristics.

    Science.gov (United States)

    Wood, Joanne M; Black, Alex A; Mallon, Kerry; Thomas, Ravi; Owsley, Cynthia

    2016-01-01

    To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment. Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years) with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB) and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years). On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire. Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability. Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness.

  5. Chemical and physical drivers of the evolution of organic aerosols over forests

    NARCIS (Netherlands)

    Janssen, R.H.H.

    2013-01-01

    Diurnal evolution of organic aerosol over boreal and tropical forests

    The first research question of this thesis is: how do local surface forcings and large-scale meteorological forcings shape the evolution of organic aerosol over the boreal and tropical forest? This

  6. Gibbs energy modelling of the driving forces and calculation of the fcc/hcp martensitic transformation temperatures in Fe-Mn and Fe-Mn-Si alloys

    International Nuclear Information System (INIS)

    Cotes, S.; Fernandez Guillermet, A.; Sade, M.

    1999-01-01

    Very recent, accurate dilatometric measurements of the fcc hcp martensitic transformation (MT) temperatures are used to develop a new thermodynamic description of the fcc and hcp phases in the Fe-Mn-Si system, based on phenomenological models for the Gibbs energy function. The composition dependence of the driving forces for the fcc→hcp and the hcp→fcc MTs is established. Detailed calculations of the MT temperatures are reported, which are used to investigate the systematic effects of Si additions upon the MT temperatures of Fe-Mn alloys. A critical comparison with one of the most recent thermodynamic analyses of the Fe-Mn-Si system, which is due to Forsberg and Agren, is also presented. (orig.)

  7. Disruptive Innovations as a Driving Force for the Change of Wireless Telecommunication Infrastructures

    DEFF Research Database (Denmark)

    Kyoseva, Tsvetoslava; Poulkov, Vladimir; Mihaylov, Mihail Rumenov

    2014-01-01

    the current trends in mobile communications, we reason that the emergence of new telecommunication architectures and infrastructures is inevitable. An important consideration in the analysis is the driving role of disruptive technologies for the future of telecommunications. Based on a model for evaluating...

  8. In-situ TEM studies of microstructure evolution under ion irradiation for nuclear engineering applications

    International Nuclear Information System (INIS)

    Kaoumi, D.

    2011-01-01

    One of the difficulties of studying processes occurring under irradiation (in a reactor environment) is the lack of kinetics information since usually samples are examined ex situ (i.e. after irradiation) so that only snapshots of the process are available. Given the dynamic nature of the phenomena, direct in situ observation is invaluable for better understanding the mechanisms, kinetics and driving forces of the processes involved. This can be done using in situ ion irradiation in a TEM at the IVEM facility at Argonne National Laboratory which, in the USA, is a unique facility. To predict the in reactor behavior of alloys, it is essential to understand the basic mechanisms of radiation damage formation (loop density, defect interactions) and accumulation (loop evolution, precipitation or dissolution of second phases etc.). In-situ Ion-irradiation in a TEM has proven a very good tool for that purpose as it allows for the direct determination of the formation and evolution of irradiation-induced damage and the spatial correlation of the defect structures with the pre-existing microstructure (including lath boundaries, network dislocations and carbides) as a function of dose, dose rate, temperature and ion type. Using this technique, different aspects of microstructure evolution under irradiation were studied, such as defect cluster formation and evolution as a function of dose in advanced Ferritic/Martensitic (F/M) steels, the irradiation stability of precipitates in Oxide Dispersion Strengthened (ODS) steels, and irradiation-induced grain-growth. Such studies will be reported in this presentation

  9. "Evolution Canyon," a potential microscale monitor of global warming across life.

    Science.gov (United States)

    Nevo, Eviatar

    2012-02-21

    Climatic change and stress is a major driving force of evolution. The effects of climate change on living organisms have been shown primarily on regional and global scales. Here I propose the "Evolution Canyon" (EC) microscale model as a potential life monitor of global warming in Israel and the rest of the world. The EC model reveals evolution in action at a microscale involving biodiversity divergence, adaptation, and incipient sympatric speciation across life from viruses and bacteria through fungi, plants, and animals. The EC consists of two abutting slopes separated, on average, by 200 m. The tropical, xeric, savannoid, "African" south-facing slope (AS = SFS) abuts the forested "European" north-facing slope (ES = NFS). The AS receives 200-800% higher solar radiation than the ES. The ES represents the south European forested maquis. The AS and ES exhibit drought and shade stress, respectively. Major adaptations on the AS are because of solar radiation, heat, and drought, whereas those on the ES relate to light stress and photosynthesis. Preliminary evidence suggests the extinction of some European species on the ES and AS. In Drosophila, a 10-fold higher migration was recorded in 2003 from the AS to ES. I advance some predictions that could be followed in diverse species in EC. The EC microclimatic model is optimal to track global warming at a microscale across life from viruses and bacteria to mammals in Israel, and in additional ECs across the planet.

  10. Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet.

    Science.gov (United States)

    Liu, Yingxiang; Shi, Shengjun; Li, Chunhong; Chen, Weishan; Wang, Liang; Liu, Junkao

    2018-03-01

    A bi-directional standing wave linear piezoelectric ultrasonic actuator with four driving feet is proposed in this work. Two sandwich type transducers operated in longitudinal-bending hybrid modes are set parallelly. The working mode of the transducer is not simple hybrid vibrations of a longitudinal one and a bending one, but a special coupling vibration mode contained both longitudinal and bending components. Two transducers with the same structure and unsymmetrical boundary conditions are set parallelly to accomplish the bi-directional driving: the first transducer can push the runner forward, while the other one produces the backward driving. In the experiments, two voltages with different amplitudes are applied on the two transducers, respectively: the one with higher voltage serves as the actuator, whereas the other one applied with lower voltage is used to reduce the frictional force. The prototype achieves maximum no-load speed and thrust force of 244 mm/s and 9.8 N. This work gives a new idea for the construction of standing wave piezoelectric ultrasonic actuator with bi-directional driving ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The evolution of gene expression QTL in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    James Ronald

    2007-08-01

    Full Text Available Understanding the evolutionary forces that influence patterns of gene expression variation will provide insights into the mechanisms of evolutionary change and the molecular basis of phenotypic diversity. To date, studies of gene expression evolution have primarily been made by analyzing how gene expression levels vary within and between species. However, the fundamental unit of heritable variation in transcript abundance is the underlying regulatory allele, and as a result it is necessary to understand gene expression evolution at the level of DNA sequence variation. Here we describe the evolutionary forces shaping patterns of genetic variation for 1206 cis-regulatory QTL identified in a cross between two divergent strains of Saccharomyces cerevisiae. We demonstrate that purifying selection against mildly deleterious alleles is the dominant force governing cis-regulatory evolution in S. cerevisiae and estimate the strength of selection. We also find that essential genes and genes with larger codon bias are subject to slightly stronger cis-regulatory constraint and that positive selection has played a role in the evolution of major trans-acting QTL.

  12. Trophic convergence drives morphological convergence in marine tetrapods.

    Science.gov (United States)

    Kelley, Neil P; Motani, Ryosuke

    2015-01-01

    Marine tetrapod clades (e.g. seals, whales) independently adapted to marine life through the Mesozoic and Caenozoic, and provide iconic examples of convergent evolution. Apparent morphological convergence is often explained as the result of adaptation to similar ecological niches. However, quantitative tests of this hypothesis are uncommon. We use dietary data to classify the feeding ecology of extant marine tetrapods and identify patterns in skull and tooth morphology that discriminate trophic groups across clades. Mapping these patterns onto phylogeny reveals coordinated evolutionary shifts in diet and morphology in different marine tetrapod lineages. Similarities in morphology between species with similar diets-even across large phylogenetic distances-are consistent with previous hypotheses that shared functional constraints drive convergent evolution in marine tetrapods.

  13. failure analysis and shock protection of external hard disk drive

    African Journals Online (AJOL)

    user

    model its structural responses to free fall drop-impact shock and vibration. Secondly, the hard ... Keywords: Free fall, impact force, Shock, Vibration, Stress, Reliability, Modeling, Simulation External Hard disk drive. 1. ..... on the disk, it could initiate process which could .... [19] Katta, P.: MATLAB Guide to Finite Elements - An.

  14. Variable speed electrical driving systems; Entrainements electriques a vitesse variable

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J. [ESE, Promethee, Groupe Schneider (France)

    1997-12-31

    This book is the first of a series of 3 volumes which synthesize the most recent knowledge on variable speed electrical driving systems. It is devoted to electronic and electromechanical engineers and technicians and to manufacturers of electrical equipments involving such systems. after a recall of basic electrotechnical and mechanical notions, this book focusses on the functionalities and criteria of definition of driving systems, and shows the interactions between the different parts of these equipments. It develops a methodological approach of the choice for the most suitable technology with respect to the application under consideration. Various industrial sectors are concerned and a particular attention is paid to the driving of receptive turbo-machineries which play a major role in the energy balance sheet of the industrial electrical power force. (J.S.) 28 refs.

  15. Making sense of ocean biota: how evolution and biodiversity of land organisms differ from that of the plankton.

    Science.gov (United States)

    Smetacek, Victor

    2012-09-01

    The oceans cover 70% of the planet's surface, and their planktonic inhabitants generate about half the global primary production, thereby playing a key role in modulating planetary climate via the carbon cycle. The ocean biota have been under scientific scrutiny for well over a century, and yet our understanding of the processes driving natural selection in the pelagic environment - the open water inhabited by drifting plankton and free-swimming nekton - is still quite vague. Because of the fundamental differences in the physical environment, pelagic ecosystems function differently from the familiar terrestrial ecosystems of which we are a part. Natural selection creates biodiversity but understanding how this quality control of random mutations operates in the oceans - which traits are selected for under what circumstances and by which environmental factors, whether bottom-up or top-down - is currently a major challenge. Rapid advances in genomics are providing information, particularly in the prokaryotic realm, pertaining not only to the biodiversity inventory but also functional groups. This essay is dedicated to the poorly understood tribes of planktonic protists (unicellular eukaryotes) that feed the ocean's animals and continue to run the elemental cycles of our planet. It is an attempt at developing a conceptually coherent framework to understand the course of evolution by natural selection in the plankton and contrast it with the better-known terrestrial realm. I argue that organism interactions, in particular co-evolution between predators and prey (the arms race), play a central role in driving evolution in the pelagic realm. Understanding the evolutionary forces shaping ocean biota is a prerequisite for harnessing plankton for human purposes and also for protecting the oceanic ecosystems currently under severe stress from anthropogenic pressures.

  16. Development of a shear force measurement dummy for seat comfort.

    Science.gov (United States)

    Kim, Seong Guk; Ko, Chang-Yong; Kim, Dong Hyun; Song, Ye Eun; Kang, Tae Uk; Ahn, Sungwoo; Lim, Dohyung; Kim, Han Sung

    2017-01-01

    Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%). The dummy is manufactured in compliance with the SAE standards (SAE J826) and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  17. Fast wave current drive in H mode plasmas on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Grassie, J.S. de; Baity, F.W.

    1999-01-01

    Current driven by fast Alfven waves is measured in H mode and VH mode plasmas on the DIII-D tokamak for the first time. Analysis of the poloidal flux evolution shows that the fast wave current drive profile is centrally peaked but sometimes broader than theoretically expected. Although the measured current drive efficiency is in agreement with theory for plasmas with infrequent ELMs, the current drive efficiency is an order of magnitude too low for plasmas with rapid ELMs. Power modulation experiments show that the reduction in current drive with increasing ELM frequency is due to a reduction in the fraction of centrally absorbed fast wave power. The absorption and current drive are weakest when the electron density outside the plasma separatrix is raised above the fast wave cut-off density by the ELMs, possibly allowing an edge loss mechanism to dissipate the fast wave power since the cut-off density is a barrier for fast waves leaving the plasma. (author)

  18. Analysis of microstructural evolution driven by production bias

    International Nuclear Information System (INIS)

    Woo, C.H.; Semenov, A.A.; Singh, B.N.

    1993-01-01

    The concept of production bias was first considered in the preceding workshop in this series at Silkeborg in 1989. Since then, much work has been done to investigate the validity of the concept, and its usefulness in complementing the current theory of microstructure evolution based solely on the sink bias (e.g., dislocation bias) as a driving force. Comparison of the theory with experimental results clearly supports the concept. The present paper reviews and summarizes these investigations, and arrives at the following conclusions: a) the concept of production bias is consistent with the results of other works which indicates that, under cascade damage conditions, the effective rate of point-defect production is only a small fraction of the NRT displacement production rate; b) the defect accumulation under cascade damage conditions can be understood in terms of production bias; and c) although the existence of conventional dislocation bias due to point-defect dislocation interaction is not questioned, it does not seem to play any major role in the accumulation of defects under cascade damage conditions at elevated temperatures. (orig.)

  19. Interactions of Flow, Sediment Transport, and Vegetation in the Long-Term Evolution of Arroyos

    Science.gov (United States)

    Perignon, M. C.; Griffin, E. R.; Tucker, G. E.; Friedman, J. M.; Overeem, I.

    2014-12-01

    Arroyos in the Southwestern United States have experienced multiple cut-and-fill cycles in the late Quaternary. Extensive studies fo the Lower Rio Puerco, New Mexico, USA, show that it has most recently progressed from an (1) unincised state with a broad floodplain in the mid 1800s, through a period of (2) incision, forming a deep gully with steep walls by the early 1900s, and to the (3) present-day stage of arroyo widening and filling. The arroyo cycle is driven by a combination of autogenic processes and external forcings, although the relative influence of each process is under debate. We use the morphodynamic model ANUGA to explore the influences of discharge, sediment transport, and vegetation on the geomorphic evolution of the Lower Rio Puerco through the arroyo cycle. The predictive power of the numerical model is first established by using it to hind-cast the morphologic evolution of a reach of the river during a large flood in 2006, and comparing the model predictions to real-world magnitudes and patterns of topographic change recorded for this event by multi-temporal airborne lidar. The morphodynamic model is then used to simulate the response of this stream to floods in the past. A comprehensive dataset of the topography and hydrology of the Lower Rio Puerco since the 1920s is used to reproduce the morphology of the arroyo at multiple points in time, and historical descriptions serve to extrapolate these into the 19th century. We test the sensitivity of the reconstructed landscapes to changes in peak discharge, sediment supply, and the distribution and characteristics of vegetation in order to determine the relative influence of each forcing in the evolution of the stream, and to understand how the interactions of different processes could drive its progression through the arroyo cycle.

  20. Preliminary aseismic analysis on bolts of driving mechanism in absorption sphere shutdown system

    International Nuclear Information System (INIS)

    Chen Feng; Li Tianjin; Zhang Zhengming; Huang Zhiyong; Bo Hanliang

    2012-01-01

    The absorption sphere shutdown system performs an important role in reactivity regulating and control. Driving mechanism is a set of key mechanical moving parts which is used to control falling of absorption spheres in absorption sphere shutdown system. It is about 5 m for driving mechanism with the slim structure, which is connected with the upper supported plate of metal reactor internals through storage vessel with bolts. Both the storage vessel and driving mechanism are equipment of seismic classification I. It is significant to calculate and check the bolts strength of driving mechanism. In this paper, complicate structure of driving mechanism was simplified to three variable cross sections and statically indeterminate problem was solved. The bolts at the bottom and on the top of the storage vessel were calculated and checked. The preliminary results indicate that the bolts strength is reliable and safe, and the supporting force at the most weak point of driving mechanism is as well obtained. (authors)

  1. A roller chain drive model including contact with guide-bars

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard; Hansen, John Michael; Ambrósio, J. A. C.

    2004-01-01

    A model of a roller chain drive is developed and applied to the simulation and analysis of roller chain drives of large marine diesel engines. The model includes the impact with guide-bars that are the motion delimiter components on the chain strands between the sprockets. The main components...... and the sprocket centre, i.e. a constraint is added when such distance is less than the pitch radius. The unilateral kinematic constraint is removed when its associated constraint reaction force, applied on the roller, is in the direction of the root of the sprocket teeth. In order to improve the numerical...

  2. Time evolution of quenched state and correlation to glassy effects

    International Nuclear Information System (INIS)

    Kilic, K.; Kilic, A.; Altinkok, A.; Yetis, H.; Cetin, O.; Durust, Y.

    2005-01-01

    In this work, dynamic changes generated by the driving current were studied in superconducting bulk polycrystalline YBCO sample via transport relaxation measurements (V-t curves). The evolution of nonlinear V-t curves was interpreted in terms of the formation of resistive and nonresistive flow channels and the spatial reorganization of the transport current in a multiply connected network of weak-link structure. The dynamic re-organization of driving current could cause an enhancement or suppression in the superconducting order parameter due to the magnitude of the driving current and coupling strength of weak-link structure along with the chemical and anisotropic states of the sample as the time proceeds. A nonzero voltage decaying with time, correlated to the quenched state, was recorded when the magnitude of initial driving current is reduced to a finite value. It was found that, after sufficiently long waiting time, the evolution of the quenched state could result in a superconducting state, depending on the magnitude of the driving current and temperature. We showed that the decays in voltage over time are consistent with an exponential time dependence which is related to the glassy state. Further, the effect of doping of organic material Bis dimethyl-glyoximato Copper (II) to YBCO could be monitored apparently via the comparison of the V-t curves corresponding to doped and undoped YBCO samples

  3. Chaos and the (un)predictability of evolution in a changing environment.

    Science.gov (United States)

    Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel

    2018-02-01

    Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  4. Evolution of embryonic developmental period in the marine bird families Alcidae and Spheniscidae: roles for nutrition and predation?

    Science.gov (United States)

    Hipfner, J Mark; Gorman, Kristen B; Vos, Rutger A; Joy, Jeffrey B

    2010-06-14

    Nutrition and predation have been considered two primary agents of selection important in the evolution of avian life history traits. The relative importance of these natural selective forces in the evolution of avian embryonic developmental period (EDP) remain poorly resolved, perhaps in part because research has tended to focus on a single, high taxonomic-level group of birds: Order Passeriformes. The marine bird families Alcidae (auks) and Spheniscidae (penguins) exhibit marked variation in EDP, as well as behavioural and ecological traits ultimately linked to EDP. Therefore, auks and penguins provide a unique opportunity to assess the natural selective basis of variation in a key life-history trait at a low taxonomic-level. We used phylogenetic comparative methods to investigate the relative importance of behavioural and ecological factors related to nutrition and predation in the evolution of avian EDP. Three behavioural and ecological variables related to nutrition and predation risk (i.e., clutch size, activity pattern, and nesting habits) were significant predictors of residual variation in auk and penguin EDP based on models predicting EDP from egg mass. Species with larger clutch sizes, diurnal activity patterns, and open nests had significantly shorter EDPs. Further, EDP was found to be longer among birds which forage in distant offshore waters, relative to those that foraged in near shore waters, in line with our predictions, but not significantly so. Current debate has emphasized predation as the primary agent of selection driving avian life history diversification. Our results suggest that both nutrition and predation have been important selective forces in the evolution of auk and penguin EDP, and highlight the importance of considering these questions at lower taxonomic scales. We suggest that further comparative studies on lower taxonomic-level groups will continue to constructively inform the debate on evolutionary determinants of avian EDP, as

  5. Cognition and the evolution of camouflage.

    Science.gov (United States)

    Skelhorn, John; Rowe, Candy

    2016-02-24

    Camouflage is one of the most widespread forms of anti-predator defence and prevents prey individuals from being detected or correctly recognized by would-be predators. Over the past decade, there has been a resurgence of interest in both the evolution of prey camouflage patterns, and in understanding animal cognition in a more ecological context. However, these fields rarely collide, and the role of cognition in the evolution of camouflage is poorly understood. Here, we review what we currently know about the role of both predator and prey cognition in the evolution of prey camouflage, outline why cognition may be an important selective pressure driving the evolution of camouflage and consider how studying the cognitive processes of animals may prove to be a useful tool to study the evolution of camouflage, and vice versa. In doing so, we highlight that we still have a lot to learn about the role of cognition in the evolution of camouflage and identify a number of avenues for future research. © 2016 The Author(s).

  6. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. H.; Choi, S.; Park, J. S.; Lee, J. S.; Kim, D. O.; Hur, N. S.; Hur, H.; Yu, J. Y

    2008-09-15

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device.

  7. Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case.

    Science.gov (United States)

    Ebeling, Daniel; Solares, Santiago D

    2013-01-01

    We present an overview of the bimodal amplitude-frequency-modulation (AM-FM) imaging mode of atomic force microscopy (AFM), whereby the fundamental eigenmode is driven by using the amplitude-modulation technique (AM-AFM) while a higher eigenmode is driven by using either the constant-excitation or the constant-amplitude variant of the frequency-modulation (FM-AFM) technique. We also offer a comparison to the original bimodal AFM method, in which the higher eigenmode is driven with constant frequency and constant excitation amplitude. General as well as particular characteristics of the different driving schemes are highlighted from theoretical and experimental points of view, revealing the advantages and disadvantages of each. This study provides information and guidelines that can be useful in selecting the most appropriate operation mode to characterize different samples in the most efficient and reliable way.

  8. Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at 'Evolution Canyon', Mount Carmel, Israel.

    Science.gov (United States)

    Yang, Zujun; Zhang, Tao; Bolshoy, Alexander; Beharav, Alexander; Nevo, Eviatar

    2009-05-01

    'Evolution Canyon' (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unravelling evolution in action highlighting the twin evolutionary processes of adaptation and speciation. A major model organism in ECI is wild barley, Hordeum spontaneum, the progenitor of cultivated barley, which displays dramatic interslope adaptive and speciational divergence on the 'African' dry slope (AS) and the 'European' humid slope (ES), separated on average by 200 m. Here we examined interslope single nucleotide polymorphism (SNP) sequences and the expression diversity of the drought resistant dehydrin 1 gene (Dhn1) between the opposite slopes. We analysed 47 plants (genotypes), 4-10 individuals in each of seven stations (populations) in an area of 7000 m(2), for Dhn1 sequence diversity located in the 5' upstream flanking region of the gene. We found significant levels of Dhn1 genic diversity represented by 29 haplotypes, derived from 45 SNPs in a total of 708 bp sites. Most of the haplotypes, 25 out of 29 (= 86.2%), were represented by one genotype; hence, unique to one population. Only a single haplotype was common to both slopes. Genetic divergence of sequence and haplotype diversity was generally and significantly different among the populations and slopes. Nucleotide diversity was higher on the AS, whereas haplotype diversity was higher on the ES. Interslope divergence was significantly higher than intraslope divergence. The applied Tajima D rejected neutrality of the SNP diversity. The Dhn1 expression under dehydration indicated interslope divergent expression between AS and ES genotypes, reinforcing Dhn1 associated with drought resistance of wild barley at 'Evolution Canyon'. These results are inexplicable by mutation, gene flow, or chance effects, and support adaptive natural microclimatic selection as the major evolutionary divergent driving force.

  9. Identifying Method of Drunk Driving Based on Driving Behavior

    Directory of Open Access Journals (Sweden)

    Xiaohua Zhao

    2011-05-01

    Full Text Available Drunk driving is one of the leading causes contributing to traffic crashes. There are numerous issues that need to be resolved with the current method of identifying drunk driving. Driving behavior, with the characteristic of real-time, was extensively researched to identify impaired driving behaviors. In this paper, the drives with BACs above 0.05% were defined as drunk driving state. A detailed comparison was made between normal driving and drunk driving. The experiment in driving simulator was designed to collect the driving performance data of the groups. According to the characteristics analysis for the effect of alcohol on driving performance, seven significant indicators were extracted and the drunk driving was identified by the Fisher Discriminant Method. The discriminant function demonstrated a high accuracy of classification. The optimal critical score to differentiate normal from drinking state was found to be 0. The evaluation result verifies the accuracy of classification method.

  10. Advanced remotely maintainable force-reflecting servomanipulator concept

    International Nuclear Information System (INIS)

    Kuban, D.P.; Martin, H.L.

    1984-01-01

    A remotely maintainable force-reflecting servomanipulator concept is being developed at the Oak Ridge National Laboratory as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world. 10 references, 4 figures, 1 table

  11. Numerical modeling of lower hybrid heating and current drive

    International Nuclear Information System (INIS)

    Valeo, E.J.; Eder, D.C.

    1986-03-01

    The generation of currents in toroidal plasma by application of waves in the lower hybrid frequency range involves the interplay of several physical phenomena which include: wave propagation in toroidal geometry, absorption via wave-particle resonances, the quasilinear generation of strongly nonequilibrium electron and ion distribution functions, and the self-consistent evolution of the current density in such a nonequilibrium plasma. We describe a code, LHMOD, which we have developed to treat these aspects of current drive and heating in tokamaks. We present results obtained by applying the code to a computation of current ramp-up and to an investigation of the possible importance of minority hydrogen absorption in a deuterium plasma as the ''density limit'' to current drive is approached

  12. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces.

    Science.gov (United States)

    Huang, Guanxing; Zhang, Ming; Liu, Chunyan; Li, Liangping; Chen, Zongyu

    2018-09-01

    Urbanization and industrialization have increased groundwater resource demands, and may drive the change of heavy metal(loid)s and organic chemicals in groundwater in the Pearl River Delta (PRD), southern China. Thus, a comprehensive understanding of the distributions, sources, and driving forces of heavy metal(loid)s and organic chemicals in groundwater in the PRD is vital for water resource management in this region. In this study, eight heavy metal(loid)s and fifty-five organic chemicals in groundwater across the PRD were investigated. The results show that undrinkable groundwater related to heavy metal(loid)s was mainly due to high concentrations of Fe (19.3%) and As (6.8%). Eighteen organic contaminants were detected in groundwater in the PRD, where the most frequently detected organic contaminant was naphthalene, and its detection rate was 2.51%. In 5.3% of all groundwater samples, one or more organic contaminants were found. All detected organic contaminants, except ones without allowable limits, in groundwater were at concentrations below allowable limits of China. The mean concentrations of heavy metal(loid)s in granular aquifers were higher than those in fissured and karst aquifers, especially for Fe and As. Except Se, the mean concentrations of other heavy metal(loid)s and the frequency of detection of organic contaminants in groundwater in urbanized and peri-urban areas were higher than those in non-urbanized areas, especially for Hg, Co, and organic contaminants. Fe, As, and Se in groundwater mainly originated from the release of Fe/As/Se rich sediments. The former two were driven by reduction reactions, while the latter was driven by oxidation resulting from the infiltration of NO 3 - . In contrast, other five heavy metal(loid)s and organic contaminants in groundwater mainly originated from the anthropogenic sources, such as the infiltration of industrial sewage. It is evident that urbanization and industrialization are two powerful driving forces for

  13. Modeling human-water-systems: towards a comprehensive and spatially distributed assessment of co-evolutions for river basins in Central Europe

    Directory of Open Access Journals (Sweden)

    P. Krahe

    2016-05-01

    Full Text Available In the context of river basin and flood risk management there is a growing need to improve the understanding of and the feedbacks between the driving forces “climate and socio-economy” and water systems. We make use of a variety of data resources to illustrate interrelationships between different constituents of the human-water-systems. Taking water storage for energy production as an example we present a first analysis on the co-evolution of socio-economic and hydrological indicators. The findings will serve as for the development of conceptual, but fully coupled socio-hydrological models for selected sectors and regions. These models will be used to generate integrated scenarios of the climate and socio-economic change.

  14. Electromagnetic analysis of locking device for SMART control element drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Kim, J. I.; Kim, J. H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-01

    A numerical electromagnetic analysis was performed for the control rod locking device which is installed in the control element drive mechanism of integral reactor, SMART. A plunger model for the electromagnetic analysis of the locking device was developed and theoretical bases for the model were established. Design parameters related to plunger pushing force were identified, and the optimum design point was determined by analysing the trend of the plunger pushing force with finite element method. 8 refs., 22 figs., 2 tabs. (Author)

  15. Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Markussen, Trine; Marvig, Rasmus Lykke; Gómez Lozano, María

    2014-01-01

    Within-host pathogen evolution and diversification during the course of chronic infections is of importance in relation to therapeutic intervention strategies, yet our understanding of these processes is limited. Here, we investigate intraclonal population diversity in P. aeruginosa during chronic...

  16. Particle force model effects in a shock-driven multiphase instability

    Science.gov (United States)

    Black, W. J.; Denissen, N.; McFarland, J. A.

    2018-05-01

    This work presents simulations on a shock-driven multiphase instability (SDMI) at an initial particle volume fraction of 1% with the addition of a suite of particle force models applicable in dense flows. These models include pressure-gradient, added-mass, and interparticle force terms in an effort to capture the effects neighboring particles have in non-dilute flow regimes. Two studies are presented here: the first seeks to investigate the individual contributions of the force models, while the second study focuses on examining the effect of these force models on the hydrodynamic evolution of a SDMI with various particle relaxation times (particle sizes). In the force study, it was found that the pressure gradient and interparticle forces have little effect on the instability under the conditions examined, while the added-mass force decreases the vorticity deposition and alters the morphology of the instability. The relaxation-time study likewise showed a decrease in metrics associated with the evolution of the SDMI for all sizes when the particle force models were included. The inclusion of these models showed significant morphological differences in both the particle and carrier species fields, which increased as particle relaxation times increased.

  17. Evolution of Soviet Theater Nuclear Forces

    International Nuclear Information System (INIS)

    Atkeson, E.B.

    1994-01-01

    Soviet theater nuclear forces were a major pillar of Soviet superpower strength, rising sharply under Krushchev in the latter 1950s to their zenith under Brezhnev twenty years later. Most recently they have begun their decline under Gorbachev, and while not yet facing extinction, may be headed for a much reduced role under the new thinking in the USSR. This paper deals with the Soviet TNF in six periods of their life: The Post-war Stalin Period (1945-1953), the Post-Stalin Period (1953-1955), The Transition Period (1955-1959), The Period of Nuclear Revolution (1960-1964), The Period of Modern TNF Planning (1965-1980), and The Period of Non-nuclear Planning (1980-1987)

  18. Estimation of the neural drive to the muscle from surface electromyograms

    Science.gov (United States)

    Hofmann, David

    Muscle force is highly correlated with the standard deviation of the surface electromyogram (sEMG) produced by the active muscle. Correctly estimating this quantity of non-stationary sEMG and understanding its relation to neural drive and muscle force is of paramount importance. The single constituents of the sEMG are called motor unit action potentials whose biphasic amplitude can interfere (named amplitude cancellation), potentially affecting the standard deviation (Keenan etal. 2005). However, when certain conditions are met the Campbell-Hardy theorem suggests that amplitude cancellation does not affect the standard deviation. By simulation of the sEMG, we verify the applicability of this theorem to myoelectric signals and investigate deviations from its conditions to obtain a more realistic setting. We find no difference in estimated standard deviation with and without interference, standing in stark contrast to previous results (Keenan etal. 2008, Farina etal. 2010). Furthermore, since the theorem provides us with the functional relationship between standard deviation and neural drive we conclude that complex methods based on high density electrode arrays and blind source separation might not bear substantial advantages for neural drive estimation (Farina and Holobar 2016). Funded by NIH Grant Number 1 R01 EB022872 and NSF Grant Number 1208126.

  19. Self-rated driving and driving safety in older adults.

    Science.gov (United States)

    Ross, Lesley A; Dodson, Joan E; Edwards, Jerri D; Ackerman, Michelle L; Ball, Karlene

    2012-09-01

    Many U.S. states rely on older adults to self-regulate their driving and determine when driving is no longer a safe option. However, the relationship of older adults' self-rated driving in terms of actual driving competency outcomes is unclear. The current study investigates self-rated driving in terms of (1) systematic differences between older adults with high (good/excellent) versus low (poor/fair/average) self-ratings, and (2) the predictive nature of self-rated driving to adverse driving outcomes in older adults (n=350; mean age 73.9, SD=5.25, range 65-91). Adverse driving outcomes included self-reported incidences of (1) being pulled over by the police, (2) receiving a citation, (3) receiving a recommendation to cease or limit driving, (4) crashes, and (5) state-reported crashes. Results found that older drivers with low self-ratings reported more medical conditions, less driving frequency, and had been given more suggestions to stop/limit their driving; there were no other significant differences between low and high self-raters. Logistic regression revealed older drivers were more likely to have a state-reported crash and receive a suggestion to stop or limit driving. Men were more likely to report all adverse driving outcomes except for receiving a suggestion to stop or limit driving. Regarding self-rated driving, older adults with high ratings were 66% less likely (OR=0.34, 95% CI=0.14-0.85) to have received suggestions to limit or stop driving after accounting for demographics, health and driving frequency. Self-ratings were not predictive of other driving outcomes (being pulled over by the police, receiving a citation, self-reported crashes, or state-reported crashes, ps>0.05). Most older drivers (85.14%) rated themselves as either good or excellent drivers regardless of their actual previous citation or crash rates. Self-rated driving is likely not related to actual driving proficiency as indicated by previous crash involvement in older adults

  20. Conceptual Design Study on Electromagnets of Control Rod Drive Mechanism of a SFR

    International Nuclear Information System (INIS)

    Lee, Jaehan; Koo, Gyeonghoi

    2013-01-01

    The prototype SFR has six primary control rod assemblies(CRAs) and three secondary shutdown assemblies. The primary control system is used for power control, burnup compensation and reactor shutdown in response to demands from the plant control or protection systems. This paper describes the design concept of primary control rod drive mechanism shortly, and performs the parametric design studies for the electromagnet device of the drive mechanism to maximize CRA gripping force. The electromagnetic core usually confines and guides the magnetic field. The major parameters influenced on the electromagnetic force are the geometry and arrangement of the electromagnet and armature for a given coil specification. A typical equation calculating the electromagnetic force for a solenoid type is represented in equation. The first one is the increasing of the flux cross section area (Α c , Α g ) in magnetic field connecting of air gap, armature and electromagnets. Secondly, the reducing of the path lengths (l c , l g ) of the armature and electromagnet makes the magnetic flux (Β) resistance to be low. An electromagnet field analyses are performed for the initial design values of the electromagnet device. The gripping force is about 3 times of CRA weight when one coil is power on. The parametric studies on air gap, core sizes configuring of the electromagnet cores are performed to maximize the electromagnetic force

  1. The Drive-Wise Project: Driving Simulator Training increases real driving performance in healthy older drivers

    Directory of Open Access Journals (Sweden)

    Gianclaudio eCasutt

    2014-05-01

    Full Text Available Background: Age-related cognitive decline is often associated with unsafe driving behavior. We hypothesized that 10 active training sessions in a driving simulator increase cognitive and on-road driving performance. In addition, driving simulator training should outperform cognitive training.Methods: Ninety-one healthy active drivers (62 – 87 years were randomly assigned to either (1 a driving simulator training group, (2 an attention training group (vigilance and selective attention, or (3 a control group. The main outcome variables were on-road driving and cognitive performance. Seventy-seven participants (85% completed the training and were included in the analyses. Training gains were analyzed using a multiple regression analysis with planned comparisons.Results: The driving simulator training group showed an improvement in on-road driving performance compared to the attention training group. In addition, both training groups increased cognitive performance compared to the control group. Conclusion: Driving simulator training offers the potential to enhance driving skills in older drivers. Compared to the attention training, the simulator training seems to be a more powerful program for increasing older drivers’ safety on the road.

  2. Heisenberg equation for a nonrelativistic particle on a hypersurface: From the centripetal force to a curvature induced force

    Directory of Open Access Journals (Sweden)

    D. K. Lian

    2017-12-01

    Full Text Available In classical mechanics, a nonrelativistic particle constrained on an N − 1 curved hypersurface embedded in N flat space experiences the centripetal force only. In quantum mechanics, the situation is totally different for the presence of the geometric potential. We demonstrate that the motion of the quantum particle is ”driven” by not only the centripetal force, but also a curvature induced force proportional to the Laplacian of the mean curvature, which is fundamental in the interface physics, causing curvature driven interface evolution.

  3. Marshall's disciples: Knowledge and innovation driving regional economic development and growth

    NARCIS (Netherlands)

    Werker, C.; Athreye, S.

    2004-01-01

    Studies of knowledge and innovation as driving forces of regional development and growth offer a myriad of approaches. Here, questions asked, methods used and answers given are manifold. In our overview, we cover recent developments in this research area. Moreover, we explore the question as to the

  4. Electrical drives for direct drive renewable energy systems

    CERN Document Server

    Mueller, Markus

    2013-01-01

    Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and a...

  5. Self-rated Driving and Driving Safety in Older Adults

    OpenAIRE

    Ross, Lesley A.; Dodson, Joan; Edwards, Jerri D.; Ackerman, Michelle L.; Ball, Karlene

    2012-01-01

    Many U.S. states rely on older adults to self-regulate their driving and determine when driving is no longer a safe option. However, the relationship of older adults’ self-rated driving in terms of actual driving competency outcomes is unclear. The current study investigates self-rated driving in terms of (1) systematic differences between older adults with high (good/excellent) versus low (poor/fair/average) self-ratings, and (2) the predictive nature of self-rated driving to adverse driving...

  6. The Evolution of the Coastal Economy: The Role of Working Waterfronts in the Alabama Gulf Coast

    Directory of Open Access Journals (Sweden)

    Yaoqi Zhang

    2015-04-01

    Full Text Available This article describes the evolution of the coastal economy in Alabama and examines the driving forces of the sustainable economy in a historical context. The input-output model was applied to assess the direct and secondary effects of output and employment in the coastal region. Results suggest that state industries are heavily dependent on waterfront-related activities in this area, which have fueled much of their rapid development in the past few decades. Tourism, ship building and repairing and transportation are the three dominating sources contributing to the coastal economy. There are a few general problems of working waterfronts in the coastal Alabama area, but there are also some unique problems (e.g., Hurricane Katrina, Deepwater Horizon oil spill. Policies for future sustainable development are proposed.

  7. The Effect on Teenage Risky Driving of Feedback From a Safety Monitoring System: A Randomized Controlled Trial

    Science.gov (United States)

    Bingham, C. Raymond; Ouimet, Marie Claude; Pradhan, Anuj; Chen, Rusan; Barretto, Andrea; Shope, Jean

    2012-01-01

    Purpose Teenage risky driving may be due to teenagers not knowing what is risky, preferring risk, or the lack of consequences. Elevated gravitational-force (g-force) events, caused mainly by hard braking and sharp turns, provide a valid measure of risky driving and are the target of interventions using in-vehicle data recording and feedback devices. The effect of two forms of feedback about risky driving events to teenagers only or to teenagers and their parents was tested in a randomized controlled trial. Methods Ninety parent-teen dyads were randomized to one of two groups: (1) immediate feedback to teens (Lights Only); or (2) immediate feedback to teens plus family access to event videos and ranking of the teen relative to other teenage drivers (Lights Plus). Participants’ vehicles were instrumented with data recording devices and events exceeding 0.5 g were assessed for two weeks of baseline and 13 weeks of feedback. Results Growth analysis with random slopes yielded a significant decrease in event rates for the Lights Plus group (slope = −.11, p teenagers did not. Implications and Contribution Reducing elevated g-force events due to hard stops and sharp turns could reduce crash rates among novice teenage drivers. Using materials from the DriveCam For Families Program we found that feedback to both teens and parents significantly reduced rates, while feedback only to teens did not. PMID:23375825

  8. Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo

    Science.gov (United States)

    Torday, John S.; Rehan, V. K.

    2009-01-01

    Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such

  9. Note: A rigid piezo motor with large output force and an effective method to reduce sliding friction force.

    Science.gov (United States)

    Guo, Ying; Hou, Yubin; Lu, Qingyou

    2014-05-01

    We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope.

  10. On the Dynamics of Rocking Motion of the Hard-Disk Drive Spindle Motor System

    Science.gov (United States)

    Wang, Joseph

    Excessive rocking motion of the spindle motor system can cause track misregistration resulting in poor throughput or even drive failure. The chance of excessive disk stack rocking increases as a result of decreasing torsional stiffness of spindle motor bearing system due to the market demand for low profile hard drives. As the track density increases and the vibration specification becomes increasingly stringent, rocking motion of a spindle motor system deserves even more attention and has become a primary challenge for a spindle motor system designer. Lack of understanding of the rocking phenomenon combined with misleading paradox has presented a great difficulty in the effort of avoiding the rocking motion in the hard-disk drive industry. This paper aims to provide fundamental understanding of the rocking phenomenon of a rotating spindle motor system, to clarify the paradox in disk-drive industry and to provide a design guide to an optimized spindle system. This paper, theoretically and experimentally, covers a few important areas of industrial interest including the prediction of rocking natural frequencies and mode shape of a rotating spindle, free vibration, and frequency response under common forcing functions such as rotating and fixed-plane forcing functions. The theory presented here meets with agreeable experimental observation.

  11. Differential paralog divergence modulates genome evolution across yeast species.

    Directory of Open Access Journals (Sweden)

    Monica R Sanchez

    2017-02-01

    Full Text Available Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200-500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution.

  12. Air Bag Momentum Force Including Aspiration

    Directory of Open Access Journals (Sweden)

    Guy Nusholtz

    1995-01-01

    Full Text Available A gas-jet momentum force drives the air bag into position during a crash. The magnitude of this force can change as a result of aspiration. To determine the potential magnitude of the effect on the momentum force and mass flow rate in an aspirated system, a series of experiments and simulations of those experiments was conducted. The simulation consists of a two-dimensional unsteady isentropic CFD model with special “infinite boundaries”. One of the difficulties in simulating the gas-jet behavior is determining the mass flow rate. To improve the reliability of the mass flow rate input to the simulation, a sampling procedure involving multiple tests was used, and an average of the tests was adopted.

  13. Analysis of national pay-as-you-drive insurance systems and other variable driving charges

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.

    1995-07-01

    Under Pay as You Drive insurance (PAYD), drivers would pay part of their automobile insurance premium as a per-gallon surcharge every time they filled their gas tank. By transfering a portion of the cost of owning a vehicle from a fixed cost to a variable cost, PAYD would discourage driving. PAYD has been proposed recently in California as a means of reforming how auto insurance is provided. PAYD proponents claim that, by forcing drivers to purchase at least part of their insurance every time they refuel their car, PAYD would reduce or eliminate the need for uninsured motorist coverage. Some versions of PAYD proposed in California have been combined with a no-fault insurance system, with the intention of further reducing premiums for the average driver. Other states have proposed PAYD systems that would base insurance premiums on annual miles driven. In this report we discuss some of the qualitative issues surrounding adoption of PAYD and other policies that would convert other fixed costs of driving (vehicle registration, safety/emission control system inspection, and driver license renewal) to variable costs. We examine the effects of these policies on two sets of objectives: objectives related to auto insurance reform, and those related to reducing fuel consumption, CO{sub 2} emissions, and vehicle miles traveled. We pay particular attention to the first objective, insurance reform, since this has generated the most interest in PAYD to date, at least at the state level.

  14. Stability diagram for the forced Kuramoto model.

    Science.gov (United States)

    Childs, Lauren M; Strogatz, Steven H

    2008-12-01

    We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillators in the population try to synchronize with one another while also trying to lock onto an external drive. Previous work on the forced Kuramoto model uncovered two main types of attractors, called forced entrainment and mutual entrainment, but the details of the bifurcations between them were unclear. Here we present a complete bifurcation analysis of the model for a special case in which the infinite-dimensional dynamics collapse to a two-dimensional system. Exact results are obtained for the locations of Hopf, saddle-node, and Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking resemblance to that for the weakly nonlinear forced van der Pol oscillator.

  15. Research of Driving Circuit in Coaxial Induction Coilgun

    Directory of Open Access Journals (Sweden)

    Yadong Zhang

    2013-09-01

    Full Text Available Power supply is crucial equipment in coaxial induction coil launcher.Configuration of the driving circuit influences the efficiency of the coil launcher directly.This paper gives a detailed analysis of the properties of the driving circuit construction based on the capacitor source. Three topologies of the driving circuit are compared including oscillation circuit, crowbar circuit and half-wave circuit. It is proved that which circuit has the better efficiency depends on the detailed parameters of the experiment, especially the crowbar resistance. Crowbar resistor regulates not only efficiency of the system, but also temperature rise of the coil. Electromagnetic force (EMF applied on the armature will be another question which influences service condition of the driving circuits. Oscillation circuit and crowbar circuit should apply to the asynchronous induction coil launcher and synchronous induction coil launcher, respectively. Half-wave circuit is seldom used in the experiment. Although efficiency of the half-wave circuit is very high, the speed of the armature is low. A simple independent half-wave circuit is suggested in this paper. Generally speaking, the comprehensive property of crowbar circuit is the most practical in the three typical circuits. Conclusions of the paper could provide guidelines for practice.

  16. Design considerations for permanent magnet direct drive generators for wind energy applications

    NARCIS (Netherlands)

    Jassal, A.K.; Polinder, H.; Damen, M.E.C.; Versteegh, K.

    2012-01-01

    Permanent Magnet Direct Drive (PMDD) generators offer very high force density, high efficiency and low number of components. Due to these advantages, PMDD generators are getting popular in the wind energy industry especially for offshore application. Presence of permanent magnets gives magnetic

  17. The Prandtl-Tomlinson model of friction with stochastic driving

    Science.gov (United States)

    Jagla, E. A.

    2018-01-01

    We consider the classical Prandtl-Tomlinson model of a particle moving on a corrugated potential, pulled by a spring. In the usual situation in which pulling acts at constant velocity \\dotγ , the model displays an average friction force σ that relates to \\dotγ (for small \\dotγ) as \\dotγ˜ (σ-σ_c){\\hspace{0pt}}^β , where σc is a critical friction force. The possible values of β are well known in terms of the analytical properties of the corrugated potential. We study here the situation in which the pulling has, in addition to the constant velocity term, a stochastic term of mechanical origin. We analytically show how this term modifies the force-velocity dependence close to the critical force, and give the value of β in terms of the analytical properties of the corrugation potential and the scaling properties of the stochastic driving, encoded in the value of its Hurst exponent.

  18. Examination of China’s performance and thematic evolution in quantum cryptography research using quantitative and computational techniques

    Science.gov (United States)

    2018-01-01

    This study performed two phases of analysis to shed light on the performance and thematic evolution of China’s quantum cryptography (QC) research. First, large-scale research publication metadata derived from QC research published from 2001–2017 was used to examine the research performance of China relative to that of global peers using established quantitative and qualitative measures. Second, this study identified the thematic evolution of China’s QC research using co-word cluster network analysis, a computational science mapping technique. The results from the first phase indicate that over the past 17 years, China’s performance has evolved dramatically, placing it in a leading position. Among the most significant findings is the exponential rate at which all of China’s performance indicators (i.e., Publication Frequency, citation score, H-index) are growing. China’s H-index (a normalized indicator) has surpassed all other countries’ over the last several years. The second phase of analysis shows how China’s main research focus has shifted among several QC themes, including quantum-key-distribution, photon-optical communication, network protocols, and quantum entanglement with an emphasis on applied research. Several themes were observed across time periods (e.g., photons, quantum-key-distribution, secret-messages, quantum-optics, quantum-signatures); some themes disappeared over time (e.g., computer-networks, attack-strategies, bell-state, polarization-state), while others emerged more recently (e.g., quantum-entanglement, decoy-state, unitary-operation). Findings from the first phase of analysis provide empirical evidence that China has emerged as the global driving force in QC. Considering China is the premier driving force in global QC research, findings from the second phase of analysis provide an understanding of China’s QC research themes, which can provide clarity into how QC technologies might take shape. QC and science and technology

  19. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles.

    Science.gov (United States)

    Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.

  20. Development of a shear force measurement dummy for seat comfort.

    Directory of Open Access Journals (Sweden)

    Seong Guk Kim

    Full Text Available Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%. The dummy is manufactured in compliance with the SAE standards (SAE J826 and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  1. Introducing time delay in the evolution of new technology: the case study of nanotechnology

    Science.gov (United States)

    Georgalis, Evangelos E.; Aifantis, Elias C.

    2013-12-01

    Starting with Feynman's "There's Plenty of Room at the Bottom" prophetic lecture at Caltech in the 1960s, the term "nanotechnology" was first coined in the scientific literature in the 1980s. This was followed by the unprecedented growth in the corresponding scientific field in 2000 due to the financial incentive provided by President Clinton in the US, followed up by similar efforts in Europe, Japan, China and Russia. Today, nanotechnology has become a driving force for economic development, with applications in all fields of engineering, information technology, transport and energy, as well as biology and medicine. Thus, it is important to forecast its future growth and evolution on the basis of two different criteria: (1) the government and private capital invested in related activities, and (2) the number of scientific publications and popular articles dedicated to this field. This article aims to extract forecasts on the evolution of nanotechnology, using the standard logistic equation that result in familiar sigmoid curves, as well as to explore the effect of time delay on its evolution. Time delay is commonly known from previous biological and ecological models, in which time lag is either already known or can be experimentally measured. In contrast, in the case of a new technology, we must first define the method for determining time delay and then interpret its existence and role. Then we describe the implications that time delay may have on the stability of the sigmoidal behavior of nanotechnology evolution and on the related oscillations that may appear.

  2. Driving forces in energy-related CO2 emissions in south and east coastal China: commonality and variations

    Science.gov (United States)

    Gao, C.; Liu, Y.; Jin, J.; Wei, T.

    2015-12-01

    East and south coastal China contributes to respectively about 30% and 8% of CO2 emissions in China and the world, and therefore play a critical role in achieving the national goal of emission reduction to mitigate the global warming. It also serves as a benchmark for the less developed regions of China, in terms of achieving the developed world's human development standard under lower per capita emissions. We analyze the driving forces of emissions in this region and their provincial characteristics by applying the Logarithmic Mean Divisia Index method. Our findings show that emissions have been doubled during the period from 2000 to 2012, along with three and two folds increase in economy and energy consumption, respectively. This suggests a persistent lock between economic growth and emissions, even in this socioeconomically advanced region in China. Provincial difference in annual emission growth reveals three distinguished low-carbon developmental stages, owning mainly to the effectiveness of energy efficiency in reducing emission growth. This may explain why previous climate policies have aimed to reduce carbon intensity. These results indicate that targeted measures on enhancing energy efficiency in the short term and de-carbonization of both the economic and energy structure in the long term can lower the emission growth more effectively and efficiently. They also suggest that factor-driven emission reduction strategies and policies are needed in the geographically and socioeconomically similar regions.

  3. What drives innovation in renewable energy technology? Evidence based on patent counts

    Science.gov (United States)

    McCormick, Jesse

    America's future economic growth and international competitiveness depend on our capacity to innovate, particularly in emerging global markets. This paper analyzes the forces that drive innovation in one such market, renewable energy technologies, utilizing the theory of induced technological innovation. Specifically, this paper operationalizes the determinants of innovation to consist of: 1) private market forces, 2) public policy that influences price and market size, and 3) public policy that catalyzes R&D investment. Analysis is conducted using a negative binomial regression to determine which of the three foundational determinants has the greatest impact on renewable energy innovation. In so doing this paper builds off of work conducted by Johnstone et al. (2010). Innovation is measured using European Patent Office data on a panel of 24 countries spanning the period from 1978-2005. The implications of this study are straightforward; policies, not market forces, are responsible for driving innovation in renewable energy technologies. Market-oriented policies are effective for mature technologies, particularly hydro, and to a lesser extent wind and solar power. R&D-oriented policy is effective for a broader technology set. In short, the United States needs a comprehensive policy environment to support renewable energy innovation; market forces alone will not provide the pace and breadth of innovations needed. That environment can and should be strategically targeted, however, to effectively allocate scare resources.

  4. FEDERAL SUPPORT OF SCIENTIFIC INQUIRY IN THE UNITED STATES: CURRENT EVOLUTION UNDER THE POLITICAL STRUGGLE

    Directory of Open Access Journals (Sweden)

    I. A. Istomin

    2016-01-01

    Full Text Available 2000’s and 2010’s witnessed diminishing margin of the United States in science and technology. Meanwhile, the U.S. remains a clear leader in this fi eld. Major driving force of the country’s success in the second half of the ХХ century remained assertive federal science policy. The article seeks to identify major trends in evolution of the U.S. science policy and the reasons behind relative decline of the level of budget support of the scientifi c research. The author studies evolution of the policies of George Bush and Barack Obama, as well as the views of Democrats and Republicans in the House of Representatives and the Senate. The article also examines the input into the federal policy of the governmental bodies, which are directly responsible for its implementation, as well as non-governmental organizations, which seek to advocate interests of scientists; it studies rising competition between the executive authorities and legislators for the recognition as a major champion of the academic community as well as American Recovery and Reinvestment Act.

  5. Direct-drive inertial confinement fusion: A review

    Energy Technology Data Exchange (ETDEWEB)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McKenty, P. W.; Myatt, J. F.; Short, R. W.; Skupsky, S.; Theobald, W.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); and others

    2015-11-15

    The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline

  6. Direct-drive inertial confinement fusion: A review

    International Nuclear Information System (INIS)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McKenty, P. W.; Myatt, J. F.; Short, R. W.; Skupsky, S.; Theobald, W.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.

    2015-01-01

    The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline

  7. ASEAN-5 Passenger Car Industry Outlook: The Driving Forces, Opportunities and Challenges

    OpenAIRE

    Quek, Wu Kheng

    2010-01-01

    Global automotive industry is growing at an unprecedented speed in the past decade, primarily due to the strong and fastest growing demand from the Asian emerging economies. ASEAN-5 is an economic block with huge potential. It is an attractive alternative destination for business compare with other emerging economies. Total population is 420 million people and combined economic size of $1,355 billion in this region. ASEAN-5 countries are one of the major driving markets contributed to the rap...

  8. The new drive design (direct drive) for the main drives of the large excavators 3150 and 3750 at the LAUBAG; Das neue Antriebskonzept (Direktantrieb) an den Hauptantrieben der Grossbagger 3150/3750 in der LAUBAG

    Energy Technology Data Exchange (ETDEWEB)

    Daus, W [LAUBAG, Senftenberg (Germany); Hartmann, K [Siemens AG, Erlangen (Germany). Bereich Tagebauanlagen; Leuschner, F [FAM Buckau GmbH, Magdeburg (Germany)

    1996-09-01

    In the case of subtransient processes between the batter (stones, foreign bodies, frost) and the digging element, mechanical force effects occur as a result of the mass forces of inertia and cause increased wear on the digging element and supporting structure. These force effects cannot be further reduced by means of the mechanical solutions applied hitherto. The direct drive as a solution in this case will, above all, be further optimized in future in so far as the specification of parameters for the technical control system and practical tests to detect mechanical wear (on chains, running and sliding rails, shafts) are concerned. Problems encountered so far as regards adjustment between the direct drive with its new control characteristics and the rest of the programmed control system of the excavator occurred briefly when parameters were optimized in order to adapt the entire system of the excavator to operating requirements and specific mining conditions. (orig./HS) [Deutsch] Bei subtransienten Vorgaengen zwischen der Boeschung (Steine, Fremdkoerper, Frost) und dem Graborgan entstehen auf Grund der Traegheitsmassen mechanische Kraftwirkungen, die sich verschleissintensivierend auf Graborgan und Tragwerk auswirken. Diese Kraftwirkungen koennen mit den bisherigen mechanischen Loesungen nicht weiter verringert werden. Der Direktantrieb als Ausweg aus dieser Situation wird in Zukunft vorrangig aus der Sicht der Parametrierung technischer Regelungssysteme und der praktischen Versuche zum mechanischen Verschleiss (Ketten, Lauf- und Gleitschienen, Wellen) weiter optimiert werden. Bisher erkannte Probleme der Anpassung zwischen dem Direktantrieb mit seiner neuen Regelcharakteristik und der uebrigen Baggerprogrammsteuerung erfolgten kurzfristig durch Parameteroptimierung zur Anpassung des Gesamtsystems Bagger an die Betriebserfordernisse und spezielle Abbaubedingungen. (orig./HS)

  9. Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis

    Directory of Open Access Journals (Sweden)

    Hualin Xie

    2014-05-01

    Full Text Available The level of arable land-use intensity has important impacts on food security and rural sustainable development. Using the emergy method, we investigate the spatial disparities and driving forces of arable land-use intensity in China from 1999 to 2008 at the national, regional and provincial levels. The empirical results show that chemical fertilizer was the largest component of agricultural inputs and that agricultural diesel oil recorded the highest growth rate. The degree of heterogeneities in arable land-use intensity in China showed a decreasing trend, which resulted mainly from the differences among the eastern, northeastern, central and western regions. The regional disparities in labor, pesticides and plastic sheeting decreased from 1999 to 2008. The per capita annual net incomes of household operations and the agricultural policies had a significant positive correlation with total inputs, fertilizer inputs, pesticide inputs and agricultural plastic sheeting. In addition, the nonagricultural population had a greater impact on agricultural plastic sheeting. Finally, we suggest that there is an urgent need to focus on the effects of chemical fertilizer and pesticide inputs on the ecological environment. Agricultural support policies should be introduced for the poor agricultural production provinces.

  10. Development of a Cooperative Braking System for Front-Wheel Drive Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Di Zhao

    2018-02-01

    Full Text Available Most electric vehicles adopt cooperative braking systems that can blend friction braking torque with regenerative braking torque to achieve higher energy efficiency while maintaining a certain braking performance and driving safety. This paper presented a new cooperative regenerative braking system that contained a fully-decoupled hydraulic braking mechanism based on a modified electric stability control system. The pressure control algorithm and brake force distribution strategy were also discussed. Dynamic models of a front wheel drive electric car equipped with this system and a simulation platform with a driver model and driving cycles were established. Tests to evaluate the braking performance and energy regeneration were simulated and analyzed on this platform and the simulation results showed the feasibility and effectiveness of this system.

  11. Evolution Canyon,” a potential microscale monitor of global warming across life

    Science.gov (United States)

    Nevo, Eviatar

    2012-01-01

    Climatic change and stress is a major driving force of evolution. The effects of climate change on living organisms have been shown primarily on regional and global scales. Here I propose the “Evolution Canyon” (EC) microscale model as a potential life monitor of global warming in Israel and the rest of the world. The EC model reveals evolution in action at a microscale involving biodiversity divergence, adaptation, and incipient sympatric speciation across life from viruses and bacteria through fungi, plants, and animals. The EC consists of two abutting slopes separated, on average, by 200 m. The tropical, xeric, savannoid, “African” south-facing slope (AS = SFS) abuts the forested “European” north-facing slope (ES = NFS). The AS receives 200–800% higher solar radiation than the ES. The ES represents the south European forested maquis. The AS and ES exhibit drought and shade stress, respectively. Major adaptations on the AS are because of solar radiation, heat, and drought, whereas those on the ES relate to light stress and photosynthesis. Preliminary evidence suggests the extinction of some European species on the ES and AS. In Drosophila, a 10-fold higher migration was recorded in 2003 from the AS to ES. I advance some predictions that could be followed in diverse species in EC. The EC microclimatic model is optimal to track global warming at a microscale across life from viruses and bacteria to mammals in Israel, and in additional ECs across the planet. PMID:22308456

  12. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  13. Novel endophytic lineages of Tolypocladium provide new insights into the ecology and evolution of Cordyceps-like fungi.

    Science.gov (United States)

    Gazis, Romina; Skaltsas, Demetra; Chaverri, Priscila

    2014-01-01

    The objective of this study was to identify a group of unknown endophytic fungal isolates from the living sapwood of wild and planted Hevea (rubber tree) populations. Three novel lineages of Tolypocladium are described based on molecular and morphological data. Findings from this study open a window for novel hypotheses regarding the ecology and role of endophytes within plant communities as well as trait evolution and potential forces driving diversification of Cordyceps-like fungi. This study stresses the importance of integrating asexual and sexual fungal states for a more complete understanding of the natural history of this diverse group. In addition, it highlights the study of fungi in the sapwood of tropical trees as habitat for the discovery of novel fungal lineages and substrate associations. © 2014 by The Mycological Society of America.

  14. Investigation of a cuboidal permanent magnet’s force exerted on a robotic capsule

    Directory of Open Access Journals (Sweden)

    Yang W

    2014-08-01

    Full Text Available Wan’an Yang,1 Chengbing Tang,2 Fengqing Qin1 1School of Computer and Information Engineering, Yibin University, Yibin, 2CNPC Chuanqing Geophysical Prospecting Company Research Center Computer Department, Chengdu, Sichuan, People’s Republic of China Abstract: To control and drive a robotic capsule accurately from outside a patient’s body, we present a schema in which the capsule enclosing the imaging device, circuits, batteries, etc is looped by a permanent magnet ring that acts as an actuator. A cuboidal permanent magnet situated outside the patient's body attracts or pushes the magnet ring from different directions to make the capsule move or rotate. A mathematic model of attractive or repulsive force that the cuboidal magnet exerts on the magnet ring is presented for accurate calculation of force. The experiments showed that the measuring force was in agreement with the theoretical one, and the relations between the dimensions of the cuboidal magnet and force are useful to produce a cuboidal magnet with optimal shape to get appropriate force. Keywords: control and drive, robotic capsule, permanent magnet ring, optimal dimension, force model

  15. Modelling Geomorphic Systems: Landscape Evolution

    OpenAIRE

    Valters, Declan

    2016-01-01

    Landscape evolution models (LEMs) present the geomorphologist with a means of investigating how landscapes evolve in response to external forcings, such as climate and tectonics, as well as internal process laws. LEMs typically incorporate a range of different geomorphic transport laws integrated in a way that simulates the evolution of a 3D terrain surface forward through time. The strengths of LEMs as research tools lie in their ability to rapidly test many different hypotheses of landscape...

  16. Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure.

    Directory of Open Access Journals (Sweden)

    Giuseppina Rea

    2011-01-01

    Full Text Available Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues

  17. Dementia & Driving

    Science.gov (United States)

    ... have to give up driving. Many people associate driving with self-reliance and freedom; the loss of driving privileges ... familiar roads and avoid long distances. Avoid heavy traffic and heavily traveled roads. Avoid driving at night and in bad weather. Reduce the ...

  18. Novel Straight and Circular Road Driving Control of Electric Power Assisted Wheelchair Based on Fuzzy Algorithm

    Science.gov (United States)

    Seki, Hirokazu; Tadakuma, Susumu

    This paper describes a novel straight and circular road driving control scheme for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel driving control scheme based on fuzzy algorithm to realize the stable and reliable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity of the wheelchair and the human input torque proportion of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  19. The evolution of catalytic function

    Science.gov (United States)

    Maurel, Marie-Christine; Ricard, Jacques

    2006-03-01

    It is very likely that the main driving force of enzyme evolution is the requirement to improve catalytic and regulatory efficiency which results from the intrinsic performance as well as from the spatial and functional organization of enzymes in living cells. Kinetic co-operativity may occur in simple monomeric proteins if they display “slow” conformational transitions, at the cost of catalytic efficiency. Oligomeric enzymes on the other hand can be both efficient and co-operative. We speculate that the main reason for the emergence of co-operative oligomeric enzymes is the need for catalysts that are both cooperative and efficient. As it is not useful for an enzyme to respond to a change of substrate concentration in a complex kinetic way, the emergence of symmetry has its probable origin in a requirement for “functional simplicity”. In a living cell, enzyme are associated with other macromolecules and membranes. The fine tuning of their activity may also be reached through mutations of the microenvironment. Our hypothesis is that these mutations are related to the vectorial transport of molecules, to achieve the hysteresis loops of enzyme reactions generated by the coupling of reaction and diffusion, through the co-operativity brought about by electric interactions between a charged substrate and a membrane, and last but not least, through oscillations. As the physical origins of these effects are very simple and do not require complex molecular devices, it is very likely that the functional advantage generated by the spatial and functional organization of enzyme molecules within the cell have appeared in prebiotic catalysis or very early during the primeval stages of biological evolution. We shall began this paper by presenting the nature of the probable earliest catalysts in the RNA world.

  20. Strain gradient drives shear banding in metallic glasses

    Science.gov (United States)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  1. An Optimization of the Maintenance Assets Distribution Network in the Argentine Air Force

    Science.gov (United States)

    2015-03-26

    Air Force (2010). Manual de Conduccion Logistica . Buenos Aires: HQ Argentine Air Force. Argentine Air Force (2012). El vuelo del condor: 1912-2012...recommendation was made to consider organic or private transportation and reduce transportation time in order to improve responsiveness and drive down...determine overall transportation demand and capacity required for a defined level of service, and to evaluate the tradeoffs between costs and service

  2. Polyphilic Interactions as Structural Driving Force Investigated by Molecular Dynamics Simulation (Project 7

    Directory of Open Access Journals (Sweden)

    Christopher Peschel

    2017-09-01

    Full Text Available We investigated the effect of fluorinated molecules on dipalmitoylphosphatidylcholine (DPPC bilayers by force-field molecular dynamics simulations. In the first step, we developed all-atom force-field parameters for additive molecules in membranes to enable an accurate description of those systems. On the basis of this force field, we performed extensive simulations of various bilayer systems containing different additives. The additive molecules were chosen to be of different size and shape, and they included small molecules such as perfluorinated alcohols, but also more complex molecules. From these simulations, we investigated the structural and dynamic effects of the additives on the membrane properties, as well as the behavior of the additive molecules themselves. Our results are in good agreement with other theoretical and experimental studies, and they contribute to a microscopic understanding of interactions, which might be used to specifically tune membrane properties by additives in the future.

  3. The Evolution of a Creative Industry : The industrial dynamics and spatial evolution of the global fashion design industry

    NARCIS (Netherlands)

    Wenting, R.

    2008-01-01

    The recent growth of creative industries has raised the interest of both policy makers and academic scholars. However, we know very little about the forces that drive the development and geography of these industries. This dissertation provides an in-depth study of the industrial dynamics and

  4. A qualitative exploration of driving stress and driving discourtesy.

    Science.gov (United States)

    Scott-Parker, B; Jones, C M; Rune, K; Tucker, J

    2018-05-31

    Driving courtesy, and conversely driving discourtesy, recently has been of great interest in the public domain. In addition, there has been increasing recognition of the negative impact of stress upon the individual's health and wellbeing, with a plethora of interventions aimed at minimising stress more generally. The research literature regarding driving dis/courtesy, in comparison, is scant, with a handful of studies examining the dis/courteous driving behaviour of road users, and the relationship between driving discourtesy and driving stress. To examine courteous and discourteous driving experiences, and to explore the impact of stress associated with such driving experiences. Thirty-eight drivers (20 females) from the Sunshine Coast region volunteered to participate in one of four 1-1.5 h focus groups. Content analysis used the verbatim utterances captured via an Mp3 device. Three themes pertaining to stressful and discourteous interactions were identified. Theme one pertained to the driving context: road infrastructure (eg, roundabouts, roadwork), vehicles (eg, features), location (eg, country vs city, unfamiliar areas), and temporal aspects (eg, holidays). Theme two pertained to other road users: their behaviour (eg, tailgating, merging), and unknown factors (eg, illicit and licit drug use). Theme three pertained to the self as road user: their own behaviours (eg, deliberate intimidation), and their emotions (eg, angry reaction to other drivers, being in control). Driving dis/courtesy and driving stress is a complex phenomenon, suggesting complex intervention efforts are required. Driving discourtesy was reported as being highly stressful, therefore intervention efforts which encourage driving courtesy and which foster emotional capacity to cope with stressful circumstances appear warranted. Copyright © 2018. Published by Elsevier Ltd.

  5. The impact of environment change on culture evolution in east Ancient Silk Road.

    Science.gov (United States)

    Dong, G.; Liu, F.; Li, G.; Zhang, D. D.; Lee, H. F.; Chen, F.

    2017-12-01

    Ancient Silk Road played an important role in culture communication between west and east parts of the Eurasia during Bronze Age and historical period. Tens of archaic civilizations rise and fall in east parts of the Ancient Silk Road, climate change is attributed as one of the most important driving forces, while the process and mechanism for the impact of environmental change on culture evolution in the area has not been well-understood. Here we report new paleoclimate data based on multi-proxy analysis from two well-dated aeolian deposit sequences in the Hexi Corridor and Qaidam basin, where locate at the throat position of the Ancient Silk Road. Comparing with high-resolution tree rings from Qilian Mountain nearby, and archaeological evidence and historical documents, we proposed that two desertification events occurred in west Hexi Corridor between 3400-3100 BP and post 1450 AD, which induced two cultural discontinuity in that area. Climate was dry between 3400-2900 BP and wet between 2900-2000 BP in lowlands of east Qaidam basin, mismatching with the development of Nuomuhong Bronze culture in the area during 3400-2450 BP. We propose culture evolution in east Ancient Silk Road was mainly influenced by precipitation change of highlands in mountain areas,which was further influenced by large-scale vapor transport.

  6. Numerical calculation for flow field of servo-tube guided hydraulic control rod driving system

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2010-01-01

    A new-style hydraulic control rod driving mechanism was put forward by using servo-tube control elements for the design of control rod driving mechanism. The results of numerical simulation by CFD program Fluent for flow field of hydraulic driving cylinder indicate that the bigger the outer diameter of servo-tube, the smaller the resistance coefficient of variable throttle orifice. The zero position gap of variable throttle orifice could be determined on 0.2 mm in the design. The pressure difference between the upper and nether surfaces of piston was mainly created by the throttle function of fixed throttle orifice. It can be effectively controlled by changing the gap of variable throttle orifice. And the lift force of driving cylinder is able to meet the requirement on the design load. (authors)

  7. Hypoxia: The Force that Drives Chronic Kidney Disease

    Science.gov (United States)

    Fu, Qiangwei; Colgan, Sean P; Shelley, Carl Simon

    2016-01-01

    In the United States the prevalence of end-stage renal disease (ESRD) reached epidemic proportions in 2012 with over 600,000 patients being treated. The rates of ESRD among the elderly are disproportionally high. Consequently, as life expectancy increases and the baby-boom generation reaches retirement age, the already heavy burden imposed by ESRD on the US health care system is set to increase dramatically. ESRD represents the terminal stage of chronic kidney disease (CKD). A large body of evidence indicating that CKD is driven by renal tissue hypoxia has led to the development of therapeutic strategies that increase kidney oxygenation and the contention that chronic hypoxia is the final common pathway to end-stage renal failure. Numerous studies have demonstrated that one of the most potent means by which hypoxic conditions within the kidney produce CKD is by inducing a sustained inflammatory attack by infiltrating leukocytes. Indispensable to this attack is the acquisition by leukocytes of an adhesive phenotype. It was thought that this process resulted exclusively from leukocytes responding to cytokines released from ischemic renal endothelium. However, recently it has been demonstrated that leukocytes also become activated independent of the hypoxic response of endothelial cells. It was found that this endothelium-independent mechanism involves leukocytes directly sensing hypoxia and responding by transcriptional induction of the genes that encode the β2-integrin family of adhesion molecules. This induction likely maintains the long-term inflammation by which hypoxia drives the pathogenesis of CKD. Consequently, targeting these transcriptional mechanisms would appear to represent a promising new therapeutic strategy. PMID:26847481

  8. An Evolutionary Approach to Driving Tendency Recognition for Advanced Driver Assistance Systems

    Directory of Open Access Journals (Sweden)

    Lee Jong-Hyun

    2016-01-01

    Full Text Available Driving tendency recognition is important for constructing Advanced Driver Assistance Systems (ADAS. However, it had not been a lot of research using vehicle sensing data, due to the high difficulty to define it. In this paper, we attempt to improve the learning capability of a machine learning method using evolutionary computation. We propose a driving tendency recognition method, with consideration of data characteristics. Comparison of our classification system with conventional methods demonstrated the effectiveness and accuracy over 92% in our system. Our proposed evolutionary approach is confirmed that improve the classification accuracy of the learning method through evolution in the experiment.

  9. Widespread Positive Selection Drives Differentiation of Centromeric Proteins in the Drosophila melanogaster subgroup.

    Science.gov (United States)

    Beck, Emily A; Llopart, Ana

    2015-11-25

    Rapid evolution of centromeric satellite repeats is thought to cause compensatory amino acid evolution in interacting centromere-associated kinetochore proteins. Cid, a protein that mediates kinetochore/centromere interactions, displays particularly high amino acid turnover. Rapid evolution of both Cid and centromeric satellite repeats led us to hypothesize that the apparent compensatory evolution may extend to interacting partners in the Condensin I complex (i.e., SMC2, SMC4, Cap-H, Cap-D2, and Cap-G) and HP1s. Missense mutations in these proteins often result in improper centromere formation and aberrant chromosome segregation, thus selection for maintained function and coevolution among proteins of the complex is likely strong. Here, we report evidence of rapid evolution and recurrent positive selection in seven centromere-associated proteins in species of the Drosophila melanogaster subgroup, and further postulate that positive selection on these proteins could be a result of centromere drive and compensatory changes, with kinetochore proteins competing for optimal spindle attachment.

  10. Bilateral deficit in explosive force production is not caused by changes in agonist neural drive.

    Directory of Open Access Journals (Sweden)

    Matthew W Buckthorpe

    Full Text Available Bilateral deficit (BLD describes the phenomenon of a reduction in performance during synchronous bilateral (BL movements when compared to the sum of identical unilateral (UL movements. Despite a large body of research investigating BLD of maximal voluntary force (MVF there exist a paucity of research examining the BLD for explosive strength. Therefore, this study investigated the BLD in voluntary and electrically-evoked explosive isometric contractions of the knee extensors and assessed agonist and antagonist neuromuscular activation and measurement artefacts as potential mechanisms. Thirteen healthy untrained males performed a series of maximum and explosive voluntary contractions bilaterally (BL and unilaterally (UL. UL and BL evoked twitch and octet contractions were also elicited. Two separate load cells were used to measure MVF and explosive force at 50, 100 and 150 ms after force onset. Surface EMG amplitude was measured from three superficial agonists and an antagonist. Rate of force development (RFD and EMG were reported over consecutive 50 ms periods (0-50, 50-100 and 100-150 ms. Performance during UL contractions was compared to combined BL performance to measure BLD. Single limb performance during the BL contractions was assessed and potential measurement artefacts, including synchronisation of force onset from the two limbs, controlled for. MVF showed no BLD (P = 0.551, but there was a BLD for explosive force at 100 ms (11.2%, P = 0.007. There was a BLD in RFD 50-100 ms (14.9%, P = 0.004, but not for the other periods. Interestingly, there was a BLD in evoked force measures (6.3-9.0%, P<0.001. There was no difference in agonist or antagonist EMG for any condition (P≥0.233. Measurement artefacts contributed minimally to the observed BLD. The BLD in volitional explosive force found here could not be explained by measurement issues, or agonist and antagonist neuromuscular activation. The BLD in voluntary and evoked explosive force

  11. Parametrization of open systems with effective quadratic hamiltonians plus stochastic force

    International Nuclear Information System (INIS)

    Hernandez, E.S.; Mizrahi, S.S.

    1981-12-01

    The evolution generated by general dissipative Hamiltonians is analyzed when a stochastic force is included. A mapping technique allows to easily write the equations of motion for the observables of interest. A general dissipativity condition is extracted, whose fullfilment guarantees that thermal equilibrium is reached as the final stage of the evolution. Several existing frictional Hamiltonians are examined and it is seen that the correlation of the fluctuating force is essential to the destruction of a constant of motion inherent to pure quantal behaviour. (Author) [pt

  12. Immunogenetic mechanisms driving norovirus GII.4 antigenic variation.

    Directory of Open Access Journals (Sweden)

    Lisa C Lindesmith

    epitopes and consequently, antibody-driven receptor switching; thus, protective herd immunity is a driving force in norovirus molecular evolution.

  13. Brake response time is significantly impaired after total knee arthroplasty: investigation of performing an emergency stop while driving a car.

    Science.gov (United States)

    Jordan, Maurice; Hofmann, Ulf-Krister; Rondak, Ina; Götze, Marco; Kluba, Torsten; Ipach, Ingmar

    2015-09-01

    The objective of this study was to investigate whether total knee arthroplasty (TKA) impairs the ability to perform an emergency stop. An automatic transmission brake simulator was developed to evaluate total brake response time. A prospective repeated-measures design was used. Forty patients (20 left/20 right) were measured 8 days and 6, 12, and 52 wks after surgery. Eight days postoperative total brake response time increased significantly by 30% in right TKA and insignificantly by 2% in left TKA. Brake force significantly decreased by 35% in right TKA and by 25% in left TKA during this period. Baseline values were reached at week 12 in right TKA; the impairment of outcome measures, however, was no longer significant at week 6 compared with preoperative values. Total brake response time and brake force in left TKA fell below baseline values at weeks 6 and 12. Brake force in left TKA was the only outcome measure significantly impaired 8 days postoperatively. This study highlights that categorical statements cannot be provided. This study's findings on automatic transmission driving suggest that right TKA patients may resume driving 6 wks postoperatively. Fitness to drive in left TKA is not fully recovered 8 days postoperatively. If testing is not available, patients should refrain from driving until they return from rehabilitation.

  14. The application of force-sensing resistor sensors for measuring forces developed by the human hand.

    Science.gov (United States)

    Nikonovas, A; Harrison, A J L; Hoult, S; Sammut, D

    2004-01-01

    Most attempts to measure forces developed by the human hand have been implemented by placing force sensors on the object of interaction. Other researchers have placed sensors just on the subject's fingertips. In this paper, a system is described that measures forces over the entire hand using thin-film sensors and associated electronics. This system was developed by the authors and is able to obtain force readings from up to 60 thin-film sensors at rates of up to 400 samples/s per sensor. The sensors can be placed anywhere on the palm and/or fingers of the hand. The sensor readings, together with a video stream containing information about hand posture, are logged into a portable computer using a multiplexer, analogue-to-digital converter and software developed for the purpose. The system has been successfully used to measure forces involved in a range of everyday tasks such as driving a vehicle, lifting saucepans and hitting a golf ball. In the latter case, results are compared with those from an instrumented golf club. Future applications include the assessment of hand strength following disease, trauma or surgery, and to enable quantitative ergonomic investigations.

  15. Joining Forces: The Chemical Biology-Medicinal Chemistry Continuum.

    Science.gov (United States)

    Plowright, Alleyn T; Ottmann, Christian; Arkin, Michelle; Auberson, Yves P; Timmerman, Henk; Waldmann, Herbert

    2017-09-21

    The scientific advances being made across all disciplines are creating ever-increasing opportunities to enhance our knowledge of biological systems and how they relate to human disease. One of the central driving forces in discovering new medicines is medicinal chemistry, where the design and synthesis of novel compounds has led to multiple drugs. Chemical biology, sitting at the interface of many disciplines, has now emerged as a major contributor to the understanding of biological systems and is becoming an integral part of drug discovery. Bringing chemistry and biology much closer and blurring the boundaries between disciplines is creating new opportunities to probe and understand biology; both disciplines play key roles and need to join forces and work together effectively to synergize their impact. The power of chemical biology will then reach its full potential and drive innovation, leading to the discovery of transformative medicines to treat patients. Advances in cancer biology and drug discovery highlight this potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Driving forces of redistribution of elements during quasicrystalline phase formation under heating of mechanically alloyed Al65Cu23Fe12 powder

    Science.gov (United States)

    Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.

    2008-02-01

    Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.

  17. Diversification vs diversity : what will drive diversity in the future

    International Nuclear Information System (INIS)

    Brummell, A.

    1998-01-01

    The issue of what the energy industry of the future will look like was discussed. The core competencies needed for the future, the ways in which they could change the business model for energy companies, and the history of the industry vis-a-vis diversification were outlined. The current forces driving the change towards diversification were identified as technology impacts, deregulation and open competition. The implication of these forces on the structure of the industry were probed. It was concluded that future opportunities for the industry will be influenced by these forces, but the major beneficiaries will be companies that will rely on knowledge not only of technology, but new competencies and business ideas, the ability to develop new markets, new products and emphasize knowledge to leverage assets

  18. Broadening of neutralization activity to directly block a dominant antibody-driven SARS-coronavirus evolution pathway.

    Directory of Open Access Journals (Sweden)

    Jianhua Sui

    2008-11-01

    Full Text Available Phylogenetic analyses have provided strong evidence that amino acid changes in spike (S protein of animal and human SARS coronaviruses (SARS-CoVs during and between two zoonotic transfers (2002/03 and 2003/04 are the result of positive selection. While several studies support that some amino acid changes between animal and human viruses are the result of inter-species adaptation, the role of neutralizing antibodies (nAbs in driving SARS-CoV evolution, particularly during intra-species transmission, is unknown. A detailed examination of SARS-CoV infected animal and human convalescent sera could provide evidence of nAb pressure which, if found, may lead to strategies to effectively block virus evolution pathways by broadening the activity of nAbs. Here we show, by focusing on a dominant neutralization epitope, that contemporaneous- and cross-strain nAb responses against SARS-CoV spike protein exist during natural infection. In vitro immune pressure on this epitope using 2002/03 strain-specific nAb 80R recapitulated a dominant escape mutation that was present in all 2003/04 animal and human viruses. Strategies to block this nAb escape/naturally occurring evolution pathway by generating broad nAbs (BnAbs with activity against 80R escape mutants and both 2002/03 and 2003/04 strains were explored. Structure-based amino acid changes in an activation-induced cytidine deaminase (AID "hot spot" in a light chain CDR (complementarity determining region alone, introduced through shuffling of naturally occurring non-immune human VL chain repertoire or by targeted mutagenesis, were successful in generating these BnAbs. These results demonstrate that nAb-mediated immune pressure is likely a driving force for positive selection during intra-species transmission of SARS-CoV. Somatic hypermutation (SHM of a single VL CDR can markedly broaden the activity of a strain-specific nAb. The strategies investigated in this study, in particular the use of structural

  19. Effects of 3D virtual haptics force feedback on brand personality perception: the mediating role of physical presence in advergames.

    Science.gov (United States)

    Jin, Seung-A Annie

    2010-06-01

    This study gauged the effects of force feedback in the Novint Falcon haptics system on the sensory and cognitive dimensions of a virtual test-driving experience. First, in order to explore the effects of tactile stimuli with force feedback on users' sensory experience, feelings of physical presence (the extent to which virtual physical objects are experienced as actual physical objects) were measured after participants used the haptics interface. Second, to evaluate the effects of force feedback on the cognitive dimension of consumers' virtual experience, this study investigated brand personality perception. The experiment utilized the Novint Falcon haptics controller to induce immersive virtual test-driving through tactile stimuli. The author designed a two-group (haptics stimuli with force feedback versus no force feedback) comparison experiment (N = 238) by manipulating the level of force feedback. Users in the force feedback condition were exposed to tactile stimuli involving various force feedback effects (e.g., terrain effects, acceleration, and lateral forces) while test-driving a rally car. In contrast, users in the control condition test-drove the rally car using the Novint Falcon but were not given any force feedback. Results of ANOVAs indicated that (a) users exposed to force feedback felt stronger physical presence than those in the no force feedback condition, and (b) users exposed to haptics stimuli with force feedback perceived the brand personality of the car to be more rugged than those in the control condition. Managerial implications of the study for product trial in the business world are discussed.

  20. Electric drives

    CERN Document Server

    Boldea, Ion

    2005-01-01

    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The