WorldWideScience

Sample records for event generator tuning

  1. New ATLAS event generator tunes to 2010 data

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    This note describes the Monte Carlo event generator tunings for the Pythia 6 and Herwig/Jimmy generators in the ATLAS MC11 simulation production. New tunes have been produced for these generators, making maximal use of available published data from ATLAS and from the Tevatron and LEP experiments. Particular emphasis has been placed on improvement of the description of e+ e− event shape and jet rate data, and on description of hadron collider event shape observables in Pythia, as well as the established procedure of tuning the multiple parton interactions of both models to describe underlying event and minimum bias data. The tuning of Pythia is provided at this time for the MRST LO∗∗ PDF, while the purely MPI tune of Herwig/Jimmy is performed for ten different PDFs.

  2. Event generator tunes obtained from underlying event and multiparton scattering measurements

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Awad, Adel; Mahrous, Ayman; Mohammed, Yasser; Radi, Amr; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Filipovic, Nicolas; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Lomidze, David; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Scharf, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Mal, Prolay; Mandal, Koushik; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukherjee, Swagata; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Kapoor, Anshul; Kothekar, Kunal; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Fantinel, Sergio; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Zanetti, Anna; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Piparo, Danilo; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Yu, Shin-Shan; Kumar, Arun; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Gecit, Fehime Hayal; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Onengut, Gulsen; Ozcan, Merve; Ozdemir, Kadri; Polatoz, Ayse; Sunar Cerci, Deniz; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Futyan, David; Hall, Geoffrey; Iles, Gregory; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Cutts, David; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Bravo, Cameron; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Schnaible, Christian; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova PANEVA, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Derdzinski, Mark; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Jung, Andreas Werner; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Cocoros, Alice; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Saka, Halil; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Tan, Ping; Verzetti, Mauro; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2016-03-17

    New sets of parameters (``tunes'') for the underlying-event (UE) modeling of the PYTHIA8, PYTHIA6 and HERWIG++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE data at $\\sqrt{s} =$ 7 TeV and to UE data from the CDF experiment at lower $\\sqrt{s}$, are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton-proton collisions at 13 TeV. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons of the UE tunes to ``minimum bias'' (MB) events, multijet, and Drell--Yan ($ \\mathrm{ q \\bar{q} } \\rightarrow \\mathrm{Z} / \\gamma^* \\rightarrow$ lepton-antilepton + jets) observables at 7 and 8 TeV are presented, as well as predictions of MB and UE observables at 13 TeV.

  3. Underlying Event studies and Monte Carlo tunes for inelastic pp events with the ATLAS detector

    CERN Document Server

    Nurse, E; The ATLAS collaboration

    2010-01-01

    Studies of the momentum flow in inelastic collisions at 900 GeV and 7 TeV recorded with a minimum bias trigger strategy are reported. A single high pT track is selected, and the distribution of other tracks in the event is evaluated relative to this reference track. The evolution of the charged momentum flow in the rest of the event, as a function of the pT of the reference track, gives important information about the transition from minimum bias event structure to the full underlying event observed in high-pT collision events. Results are presented after correction and unfolding of detector effects to allow simpler comparison to Monte Carlo models. In addition, the PYTHIA Monte Carlo generator has been tuned to ATLAS measurements at 900 GeV and 7 TeV. Standard distributions from Minimum Bias events, as well as the Underlying Event studies are included in the first tunes to ATLAS measurements at the LHC. The tunes aim for one consistent description of the new measurements as well as data from the Tevatron and...

  4. Tuning of event generators to measurements of $t\\bar{t}$ production and a general search for new physics with the ATLAS experiment

    CERN Document Server

    AUTHOR|(SzGeCERN)676067

    The start of the Large Hadron Collider provides an unprecedent opportunity for the exploration of physics at the \\TeV{} scale. It is expected to perform precise tests of the structure of the Standard Model and to hint at the structure of the physical laws at a more fundamental level. \\paragraph{} The first part of this work describes a tune of the initial- and final-state radiation parameters in the \\textsc{Pythia8} Monte Carlo generator, using ATLAS measurements of \\ttbar{} production at $\\sqrt{s}=7$ \\TeV{}. The results are compared to previous tunes to the $Z$ boson transverse momentum at the LHC, and to the LEP event shapes in $Z$ boson hadronic decays, testing of the universality of the parton shower model. The tune of Pythia8 to the \\ttbar{} measurements is applied to the next-to-leading order generators MadGraph5\\_aMC@NLO and Powheg, and additional parameters of these generators are tuned to the \\ttbar{} data. For the first time in the context of Monte Carlo tuning, the correlation of the experimental ...

  5. Tuning of the PYTHIA 6.4 Multiple Parton Interaction model to Minimum Bias and Underlying Event data

    CERN Document Server

    Firdoua, Nameequa

    QCD has been quite successful in describing hadronic interactions at large transfer momenta, also known as hard interactions. However high energy pp and p p collisions are dominated by soft partonic collisions. Di erent phenomenological models are implemented in several Monte Carlo (MC) event generators such as PYTHIA, PHOJET and HERWIG etc., which attempt to simulate these interactions. These MC event generators have free parameters which need to be tuned to improve the agreement with the data. In this thesis the MC event generator PYTHIA6.424 is considered and the optimization of its model parameters have been presented. This work mainly focuses on tuning of multiple parton interaction parameters to Minimum Bias and Underlying event published data from ATLAS at 0.9 and 7TeV and from CDF II at 1.96 TeV. The method employed to tune the parameters is based on a linear and iterative approach and allows the simultaneous variation of many parameters. Six parameters are tuned, which are found to be...

  6. Automatic Monte-Carlo tuning for minimum bias events at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kama, Sami

    2010-06-22

    The Large Hadron Collider near Geneva Switzerland will ultimately collide protons at a center-of-mass energy of 14 TeV and 40 MHz bunch crossing rate with a luminosity of L=10{sup 34} cm{sup -2}s{sup -1}. At each bunch crossing about 20 soft proton-proton interactions are expected to happen. In order to study new phenomena and improve our current knowledge of the physics these events must be understood. However, the physics of soft interactions are not completely known at such high energies. Different phenomenological models, trying to explain these interactions, are implemented in several Monte-Carlo (MC) programs such as PYTHIA, PHOJET and EPOS. Some parameters in such MC programs can be tuned to improve the agreement with the data. In this thesis a new method for tuning the MC programs, based on Genetic Algorithms and distributed analysis techniques have been presented. This method represents the first and fully automated MC tuning technique that is based on true MC distributions. It is an alternative to parametrization-based automatic tuning. This new method is used in finding new tunes for PYTHIA 6 and 8. These tunes are compared to the tunes found by alternative methods, such as the PROFESSOR framework and manual tuning, and found to be equivalent or better. Charged particle multiplicity, dN{sub ch}/d{eta}, Lorentz-invariant yield, transverse momentum and mean transverse momentum distributions at various center-of-mass energies are generated using default tunes of EPOS, PHOJET and the Genetic Algorithm tunes of PYTHIA 6 and 8. These distributions are compared to measurements from UA5, CDF, CMS and ATLAS in order to investigate the best model available. Their predictions for the ATLAS detector at LHC energies have been investigated both with generator level and full detector simulation studies. Comparison with the data did not favor any model implemented in the generators, but EPOS is found to describe investigated distributions better. New data from ATLAS and

  7. Automatic Monte-Carlo tuning for minimum bias events at the LHC

    International Nuclear Information System (INIS)

    Kama, Sami

    2010-01-01

    The Large Hadron Collider near Geneva Switzerland will ultimately collide protons at a center-of-mass energy of 14 TeV and 40 MHz bunch crossing rate with a luminosity of L=10 34 cm -2 s -1 . At each bunch crossing about 20 soft proton-proton interactions are expected to happen. In order to study new phenomena and improve our current knowledge of the physics these events must be understood. However, the physics of soft interactions are not completely known at such high energies. Different phenomenological models, trying to explain these interactions, are implemented in several Monte-Carlo (MC) programs such as PYTHIA, PHOJET and EPOS. Some parameters in such MC programs can be tuned to improve the agreement with the data. In this thesis a new method for tuning the MC programs, based on Genetic Algorithms and distributed analysis techniques have been presented. This method represents the first and fully automated MC tuning technique that is based on true MC distributions. It is an alternative to parametrization-based automatic tuning. This new method is used in finding new tunes for PYTHIA 6 and 8. These tunes are compared to the tunes found by alternative methods, such as the PROFESSOR framework and manual tuning, and found to be equivalent or better. Charged particle multiplicity, dN ch /dη, Lorentz-invariant yield, transverse momentum and mean transverse momentum distributions at various center-of-mass energies are generated using default tunes of EPOS, PHOJET and the Genetic Algorithm tunes of PYTHIA 6 and 8. These distributions are compared to measurements from UA5, CDF, CMS and ATLAS in order to investigate the best model available. Their predictions for the ATLAS detector at LHC energies have been investigated both with generator level and full detector simulation studies. Comparison with the data did not favor any model implemented in the generators, but EPOS is found to describe investigated distributions better. New data from ATLAS and CMS show higher

  8. Recommendations for the tuning of rare event probability estimators

    International Nuclear Information System (INIS)

    Balesdent, Mathieu; Morio, Jérôme; Marzat, Julien

    2015-01-01

    Being able to accurately estimate rare event probabilities is a challenging issue in order to improve the reliability of complex systems. Several powerful methods such as importance sampling, importance splitting or extreme value theory have been proposed in order to reduce the computational cost and to improve the accuracy of extreme probability estimation. However, the performance of these methods is highly correlated with the choice of tuning parameters, which are very difficult to determine. In order to highlight recommended tunings for such methods, an empirical campaign of automatic tuning on a set of representative test cases is conducted for splitting methods. It allows to provide a reduced set of tuning parameters that may lead to the reliable estimation of rare event probability for various problems. The relevance of the obtained result is assessed on a series of real-world aerospace problems

  9. General-purpose event generators for LHC physics

    CERN Document Server

    Buckley, Andy; Gieseke, Stefan; Grellscheid, David; Hoche, Stefan; Hoeth, Hendrik; Krauss, Frank; Lonnblad, Leif; Nurse, Emily; Richardson, Peter; Schumann, Steffen; Seymour, Michael H.; Sjostrand, Torbjorn; Skands, Peter; Webber, Bryan

    2011-01-01

    We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard-scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays; the inclusion of QED radiation and beyond-Standard-Model processes. We describe the principal features of the ARIADNE, Herwig++, PYTHIA 8 and SHERPA generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators ...

  10. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S

    2012-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes, as well as Pythia 6 shower tunes are presented, including a study of tunes for various PDFs.

  11. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes are presented, including a study of tunes for various PDFs.

  12. General-purpose event generators for LHC physics

    International Nuclear Information System (INIS)

    Buckley, Andy; Butterworth, Jonathan; Gieseke, Stefan; Grellscheid, David; Hoeche, Stefan; Hoeth, Hendrik; Krauss, Frank; Loennblad, Leif; Nurse, Emily; Richardson, Peter; Schumann, Steffen; Seymour, Michael H.; Sjoestrand, Torbjoern; Skands, Peter; Webber, Bryan

    2011-01-01

    We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays; the inclusion of QED radiation and beyond Standard Model processes. We describe the principal features of the ARIADNE, Herwig++, PYTHIA 8 and SHERPA generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators and tools. This review is aimed at phenomenologists wishing to understand better how parton-level predictions are translated into hadron-level events as well as experimentalists seeking a deeper insight into the tools available for signal and background simulation at the LHC.

  13. General-purpose event generators for LHC physics

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Andy [PPE Group, School of Physics and Astronomy, University of Edinburgh, EH25 9PN (United Kingdom); Butterworth, Jonathan [Department of Physics and Astronomy, University College London, WC1E 6BT (United Kingdom); Gieseke, Stefan [Institute for Theoretical Physics, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Grellscheid, David [Institute for Particle Physics Phenomenology, Durham University, DH1 3LE (United Kingdom); Hoeche, Stefan [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Hoeth, Hendrik; Krauss, Frank [Institute for Particle Physics Phenomenology, Durham University, DH1 3LE (United Kingdom); Loennblad, Leif [Department of Astronomy and Theoretical Physics, Lund University (Sweden); PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland); Nurse, Emily [Department of Physics and Astronomy, University College London, WC1E 6BT (United Kingdom); Richardson, Peter [Institute for Particle Physics Phenomenology, Durham University, DH1 3LE (United Kingdom); Schumann, Steffen [Institute for Theoretical Physics, University of Heidelberg, 69120 Heidelberg (Germany); Seymour, Michael H. [School of Physics and Astronomy, University of Manchester, M13 9PL (United Kingdom); Sjoestrand, Torbjoern [Department of Astronomy and Theoretical Physics, Lund University (Sweden); Skands, Peter [PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland); Webber, Bryan, E-mail: webber@hep.phy.cam.ac.uk [Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2011-07-15

    We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays; the inclusion of QED radiation and beyond Standard Model processes. We describe the principal features of the ARIADNE, Herwig++, PYTHIA 8 and SHERPA generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators and tools. This review is aimed at phenomenologists wishing to understand better how parton-level predictions are translated into hadron-level events as well as experimentalists seeking a deeper insight into the tools available for signal and background simulation at the LHC.

  14. General-purpose event generators for LHC physics

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Andy; /Edinburgh U.; Butterworth, Jonathan; /University Coll. London; Gieseke, Stefan; /Karlsruhe U., ITP; Grellscheid, David; /Durham U., IPPP; Hoche, Stefan; /SLAC; Hoeth, Hendrik; Krauss, Frank; /Durham U., IPPP; Lonnblad, Leif; /Lund U., Dept. Theor. Phys. /CERN; Nurse, Emily; /University Coll. London; Richardson, Peter; /Durham U., IPPP; Schumann, Steffen; /Heidelberg U.; Seymour, Michael H.; /Manchester U.; Sjostrand, Torbjorn; /Lund U., Dept. Theor. Phys.; Skands, Peter; /CERN; Webber, Bryan; /Cambridge U.

    2011-03-03

    We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard-scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays; the inclusion of QED radiation and beyond-Standard-Model processes. We describe the principal features of the Ariadne, Herwig++, Pythia 8 and Sherpa generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators and tools. This review is aimed at phenomenologists wishing to understand better how parton-level predictions are translated into hadron-level events as well as experimentalists wanting a deeper insight into the tools available for signal and background simulation at the LHC.

  15. ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    We present the latest developments of the ATLAS MC generator tuning project for the Pythia family of event generators, including the C++ Pythia 8 code for the first time. The PYTHIA 6 tunes presented here, titled AMBT2B and AUET2B and constructed for a variety of PDFs, constitute alternatives to the AMBT2/AUET2 tunes previously presented as a candidate for MC11 event simulation. They systematically differ from the AMBT2/AUET2 PYTHIA 6 tunes in the treatment of alpha_S, to address concerns with those tunes. Systematic tune variations are also presented. The Pythia 8 tunes have been constructed for two different PDFs, and are aimed at an optimal description of minimum bias, for use in pile-up simulation. PDF-sensitive effects are observed and discussed in the MPI tunings of both generators.

  16. Online control loop tuning in Pickering Nuclear Generating Stations

    International Nuclear Information System (INIS)

    Yu, K.X.; Harrington, S.

    2008-01-01

    Most analog controllers in the Pickering B Nuclear Generating Stations adopted PID control scheme. In replacing the analog controllers with digital controllers, the PID control strategies, including the original tuning parameters were retained. The replacement strategy resulted in minimum effort on control loop tuning. In a few cases, however, it was found during commissioning that control loop tuning was required as a result of poor control loop performance, typically due to slow response and controlled process oscillation. Several factors are accounted for the necessities of control loop re-tuning. Our experience in commissioning the digital controllers showed that online control tuning posted some challenges in nuclear power plant. (author)

  17. ATLAS Run 1 Pythia8 tunes

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    We present tunes of the Pythia8 Monte~Carlo event generator's parton shower and multiple parton interaction parameters to a range of data observables from ATLAS Run 1. Four new tunes have been constructed, corresponding to the four leading-order parton density functions, CTEQ6L1, MSTW2008LO, NNPDF23LO, and HERAPDF15LO, each simultaneously tuning ten generator parameters. A set of systematic variations is provided for the NNPDF tune, based on the eigentune method. These tunes improve the modeling of observables that can be described by leading-order + parton shower simulation, and are primarily intended for use in situations where next-to-leading-order and/or multileg parton-showered simulations are unavailable or impractical.

  18. Studies of vector boson transverse momentum simulation in Monte Carlo event generators

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    We present studies of event generator behaviours regarding vector boson production characteristics, in particular the transverse momentum, pT, of the $Z$ boson as measured by ATLAS, for discussion at the LPCC working group meeting on precision electroweak physics at the LHC. The results discussed focus on the poor descriptions of ATLAS $W$ and $Z$ pT spectra by the ATLAS AUET2B LO** tune of PYTHIA6, and by the shower-matched NLO generator combination POWHEG+PYTHIA6. We show that both standalone PYTHIA6 and POWHEG can be made to describe the Sudakov peak of the ATLAS $Z$ pT distribution by tuning of the PYTHIA parton shower -- different approaches are required in each case. Comparisons of other NLO generators to the $Z$ pT data are also shown.

  19. A study of different colour reconnection settings for Pythia8 generator using underlying event observables

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    A study of the performance of various colour reconnection models included in the Pythia8 Monte Carlo event generator is performed using leading charged-particle underlying event data in three centre-of-mass energies from Run 1 and Run 2, measured in ATLAS. Each model can be tuned to describe the data reasonably well.

  20. Decreasing Beam Auto Tuning Interruption Events with In-Situ Chemical Cleaning on Axcelis GSD

    International Nuclear Information System (INIS)

    Fuchs, Dieter; Spreitzer, Stefan; Vogl, Josef; Bishop, Steve; Eldridge, David; Kaim, Robert

    2008-01-01

    Ion beam auto tuning time and success rate are often major factors in the utilization and productivity of ion implanters. Tuning software frequently fails to meet specified setup times or recipe parameters, causing production stoppages and requiring manual intervention. Build-up of conductive deposits in the arc chamber and extraction gap can be one of the main causes of auto tuning problems. The deposits cause glitching and ion beam instabilities, which lead to errors in the software optimization routines. Infineon Regensburg has been testing use of XeF 2 , an in-situ chemical cleaning reagent, with positive results in reducing auto tuning interruption events.

  1. Effect of PYTHIA8 tunes on event shapes and top-quark reconstruction in e$^+$e$^-$ annihilation at CLIC

    CERN Document Server

    Chekanov, Sergei; Fischer, Andrew; Zhang, Jinlong

    2017-01-01

    This paper describes the effect of PYTHIA8 tunes on event simulation of e$^+$e$^-$ collisions with center-of-mass (CM) energies of 380 GeV and 3 TeV at the proposed CLIC collider. Event shapes, such as thrust, thrust major, thrust minor, oblateness, as well as particle multiplicities have been analyzed and relative differences with respect to the default PYTHIA8 tune were determined. The effect of tunes on top-mass reconstruction in the resolved and boosted regimes was analyzed. No statistically significant variation for reconstructed top masses using invariant masses of three jets was found for events with a CM energy of 380 GeV. For the fully boosted top reconstruction at a CM energy of 3 TeV, a significant shift in reconstructed top mass of about 700 MeV for the "Montull" tune was observed. This shift correlates with an increase in particle multiplicity compared to all other PYTHIA8 tunes.

  2. ATLAS Monte Carlo tunes for MC09

    CERN Document Server

    The ATLAS collaboration

    2010-01-01

    This note describes the ATLAS tunes of underlying event and minimum bias description for the main Monte Carlo generators used in the MC09 production. For the main shower generators, pythia and herwig (with jimmy), the MRST LO* parton distribution functions (PDFs) were used for the first time in ATLAS. Special studies on the performance of these, conceptually new, PDFs for high pt physics processes at LHC energies are presented. In addition, a tune of jimmy for CTEQ6.6 is presented, for use with MC@NLO.

  3. Further ATLAS tunes of PYTHIA6 and Pythia 8

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    We present the latest developments of the ATLAS MC generator tuning project for the Pythia family of event generators, including the C++ Pythia 8 code. The PYTHIA 6 tunes presented here complete the ``AUET2B'' set by addition of parton shower and multi-parton interaction model tunings with three next-to-leading order (NLO) PDFs in addition to the leading-order and MC-adapted PDFs previously presented. This note also presents systematic variation ``eigentunes'' for the parton shower configurations in the AMBT2B/AUET2B tune series. The Pythia 8 MPI tunes in this note have been constructed for six different PDFs, making use of a new $x$-dependent hadronic matter distribution model. MPI eigentunes are constructed for the PDFs intended for use in ATLAS bulk MC production.

  4. Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate.

    Science.gov (United States)

    Weiss, C; Torosyan, G; Meyn, J P; Wallenstein, R; Beigang, R; Avetisyan, Y

    2001-04-23

    The tuning properties of pulsed narrowband THz radiation generated via optical rectification in periodically poled lithium niobate have been investigated. Using a disk-shaped periodically poled crystal tuning was easily accomplished by rotating the crystal around its axis and observing the generated THz radiation in forward direction. In this way no beam deflection during tuning was observed. The total tuning range extended from 180 GHz up to 830 GHz and was limited by the poling period of 127 microm which determines the maximum THz frequency in forward direction.

  5. Self-Tuning Linear Quadratic Supervisory Regulation of a Diesel Generator using Large-Signal State Estimation

    DEFF Research Database (Denmark)

    Knudsen, Jesper Viese; Bendtsen, Jan Dimon; Andersen, Palle

    2016-01-01

    In this paper, a self-tuning linear quadratic supervisory regulator using a large-signal state estimator for a diesel driven generator set is proposed. The regulator improves operational efficiency, in comparison to current implementations, by (i) automating the initial tuning process and (ii...... throughout the operating range of the diesel generator....

  6. Event generators for address event representation transmitters

    Science.gov (United States)

    Serrano-Gotarredona, Rafael; Serrano-Gotarredona, Teresa; Linares Barranco, Bernabe

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. In a typical AER transmitter chip, there is an array of neurons that generate events. They send events to a peripheral circuitry (let's call it "AER Generator") that transforms those events to neurons coordinates (addresses) which are put sequentially on an interchip high speed digital bus. This bus includes a parallel multi-bit address word plus a Rqst (request) and Ack (acknowledge) handshaking signals for asynchronous data exchange. There have been two main approaches published in the literature for implementing such "AER Generator" circuits. They differ on the way of handling event collisions coming from the array of neurons. One approach is based on detecting and discarding collisions, while the other incorporates arbitration for sequencing colliding events . The first approach is supposed to be simpler and faster, while the second is able to handle much higher event traffic. In this article we will concentrate on the second arbiter-based approach. Boahen has been publishing several techniques for implementing and improving the arbiter based approach. Originally, he proposed an arbitration squeme by rows, followed by a column arbitration. In this scheme, while one neuron was selected by the arbiters to transmit his event out of the chip, the rest of neurons in the array were

  7. Adaptive Self-Tuning Networks

    Science.gov (United States)

    Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.

    2015-12-01

    The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.

  8. Adaptive Sensor Tuning for Seismic Event Detection in Environment with Electromagnetic Noise

    Science.gov (United States)

    Ziegler, Abra E.

    The goal of this research is to detect possible microseismic events at a carbon sequestration site. Data recorded on a continuous downhole microseismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project, were evaluated using machine learning and reinforcement learning techniques to determine their effectiveness at seismic event detection on a dataset with electromagnetic noise. The data were recorded from a passive vertical monitoring array consisting of 16 levels of 3-component 15 Hz geophones installed in the field and continuously recording since January 2014. Electromagnetic and other noise recorded on the array has significantly impacted the utility of the data and it was necessary to characterize and filter the noise in order to attempt event detection. Traditional detection methods using short-term average/long-term average (STA/LTA) algorithms were evaluated and determined to be ineffective because of changing noise levels. To improve the performance of event detection and automatically and dynamically detect seismic events using effective data processing parameters, an adaptive sensor tuning (AST) algorithm developed by Sandia National Laboratories was utilized. AST exploits neuro-dynamic programming (reinforcement learning) trained with historic event data to automatically self-tune and determine optimal detection parameter settings. The key metric that guides the AST algorithm is consistency of each sensor with its nearest neighbors: parameters are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The effects that changes in neighborhood configuration have on signal detection were explored, as it was determined that neighborhood-based detections significantly reduce the number of both missed and false detections in ground-truthed data. The performance of the AST algorithm was

  9. MadEvent: automatic event generation with MadGraph

    International Nuclear Information System (INIS)

    Maltoni, Fabio; Stelzer, Tim

    2003-01-01

    We present a new multi-channel integration method and its implementation in the multi-purpose event generator MadEvent, which is based on MadGraph. Given a process, MadGraph automatically identifies all the relevant subprocesses, generates both the amplitudes and the mappings needed for an efficient integration over the phase space, and passes them to MadEvent. As a result, a process-specific, stand-alone code is produced that allows the user to calculate cross sections and produce unweighted events in a standard output format. Several examples are given for processes that are relevant for physics studies at present and forthcoming colliders. (author)

  10. Self-tuning fuzzy logic control of a switched reluctance generator for wind energy applications

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2012-01-01

    determination, self-tuning FLC for speed control, and a current controller. The turn-on and turn-off angle determination, as its name implies, controls the turn-on and turn-off angles of power switches to improve the efficiency and torque regulation of the SRG. The self-tuning FLC is the speed controller which......This paper presents a new self-tuning fuzzy logic control (FLC) based speed controller of a switched reluctance generator (SRG) for wind power applications. Due to its doubly salient structure and magnetic saturation, the SRG possesses an inherent characteristic of strong nonlinearity. In addition...

  11. Fine-Tuning Neural Patient Question Retrieval Model with Generative Adversarial Networks.

    Science.gov (United States)

    Tang, Guoyu; Ni, Yuan; Wang, Keqiang; Yong, Qin

    2018-01-01

    The online patient question and answering (Q&A) system attracts an increasing amount of users in China. Patient will post their questions and wait for doctors' response. To avoid the lag time involved with the waiting and to reduce the workload on the doctors, a better method is to automatically retrieve the semantically equivalent question from the archive. We present a Generative Adversarial Networks (GAN) based approach to automatically retrieve patient question. We apply supervised deep learning based approaches to determine the similarity between patient questions. Then a GAN framework is used to fine-tune the pre-trained deep learning models. The experiment results show that fine-tuning by GAN can improve the performance.

  12. MPC-based auto-tuned PID controller for the steam generator water level

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    In this work, proportional-integral-derivative (PID) control gains are automatically tuned by using a model predictive control (MPC) method. The MPC has received much attention as a powerful tool for the control of industrial process systems. An MPC-based PID controller can be derived from the second order linear model of a process. The steam generator is usually described by the well-known 4 th order linear model which consists of the mass capacity, reverse dynamics and mechanical oscillations terms. But the important terms in this linear model are the mass capacity and reverse dynamics terms, both of which can be described by a 2 nd order linear system. The proposed auto-tuned PID controller was applied to a linear model of steam generators. The parameters of a linear model for steam generators are very different according to the power levels. The proposed controller showed good performance for the water level deviation and sudden steam flow disturbances that are typical in the existing power plants by changing only the input-weighting factor according to the power level

  13. Practical tuning for Oracle

    International Nuclear Information System (INIS)

    Kwon, Sun Yong

    2005-02-01

    This book deals with tuning for oracle application, which consists of twenty two chapters. These are the contents of this book : what is tuning?, procedure of tuning, collection of performance data using stats pack, collection of performance data in real time, disk IO dispersion, architecture on Index, partition and IOT, optimization of cluster Factor, optimizer, analysis on plan of operation, selection of Index, tuning of Index, parallel processing architecture, DML, analytic function join method, join type, analysis of application, Lock architecture, SGA architecture and wait event and segment tuning.

  14. User-Generated Social Media Events in Tourism

    OpenAIRE

    Mariné Roig, Estela; Martín Fuentes, Eva; Daries Ramón, Natalia

    2017-01-01

    Social media and mobile technologies have revolutionised communication and particular attention has been given to user-generated content (UGC) and the formation of online communities; however, little attention has been given to tourist events entirely generated by users through social media. This paper aims to define and characterise the phenomenon of tourism user-generated events (UGEs) through social media around the user's new empowered role and to assess user-generated social media events...

  15. Wroclaw neutrino event generator

    International Nuclear Information System (INIS)

    Nowak, J A

    2006-01-01

    A neutrino event generator developed by the Wroclaw Neutrino Group is described. The physical models included in the generator are discussed and illustrated with the results of simulations. The considered processes are quasi-elastic scattering and pion production modelled by combining the Δ resonance excitation and deep inelastic scattering

  16. How safe is tuning a radio?: using the radio tuning task as a benchmark for distracted driving.

    Science.gov (United States)

    Lee, Ja Young; Lee, John D; Bärgman, Jonas; Lee, Joonbum; Reimer, Bryan

    2018-01-01

    Drivers engage in non-driving tasks while driving, such as interactions entertainment systems. Studies have identified glance patterns related to such interactions, and manual radio tuning has been used as a reference task to set an upper bound on the acceptable demand of interactions. Consequently, some view the risk associated with radio tuning as defining the upper limit of glance measures associated with visual-manual in-vehicle activities. However, we have little knowledge about the actual degree of crash risk that radio tuning poses and, by extension, the risk of tasks that have similar glance patterns as the radio tuning task. In the current study, we use counterfactual simulation to take the glance patterns for manual radio tuning tasks from an on-road experiment and apply these patterns to lead-vehicle events observed in naturalistic driving studies. We then quantify how often the glance patterns from radio tuning are associated with rear-end crashes, compared to driving only situations. We used the pre-crash kinematics from 34 crash events from the SHRP2 naturalistic driving study to investigate the effect of radio tuning in crash-imminent situations, and we also investigated the effect of radio tuning on 2,475 routine braking events from the Safety Pilot project. The counterfactual simulation showed that off-road glances transform some near-crashes that could have been avoided into crashes, and glance patterns observed in on-road radio tuning experiment produced 2.85-5.00 times more crashes than baseline driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. EVENT GENERATOR FOR RHIC SPIN PHYSICS

    International Nuclear Information System (INIS)

    SAITO, N.; SCHAEFER, A.

    1999-01-01

    This volume archives the reports from the RIKEN BNL Research Center workshop on ''Event Generator for RHIC Spin Physics II'' held during the week March 15, 1999 at Brookhaven National Laboratory. It was the second meeting on the subject following a first one in last September. This workshop has been initiated to establish a firm collaboration between theorists and experimentalists involved in RHIC spin physics with the aim of developing a reliable, high-precision event generator for RHIC spin physics. Needless to say, adequate event generators are indispensable tools for high energy physics programs in general, especially in the process of: planning the experimental programs; developing algorithms to extract the physics signals of interest; estimating the background in the extracted results, and connecting the final particle kinematics to the fundamental i.e. partonic level processes. Since RHIC is the first polarized collider, dedicated efforts are required to obtain a full-fledged event generator which describes spin dependent reactions in great detail

  18. Event generators

    International Nuclear Information System (INIS)

    Durand, D.; Gulminelli, F.; Lopez, O.; Vient, E.

    1998-01-01

    The results concerning the heavy ion collision simulations at Fermi energies by means of phenomenological models obtained in the last two years ar presented. The event generators are essentially following the phase of elaboration of analysis methods of data obtained by INDRA or NAUTILUS 4 π multidetectors. To identify and correctly quantify a phenomenon or a physical quantity it is necessary to verify by simulation the feasibility and validity of the analysis and also to estimate the bias introduced by the experimental filter. Many studies have shown this, for instance: the determination of the collision reaction plan for flow studies, determination of kinematical characteristics of the quasi-projectiles, and the excitation energy measurement stored in the hot nuclei. To Eugene, the currently utilised generator, several improvements were added: introduction of space-time correlations between the different products emitted in the decay of excited nuclei by calculating the trajectories of the particles in the final phase of the reaction; taking into account in the decay cascade of the discrete levels of the lighter fragments; the possibility of the schematically description of the explosion of the nucleus by simultaneous emission of multi-fragments. Thus, by comparing the calculations with the data relative to heavy systems studied with the NAUTILUS assembly it was possible to extract the time scales in the nuclear fragmentation. The utilisation of these event generators was extended to the analysis of INDRA data concerning the determination of the vaporization threshold in the collisions Ar + Ni and also the research of the expansion effects in the collisions Xe + Sn at 50 MeV/u

  19. A method for tuning parameters of Monte Carlo generators and a determination of the unintegrated gluon density

    International Nuclear Information System (INIS)

    Bacchetta, Alessandro; Jung, Hannes; Kutak, Krzysztof

    2010-02-01

    A method for tuning parameters in Monte Carlo generators is described and applied to a specific case. The method works in the following way: each observable is generated several times using different values of the parameters to be tuned. The output is then approximated by some analytic form to describe the dependence of the observables on the parameters. This approximation is used to find the values of the parameter that give the best description of the experimental data. This results in significantly faster fitting compared to an approach in which the generator is called iteratively. As an application, we employ this method to fit the parameters of the unintegrated gluon density used in the Cascade Monte Carlo generator, using inclusive deep inelastic data measured by the H1 Collaboration. We discuss the results of the fit, its limitations, and its strong points. (orig.)

  20. Underlying Event Studies and Forward Physics at CMS

    International Nuclear Information System (INIS)

    Krammer, Manfred; Bartalini, Paolo

    2010-01-01

    Studies of the underlying event and forward processes are important tests of the standard model and inputs for Monte Carlo tuning. By selecting regions transverse and parallel to the hard parton-parton scatter, different aspects of non-perturbative QCD are enhanced and allow fine tuning of different Monte Carlo models. The underlying event in pp interactions, recorded by the CMS detector, is studied measuring the charged multiplicity density and the charged energy density in a region perpendicular to the plane of the hard 2-to-2 scattering. Two different methodologies are adopted to identify the direction and the energy scale of the hard scattering in Minimum Bias events that rely on the leading charged track and on the leading charged jet. The study allows to discriminate between various QCD Monte Carlo models with different multiple parton interaction schemes. In addition, we present the measurement of the underlying event using the jet area/ median approach. We demonstrate its sensitivity to different underlying event scenarios and tunes on generator level after applying detector specific cuts and thresholds. In the forward direction, the first measurement of forward energy flow in 3 35 GeV and compare to model with different multi-parton interaction schemes. In addition, the absence of energy deposition in the forward region is used to observe diffractive events. We compare our results with predictions from Monte Carlo event generators including a simulation of multi-parton scattering. All four measurements can be used to determine the parameters of multi-parton interaction models in a extended region of phase space. (author)

  1. MadGraph/MadEvent. The new web generation

    International Nuclear Information System (INIS)

    Alwall, J.

    2007-01-01

    The new web-based version of the automatized process and event generator MadGraph/MadEvent is now available. Recent developments are: New models, notably MSSM, 2HDM and a framework for addition of user-defined models, inclusive sample generation and on-line hadronization and detector simulation. Event generation can be done on-line on any of our clusters. (author)

  2. Summary of ATLAS Pythia 8 tunes

    CERN Document Server

    The ATLAS collaboration

    2012-01-01

    We summarize the latest ATLAS Pythia 8 minimum bias and underlying event tunes. The Pythia 8 MPI tunes in this note have been constructed for nine different PDFs, making use of a new x-dependent hadronic matter distribution model.

  3. User-Generated Social Media Events in Tourism

    Directory of Open Access Journals (Sweden)

    Estela Marine-Roig

    2017-12-01

    Full Text Available Social media and mobile technologies have revolutionised communication and particular attention has been given to user-generated content (UGC and the formation of online communities; however, little attention has been given to tourist events entirely generated by users through social media. This paper aims to define and characterise the phenomenon of tourism user-generated events (UGEs through social media around the user’s new empowered role and to assess user-generated social media events’ online socialness. It is also our aim to provide a useful mixed-methodology analysis framework for UGEs in relation to social media and to highlight their interest for organisations. The methodological approach includes a quantitative model to store, analyse and compare events’ online socialness, which is combined with qualitative, participant observation at the events. This approach is applied to the analysis of three Instagram meetups organised by a specific online community at Catalan ski resorts. The paper’s results show the differential characteristic of tourism UGEs: user initiative and empowerment, full organisation and structure, great social media use and UGC production, brand dissemination, attraction capacity, strong online community bond and faithfulness. With UGEs, an event management paradigm shift occurs as organisations are no longer the main initiators and controllers of the event.

  4. Event generators in particle physics

    International Nuclear Information System (INIS)

    Sjostrand, Torbjorn

    1994-01-01

    This presentation gives an introduction to the topic of event generators in particle physics . The emphasis is on the physics aspects that have to be considered in the construction of a generator, and what lessons we have learned from comparisons with data. A brief survey of existing generators is also included. As illustration, a few topics of current interest are covered in a bit more detail: QCD uncertainties in W mass determinations and γp/γγ physics. (author)

  5. Tuning and Test of Fragmentation Models Based on Identified Particles and Precision Event Shape Data

    CERN Document Server

    Abreu, P; Adye, T; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbi, M S; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; Naughton, J M; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Siegrist, P; Silvestre, R; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zucchelli, G C; Zumerle, G

    1996-01-01

    Event shape and charged particle inclusive distributions are measured using 750000 decays of the $Z$ to hadrons from the DELPHI detector at LEP. These precise data allow a decisive confrontation with models of the hadronization process. Improved tunings of the JETSET ARIADNE and HERWIG parton shower models and the JETSET matrix element model are obtained by fitting the models to these DELPHI data as well as to identified particle distributions from all LEP experiments. The description of the data distributions by the models is critically reviewed with special importance attributed to identified particles.

  6. A Tuned Single Parameter for Representing Conjunction Risk

    Science.gov (United States)

    Plakaloic, D.; Hejduk, M. D.; Frigm, R. C.; Newman, L. K.

    2011-01-01

    Satellite conjunction assessment risk analysis is a subjective enterprise that can benefit from quantitative aids and, to this end, NASA/GSFC has developed a fuzzy logic construct - called the F-value - to attempt to provide a statement of conjunction risk that amalgamates multiple indices and yields a more stable intra-event assessment. This construct has now sustained an extended tuning procedure against heuristic analyst assessment of event risk. The tuning effort has resulted in modifications to the calculation procedure and the adjustment of tuning coefficients, producing a construct with both more predictive force and a better statement of its error.

  7. Top quark event modelling and generators

    CERN Document Server

    Rahmat, Rahmat

    2016-01-01

    State-of-the-art theoretical predictions accurate to next-to-leading order QCD interfaced with Pythia8 and Herwig++ event generators are tested by comparing the unfolded ttbar differential data collected with the CMS detector at 8 TeV. These predictions are also compared with the underlying event activity distributions in ttbar events using CMS proton-proton data collected in 2015 at a center of mass energy of 13 TeV.

  8. The Monte Carlo event generator DPMJET-III

    International Nuclear Information System (INIS)

    Roesler, S.; Engel, R.

    2001-01-01

    A new version of the Monte Carlo event generator DPMJET is presented. It is a code system based on the Dual Parton Model and unifies all features of the DTUNUC-2, DPMJET-II and PHOJET1.12 event generators. DPMJET-III allows the simulation of hadron-hadron, hadron-nucleus, nucleus-nucleus, photon-hadron, photon-photon and photon-nucleus interactions from a few GeV up to the highest cosmic ray energies. (orig.)

  9. e+e- event generator EPOCS user's manual

    International Nuclear Information System (INIS)

    Kato, Kiyoshi; Munehisa, Tomo.

    1987-07-01

    EPOCS(Electron POsitron Collision Simulator) is a Monte-Carlo event generator for high energy e + e - annihilation. This program generates events based on the standard model, i.e., quantum chromodynamics (QCD) and electro-weak theory. It works at the center-of-mass energy below W + W - production, i.e., in the energy region of TRISTAN, SLC and LEP. For these high energy machines one of the important subjects is the exploration for the top quark. The production and hadronization of the top quark is included in EPOCS. Besides the top quark, we expect 'new' physics in this high energy region. EPOCS has enough flexibility for users to cope with a new idea. Users can register a new particle, modify the built-in particle data, define new primary interactions and so on. The event generator has a number of parameters, both physical parameters and control parameters. Users can control most of these parameters in EPOCS at will. (author)

  10. The GENIE Neutrino Monte Carlo Generator: Physics and User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Andreopoulos, Costas [Univ. of Liverpool (United Kingdom). Dept. of Physics; Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Particle Physics Dept.; Barry, Christopher [Univ. of Liverpool (United Kingdom). Dept. of Physics; Dytman, Steve [Univ. of Pittsburgh, PA (United States). Dept. of Physics and Astronomy; Gallagher, Hugh [Tufts Univ., Medford, MA (United States). Dept. of Physics and Astronomy; Golan, Tomasz [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Rochester, NY (United States). Dept. of Physics and Astronomy; Hatcher, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Perdue, Gabriel [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yarba, Julia [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-10-20

    GENIE is a suite of products for the experimental neutrino physics community. This suite includes i) a modern software framework for implementing neutrino event generators, a state-of-the-art comprehensive physics model and tools to support neutrino interaction simulation for realistic experimental setups (the Generator product), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and software to produce a comprehensive set of data/MC comparisons (the Comparisons product), and iii) a generator tuning framework and fitting applications (the Tuning product). This book provides the definite guide for the GENIE Generator: It presents the software architecture and a detailed description of its physics model and official tunes. In addition, it provides a rich set of data/MC comparisons that characterise the physics performance of GENIE. Detailed step-by-step instructions on how to install and configure the Generator, run its applications and analyze its outputs are also included.

  11. Next generation multi-particle event generators for the MSSM

    International Nuclear Information System (INIS)

    Reuter, J.; Kilian, W.; Hagiwara, K.; Krauss, F.; Schumann, S.; Rainwater, D.

    2005-12-01

    We present a next generation of multi-particle Monte Carlo (MC) Event generators for LHC and ILC for the MSSM, namely the three program packages Madgraph/MadEvent, WHiZard/O'Mega and Sherpa/Amegic++. The interesting but difficult phenomenology of supersymmetric models at the upcoming colliders demands a corresponding complexity and maturity from simulation tools. This includes multi-particle final states, reducible and irreducible backgrounds, spin correlations, real emission of photons and gluons, etc., which are incorporated in the programs presented here. The framework of a model with such a huge particle content and as complicated as the MSSM makes strenuous tests and comparison of codes inevitable. Various tests show agreement among the three different programs; the tables of cross sections produced in these tests may serve as a future reference for other codes. Furthermore, first MSSM physics analyses performed with these programs are presented here. (orig.)

  12. Underlying Event and B-Hadron Decays in $t\\overline{t}$ Events

    CERN Document Server

    INSPIRE-00175000

    2014-01-01

    We present exploratory studies of the underlying event activity and of fragmentation and hadronization of b quarks using $t\\overline{t}$ candidate events in proton-proton collision data acquired by the CMS experiment. We reconstruct charm mesons in fully charged decay channels from the reconstructed tracks associated with the hadronization of b quarks from the top decay, and study their kinematics relative to the mother jet. A good agreement is found using MadGraph plus the Pythia 6 Tune Z2* simulation. The effects predicted by alternative settings and generators for the characterization of the underlying event are also explored. These results are expected to contribute in the future to more precise measurements in the top quark sector in particular of the top quark mass by either constraining systematic uncertainties related to the modeling of the underlying event in $t\\overline{t}$ events or by paving the way for alternative mass measurement methods.

  13. QCD Monte-Carlo model tuning studies with CMS data at 13 TeV

    CERN Document Server

    Sunar Cerci, Deniz

    2018-01-01

    New CMS PYTHIA 8 event tunes are presented. The new tunes are obtained using minimum bias and underlying event observables using Monte Carlo configurations with consistent parton distribution functions and strong coupling constant values in the matrix element and the parton shower. Validation and performance studies are presented by comparing the predictions of the new tune to various soft- and hard-QCD measurements at 7, 8 and 13 TeV with CMS.

  14. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  15. Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs)

    Science.gov (United States)

    Lokhtin, I. P.; Malinina, L. V.; Petrushanko, S. V.; Snigirev, A. M.; Arsene, I.; Tywoniuk, K.

    2009-05-01

    HYDJET++ is a Monte Carlo event generator for simulation of relativistic heavy ion AA collisions considered as a superposition of the soft, hydro-type state and the hard state resulting from multi-parton fragmentation. This model is the development and continuation of HYDJET event generator (Lokhtin and Snigirev, EPJC 45 (2006) 211). The main program is written in the object-oriented C++ language under the ROOT environment. The hard part of HYDJET++ is identical to the hard part of Fortran-written HYDJET and it is included in the generator structure as a separate directory. The soft part of HYDJET++ event is the "thermal" hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parameterization of relativistic hydrodynamics with preset freeze-out conditions. It includes the longitudinal, radial and elliptic flow effects and the decays of hadronic resonances. The corresponding fast Monte Carlo simulation procedure, C++ code FAST MC (Amelin et al., PRC 74 (2006) 064901; PRC 77 (2008) 014903) is adapted to HYDJET++. It is designed for studying the multi-particle production in a wide energy range of heavy ion experimental facilities: from FAIR and NICA to RHIC and LHC. Program summaryProgram title: HYDJET++, version 2 Catalogue identifier: AECR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 100 387 No. of bytes in distributed program, including test data, etc.: 797 019 Distribution format: tar.gz Programming language: C++ (however there is a Fortran-written part which is included in the generator structure as a separate directory) Computer: Hardware independent (both C++ and Fortran compilers and ROOT environment [1] ( http://root.cern.ch/) should be installed

  16. Monte-Carlo event generation for the LHC

    CERN Document Server

    Siegert, Frank

    This thesis discusses recent developments for the simulation of particle physics in the light of the start-up of the Large Hadron Collider. Simulation programs for fully exclusive events, dubbed Monte-Carlo event generators, are improved in areas related to the perturbative as well as non-perturbative regions of strong interactions. A short introduction to the main principles of event generation is given to serve as a basis for the following discussion. An existing algorithm for the correction of parton-shower emissions with the help of exact tree-level matrix elements is revisited and significantly improved as attested by first results. In a next step, an automated implementation of the POWHEG method is presented. It allows for the combination of parton showers with full next-to-leading order QCD calculations and has been tested in several processes. These two methods are then combined into a more powerful framework which allows to correct a parton shower with full next-to-leading order matrix elements and h...

  17. Correlating carbon and oxygen isotope events in early to middle Miocene shallow marine carbonates in the Mediterranean region using orbitally tuned chemostratigraphy and lithostratigraphy

    Science.gov (United States)

    Auer, Gerald; Piller, Werner E.; Reuter, Markus; Harzhauser, Mathias

    2015-04-01

    During the Miocene prominent oxygen isotope events (Mi-events) reflect major changes in glaciation, while carbonate isotope maxima (CM-events) reflect changes in organic carbon burial, particularly during the Monterey carbon isotope excursion. However, despite their importance to the global climate history they have never been recorded in shallow marine carbonate successions. The Decontra section on the Maiella Platform (central Apennines, Italy), however, allows to resolve them for the first time in such a setting during the early to middle Miocene. The present study improves the stratigraphic resolution of parts of the Decontra section via orbital tuning of high-resolution gamma ray (GR) and magnetic susceptibility data to the 405 kyr eccentricity metronome. The tuning allows, within the established biostratigraphic, sequence stratigraphic, and isotope stratigraphic frameworks, a precise correlation of the Decontra section with pelagic records of the Mediterranean region, as well as the global paleoclimatic record and the global sea level curve. Spectral series analyses of GR data further indicate that the 405 kyr orbital cycle is particularly well preserved during the Monterey Event. Since GR is a direct proxy for authigenic uranium precipitation during increased burial of organic carbon in the Decontra section, it follows the same long-term orbital pacing as observed in the carbon isotope records. The 405 kyr GR beat is thus correlated with the carbon isotope maxima observed during the Monterey Event. Finally, the Mi-events can now be recognized in the δ18O record and coincide with plankton-rich, siliceous, or phosphatic horizons in the lithology of the section.

  18. Sensor-Generated Time Series Events: A Definition Language

    Science.gov (United States)

    Anguera, Aurea; Lara, Juan A.; Lizcano, David; Martínez, Maria Aurora; Pazos, Juan

    2012-01-01

    There are now a great many domains where information is recorded by sensors over a limited time period or on a permanent basis. This data flow leads to sequences of data known as time series. In many domains, like seismography or medicine, time series analysis focuses on particular regions of interest, known as events, whereas the remainder of the time series contains hardly any useful information. In these domains, there is a need for mechanisms to identify and locate such events. In this paper, we propose an events definition language that is general enough to be used to easily and naturally define events in time series recorded by sensors in any domain. The proposed language has been applied to the definition of time series events generated within the branch of medicine dealing with balance-related functions in human beings. A device, called posturograph, is used to study balance-related functions. The platform has four sensors that record the pressure intensity being exerted on the platform, generating four interrelated time series. As opposed to the existing ad hoc proposals, the results confirm that the proposed language is valid, that is generally applicable and accurate, for identifying the events contained in the time series.

  19. Unweighted event generation in hadronic WZ production at order $(\\alpha_{S})$

    CERN Document Server

    Dobbs, Matt; Lefebvre, Michel

    2001-01-01

    We present an algorithm for unweighted event generation in the partonic process pp -> WZ (j) with leptonic decays at next-to-leading order in alpha_S. Monte Carlo programs for processes such as this frequently generate events with negative weights in certain regions of phase space. For simulations of experimental data one would like to have unweighted events only. We demonstrate how the phase space from the matrix elements can be combined to achieve unweighted event generation using a second stage Monte Carlo integration over a volume of real emissions (jets). Observable quantities are kept fixed in the laboratory frame throughout the integration. The algorithm is applicable to a broader class of processes and is CPU intensive.

  20. Frequency doubled dye laser with a servo-tuned crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, J; Spitschan, H

    1975-01-01

    Spectral tuning of the uv output of a frequency doubled dye laser was successfully controlled by a servo motor system which tilts the nonlinear crystal appropriate for phase-matched second harmonic generation while the dye laser emission wavelength is tuned. The spatial direction of the generated uv beam was used as the regulating signal. The feasibility of this technique for spectroscopic applications was successfully tested.

  1. Towards iTunes U and Youtube.edu

    NARCIS (Netherlands)

    Specht, Marcus

    2011-01-01

    Specht, M. (2010, 22 November). Towards iTunes U and Youtube.edu. Training and Presentation given at training event for Open Universiteit IPO group. Heerlen, The Netherlands: Open University of the Netherlands, CELSTEC, Learning Media Lab.

  2. Handling of the Generation of Primary Events in Gauss, the LHCb Simulation Framework

    CERN Multimedia

    Corti, G; Brambach, T; Brook, N H; Gauvin, N; Harrison, K; Harrison, P; He, J; Ilten, P J; Jones, C R; Lieng, M H; Manca, G; Miglioranzi, S; Robbe, P; Vagnoni, V; Whitehead, M; Wishahi, J

    2010-01-01

    The LHCb simulation application, Gauss, consists of two independent phases, the generation of the primary event and the tracking of particles produced in the experimental setup. For the LHCb experimental program it is particularly important to model B meson decays: the EvtGen code developed in CLEO and BaBar has been chosen and customized for non coherent B production as occuring in pp collisions at the LHC. The initial proton-proton collision is provided by a different generator engine, currently Pythia 6 for massive production of signal and generic pp collisions events. Beam gas events, background events originating from proton halo, cosmics and calibration events for different detectors can be generated in addition to pp collisions. Different generator packages are available in the physics community or specifically developed in LHCb, and are used for the different purposes. Running conditions affecting the events generated such as the size of the luminous region, the number of collisions occuring in a bunc...

  3. A study on water level control of PWR steam generator at low power and the self-tuning of its fuzzy controller

    International Nuclear Information System (INIS)

    Na, N.; Kwon, K.; Ham, C.; Bien, Z.

    1994-01-01

    The water level control system of a steam generator in a pressurized water reactor and its control problems during the operation at low power is analysed. In particular, a strategy for a water level control system, which is based on the use of a fuzzy logic controller, is proposed. The control strategy includes dynamic tuning for the large transient. The fuzzy variable of the flow rate during the power operation is obtained from the bypass valve opening and not from the incorrect measured signal at the low flow rate. The practical self-tuning algorithm is based on the optimal control performance

  4. Application of genetic algorithms to tuning fuzzy control systems

    Science.gov (United States)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  5. Required accuracy of tune measurement and parametrization of chromaticity control

    International Nuclear Information System (INIS)

    Maas, R.

    1991-02-01

    The betatron tunes v x and v y will be measured by Fourier-analyzing a BPM signal generated by a beam which received a fast ( kick /f rev ) equals the fractional part of the tune, a beam blow-up can be observed. In this note the required accuracy of such a tune measurement is discussed. (author). 6 schemes

  6. Reducing the fine-tuning of gauge-mediated SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Casas, J.A.; Moreno, Jesus M. [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Robles, Sandra [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Rolbiecki, Krzysztof [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); University of Warsaw, Faculty of Physics, Warsaw (Poland)

    2016-08-15

    Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, A{sub t} = 0. In this paper, we carefully evaluate such a tuning, showing that is worse than per mil in the minimal model. Then, we examine some existing proposals to generate A{sub t} ≠ 0 term in this context. We find that, although the stops can be made lighter, usually the tuning does not improve (it may be even worse), with some exceptions, which involve the generation of A{sub t} at one loop or tree level. We examine both possibilities and propose a conceptually simplified version of the latter; which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. The resulting fine-tuning is better than one per mil, still severe but similar to other minimal supersymmetric standard model constructions. We also explore the so-called ''little A{sub t}{sup 2}/m{sup 2} problem'', i.e. the fact that a large A{sub t}-term is normally accompanied by a similar or larger sfermion mass, which typically implies an increase in the fine-tuning. Finally, we find the version of GMSB for which this ratio is optimized, which, nevertheless, does not minimize the fine-tuning. (orig.)

  7. Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz

    OpenAIRE

    Murate, Kosuke; Hayashi, Shin'ichiro; Kawase, Kodo

    2016-01-01

    In this paper, we report the improvement of the frequency tuning range of an injection-seeded terahertz (THz)-wave parametric generator (is-TPG). A significant previous limitation was the high absorption coefficient in the higher-frequency region of a MgO:LiNbO3 crystal. Here, we inclined the crystal slightly, so that a fraction of the pump beam was internally reflected at the THz-wave exit surface of the crystal. In this configuration, it was easier for a higher-frequency THz wave to reach t...

  8. Auto-tuning systems for J-PARC LINAC RF cavities

    International Nuclear Information System (INIS)

    Fang, Z.; Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S.; Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E.

    2014-01-01

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  9. Auto-tuning systems for J-PARC LINAC RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z., E-mail: fang@post.kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E. [Japan Atomic Energy Agency (JAEA), 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2014-12-11

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  10. Maize transformation technology development for commercial event generation

    Science.gov (United States)

    Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.

    2014-01-01

    Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170

  11. Maize transformation technology development for commercial event generation.

    Science.gov (United States)

    Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M

    2014-01-01

    Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.

  12. Unweighted event generation in hadronic WZ production at first order in QCD

    CERN Document Server

    Dobbs, M

    2000-01-01

    We present an algorithm for unweighted event generation in the partonic process pp -> WZ(j) with leptonic decays at next-to-leading order in QCD. Monte Carlo programs for processes such as this frequently generate events with negative weights in certain regions of phase space. For simulations of experimental data one would like to have unweighted events only. We demonstrate how the phase space from the matrix elements can be combined to achieve unweighted event generation using a second stage Monte Carlo integration over a volume of real emissions (jets). Observable quantities are kept fixed in the laboratory frame throughout the integration. The algorithm is applicable to a broader class of processes and is CPU intensive.

  13. Absolute GPS Time Event Generation and Capture for Remote Locations

    Science.gov (United States)

    HIRES Collaboration

    The HiRes experiment operates fixed location and portable lasers at remote desert locations to generate calibration events. One physics goal of HiRes is to search for unusual showers. These may appear similar to upward or horizontally pointing laser tracks used for atmospheric calibration. It is therefore necessary to remove all of these calibration events from the HiRes detector data stream in a physics blind manner. A robust and convenient "tagging" method is to generate the calibration events at precisely known times. To facilitate this tagging method we have developed the GPSY (Global Positioning System YAG) module. It uses a GPS receiver, an embedded processor and additional timing logic to generate laser triggers at arbitrary programmed times and frequencies with better than 100nS accuracy. The GPSY module has two trigger outputs (one microsecond resolution) to trigger the laser flash-lamp and Q-switch and one event capture input (25nS resolution). The GPSY module can be programmed either by a front panel menu based interface or by a host computer via an RS232 serial interface. The latter also allows for computer logging of generated and captured event times. Details of the design and the implementation of these devices will be presented. 1 Motivation Air Showers represent a small fraction, much less than a percent, of the total High Resolution Fly's Eye data sample. The bulk of the sample is calibration data. Most of this calibration data is generated by two types of systems that use lasers. One type sends light directly to the detectors via optical fibers to monitor detector gains (Girard 2001). The other sends a beam of light into the sky and the scattered light that reaches the detectors is used to monitor atmospheric effects (Wiencke 1998). It is important that these calibration events be cleanly separated from the rest of the sample both to provide a complete set of monitoring information, and more

  14. Tuning of PID load frequency controller for power systems

    International Nuclear Information System (INIS)

    Tan Wen

    2009-01-01

    PID tuning of load frequency controllers for power systems is discussed in this paper. The tuning method is based on a two-degree-of-freedom internal model control (IMC) design method, and the performance of the resulting PID controller is related to two tuning parameters thus detuning is easy when necessary. Then an anti-GRC scheme is proposed to overcome the generation rate constraints. Finally, the method is extended to two-area cases.

  15. The Generator of the Event Structure Lexicon (GESL): Automatic Annotation of Event Structure for Textual Inference Tasks

    Science.gov (United States)

    Im, Seohyun

    2013-01-01

    This dissertation aims to develop the Generator of the Event Structure Lexicon (GESL) which is a tool to automate annotating the event structure of verbs in text to support textual inference tasks related to lexically entailed subevents. The output of the GESL is the Event Structure Lexicon (ESL), which is a lexicon of verbs in text which includes…

  16. Tune splitting in the presence of linear coupling

    International Nuclear Information System (INIS)

    Parzen, G.

    1991-01-01

    The presence of random skew quadrupole field errors will couple the x and y motions. The x and y motions are then each given by the sum of 2 normal modes with the tunes v 1 and v 2 , which may differ appreciably from v x and v y , the unperturbed tunes. This is often called tune splitting since |v 1 - v 2 | is usually larger than |v x - v y |. This tune splitting may be large in proton accelerators using superconducting magnets, because of the relatively large random skew quadrupole field errors that are expected in these magnets. This effect is also increased by the required insertions in proton colliders which generate large β-functions in the insertion region. This tune splitting has been studied in the RHIC accelerator. For RHIC, a tune splitting as large as 0.2 was found in one worse case. A correction system has been developed for correcting this large tune splitting which uses two families of skew quadrupole correctors. It has been found that this correction system corrects most of the large tune splitting, but a residual tune splitting remains that is still appreciable. This paper discusses the corrections to this residual time

  17. Distributed Tuning of Boundary Resources

    DEFF Research Database (Denmark)

    Eaton, Ben; Elaluf-Calderwood, Silvia; Sørensen, Carsten

    2015-01-01

    in the context of a paradoxical tension between the logic of generative and democratic innovations and the logic of infrastructural control. Boundary resources play a critical role in managing the tension as a firm that owns the infrastructure can secure its control over the service system while independent...... firms can participate in the service system. In this study, we explore the evolution of boundary resources. Drawing on Pickering’s (1993) and Barrett et al.’s (2012) conceptualizations of tuning, the paper seeks to forward our understanding of how heterogeneous actors engage in the tuning of boundary...

  18. Tuning of JET transmission line/antenna system during ICRH

    International Nuclear Information System (INIS)

    Oeberg, J.

    1993-05-01

    The launched toroidal wave spectrum for ICRH and ICRH current drive is controlled by the phasing of the antenna currents. This causes imbalance in the transmission lines, which makes it more difficult to use the full power of the ICRH generators. Further, the generators are sensitive to the amount of reflected power. To reduce the amount of reflected power the transmission lines have to be constantly tuned. To study the tuning three models of the antenna are developed and compared with experimental results. A method is suggested which enables better usage of the generated power using a power correction unit to evenly distribute the power load between the generators. 4 refs, 24 figs

  19. Measurement of the underlying event using track-based event shapes in Z→l{sup +}l{sup -} events with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Holger

    2014-09-11

    This thesis describes a measurement of hadron-collider event shapes in proton-proton collisions at a centre of momentum energy of 7 TeV at the Large Hadron Collider (LHC) at CERN (Conseil Europeenne pour la Recherche Nucleaire) located near Geneva (Switzerland). The analysed data (integrated luminosity: 1.1 fb{sup -1}) was recorded in 2011 with the ATLAS-experiment. Events where a Z-boson was produced in the hard sub-process which subsequently decays into an electron-positron or muon-antimuon pair were selected for this analysis. The observables are calculated using all reconstructed tracks of charged particles within the acceptance of the inner detector of ATLAS except those of the leptons of the Z-decay. Thus, this is the first measurement of its kind. The observables were corrected for background processes using data-driven methods. For the correction of so-called ''pile-up'' (multiple overlapping proton-proton collisions) a novel technique was developed and successfully applied. The data was further unfolded to correct for remaining detector effects. The obtained distributions are especially sensitive to the so-called ''Underlying Event'' and can be compared with predictions of Monte-Carlo event-generators directly, i.e. without the necessity of running time-consuming simulations of the ATLAS-detector. Finally, it was tried to improve the predictions of the event generators Pythia8 and Sherpa by finding an optimised setting of relevant model parameters in a technique called ''Tuning''. It became apparent, however, that the underlying Sjoestrand-Zijl model is unable to give a good description of the measured event-shape distributions.

  20. Stochastic generation of hourly rainstorm events in Johor

    International Nuclear Information System (INIS)

    Nojumuddin, Nur Syereena; Yusof, Fadhilah; Yusop, Zulkifli

    2015-01-01

    Engineers and researchers in water-related studies are often faced with the problem of having insufficient and long rainfall record. Practical and effective methods must be developed to generate unavailable data from limited available data. Therefore, this paper presents a Monte-Carlo based stochastic hourly rainfall generation model to complement the unavailable data. The Monte Carlo simulation used in this study is based on the best fit of storm characteristics. Hence, by using the Maximum Likelihood Estimation (MLE) and Anderson Darling goodness-of-fit test, lognormal appeared to be the best rainfall distribution. Therefore, the Monte Carlo simulation based on lognormal distribution was used in the study. The proposed model was verified by comparing the statistical moments of rainstorm characteristics from the combination of the observed rainstorm events under 10 years and simulated rainstorm events under 30 years of rainfall records with those under the entire 40 years of observed rainfall data based on the hourly rainfall data at the station J1 in Johor over the period of 1972–2011. The absolute percentage error of the duration-depth, duration-inter-event time and depth-inter-event time will be used as the accuracy test. The results showed the first four product-moments of the observed rainstorm characteristics were close with the simulated rainstorm characteristics. The proposed model can be used as a basis to derive rainfall intensity-duration frequency in Johor

  1. Stochastic generation of hourly rainstorm events in Johor

    Science.gov (United States)

    Nojumuddin, Nur Syereena; Yusof, Fadhilah; Yusop, Zulkifli

    2015-02-01

    Engineers and researchers in water-related studies are often faced with the problem of having insufficient and long rainfall record. Practical and effective methods must be developed to generate unavailable data from limited available data. Therefore, this paper presents a Monte-Carlo based stochastic hourly rainfall generation model to complement the unavailable data. The Monte Carlo simulation used in this study is based on the best fit of storm characteristics. Hence, by using the Maximum Likelihood Estimation (MLE) and Anderson Darling goodness-of-fit test, lognormal appeared to be the best rainfall distribution. Therefore, the Monte Carlo simulation based on lognormal distribution was used in the study. The proposed model was verified by comparing the statistical moments of rainstorm characteristics from the combination of the observed rainstorm events under 10 years and simulated rainstorm events under 30 years of rainfall records with those under the entire 40 years of observed rainfall data based on the hourly rainfall data at the station J1 in Johor over the period of 1972-2011. The absolute percentage error of the duration-depth, duration-inter-event time and depth-inter-event time will be used as the accuracy test. The results showed the first four product-moments of the observed rainstorm characteristics were close with the simulated rainstorm characteristics. The proposed model can be used as a basis to derive rainfall intensity-duration frequency in Johor.

  2. Stochastic generation of hourly rainstorm events in Johor

    Energy Technology Data Exchange (ETDEWEB)

    Nojumuddin, Nur Syereena; Yusof, Fadhilah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Yusop, Zulkifli [Institute of Environmental and Water Resources Management, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-02-03

    Engineers and researchers in water-related studies are often faced with the problem of having insufficient and long rainfall record. Practical and effective methods must be developed to generate unavailable data from limited available data. Therefore, this paper presents a Monte-Carlo based stochastic hourly rainfall generation model to complement the unavailable data. The Monte Carlo simulation used in this study is based on the best fit of storm characteristics. Hence, by using the Maximum Likelihood Estimation (MLE) and Anderson Darling goodness-of-fit test, lognormal appeared to be the best rainfall distribution. Therefore, the Monte Carlo simulation based on lognormal distribution was used in the study. The proposed model was verified by comparing the statistical moments of rainstorm characteristics from the combination of the observed rainstorm events under 10 years and simulated rainstorm events under 30 years of rainfall records with those under the entire 40 years of observed rainfall data based on the hourly rainfall data at the station J1 in Johor over the period of 1972–2011. The absolute percentage error of the duration-depth, duration-inter-event time and depth-inter-event time will be used as the accuracy test. The results showed the first four product-moments of the observed rainstorm characteristics were close with the simulated rainstorm characteristics. The proposed model can be used as a basis to derive rainfall intensity-duration frequency in Johor.

  3. Bb4l event generator, interferences and off-shell effects

    CERN Document Server

    Peyruchat, Leo Paul

    2017-01-01

    Proton-proton collisions happening in LHC create lots of data. To understand the underlying physics behind these events, the real data must be compared to simulated events. A new generator,called the bb4l model, is able to simulate collisions happening in LHC with new interesting features regarding process creating two W bosons and two b quarks. One of them is that it takes interferences between different processes into account. Such effects have always been neglected in the case of top pair or single top production, but with the increasing sensitivity of the detectors it is becoming important to know precisely their amplitude. The goal of this study is to separate events generated with bb4l into different categories, and then to look at many variables and look for differences between categories.

  4. High speed true random number generator with a new structure of coarse-tuning PDL in FPGA

    Science.gov (United States)

    Fang, Hongzhen; Wang, Pengjun; Cheng, Xu; Zhou, Keji

    2018-03-01

    A metastability-based TRNG (true random number generator) is presented in this paper, and implemented in FPGA. The metastable state of a D flip-flop is tunable through a two-stage PDL (programmable delay line). With the proposed coarse-tuning PDL structure, the TRNG core does not require extra placement and routing to ensure its entropy. Furthermore, the core needs fewer stages of coarse-tuning PDL at higher operating frequency, and thus saves more resources in FPGA. The designed TRNG achieves 25 Mbps @ 100 MHz throughput after proper post-processing, which is several times higher than other previous TRNGs based on FPGA. Moreover, the robustness of the system is enhanced with the adoption of a feedback system. The quality of the designed TRNG is verified by NIST (National Institute of Standards and Technology) and also accepted by class P1 of the AIS-20/31 test suite. Project supported by the S&T Plan of Zhejiang Provincial Science and Technology Department (No. 2016C31078), the National Natural Science Foundation of China (Nos. 61574041, 61474068, 61234002), and the K.C. Wong Magna Fund in Ningbo University, China.

  5. An efficient automated parameter tuning framework for spiking neural networks.

    Science.gov (United States)

    Carlson, Kristofor D; Nageswaran, Jayram Moorkanikara; Dutt, Nikil; Krichmar, Jeffrey L

    2014-01-01

    As the desire for biologically realistic spiking neural networks (SNNs) increases, tuning the enormous number of open parameters in these models becomes a difficult challenge. SNNs have been used to successfully model complex neural circuits that explore various neural phenomena such as neural plasticity, vision systems, auditory systems, neural oscillations, and many other important topics of neural function. Additionally, SNNs are particularly well-adapted to run on neuromorphic hardware that will support biological brain-scale architectures. Although the inclusion of realistic plasticity equations, neural dynamics, and recurrent topologies has increased the descriptive power of SNNs, it has also made the task of tuning these biologically realistic SNNs difficult. To meet this challenge, we present an automated parameter tuning framework capable of tuning SNNs quickly and efficiently using evolutionary algorithms (EA) and inexpensive, readily accessible graphics processing units (GPUs). A sample SNN with 4104 neurons was tuned to give V1 simple cell-like tuning curve responses and produce self-organizing receptive fields (SORFs) when presented with a random sequence of counterphase sinusoidal grating stimuli. A performance analysis comparing the GPU-accelerated implementation to a single-threaded central processing unit (CPU) implementation was carried out and showed a speedup of 65× of the GPU implementation over the CPU implementation, or 0.35 h per generation for GPU vs. 23.5 h per generation for CPU. Additionally, the parameter value solutions found in the tuned SNN were studied and found to be stable and repeatable. The automated parameter tuning framework presented here will be of use to both the computational neuroscience and neuromorphic engineering communities, making the process of constructing and tuning large-scale SNNs much quicker and easier.

  6. Compact passively self-tuning energy harvesting for rotating applications

    International Nuclear Information System (INIS)

    Gu, Lei; Livermore, Carol

    2012-01-01

    This paper presents a compact, passive, self-tuning energy harvester for rotating applications. The harvester rotates in the vertical plane and is comprised of two beams: a relatively rigid piezoelectric generating beam and a narrow, flexible driving beam with a tip mass mounted at the end. The mass impacts the generating beam repeatedly under the influence of gravity to drive generation. Centrifugal force from the rotation modifies the resonant frequency of the flexible driving beam and the frequency response of the harvester. An analytical model that captures the harvester system's resonant frequency as a function of rotational speed is used to guide the detailed design. With an optimized design, the resonant frequency of the harvester substantially matches the frequency of the rotation over a wide frequency range from 4 to 16.2 Hz. A prototype of the passive self-tuning energy harvester using a lead zirconate titanate generating beam achieved a power density of 30.8 µW cm −3 and a more than 11 Hz bandwidth, which is much larger than the 0.8 Hz bandwidth calculated semi-empirically for a similar but untuned harvester. Passive tuning was also demonstrated using the more robust and reliable but less efficient polymer polyvinylidene fluoride for the generating beam

  7. PSO algorithm enhanced with Lozi Chaotic Map - Tuning experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan [Tomas Bata University in Zlín, Faculty of Applied Informatics Department of Informatics and Artificial Intelligence nám. T.G. Masaryka 5555, 760 01 Zlín (Czech Republic)

    2015-03-10

    In this paper it is investigated the effect of tuning of control parameters of the Lozi Chaotic Map employed as a chaotic pseudo-random number generator for the particle swarm optimization algorithm. Three different benchmark functions are selected from the IEEE CEC 2013 competition benchmark set. The Lozi map is extensively tuned and the performance of PSO is evaluated.

  8. PSO algorithm enhanced with Lozi Chaotic Map - Tuning experiment

    International Nuclear Information System (INIS)

    Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan

    2015-01-01

    In this paper it is investigated the effect of tuning of control parameters of the Lozi Chaotic Map employed as a chaotic pseudo-random number generator for the particle swarm optimization algorithm. Three different benchmark functions are selected from the IEEE CEC 2013 competition benchmark set. The Lozi map is extensively tuned and the performance of PSO is evaluated

  9. A trick to improve the efficiency of generating unweighted B events from BCVEGPY

    Science.gov (United States)

    Wang, Xian-You; Wu, Xing-Gang

    2012-02-01

    In the present paper, we provide an addendum to improve the efficiency of generating unweighted events within PYTHIA environment for the generator BCVEGPY2.1 [C.H. Chang, J.X. Wang, X.G. Wu, Comput. Phys. Commun. 174 (2006) 241]. This trick is helpful for experimental simulation. Moreover, the BCVEGPY output has also been improved, i.e. one Les Houches Event common block has been added so as to generate a standard Les Houches Event file that contains the information of the generated B meson and the accompanying partons, which can be more conveniently used for further simulation. New version program summaryTitle of program: BCVEGPY2.1a Catalogue identifier: ADTJ_v2_2 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTJ_v2_2.html Program obtained from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 166 133 No. of bytes in distributed program, including test data, etc.: 1 655 390 Distribution format: tar.gz Programming language used: FORTRAN 77/90 Computer: Any LINUX based on PC with FORTRAN 77 or FORTRAN 90 and GNU C compiler as well Operating systems: LINUX RAM: About 2.0 MB Classification: 11.2, 11.5 Catalogue identifier of previous version: ADTJ_v2_1 Reference in CPC: Comput. Phys. Commun. 175 (2006) 624 Does the new version supersede the old program: No Nature of physical problem: Hadronic Production of B meson and its excited states Method of solution: To generate weighted and unweighted B events within PYTHIA environment effectively. Restrictions on the complexity of the problem: Hadronic production of ( cb¯)-quarkonium via the gluon-gluon fusion mechanism are given by the 'complete calculation approach'. The simulation of B events is done within PYTHIA environment. Reasons for new version: More and more data are accumulated at the large hadronic collider, it would be possible to make

  10. An optimal tuning strategy for tidal turbines

    Science.gov (United States)

    2016-01-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870

  11. An optimal tuning strategy for tidal turbines.

    Science.gov (United States)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  12. Analysis of operation events for HFETR emergency diesel generator set

    International Nuclear Information System (INIS)

    Li Zhiqiang; Ji Xifang; Deng Hong

    2015-01-01

    By the statistic analysis of the historical failure data of the emergency diesel generator set, the specific mode, the attribute, and the direct and root origin for each failure are reviewed and summarized. Considering the current status of the emergency diesel generator set, the preventive measures and solutions in terms of operation, handling and maintenance are proposed, and the potential events for the emergency diesel generator set are analyzed. (authors)

  13. Tuned sources of submillimetre radiation

    International Nuclear Information System (INIS)

    Berezhnyj, V.L.

    1981-01-01

    The main present directions of development of sources of frequency coherent tuned radiation of electromagnetic waves in the submillimeter range: nonlinear mixing of different frequencies; semiconductor lasers; molecular lasers with optical pumping; relativistic electron beams in a magnetic field as submillimeter radiation sources; submillimeter radiation sources on the basis of SHF classical electrovacuum devices - are considered. The designs of generator systems and their specifications are presented. The main parameters of electromagnetic radiation of different sources, such as: power, stability, frequency, tuning range - are presented. The methods of improving sources and electromagnetic radiation parameters are proposed. The examples of possible applications of submillimeter radiation in different spheres of science and technology are given [ru

  14. Validation of Monte Carlo event generators in the ATLAS Collaboration for LHC Run 2

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    This note reviews the main steps followed by the ATLAS Collaboration to validate the properties of particle-level simulated events from Monte Carlo event generators in order to ensure the correctness of all event generator configurations and production samples used in physics analyses. A central validation procedure is adopted which permits the continual validation of the functionality and the performance of the ATLAS event simulation infrastructure. Revisions and updates of the Monte Carlo event generators are also monitored. The methodology behind the validation and tools developed for that purpose, as well as various usage cases, are presented. The strategy has proven to play an essential role in identifying possible problems or unwanted features within a restricted timescale, verifying their origin and pointing to possible bug fixes before full-scale processing is initiated.

  15. Prevention and mitigation of steam generator water hammer events in PWRs

    International Nuclear Information System (INIS)

    Han, J.T.; Anderson, N.

    1983-01-01

    Water hammer in nuclear power plants is an unresolved safety issue under study by the Nuclear Regulatory Commission (NRC). This article summarizes (1) the causes of steam generator water hammer (SGWH) events in pressurized-water reactors (PWRs), (2) various methods used to prevent or mitigate SGWH events, and (3) modifications that have been made at each operating PWR. The NRC staff considers the issue of SGWH in top feedring designs to be technically resolved. This article does not address technical findings relevant to water hammer in preheat-type steam generators

  16. Supplemental material: afterburner for generating light (anti-)nuclei with QCD-inspired event generators in pp collisions

    CERN Document Server

    2017-01-01

    This note complements the paper titled: ``Production of deuterons, tritons, $^{3}$He nuclei and their anti-nuclei in pp collisions at $\\sqrt{s}$~=~0.9, 2.76 and 7~TeV'' with additional material related to Monte Carlo simulations necessary to compare the results with lower energy experiments. It describes a coalescence-based afterburner for QCD-inspired event generators, which allows the generation of light nuclei, hyper-nuclei and their charge conjugates in proton--proton (pp) collisions at LHC energies. The event generators with the afterburner are able to reproduce the differential cross sections of light (anti-)nuclei ($A<4)$ with the same degree of agreement as those of protons and anti-protons at the same momentum per nucleon. They also explain the transverse momentum dependence of the coalescence parameters as the result of hard scattering effects.

  17. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  18. Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining

    2017-01-01

    Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300

  19. White light generation tuned by dual hybridization of nanocrystals and conjugated polymers

    International Nuclear Information System (INIS)

    Demir, Hilmi Volkan; Nizamoglu, Sedat; Ozel, Tuncay; Mutlugun, Evren; Huyal, Ilkem Ozge; Sari, Emre; Holder, Elisabeth; Tian Nan

    2007-01-01

    Dual hybridization of highly fluorescent conjugated polymers and highly luminescent nanocrystals (NCs) is developed and demonstrated in multiple combinations for controlled white light generation with high color rendering index (CRI) (> 80) for the first time. The generated white light is tuned using layer-by-layer assembly of CdSe/ZnS core-shell NCs closely packed on polyfluorene, hybridized on near-UV emitting nitride-based light emitting diodes (LEDs). The design, synthesis, growth, fabrication and characterization of these hybrid inorganic-organic white LEDs are presented. The following experimental realizations are reported: (i) layer-by-layer hybridization of yellow NCs (λ PL =580 nm) and blue polyfluorene (λ PL =439 nm) with tristimulus coordinates of (x, y)=(0.31, 0.27), correlated color temperature of T c =6962 K and CRI of R a =53.4; (ii) layer-by-layer assembly of yellow and green NCs (λ PL =580 and 540 nm) and blue polyfluorene (λ PL =439 nm) with (x, y)=(0.23, 0.30), T c =14395 K and R a =65.7; and (iii) layer-by-layer deposition of yellow, green and red NCs (λ PL =580, 540 and 620 nm) and blue polyfluorene (λ PL =439 nm) with (x, y)=(0.38, 0.39), T c =4052 K and R a = 83.0. The CRI is demonstrated to be well controlled and significantly improved by increasing multi-chromaticity of the NC and polymer emitters

  20. A study of charm quark production in the NOMAD event generator

    International Nuclear Information System (INIS)

    Boyd, S.

    1995-01-01

    Although constructed primarily to aid in the search for neutrino oscillations, NOMAD, a counter experiment exposed to a ν m beam at the CERN SPS, is capable of making significant contributions to the study of charm quark production in ν m Deep Inelastic Scattering (DIS) processes. The analysis of such events, however, is dependent upon Monte Carlo simulations of the event kinematics and hence it is essential to understand the behaviour of such simulations. This talk compares data on charm production in the dimuon channel generated by the NOMAD Event Generator (NEGLIB) for an anti-neutrino beam with data collected in the CDHS experiment which ran at CERN in the period 1977-1980. Overall the two sets of data compare well, although some marked differences are observed. Several possible reasons are proposed and discussed

  1. Negative life events and symptoms of depression and anxiety: stress causation and/or stress generation.

    Science.gov (United States)

    Phillips, Anna C; Carroll, Douglas; Der, Geoff

    2015-01-01

    Stressful life events are known to contribute to development of depression; however, it is possible this link is bidirectional. The present study examined whether such stress generation effects are greater than the effects of stressful life events on depression, and whether stress generation is also evident with anxiety. Participants were two large age cohorts (N = 732 aged 44 years; N = 705 aged 63 years) from the West of Scotland Twenty-07 study. Stressful life events, depression, and anxiety symptoms were measured twice five years apart. Cross-lagged panel analysis examined the mutual influences of stressful life events on depression and on anxiety over time. Life events predicted later depressive symptomatology (p = .01), but the depression predicting life events relationship was less strong (p = .06), whereas earlier anxiety predicted life events five years later (p = .001). There was evidence of sex differences in the extent to which life events predicted later anxiety. This study provides evidence of stress causation for depression and weaker evidence for stress generation. In contrast, there was strong evidence of stress generation for anxiety but weaker evidence for stress causation, and that differed for men and women.

  2. Elegent—An elastic event generator

    Science.gov (United States)

    Kašpar, J.

    2014-03-01

    Although elastic scattering of nucleons may look like a simple process, it presents a long-lasting challenge for theory. Due to missing hard energy scale, the perturbative QCD cannot be applied. Instead, many phenomenological/theoretical models have emerged. In this paper we present a unified implementation of some of the most prominent models in a C++ library, moreover extended to account for effects of the electromagnetic interaction. The library is complemented with a number of utilities. For instance, programs to sample many distributions of interest in four-momentum transfer squared, t, impact parameter, b, and collision energy √{s}. These distributions at ISR, Spp¯S, RHIC, Tevatron and LHC energies are available for download from the project web site. Both in the form of ROOT files and PDF figures providing comparisons among the models. The package includes also a tool for Monte-Carlo generation of elastic scattering events, which can easily be embedded in any other program framework. Catalogue identifier: AERT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERT_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 10551 No. of bytes in distributed program, including test data, etc.: 126316 Distribution format: tar.gz Programming language: C++. Computer: Any in principle, tested on x86-64 architecture. Operating system: Any in principle, tested on GNU/Linux. RAM: Strongly depends on the task, but typically below 20MB Classification: 11.6. External routines: ROOT, HepMC Nature of problem: Monte-Carlo simulation of elastic nucleon-nucleon collisions Solution method: Implementation of some of the most prominent phenomenological/theoretical models providing cumulative distribution function that is used for random event generation. Running time: Strongly depends on the task, but

  3. Modeling the Process of Event Sequence Data Generated for Working Condition Diagnosis

    Directory of Open Access Journals (Sweden)

    Jianwei Ding

    2015-01-01

    Full Text Available Condition monitoring systems are widely used to monitor the working condition of equipment, generating a vast amount and variety of telemetry data in the process. The main task of surveillance focuses on analyzing these routinely collected telemetry data to help analyze the working condition in the equipment. However, with the rapid increase in the volume of telemetry data, it is a nontrivial task to analyze all the telemetry data to understand the working condition of the equipment without any a priori knowledge. In this paper, we proposed a probabilistic generative model called working condition model (WCM, which is capable of simulating the process of event sequence data generated and depicting the working condition of equipment at runtime. With the help of WCM, we are able to analyze how the event sequence data behave in different working modes and meanwhile to detect the working mode of an event sequence (working condition diagnosis. Furthermore, we have applied WCM to illustrative applications like automated detection of an anomalous event sequence for the runtime of equipment. Our experimental results on the real data sets demonstrate the effectiveness of the model.

  4. MARTINI: An event generator for relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Gale, Charles; Jeon, Sangyong

    2009-01-01

    We introduce the modular algorithm for relativistic treatment of heavy ion interactions (MARTINI), a comprehensive event generator for the hard and penetrating probes in high-energy nucleus-nucleus collisions. Its main components are a time-evolution model for the soft background, PYTHIA 8.1, and the McGill-Arnold, Moore, and Yaffe (AMY) parton-evolution scheme, including radiative as well as elastic processes. This allows us to generate full event configurations in the high p T region that take into account thermal quantum chromodynamic (QCD) and quantum electrodynamic (QED) effects as well as effects of the evolving medium. We present results for the neutral pion nuclear modification factor in Au+Au collisions at the BNL Relativistic Heavy Ion Collider as a function of p T for different centralities and also as a function of the angle with respect to the reaction plane for noncentral collisions. Furthermore, we study the production of high-transverse-momentum photons, incorporating a complete set of photon-production channels.

  5. Preparing for what might happen: An episodic specificity induction impacts the generation of alternative future events.

    Science.gov (United States)

    Jing, Helen G; Madore, Kevin P; Schacter, Daniel L

    2017-12-01

    A critical adaptive feature of future thinking involves the ability to generate alternative versions of possible future events. However, little is known about the nature of the processes that support this ability. Here we examined whether an episodic specificity induction - brief training in recollecting details of a recent experience that selectively impacts tasks that draw on episodic retrieval - (1) boosts alternative event generation and (2) changes one's initial perceptions of negative future events. In Experiment 1, an episodic specificity induction significantly increased the number of alternative positive outcomes that participants generated to a series of standardized negative events, compared with a control induction not focused on episodic specificity. We also observed larger decreases in the perceived plausibility and negativity of the original events in the specificity condition, where participants generated more alternative outcomes, relative to the control condition. In Experiment 2, we replicated and extended these findings using a series of personalized negative events. Our findings support the idea that episodic memory processes are involved in generating alternative outcomes to anticipated future events, and that boosting the number of alternative outcomes is related to subsequent changes in the perceived plausibility and valence of the original events, which may have implications for psychological well-being. Published by Elsevier B.V.

  6. Re-tuning tuned mass dampers using ambient vibration measurements

    International Nuclear Information System (INIS)

    Hazra, B; Sadhu, A; Narasimhan, S; Lourenco, R

    2010-01-01

    Deterioration, accidental changes in the operating conditions, or incorrect estimates of the structure modal properties lead to de-tuning in tuned mass dampers (TMDs). To restore optimal performance, it is necessary to estimate the modal properties of the system, and re-tune the TMD to its optimal state. The presence of closely spaced modes and a relatively large amount of damping in the dominant modes renders the process of identification difficult. Furthermore, the process of estimating the modal properties of the bare structure using ambient vibration measurements of the structure with the TMD is challenging. In order to overcome these challenges, a novel identification and re-tuning algorithm is proposed. The process of identification consists of empirical mode decomposition to separate the closely spaced modes, followed by the blind identification of the remaining modes. Algorithms for estimating the fundamental frequency and the mode shape of the primary structure necessary for re-tuning the TMD are proposed. Experimental results from the application of the proposed algorithms to identify and re-tune a laboratory structure TMD system are presented

  7. White light generation tuned by dual hybridization of nanocrystals and conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Demir, Hilmi Volkan [Devices and Sensors Group and Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Nizamoglu, Sedat [Devices and Sensors Group and Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Ozel, Tuncay [Devices and Sensors Group and Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Mutlugun, Evren [Devices and Sensors Group and Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Huyal, Ilkem Ozge [Devices and Sensors Group and Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Sari, Emre [Devices and Sensors Group and Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Holder, Elisabeth [Functional Polymers Group and Institute of Polymer Technology, University of Wuppertal, Gaussstrasse 20, D-42097 Wuppertal (Germany); Tian Nan [Functional Polymers Group and Institute of Polymer Technology, University of Wuppertal, Gaussstrasse 20, D-42097 Wuppertal (Germany)

    2007-10-15

    Dual hybridization of highly fluorescent conjugated polymers and highly luminescent nanocrystals (NCs) is developed and demonstrated in multiple combinations for controlled white light generation with high color rendering index (CRI) (> 80) for the first time. The generated white light is tuned using layer-by-layer assembly of CdSe/ZnS core-shell NCs closely packed on polyfluorene, hybridized on near-UV emitting nitride-based light emitting diodes (LEDs). The design, synthesis, growth, fabrication and characterization of these hybrid inorganic-organic white LEDs are presented. The following experimental realizations are reported: (i) layer-by-layer hybridization of yellow NCs ({lambda}{sub PL}=580 nm) and blue polyfluorene ({lambda}{sub PL}=439 nm) with tristimulus coordinates of (x, y)=(0.31, 0.27), correlated color temperature of T{sub c}=6962 K and CRI of R{sub a}=53.4; (ii) layer-by-layer assembly of yellow and green NCs ({lambda}{sub PL}=580 and 540 nm) and blue polyfluorene ({lambda}{sub PL}=439 nm) with (x, y)=(0.23, 0.30), T{sub c}=14395 K and R{sub a}=65.7; and (iii) layer-by-layer deposition of yellow, green and red NCs ({lambda}{sub PL}=580, 540 and 620 nm) and blue polyfluorene ({lambda}{sub PL}=439 nm) with (x, y)=(0.38, 0.39), T{sub c}=4052 K and R{sub a}= 83.0. The CRI is demonstrated to be well controlled and significantly improved by increasing multi-chromaticity of the NC and polymer emitters.

  8. Enhancing long-term memory with stimulation tunes visual attention in one trial

    OpenAIRE

    Reinhart, Robert M. G.; Woodman, Geoffrey F.

    2014-01-01

    Theories of attention propose that we rely on working memory to control attention by maintaining target presentations in this active store as our visual systems are used to search for certain objects. Here, we show that the tuning of perceptual attention can be sharply accelerated by noninvasive brain stimulation. Our electrophysiological measurements showed that these improvements in attentional tuning were preceded by changes in event-related potentials thought to index long-term memory, bu...

  9. Co-Design of Event Generator and Dynamic Output Feedback Controller for LTI Systems

    Directory of Open Access Journals (Sweden)

    Dan Ma

    2015-01-01

    Full Text Available This paper presents a co-design method of the event generator and the dynamic output feedback controller for a linear time-invariant (LIT system. The event-triggered condition on the sensor-to-controller and the controller-to-actuator depends on the plant output and the controller output, respectively. A sufficient condition on the existence of the event generator and the dynamic output feedback controller is proposed and the co-design problem can be converted into the feasibility of linear matrix inequalities (LMIs. The LTI system is asymptotically stable under the proposed event-triggered controller and also reduces the computing resources with respect to the time-triggered one. In the end, a numerical example is given to illustrate the effectiveness of the proposed approach.

  10. QCD event generators with next-to-leading order matrix-elements and parton showers

    International Nuclear Information System (INIS)

    Kurihara, Y.; Fujimoto, J.; Ishikawa, T.; Kato, K.; Kawabata, S.; Munehisa, T.; Tanaka, H.

    2003-01-01

    A new method to construct event-generators based on next-to-leading order QCD matrix-elements and leading-logarithmic parton showers is proposed. Matrix elements of loop diagram as well as those of a tree level can be generated using an automatic system. A soft/collinear singularity is treated using a leading-log subtraction method. Higher order resummation of the soft/collinear correction by the parton shower method is combined with the NLO matrix-element without any double-counting in this method. An example of the event generator for Drell-Yan process is given for demonstrating a validity of this method

  11. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength.

    Science.gov (United States)

    Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M

    2017-07-18

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.

  12. Tune-Based Halo Diagnostics

    International Nuclear Information System (INIS)

    Cameron, Peter

    2003-01-01

    Tune-based halo diagnostics can be divided into two categories -- diagnostics for halo prevention, and diagnostics for halo measurement. Diagnostics for halo prevention are standard fare in accumulators, synchrotrons, and storage rings, and again can be divided into two categories -- diagnostics to measure the tune distribution (primarily to avoid resonances), and diagnostics to identify instabilities (which will not be discussed here). These diagnostic systems include kicked (coherent) tune measurement, phase-locked loop (PLL) tune measurement, Schottky tune measurement, beam transfer function (BTF) measurements, and measurement of transverse quadrupole mode envelope oscillations. We refer briefly to tune diagnostics used at RHIC and intended for the SNS, and then present experimental results. Tune-based diagnostics for halo measurement (as opposed to prevention) are considerably more difficult. We present one brief example of tune-based halo measurement

  13. Inclusion of GENIE as neutrino event generator for INO ICAL

    Indian Academy of Sciences (India)

    2017-02-22

    Feb 22, 2017 ... be the largest experimental facility of basic science in India which will carry ..... further support the use of GENIE over Nuance, and also highlight the .... A neutrino event generator is a vital component in the simulation studies ...

  14. Comparison of tuning methods for design of PID controller as an A VR

    International Nuclear Information System (INIS)

    Sheikh, S.A.; Ahmed, I.; Unar, M.A.

    2009-01-01

    The primary means of generator reactive power control is the generator-excitation Control, using Automatic Voltage Regulator (A VR). The role of A VR is to hold the terminal voltage magnitude of Synchronous generator at a specified level. This paper presents the design of a proportional integral-derivative (PID) controller as an A VR. The PID controller has been tuned by various tuning methods. From all methods, PID parameters are computed through various techniques i.e. Process-reaction curve, Closed-loop system, open-loop system gain margin and phase-margin specifications. From these methods, it has been found that Zhaung- Atherton method and Ho, Hang and Cao method are much superior to the conventional Ziegler-Nichols rules. The performance of the controller has been evaluated through Simulation Studies in MATLAB environment. It has been demonstrated that the PID controller, tuned with the said methods, yields highly satisfactory closed-loop performance. (author)

  15. Early print-tuned ERP response with minimal involvement of linguistic processing in Japanese Hiragana strings.

    Science.gov (United States)

    Okumura, Yasuko; Kasai, Tetsuko; Murohashi, Harumitsu

    2014-04-16

    The act of reading leads to the development of specific neural responses for print, the most frequently reported of which is the left occipitotemporal N170 component of event-related potentials. However, it remains unclear whether this electrophysiological response solely involves print-tuned neural activities. The present study examined an early print-tuned event-related potential response with minimal involvement of linguistic processing in a nonalphabetic language. Japanese Hiragana words, nonwords, and alphanumeric symbol strings were presented rapidly and the task was to detect the change in color of a fixation cross to restrict linguistic processing. As a result, Hiragana words and nonwords elicited a larger posterior N1 than alphanumeric symbol strings bilaterally, irrespective of intercharacter spacing. The fact that this N1 was enhanced specifically for rapidly presented Hiragana strings suggests the existence of print-tuned neural processes that are relatively independent of the influence of linguistic processing.

  16. RESONANT BPM FOR CONTINUOUS TUNE MEASUREMENT IN RHIC

    International Nuclear Information System (INIS)

    KESSELMAN, M.; CAMERON, P.; CUPOLO, J.

    2001-01-01

    A movable Beam Position Monitor (BPM) using shorted stripline Pick-Up Electrode (NE) elements has been resonated using matching stub techniques to achieve a relatively high Q resonance at about 230MHz. This PUE has been used in a feasibility study of phase-locked-loop tune measurement [1], using a lock-in amplifier and variable frequency generator to continuously track betatron tune in RHIC, as well as to observe Schottky signals of the Gold beam. The approach to providing a high Q PUE for difference mode signals, simulation studies, and the results of initial tests will be presented

  17. Assessing hail risk for a building portfolio by generating stochastic events

    Science.gov (United States)

    Nicolet, Pierrick; Choffet, Marc; Demierre, Jonathan; Imhof, Markus; Jaboyedoff, Michel; Nguyen, Liliane; Voumard, Jérémie

    2015-04-01

    Among the natural hazards affecting buildings, hail is one of the most costly and is nowadays a major concern for building insurance companies. In Switzerland, several costly events were reported these last years, among which the July 2011 event, which cost around 125 million EUR to the Aargauer public insurance company (North-western Switzerland). This study presents the new developments in a stochastic model which aims at evaluating the risk for a building portfolio. Thanks to insurance and meteorological radar data of the 2011 Aargauer event, vulnerability curves are proposed by comparing the damage rate to the radar intensity (i.e. the maximum hailstone size reached during the event, deduced from the radar signal). From these data, vulnerability is defined by a two-step process. The first step defines the probability for a building to be affected (i.e. to claim damages), while the second, if the building is affected, attributes a damage rate to the building from a probability distribution specific to the intensity class. To assess the risk, stochastic events are then generated by summing a set of Gaussian functions with 6 random parameters (X and Y location, maximum hailstone size, standard deviation, eccentricity and orientation). The location of these functions is constrained by a general event shape and by the position of the previously defined functions of the same event. For each generated event, the total cost is calculated in order to obtain a distribution of event costs. The general events parameters (shape, size, …) as well as the distribution of the Gaussian parameters are inferred from two radar intensity maps, namely the one of the aforementioned event, and a second from an event which occurred in 2009. After a large number of simulations, the hailstone size distribution obtained in different regions is compared to the distribution inferred from pre-existing hazard maps, built from a larger set of radar data. The simulation parameters are then

  18. BEEC: An event generator for simulating the Bc meson production at an e+e- collider

    Science.gov (United States)

    Yang, Zhi; Wu, Xing-Gang; Wang, Xian-You

    2013-12-01

    The Bc meson is a doubly heavy quark-antiquark bound state and carries flavors explicitly, which provides a fruitful laboratory for testing potential models and understanding the weak decay mechanisms for heavy flavors. In view of the prospects in Bc physics at the hadronic colliders such as Tevatron and LHC, Bc physics is attracting more and more attention. It has been shown that a high luminosity e+e- collider running around the Z0-peak is also helpful for studying the properties of Bc meson and has its own advantages. For this purpose, we write down an event generator for simulating Bc meson production through e+e- annihilation according to relevant publications. We name it BEEC, in which the color-singlet S-wave and P-wave (cb¯)-quarkonium states together with the color-octet S-wave (cb¯)-quarkonium states can be generated. BEEC can also be adopted to generate the similar charmonium and bottomonium states via the semi-exclusive channels e++e-→|(QQ¯)[n]>+Q+Q¯ with Q=b and c respectively. To increase the simulation efficiency, we simplify the amplitude as compact as possible by using the improved trace technology. BEEC is a Fortran program written in a PYTHIA-compatible format and is written in a modular structure, one may apply it to various situations or experimental environments conveniently by using the GNU C compiler make. A method to improve the efficiency of generating unweighted events within PYTHIA environment is proposed. Moreover, BEEC will generate a standard Les Houches Event data file that contains useful information of the meson and its accompanying partons, which can be conveniently imported into PYTHIA to do further hadronization and decay simulation. Catalogue identifier: AEQC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEQC_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in

  19. PERI auto-tuning

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D H; Williams, S [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chame, J; Chen, C; Hall, M [USC/ISI, Marina del Rey, CA 90292 (United States); Dongarra, J; Moore, S; Seymour, K; You, H [University of Tennessee, Knoxville, TN 37996 (United States); Hollingsworth, J K; Tiwari, A [University of Maryland, College Park, MD 20742 (United States); Hovland, P; Shin, J [Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: mhall@isi.edu

    2008-07-15

    The enormous and growing complexity of today's high-end systems has increased the already significant challenges of obtaining high performance on equally complex scientific applications. Application scientists are faced with a daunting challenge in tuning their codes to exploit performance-enhancing architectural features. The Performance Engineering Research Institute (PERI) is working toward the goal of automating portions of the performance tuning process. This paper describes PERI's overall strategy for auto-tuning tools and recent progress in both building auto-tuning tools and demonstrating their success on kernels, some taken from large-scale applications.

  20. Quality of Life and Stressful Life Events in First and Second Generation Immigrant Adolescents

    Directory of Open Access Journals (Sweden)

    Ida Lemos

    2013-09-01

    Full Text Available The aim of this study was to examine differences in quality of life and stressful life events, in first and second generation immigrant adolescents living in Algarve. A total of 172 immigrant adolescents participated in the study, completing the kidscreen-52, the stressful and negative life events inventory and a socio-demographic questionnaire. Results suggest that younger immigrant adolescents report more physical well-being and a higher mood level. Concerning gender differences, girls scored higher than boys in physical well-being, mood and self-perception, but no differences were found on the other kidscreen subscales. First generation immigrants scored significantly higher than second generation ones on the general quality of life index, psychological well-being, autonomy, financial resources and school environment. However, the second-generation immigrants did not seem to be more exposed to stressful life events than the first-generation group. When selecting relevant variables for well-being promotion and for intervention, we must consider that immigrants are more exposed to economic vulnerability, may experience difficulties in adapting to a different school context, and are at higher risk of social exclusion.

  1. Experimental investigation of a control scheme for a tuned resonant sideband extraction interferometer for next-generation gravitational-wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kawazoe, F; Sugamoto, A [Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Sato, S; Leonhardt, V; Yamazaki, T; Fukushima, M; Kawamura, S [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 112-8610 (Japan); Miyakawa, O [California Institute of Technology, Pasadena, CA 91125 (United States); Morioka, T [University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishizawa, A [Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: kawazoe@gravity.mtk.nao.ac.jp

    2008-07-15

    LCGT plans to use tuned RSE as the optical configuration for its interferometer. A tuned RSE interferometer has five degrees of freedom that need to be controlled in order to operate a gravitational-wave detector, although it is expected to be very challenging because of the complexity of its optical configuration. A new control scheme for a tuned RSE interferometer has been developed and tested with a prototype interferometer to demonstrate successful control of the tuned RSE interferometer. The whole RSE interferometer was successfully locked with the control scheme. Here the control scheme and the current status of the experiment are presented.

  2. Experimental investigation of a control scheme for a tuned resonant sideband extraction interferometer for next-generation gravitational-wave detectors

    International Nuclear Information System (INIS)

    Kawazoe, F; Sugamoto, A; Sato, S; Leonhardt, V; Yamazaki, T; Fukushima, M; Kawamura, S; Miyakawa, O; Morioka, T; Nishizawa, A

    2008-01-01

    LCGT plans to use tuned RSE as the optical configuration for its interferometer. A tuned RSE interferometer has five degrees of freedom that need to be controlled in order to operate a gravitational-wave detector, although it is expected to be very challenging because of the complexity of its optical configuration. A new control scheme for a tuned RSE interferometer has been developed and tested with a prototype interferometer to demonstrate successful control of the tuned RSE interferometer. The whole RSE interferometer was successfully locked with the control scheme. Here the control scheme and the current status of the experiment are presented

  3. Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems

    Science.gov (United States)

    Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke

    2016-01-01

    A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.

  4. EVENT GENERATION OF STANDARD MODEL HIGGS DECAY TO DIMUON PAIRS USING PYTHIA SOFTWARE

    CERN Document Server

    Yusof, Adib

    2015-01-01

    My project for CERN Summer Student Programme 2015 is on Event Generation of Standard Model Higgs Decay to Dimuon Pairs using Pythia Software. Briefly, Pythia or specifically, Pythia 8.1 is a program for the generation of high-energy Physics events that is able to describe the collisions at any given energies between elementary particles such as Electron, Positron, Proton as well as anti-Proton. It contains theory and models for a number of Physics aspects, including hard and soft interactions, parton distributions, initial-state and final-state parton showers, multiparton interactions, fragmentation and decay. All programming code is to be written in C++ language for this version (the previous version uses FORTRAN) and can be linked to ROOT software for displaying output in form of histogram. For my project, I need to generate events for standard model Higgs Boson into Muon and anti-Muon pairs (H→μ+ μ) to study the expected significance value for this particular process at centre-of-mass energy of 13 TeV...

  5. Automated tune measurements in the Advanced Light Source storage ring using a LabVIEW application

    International Nuclear Information System (INIS)

    Hinkson, J.A.; Chin, M.; Kim, C.H.; Nishimura, H.

    1994-06-01

    Horizontal and vertical betatron tunes and the synchrotron tune are measured frequently during storage ring commissioning. The measurements are tedious and subject to human errors. Automating this kind of repetitive measurement is underway using LabVIEW for Windows, a software application supplied by National Instruments Corporation, that provides acquisition, graphing, and analysis of data as well as instrument control through the General Purpose Interface Bus (GPIB). We have added LabVIEW access to the Advanced Light Source (ALS) data base and control system. LabVIEW is a fast and efficient tool for accelerator commissioning and beam physics studies. Hardware used to perform tune measurements include a tracking generator (or a white noise generator), strip line electrodes for external ''citation of the beam, button monitors, and a spectrum analyzer. All three tunes are displayed simultaneously on the spectrum analyzer. Our program automatically identifies three tunes by applying and analyzing small variations and reports the results. This routine can be encapsulated in other applications, for instance, in a chromaticity measurement and correction program

  6. Dynamic Mode Tuning of Ultrasonic Guided Wave Using an Array Transducer

    International Nuclear Information System (INIS)

    Kim, Young H.; Song, Sung J.; Park, Joon S.; Kim, Jae H.; Eom, Heung S.

    2005-01-01

    Ultrasonic guided waves have been widely employed for long range inspection of structures such as plates, rods and pipes. There are numerous modes with different wave velocities, and the appropriate mode selection is one of key techniques in the application of guided waves. In the present work, phase tuning by an array transducer was applied to generate ultrasonic guided waves. For this purpose, 8-channel ultrasonic pulser/receiver and their controller which enables sequential activation of each channels with given time delay were developed. Eight transducers were fabricated in order to generate guided waves by using an array transducer. The selective tuning of wave mode can be achieved by changing the interval between elements of an array transducer

  7. Trend analyses of the emergency diesel generator problem events in Japanese and U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2011-01-01

    Up to 2009, the author and a colleague conducted trend analyses of problem events related to main generators, emergency diesel generators, breakers, motors and transformers which are more likely to cause problems than other electric components in nuclear power plants. Among the electric components with high frequency of defect occurrence, i.e., emergency diesel generators, several years have passed since the last analyses. These are very important components needed to stop a nuclear reactor safely and to cool it down during external power supply loses. Then trend analyses were conducted for the second time. The trend analyses were performed on 80 problem events with emergency diesel generators which had occurred in U.S. nuclear power plants in the five years from 2005 through 2009 among events reported in the Licensee Event Reports (LERs: event reports submitted to NRC by U.S. nuclear power plants) which have been registered in the nuclear information database of the Institute of Nuclear Safety System, Inc. (INSS) , as well as 40 events registered in the Nuclear Information Archives (NUCIA), which occurred in Japanese nuclear power plants in the same time period. It was learned from the trend analyses of the problem events with emergency diesel generators that frequency of defect occurrence are high in both Japanese and US plants during plant operations and functional tests (that is, defects can be discovered effectively in advance), so that implementation of periodical functional tests under plant operation is an important task for the future. (author)

  8. Initial-state parton shower kinematics for NLO event generators

    International Nuclear Information System (INIS)

    Odaka, Shigeru; Kurihara, Yoshimasa

    2007-01-01

    We are developing a consistent method to combine tree-level event generators for hadron collision interactions with those including one additional QCD radiation from the initial-state partons, based on the limited leading-log (LLL) subtraction method, aiming at an application to NLO event generators. In this method, a boundary between non-radiative and radiative processes necessarily appears at the factorization scale (μ F ). The radiation effects are simulated using a parton shower (PS) in non-radiative processes. It is therefore crucial in our method to apply a PS which well reproduces the radiation activities evaluated from the matrix-element (ME) calculations for radiative processes. The PS activity depends on the applied kinematics model. In this paper we introduce two models for our simple initial-state leading-log PS: a model similar to the 'old' PYTHIA-PS and a p T -prefixed model motivated by ME calculations. PS simulations employing these models are tested using W-boson production at LHC as an example. Both simulations show a smooth matching to the LLL subtracted W+1 jet simulation in the p T distribution of W bosons, and the summed p T spectra are stable against a variation of μ F , despite that the p T -prefixed PS results in an apparently harder p T spectrum. (orig.)

  9. Thermo-optically tuned photonic resonators with concurrent electrical connection and thermal isolation

    Science.gov (United States)

    Lentine, Anthony L.; Kekatpure, Rohan Deodatta; Zortman, William A.; Savignon, Daniel J.

    2016-06-14

    A photonic resonator system is designed to use thermal tuning to adjust the resonant wavelength of each resonator in the system, with a separate tuning circuit associated with each resonator so that individual adjustments may be made. The common electrical ground connection between the tuning circuits is particularly formed to provide thermal isolation between adjacent resonators by including a capacitor along each return path to ground, where the presence of the capacitor's dielectric material provides the thermal isolation. The use of capacitively coupling necessarily requires the use of an AC current as an input to the heater element (conductor/resistor) of each resonator, where the RMS value of the AC signal is indicative of the amount of heat that is generated along the element and the degree of wavelength tuning that is obtained.

  10. SQL Tuning

    CERN Document Server

    Tow, Dan

    2003-01-01

    A poorly performing database application not only costs users time, but also has an impact on other applications running on the same computer or the same network. SQL Tuning provides an essential next step for SQL developers and database administrators who want to extend their SQL tuning expertise and get the most from their database applications.There are two basic issues to focus on when tuning SQL: how to find and interpret the execution plan of an SQL statement and how to change SQL to get a specific alternate execution plan. SQL Tuning provides answers to these questions and addresses a third issue that's even more important: how to find the optimal execution plan for the query to use.Author Dan Tow outlines a timesaving method he's developed for finding the optimum execution plan--rapidly and systematically--regardless of the complexity of the SQL or the database platform being used. You'll learn how to understand and control SQL execution plans and how to diagram SQL queries to deduce the best executio...

  11. HIJET: a Monte Carlo event generator for P-nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ludlam, T.; Pfoh, A.; Shor, A.

    1985-01-01

    Comparisons are shown for the HIJET generated data and measured data for average multiplicities, rapidity distributions, and leading proton spectra in proton-nucleus and heavy ion reactions. The algorithm for the generator is one of an incident particle on a target of uniformly distributed nucleons. The dynamics of the interaction limit secondary interactions in that only the leading baryon may re-interact with the nuclear volume. Energy and four momentum are globally conserved in each event. 6 refs., 6 figs

  12. N170 Tuning in Chinese: Logographic Characters and Phonetic Pinyin Script

    Science.gov (United States)

    Qin, Rui; Maurits, Natasha; Maassen, Ben

    2016-01-01

    In alphabetic languages, print consistently elicits enhanced, left-lateralized N170 responses in the event-related potential compared to control stimuli. In the current study, we adopted a cross-linguistic design to investigate N170 tuning to logographic Chinese and to "pinyin," an auxiliary phonetic system in Chinese. The results…

  13. GC Side Event: Future of Nuclear Energy: Engaging the Young Generation. Presentations

    International Nuclear Information System (INIS)

    2017-01-01

    This event presented the IAEA’s programmes for the education and training of a new generation of nuclear professionals. It also featured the annual European Master of Science in Nuclear Engineering (EMSNE) award ceremony

  14. Neural Tuning Functions Underlie Both Generalization and Interference.

    Directory of Open Access Journals (Sweden)

    Ian S Howard

    Full Text Available In sports, the role of backswing is considered critical for generating a good shot, even though it plays no direct role in hitting the ball. We recently demonstrated the scientific basis of this phenomenon by showing that immediate past movement affects the learning and recall of motor memories. This effect occurred regardless of whether the past contextual movement was performed actively, passively, or shown visually. In force field studies, it has been shown that motor memories generalize locally and that the level of compensation decays as a function of movement angle away from the trained movement. Here we examine if the contextual effect of past movement exhibits similar patterns of generalization and whether it can explain behavior seen in interference studies. Using a single force-field learning task, the directional tuning curves of both the prior contextual movement and the subsequent force field adaptive movements were measured. The adaptation movement direction showed strong directional tuning, decaying to zero by 90° relative to the training direction. The contextual movement direction exhibited a similar directional tuning, although the effect was always above 60%. We then investigated the directional tuning of the passive contextual movement using interference tasks, where the contextual movements that uniquely specified the force field direction were separated by ±15° or ±45°. Both groups showed a pronounced tuning effect, which could be well explained by the directional tuning functions for single force fields. Our results show that contextual effect of past movement influences predictive force compensation, even when adaptation does not require contextual information. However, when such past movement contextual information is crucial to the task, such as in an interference study, it plays a strong role in motor memory learning and recall. This work demonstrates that similar tuning responses underlie both generalization of

  15. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    International Nuclear Information System (INIS)

    Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard

  16. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    Science.gov (United States)

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  17. Negative life events and symptoms of depression and anxiety: stress causation and/or stress generation

    OpenAIRE

    Phillips, Anna C.; Carroll, Douglas; Der, Geoffrey

    2015-01-01

    Background and Objectives: Stressful life events are known to contribute to development of depression, however, it is possible this link is bi-directional. The present study examined whether such stress generation effects are greater than the effects of stressful life events on depression, and whether stress generation is also evident with anxiety. Design: Participants were two large age cohorts (N = 732 aged 44 years; N = 705 aged 63 years) from the West of Scotland Twenty-07 study. Methods:...

  18. Performance Tuning of x86 OpenMP Codes with MAQAO

    Science.gov (United States)

    Barthou, Denis; Charif Rubial, Andres; Jalby, William; Koliai, Souad; Valensi, Cédric

    Failing to find the best optimization sequence for a given application code can lead to compiler generated codes with poor performances or inappropriate code. It is necessary to analyze performances from the assembly generated code to improve over the compilation process. This paper presents a tool for the performance analysis of multithreaded codes (OpenMP programs support at the moment). MAQAO relies on static performance evaluation to identify compiler optimizations and assess performance of loops. It exploits static binary rewriting for reading and instrumenting object files or executables. Static binary instrumentation allows the insertion of probes at instruction level. Memory accesses can be captured to help tune the code, but such traces require to be compressed. MAQAO can analyze the results and provide hints for tuning the code. We show on some examples how this can help users improve their OpenMP applications.

  19. iTunes music

    CERN Document Server

    Katz, Bob

    2013-01-01

    Apple's exciting new Mastered for iTunes (MFiT) initiative, introduced in early 2012, introduces new possibilities for delivering high-quality audio. For the first time, record labels and program producers are encouraged to deliver audio materials to iTunes in a high resolution format, which can produce better-sounding masters. In iTunes Music, author and world-class mastering engineer Bob Katz starts out with the basics, surveys the recent past, and brings you quickly up to the present-where the current state of digital audio is bleak. Katz explains the evolution of

  20. NiMax system for hadronic event generators in HEP

    International Nuclear Information System (INIS)

    Amelin, N.S.; Komogorov, M.E.

    2001-01-01

    We have suggested a new approach to the development and use of Monte Carlo event generators in high-energy physics (HEP). It is a component approach, when a complex numerical model is composed of standard components. Our approach opens a way to organize a library of HEP model components and provides a great flexibility for the construction of very powerful and realistic numerical models. To support this approach we have designed the NiMax software system (framework) written in C++

  1. PERI - auto-tuning memory-intensive kernels for multicore

    International Nuclear Information System (INIS)

    Williams, S; Carter, J; Oliker, L; Shalf, J; Yelick, K; Bailey, D; Datta, K

    2008-01-01

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to sparse matrix vector multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the high-performance computing literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we develop a code generator for each kernel that allows us identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4x improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications

  2. PERI - Auto-tuning Memory Intensive Kernels for Multicore

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H; Williams, Samuel; Datta, Kaushik; Carter, Jonathan; Oliker, Leonid; Shalf, John; Yelick, Katherine; Bailey, David H

    2008-06-24

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to Sparse Matrix Vector Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we develop a code generator for each kernel that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4X improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications.

  3. Can an Eternal Life Start From the Minimal Fine-Tuning for Intelligence?

    Directory of Open Access Journals (Sweden)

    Ward Blondé

    2016-10-01

    Full Text Available Since modern physicists made more and more advances in precisely measuring the fundamental constants in nature, cosmologists have been confronted with this problem: how do we declare that nature’s constants are fine-tuned for the emergence of life? Many cosmologists assume nowadays that the big bang universe originates from a multiverse that consists of very many universes. Some of these must be fine-tuned for life. A fascinating question arises: Would there be any chance on a life after our death in this multiverse? In this paper, I show two things about the multiverse. First, universes in the multiverse acquire an unlimited amount of additional fine-tuning for intelligent life over the course of many universe generations. Such additional fine-tuning may consist of travelling between universes and an afterlife on a distant planet. Second, evolutionary conservation in the evolution of universes in the multiverse provides a declaration why we observe a universe that roughly has the minimal fine-tuning to support intelligent life.

  4. Modern particle physics event generation with WHIZARD

    International Nuclear Information System (INIS)

    Reuter, J.; Bach, F.; Chokoufe, B.; Kilian, W.; Sekulla, M.; Ohl, T.; Weiss, C.; Siegen Univ.

    2014-01-01

    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis is given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development are discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.

  5. Modern Particle Physics Event Generation with WHIZARD

    Science.gov (United States)

    Reuter, J.; Bach, F.; Chokoufé, B.; Kilian, W.; Ohl, T.; Sekulla, M.; Weiss, C.

    2015-05-01

    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.

  6. Modern Particle Physics Event Generation with WHIZARD

    International Nuclear Information System (INIS)

    Reuter, J; Bach, F; Chokoufé, B; Weiss, C; Kilian, W; Sekulla, M; Ohl, T

    2015-01-01

    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements. (paper)

  7. Java performance tuning

    CERN Document Server

    Shirazi, Jack

    2003-01-01

    Performance has been an important issue for Java developers ever since the first version hit the streets. Over the years, Java performance has improved dramatically, but tuning is essential to get the best results, especially for J2EE applications. You can never have code that runs too fast. Java Peformance Tuning, 2nd edition provides a comprehensive and indispensable guide to eliminating all types of performance problems. Using many real-life examples to work through the tuning process in detail, JPT shows how tricks such as minimizing object creation and replacing strings with arrays can

  8. Remote tuning of NMR probe circuits.

    Science.gov (United States)

    Kodibagkar, V D; Conradi, M S

    2000-05-01

    There are many circumstances in which the probe tuning adjustments cannot be located near the rf NMR coil. These may occur in high-temperature NMR, low-temperature NMR, and in the use of magnets with small diameter access bores. We address here circuitry for connecting a fixed-tuned probe circuit by a transmission line to a remotely located tuning network. In particular, the bandwidth over which the probe may be remotely tuned while keeping the losses in the transmission line acceptably low is considered. The results show that for all resonant circuit geometries (series, parallel, series-parallel), overcoupling of the line to the tuned circuit is key to obtaining a large tuning bandwidth. At equivalent extents of overcoupling, all resonant circuit geometries have nearly equal remote tuning bandwidths. Particularly for the case of low-loss transmission line, the tuning bandwidth can be many times the tuned circuit's bandwidth, f(o)/Q. Copyright 2000 Academic Press.

  9. Event-Driven Technology to Generate Relevant Collections of Near-Realtime Data

    Science.gov (United States)

    Graves, S. J.; Keiser, K.; Nair, U. S.; Beck, J. M.; Ebersole, S.

    2017-12-01

    Getting the right data when it is needed continues to be a challenge for researchers and decision makers. Event-Driven Data Delivery (ED3), funded by the NASA Applied Science program, is a technology that allows researchers and decision makers to pre-plan what data, information and processes they need to have collected or executed in response to future events. The Information Technology and Systems Center at the University of Alabama in Huntsville (UAH) has developed the ED3 framework in collaboration with atmospheric scientists at UAH, scientists at the Geological Survey of Alabama, and other federal, state and local stakeholders to meet the data preparedness needs for research, decisions and situational awareness. The ED3 framework supports an API that supports the addition of loosely-coupled, distributed event handlers and data processes. This approach allows the easy addition of new events and data processes so the system can scale to support virtually any type of event or data process. Using ED3's underlying services, applications have been developed that monitor for alerts of registered event types and automatically triggers subscriptions that match new events, providing users with a living "album" of results that can continued to be curated as more information for an event becomes available. This capability can allow users to improve capacity for the collection, creation and use of data and real-time processes (data access, model execution, product generation, sensor tasking, social media filtering, etc), in response to disaster (and other) events by preparing in advance for data and information needs for future events. This presentation will provide an update on the ED3 developments and deployments, and further explain the applicability for utilizing near-realtime data in hazards research, response and situational awareness.

  10. A novel auto-tuning PID control mechanism for nonlinear systems.

    Science.gov (United States)

    Cetin, Meric; Iplikci, Serdar

    2015-09-01

    In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Event generation for next to leading order chargino production at the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Robens, T.

    2006-10-15

    At the International Linear Collider (ILC), parameters of supersymmetry (SUSY) can be determined with an experimental accuracy matching the precision of next-to-leading order (NLO) and higher-order theoretical predictions. Therefore, these contributions need to be included in the analysis of the parameters. We present a Monte-Carlo event generator for simulating chargino pair production at the ILC at next-to-leading order in the electroweak couplings. We consider two approaches of including photon radiation. A strict fixed-order approach allows for comparison and consistency checks with published semianalytic results in the literature. A version with soft- and hard-collinear resummation of photon radiation, which combines photon resummation with the inclusion of the NLO matrix element for the production process, avoids negative event weights, so the program can simulate physical (unweighted) event samples. Photons are explicitly generated throughout the range where they can be experimentally resolved. In addition, it includes further higher-order corrections unaccounted for by the fixed-order method. Inspecting the dependence on the cutoffs separating the soft and collinear regions, we evaluate the systematic errors due to soft and collinear approximations for NLO and higher-order contributions. In the resummation approach, the residual uncertainty can be brought down to the per-mil level, coinciding with the expected statistical uncertainty at the ILC. We closely investigate the two-photon phase space for the resummation method. We present results for cross sections and event generation for both approaches. (orig.)

  12. Event generators for {{\\eta }}/{{{\\eta }}}^{^{\\prime} } decays at BESIII

    Science.gov (United States)

    Qin, Nian; Zhang, Zhen-Yu; Fang, Shuang-Shi; Zhou, Xiang; Du, Lin-Lin; Qiao, Hao-Xue

    2018-01-01

    The light unflavoured meson {{η }}/{{{η }}}^{\\prime } decays are valuable for testing non-perturbative quantum chromodynamics and exploring new physics beyond the Standard Model. This paper describes a series of event generators, including {{η }}/{{{η }}}^{\\prime }\\to {{γ }}{{{l}}}+{{{l}}}-, {{η }}/{{{η }}}^{\\prime }\\to {{γ }}{{{π }}}+{{{π }}}-, {{{η }}}^{\\prime }\\to {{ω }}{{{e}}}+{{{e}}}-, {{η }}\\to {{{π }}}+{{{π }}}-{{{π }}}0, {{η }}/{{{η }}}^{\\prime }\\to {{{π }}}0{{{π }}}0{{{π }}}0, {{{η }}}^{\\prime }\\to {{η }}{{π }}{{π }} and {{{η }}}^{\\prime }\\to {{{π }}}+{{{π }}}-{{{π }}}+{{{π }}}-/{{{π }}}+{{{π }}}-{{{π }}}0{{{π }}}0, which have been developed for investigating {{η }}/{{{η }}}^{\\prime } decay dynamics. For most of these generators, their usability has been validated in BESIII analyses for determining the detection efficiency, and background studies. The consistency between data and Monte Carlo shows that these generators work well in the BESIII simulation, and will also be useful for ongoing BESIII analyses and other experiments for studying {{η }}/{{{η }}}^{\\prime } physics. Supported by National Natural Science Foundation of China (NSFC) (11205117, 11575133, 11675184), the China Scholarship Council (201506275156), the Wuhan University PhD Short-time Mobility Program 2016, the Joint Funds of the NSFC and Henan Province (U1504112)

  13. Simultaneous gains tuning in boiler/turbine PID-based controller clusters using iterative feedback tuning methodology.

    Science.gov (United States)

    Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan

    2012-09-01

    Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Tuning Geneva+Pythia 8 Using Professor 2

    CERN Document Server

    Gellersen, Leif Erik

    2016-01-01

    We study the tuning of the Geneva Monte Carlo framework to LHC data. Geneva improves the predictions for Drell-Yan production by including NNLO QCD corrections and extending the resummation accuracy to NNLL$'$ for 0-jettiness and NLL for 1-jettiness. The partonic results provided by Geneva are interfaced to Pythia 8 for showering including its multiple parton interaction (MPI) model. This allows us to obtain sensible predictions for Underlying Event (UE) sensitive observables too. Retuning Geneva + Pythia 8 to LHC data with the Professor 2 package shows an improved agreement for both UE sensitive and more inclusive observables.

  15. Safety Evaluation for IHTS Integrity due to the Steam Generator Sodium-Water Reaction Event in the PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang-Jun; Lee, Kwi Lim; Ha, Kwi-Seok; Lee, Seung Won; Jeong, Taekyeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the integrity of the IHTS and SG by the SWR event are evaluated using the SWAAMII code. A sodium has a chemical characteristics to rigorously react the water or steam and produce the high pressure waves and high temperature reaction heat. It has an excellent characteristics as a reactor coolant. But, there is an event to be considered in the sodium cooled fast reactor design. The Sodium-Water Reaction (SWR) event can be occurred by the water or steam leaks due to the break of the steam generator tubes. The propagated high pressure waves threathen the structural integrity of the affected Intermediate Heat Transport System (IHTS) and steam generator. If the IHTS pipes are failed, the sodium of the IHTS can be released to the containment building. To the peak pressure point of view, it is performed to evaluate the integrity of the major components due to the SWR event in the SG. The generated peak pressures due to the five SG tubes simultaneous break event are within the range of the design pressure for the SG, IHX and IHTS including the related pipes.

  16. NiMax: a new approach to develop hadronic event generators in HEP

    International Nuclear Information System (INIS)

    Amelin, N.; Komogorov, M.

    2000-01-01

    The NiMax framework is a new approach to develop, assemble and use hadronic event generators in HEP. There are several important concepts of the NiMax architecture: the components, the data file, the application domain module, the control system and the project. Here we describe these concepts stressing their functionality

  17. The effect of tube rupture location on the consequences of multiple steam generator tube rupture event

    International Nuclear Information System (INIS)

    Jeong, Ji Hwan; Kweon, Young Chul

    2002-01-01

    A multiple steam generator tube rupture (MSGTR) event has never occurred in the commercial operation of nuclear reactors while single steam generator tube rupture (SGTR) events are reported to occur every 2 years. As there has been no occurrence of a MSGTR event, the understanding of transients and consequences of this event is very limited. In this study, a postulated MSGTR event in an advanced power reactor 1400 (APR 1400) is analyzed using the thermal-hydraulic system code, MARS1.4. The APR 1400 is a two-loop, 3893 MWt, PWR proposed to be built in 2010. The present study aims to understand the effects of rupture location in heat transfer tubes following a MSGTR event. The effects of five tube rupture locations are compared with each other. The comparison shows that the response of APR1400 allows the shortest time for operator action following a tube rupture in the vicinity of the hot-leg side tube sheet and allows the longest time following a tube rupture at the tube top. The MSSV lift time for rupture at the tube-top is evaluated as 24.5% larger than that for rupture at the hot-leg side tube sheet

  18. Anderson localisation and optical-event horizons in rogue-soliton generation.

    Science.gov (United States)

    Saleh, Mohammed F; Conti, Claudio; Biancalana, Fabio

    2017-03-06

    We unveil the relation between the linear Anderson localisation process and nonlinear modulation instability. Anderson localised modes are formed in certain temporal intervals due to the random background noise. Such localised modes seed the formation of solitary waves that will appear during the modulation instability process at those preferred intervals. Afterwards, optical-event horizon effects between dispersive waves and solitons produce an artificial collective acceleration that favours the collision of solitons, which could eventually lead to a rogue-soliton generation.

  19. Event-Based control of depth of hypnosis in anesthesia.

    Science.gov (United States)

    Merigo, Luca; Beschi, Manuel; Padula, Fabrizio; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio

    2017-08-01

    In this paper, we propose the use of an event-based control strategy for the closed-loop control of the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. A new event generator with high noise-filtering properties is employed in addition to a PIDPlus controller. The tuning of the parameters is performed off-line by using genetic algorithms by considering a given data set of patients. The effectiveness and robustness of the method is verified in simulation by implementing a Monte Carlo method to address the intra-patient and inter-patient variability. A comparison with a standard PID control structure shows that the event-based control system achieves a reduction of the total variation of the manipulated variable of 93% in the induction phase and of 95% in the maintenance phase. The use of event based automatic control in anesthesia yields a fast induction phase with bounded overshoot and an acceptable disturbance rejection. A comparison with a standard PID control structure shows that the technique effectively mimics the behavior of the anesthesiologist by providing a significant decrement of the total variation of the manipulated variable. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Modelling the tuned criticality in stick-slip friction during metal cutting

    International Nuclear Information System (INIS)

    Wang, Q; Ye, G G; Dai, L H; Lu, C

    2015-01-01

    Cutting is a ubiquitous process in nature and man-made systems. Here we demonstrate that, based on morphological patterns observed in experiments, the friction behaviour of metal cutting exhibits a criticality with cutting speed as a tuned parameter. The corresponding stick-slip events can be described by a power law distribution. A dynamic thermo-mechanical model is developed to investigate how such a tuned criticality occurs. It is shown that, in terms of the linear stability analysis, stick-slip friction is due to the thermo-mechanical instability and dynamical interaction between shear dissipation and nonlinear friction. Moreover, there is a secondary transition from a criticality state to a limit cycle that is dominated by the inertia effect, which is similar to the frequency lock phenomenon in a forced Duffing oscillator. (paper)

  1. Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites.

    Science.gov (United States)

    Das, Anindita; Rathour, Rahul K; Narayanan, Rishikesh

    2017-01-01

    Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.

  2. SC tuning fork

    CERN Document Server

    The tuning fork used to modulate the radiofrequency system of the synchro cyclotron (SC) from 1957 to 1973. This piece is an unused spare part. The SC was the 1st accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990. In the SC the magnetic field did not change with time, and the particles were accelerated in successive pulses by a radiofrequency voltage of some 20kV which varied in frequency as they spiraled outwards towards the extraction radius. The frequency varied from 30MHz to about 17Mz in each pulse. The tuning fork vibrated at 55MHz in vacuum in an enclosure which formed a variable capacitor in the tuning circuit of the RF system, allowing the RF to vary over the appropriate range to accelerate protons from the centre of the macine up to 600Mev at extraction radius. In operation the tips of the tuning fork blade had an amplitude of movement of over 1 cm. The SC accelerator underwent extensive improvements from 1973 to 1975, including the installation of a...

  3. Event generator for RHIC spin physics. Proceedings of RIKEN BNL Research Center workshop: Volume 11

    International Nuclear Information System (INIS)

    1998-01-01

    A major objective of the workshop was to establish a firm collaboration to develop suitable event generators for the spin physics program at RHIC. With the completion of the Relativistic Heavy Ion Collider (RHIC) as a polarized collider a completely new domain of high-energy spin physics will be opened. The planned studies address the spin structure of the nucleon, tests of the standard model, and transverse spin effects in initial and final states. RHIC offers the unique opportunity to pursue these studies because of its high and variable energy, 50 ≤ √s ≤ 500 GeV, high polarization, 70%, and high luminosity, 2 x 10 32 cm -2 sec -1 or more at 500 GeV. To maximize the output from the spin program at RHIC, the understanding of both experimental and theoretical systematic errors is crucial. It will require full-fledged event generators, to simulate the processes of interest in great detail. The history of event generators shows that their development and improvement are ongoing processes taking place in parallel to the physics analysis by various experimental groups. The number of processes included in the generators has been increasing and the precision of their predictions is being improved continuously. This workshop aims at getting this process well under way for the spin physics program at RHIC, based on the first development in this direction, SPHINX

  4. High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering

    Science.gov (United States)

    Maly, K.

    1998-01-01

    Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated

  5. Studies of the underlying-event properties and of hard double parton scattering with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00173407; The ATLAS collaboration

    2018-01-01

    A correct modelling of the underlying event in proton-proton collisions at Large Hadron Collider is important for the proper simulation of kinematic distributions of final state objects. The ATLAS collaboration performed a study at 13 TeV, measuring the number and transverse-momentum sum of charged particles in different regions with respect to the direction of the reconstructed leading track. These measurements are sensitive to the underlying-event activity. The results are compared to predictions of several Monte Carlo generators. Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of 7 TeV in the ATLAS detector have been analysed for the presence of hard double parton scattering. The fraction of events originating from hard double parton scattering has been extracted, and used to measure the effective proton cross section. Distributions sensitive to the presence of double parton scattering were unfolded to the parton level and compared to various tunes of a selected Mo...

  6. Data Driven Tuning of Inventory Controllers

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Santacoloma, Paloma Andrade; Poulsen, Niels Kjølstad

    2007-01-01

    A systematic method for criterion based tuning of inventory controllers based on data-driven iterative feedback tuning is presented. This tuning method circumvent problems with modeling bias. The process model used for the design of the inventory control is utilized in the tuning...... as an approximation to reduce time required on experiments. The method is illustrated in an application with a multivariable inventory control implementation on a four tank system....

  7. Spatially tuned normalization explains attention modulation variance within neurons.

    Science.gov (United States)

    Ni, Amy M; Maunsell, John H R

    2017-09-01

    Spatial attention improves perception of attended parts of a scene, a behavioral enhancement accompanied by modulations of neuronal firing rates. These modulations vary in size across neurons in the same brain area. Models of normalization explain much of this variance in attention modulation with differences in tuned normalization across neurons (Lee J, Maunsell JHR. PLoS One 4: e4651, 2009; Ni AM, Ray S, Maunsell JHR. Neuron 73: 803-813, 2012). However, recent studies suggest that normalization tuning varies with spatial location both across and within neurons (Ruff DA, Alberts JJ, Cohen MR. J Neurophysiol 116: 1375-1386, 2016; Verhoef BE, Maunsell JHR. eLife 5: e17256, 2016). Here we show directly that attention modulation and normalization tuning do in fact covary within individual neurons, in addition to across neurons as previously demonstrated. We recorded the activity of isolated neurons in the middle temporal area of two rhesus monkeys as they performed a change-detection task that controlled the focus of spatial attention. Using the same two drifting Gabor stimuli and the same two receptive field locations for each neuron, we found that switching which stimulus was presented at which location affected both attention modulation and normalization in a correlated way within neurons. We present an equal-maximum-suppression spatially tuned normalization model that explains this covariance both across and within neurons: each stimulus generates equally strong suppression of its own excitatory drive, but its suppression of distant stimuli is typically less. This new model specifies how the tuned normalization associated with each stimulus location varies across space both within and across neurons, changing our understanding of the normalization mechanism and how attention modulations depend on this mechanism. NEW & NOTEWORTHY Tuned normalization studies have demonstrated that the variance in attention modulation size seen across neurons from the same cortical

  8. Transverse betatron tune measurements

    International Nuclear Information System (INIS)

    Serio, M.

    1989-01-01

    In this paper the concept of the betatron tune and the techniques to measure it are discussed. The smooth approximation is introduced along with the terminology of betatron oscillations, phase advance and tune. Single particle and beam spectra in the presence of synchro-betatron oscillations are treated with emphasis on the consequences of sampling the beam position. After a general presentation of various kinds of beam position monitors and transverse kickers, the time domain and frequency domain analysis of the beam response to a transverse excitation are discussed and several methods and applications of the tune measurements are listed

  9. Oracle SQL tuning with Oracle SQLTXPLAIN

    CERN Document Server

    Charalambides, Stelios

    2013-01-01

    Oracle SQL Tuning with SQLTXPLAIN is a practical guide to SQL tuning the way Oracle's own experts do it, using a freely downloadable tool called SQLTXPLAIN. Using this simple tool you'll learn how to tune even the most complex SQL, and you'll learn to do it quickly, without the huge learning curve usually associated with tuning as a whole.  Firmly based in real world problems, this book helps you reclaim system resources and avoid the most common bottleneck in overall performance, badly tuned SQL.  You'll learn how the optimizer works, how to take advantage of its latest features, and when it'

  10. An object-oriented framework for the hadronic Monte-Carlo event generators

    International Nuclear Information System (INIS)

    Amelin, N.; Komogorov, M.

    1999-01-01

    We advocate the development of an object-oriented framework for the hadronic Monte-Carlo (MC) event generators. The hadronic MC user and developer requirements are discussed as well as the hadronic model commonalities. It is argued that the development of a framework is in favour of taking into account of model commonalities since common means are stable and can be developed only at once. Such framework can provide different possibilities to have user session more convenient and productive, e.g., an easy access and edition of any model parameter, substitution of the model components by the alternative model components without changing the code, customized output, which offers either full information about history of generated event or specific information about reaction final state, etc. Such framework can indeed increase the productivity of a hadronic model developer, particularly, due to the formalization of the hadronic model component structure and model component collaborations. The framework based on the component approach opens a way to organize a library of the hadronic model components, which can be considered as the pool of hadronic model building blocks. Basic features, code structure and working examples of the first framework version for the hadronic MC models, which has been built as the starting point, are shortly explained

  11. Effect of quadrupole fringe fields on the tune of Indus-2

    International Nuclear Information System (INIS)

    Kant, Pradeep; Husain, Riyasat; Ghodke, A.D.; Singh, Gurnam

    2009-01-01

    Being an unavoidable part in a real magnet design, fringe fields of different kind of magnets have various effects on the beam parameters of the storage ring. The fringe field of a bending magnet (dipole) generates closed orbit distortion and disturbs the dispersion function whereas the fringe field of a quadrupole affects other parameters of the ring like tune values and twiss functions. The fringe field pattern of the quadrupoles of Indus-2 was measured by the Magnet Group. The measurements were performed along the various radial tracks in a quadrupole from -30 to 30 mm in steps of 5 mm at various excitation current levels. The pattern of the gradient at these different current levels was obtained by a line fit of the magnetic field at each point. The data was used to get the effect on the tune of Indus-2. The paper describes the results of the effect on the tune. (author)

  12. Tuning magnet power supply

    International Nuclear Information System (INIS)

    Han, B.M.; Karady, G.G.; Thiessen, H.A.

    1989-01-01

    The particles in a Rapid Cycling Accelerator are accelerated by rf cavities, which are tuned by dc biased ferrite cores. The tuning is achieved by the regulation of bias current, which is produced by a power supply. The tuning magnet power supply utilizes a bridge circuit, supplied by a three phase rectifier. During the rise of the current, when the particles are accelerated, the current is controlled with precision by the bridge which operates a power amplifier. During the fall of the current, the bridge operates in a switching mode and recovers the energy stored in the ferrites. The recovered energy is stored in a capacitor bank. The bridge circuit is built with 150 power transistors. The drive, protection and control circuit were designed and built from commercial component. The system will be used for a rf cavity experiment in Los Alamos and will serve as a prototype tuning power supply for future accelerators. 1 ref., 7 figs

  13. Rising tides or rising stars?: Dynamics of shared attention on Twitter during media events.

    Science.gov (United States)

    Lin, Yu-Ru; Keegan, Brian; Margolin, Drew; Lazer, David

    2014-01-01

    "Media events" generate conditions of shared attention as many users simultaneously tune in with the dual screens of broadcast and social media to view and participate. We examine how collective patterns of user behavior under conditions of shared attention are distinct from other "bursts" of activity like breaking news events. Using 290 million tweets from a panel of 193,532 politically active Twitter users, we compare features of their behavior during eight major events during the 2012 U.S. presidential election to examine how patterns of social media use change during these media events compared to "typical" time and whether these changes are attributable to shifts in the behavior of the population as a whole or shifts from particular segments such as elites. Compared to baseline time periods, our findings reveal that media events not only generate large volumes of tweets, but they are also associated with (1) substantial declines in interpersonal communication, (2) more highly concentrated attention by replying to and retweeting particular users, and (3) elite users predominantly benefiting from this attention. These findings empirically demonstrate how bursts of activity on Twitter during media events significantly alter underlying social processes of interpersonal communication and social interaction. Because the behavior of large populations within socio-technical systems can change so dramatically, our findings suggest the need for further research about how social media responses to media events can be used to support collective sensemaking, to promote informed deliberation, and to remain resilient in the face of misinformation.

  14. Rising tides or rising stars?: Dynamics of shared attention on Twitter during media events.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Lin

    Full Text Available "Media events" generate conditions of shared attention as many users simultaneously tune in with the dual screens of broadcast and social media to view and participate. We examine how collective patterns of user behavior under conditions of shared attention are distinct from other "bursts" of activity like breaking news events. Using 290 million tweets from a panel of 193,532 politically active Twitter users, we compare features of their behavior during eight major events during the 2012 U.S. presidential election to examine how patterns of social media use change during these media events compared to "typical" time and whether these changes are attributable to shifts in the behavior of the population as a whole or shifts from particular segments such as elites. Compared to baseline time periods, our findings reveal that media events not only generate large volumes of tweets, but they are also associated with (1 substantial declines in interpersonal communication, (2 more highly concentrated attention by replying to and retweeting particular users, and (3 elite users predominantly benefiting from this attention. These findings empirically demonstrate how bursts of activity on Twitter during media events significantly alter underlying social processes of interpersonal communication and social interaction. Because the behavior of large populations within socio-technical systems can change so dramatically, our findings suggest the need for further research about how social media responses to media events can be used to support collective sensemaking, to promote informed deliberation, and to remain resilient in the face of misinformation.

  15. Susy Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators

    International Nuclear Information System (INIS)

    Skands, P.; Allanach, B.C.; Baer, H.

    2003-11-01

    An accord specifying generic file structures for 1) supersymmetric model specifications and input parameters, 2) electroweak scale supersymmetric mass and coupling spectra, and 3) decay tables is defined, to provide a universal interface between spectrum calculation programs, decay packages, and high energy physics event generators. (orig.)

  16. Control of the MKQA tuning and aperture kickers of the LHC

    CERN Document Server

    Barlow, R A; Pianfetti, J P; Senaj, V; Cattin, M; CERN. Geneva. TE Department

    2009-01-01

    The large hadron collider (LHC) at CERN has been equipped with four fast pulsed kicker magnets in RA43 situated at point 4 which are part of the measurement system for the tune and the dynamic aperture of the LHC beam (Beam 1 and Beam 2). For the tune measurement 'Q', the magnets will excite oscillations in part of the beam. This is achieved by means of a generator producing a 5 µs base half-sine pulse of 1.2 kA [1] amplitude, superimposed with a 3rd harmonic to produce a 2 µs flat top. A kick repetition rate of 2 Hz will be possible. To measure the dynamic aperture 'A' of the LHC at different beam energies, the same magnets will also be driven by a more powerful generator which produces a 43 µs base half-sine current pulse of 3.8 kA. For the 'A' mode a thyristor is used as switching element inside the generator. A final third mode named 'AC dipole' will rely on the beam being excited coherently at a frequency close but outside its Eigen-frequencies by an oscillating dipole field. The beam is expected to o...

  17. Foam A General Purpose Cellular Monte Carlo Event Generator

    CERN Document Server

    Jadach, Stanislaw

    2003-01-01

    A general purpose, self-adapting, Monte Carlo (MC) event generator (simulator) is described. The high efficiency of the MC, that is small maximum weight or variance of the MC weight is achieved by means of dividing the integration domain into small cells. The cells can be $n$-dimensional simplices, hyperrectangles or Cartesian product of them. The grid of cells, called ``foam'', is produced in the process of the binary split of the cells. The choice of the next cell to be divided and the position/direction of the division hyper-plane is driven by the algorithm which optimizes the ratio of the maximum weight to the average weight or (optionally) the total variance. The algorithm is able to deal, in principle, with an arbitrary pattern of the singularities in the distribution. As any MC generator, it can also be used for the MC integration. With the typical personal computer CPU, the program is able to perform adaptive integration/simulation at relatively small number of dimensions ($\\leq 16$). With the continu...

  18. Investigation into the ways of tuning parametric oscillators of visible and IR ranges

    International Nuclear Information System (INIS)

    Andreev, S A; Andreeva, N P; Barashkov, M S; Demkin, V K; Don, A K; Krymskii, M I; Mitin, Konstantin V; Seregin, A M; Sinaiskii, V V; Talalaev, M A; Shchebetova, N I; Shchetinkina, T A; Badikov, Valerii V; Epikhin, V M; Kalinnikov, Yu K; Chistyakov, A A

    2010-01-01

    Different versions of optical parametric oscillator (OPO) schemes were experimentally realised and investigated, which utilise AgGaS 2 , LiNbO 3 and HgGa 2 S 4 single crystals as well as an Hg 1-x Cd x Ga 2 S 4 solid solution. The OPOs generate radiation in the 1.2-5.7-μm range and make use of different ways of output wavelength tuning, including fast wavelength tuning (in a time shorter than 0.1 ms) with the help of an acoustooptical deflector. The output spectral line was narrowed by means of an intracavity acoustooptical filter. An OPO for the visible range with an electrodynamic tuning to an arbitrary wavelength in this range in a time of 5ms was implemented employing a BBO single crystal. (invited paper)

  19. Robust Self Tuning Controllers

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    1985-01-01

    The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...... has several operation modes and a detector for controlling the mode. A special self tuning controller has been developed to regulate plant with changing time delay.......The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...

  20. Pre-tuning of TRISTAN superconducting RF cavities

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Furuya, Takaaki; Suzuki, Toshiji; Iino, Yohsuke.

    1990-01-01

    Pre-tuning of thirty-two TRISTAN superconducting cavities has been done. In this paper are described the pre-tuning system and the results of all the cavities. The average field flatness was 1.4 % after pre-tuning. From our experience, the followings are important, 1) to evacuate the cavity during the process of the pre-tuning to avoid the uncertainty in evacuation, 2) pre-tuning is needed after annealing because it causes changes of the cell length and the field profile and 3) field flatness sometimes changes when expanded and 4) cells should not be expanded more than 1.5 mm after pre-tuning since inelastic deformation occurs. (author)

  1. Measurement and stabilization of the longitudinal and transversal tune on the fast energy ramp at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, Maren [Electron Stretcher Accelerator ELSA, Physikalisches Institut, Universitaet Bonn (Germany)

    2008-07-01

    At the electron stretcher accelerator ELSA, an external beam of unpolarized or polarized electrons is supplied to experimental set-ups. In order to correct for dynamic effects caused by eddy currents induced on the fast energy ramp, the accelerator tunes have to measured in situ with high precision. The measurements of betatron tunes during the fast energy ramp are based on the excitation of coherent betatron oscillations generated by a pulsed kicker magnet. The betatron frequency is determined by a Fourier analysis of the measured oscillations of the beam position. This technique was successfully applied to measure the horizontal tune on the fast energy ramp. During the fast energy ramp shifts of the betatron tune caused by eddy currents are induced. These tune shifts are measured and corrected when operating the accelerator with polarized beam. Measurements of coherent synchrotron oscillations will also be presented. These are excited by a phase modulation of the acceleration voltage using an electrical phase shifter in the reference RF signal path.

  2. Evaluation of a sodium-water reaction event caused by steam generator tubes break in the prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang June; Ha, Kwi Seok; Chang, Won Pyo; Kang, Seok Hun; Lee, Kwi Lim; Choi, Chi Woong; Lee, Seung Won; Yoo, Jin; Jeong, Jae Ho; Jeong, Tae Kyeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

  3. Evaluation of a Sodium–Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Sang June Ahn

    2016-08-01

    Full Text Available The prototype generation IV sodium-cooled fast reactor (PGSFR has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS and the safety of the primary heat-transfer system (PHTS. In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

  4. View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation

    Science.gov (United States)

    Leibo, Joel Z.; Liao, Qianli; Freiwald, Winrich A.; Anselmi, Fabio; Poggio, Tomaso

    2017-01-01

    SUMMARY The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations like depth-rotations [1, 2]. Current computational models of object recognition, including recent deep learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3, 4, 5, 6]. Here we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here we demonstrate that one specific biologically-plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli like faces at intermediate levels of the architecture and show why it does so. Thus the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. PMID:27916522

  5. Monte Carlo event generators in atomic collisions: A new tool to tackle the few-body dynamics

    Science.gov (United States)

    Ciappina, M. F.; Kirchner, T.; Schulz, M.

    2010-04-01

    We present a set of routines to produce theoretical event files, for both single and double ionization of atoms by ion impact, based on a Monte Carlo event generator (MCEG) scheme. Such event files are the theoretical counterpart of the data obtained from a kinematically complete experiment; i.e. they contain the momentum components of all collision fragments for a large number of ionization events. Among the advantages of working with theoretical event files is the possibility to incorporate the conditions present in a real experiment, such as the uncertainties in the measured quantities. Additionally, by manipulating them it is possible to generate any type of cross sections, specially those that are usually too complicated to compute with conventional methods due to a lack of symmetry. Consequently, the numerical effort of such calculations is dramatically reduced. We show examples for both single and double ionization, with special emphasis on a new data analysis tool, called four-body Dalitz plots, developed very recently. Program summaryProgram title: MCEG Catalogue identifier: AEFV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2695 No. of bytes in distributed program, including test data, etc.: 18 501 Distribution format: tar.gz Programming language: FORTRAN 77 with parallelization directives using scripting Computer: Single machines using Linux and Linux servers/clusters (with cores with any clock speed, cache memory and bits in a word) Operating system: Linux (any version and flavor) and FORTRAN 77 compilers Has the code been vectorised or parallelized?: Yes RAM: 64-128 kBytes (the codes are very cpu intensive) Classification: 2.6 Nature of problem: The code deals with single and double

  6. Fine Tuning Mission to reach those influenced by Darwinism

    Directory of Open Access Journals (Sweden)

    Roger Tucker

    2014-01-01

    Full Text Available The scientifically aware section of the South African population is increasing. Many are being exposed to the concept of Darwinian evolution. Exposure has generated a religious sub �people group� who have problems with Christianity because they have been influenced by the naturalistic element in Darwinian philosophy. Christian antagonism towards evolution has often prejudiced them unfavourably towards the gospel. Recent discoveries concerning the fine-tuning of the universe have now presented a window of opportunity for overcoming this. It may enable the church to �fine-tune� its missionary approach to present them with the gospel in a more acceptable manner. It is suggested that Paul�s Areopagus speech provides a model for such cross-cultural evangelism. A section is included at the end, describing some objections that have been raised against the cosmological fine-tuning apologetic.

  7. Betatron tune measurement

    International Nuclear Information System (INIS)

    Dinev, D.

    2001-01-01

    On the basis of the comparative review of the methods for the betatron tune measurement in cyclic accelerators of synchrotrons type, the research of these methods is carried out from the point of view of their applicability to Nuclotron. Both methods using measurement of the statistical fluctuations of the beam current (Schottky noise) and methods using coherent beam excitation have been discussed. The emphasis is on the final results of importance for the tune measurement practice. Signal processing is briefly discussed too

  8. Upgrades to PEP-II Tune Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan S.

    2002-07-30

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel 10-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 1 go-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement.

  9. Upgrades to PEP-II Tune Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan S.

    2002-07-30

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel l0-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 180-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement.

  10. Upgrades to PEP-II tune measurements

    International Nuclear Information System (INIS)

    Fisher, Alan S.; Petree, Mark; Wienands, Uli; Allison, Stephanie; Laznovsky, Michael; Seeman, Michael; Robin, Jolene

    2002-01-01

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel 10-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 180-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement

  11. Enlargement of Tuning Range in a Ferrite-Tuned Cavity Through Superposed Orthogonal and Parallel Magnetic Bias

    CERN Document Server

    Vollinger, C

    2013-01-01

    Conventional ferrite-tuned cavities operate either with bias fields that are orthogonal or parallel to the magnetic RF-field. For a cavity that tunes rapidly over an overall frequency range around 100-400 MHz with high Q, we use ferrite garnets exposed to an innovative new biasing method consisting of a superposition of perpendicular and parallel magnetic fields. This method leads to a significant enlargement of the high-Q cavity tuning range by defining an operation point close to the magnetic saturation and thus improving ferrite material behaviour. A further advantage of this technique is the fast tuning speed resulting from the fact that tuning is carried out either with pure parallel biasing, or together with a very small change of operating point from perpendicular bias. In this paper, several scaled test models of ferrite-filled resonators are shown; measurements on the set-ups are compared and discussed.

  12. Automatic tuning of free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, Ilya; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL, Schenefeld (Germany); Tomin, Sergey [European XFEL, Schenefeld (Germany); NRC Kurchatov Institute, Moscow (Russian Federation)

    2017-04-07

    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH.We also discuss the potential of using machine learning and model-based techniques in tuning methods.

  13. Automatic tuning of free electron lasers

    International Nuclear Information System (INIS)

    Agapov, Ilya; Zagorodnov, Igor; Geloni, Gianluca; Tomin, Sergey

    2017-01-01

    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH.We also discuss the potential of using machine learning and model-based techniques in tuning methods.

  14. Large static tuning of narrow-beam terahertz plasmonic lasers operating at 78K

    Directory of Open Access Journals (Sweden)

    Chongzhao Wu

    2017-02-01

    Full Text Available A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ∼57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs, which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning range compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7° is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.

  15. Lightweight linear alternators with and without capacitive tuning

    Science.gov (United States)

    Niedra, Janis M.

    1993-06-01

    Permanent magnet excited linear alternators rated tens of kW and coupled to free-piston Stirling engines are presently viewed as promising candidates for long term generation of electric power in both space and terrestrial applications. Series capacitive cancellation of the internal inductive reactance of such alternators was considered a viable way to both increase power extraction and to suppress unstable modes of the thermodynamic oscillation. Idealized toroidal and cylindrical alternator geometries are used for a comparative study of the issues of specific mass and capacitive tuning, subject to stability criteria. The analysis shows that the stator mass of an alternator designed to be capacitively tuned is always greater than the minimum achievable stator mass of an alternator designed with no capacitors, assuming equal utilization of materials ratings and the same frequency and power to a resistive load. This conclusion is not substantially altered when the usually lesser masses of the magnets and of any capacitors are added. Within the reported stability requirements and under circumstances of normal materials ratings, this study finds no clear advantage to capacitive tuning. Comparative plots of the various constituent masses are presented versus the internal power factor taken as a design degree of freedom. The explicit formulas developed for stator core, coil, capacitor, and magnet masses and for the degree of magnet utilization provide useful estimates of scaling effects.

  16. Rising Tides or Rising Stars?: Dynamics of Shared Attention on Twitter during Media Events

    Science.gov (United States)

    Lin, Yu-Ru; Keegan, Brian; Margolin, Drew; Lazer, David

    2014-01-01

    “Media events” generate conditions of shared attention as many users simultaneously tune in with the dual screens of broadcast and social media to view and participate. We examine how collective patterns of user behavior under conditions of shared attention are distinct from other “bursts” of activity like breaking news events. Using 290 million tweets from a panel of 193,532 politically active Twitter users, we compare features of their behavior during eight major events during the 2012 U.S. presidential election to examine how patterns of social media use change during these media events compared to “typical” time and whether these changes are attributable to shifts in the behavior of the population as a whole or shifts from particular segments such as elites. Compared to baseline time periods, our findings reveal that media events not only generate large volumes of tweets, but they are also associated with (1) substantial declines in interpersonal communication, (2) more highly concentrated attention by replying to and retweeting particular users, and (3) elite users predominantly benefiting from this attention. These findings empirically demonstrate how bursts of activity on Twitter during media events significantly alter underlying social processes of interpersonal communication and social interaction. Because the behavior of large populations within socio-technical systems can change so dramatically, our findings suggest the need for further research about how social media responses to media events can be used to support collective sensemaking, to promote informed deliberation, and to remain resilient in the face of misinformation. PMID:24854030

  17. Harmonic reduction by using single-tuned passive filter in plastic processing industry

    Science.gov (United States)

    Fahmi, M. I.; Baafai, U.; Hazmi, A.; Nasution, T. H.

    2018-02-01

    The using of non-linear loads generated by industrial machines may result inconsistent harmonics that do not reach the IEEE 519 - 1992 standards. This study discusses the use of single-tuned passive filters in reducing harmonics in the plastics processing industry. The system modeling using matlab / simulink simulation resulted in total harmonic distortion (THD) of 15.55%, can be reduced to 4.77% harmonics in accordance with IEEE 519 - 1992 standards. From the simulation results also seen that single-tuned passive filter can reduce the harmonics of the current 82.23% harmonic that wants to be reduced and also can reduce other orders harmonics between 7% to 8%.

  18. White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning

    International Nuclear Information System (INIS)

    Nizamoglu, Sedat; Mutlugun, Evren; Akyuz, Ozgun; Perkgoz, Nihan Kosku; Demir, Hilmi Volkan; Liebscher, Lydia; Sapra, Sameer; Gaponik, Nikolai; Eychmueller, Alexander

    2008-01-01

    To generate white light using semiconductor nanocrystal (NC) quantum dots integrated on light emitting diodes (LEDs), multiple hybrid device parameters (emission wavelengths of the NCs and the excitation platform, order of the NCs with different sizes, amount of the different types of NCs, etc) need to be carefully designed and properly implemented. In this study, we introduce and demonstrate white LEDs based on simple device hybridization using only a single type of white emitting CdS quantum dot nanoluminophores on near-ultraviolet LEDs. Here we present their design, synthesis-growth, fabrication and characterization. With these hybrid devices, we achieve high color rendering index (>70), despite using only a single NC type. Furthermore, we conveniently tune their photometric properties including the chromaticity coordinates, correlated color temperature, and color rendering index with the number of hybridized nanoluminophores in a controlled manner

  19. Adversarial Tuning of Perturbative Parameters in Non-Differentiable Physics Simulators

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In this contribution, we present a method for tuning perturbative parameters in Monte Carlo simulation using a classifier loss in high dimensions. We use an LSTM trained on the radiation pattern inside jets to learn the parameters of the final state shower in the Pythia Monte Carlo generator. This represents a step forward compared to unidimensional distributional template-matching methods.

  20. Event Index - a LHCb Event Search System

    CERN Document Server

    INSPIRE-00392208; Kazeev, Nikita; Redkin, Artem

    2015-12-23

    LHC experiments generate up to $10^{12}$ events per year. This paper describes Event Index - an event search system. Event Index's primary function is quickly selecting subsets of events from a combination of conditions, such as the estimated decay channel or stripping lines output. Event Index is essentially Apache Lucene optimized for read-only indexes distributed over independent shards on independent nodes.

  1. Trait Affect, Emotion Regulation, and the Generation of Negative and Positive Interpersonal Events.

    Science.gov (United States)

    Hamilton, Jessica L; Burke, Taylor A; Stange, Jonathan P; Kleiman, Evan M; Rubenstein, Liza M; Scopelliti, Kate A; Abramson, Lyn Y; Alloy, Lauren B

    2017-07-01

    Positive and negative trait affect and emotion regulatory strategies have received considerable attention in the literature as predictors of psychopathology. However, it remains unclear whether individuals' trait affect is associated with responses to state positive affect (positive rumination and dampening) or negative affect (ruminative brooding), or whether these affective experiences contribute to negative or positive interpersonal event generation. Among 304 late adolescents, path analyses indicated that individuals with higher trait negative affect utilized dampening and brooding rumination responses, whereas those with higher trait positive affect engaged in rumination on positive affect. Further, there were indirect relationships between trait negative affect and fewer positive and negative interpersonal events via dampening, and between trait positive affect and greater positive and negative interpersonal events via positive rumination. These findings suggest that individuals' trait negative and positive affect may be associated with increased utilization of emotion regulation strategies for managing these affects, which may contribute to the occurrence of positive and negative events in interpersonal relationships. Copyright © 2017. Published by Elsevier Ltd.

  2. Model-independent particle accelerator tuning

    Directory of Open Access Journals (Sweden)

    Alexander Scheinker

    2013-10-01

    Full Text Available We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: (1 it has the ability to handle unknown, time-varying systems, (2 it gives known bounds on parameter update rates, (3 we give an analytic proof of its convergence and its stability, and (4 it has a simple digital implementation through a control system such as the experimental physics and industrial control system (EPICS. Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme for uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multiparticle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of 22 quadrupole magnets and two rf buncher cavities in the Los Alamos Neutron Science Center (LANSCE Linear Accelerator’s transport region, while the beam properties and rf phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.

  3. Feasibility study of tuned liquid column damper for ocean wave energy extraction

    Science.gov (United States)

    Wong, Yihong; King, Yeong-Jin; Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han

    2017-04-01

    Intermittent nature and low efficiency are the major issues in renewable energy supply. To overcome these issues, one of the possible methods is through a hybrid system where multiple sources of renewable energy are combined to compensate each other's weaknesses. The hybrid of solar energy and wave energy becomes possible through the introduction of a stable floating platform which enables solar energy generation above it and wave energy harvesting underneath it. This paper is intended to study the feasibility of harnessing ocean wave energy using a tuned liquid column damper (TLCD), a type of passive damping device that is designed to suppress externally induced vibration force at a specific frequency range. The proposed TLCD is to be implemented within a floating offshore structure to serve as a vibration mitigating mechanism by reducing the dynamic response of the structure and simultaneously utilize the flowing motion of liquid within the TLCD for generating electricity. The constructed TLCD prototype is tuned according to theoretical study and tested using a shaking table with a predetermined frequency range. The oscillating motion of water within the TLCD and the potential of installation of hydro turbine generator in term of recoverable amount of energy are studied.

  4. A Unified Current Loop Tuning Approach for Grid-Connected Photovoltaic Inverters

    Directory of Open Access Journals (Sweden)

    Weiyi Zhang

    2016-09-01

    Full Text Available High level penetration of renewable energy sources has reshaped modern electrical grids. For the future grid, distributed renewable power generation plants can be integrated in a larger scale. Control of grid-connected converters is required to achieve fast power reference tracking and further to present grid-supporting and fault ride-through performance. Among all of the aspects for converter control, the inner current loop for grid-connected converters characterizes the system performance considerably. This paper proposes a unified current loop tuning approach for grid-connected converters that is generally applicable in different cases. A direct discrete-time domain tuning procedure is used, and particularly, the selection of the phase margin and crossover frequency is analyzed, which acts as the main difference compared with the existing studies. As a general method, the approximation in the modeling of the controller and grid filter is avoided. The effectiveness of the tuning approach is validated in both simulation and experimental results with respect to power reference tracking, frequency and voltage supporting.

  5. Report on the work of the 'Monte Carlo Event Generation' subgroup

    International Nuclear Information System (INIS)

    Abe, K.

    1981-01-01

    The work of the Monte Carlo Event Generation includes the preparation of programs, jet simulation, track generation in chambers, and the pattern recognition of tracks and track fitting. Some general results from the jet simulation by Ali et al. are given. The total energy used was 60 GeV, and the top quark mass was assumed to be 25 GeV. The multiplicity of charged particles and photons is shown. The multiplicity increased with the number of jets. The energy spectra and the trajectories of charged particles and photons were obtained. The distribution of the opening angle of any two photons is also presented. The track generation program used is GEANT from CERN. This program was adapted to the KEK computer. Pattern recognition and track fitting are based on the tracking device. The program considered was that by DELCO group at SLAC. The tracking device consists of a MWPC and a cylindrical drift chamber with wires along the beam direction Z and wires inclined at a stereo angle. Some comments on vertex detectors are given. (Kato, T.)

  6. Fine-tuning implications for complementary dark matter and LHC SUSY searches

    CERN Document Server

    Cassel, S; Kraml, S; Lessa, A; Ross, G G

    2011-01-01

    The requirement that SUSY should solve the hierarchy problem without undue fine-tuning imposes severe constraints on the new supersymmetric states. With the MSSM spectrum and soft SUSY breaking originating from universal scalar and gaugino masses at the Grand Unification scale, we show that the low-fine-tuned regions fall into two classes that will require complementary collider and dark matter searches to explore in the near future. The first class has relatively light gluinos or squarks which should be found by the LHC in its first run. We identify the multijet plus E_T^miss signal as the optimal channel and determine the discovery potential in the first run. The second class has heavier gluinos and squarks but the LSP has a significant Higgsino component and should be seen by the next generation of direct dark matter detection experiments. The combined information from the 7 TeV LHC run and the next generation of direct detection experiments can test almost all of the CMSSM parameter space consistent with ...

  7. The event generator SIMON

    International Nuclear Information System (INIS)

    Durand, D.; Lopez, O.; Nguyen, A.D.

    1997-01-01

    The utilization and development of SIMON generator work was conducted at LPC.This generator was conceived for simple and versatile simulations of different processes occurring in the nuclear collisions at Fermi Energies. At present it is utilized in a large number of French foreign laboratories. Particularly, certain analyses of INDRA data have been done by use of this generator: estimation of collective energy in the Xe + Sn and Gd + U central collisions; shape and space-time correlation analysis in fragment-fragment and particle-fragment output of the same system; calorimetric study of the Xe + Sn and Ar + Ni system; study of the vaporization for the Ar + Ni system. Recently a number of items were improved or modified, among which: the initial configuration was allowed to be non-spherical what permits the analysis of the semi-central collisions; a so-called pre-fragmentation emission may be included to estimate different time constants implied in the fragmentation process

  8. Resource optimised reconfigurable modular parallel pipelined stochastic approximation-based self-tuning regulator architecture with reduced latency

    Directory of Open Access Journals (Sweden)

    Varghese Mathew Vaidyan

    2015-09-01

    Full Text Available Present self-tuning regulator architectures based on recursive least-square estimation are computationally expensive and require large amount of resources and time in generating the first control signal due to computational bottlenecks imposed by the calculations involved in estimation stage, different stages of matrix multiplications and the number of intermediate variables at each iteration and precludes its use in applications that have fast required response times and those which run on embedded computing platforms with low-power or low-cost requirements with constraints on resource usage. A salient feature of this study is that a new modular parallel pipelined stochastic approximation-based self-tuning regulator architecture which reduces the time required to generate the first control signal, reduces resource usage and reduces the number of intermediate variables is proposed. Fast matrix multiplication, pipelining and high-speed arithmetic function implementations were used for improving the performance. Results of implementation demonstrate that the proposed architecture has an improvement in control signal generation time by 38% and reduction in resource usage by 41% in terms of multipliers and 44.4% in terms of adders compared with the best existing related work, opening up new possibilities for the application of online embedded self-tuning regulators.

  9. Nonlinear dynamics of a pulse-coupled neural oscillator model of orientation tuning in the visual cortex

    International Nuclear Information System (INIS)

    Bressloff, P.C.; Bressloff, N.W.

    2000-01-01

    Orientation tuning in a ring of pulse-coupled integrate-and-fire (IF) neurons is analyzed in terms of spontaneous pattern formation. It is shown how the ring bifurcates from a synchronous state to a non-phase-locked state whose spike trains are characterized by quasiperiodic variations of the inter-spike intervals (ISIs) on closed invariant circles. The separation of these invariant circles in phase space results in a localized peak of activity as measured by the time-averaged firing rate of the neurons. This generates a sharp orientation tuning curve that can lock to a slowly rotating, weakly tuned external stimulus. For fast synapses, breakup of the quasiperiodic orbits occurs leading to high spike time variability suggestive of chaos

  10. Nonlinear dynamics of a pulse-coupled neural oscillator model of orientation tuning in the visual cortex

    Science.gov (United States)

    Bressloff, P. C.; Bressloff, N. W.

    2000-02-01

    Orientation tuning in a ring of pulse-coupled integrate-and-fire (IF) neurons is analyzed in terms of spontaneous pattern formation. It is shown how the ring bifurcates from a synchronous state to a non-phase-locked state whose spike trains are characterized by quasiperiodic variations of the inter-spike intervals (ISIs) on closed invariant circles. The separation of these invariant circles in phase space results in a localized peak of activity as measured by the time-averaged firing rate of the neurons. This generates a sharp orientation tuning curve that can lock to a slowly rotating, weakly tuned external stimulus. For fast synapses, breakup of the quasiperiodic orbits occurs leading to high spike time variability suggestive of chaos.

  11. Automatically tuned adaptive differencing algorithm for 3-D SN implemented in PENTRAN

    International Nuclear Information System (INIS)

    Sjoden, G.; Courau, T.; Manalo, K.; Yi, C.

    2009-01-01

    We present an adaptive algorithm with an automated tuning feature to augment optimum differencing scheme selection for 3-D S N computations in Cartesian geometry. This adaptive differencing scheme has been implemented in the PENTRAN parallel S N code. Individual fixed zeroth spatial transport moment based schemes, including Diamond Zero (DZ), Directional Theta Weighted (DTW), and Exponential Directional Iterative (EDI) 3-D S N methods were evaluated and compared with solutions generated using a code-tuned adaptive algorithm. Model problems considered include a fixed source slab problem (using reflected y- and z-axes) which contained mixed shielding and diffusive regions, and a 17 x 17 PWR assembly eigenvalue test problem; these problems were benchmarked against multigroup MCNP5 Monte Carlo computations. Both problems were effective in highlighting the performance of the adaptive scheme compared to single schemes, and demonstrated that the adaptive tuning handles exceptions to the standard DZ-DTW-EDI adaptive strategy. The tuning feature includes special scheme selection provisions for optically thin cells, and incorporates the ratio of the angular source density relative to the total angular collision density to best select the differencing method. Overall, the adaptive scheme demonstrated the best overall solution accuracy in the test problems. (authors)

  12. Control of Fermilab Booster tunes

    International Nuclear Information System (INIS)

    Johnson, R.P; Meisner, K.; Sandberg, B.

    1977-01-01

    Control of the radial and vertical tunes of the booster is implemented using ramped correction quadrupoles. Minor modifications to the power supply cards for the 48 (previously) dc correction quadrupoles allow ''the tunes'' to be continuously programmed or held constant throughout the 33 ms acceleration cycle. This capability is in addition to the usual use of these quadrupoles to be independently varied to correct for harmonic distortions in the lattice. An automatic computer program measures and displays the tunes vs. time in the cycle to monitor performance and to allow the ramps to be adjusted by the machine operator

  13. A new version of the event generator Sibyll

    CERN Document Server

    Riehn, Felix; Fedynitch, Anatoli; Gaisser, Thomas K.; Stanev, Todor

    2016-01-01

    The event generator Sibyll can be used for the simulation of hadronic multiparticle production up to the highest cosmic ray energies. It is optimized for providing an economic description of those aspects of the expected hadronic final states that are needed for the calculation of air showers and atmospheric lepton fluxes. New measurements from fixed target and collider experiments, in particular those at LHC, allow us to test the predictive power of the model version 2.1, which was released more than 10 years ago, and also to identify shortcomings. Based on a detailed comparison of the model predictions with the new data we revisit model assumptions and approximations to obtain an improved version of the interaction model. In addition a phenomenological model for the production of charm particles is implemented as needed for the calculation of prompt lepton fluxes in the energy range of the astrophysical neutrinos recently discovered by IceCube. After giving an overview of the new ideas implemented in Sibyll...

  14. The Generation of a Stochastic Flood Event Catalogue for Continental USA

    Science.gov (United States)

    Quinn, N.; Wing, O.; Smith, A.; Sampson, C. C.; Neal, J. C.; Bates, P. D.

    2017-12-01

    Recent advances in the acquisition of spatiotemporal environmental data and improvements in computational capabilities has enabled the generation of large scale, even global, flood hazard layers which serve as a critical decision-making tool for a range of end users. However, these datasets are designed to indicate only the probability and depth of inundation at a given location and are unable to describe the likelihood of concurrent flooding across multiple sites.Recent research has highlighted that although the estimation of large, widespread flood events is of great value to flood mitigation and insurance industries, to date it has been difficult to deal with this spatial dependence structure in flood risk over relatively large scales. Many existing approaches have been restricted to empirical estimates of risk based on historic events, limiting their capability of assessing risk over the full range of plausible scenarios. Therefore, this research utilises a recently developed model-based approach to describe the multisite joint distribution of extreme river flows across continental USA river gauges. Given an extreme event at a site, the model characterises the likelihood neighbouring sites are also impacted. This information is used to simulate an ensemble of plausible synthetic extreme event footprints from which flood depths are extracted from an existing global flood hazard catalogue. Expected economic losses are then estimated by overlaying flood depths with national datasets defining asset locations, characteristics and depth damage functions. The ability of this approach to quantify probabilistic economic risk and rare threshold exceeding events is expected to be of value to those interested in the flood mitigation and insurance sectors.This work describes the methodological steps taken to create the flood loss catalogue over a national scale; highlights the uncertainty in the expected annual economic vulnerability within the USA from extreme river flows

  15. Selective enhancement of orientation tuning before saccades.

    Science.gov (United States)

    Ohl, Sven; Kuper, Clara; Rolfs, Martin

    2017-11-01

    Saccadic eye movements cause a rapid sweep of the visual image across the retina and bring the saccade's target into high-acuity foveal vision. Even before saccade onset, visual processing is selectively prioritized at the saccade target. To determine how this presaccadic attention shift exerts its influence on visual selection, we compare the dynamics of perceptual tuning curves before movement onset at the saccade target and in the opposite hemifield. Participants monitored a 30-Hz sequence of randomly oriented gratings for a target orientation. Combining a reverse correlation technique previously used to study orientation tuning in neurons and general additive mixed modeling, we found that perceptual reports were tuned to the target orientation. The gain of orientation tuning increased markedly within the last 100 ms before saccade onset. In addition, we observed finer orientation tuning right before saccade onset. This increase in gain and tuning occurred at the saccade target location and was not observed at the incongruent location in the opposite hemifield. The present findings suggest, therefore, that presaccadic attention exerts its influence on vision in a spatially and feature-selective manner, enhancing performance and sharpening feature tuning at the future gaze location before the eyes start moving.

  16. INVITED PAPER: Investigation into the ways of tuning parametric oscillators of visible and IR ranges

    Science.gov (United States)

    Andreev, S. A.; Andreeva, N. P.; Barashkov, M. S.; Badikov, Valerii V.; Demkin, V. K.; Don, A. K.; Epikhin, V. M.; Krymskii, M. I.; Kalinnikov, Yu K.; Mitin, Konstantin V.; Seregin, A. M.; Sinaiskii, V. V.; Talalaev, M. A.; Chistyakov, A. A.; Shchebetova, N. I.; Shchetinkina, T. A.

    2010-06-01

    Different versions of optical parametric oscillator (OPO) schemes were experimentally realised and investigated, which utilise AgGaS2, LiNbO3 and HgGa2S4 single crystals as well as an Hg1-xCdxGa2S4 solid solution. The OPOs generate radiation in the 1.2-5.7-μm range and make use of different ways of output wavelength tuning, including fast wavelength tuning (in a time shorter than 0.1 ms) with the help of an acoustooptical deflector. The output spectral line was narrowed by means of an intracavity acoustooptical filter. An OPO for the visible range with an electrodynamic tuning to an arbitrary wavelength in this range in a time of 5ms was implemented employing a BBO single crystal.

  17. Widespread auditory deficits in tune deafness.

    Science.gov (United States)

    Jones, Jennifer L; Zalewski, Christopher; Brewer, Carmen; Lucker, Jay; Drayna, Dennis

    2009-02-01

    The goal of this study was to investigate auditory function in individuals with deficits in musical pitch perception. We hypothesized that such individuals have deficits in nonspeech areas of auditory processing. We screened 865 randomly selected individuals to identify those who scored poorly on the Distorted Tunes test (DTT), a measure of musical pitch recognition ability. Those who scored poorly were given a comprehensive audiologic examination, and those with hearing loss or other confounding audiologic factors were excluded from further testing. Thirty-five individuals with tune deafness constituted the experimental group. Thirty-four individuals with normal hearing and normal DTT scores, matched for age, gender, handedness, and education, and without overt or reported psychiatric disorders made up the normal control group. Individual and group performance for pure-tone frequency discrimination at 1000 Hz was determined by measuring the difference limen for frequency (DLF). Auditory processing abilities were assessed using tests of pitch pattern recognition, duration pattern recognition, and auditory gap detection. In addition, we evaluated both attention and short- and long-term memory as variables that might influence performance on our experimental measures. Differences between groups were evaluated statistically using Wilcoxon nonparametric tests and t-tests as appropriate. The DLF at 1000 Hz in the group with tune deafness was significantly larger than that of the normal control group. However, approximately one-third of participants with tune deafness had DLFs within the range of performance observed in the control group. Many individuals with tune deafness also displayed a high degree of variability in their intertrial frequency discrimination performance that could not be explained by deficits in memory or attention. Pitch and duration pattern discrimination and auditory gap-detection ability were significantly poorer in the group with tune deafness

  18. Tuning the hysteresis voltage in 2D multilayer MoS{sub 2} FETs

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jie, E-mail: jiangjie@csu.edu.cn; Zheng, Zhouming; Guo, Junjie

    2016-10-01

    The hysteresis tuning is of great significance before the two-dimensional (2D) molybdenum disulfide (MoS{sub 2}) field-effect transistors (FETs) can be practically used in the next-generation nanoelectronic devices. In this paper, a simple and effective annealing method was developed to tune the hysteresis voltage in 2D MoS{sub 2} transistors. It was found that high temperature (175 °C) annealing in air could increase the hysteresis voltage from 8.0 V (original device) to 28.4 V, while a next vacuum annealing would reduce the hysteresis voltage to be only 2.0 V. An energyband diagram model based on electron trapping/detrapping due to oxygen adsorption is proposed to understand the hysteresis mechanism in multilayer MoS{sub 2} FET. This simple method for tuning the hysteresis voltage of MoS{sub 2} FET can make a significant step toward 2D nanoelectronic device applications.

  19. Telling in-tune from out-of-tune: widespread evidence for implicit absolute intonation.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Huang, Alex; Rutstein, Brooke; Nusbaum, Howard C

    2017-04-01

    Absolute pitch (AP) is the rare ability to name or produce an isolated musical note without the aid of a reference note. One skill thought to be unique to AP possessors is the ability to provide absolute intonation judgments (e.g., classifying an isolated note as "in-tune" or "out-of-tune"). Recent work has suggested that absolute intonation perception among AP possessors is not crystallized in a critical period of development, but is dynamically maintained by the listening environment, in which the vast majority of Western music is tuned to a specific cultural standard. Given that all listeners of Western music are constantly exposed to this specific cultural tuning standard, our experiments address whether absolute intonation perception extends beyond AP possessors. We demonstrate that non-AP listeners are able to accurately judge the intonation of completely isolated notes. Both musicians and nonmusicians showed evidence for absolute intonation recognition when listening to familiar timbres (piano and violin). When testing unfamiliar timbres (triangle and inverted sine waves), only musicians showed weak evidence of absolute intonation recognition (Experiment 2). Overall, these results highlight a previously unknown similarity between AP and non-AP possessors' long-term musical note representations, including evidence of sensitivity to frequency.

  20. Apple iTunes music store

    OpenAIRE

    Lenzi, R.; Schmucker, M.; Spadoni, F.

    2003-01-01

    This technical report analyses the Apple iTunes Music Store and its success factors. Besides the technical aspects, user and customer aspects as well as content aspects are considered. Furthermore, iTunes Music Store's impact to online music distribution services is analysed and a short outlook to future music online distribution is given.

  1. Automated Testing with Targeted Event Sequence Generation

    DEFF Research Database (Denmark)

    Jensen, Casper Svenning; Prasad, Mukul R.; Møller, Anders

    2013-01-01

    Automated software testing aims to detect errors by producing test inputs that cover as much of the application source code as possible. Applications for mobile devices are typically event-driven, which raises the challenge of automatically producing event sequences that result in high coverage...

  2. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  3. γ-ray telescopes using conversions to e+e- pairs: event generators, angular resolution and polarimetry

    Science.gov (United States)

    Gros, P.; Bernard, D.

    2017-02-01

    We benchmark various available event generators in Geant4 and EGS5 in the light of ongoing projects for high angular-resolution pair-conversion telescopes at low energy. We compare the distributions of key kinematic variables extracted from the geometry of the three final state particles. We validate and use as reference an exact generator using the full 5D differential cross-section of the conversion process. We focus in particular on the effect of the unmeasured recoiling nucleus on the angular resolution. We show that for high resolution trackers, the choice of the generator affects the estimated resolution of the telescope. We also show that the current available generator are unable to describe accurately a linearly polarised photon source.

  4. Optimal Trajectories Generation in Robotic Fiber Placement Systems

    Science.gov (United States)

    Gao, Jiuchun; Pashkevich, Anatol; Caro, Stéphane

    2017-06-01

    The paper proposes a methodology for optimal trajectories generation in robotic fiber placement systems. A strategy to tune the parameters of the optimization algorithm at hand is also introduced. The presented technique transforms the original continuous problem into a discrete one where the time-optimal motions are generated by using dynamic programming. The developed strategy for the optimization algorithm tuning allows essentially reducing the computing time and obtaining trajectories satisfying industrial constraints. Feasibilities and advantages of the proposed methodology are confirmed by an application example.

  5. The Advanced Photon Source event system

    International Nuclear Information System (INIS)

    Lenkszus, F.R.; Laird, R.

    1995-01-01

    The Advanced Photon Source, like many other facilities, requires a means of transmitting timing information to distributed control system 1/0 controllers. The APS event system provides the means of distributing medium resolution/accuracy timing events throughout the facility. It consists of VME event generators and event receivers which are interconnected with 10OMbit/sec fiber optic links at distances of up to 650m in either a star or a daisy chain configuration. The systems event throughput rate is 1OMevents/sec with a peak-to-peak timing jitter down to lOOns depending on the source of the event. It is integrated into the EPICS-based A.PS control system through record and device support. Event generators broadcast timing events over fiber optic links to event receivers which are programmed to decode specific events. Event generators generate events in response to external inputs, from internal programmable event sequence RAMS, and from VME bus writes. The event receivers can be programmed to generate both pulse and set/reset level outputs to synchronize hardware, and to generate interrupts to initiate EPICS record processing. In addition, each event receiver contains a time stamp counter which is used to provide synchronized time stamps to EPICS records

  6. Development on quantitative safety analysis method of accident scenario. The automatic scenario generator development for event sequence construction of accident

    International Nuclear Information System (INIS)

    Kojima, Shigeo; Onoue, Akira; Kawai, Katsunori

    1998-01-01

    This study intends to develop a more sophisticated tool that will advance the current event tree method used in all PSA, and to focus on non-catastrophic events, specifically a non-core melt sequence scenario not included in an ordinary PSA. In the non-catastrophic event PSA, it is necessary to consider various end states and failure combinations for the purpose of multiple scenario construction. Therefore it is anticipated that an analysis work should be reduced and automated method and tool is required. A scenario generator that can automatically handle scenario construction logic and generate the enormous size of sequences logically identified by state-of-the-art methodology was developed. To fulfill the scenario generation as a technical tool, a simulation model associated with AI technique and graphical interface, was introduced. The AI simulation model in this study was verified for the feasibility of its capability to evaluate actual systems. In this feasibility study, a spurious SI signal was selected to test the model's applicability. As a result, the basic capability of the scenario generator could be demonstrated and important scenarios were generated. The human interface with a system and its operation, as well as time dependent factors and their quantification in scenario modeling, was added utilizing human scenario generator concept. Then the feasibility of an improved scenario generator was tested for actual use. Automatic scenario generation with a certain level of credibility, was achieved by this study. (author)

  7. Statistical analysis of events related to emergency diesel generators failures in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Kančev, Duško, E-mail: dusko.kancev@ec.europa.eu [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Duchac, Alexander; Zerger, Benoit [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Maqua, Michael [Gesellschaft für Anlagen-und-Reaktorsicherheit (GRS) mbH, Schwetnergasse 1, 50667 Köln (Germany); Wattrelos, Didier [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17 - 92262 Fontenay-aux-Roses Cedex (France)

    2014-07-01

    Highlights: • Analysis of operating experience related to emergency diesel generators events at NPPs. • Four abundant operating experience databases screened. • Delineating important insights and conclusions based on the operating experience. - Abstract: This paper is aimed at studying the operating experience related to emergency diesel generators (EDGs) events at nuclear power plants collected from the past 20 years. Events related to EDGs failures and/or unavailability as well as all the supporting equipment are in the focus of the analysis. The selected operating experience was analyzed in detail in order to identify the type of failures, attributes that contributed to the failure, failure modes potential or real, discuss risk relevance, summarize important lessons learned, and provide recommendations. The study in this particular paper is tightly related to the performing of statistical analysis of the operating experience. For the purpose of this study EDG failure is defined as EDG failure to function on demand (i.e. fail to start, fail to run) or during testing, or an unavailability of an EDG, except of unavailability due to regular maintenance. The Gesellschaft für Anlagen und Reaktorsicherheit mbH (GRS) and Institut de Radioprotection et de Sûreté Nucléaire (IRSN) databases as well as the operating experience contained in the IAEA/NEA International Reporting System for Operating Experience and the U.S. Licensee Event Reports were screened. The screening methodology applied for each of the four different databases is presented. Further on, analysis aimed at delineating the causes, root causes, contributing factors and consequences are performed. A statistical analysis was performed related to the chronology of events, types of failures, the operational circumstances of detection of the failure and the affected components/subsystems. The conclusions and results of the statistical analysis are discussed. The main findings concerning the testing

  8. Statistical analysis of events related to emergency diesel generators failures in the nuclear industry

    International Nuclear Information System (INIS)

    Kančev, Duško; Duchac, Alexander; Zerger, Benoit; Maqua, Michael; Wattrelos, Didier

    2014-01-01

    Highlights: • Analysis of operating experience related to emergency diesel generators events at NPPs. • Four abundant operating experience databases screened. • Delineating important insights and conclusions based on the operating experience. - Abstract: This paper is aimed at studying the operating experience related to emergency diesel generators (EDGs) events at nuclear power plants collected from the past 20 years. Events related to EDGs failures and/or unavailability as well as all the supporting equipment are in the focus of the analysis. The selected operating experience was analyzed in detail in order to identify the type of failures, attributes that contributed to the failure, failure modes potential or real, discuss risk relevance, summarize important lessons learned, and provide recommendations. The study in this particular paper is tightly related to the performing of statistical analysis of the operating experience. For the purpose of this study EDG failure is defined as EDG failure to function on demand (i.e. fail to start, fail to run) or during testing, or an unavailability of an EDG, except of unavailability due to regular maintenance. The Gesellschaft für Anlagen und Reaktorsicherheit mbH (GRS) and Institut de Radioprotection et de Sûreté Nucléaire (IRSN) databases as well as the operating experience contained in the IAEA/NEA International Reporting System for Operating Experience and the U.S. Licensee Event Reports were screened. The screening methodology applied for each of the four different databases is presented. Further on, analysis aimed at delineating the causes, root causes, contributing factors and consequences are performed. A statistical analysis was performed related to the chronology of events, types of failures, the operational circumstances of detection of the failure and the affected components/subsystems. The conclusions and results of the statistical analysis are discussed. The main findings concerning the testing

  9. Revisiting fine-tuning in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Graham G. [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Staub, Florian [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Physik; Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Experimentelle Kernphysik

    2017-03-15

    We evaluate the amount of fine-tuning in constrained versions of the minimal supersymmetric standard model (MSSM), with different boundary conditions at the GUT scale. Specifically we study the fully constrained version as well as the cases of non-universal Higgs and gaugino masses. We allow for the presence of additional non-holomorphic soft-terms which we show further relax the fine-tuning. Of particular importance is the possibility of a Higgsino mass term and we discuss possible origins for such a term in UV complete models. We point out that loop corrections typically lead to a reduction in the fine-tuning by a factor of about two compared to the estimate at tree-level, which has been overlooked in many recent works. Taking these loop corrections into account, we discuss the impact of current limits from SUSY searches and dark matter on the fine-tuning. Contrary to common lore, we find that the MSSM fine-tuning can be as small as 10 while remaining consistent with all experimental constraints. If, in addition, the dark matter abundance is fully explained by the neutralino LSP, the fine-tuning can still be as low as ∝20 in the presence of additional non-holomorphic soft-terms. We also discuss future prospects of these models and find that the MSSM will remain natural even in the case of a non-discovery in the foreseeable future.

  10. Revisiting fine-tuning in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Graham G. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Schmidt-Hoberg, Kai [DESY, Notkestraße 85, D-22607 Hamburg (Germany); Staub, Florian [Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology, Engesserstraße 7, D-76128 Karlsruhe (Germany); Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2017-03-06

    We evaluate the amount of fine-tuning in constrained versions of the minimal supersymmetric standard model (MSSM), with different boundary conditions at the GUT scale. Specifically we study the fully constrained version as well as the cases of non-universal Higgs and gaugino masses. We allow for the presence of additional non-holomorphic soft-terms which we show further relax the fine-tuning. Of particular importance is the possibility of a Higgsino mass term and we discuss possible origins for such a term in UV complete models. We point out that loop corrections typically lead to a reduction in the fine-tuning by a factor of about two compared to the estimate at tree-level, which has been overlooked in many recent works. Taking these loop corrections into account, we discuss the impact of current limits from SUSY searches and dark matter on the fine-tuning. Contrary to common lore, we find that the MSSM fine-tuning can be as small as 10 while remaining consistent with all experimental constraints. If, in addition, the dark matter abundance is fully explained by the neutralino LSP, the fine-tuning can still be as low as ∼20 in the presence of additional non-holomorphic soft-terms. We also discuss future prospects of these models and find that the MSSM will remain natural even in the case of a non-discovery in the foreseeable future.

  11. Specific gut commensal flora locally alters T cell tuning to endogenous ligands.

    Science.gov (United States)

    Chappert, Pascal; Bouladoux, Nicolas; Naik, Shruti; Schwartz, Ronald H

    2013-06-27

    Differences in gut commensal flora can dramatically influence autoimmune responses, but the mechanisms behind this are still unclear. We report, in a Th1-cell-driven murine model of autoimmune arthritis, that specific gut commensals, such as segmented filamentous bacteria, have the ability to modulate the activation threshold of self-reactive T cells. In the local microenvironment of gut-associated lymphoid tissues, inflammatory cytokines elicited by the commensal flora dynamically enhanced the antigen responsiveness of T cells that were otherwise tuned down to a systemic self-antigen. Together with subtle differences in early lineage differentiation, this ultimately led to an enhanced recruitment of pathogenic Th1 cells and the development of a more severe form of autoimmune arthritis. These findings define a key role for the gut commensal flora in sustaining ongoing autoimmune responses through the local fine tuning of T-cell-receptor-proximal activation events in autoreactive T cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A mechanism for tuning 5 GHz HTS filters

    Energy Technology Data Exchange (ETDEWEB)

    Ohsaka, M.; Takeuchi, S.; Ono, S.; Lee, J.H.; Saito, A. [Department of Electrical Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan); Akasegawa, A.; Yamanaka, K.; Kurihara, K. [Fujitsu LTD., 10-1 Wakamiya, Morinosato, Atsugi, Kanagawa 243-0197 (Japan); Ohshima, S. [Department of Electrical Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)], E-mail: ohshima@yz.yamagata-u.ac.jp

    2008-09-15

    We developed a tuning mechanism of HTS filter with a dielectric tuning plate, dielectric trimming rods, and conducting trimming rods. The tuning plate has windows through which the dielectric and conducting trimming rods pass. The tuning plate was designed for a 3-pole filter with 5 GHz center frequency (f{sub c}) and 100 MHz bandwidth (BW) using a 3-dimensional electromagnetic simulator. We were able to shift the f{sub c} to frequencies below 500 MHz using the tuning plate with a dielectric constant of 45. However, the insertion loss (IL) and the pass-band ripple of the filter became more severe and the BW of the filter was narrower after tuning. We tried to improve the filter properties after tuning using the dielectric and conducting trimming rods. We decreased the IL and the pass-band ripple by adjusting the height of the dielectric trimming rods to above the resonators. Also, the BW was improved by using copper (Cu) trimming rods above the spaces between the resonators. The tuning plate and the trimming rods did not affect the IL. So, we simulated 500 MHz tuning without the filter properties deteriorating at f{sub c} = 5 GHz. Also, we experimentally evaluated that the f{sub c} could be shifted to 340 MHz using the dielectric plate, the pass-band ripple could be decreased by ripple trimming using the dielectric rods, and the BW could be increased 31 MHz by BW trimming using the Cu rods.

  13. First 13TeV collisions, for tuning the LHC, seen by CMS

    CERN Multimedia

    McCauley, Thomas

    2015-01-01

    Late at night on 20 May 2015, the LHC delivered its first 13TeV collisions to the detectors, to tune the accelerator as part of its commissioning. These event show the collisions recorded by CMS on 20 May (without the Tracker switched on) and on 21 May (with the Tracker). Read more: - http://home.web.cern.ch/about/updates/2015/05/protons-set-collide-13-tev-prepare-physics - http://home.web.cern.ch/about/updates/2015/05/first-images-collisions-13-tev

  14. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran; Ovcharenko, Oleg; Peter, Daniel

    2017-01-01

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset

  15. From Particle Flow to Colour Flow in Top Events

    CERN Document Server

    Lofberg, Henrik Johan

    2013-01-01

    A deeper understanding of the underlying event in $t\\overline{t}$ pair production is expected to improve the current uncertainty on the measurements of the top quark mass. By selecting events with an electron, a muon and two b-tagged jets a high purity signal is obtained. The main properties of the underlying event are isolated and compared between data and different Pythia Monte Carlo Tunes. Discrepancies between the total number of charged particles for different models is observed. Furthermore a contribution of colour reconnection to the modeling of the average transverse momentum of the charged particles is identified.

  16. Hipse: an event generator for nuclear collisions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-11-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. Based on the sudden approximation and on geometrical hypothesis, it can conveniently simulate heavy-ion interactions at all impact parameters and thus can constitute a valuable tool for the understanding of processes such as neck emission or multifragmentation in peripheral or/and central collisions. After a detailed description of the ingredients of the model, first comparisons with experimental data collected by the INDRA collaboration are shown. Special emphasis is put on the kinematical characteristics of fragments and light particles observed at all impact parameters for Xe+Sn reactions at 25 and 50 MeV/u and Ni + Ni at 82 MeV/u. (authors)

  17. Next-Generation Navigational Infrastructure and the ATLAS Event Store

    CERN Document Server

    van Gemmeren, P; The ATLAS collaboration; Nowak, M

    2014-01-01

    The ATLAS event store employs a persistence framework with extensive navigational capabilities. These include real-time back navigation to upstream processing stages, externalizable data object references, navigation from any data object to any other both within a single file and across files, and more. The 2013-2014 shutdown of the Large Hadron Collider provides an opportunity to enhance this infrastructure in several ways that both extend these capabilities and allow the collaboration to better exploit emerging computing platforms. Enhancements include redesign with efficient file merging in mind, content-based indices in optimized reference types, and support for forward references. The latter provide the potential to construct valid references to data before those data are written, a capability that is useful in a variety of multithreading, multiprocessing, distributed processing, and deferred processing scenarios. This paper describes the architecture and design of the next generation of ATLAS navigation...

  18. Next-Generation Navigational Infrastructure and the ATLAS Event Store

    CERN Document Server

    van Gemmeren, P; The ATLAS collaboration; Nowak, M

    2013-01-01

    The ATLAS event store employs a persistence framework with extensive navigational capabilities. These include real-time back navigation to upstream processing stages, externalizable data object references, navigation from any data object to any other both within a single file and across files, and more. The 2013-2014 shutdown of the Large Hadron Collider provides an opportunity to enhance this infrastructure in several ways that both extend these capabilities and allow the collaboration to better exploit emerging computing platforms. Enhancements include redesign with efficient file merging in mind, content-based indices in optimized reference types, and support for forward references. The latter provide the potential to construct valid references to data before those data are written, a capability that is useful in a variety of multithreading, multiprocessing, distributed processing, and deferred processing scenarios. This paper describes the architecture and design of the next generation of ATLAS navigation...

  19. Next-generation navigational infrastructure and the ATLAS event store

    International Nuclear Information System (INIS)

    Gemmeren, P van; Malon, D; Nowak, M

    2014-01-01

    The ATLAS event store employs a persistence framework with extensive navigational capabilities. These include real-time back navigation to upstream processing stages, externalizable data object references, navigation from any data object to any other both within a single file and across files, and more. The 2013-2014 shutdown of the Large Hadron Collider provides an opportunity to enhance this infrastructure in several ways that both extend these capabilities and allow the collaboration to better exploit emerging computing platforms. Enhancements include redesign with efficient file merging in mind, content-based indices in optimized reference types, and support for forward references. The latter provide the potential to construct valid references to data before those data are written, a capability that is useful in a variety of multithreading, multiprocessing, distributed processing, and deferred processing scenarios. This paper describes the architecture and design of the next generation of ATLAS navigational infrastructure.

  20. Development of knowledge-based operator support system for steam generator water leak events in FBR plants

    International Nuclear Information System (INIS)

    Arikawa, Hiroshi; Ida, Toshio; Matsumoto, Hiroyuki; Kishida, Masako

    1991-01-01

    A knowledge engineering approach to operation support system would be useful in maintaining safe and steady operation in nuclear plants. This paper describes a knowledge-based operation support system which assists the operators during steam generator water leak events in FBR plants. We have developed a real-time expert system. The expert system adopts hierarchical knowledge representation corresponding to the 'plant abnormality model'. A technique of signal validation which uses knowledge of symptom propagation are applied to diagnosis. In order to verify the knowledge base concerning steam generator water leak events in FBR plants, a simulator is linked to the expert system. It is revealed that diagnosis based on 'plant abnormality model' and signal validation using knowledge of symptom propagation could work successfully. Also, it is suggested that the expert system could be useful in supporting FBR plants operations. (author)

  1. Frequency Tuning of Vibration Absorber Using Topology Optimization

    Science.gov (United States)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  2. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    International Nuclear Information System (INIS)

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Tseng, Jeff; Rizvi, Eram

    2008-01-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  3. 30 years of squeezed light generation

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Gehring, Tobias; Marquardt, Christoph

    2016-01-01

    Squeezed light generation has come of age. Significant advances on squeezed light generation have been made over the last 30 years—from the initial, conceptual experiment in 1985 till today’s top-tuned, application-oriented setups. Here we review the main experimental platforms for generating...... quadrature squeezed light that have been investigated in the last 30 years....

  4. Explanatory analysis of the relationship between atmospheric circulation and occurrence of flood generating events in a coastal city

    DEFF Research Database (Denmark)

    Åström, Helena Lisa Alexandra; Sunyer Pinya, Maria Antonia; Madsen, H.

    2016-01-01

    The aim of this study is to enhance the understanding of the occurrence of flood generating events in urban areas by analyzing the relationship between large-scale atmospheric circulation and extreme precipitation events, extreme sea water level events and their simultaneous occurrence......, respectively. To describe the atmospheric circulation we used the Lamb circulation type (LCT) classification and re-grouped it into Lamb circulation classes (LCC). The daily LCCs/LCTs were connected with rare precipitation and water level events in Aarhus, a Danish coastal city. Westerly and cyclonic LCCs (W......, C, SW, and NW) showed a significantly high occurrence of extreme precipitation. Similarly, for extreme water level events westerly LCCs (W and SW) showed a significantly high occurrence. Significantly low occurrence of extreme precipitation and water level events was obtained in easterly LCCs (NE, E...

  5. The global event system

    International Nuclear Information System (INIS)

    Winans, J.

    1994-01-01

    The support for the global event system has been designed to allow an application developer to control the APS event generator and receiver boards. This is done by the use of four new record types. These records are customized and are only supported by the device support modules for the APS event generator and receiver boards. The use of the global event system and its associated records should not be confused with the vanilla EPICS events and the associated event records. They are very different

  6. Tuning the thermal conductance of molecular junctions with interference effects

    Science.gov (United States)

    Klöckner, J. C.; Cuevas, J. C.; Pauly, F.

    2017-12-01

    We present an ab initio study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions made of several benzene and oligo(phenylene ethynylene) derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be tuned by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and, more generally, in nanostructured metal-organic hybrid systems, which are important to determine how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators.

  7. Efficient tuning in supervised machine learning

    NARCIS (Netherlands)

    Koch, Patrick

    2013-01-01

    The tuning of learning algorithm parameters has become more and more important during the last years. With the fast growth of computational power and available memory databases have grown dramatically. This is very challenging for the tuning of parameters arising in machine learning, since the

  8. Dynamic Performance Tuning Supported by Program Specification

    Directory of Open Access Journals (Sweden)

    Eduardo César

    2002-01-01

    Full Text Available Performance analysis and tuning of parallel/distributed applications are very difficult tasks for non-expert programmers. It is necessary to provide tools that automatically carry out these tasks. These can be static tools that carry out the analysis on a post-mortem phase or can tune the application on the fly. Both kind of tools have their target applications. Static automatic analysis tools are suitable for stable application while dynamic tuning tools are more appropriate to applications with dynamic behaviour. In this paper, we describe KappaPi as an example of a static automatic performance analysis tool, and also a general environment based on parallel patterns for developing and dynamically tuning parallel/distributed applications.

  9. Full-color tuning in binary polymer:perovskite nanocrystals organic-inorganic hybrid blends

    Science.gov (United States)

    Perulli, A.; Balena, A.; Fernandez, M.; Nedelcu, G.; Cretí, A.; Kovalenko, M. V.; Lomascolo, M.; Anni, M.

    2018-04-01

    The excellent optical and electronic properties of metal halide perovskites recently proposed these materials as interesting active materials for optoelectronic applications. In particular, the high color purity of perovskite colloidal nanocrystals (NCs) had recently motivated their exploration as active materials for light emitting diodes with tunable emission across the visible range. In this work, we investigated the emission properties of binary blends of conjugated polymers and perovskite NCs. We demonstrate that the emission color of the blends is determined by the superposition of the component photoluminescence spectra, allowing color tuning by acting on the blend relative composition. The use of two different polymers, two different perovskite NCs, and different blend compositions is exploited to tune the blend color in the blue-green, yellow-red, and blue-red ranges, including white light generation.

  10. Electronically Tunable Quadrature Sinusoidal Oscillator with Equal Output Amplitudes during Frequency Tuning Process

    Directory of Open Access Journals (Sweden)

    Den Satipar

    2017-01-01

    Full Text Available A new configuration of voltage-mode quadrature sinusoidal oscillator is proposed. The proposed oscillator employs two voltage differencing current conveyors (VDCCs, two resistors, and two grounded capacitors. In this design, the use of multiple/dual output terminal active building block is not required. The tuning of frequency of oscillation (FO can be done electronically by adjusting the bias current of active device without affecting condition of oscillation (CO. The electronic tuning can be done by controlling the bias current using a digital circuit. The amplitude of two sinusoidal outputs is equal when the frequency of oscillation is tuned. This makes the sinusoidal output voltages meet good total harmonic distortions (THD. Moreover, the proposed circuit can provide the sinusoidal output current with high impedance which is connected to external load or to another circuit without the use of buffer device. To confirm that the oscillator can generate the quadrature sinusoidal output signal, the experimental results using VDCC constructed from commercially available ICs are also included. The experimental results agree well with theoretical anticipation.

  11. A tuning method for nonuniform traveling-wave accelerating structures

    International Nuclear Information System (INIS)

    Gong Cunkui; Zheng Shuxin; Shao Jiahang; Jia Xiaoyu; Chen Huaibi

    2013-01-01

    The tuning method of uniform traveling-wave structures based on non-resonant perturbation field distribution measurement has been widely used in tuning both constant-impedance and constant-gradient structures. In this paper, the method of tuning nonuniform structures is proposed on the basis of the above theory. The internal reflection coefficient of each cell is obtained from analyzing the normalized voltage distribution. A numerical simulation of tuning process according to the coupled cavity chain theory has been done and the result shows each cell is in right phase advance after tuning. The method will be used in the tuning of a disk-loaded traveling-wave structure being developed at the Accelerator Laboratory, Tsinghua University. (authors)

  12. Anthropic Reasoning about Fine-Tuning, and Neoclassical Cosmology: Providence, Omnipresence, and Observation Selection Theory

    Science.gov (United States)

    Walker, Theodore, Jr.

    2011-10-01

    Anthropic reasoning about observation selection effects upon the appearance of cosmic providential fine-tuning (fine-tuning that provides for life) is often motivated by a desire to avoid theological implications (implications favoring the idea of a divine cosmic provider) without appealing to sheer lucky-for-us-cosmic-jackpot happenstance and coincidence. Cosmic coincidence can be rendered less incredible by appealing to a multiverse context. Cosmic providence can be rendered non-theological by appealing to an agent-less providential purpose, or by appealing to less-than-omnipresent/local providers, such as alien intelligences creating life- providing baby universes. Instead of choosing either cosmic coincidence or cosmic providence, as though they were mutually exclusive; it is better to accept both. Neoclassical thought accepts coincidence and providence, plus many local providers and one omnipresent provider. Moreover, fundamental observation selection theory should distinguish the many local observers of some events from the one omnipresent observer of all events. Accepting both coincidence and providence avoids classical theology (providence without coincidence) and classical atheism (coincidence without providence), but not neoclassical theology (providence with coincidence). Cosmology cannot avoid the idea of an all-inclusive omnipresent providential dice-throwing living-creative whole of reality, an idea essential to neoclassical theology, and to neoclassical cosmology.

  13. Iterative Feedback Tuning in district heating systems; Iterative Feedback Tuning i vaermeproduktionsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Raaberg, Martin; Velut, Stephane; Bari, Siavosh Amanat

    2010-10-15

    The project goal is to evaluate and describe how Iterative Feedback Tuning (IFT) can be used to tune controllers in the typical control loops in heat- and power plants. There are only a few practical studies carried out for IFT and they are not really relevant for power and heat processes. It is the practical problems in implementing the IFT and the result of trimming that is the focus of this project. The project will start with theoretical studies of the IFT-method, then realization and simple simulations in scilab. The IFT equations are then implemented in Freelance 2000, an ABB control system, for practical tests on a SISO- and a MIMO-process. By performing reproducible experiments on the process and analyze the results IFT can adjust the controller parameters to minimize a cost function that represents the control goal. The project selected for SISO experiments a pressure controller in an oil transportation system. By controlling the valve position of a control valve for the reversal to the supply tank, the pressure in the oil transport system is regulated. A disturbance in oil pressure can be achieved by changing the position of a valve that lets oil through to the day tank. The selected MIMO-process is a pre-heater in a degassing process. In this process, a valve on the secondary side is utilized to control the flow in the secondary system. A valve on the primary side is utilized to control the district heating water flow through the heat exchanger to control the temperature on the secondary side. An increased secondary flow increases the heat demand and thus requiring an increase in primary flow to maintain the secondary side outlet temperature. This is the cross-coupling responsible for why it is an advantage to consider the process as multi-variable. Using the IFT method, the two original PID-controllers and a feed-forward controller is tuned simultaneously. IFT-method was difficult to implement but worked well in both simulations and in real processes

  14. Small Commercial Building Re-tuning: A Primer

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Hostick, Donna J.; Underhill, Ronald M.; Fernandez, Nicholas; Katipamula, Srinivas

    2013-09-30

    To help building owners and managers address issues related to energy-efficient operation of small buildings, DOE has developed a Small Building Re-tuning training curriculum. This "primer" provides additional background information to understand some of the concepts presented in the Small Building Re-tuning training. The intent is that those who are less familiar with the buidling energy concepts will review this material before taking the building re-tuning training class.

  15. Oracle SQL Tuning pocket Reference

    CERN Document Server

    Gurry, Mark

    2002-01-01

    One of the most important challenges faced by Oracle database administrators and Oracle developers is the need to tune SQL statements so that they execute efficiently. Poorly tuned SQL statements are one of the leading causes of substandard database performance and poor response time. SQL statements that perform poorly result in frustration for users, and can even prevent a company from serving its customers in a timely manner

  16. Eruptive event generator based on the Gibson-Low magnetic configuration

    Science.gov (United States)

    Borovikov, D.; Sokolov, I. V.; Manchester, W. B.; Jin, M.; Gombosi, T. I.

    2017-08-01

    Coronal mass ejections (CMEs), a kind of energetic solar eruptions, are an integral subject of space weather research. Numerical magnetohydrodynamic (MHD) modeling, which requires powerful computational resources, is one of the primary means of studying the phenomenon. With increasing accessibility of such resources, grows the demand for user-friendly tools that would facilitate the process of simulating CMEs for scientific and operational purposes. The Eruptive Event Generator based on Gibson-Low flux rope (EEGGL), a new publicly available computational model presented in this paper, is an effort to meet this demand. EEGGL allows one to compute the parameters of a model flux rope driving a CME via an intuitive graphical user interface. We provide a brief overview of the physical principles behind EEGGL and its functionality. Ways toward future improvements of the tool are outlined.

  17. On transient events in the upper atmosphere generated away of thunderstorm regions

    Science.gov (United States)

    Morozenko, V.; Garipov, G.; Khrenov, B.; Klimov, P.; Panasyuk, M.; Sharakin, S.; Zotov, M.

    2011-12-01

    Experimental data on transient events in UV and Red-IR ranges obtained in the MSU missions "Unversitetsky-Tatiana" (wavelengths 300-400 nm) and "Unversitetsky-Tatiana-2" (wavelengths 300-400 nm and 600-800 nm), published by Garipov et al, in 2010 at COSPAR session http://www.cospar2010.org, at TEPA conference http://www.aragats.am/Conferences/tepa2010 and in 2011 by Sadovnichy et al, Solar System Research, 45, #1, 3-29 (2011); Vedenkin et al, JETP, v. 140, issue 3(9), 1-11 (2011) demonstrated existence of transients at large distances (up to thousands km) away of cloud thunderstorm regions. Those "remote" transients are short (1-5 msec) and are less luminous than the transients above thunderstorm regions. The ratio of Red-IR to UV photon numbers in those transients indicates high altitude of their origin (~70 km). Important observation facts are also: 1. a change of the exponent in transient distribution on luminosity Q ("-1" for photon numbers Q=1020 -1023 to "-2" for Q>1023), 2. a change of global distribution of transient with their luminosity (transients with Q>1023 are concentrated in equatorial range above continents, while transients with low luminosity are distributed more uniformly), 3. a phenomenon of transient sequences in one satellite orbit which is close to geomagnetic meridian. In the present paper phenomenological features of transients are explained in assumption that the observed transients have to be divided in two classes: 1. transients related to local, lower in the atmosphere, lightning at distance not more than hundreds km from satellite detector field of view in the atmosphere and 2. transients generated by far away lightning. Local transients are luminous and presumably are events called "transient luminous events" (TLE). In distribution on luminosity those events have some threshold Q~1023 and their differential luminosity distribution is approximated by power law exponent "-2". Remote transients have to be considered separately. Their

  18. MPI@LHC Talk.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00392933; The ATLAS collaboration

    2016-01-01

    Draft version of talk for MPI@LHC, regarding the topic of "Monte Carlo Tuning @ ATLAS". The talk introduces the event generator chain, concepts of tuning, issues/problems with over tuning, and then proceeds to explain 3(4) tunes performed at ATLAS. A 4th tune known as A15-MG5aMC@NLO(-TTBAR) is also included, but is awaiting note approval.

  19. Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators

    Science.gov (United States)

    Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.

    2018-05-01

    Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.

  20. Stress-tuned conductor-polymer composite for use in sensors

    Science.gov (United States)

    Martin, James E; Read, Douglas H

    2013-10-22

    A method for making a composite polymeric material with electrical conductivity determined by stress-tuning of the conductor-polymer composite, and sensors made with the stress-tuned conductor-polymer composite made by this method. Stress tuning is achieved by mixing a miscible liquid into the polymer precursor solution or by absorbing into the precursor solution a soluble compound from vapor in contact with the polymer precursor solution. The conductor may or may not be ordered by application of a magnetic field. The composite is formed by polymerization with the stress-tuning agent in the polymer matrix. The stress-tuning agent is removed following polymerization to produce a conductor-polymer composite with a stress field that depends on the amount of stress-tuning agent employed.

  1. Event-Triggered Distributed Control of Nonlinear Interconnected Systems Using Online Reinforcement Learning With Exploration.

    Science.gov (United States)

    Narayanan, Vignesh; Jagannathan, Sarangapani

    2017-09-07

    In this paper, a distributed control scheme for an interconnected system composed of uncertain input affine nonlinear subsystems with event triggered state feedback is presented by using a novel hybrid learning scheme-based approximate dynamic programming with online exploration. First, an approximate solution to the Hamilton-Jacobi-Bellman equation is generated with event sampled neural network (NN) approximation and subsequently, a near optimal control policy for each subsystem is derived. Artificial NNs are utilized as function approximators to develop a suite of identifiers and learn the dynamics of each subsystem. The NN weight tuning rules for the identifier and event-triggering condition are derived using Lyapunov stability theory. Taking into account, the effects of NN approximation of system dynamics and boot-strapping, a novel NN weight update is presented to approximate the optimal value function. Finally, a novel strategy to incorporate exploration in online control framework, using identifiers, is introduced to reduce the overall cost at the expense of additional computations during the initial online learning phase. System states and the NN weight estimation errors are regulated and local uniformly ultimately bounded results are achieved. The analytical results are substantiated using simulation studies.

  2. Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects.

    Science.gov (United States)

    Chen, Mengxiao; Pan, Caofeng; Zhang, Taiping; Li, Xiaoyi; Liang, Renrong; Wang, Zhong Lin

    2016-06-28

    Based on white light emission at silicon (Si)/ZnO hetrerojunction, a pressure-sensitive Si/ZnO nanowires heterostructure matrix light emitting diode (LED) array is developed. The light emission intensity of a single heterostructure LED is tuned by external strain: when the applied stress keeps increasing, the emission intensity first increases and then decreases with a maximum value at a compressive strain of 0.15-0.2%. This result is attributed to the piezo-phototronic effect, which can efficiently modulate the LED emission intensity by utilizing the strain-induced piezo-polarization charges. It could tune the energy band diagrams at the junction area and regulate the optoelectronic processes such as charge carriers generation, separation, recombination, and transport. This study achieves tuning silicon based devices through piezo-phototronic effect.

  3. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    Science.gov (United States)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear

  4. Analysis of the tuning characteristics of microwave plasma source

    International Nuclear Information System (INIS)

    Miotk, Robert; Jasiński, Mariusz; Mizeraczyk, Jerzy

    2016-01-01

    In this paper, we present an analysis of the tuning characteristics of waveguide-supplied metal-cylinder-based nozzleless microwave plasma source. This analysis has enabled to estimate the electron concentration n_e and electron frequency collisions ν in the plasma generated in nitrogen and in a mixture of nitrogen and ethanol vapour. The parameters n_e and ν are the basic quantities that characterize the plasma. The presented new plasma diagnostic method is particularly useful, when spectroscopic methods are useless. The presented plasma source is currently used in research of a hydrogen production from liquids.

  5. Self-Tuning Blind Identification and Equalization of IIR Channels

    Directory of Open Access Journals (Sweden)

    Bose Tamal

    2003-01-01

    Full Text Available This paper considers self-tuning blind identification and equalization of fractionally spaced IIR channels. One recursive estimator is used to generate parameter estimates of the numerators of IIR systems, while the other estimates denominator of IIR channel. Equalizer parameters are calculated by solving Bezout type equation. It is shown that the numerator parameter estimates converge (a.s. toward a scalar multiple of the true coefficients, while the second algorithm provides consistent denominator estimates. It is proved that the equalizer output converges (a.s. to a scalar version of the actual symbol sequence.

  6. Report from LHC MD 2171: Amplitude dependent closest tune approach from normal and skew octupoles

    CERN Document Server

    Maclean, Ewen Hamish; Persson, Tobias Hakan Bjorn; Carlier, Felix Simon; CERN. Geneva. ATS Department

    2018-01-01

    Simulation-based studies predict significant amplitude-dependent closest tune approach can be generated by skew octupole sources in conjunction with their normal octupolar counterparts. This has the potential to significantly influence Landau damping at small β∗, where skew octupole errors in the experimental IRs, together with b4 introduced by the Landau octupoles, is predicted to cause large distortion of the tune footprint. This MD aimed to perform a first exploration of these predictions with beam, by enhancing skew octupole sources in the IRs at injection and measuring amplitude detuning with free kicks in the plane approaching the coupling resonance.

  7. Influenza preparedness and the bureaucratic reflex: anticipating and generating the 2009 H1N1 event.

    Science.gov (United States)

    Barker, Kezia

    2012-07-01

    This paper draws together work on the event to problematise the generative implications of anticipatory governance in the management of emerging infectious disease. Through concerns for preparedness, the need to anticipate outbreaks of disease has taken on a new urgency. With the identification of the H1N1 virus circulating amongst human populations in 2009, public health measures and security practices at regional, national and international levels were rapidly put into play. However, as the ensuing event demonstrated, the social, political and economic disruptions of emerging infectious diseases can be matched by those of anticipatory actions. I argue that the event-making potential of surveillance practices and the pre-determined arrangements of influenza preparedness planning, when triggered by the H1N1 virus, caused an event acceleration through the hyper-sensitised global health security architecture. In the UK, this led to a bureaucratic reflex, a security response event that overtook the present actualities of the disease. This raises questions about the production of forms of insecurity by the security apparatus itself. Copyright © 2012. Published by Elsevier Ltd.

  8. Using Drell-Yan to probe the underlying event in Run II at Collider Detector at Fermilab (CDF)

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Deepak [Univ. of Florida, Gainesville, FL (United States)

    2008-12-01

    We study the behavior of charged particles produced in association with Drell-Yan lepton-pairs in the region of the Z-boson in proton-antiproton collisions at 1.96 TeV. We use the direction of the Z-boson in each event to define 'toward', 'away', and 'transverse' regions. For Drell-Yan production (excluding the leptons) both the 'toward' and 'transverse' regions are very sensitive to the 'underlying event', which is defined as everything except the two hard scattered components. The data are corrected to the particle level and are then compared with several PYTHIA models (with multiple parton interactions) and HERWIG (without multiple parton interactions) at the particle level (i.e. generator level). The data are also compared with a previous analysis on the behavior of the 'underlying event' in high transverse momentum jet production. The goal is to produce data that can be used by the theorists to tune and improve the QCD Monte-Carlo models of the 'underlying event' that are used to simulate hadron-hadron collisions.

  9. Tuning and History: A Personal Overview

    Science.gov (United States)

    Isaacs, Ann Katherine

    2017-01-01

    The text places Tuning History in the context of the rapidly developing international collaboration among historians which began in Europe in 1989, with the ECTS Pilot project, and continued, from 2000 on, with the European History Networks (for research and for curriculum development) working in parallel and in collaboration with Tuning, in…

  10. Linear beam-beam tune shift calculations for the Tevatron Collider

    International Nuclear Information System (INIS)

    Johnson, D.

    1989-01-01

    A realistic estimate of the linear beam-beam tune shift is necessary for the selection of an optimum working point in the tune diagram. Estimates of the beam-beam tune shift using the ''Round Beam Approximation'' (RBA) have over estimated the tune shift for the Tevatron. For a hadron machine with unequal lattice functions and beam sizes, an explicit calculation using the beam size at the crossings is required. Calculations for various Tevatron lattices used in Collider operation are presented. Comparisons between the RBA and the explicit calculation, for elliptical beams, are presented. This paper discusses the calculation of the linear tune shift using the program SYNCH. Selection of a working point is discussed. The magnitude of the tune shift is influenced by the choice of crossing points in the lattice as determined by the pbar ''cogging effects''. Also discussed is current cogging procedures and presents results of calculations for tune shifts at various crossing points in the lattice. Finally, a comparison of early pbar tune measurements with the present linear tune shift calculations is presented. 17 refs., 13 figs., 3 tabs

  11. Monte Carlo generator ELRADGEN 2.0 for simulation of radiative events in elastic ep-scattering of polarized particles

    Science.gov (United States)

    Akushevich, I.; Filoti, O. F.; Ilyichev, A.; Shumeiko, N.

    2012-07-01

    The structure and algorithms of the Monte Carlo generator ELRADGEN 2.0 designed to simulate radiative events in polarized ep-scattering are presented. The full set of analytical expressions for the QED radiative corrections is presented and discussed in detail. Algorithmic improvements implemented to provide faster simulation of hard real photon events are described. Numerical tests show high quality of generation of photonic variables and radiatively corrected cross section. The comparison of the elastic radiative tail simulated within the kinematical conditions of the BLAST experiment at MIT BATES shows a good agreement with experimental data. Catalogue identifier: AELO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1299 No. of bytes in distributed program, including test data, etc.: 11 348 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: All Operating system: Any RAM: 1 MB Classification: 11.2, 11.4 Nature of problem: Simulation of radiative events in polarized ep-scattering. Solution method: Monte Carlo simulation according to the distributions of the real photon kinematic variables that are calculated by the covariant method of QED radiative correction estimation. The approach provides rather fast and accurate generation. Running time: The simulation of 108 radiative events for itest:=1 takes up to 52 seconds on Pentium(R) Dual-Core 2.00 GHz processor.

  12. Tuning of Clic accelerating structure prototypes at CERN

    CERN Document Server

    Shi, J; Olyunin, A; Wuensch, W

    2010-01-01

    An RF measurement system has been set up at CERN for use in the X-band accelerating structure development program of the CLIC study. Using the system, S-parameters are measured and the field distribution is obtained automatically using a bead-pull technique. The corrections for tuning the structure are calculated from an initial measurement and cell-by-cell tuning is applied to obtain the correct phase advance and minimum reflection at the operation frequency. The detailed tuning procedure is presented and explained along with an example of measurement and tuning of CLIC accelerating structure prototypes.

  13. Spin tune dependence on closed orbit in RHIC

    International Nuclear Information System (INIS)

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-01-01

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  14. Event-by-event simulation of quantum phenomena

    NARCIS (Netherlands)

    De Raedt, Hans; Michielsen, Kristel

    A discrete-event simulation approach is reviewed that does not require the knowledge of the solution of the wave equation of the whole system, yet reproduces the statistical distributions of wave theory by generating detection events one-by-one. The simulation approach is illustrated by applications

  15. Search for a QGP with a TPC spectrometer, and QGP signals predicted by new event generator

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.

    1988-01-01

    The BNL/CCNY/Johns Hopkins/Rice Collaboration has developed and successfully tested a TPC Magnetic Spectrometer to search for OGP signals produced by ion beams at AGS. Test data with 14.5 GeV/c /times/ A Oxygen ions incident on a Pb target has been obtained. These include a 78-prong nuclear interaction in the MPS magnet which was pattern recognized with an efficiency ∼75%. A cascade and plasma event generator has also been developed, the predictions of which are used to illustrate how our technique can detect possible plasma signals at AGS and RHIC. A 4π tracking TPC magnetic spectrometer has been proposed for RHIC. The new event generator predicts striking central rapidity bump QGP signals at RHIC for p, /bar p/, π/sup +-/, K/sup +-/, etc., produced by 100 GeV/c /times/ A Au on Au collisions and these are presented. 2 refs., 13 figs., 1 tab

  16. Integrated unaligned resonant modulator tuning

    Energy Technology Data Exchange (ETDEWEB)

    Zortman, William A.; Lentine, Anthony L.

    2017-10-03

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, from the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.

  17. Efficient Thermal Tuning Employing Metallic Microheater With Slow Light Effect

    DEFF Research Database (Denmark)

    Yan, Siqi; Chen, Hao; Gao, Shengqian

    2018-01-01

    Thermal tuning acts as one of the most fundamental roles in integrated silicon photonics since it can provide flexibility and reconfigurability. Low tuning power and fast tuning speed are long-term pursuing goals in terms of the performance of the thermal tuning. Here we propose and experimentall...

  18. Event filter monitoring with the ATLAS tile calorimeter

    CERN Document Server

    Fiorini, L

    2008-01-01

    The ATLAS Tile Calorimeter detector is presently involved in an intense phase of subsystems integration and commissioning with muons of cosmic origin. Various monitoring programs have been developed at different levels of the data flow to tune the set-up of the detector running conditions and to provide a fast and reliable assessment of the data quality already during data taking. This paper focuses on the monitoring system integrated in the highest level of the ATLAS trigger system, the Event Filter, and its deployment during the Tile Calorimeter commissioning with cosmic ray muons. The key feature of Event Filter monitoring is the capability of performing detector and data quality control on complete physics events at the trigger level, hence before events are stored on disk. In ATLAS' online data flow, this is the only monitoring system capable of giving a comprehensive event quality feedback.

  19. WINHAC - the Monte Carlo event generator for single W-boson production in hadronic collisions

    International Nuclear Information System (INIS)

    Placzek, W.; Jadach, P.

    2009-01-01

    The charged-current Drell-Yan process, i.e. single W-boson production with leptonic decays in hadronic collisions, will play an important role in the experimental programme at the LHC. It will be used for improved measurements of some Standard Model parameters (such as the W-boson mass and widths, etc.), for better determination of the Higgs-boson mass limits, in '' new physics '' searches, as a '' standard candle '' process, etc. In order to achieve all these goals, precise theoretical predictions for this process in terms of a Monte Carlo event generator are indispensable. In this talk the Monte Carlo event generator WINHAC for the charged-current Drell-Yan process will be presented. It features higher-order QED corrections within the exclusive Yennie-Frautschi-Suura exponentiation scheme with the 1 st order electroweak corrections. It is interfaced with PYTHIA for QCD/QED initial-state parton shower as well as hadronization. It includes options for proton-proton, proton-antiproton and nucleus-nucleus collisions. Moreover, it allows for longitudinally and transversely polarized W-boson production. It has been cross-checked numerically to high precision against independent programs/calculations. Some numerical results from WINHAC will also be presented. Finally, interplay between QCD and electroweak effects will briefly be discussed. (author)

  20. Heavy superpartners with less tuning from hidden sector renormalisation

    International Nuclear Information System (INIS)

    Hardy, Edward

    2014-01-01

    In supersymmetric extensions of the Standard Model, superpartner masses consistent with collider bounds typically introduce significant tuning of the electroweak scale. We show that hidden sector renormalisation can greatly reduce such a tuning if the supersymmetry breaking, or mediating, sector runs through a region of strong coupling not far from the weak scale. In the simplest models, only the tuning due to the gaugino masses is improved, and a weak scale gluino mass in the region of 5 TeV may be obtained with an associated tuning of only one part in ten. In models with more complex couplings between the visible and hidden sectors, the tuning with respect to sfermions can also be reduced. We give an example of a model, with low scale gauge mediation and superpartner masses allowed by current LHC bounds, that has an overall tuning of one part in twenty

  1. PULSE SYNTHESIZING GENERATOR

    Science.gov (United States)

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  2. Mammalian odorant receptor tuning breadth persists across distinct odorant panels.

    Directory of Open Access Journals (Sweden)

    Devin Kepchia

    Full Text Available The molecular receptive range (MRR of a mammalian odorant receptor (OR is the set of odorant structures that activate the OR, while the distribution of these odorant structures across odor space is the tuning breadth of the OR. Variation in tuning breadth is thought to be an important property of ORs, with the MRRs of these receptors varying from narrowly to broadly tuned. However, defining the tuning breadth of an OR is a technical challenge. For practical reasons, a screening panel that broadly covers odor space must be limited to sparse coverage of the many potential structures in that space. When screened with such a panel, ORs with different odorant specificities, but equal tuning breadths, might appear to have different tuning breadths due to chance. We hypothesized that ORs would maintain their tuning breadths across distinct odorant panels. We constructed a new screening panel that was broadly distributed across an estimated odor space and contained compounds distinct from previous panels. We used this new screening panel to test several murine ORs that were previously characterized as having different tuning breadths. ORs were expressed in Xenopus laevis oocytes and assayed by two-electrode voltage clamp electrophysiology. MOR256-17, an OR previously characterized as broadly tuned, responded to nine novel compounds from our new screening panel that were structurally diverse and broadly dispersed across an estimated odor space. MOR256-22, an OR previously characterized as narrowly tuned, responded to a single novel compound that was structurally similar to a previously known ligand for this receptor. MOR174-9, a well-characterized receptor with a narrowly tuned MRR, did not respond to any novel compounds in our new panel. These results support the idea that variation in tuning breadth among these three ORs is not an artifact of the screening protocol, but is an intrinsic property of the receptors.

  3. Total and inelastic cross sections in the PHOJET MC event generator

    Energy Technology Data Exchange (ETDEWEB)

    Fedynitch, Anatoli [CERN, Geneva (Switzerland); IKP, KIT, Karlsruhe (Germany); Engel, Ralph [IKP, KIT, Karlsruhe (Germany)

    2013-07-01

    The Monte-Carlo event generator PHOJET 1.12 has been successfully employed in experimental and technical fields of particle and cosmic ray physics for more than a decade. The latest official version, released in 2000, uses the total, elastic and diffractive cross-section data available during the Tevatron era as a basis for the extrapolation to higher energies. The employed model is based on Regge-arguments, typically resulting in reliable and stable predictions. However, recent LHC (min-bias) measurements of charged particle distributions and cross-sections showed, that a major rework of the underlying model is needed for a more accurate description of accelerator data. Here, we present the status of the ongoing work and give an outlook for the upcoming versions.

  4. Analysis of the tuning characteristics of microwave plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Miotk, Robert, E-mail: rmiotk@imp.gda.pl; Jasiński, Mariusz [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk (Poland); Mizeraczyk, Jerzy [Department of Marine Electronics, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia (Poland)

    2016-04-15

    In this paper, we present an analysis of the tuning characteristics of waveguide-supplied metal-cylinder-based nozzleless microwave plasma source. This analysis has enabled to estimate the electron concentration n{sub e} and electron frequency collisions ν in the plasma generated in nitrogen and in a mixture of nitrogen and ethanol vapour. The parameters n{sub e} and ν are the basic quantities that characterize the plasma. The presented new plasma diagnostic method is particularly useful, when spectroscopic methods are useless. The presented plasma source is currently used in research of a hydrogen production from liquids.

  5. Scattering of a cross-polarized linear wave by a soliton at an optical event horizon in a birefringent nanophotonic waveguide.

    Science.gov (United States)

    Ciret, Charles; Gorza, Simon-Pierre

    2016-06-15

    The scattering of a linear wave on an optical event horizon, induced by a cross-polarized soliton, is experimentally and numerically investigated in integrated structures. The experiments are performed in a dispersion-engineered birefringent silicon nanophotonic waveguide. In stark contrast with copolarized waves, the large difference between the group velocity of the two cross-polarized waves enables a frequency conversion almost independent of the soliton wavelength. It is shown that the generated idler is only shifted by 10 nm around 1550 nm over a pump tuning range of 350 nm. Simulations using two coupled full vectorial nonlinear Schrödinger equations fully support the experimental results.

  6. 70 MeV injector auto tuning system handbook

    International Nuclear Information System (INIS)

    Ellis, J.E.; Munn, R.W.; Sandels, E.G.

    1976-06-01

    The handbook is in three sections: (1) description and location; (2) operating instructions; and (3) design notes on the tank and debuncher auto tuning systems for the 70 MeV injector. The purpose of the auto tuning system is to maintain the 'tune' of the four tanks and debuncher to within a few Hz, stabilizing against changes of temperature and other physical factors affecting the resonant frequency of the tanks. (U.K.)

  7. Broader visual orientation tuning in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Ariel eRokem

    2011-11-01

    Full Text Available Reduced gamma-aminobutyric acid (GABA levels in cerebral cortex are thought to contribute to information processing deficits in patients with schizophrenia (SZ, and we have previously reported lower in vivo GABA levels in the visual cortex of patients with SZ. GABA-mediated inhibition plays a role in sharpening orientation tuning of visual cortical neurons. Therefore, we predicted that tuning for visual stimulus orientation would be wider in SZ. We measured orientation tuning with a psychophysical procedure in which subjects performed a target detection task of a low-contrast oriented grating, following adaptation to a high-contrast grating. Contrast detection thresholds were determined for a range of adapter-target orientation offsets. For both SZ and healthy controls, contrast thresholds decreased as orientation offset increased, suggesting that this tuning curve reflects the selectivity of visual cortical neurons for stimulus orientation. After accounting for generalized deficits in task performance in SZ, there was no difference between patients and controls for detection of target stimuli having either the same orientation as the adapter or orientations far from the adapter. However, patients’ thresholds were significantly higher for intermediate adapter-target offsets. In addition, the mean width parameter of a Gaussian fit to the psychophysical orientation tuning curves was significantly larger for the patient group. We also present preliminary data relating visual cortical GABA levels, as measured with magnetic resonance spectroscopy, and orientation tuning width. These results suggest that our finding of broader orientation tuning in SZ may be due to diminished visual cortical GABA levels.

  8. Self-tuning control studies of the plasma vertical position problem

    International Nuclear Information System (INIS)

    Zheng, Guang Lin; Wellstead, P.E.; Browne, M.L.

    1993-01-01

    The plasma vertical position system in a tokamak device can be open-loop unstable with time-varying dynamics, such that the instability increases with system dynamical changes. Time-varying unstable dynamics makes the plasma vertical position a particularly difficult one to control with traditional fixed-coefficient controllers. A self-tuning technique offers a new solution of the plasma vertical position control problem by an adaptive control approach. Specifically, the self-tuning controller automatically tunes the controller parameters without an a priori knowledge of the system dynamics and continuously tracks dynamical changes within the system, thereby providing the system with auto-tuning and adaptive tuning capabilities. An overview of the self-tuning methods is given, and their applicability to a simulation of the Joint European Torus (JET) vertical plasma positions system is illustrated. Specifically, the applicability of pole-assignment and generalized predictive control self-tuning methods to the vertical plasma position system is demonstrated. 26 refs., 16 figs., 1 tab

  9. A frequency domain approach for MPC tuning

    NARCIS (Netherlands)

    Özkan, L.; Meijs, J.B.; Backx, A.C.P.M.; Karimi, I.A.; Srinivasan, R.

    2012-01-01

    This paper presents a frequency domain based approach to tune the penalty weights in the model predictive control (MPC) formulation. The two-step tuning method involves the design of a favourite controller taking into account the model-plant mismatch followed by the controller matching. We implement

  10. Monte Carlo event generator MCMHA for high energy hadron-nucleus collisions and intranuclear cascade interactions

    International Nuclear Information System (INIS)

    Iga, Y.; Hamatsu, R.; Yamazaki, S.

    1988-01-01

    The Monte Carlo event generator for high energy hadron-nucleus (h-A) collisions has been developed which is based on the multi-chain model. The concept of formation zone and the cascade interactions of secondary particles are properly taken into account in this Monte Carlo code. Comparing the results of this code with experimental data, the importance of intranuclear cascade interactions becomes very clear. (orig.)

  11. Natural tuning: towards a proof of concept

    Science.gov (United States)

    Dubovsky, Sergei; Gorbenko, Victor; Mirbabayi, Mehrdad

    2013-09-01

    The cosmological constant problem and the absence of new natural physics at the electroweak scale, if confirmed by the LHC, may either indicate that the nature is fine-tuned or that a refined notion of naturalness is required. We construct a family of toy UV complete quantum theories providing a proof of concept for the second possibility. Low energy physics is described by a tuned effective field theory, which exhibits relevant interactions not protected by any symmetries and separated by an arbitrary large mass gap from the new "gravitational" physics, represented by a set of irrelevant operators. Nevertheless, the only available language to describe dynamics at all energy scales does not require any fine-tuning. The interesting novel feature of this construction is that UV physics is not described by a fixed point, but rather exhibits asymptotic fragility. Observation of additional unprotected scalars at the LHC would be a smoking gun for this scenario. Natural tuning also favors TeV scale unification.

  12. Accurate guitar tuning by cochlear implant musicians.

    Directory of Open Access Journals (Sweden)

    Thomas Lu

    Full Text Available Modern cochlear implant (CI users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  13. Detection of planets in extremely weak central perturbation microlensing events via next-generation ground-based surveys

    International Nuclear Information System (INIS)

    Chung, Sun-Ju; Lee, Chung-Uk; Koo, Jae-Rim

    2014-01-01

    Even though the recently discovered high-magnification event MOA-2010-BLG-311 had complete coverage over its peak, confident planet detection did not happen due to extremely weak central perturbations (EWCPs, fractional deviations of ≲ 2%). For confident detection of planets in EWCP events, it is necessary to have both high cadence monitoring and high photometric accuracy better than those of current follow-up observation systems. The next-generation ground-based observation project, Korea Microlensing Telescope Network (KMTNet), satisfies these conditions. We estimate the probability of occurrence of EWCP events with fractional deviations of ≤2% in high-magnification events and the efficiency of detecting planets in the EWCP events using the KMTNet. From this study, we find that the EWCP events occur with a frequency of >50% in the case of ≲ 100 M E planets with separations of 0.2 AU ≲ d ≲ 20 AU. We find that for main-sequence and sub-giant source stars, ≳ 1 M E planets in EWCP events with deviations ≤2% can be detected with frequency >50% in a certain range that changes with the planet mass. However, it is difficult to detect planets in EWCP events of bright stars like giant stars because it is easy for KMTNet to be saturated around the peak of the events because of its constant exposure time. EWCP events are caused by close, intermediate, and wide planetary systems with low-mass planets and close and wide planetary systems with massive planets. Therefore, we expect that a much greater variety of planetary systems than those already detected, which are mostly intermediate planetary systems, regardless of the planet mass, will be significantly detected in the near future.

  14. Predictive Performance Tuning of OpenACC Accelerated Applications

    KAUST Repository

    Siddiqui, Shahzeb

    2014-05-04

    Graphics Processing Units (GPUs) are gradually becoming mainstream in supercomputing as their capabilities to significantly accelerate a large spectrum of scientific applications have been clearly identified and proven. Moreover, with the introduction of high level programming models such as OpenACC [1] and OpenMP 4.0 [2], these devices are becoming more accessible and practical to use by a larger scientific community. However, performance optimization of OpenACC accelerated applications usually requires an in-depth knowledge of the hardware and software specifications. We suggest a prediction-based performance tuning mechanism [3] to quickly tune OpenACC parameters for a given application to dynamically adapt to the execution environment on a given system. This approach is applied to a finite difference kernel to tune the OpenACC gang and vector clauses for mapping the compute kernels into the underlying accelerator architecture. Our experiments show a significant performance improvement against the default compiler parameters and a faster tuning by an order of magnitude compared to the brute force search tuning.

  15. Investigation of the influence of nuclear matter on hard neutrino nucleus interaction using the HARDPING Monte Carlo Event Generator

    International Nuclear Information System (INIS)

    Berdnikov, Ya.A.; Berdnikov, A.Ya.; Kim, V.T.; Ivanov, A.E.; Suetin, D.P.; Tiangov, K.D.

    2016-01-01

    Hadron production in neutrino-nucleus interactions is implemented in Monte Carlo event generator HARDPING (HARD Probe INteraction Generator). Such effects as formation length, energy loss and multiple rescattering for produced hadrons and their constituents are taken into account in HARDPING. Available data from WA/59 and SCAT collaborations on hadron production in neutrino-nucleus collisions is described by HARDPING with a reasonable agreement

  16. Design of fast tuning elements for the ITER ICH system

    International Nuclear Information System (INIS)

    Swain, D.W.; Goulding, R.H.

    1996-05-01

    The coupling between the ion cyclotron (IC) antenna and the ITER plasma (as expressed by the load resistance the antenna sees) will experience relatively fast variations due to plasma edge profile modifications. If uncompensated, these will cause an increase in the amount of power reflected back to the transmitter and ultimately a decrease in the amount of radio frequency (rf) power to the plasma caused by protective suppression of the amount of rf power generated by the transmitter. The goals of this task were to study several alternate designs for a tuning and matching (T ampersand M) system and to recommend some research and development (R ampersand D) tasks that could be carried out to test some of the most promising concepts. Analyses of five different T ampersand M configurations are presented in this report. They each have different advantages and disadvantages, and the choice among them must be made depending on the requirements for the IC system. Several general conclusions emerge from our study: The use of a hybrid splitter as a passive reflected-power dump [''edge localized mode (ELM)-dump''] appears very promising; this configuration will protect the rf power sources from reflected power during changes in plasma loading due to plasma motion or profile changes (e.g., ELM- induced changes in the plasma scrape-off region) and requires no active control of the rf system. Trade-offs between simplicity of design and capability of the system must be made. Simple system designs with few components near the antenna either have high voltages over considerable distances of transmission lines, or they are not easily tuned to operate at different frequencies. Designs using frequency shifts and/or fast tuning elements can provide fast matching over a wide range of plasma loading; however, the designs studied here require components near the antenna, complicating assembly and maintenance. Capacitor-tuned resonant systems may offer a good compromise

  17. Analysis of the Steam Generator Tubes Rupture Initiating Event

    International Nuclear Information System (INIS)

    Trillo, A.; Minguez, E.; Munoz, R.; Melendez, E.; Sanchez-Perea, M.; Izquierd, J.M.

    1998-01-01

    In PSA studies, Event Tree-Fault Tree techniques are used to analyse to consequences associated with the evolution of an initiating event. The Event Tree is built in the sequence identification stage, following the expected behaviour of the plant in a qualitative way. Computer simulation of the sequences is performed mainly to determine the allowed time for operator actions, and do not play a central role in ET validation. The simulation of the sequence evolution can instead be performed by using standard tools, helping the analyst obtain a more realistic ET. Long existing methods and tools can be used to automatism the construction of the event tree associated to a given initiator. These methods automatically construct the ET by simulating the plant behaviour following the initiator, allowing some of the systems to fail during the sequence evolution. Then, the sequences with and without the failure are followed. The outcome of all this is a Dynamic Event Tree. The work described here is the application of one such method to the particular case of the SGTR initiating event. The DYLAM scheduler, designed at the Ispra (Italy) JRC of the European Communities, is used to automatically drive the simulation of all the sequences constituting the Event Tree. Similarly to the static Event Tree, each time a system is demanded, two branches are open: one corresponding to the success and the other to the failure of the system. Both branches are followed by the plant simulator until a new system is demanded, and the process repeats. The plant simulation modelling allows the treatment of degraded sequences that enter into the severe accident domain as well as of success sequences in which long-term cooling is started. (Author)

  18. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Zaragoza, Jordi; Pou, Josep; Arias, Antoni [Electronic Engineering Dept., Technical University of Catalonia, Campus Terrassa, C. Colom 1, 08222 Terrassa (Spain); Spiteri, Cyril [Department of Industrial Electrical Power Conversion, University of Malta, Faculty of Engineering, Msida (Malta); Robles, Eider; Ceballos, Salvador [Energy Unit, Robotiker-Tecnalia Technology Corporation, Zamudio, Basque Country (Spain)

    2011-05-15

    This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two different tuning strategies are analyzed and compared. The main goal is to enhance the overall performance by achieving a low sensitivity to disturbances and minimal overshoot under variable operating conditions. Finally, the results have been verified by an experimental WECS laboratory prototype. (author)

  19. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    Science.gov (United States)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  20. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: Design, modeling and experiments

    Science.gov (United States)

    Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi

    2018-01-01

    Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.

  1. Intentional back flow effects on ruptured steam generator cooldown during a SGTR event for KSNP

    International Nuclear Information System (INIS)

    Seok, Jeong Park; Cheol, Woo Kim; Chul, Jin Choi; Jong, Tae Seo

    2001-01-01

    For an optimum recovery from a Steam Generator Tube Rupture (SGTR) event, the operators are directed to isolate the steam generator (SG) with ruptured tube(s) as early as possible in order to minimize the radioactive material release. However, the Reactor Coolant System (RCS) cooldown and depressurization to the Residual Heat Removal (RHR) System operation conditions using the intact SG only can not be readily achievable unless the affected SG is properly cooled since the isolated SG remains at high temperature even though the RCS has been cooled down. Therefore, a study on the intentional back flow from the ruptured SG secondary side to the RCS was performed to evaluate its effectiveness on the ruptured SG cooldown during a SGTR event for the pressurized light water reactor, especially for the Korean Standard Nuclear Power Plant (KSNP). In order to evaluate the intentional back flow effect, a series of analyses was conducted by using RELAP5/MOD3 computer code. In these analyses, the primary and secondary systems of KSNP are modeled including the major Nuclear Steam Supply System (NSSS) components such as the reactor vessel, steam generators, hot and cold legs, pressurizer, and reactor coolant pumps. Also, the key safety systems and control systems are modeled. Using this model, two possible methods of the ruptured SG cooldown by using back flow after RCS cooldown were evaluated: the first method is a tube uncover method, and the second method is a SG drain (back flow) and fill method. (author)

  2. Towards automatic parameter tuning of stream processing systems

    KAUST Repository

    Bilal, Muhammad; Canini, Marco

    2017-01-01

    for automating parameter tuning for stream-processing systems. Our framework supports standard black-box optimization algorithms as well as a novel gray-box optimization algorithm. We demonstrate the multiple benefits of automated parameter tuning in optimizing

  3. Application of best estimate and uncertainty safety analysis methodology to loss of flow events at Ontario's Power Generation's Darlington Nuclear Generating Station

    International Nuclear Information System (INIS)

    Huget, R.G.; Lau, D.K.; Luxat, J.C.

    2001-01-01

    Ontario Power Generation (OPG) is currently developing a new safety analysis methodology based on best estimate and uncertainty (BEAU) analysis. The framework and elements of the new safety analysis methodology are defined. The evolution of safety analysis technology at OPG has been thoroughly documented. Over the years, the use of conservative limiting assumptions in OPG safety analyses has led to gradual erosion of predicted safety margins. The main purpose of the new methodology is to provide a more realistic quantification of safety margins within a probabilistic framework, using best estimate results, with an integrated accounting of the underlying uncertainties. Another objective of the new methodology is to provide a cost-effective means for on-going safety analysis support of OPG's nuclear generating stations. Discovery issues and plant aging effects require that the safety analyses be periodically revised and, in the past, the cost of reanalysis at OPG has been significant. As OPG enters the new competitive marketplace for electricity, there is a strong need to conduct safety analysis in a less cumbersome manner. This paper presents the results of the first licensing application of the new methodology in support of planned design modifications to the shutdown systems (SDSs) at Darlington Nuclear Generating Station (NGS). The design modifications restore dual trip parameter coverage over the full range of reactor power for certain postulated loss-of-flow (LOF) events. The application of BEAU analysis to the single heat transport pump trip event provides a realistic estimation of the safety margins for the primary and backup trip parameters. These margins are significantly larger than those predicted by conventional limit of the operating envelope (LOE) analysis techniques. (author)

  4. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies.

    Directory of Open Access Journals (Sweden)

    Motohiro Wakakuwa

    Full Text Available The eyes of flower-visiting butterflies are often spectrally highly complex with multiple opsin genes generated by gene duplication, providing an interesting system for a comparative study of color vision. The Small White butterfly, Pieris rapae, has duplicated blue opsins, PrB and PrV, which are expressed in the blue (λ(max = 453 nm and violet receptors (λ(max = 425 nm, respectively. To reveal accurate absorption profiles and the molecular basis of the spectral tuning of these visual pigments, we successfully modified our honeybee opsin expression system based on HEK293s cells, and expressed PrB and PrV, the first lepidopteran opsins ever expressed in cultured cells. We reconstituted the expressed visual pigments in vitro, and analysed them spectroscopically. Both reconstituted visual pigments had two photointerconvertible states, rhodopsin and metarhodopsin, with absorption peak wavelengths 450 nm and 485 nm for PrB and 420 nm and 482 nm for PrV. We furthermore introduced site-directed mutations to the opsins and found that two amino acid substitutions, at positions 116 and 177, were crucial for the spectral tuning. This tuning mechanism appears to be specific for invertebrates and is partially shared by other pierid and lycaenid butterfly species.

  5. Tuning and backreaction in F-term axion monodromy inflation

    Directory of Open Access Journals (Sweden)

    Arthur Hebecker

    2015-05-01

    Full Text Available We continue the development of axion monodromy inflation, focusing in particular on the backreaction of complex structure moduli. In our setting, the shift symmetry comes from a partial large complex structure limit of the underlying type IIB orientifold or F-theory fourfold. The coefficient of the inflaton term in the superpotential has to be tuned small to avoid conflict with Kähler moduli stabilisation. To allow such a tuning, this coefficient necessarily depends on further complex structure moduli. At large values of the inflaton field, these moduli are then in danger of backreacting too strongly. To avoid this, further tunings are necessary. In weakly coupled type IIB theory at the orientifold point, implementing these tunings appears to be difficult if not impossible. However, fourfolds or models with mobile D7-branes provide enough structural freedom. We calculate the resulting inflaton potential and study the feasibility of the overall tuning given the limited freedom of the flux landscape. Our preliminary investigations suggest that, even imposing all tuning conditions, the remaining choice of flux vacua can still be large enough for such models to provide a promising path to large-field inflation in string theory.

  6. Self tuning fuzzy PID type load and frequency controller

    International Nuclear Information System (INIS)

    Yesil, E.; Guezelkaya, M.; Eksin, I.

    2004-01-01

    In this paper, a self tuning fuzzy PID type controller is proposed for solving the load frequency control (LFC) problem. The fuzzy PID type controller is constructed as a set of control rules, and the control signal is directly deduced from the knowledge base and the fuzzy inference. Moreover, there exists a self tuning mechanism that adjusts the input scaling factor corresponding to the derivative coefficient and the output scaling factor corresponding to the integral coefficient of the PID type fuzzy logic controller in an on-line manner. The self tuning mechanism depends on the peak observer idea, and this idea is modified and adapted to the LFC problem. A two area interconnected system is assumed for demonstrations. The proposed self tuning fuzzy PID type controller has been compared with the fuzzy PID type controller without a self tuning mechanism and the conventional integral controller through some performance indices

  7. Generating heavy particles with energy and momentum conservation

    Science.gov (United States)

    Mereš, Michal; Melo, Ivan; Tomášik, Boris; Balek, Vladimír; Černý, Vladimír

    2011-12-01

    We propose a novel algorithm, called REGGAE, for the generation of momenta of a given sample of particle masses, evenly distributed in Lorentz-invariant phase space and obeying energy and momentum conservation. In comparison to other existing algorithms, REGGAE is designed for the use in multiparticle production in hadronic and nuclear collisions where many hadrons are produced and a large part of the available energy is stored in the form of their masses. The algorithm uses a loop simulating multiple collisions which lead to production of configurations with reasonably large weights. Program summaryProgram title: REGGAE (REscattering-after-Genbod GenerAtor of Events) Catalogue identifier: AEJR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1523 No. of bytes in distributed program, including test data, etc.: 9608 Distribution format: tar.gz Programming language: C++ Computer: PC Pentium 4, though no particular tuning for this machine was performed. Operating system: Originally designed on Linux PC with g++, but it has been compiled and ran successfully on OS X with g++ and MS Windows with Microsoft Visual C++ 2008 Express Edition, as well. RAM: This depends on the number of particles which are generated. For 10 particles like in the attached example it requires about 120 kB. Classification: 11.2 Nature of problem: The task is to generate momenta of a sample of particles with given masses which obey energy and momentum conservation. Generated samples should be evenly distributed in the available Lorentz-invariant phase space. Solution method: In general, the algorithm works in two steps. First, all momenta are generated with the GENBOD algorithm. There, particle production is modeled as a sequence of two

  8. Use of carbon dioxide as a reaction medium in the thermo-chemical process for the enhanced generation of syngas and tuning adsorption ability of biochar

    International Nuclear Information System (INIS)

    Cho, Dong-Wan; Kwon, Eilhann E.; Song, Hocheol

    2016-01-01

    Highlights: • Utilizing CO_2 as a reaction medium in thermo-chemical conversion of aquatic biomass. • Enhanced generation of syngas in the presence of CO_2. • Considerable reduction of pyrolytic oil in CO_2-assisted pyrolysis. • Generation of biochar with high surface area and more porous structure by CO_2. - Abstract: This study mechanistically investigated the influences of CO_2 on syngas (H_2 and CO) production during thermo-chemical conversion of red seaweed, and further explored the possible utility of the produced biochar as a medium for adsorption of inorganic/organic contaminants in aqueous phase. In order to elucidate the key roles of CO_2 in the thermo-chemical process, the composition analysis of syngas and the qualitative analysis of pyrolytic oil were conducted and compared with those in pyrolysis in N_2 condition. Pyrolysis of red seaweed in the presence of CO_2 led to the enhanced generation of syngas at the entire experimental temperatures. For example, the ratio of CO to H_2 in the presence of CO_2 at 620 °C was enhanced by ∼400%, as compared to the case in N_2. This enhanced generation of syngas resulted in significant pyrolytic oil reduction by ∼70% at 620 °C via the unknown reactions between VOCs and CO_2. In addition, biochar generated in the CO_2 environment exhibited comparatively higher surface area (61 m"2 g"−"1) and more porous structure. The morphological modification induced by CO_2 provided the favorable condition for removal of methylene blue from the aqueous phase. Thus, this study experimentally demonstrated that exploiting CO_2 as a reaction medium would provide an attractive option for the enhanced generation of syngas and the tuned adsorption capability of biochar.

  9. A novel approach to finely tuned supersymmetric standard models: The case of the non-universal Higgs mass model

    Science.gov (United States)

    Yamaguchi, Masahiro; Yin, Wen

    2018-02-01

    Discarding the prejudice about fine tuning, we propose a novel and efficient approach to identify relevant regions of fundamental parameter space in supersymmetric models with some amount of fine tuning. The essential idea is the mapping of experimental constraints at a low-energy scale, rather than the parameter sets, to those of the fundamental parameter space. Applying this method to the non-universal Higgs mass model, we identify a new interesting superparticle mass pattern where some of the first two generation squarks are light whilst the stops are kept heavy as 6 TeV. Furthermore, as another application of this method, we show that the discrepancy of the muon anomalous magnetic dipole moment can be filled by a supersymmetric contribution within the 1{σ} level of the experimental and theoretical errors, which was overlooked by previous studies due to the extremely fine tuning required.

  10. a Signal-Tuned Gabor Transform with Application to Eeg Analysis

    Science.gov (United States)

    Torreão, José R. A.; Victer, Silvia M. C.; Fernandes, João L.

    2013-04-01

    We introduce a time-frequency transform based on Gabor functions whose parameters are given by the Fourier transform of the analyzed signal. At any given frequency, the width and the phase of the Gabor function are obtained, respectively, from the magnitude and the phase of the signal's corresponding Fourier component, yielding an analyzing kernel which is a representation of the signal's content at that particular frequency. The resulting Gabor transform tunes itself to the input signal, allowing the accurate detection of time and frequency events, even in situations where the traditional Gabor and S-transform approaches tend to fail. This is the case, for instance, when considering the time-frequency representation of electroencephalogram traces (EEG) of epileptic subjects, as illustrated by the experimental study presented here.

  11. Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach

    CERN Document Server

    Boiko, Igor

    2013-01-01

    The relay feedback test (RFT) has become a popular and efficient  tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text.   Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...

  12. Engineering the on-axis intensity of Bessel beam by a feedback tuning loop

    Science.gov (United States)

    Li, Runze; Yu, Xianghua; Yang, Yanlong; Peng, Tong; Yao, Baoli; Zhang, Chunmin; Ye, Tong

    2018-02-01

    The Bessel beam belongs to a typical class of non-diffractive optical fields that are characterized by their invariant focal profiles along the propagation direction. However, ideal Bessel beams only rigorously exist in theory; Bessel beams generated in the lab are quasi-Bessel beams with finite focal extensions and varying intensity profiles along the propagation axis. The ability to engineer the on-axis intensity profile to the desired shape is essential for many applications. Here we demonstrate an iterative optimization-based approach to engineering the on-axis intensity of Bessel beams. The genetic algorithm is used to demonstrate this approach. Starting with a traditional axicon phase mask, in the design process, the computed on-axis beam profile is fed into a feedback tuning loop of an iterative optimization process, which searches for an optimal radial phase distribution that can generate a generalized Bessel beam with the desired onaxis intensity profile. The experimental implementation involves a fine-tuning process that adjusts the originally targeted profile so that the optimization process can optimize the phase mask to yield an improved on-axis profile. Our proposed method has been demonstrated in engineering several zeroth-order Bessel beams with customized on-axis profiles. High accuracy and high energy throughput merit its use in many applications.

  13. Possible Improvements to MCNP6 and its CEM/LAQGSM Event-Generators

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-04

    This report is intended to the MCNP6 developers and sponsors of MCNP6. It presents a set of suggested possible future improvements to MCNP6 and to its CEM03.03 and LAQGSM03.03 event-generators. A few suggested modifications of MCNP6 are quite simple, aimed at avoiding possible problems with running MCNP6 on various computers, i.e., these changes are not expected to change or improve any results, but should make the use of MCNP6 easier; such changes are expected to require limited man-power resources. On the other hand, several other suggested improvements require a serious further development of nuclear reaction models, are expected to improve significantly the predictive power of MCNP6 for a number of nuclear reactions; but, such developments require several years of work by real experts on nuclear reactions.

  14. Comparison of the Efficiency of Tuned Mass and Tuned Liquid Dampers at High-Rise Structures under Near and Far Fault Earthquakes

    Directory of Open Access Journals (Sweden)

    Hamed Rahman Shokrgozar

    2017-02-01

    Full Text Available Tuned mass and tuned liquid dampers are most common passive control systems that used for decrease of seismic responses of buildings. In this study, the performance of high-rise buildings with TM and TL dampers are evaluated under seven near-fault and seven far-fault earthquakes. For this purpose, a twenty-four stories steel moment frame building has been considered and the time history dynamic analyses are performed for both of controlled and uncontrolled states. Moreover, this building has been also modelled with five various mass, stiffness and damping ratios.The results have been shown that decreasing the structural responses at tall buildings against near-fault earthquakes are more than far-fault earthquakes due to the effect of higher modes. Furthermore, the tuned mass damper has better performance at decreasing of the responses in comparison of tuned liquid dampers.

  15. Broad electrical tuning of plasmonic nanoantennas at visible frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thang B. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, North Carolina 27708 (United States); Mikkelsen, Maiken H., E-mail: m.mikkelsen@duke.edu [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, North Carolina 27708 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2016-05-02

    We report an experimental demonstration of electrical tuning of plasmon resonances of optical nanopatch antennas over a wide wavelength range. The antennas consist of silver nanocubes separated from a gold film by a thin 8 nm polyelectrolyte spacer layer. By using ionic liquid and indium tin oxide coated glass as a top electrode, we demonstrate dynamic and reversible tuning of the plasmon resonance over 100 nm in the visible wavelength range using low applied voltages between −3.0 V and 2.8 V. The electrical potential is applied across the nanoscale gap causing changes in the gap thickness and dielectric environment which, in turn, modifies the plasmon resonance. The observed tuning range is greater than the full-width-at-half-maximum of the plasmon resonance, resulting in a tuning figure of merit of 1.05 and a tuning contrast greater than 50%. Our results provide an avenue to create active and reconfigurable integrated nanophotonic components for applications in optoelectronics and sensing.

  16. Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning.

    Science.gov (United States)

    Michaels, Jonathan A; Dann, Benjamin; Scherberger, Hansjörg

    2016-11-01

    Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity.

  17. Chaotic Music Generation System Using Music Conductor Gesture

    OpenAIRE

    Chen, Shuai; Maeda, Yoichiro; Takahashi, Yasutake

    2013-01-01

    In the research of interactive music generation, we propose a music generation method, that the computer generates the music, under the recognition of human music conductor's gestures.In this research, the generated music is tuned by the recognized gestures for the parameters of the network of chaotic elements in real time. The music conductor's hand motions are detected by Microsoft Kinect in this system. Music theories are embedded in the algorithm, as a result, the generated music will be ...

  18. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom, Dean R.; /Indiana U.

    2009-04-01

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system, to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron.

  19. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    International Nuclear Information System (INIS)

    Edstrom, Dean R.

    2009-01-01

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system, to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron

  20. Application of Evolutionary Computation in Automotive Powertrain Mount Tuning

    Directory of Open Access Journals (Sweden)

    Anab Akanda

    2006-01-01

    Full Text Available Engine mount tuning is a multi-disciplinary exercise since it affects Idle-shake, Road-shake and power-train noise response. Engine inertia is often used as a tuned absorber for controlling suspension resonance related road-shake issues. Last but not least, vehicle ride and handling may also be affected by mount tuning. In this work, Torque-Roll-Axis (TRA decoupling of the rigid powertrain was used as a starting point for mount tuning. Nodal point of flexible powertrain bending was used to define the envelop for transmission mount locations. The frequency corresponding to the decoupled roll mode of the rigid powertrain was then adjusted for idle-shake and road-shake response management.

  1. Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.

    Science.gov (United States)

    Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon

    2017-01-01

    In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.

  2. Distributions of charged particles at 13 TeV with CMS

    CERN Document Server

    Grados Luyando, Juan Manuel

    2016-01-01

    the inelastic enhanced event sample that are either enhanced or depleted in single diffractive dissociation events. The measurements are compared to predictions from Monte Carlo event generators which were tuned to describe the underlying event properties at lower centre-of-mass energies.

  3. Fine-tuning and the stability of recurrent neural networks.

    Directory of Open Access Journals (Sweden)

    David MacNeil

    Full Text Available A central criticism of standard theoretical approaches to constructing stable, recurrent model networks is that the synaptic connection weights need to be finely-tuned. This criticism is severe because proposed rules for learning these weights have been shown to have various limitations to their biological plausibility. Hence it is unlikely that such rules are used to continuously fine-tune the network in vivo. We describe a learning rule that is able to tune synaptic weights in a biologically plausible manner. We demonstrate and test this rule in the context of the oculomotor integrator, showing that only known neural signals are needed to tune the weights. We demonstrate that the rule appropriately accounts for a wide variety of experimental results, and is robust under several kinds of perturbation. Furthermore, we show that the rule is able to achieve stability as good as or better than that provided by the linearly optimal weights often used in recurrent models of the integrator. Finally, we discuss how this rule can be generalized to tune a wide variety of recurrent attractor networks, such as those found in head direction and path integration systems, suggesting that it may be used to tune a wide variety of stable neural systems.

  4. On the fine-tuning problem in minimal SO(10) SUSY-GUT

    International Nuclear Information System (INIS)

    Hempfling, R.

    1994-05-01

    In grand unified theories (GUT) based on SO(10) all fermions of one generation are embedded in a single representation. As a result, the top quark, the bottom quark, and the τ lepton have the same Yukawa coupling at the GUT scale. This implies a very large ratio of Higgs vacuum expectation values, tanβ≅m t /m b . In this letter we show that GUT threshold correction to the universal Higgs mass parameter can solve the fine-tuning problem associated with such large values of tan β. (orig.)

  5. A Performance Tuning Methodology with Compiler Support

    Directory of Open Access Journals (Sweden)

    Oscar Hernandez

    2008-01-01

    Full Text Available We have developed an environment, based upon robust, existing, open source software, for tuning applications written using MPI, OpenMP or both. The goal of this effort, which integrates the OpenUH compiler and several popular performance tools, is to increase user productivity by providing an automated, scalable performance measurement and optimization system. In this paper we describe our environment, show how these complementary tools can work together, and illustrate the synergies possible by exploiting their individual strengths and combined interactions. We also present a methodology for performance tuning that is enabled by this environment. One of the benefits of using compiler technology in this context is that it can direct the performance measurements to capture events at different levels of granularity and help assess their importance, which we have shown to significantly reduce the measurement overheads. The compiler can also help when attempting to understand the performance results: it can supply information on how a code was translated and whether optimizations were applied. Our methodology combines two performance views of the application to find bottlenecks. The first is a high level view that focuses on OpenMP/MPI performance problems such as synchronization cost and load imbalances; the second is a low level view that focuses on hardware counter analysis with derived metrics that assess the efficiency of the code. Our experiments have shown that our approach can significantly reduce overheads for both profiling and tracing to acceptable levels and limit the number of times the application needs to be run with selected hardware counters. In this paper, we demonstrate the workings of this methodology by illustrating its use with selected NAS Parallel Benchmarks and a cloud resolving code.

  6. Improving Convergence of Iterative Feedback Tuning using Optimal External Perturbations

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Hjalmarsson, Håkon; Poulsen, Niels Kjølstad

    2008-01-01

    Iterative feedback tuning constitutes an attractive control loop tuning method for processes in the absence of sufficient process insight. It is a purely data driven approach to optimization of the loop performance. The standard formulation ensures an unbiased estimate of the loop performance cost...... function gradient, which is used in a search algorithm. A slow rate of convergence of the tuning method is often experienced when tuning for disturbance rejection. This is due to a poor signal to noise ratio in the process data. A method is proposed for increasing the information content in data...

  7. Evaluation of Controller Tuning Methods Applied to Distillation Column Control

    DEFF Research Database (Denmark)

    Nielsen, Kim; W. Andersen, Henrik; Kümmel, Professor Mogens

    A frequency domain approach is used to compare the nominal performance and robustness of dual composition distillation column control tuned according to Ziegler-Nichols (ZN) and Biggest Log Modulus Tuning (BLT) for three binary distillation columns, WOBE, LUVI and TOFA. The scope of this is to ex......A frequency domain approach is used to compare the nominal performance and robustness of dual composition distillation column control tuned according to Ziegler-Nichols (ZN) and Biggest Log Modulus Tuning (BLT) for three binary distillation columns, WOBE, LUVI and TOFA. The scope...

  8. Synchronous dual-wavelength pulse generation in coaxial pumping scheme and its application in terahertz difference frequency generation

    Science.gov (United States)

    Liu, Yang; Zhong, Kai; Mei, Jialin; Jin, Shuo; Ge, Meng; Xu, Degang; Yao, Jianquan

    2018-02-01

    A compact and flexible dual-wavelength laser with combined two laser crystals (a-cut and c-cut Nd:YLF) as the gain media under coaxially laser-diode (LD) end-pumping configuration was demonstrated and μW-level THz wave was generated based on difference frequency generation (DFG) in a GaSe crystal. The dynamics of coaxial pumping dualwavelength laser was theoretically investigated, showing that the power ratio and pulse interval for both wavelengths could be tuned by balancing the gains at both wavelengths via tuning pump focal position. Synchronized orthogonal 1047/1053 nm laser pulses were obtained and optimal power ratio was realized with the total output power of 2.92W at 5 kHz pumped by 10-W LD power. With an 8-mm-long GaSe crystal, 0.93 μW THz wave at 1.64 THz (182 μm) was generated. Such coaxially LD end-pumped lasers can be extended to various combinations of neodymium doped laser media to produce different THz wavelengths for costless and portable applications.

  9. Utilization of Short-Simulations for Tuning High-Resolution Climate Model

    Science.gov (United States)

    Lin, W.; Xie, S.; Ma, P. L.; Rasch, P. J.; Qian, Y.; Wan, H.; Ma, H. Y.; Klein, S. A.

    2016-12-01

    Many physical parameterizations in atmospheric models are sensitive to resolution. Tuning the models that involve a multitude of parameters at high resolution is computationally expensive, particularly when relying primarily on multi-year simulations. This work describes a complementary set of strategies for tuning high-resolution atmospheric models, using ensembles of short simulations to reduce the computational cost and elapsed time. Specifically, we utilize the hindcast approach developed through the DOE Cloud Associated Parameterization Testbed (CAPT) project for high-resolution model tuning, which is guided by a combination of short (tests have been found to be effective in numerous previous studies in identifying model biases due to parameterized fast physics, and we demonstrate that it is also useful for tuning. After the most egregious errors are addressed through an initial "rough" tuning phase, longer simulations are performed to "hone in" on model features that evolve over longer timescales. We explore these strategies to tune the DOE ACME (Accelerated Climate Modeling for Energy) model. For the ACME model at 0.25° resolution, it is confirmed that, given the same parameters, major biases in global mean statistics and many spatial features are consistent between Atmospheric Model Intercomparison Project (AMIP)-type simulations and CAPT-type hindcasts, with just a small number of short-term simulations for the latter over the corresponding season. The use of CAPT hindcasts to find parameter choice for the reduction of large model biases dramatically improves the turnaround time for the tuning at high resolution. Improvement seen in CAPT hindcasts generally translates to improved AMIP-type simulations. An iterative CAPT-AMIP tuning approach is therefore adopted during each major tuning cycle, with the former to survey the likely responses and narrow the parameter space, and the latter to verify the results in climate context along with assessment in

  10. A precision study of the fine tuning in the DiracNMSSM

    International Nuclear Information System (INIS)

    Kaminska, Anna; Ross, Graham G.; Staub, Florian; Bonn Univ.

    2014-01-01

    Recently the DiracNMSSM has been proposed as a possible solution to reduce the fine tuning in supersymmetry. We determine the degree of fine tuning needed in the DiracNMSSM with and without non-universal gaugino masses and compare it with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed parameter regions we perform a precise calculation of the Higgs mass. In addition, we include the limits from direct SUSY searches and dark matter abundance. We find that both models are comparable in terms of fine tuning, with the minimal fine tuning in the GNMSSM slightly smaller.

  11. Tune space manipulations in jumping depolarizing resonances

    International Nuclear Information System (INIS)

    Ratner, L.G.; Ahrens, L.A.

    1987-01-01

    In February 1986, the AGS polarized beam reached a momentum of 22 GeV/c with a 45% polarization and an intensity of 1 to 2 x 10 10 polarized protons per pulse at a repetition rate of 2.1 seconds. In order to achieve this, one had to overcome the effect of some 40 depolarizing resonances. In our first commissioning run in 1984, we had reached 16.5 GeV/c using, with suitable modifications, the conventional techniques first used at the Argonne ZGS. This worked well, but we found that the fast tune shifts required to cross the intrinsic depolarizing resonances were causing an increase in beam emittance which led to the need for stronger corrections later in the cycle and to diminished extraction efficiency. For the 1986 run, we were prepared to minimize this emittance growth by the application of slow quadrupole pulses to change the region in tune space in which we operated the first tune quads. In this paper we give a brief description of the conventional corrections, but our main emphasis is on the descriptions of tune space manipulations

  12. Material control study: a directed graph and fault tree procedure for adversary event set generation

    International Nuclear Information System (INIS)

    Lambert, H.E.; Lim, J.J.; Gilman, F.M.

    1978-01-01

    In work for the United States Nuclear Regulatory Commission, Lawrence Livermore Laboratory is developing an assessment procedure to evaluate the effectiveness of a potential nuclear facility licensee's material control (MC) system. The purpose of an MC system is to prevent the theft of special nuclear material such as plutonium and highly enriched uranium. The key in the assessment procedure is the generation and analysis of the adversary event sets by a directed graph and fault-tree methodology

  13. Pedigree analyses of yeast cells recovering from DNA damage allow assignment of lethal events to individual post-treatment generations

    International Nuclear Information System (INIS)

    Klein, F.; Karwan, A.; Wintersberger, U.

    1990-01-01

    Haploid cells of Saccharomyces cerevisiae were treated with different DNA damaging agents at various doses. A study of the progeny of individual such cells allowed the assignment of lethal events to distinct post treatment generations. By microscopically inspecting those cells which were not able to form visible colonies the authors could discriminate between cells dying from immediately effective lethal hits and those generating microcolonies probably as a consequence of lethal mutation(s). The experimentally obtained numbers of lethal events were mathematically transformed into mean probabilities of lethal fixations at taking place in cells of certain post treatment generations. Such analyses give detailed insight into the kinetics of lethality as a consequence of different kinds of DNA damage. For example, X-irradiated cells lost viability mainly by lethal hits, only at a higher dose also lethal mutations fixed in the cells that were in direct contact with the mutagen, but not in later generations, occurred. Ethyl methanesulfonate (EMS)-treated cells were hit by 00-fixations in a dose dependent manner. The distribution of all sorts of lethal fixations taken together, which occurred in the EMS-damaged cell families, was not random. For comparison analyses of cells treated with methyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine and nitrous acid are also reported

  14. A novel tuning approach for offset-free MPC

    DEFF Research Database (Denmark)

    Waschl, Harald; Jørgensen, John Bagterp; Huusom, Jakob Kjøbsted

    2015-01-01

    , if a nominal plant and overall objective are known, the tuning can become straightforward. However, as soon as disturbances have to be taken into account, the tuning effort increases and becomes less intuitive. Against this background, a novel strategy to address the issues with unknown disturbances...

  15. Accurate automatic tuning circuit for bipolar integrated filters

    NARCIS (Netherlands)

    de Heij, Wim J.A.; de Heij, W.J.A.; Hoen, Klaas; Hoen, Klaas; Seevinck, Evert; Seevinck, E.

    1990-01-01

    An accurate automatic tuning circuit for tuning the cutoff frequency and Q-factor of high-frequency bipolar filters is presented. The circuit is based on a voltage controlled quadrature oscillator (VCO). The frequency and the RMS (root mean square) amplitude of the oscillator output signal are

  16. Automatic Tuning of Control Parameters for Single Speed Engines

    OpenAIRE

    Olsson, Johan

    2004-01-01

    In Scania’s single speed engines for industrial and marine use, the engine speed is controlled by a PI-controller. This controller is tuned independent of engine type and application. This brings certain disadvantages since the engines are used in a wide range of applications where the dynamics may differ. In this thesis, the possibility to tune the controller automatically for a specific engine installation has been investigated. The work shows that automatic tuning is possible. By performin...

  17. Monte Carlo Generators for the Production of a $W$ or $Z/\\gamma^*$ Boson in Association with Jets at ATLAS in Run 2

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    This note documents the Monte Carlo generators used by the ATLAS collaboration at the start of Run 2 for processes where a $W$ or $Z/\\gamma^*$ boson is produced in association with jets. The available event generators are briefly described and comparisons are made with ATLAS measurements of $W$ or $Z/\\gamma^*$+jets performed with Run 1 data, collected at the centre-of-mass energy of 7 TeV. The model predictions are then compared at the Run 2 centre-of-mass energy of 13~TeV. A comparison is also made with an early Run 2 ATLAS $Z/\\gamma^*$+jets data measurement. Investigations into tuning the parameters of the models and evaluating systematic uncertainties on the Monte Carlo predictions are also presented.

  18. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran

    2017-08-17

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset for event detection. The input features used include the average of absolute amplitudes, variance, energy-ratio and polarization rectilinearity. These features are calculated in a moving-window of same length for the entire waveform. The output is set as a user-specified relative probability curve, which provides a robust way of distinguishing between weak and strong events. An optimal network is selected by studying the weight-based saliency and effect of number of neurons on the predicted results. Using synthetic data examples, we demonstrate that this approach is effective in detecting weaker events and reduces the number of false positives.

  19. Numerical Investigation of a Tuned Heave Plate Energy-Harvesting System of a Semi-Submersible Platform

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2016-01-01

    Full Text Available A novel tuned heave plate energy-harvesting system (THPEH is presented for the motion suppressing and energy harvesting of a semi-submersible platform. This THPEH system is designed based on the principle of a tuned mass damper (TMD and is composed of spring supports, a power take-off system (PTO and four movable heave plates. The permanent magnet linear generators (PMLG are used as the PTO system in this design. A semi-submersible platform operating in the South China Sea is selected as the research subject for investigating the effects of the THPEH system on motion reduction and harvesting energy through numerical simulations. The numerical model of the platform and the THPEH system, which was established based on hydrodynamic analysis, is modified and validated by the results of the flume test of a 1:70 scale model. The effects of the parameters, including the size, the frequency ratio and the damping ratio of the THPEH system, are systematically investigated. The results show that this THPEH system, with proper parameters, could significantly reduce the motions of the semi-submersible platform and generate considerable power under different wave conditions.

  20. Performance-based parameter tuning method of model-driven PID control systems.

    Science.gov (United States)

    Zhao, Y M; Xie, W F; Tu, X W

    2012-05-01

    In this paper, performance-based parameter tuning method of model-driven Two-Degree-of-Freedom PID (MD TDOF PID) control system has been proposed to enhance the control performances of a process. Known for its ability of stabilizing the unstable processes, fast tracking to the change of set points and rejecting disturbance, the MD TDOF PID has gained research interest recently. The tuning methods for the reported MD TDOF PID are based on internal model control (IMC) method instead of optimizing the performance indices. In this paper, an Integral of Time Absolute Error (ITAE) zero-position-error optimal tuning and noise effect minimizing method is proposed for tuning two parameters in MD TDOF PID control system to achieve the desired regulating and disturbance rejection performance. The comparison with Two-Degree-of-Freedom control scheme by modified smith predictor (TDOF CS MSP) and the designed MD TDOF PID tuned by the IMC tuning method demonstrates the effectiveness of the proposed tuning method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Tune measurements with high intensity ion beams at GSI SIS-18

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul [GSI, Darmstadt (Germany); TEMF, TU Darmstadt (Germany); Forck, Peter; Kowina, Piotr; Kaufmann, Wolfgang [GSI, Darmstadt (Germany); Weiland, Thomas [TEMF, TU Darmstadt (Germany)

    2012-07-01

    A precise tune measurement during a full accelerating cycle is required to achieve stable high current operation. A new system has been commissioned at GSI for position, orbit and tune measurements. It consists of three distinct parts; an exciter which provides power to excite coherent betatron oscillations in the bunched beam; Fast ADCs to digitize the BPM signals at 125 MSa/s; the post processing electronics uses digitized BPM signals to acquire one position value per bunch. Subsequently the baseband tune is determined by Fourier transformation of the position data. Experiments were conducted to understand the effects of high beam intensity on tune at injection plateau (11.4 MeV/u) and during acceleration ramp (11.4-600 MeV/u). These experiments were performed with U{sup 73+} and Ar{sup 18+} ion beam at highest achievable intensities of 2.10{sup 9} and 2.5.10{sup 10} respectively. Tune shift with increased intensity was observed. The working principle of the tune measurement system and observed high intensity effects on tune will be reported in this contribution.

  2. Self-Tuning Speed Regulator for CVC Induction Motor Drive

    DEFF Research Database (Denmark)

    Bidstrup, N.; Rasmussen, Henrik; Knudsen, Torben

    1994-01-01

    A self-tuning speed regulator for a current vector controlled induction motor drive has been designed.......A self-tuning speed regulator for a current vector controlled induction motor drive has been designed....

  3. Tune modulation due to synchrotron oscillations and chromaticity, and the dynamic aperture

    International Nuclear Information System (INIS)

    Parzen, G.

    1995-01-01

    A tracking study was done of the effects of a tune modulations, due to synchrotron oscillations and the tune dependence on momentum (chromaticity), on the dynamic aperture. The studies were done using several RHIC lattices and tracking runs of about 1 x 10 6 turns. The dynamic aperture was found to decrease roughly linearly with the amplitude of the tune modulation. Lower order non-linear resonances, like the 1/3 and 1/4 resonance are not crossed because of the tune modulation. Three different cases were studied, corresponding to RHIC lattices with different β*, and with different synchrotron oscillation amplitudes. In each case, the tune modulation amplitude was varied by changing the chromaticity. In each case, roughly the same result, was found. The result found here for the effect of a tune modulation due to chromaticity may be compared with the result found for the effect of a tune modulation due to a gradient ripple in the quadrupoles. The effect of a tune modulation due to a gradient ripple appears to be about 4 times stronger than the effect of a tune modulation due to chromaticity and synchrotron oscillations

  4. Driving the Power of AIX Performance Tuning on IBM Power

    CERN Document Server

    Milberg, Ken

    2009-01-01

    A concise reference for IT professionals, this book goes beyond the rules and contains the best practices and strategies for solid tuning methodology. Tips based on years of experience from an AIX tuning master show specific steps for monitoring and tuning CPU, virtual memory, disk I/O, and network components. Also offering techniques for tuning Oracle and Linux structures that run on an IBM power system-as well as for the new AIX 6.1-this manual discusses what tools are available, how to best use them to collect historical data, and when to analyze trends and results. The only comprehensive,

  5. Historic Learning Approach for Auto-tuning OpenACC Accelerated Scientific Applications

    KAUST Repository

    Siddiqui, Shahzeb

    2015-04-17

    The performance optimization of scientific applications usually requires an in-depth knowledge of the hardware and software. A performance tuning mechanism is suggested to automatically tune OpenACC parameters to adapt to the execution environment on a given system. A historic learning based methodology is suggested to prune the parameter search space for a more efficient auto-tuning process. This approach is applied to tune the OpenACC gang and vector clauses for a better mapping of the compute kernels onto the underlying architecture. Our experiments show a significant performance improvement against the default compiler parameters and drastic reduction in tuning time compared to a brute force search-based approach.

  6. Face perception is tuned to horizontal orientation in the N170 time window.

    Science.gov (United States)

    Jacques, Corentin; Schiltz, Christine; Goffaux, Valerie

    2014-02-07

    The specificity of face perception is thought to reside both in its dramatic vulnerability to picture-plane inversion and its strong reliance on horizontally oriented image content. Here we asked when in the visual processing stream face-specific perception is tuned to horizontal information. We measured the behavioral performance and scalp event-related potentials (ERP) when participants viewed upright and inverted images of faces and cars (and natural scenes) that were phase-randomized in a narrow orientation band centered either on vertical or horizontal orientation. For faces, the magnitude of the inversion effect (IE) on behavioral discrimination performance was significantly reduced for horizontally randomized compared to vertically or nonrandomized images, confirming the importance of horizontal information for the recruitment of face-specific processing. Inversion affected the processing of nonrandomized and vertically randomized faces early, in the N170 time window. In contrast, the magnitude of the N170 IE was much smaller for horizontally randomized faces. The present research indicates that the early face-specific neural representations are preferentially tuned to horizontal information and offers new perspectives for a description of the visual information feeding face-specific perception.

  7. [Laser Tuning Performance Testing and Optimization in TDLAS Oxygen Measuring Systems].

    Science.gov (United States)

    He, Jun-feng; Hu, Jun; Kan, Rui-feng; Xu, Zhen-yu; Wang, Tao

    2015-03-01

    TDLAS (tunable diode laser absorption spectroscopy) technology, with its unmatched advantages such as high selectivity molecular spectra, fast response, high sensitivity, non-contact measuring, become the preferred scheme for combustion process diagnosis, and can be effectively used for oxygen measuring. DFB (distributed feedback) laser diode with its small size, low power consumption, long service life, narrow linewidth, tunable wavelength has become the main choice of the TDLAS system. Performance of laser tuning characteristics is a key factor restricting TDLAS's measuring performance. According to TDLAS oxygen measuring system's working requirements, a simple experimental method was used to test and analyze tuning characteristics such as wavelength current, power current and wavelength temperature of a 764 nm DFB laser diode in the system. Nonlinear distortion of tuning curves was obvious, which affects oxygen measuring accuracy. The laser spectra's characteristics such as narrow linewidth, high side mode suppression ratio and wide wavelength tuning range are obvious, while its wavelength-current tuning curve with a tuning rate of about 0.023 nm x mA(-1) is not strictly linear. The higher the temperature the greater the threshold current, the PI curve is not strictly linear either. Temperature tuning curve is of good linearity, temperature-wave-length tuning rate keeps constant of about 0.056 nm/DEG C. Temperature tuning nonlinearity can be improved by high temperature control accuracy, and current power nonlinearity can be improved by setting the reference light path. In order to solve the wavelength current tuning nonlinear problems, the method of DA controlling injection current was considered to compensate for non-linear wavelength current tuning according to DFB laser diode tuning mechanism and polynomial fitting of test results. In view of different type of lasers, this method needs only one polynomial fitting process before the system's initial work. The

  8. Double-tuned radiofrequency coil for (19)F and (1)H imaging.

    Science.gov (United States)

    Otake, Yosuke; Soutome, Yoshihisa; Hirata, Koji; Ochi, Hisaaki; Bito, Yoshitaka

    2014-01-01

    We developed a double-tuned radiofrequency (RF) coil using a novel circuit method to double tune for fluorine-19 (19F) and 1H magnetic resonance imaging, whose frequencies are very close to each other. The RF coil consists of 3 parallel-connected series inductor capacitor circuits. A computer simulation for our double-tuned RF coil with a phantom demonstrated that the coil has tuned resonant frequency and high sensitivity for both 19F and 1H. Drug distribution was visualized at 7 tesla using this RF coil and a rat administered perfluoro 15-crown-5-ether emulsion. The double-tune RF coil we developed may be a powerful tool for 19F and 1H imaging.

  9. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  10. Estimation of the isothermal compressibility from event-by-event multiplicity fluctuation studies

    Directory of Open Access Journals (Sweden)

    Mukherjee Maitreyee

    2018-01-01

    Full Text Available The first estimation of the isothermal compressibility (kT of matter is presented for a wide range of collision energies from √sNN = 7.7 GeV to 2.76 TeV. kT is estimated with the help of event-byevent charged particle multiplicity fluctuations from experiment. Dynamical fluctuations are extracted by removing the statistical fluctuations obtained from the participant model. kT is also estimated from event generators AMPT, UrQMD, EPOS and a hadron resonance gas model. The values of isothermal compressibility are estimated for the Large Hadron Collider (LHC energies with the help of the event generators.

  11. High-Q perpendicular-biased ferrite-tuned cavity

    International Nuclear Information System (INIS)

    Carlini, R.D.; Thiessen, H.A.; Potter, J.M.

    1983-01-01

    Rapid-cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Modest power tests of a small (10-cm-dia) quarter-wave singly re-entrant cavity tuned by nickel-zinc ferrites and aluminum-doped garnets indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity at power levels from 2 to 200 watts

  12. Tune measurement in the NSLS booster synchrotron

    International Nuclear Information System (INIS)

    Blum, E.B.; Nawrocky, R.

    1993-01-01

    The NSLS booster synchrotron can accelerate an electron beam from approximately 80 to 750 MeV in 0.7 sec. The betatron tunes can change during acceleration by as much as 0.1 units, causing beam loss as they cross resonance lines. Precise measurements with a conventional swept spectrum analyzer have always been difficult because of the rapid variation of tune as the magnets are ramped. We are now using a system based on a Tektronix 3052 digital spectrum analyzer that can obtain a complete frequency spectrum over a 10 MHz bandwidth in 200 μsec. Betatron oscillations are stimulated for the measurements by applying white noise to the beam through stripline electrodes. We will describe the instrumentation, our measurements of tune as a function time during the acceleration cycle, and the resulting improvements to the booster operation

  13. Application of digital beam position processor Libera on tune measurement

    International Nuclear Information System (INIS)

    Zhang Chunhui; Sun Baogen; Cao Yong; Lu Ping; Li Jihao

    2006-01-01

    Digital signal processing (DSP) is widely used in the field of beam diagnostics. Especially, DSP achieves very good performance in beam position signal analysis and betatron tune measurement. In Hefei light source, when beam was excited by narrow-band Gaussian white nose, Libera, a digital beam position processor, was used to process the signals from beam position monitor (BPM), which contained betatron oscillation. Fast Fourier transform (FFT) was applied to finding out betatron resonance frequency, from which the decimal part of betatron oscillation tune was calculated. By this means, the measure of horizontal tune was 3.5352 and the measure of vertical tune is 2.6299. (authors)

  14. Control rod drive WWER 1000 – tuning of input parameters

    Directory of Open Access Journals (Sweden)

    Markov P.

    2007-10-01

    Full Text Available The article picks up on the contributions presented at the conferences Computational Mechanics 2005 and 2006, in which a calculational model of an upgraded control rod linear stepping drive for the reactors WWER 1000 (LKP-M/3 was described and results of analysis of dynamical response of its individual parts when moving up- and downwards were included. The contribution deals with the tuning of input parameters of the 3rd generation drive with the objective of reaching its running as smooth as possible so as to get a minimum wear of its parts as a result and hence to achieve maximum life-time.

  15. Minimization of spin tune spread by matching dispersion prime at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kewisch, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-31

    At RHIC, the spin polarization is preserved with a pair of Siberian snakes on the oppo- site sides in each ring. The polarized proton beam with finite spin tune spread might cross spin resonances multiple times in two cases, one is when beam going through strong spin intrinsic resonances during acceleration, the other is when sweeping spin flipper’ frequency across the spin tune to flip the direction of spin polarization. The consequence is loss of spin polarization in both cases. Therefore, a scheme of min- imizing the spin tune spread by matching the dispersion primes at the two snakes was introduced based on the fact that the spin tune spread is proportional to the difference of dispersion primes at the two snakes. The scheme was implemented at fixed energies for the spin flipper study and during beam acceleration for better spin polarization transmission efficiency. The effect of minimizing the spin tune spread by matching the dispersion primes was observed and confirmed experimentally. The principle of minimizing the spin tune spread by matching the dispersion primes, the impact on the beam optics, and the effect of a narrower spin tune spread are presented in this report.

  16. Tuning HDF5 subfiling performance on parallel file systems

    Energy Technology Data Exchange (ETDEWEB)

    Byna, Suren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chaarawi, Mohamad [Intel Corp. (United States); Koziol, Quincey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mainzer, John [The HDF Group (United States); Willmore, Frank [The HDF Group (United States)

    2017-05-12

    Subfiling is a technique used on parallel file systems to reduce locking and contention issues when multiple compute nodes interact with the same storage target node. Subfiling provides a compromise between the single shared file approach that instigates the lock contention problems on parallel file systems and having one file per process, which results in generating a massive and unmanageable number of files. In this paper, we evaluate and tune the performance of recently implemented subfiling feature in HDF5. In specific, we explain the implementation strategy of subfiling feature in HDF5, provide examples of using the feature, and evaluate and tune parallel I/O performance of this feature with parallel file systems of the Cray XC40 system at NERSC (Cori) that include a burst buffer storage and a Lustre disk-based storage. We also evaluate I/O performance on the Cray XC30 system, Edison, at NERSC. Our results show performance benefits of 1.2X to 6X performance advantage with subfiling compared to writing a single shared HDF5 file. We present our exploration of configurations, such as the number of subfiles and the number of Lustre storage targets to storing files, as optimization parameters to obtain superior I/O performance. Based on this exploration, we discuss recommendations for achieving good I/O performance as well as limitations with using the subfiling feature.

  17. Atomic resolution ultrafast scanning tunneling microscope with scan rate breaking the resonant frequency of a quartz tuning fork resonator.

    Science.gov (United States)

    Li, Quanfeng; Lu, Qingyou

    2011-05-01

    We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).

  18. Tuning the Electron Gas at an Oxide Heterointerface via Free Surface Charges

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christopher

    2011-08-11

    Oxide heterointerfaces are emerging as one of the most exciting materials systems in condensed matter science. One remarkable example is the LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) interface, a model system in which a highly mobile electron gas forms between two band insulators, exhibiting two dimensional superconductivity and unusual magnetotransport properties. An ideal tool to tune such an electron gas is the electrostatic field effect. In principle, the electrostatic field can be generated by bound charges due to polarization (as in the normal and ferroelectric field effects) or by adding excess free charge. In previous studies, a large modulation of the carrier density and mobility of the LAO/STO interface has been achieved using the normal field effect. However, little attention has been paid to the field effect generated by free charges. This issue is scarcely addressed, even in conventional semiconductor devices, since the free charges are typically not stable. Here, we demonstrate an unambiguous tuning of the LAO/STO interface conductivity via free surface charges written using conducting atomic force microscopy (AFM). The modulation of the carrier density was found to be reversible, nonvolatile and surprisingly large, {approx}3 x 10{sup 13} cm{sup -2}, comparable to the maximum modulation by the normal field effect. Our finding reveal the efficiency of free charges in controlling the conductivity of this oxide interface, and suggest that this technique may be extended more generally to other oxide systems.

  19. Automating methods to improve precision in Monte-Carlo event generation for particle colliders

    International Nuclear Information System (INIS)

    Gleisberg, Tanju

    2008-01-01

    The subject of this thesis was the development of tools for the automated calculation of exact matrix elements, which are a key for the systematic improvement of precision and confidence for theoretical predictions. Part I of this thesis concentrates on the calculations of cross sections at tree level. A number of extensions have been implemented in the matrix element generator AMEGIC++, namely new interaction models such as effective loop-induced couplings of the Higgs boson with massless gauge bosons, required for a number of channels for the Higgs boson search at LHC and anomalous gauge couplings, parameterizing a number of models beyond th SM. Further a special treatment to deal with complicated decay chains of heavy particles has been constructed. A significant effort went into the implementation of methods to push the limits on particle multiplicities. Two recursive methods have been implemented, the Cachazo-Svrcek-Witten recursion and the colour dressed Berends-Giele recursion. For the latter the new module COMIX has been added to the SHERPA framework. The Monte-Carlo phase space integration techniques have been completely revised, which led to significantly reduced statistical error estimates when calculating cross sections and a greatly improved unweighting efficiency for the event generation. Special integration methods have been developed to cope with the newly accessible final states. The event generation framework SHERPA directly benefits from those new developments, improving the precision and the efficiency. Part II was addressed to the automation of QCD calculations at next-to-leading order. A code has been developed, that, for the first time fully automates the real correction part of a NLO calculation. To calculate the correction for a m-parton process obeying the Catani-Seymour dipole subtraction method the following components are provided: 1. the corresponding m+1-parton tree level matrix elements, 2. a number dipole subtraction terms to remove

  20. Automating methods to improve precision in Monte-Carlo event generation for particle colliders

    Energy Technology Data Exchange (ETDEWEB)

    Gleisberg, Tanju

    2008-07-01

    The subject of this thesis was the development of tools for the automated calculation of exact matrix elements, which are a key for the systematic improvement of precision and confidence for theoretical predictions. Part I of this thesis concentrates on the calculations of cross sections at tree level. A number of extensions have been implemented in the matrix element generator AMEGIC++, namely new interaction models such as effective loop-induced couplings of the Higgs boson with massless gauge bosons, required for a number of channels for the Higgs boson search at LHC and anomalous gauge couplings, parameterizing a number of models beyond th SM. Further a special treatment to deal with complicated decay chains of heavy particles has been constructed. A significant effort went into the implementation of methods to push the limits on particle multiplicities. Two recursive methods have been implemented, the Cachazo-Svrcek-Witten recursion and the colour dressed Berends-Giele recursion. For the latter the new module COMIX has been added to the SHERPA framework. The Monte-Carlo phase space integration techniques have been completely revised, which led to significantly reduced statistical error estimates when calculating cross sections and a greatly improved unweighting efficiency for the event generation. Special integration methods have been developed to cope with the newly accessible final states. The event generation framework SHERPA directly benefits from those new developments, improving the precision and the efficiency. Part II was addressed to the automation of QCD calculations at next-to-leading order. A code has been developed, that, for the first time fully automates the real correction part of a NLO calculation. To calculate the correction for a m-parton process obeying the Catani-Seymour dipole subtraction method the following components are provided: 1. the corresponding m+1-parton tree level matrix elements, 2. a number dipole subtraction terms to remove

  1. Collective Mind: Towards Practical and Collaborative Auto-Tuning

    Directory of Open Access Journals (Sweden)

    Grigori Fursin

    2014-01-01

    Full Text Available Empirical auto-tuning and machine learning techniques have been showing high potential to improve execution time, power consumption, code size, reliability and other important metrics of various applications for more than two decades. However, they are still far from widespread production use due to lack of native support for auto-tuning in an ever changing and complex software and hardware stack, large and multi-dimensional optimization spaces, excessively long exploration times, and lack of unified mechanisms for preserving and sharing of optimization knowledge and research material. We present a possible collaborative approach to solve above problems using Collective Mind knowledge management system. In contrast with previous cTuning framework, this modular infrastructure allows to preserve and share through the Internet the whole auto-tuning setups with all related artifacts and their software and hardware dependencies besides just performance data. It also allows to gradually structure, systematize and describe all available research material including tools, benchmarks, data sets, search strategies and machine learning models. Researchers can take advantage of shared components and data with extensible meta-description to quickly and collaboratively validate and improve existing auto-tuning and benchmarking techniques or prototype new ones. The community can now gradually learn and improve complex behavior of all existing computer systems while exposing behavior anomalies or model mispredictions to an interdisciplinary community in a reproducible way for further analysis. We present several practical, collaborative and model-driven auto-tuning scenarios. We also decided to release all material at c-mind.org/repo to set up an example for a collaborative and reproducible research as well as our new publication model in computer engineering where experimental results are continuously shared and validated by the community.

  2. A hadron-nucleus collision event generator for simulations at intermediate energies

    CERN Document Server

    Ackerstaff, K; Bollmann, R

    2002-01-01

    Several available codes for hadronic event generation and shower simulation are discussed and their predictions are compared to experimental data in order to obtain a satisfactory description of hadronic processes in Monte Carlo studies of detector systems for medium energy experiments. The most reasonable description is found for the intra-nuclear-cascade (INC) model of Bertini which employs microscopic description of the INC, taking into account elastic and inelastic pion-nucleon and nucleon-nucleon scattering. The isobar model of Sternheimer and Lindenbaum is used to simulate the inelastic elementary collisions inside the nucleus via formation and decay of the DELTA sub 3 sub 3 -resonance which, however, limits the model at higher energies. To overcome this limitation, the INC model has been extended by using the resonance model of the HADRIN code, considering all resonances in elementary collisions contributing more than 2% to the total cross-section up to kinetic energies of 5 GeV. In addition, angular d...

  3. Tuning and predicting the wetting of nanoengineered material surface

    Science.gov (United States)

    Ramiasa-MacGregor, M.; Mierczynska, A.; Sedev, R.; Vasilev, K.

    2016-02-01

    The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability.The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the

  4. Tuning Properties in Silver Clusters

    KAUST Repository

    Joshi, Chakra Prasad

    2015-07-09

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements.

  5. Computation of undulator tuning curves

    International Nuclear Information System (INIS)

    Dejus, Roger J.

    1997-01-01

    Computer codes for fast computation of on-axis brilliance tuning curves and flux tuning curves have been developed. They are valid for an ideal device (regular planar device or a helical device) using the Bessel function formalism. The effects of the particle beam emittance and the beam energy spread on the spectrum are taken into account. The applicability of the codes and the importance of magnetic field errors of real insertion devices are addressed. The validity of the codes has been experimentally verified at the APS and observed discrepancies are in agreement with predicted reduction of intensities due to magnetic field errors. The codes are distributed as part of the graphical user interface XOP (X-ray OPtics utilities), which simplifies execution and viewing of the results

  6. Tuning Properties in Silver Clusters

    KAUST Repository

    Joshi, Chakra Prasad; Bootharaju, Megalamane Siddaramappa; Bakr, Osman

    2015-01-01

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements.

  7. Human face processing is tuned to sexual age preferences

    DEFF Research Database (Denmark)

    Ponseti, J; Granert, O; van Eimeren, T

    2014-01-01

    Human faces can motivate nurturing behaviour or sexual behaviour when adults see a child or an adult face, respectively. This suggests that face processing is tuned to detecting age cues of sexual maturity to stimulate the appropriate reproductive behaviour: either caretaking or mating....... In paedophilia, sexual attraction is directed to sexually immature children. Therefore, we hypothesized that brain networks that normally are tuned to mature faces of the preferred gender show an abnormal tuning to sexual immature faces in paedophilia. Here, we use functional magnetic resonance imaging (f......MRI) to test directly for the existence of a network which is tuned to face cues of sexual maturity. During fMRI, participants sexually attracted to either adults or children were exposed to various face images. In individuals attracted to adults, adult faces activated several brain regions significantly more...

  8. Lamb wave tuning curve calibration for surface-bonded piezoelectric transducers

    International Nuclear Information System (INIS)

    Sohn, Hoon; Lee, Sang Jun

    2010-01-01

    Surface-bonded lead zirconate titanate (PZT) transducers have been widely used for guided wave generation and measurement. For selective actuation and sensing of Lamb wave modes, the sizes of the transducers and the driving frequency of the input waveform should be tuned. For this purpose, a theoretical Lamb wave tuning curve (LWTC) of a specific transducer size is generally obtained. Here, the LWTC plots each Lamb wave mode' amplitude as a function of the driving frequency. However, a discrepancy between experimental and existing theoretical LWTCs has been observed due to little consideration of the bonding layer and the energy distribution between Lamb wave modes. In this study, calibration techniques for theoretical LWTCs are proposed. First, a theoretical LWTC is developed when circular PZT transducers are used for both Lamb wave excitation and sensing. Then, the LWTC is calibrated by estimating the effective PZT size with PZT admittance measurement. Finally, the energy distributions among symmetric and antisymmetric modes are taken into account for better prediction of the relative amplitudes between Lamb wave modes. The effectiveness of the proposed calibration techniques is examined through numerical simulations and experimental estimation of the LWTC using the circular PZT transducers instrumented on an aluminum plate

  9. Towards automatic parameter tuning of stream processing systems

    KAUST Repository

    Bilal, Muhammad

    2017-09-27

    Optimizing the performance of big-data streaming applications has become a daunting and time-consuming task: parameters may be tuned from a space of hundreds or even thousands of possible configurations. In this paper, we present a framework for automating parameter tuning for stream-processing systems. Our framework supports standard black-box optimization algorithms as well as a novel gray-box optimization algorithm. We demonstrate the multiple benefits of automated parameter tuning in optimizing three benchmark applications in Apache Storm. Our results show that a hill-climbing algorithm that uses a new heuristic sampling approach based on Latin Hypercube provides the best results. Our gray-box algorithm provides comparable results while being two to five times faster.

  10. Exploring the iPhone Backup made by iTunes

    Directory of Open Access Journals (Sweden)

    Mario Piccinelli

    2011-09-01

    Full Text Available The iPhone mobile from Apple Inc. is one of the most notable phones on the market thanks to its simple and user-friendly interface and ever growing pool of available high quality applications for both personal and business use. The increasing use of iPhone mobiles leads forensics practitioners towards the need for tools to access and analyze the information stored in the device. This research aims at describing how to forensically analyze a logical backup of an iPhone made by the Apple iTunes utility, understanding its structure and creating a simple tool to automate the process of decoding and analyzing the data. It was found that significant data of forensic value such as e-mail messages, text and multimedia messages, calendar events, browsing history, GPRS locations, contacts, call history and voicemail recordings can be retrieved using this method of iPhone acquisition.

  11. Tuning the DARHT Axis-II linear induction accelerator focusing

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. [Los Alamos National Laboratory

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an

  12. Heavy vehicle pitch dynamics and suspension tuning

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2008-01-01

    The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heav...

  13. Implementation through Innovation: A Literature-Based Analysis of the Tuning Project

    Science.gov (United States)

    Pálvölgyi, Krisztián

    2017-01-01

    Tuning Educational Structures in Europe is perhaps the most important higher education innovation platform nowadays. The main objective of the Tuning Project is to develop a tangible approach to implement the action lines of the Bologna Process; thus, implementation and innovation are closely linked in Tuning. However, during its development,…

  14. Realtime tune measurements in slow-cycling accelerators

    International Nuclear Information System (INIS)

    Herrup, D.

    1997-01-01

    Measurement and control of the tunes, coupling, and chromaticities in storage rings is essential to efficient operation of these accelerators. Yet it has been very difficult to make reliable realtime measurements of these quantities. We have built and commissioned the microprocessor-based Generic Finite State Data Acquisition (GFSDA) system. GFSDA provides turn-by-turn data acquisition and analysis of accelerator signals in a way that can be easily related to accelerator operations. The microprocessor is capable of calculating FFTs and correlations in real time. Both the Fermilab Main Ring and Tevatron use open loop tune, chromaticity, and coupling control, and the GFSDA measurements can easily be used to improve the open loop tables. We can add realtime feedback control with simple extensions of the system. We have used this system to make tune measurements closely spaced in time over an entire Tevatron ramp cycle

  15. Discrete PID Tuning Using Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Petr DOLEŽEL

    2009-06-01

    Full Text Available PID controllers are widely used in industry these days due to their useful properties such as simple tuning or robustness. While they are applicable to many control problems, they can perform poorly in some applications. Highly nonlinear system control with constrained manipulated variable can be mentioned as an example. The point of the paper is to string together convenient qualities of conventional PID control and progressive techniques based on Artificial Intelligence. Proposed control method should deal with even highly nonlinear systems. To be more specific, there is described new method of discrete PID controller tuning in this paper. This method tunes discrete PID controller parameters online through the use of genetic algorithm and neural model of controlled system in order to control successfully even highly nonlinear systems. After method description and some discussion, there is performed control simulation and comparison to one chosen conventional control method.

  16. Proportional–Integral–Derivative (PID Controller Tuning using Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    J. S. Bassi

    2012-08-01

    Full Text Available The proportional-integral-derivative (PID controllers are the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. However, manual tuning of these controllers is time consuming, tedious and generally lead to poor performance. This tuning which is application specific also deteriorates with time as a result of plant parameter changes. This paper presents an artificial intelligence (AI method of particle swarm optimization (PSO algorithm for tuning the optimal proportional-integral derivative (PID controller parameters for industrial processes. This approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency over the conventional methods. Ziegler- Nichols, tuning method was applied in the PID tuning and results were compared with the PSO-Based PID for optimum control. Simulation results are presented to show that the PSO-Based optimized PID controller is capable of providing an improved closed-loop performance over the Ziegler- Nichols tuned PID controller Parameters. Compared to the heuristic PID tuning method of Ziegler-Nichols, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of DC motor.

  17. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.

    Science.gov (United States)

    Guttikonda, Satish K; Marri, Pradeep; Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P

    2016-01-01

    Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.

  18. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.

    Directory of Open Access Journals (Sweden)

    Satish K Guttikonda

    Full Text Available Demand for the commercial use of genetically modified (GM crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.

  19. New design concepts for ferrite-tuned low-energy-booster cavities

    International Nuclear Information System (INIS)

    Schaffer, G.

    1991-05-01

    The design concepts for ferrite-tuned accelerating cavities discussed in this paper differ from conventional solutions using thick ferrite toroids for frequency tuning. Instead, tuners consisting of an array of ferrite-loaded striplines are investigated. These promise more efficient cooling and higher operational reliability. Layout examples for the SSC-LEB rf system are presented (tuning range 47.5 to 59.8 MHz, repetition frequency 10 Hz). 15 refs., 4 figs., 1 tab

  20. Application research of tune measurement system in Hefei light source

    International Nuclear Information System (INIS)

    Sun Baogen; He Duohui; Xu Hongliang; Lu Ping; Wang Junhua; Gao Yunfeng; Wang Lin; Liu Jinying

    2002-01-01

    The author introduces the measurement and research of some beam parameters using tune measurement system for Hefei Light Source (HLS), which include the betatron tune, beta function, natural chromaticity, corrected chromaticity, and central frequency. Additionally, it also describes the measurement of the influence of DC clearing electrodes on the betatron tune shift and gives some measurement results. The measurement results are compared with the theoretical values and they are in good agreement

  1. Efficient receiver tuning using differential evolution strategies

    Science.gov (United States)

    Wheeler, Caleb H.; Toland, Trevor G.

    2016-08-01

    Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing 1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of 1000 pixel array receivers and consider how the KAPPa DE system might be applied.

  2. Event-by-Event Simulation of Induced Fission

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R; Randrup, J

    2007-12-13

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  3. Event-by-Event Simulation of Induced Fission

    Science.gov (United States)

    Vogt, Ramona; Randrup, Jørgen

    2008-04-01

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  4. Event-by-Event Simulation of Induced Fission

    International Nuclear Information System (INIS)

    Vogt, Ramona; Randrup, Joergen

    2008-01-01

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented

  5. Event-by-Event Simulation of Induced Fission

    International Nuclear Information System (INIS)

    Vogt, R; Randrup, J

    2007-01-01

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented

  6. Feedback and feedforward control of frequency tuning to naturalistic stimuli.

    Science.gov (United States)

    Chacron, Maurice J; Maler, Leonard; Bastian, Joseph

    2005-06-08

    Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.

  7. Tune measurement at GSI SIS-18. Methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul

    2014-05-15

    Two parallel tune measurement systems are installed at GSI SIS-18 based on different principles. The first is called the Tune, Orbit and POSition measurement system TOPOS. Its working principle involves direct digitization of BPM signals at 125 MSa/s, which is used for online bunch-by-bunch position calculation in FPGAs. In the course of this work, position calculation algorithms were developed and studied for real time implementation in the TOPOS FPGAs. The regression fit algorithm is found to be more efficient and robust in comparison to previously used weighted mean algorithm with the baseline restoration procedure. The second system is the Baseband Tune measurement system referred to as BBQ system. The operational principle of this system was conceived at the CERN Beam Instrumentation group and is based on direct diode detection. In the framework of this work, this system was optimized and brought into operation at GSI SIS-18. Front-end data from both systems are used to calculate the tune spectrum every 250-5000 beam revolutions or turns within SIS-18 based on the resolution requirement and the mode of operation. Advanced non-parametric spectrum estimation method like amplitude Capon estimator is compared to the conventional DFT based methods in terms of resolving power and computational requirements for the calculated spectrum. Further the TOPOS and BBQ systems are compared and characterized in terms of sensitivity, reliability and operational usage. The results from both systems are found to be consistent with each other and have their favoured regimes of operation. The effects on tune spectra obtained from both systems were studied with different types of excitations with excitation power levels up to 6 mW/Hz. These systems in association with other beam diagnostic devices at SIS-18 were used to conduct extensive experiments to understand the effect of high intensity beams on the tune spectrum. These careful measurements recorded all the relevant beam

  8. Multi-Agent System based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower......-level unit agents. Each lower-level unit agent is responsible for dealing with internal switching control and distributed dynamic regula-tion for its unit system. The upper-level agent implements coor-dinated switching control to guarantee the power supply of over-all system with high security. The internal...

  9. Effectiveness and limitations of parameter tuning in reducing biases of top-of-atmosphere radiation and clouds in MIROC version 5

    Science.gov (United States)

    Ogura, Tomoo; Shiogama, Hideo; Watanabe, Masahiro; Yoshimori, Masakazu; Yokohata, Tokuta; Annan, James D.; Hargreaves, Julia C.; Ushigami, Naoto; Hirota, Kazuya; Someya, Yu; Kamae, Youichi; Tatebe, Hiroaki; Kimoto, Masahide

    2017-12-01

    This study discusses how much of the biases in top-of-atmosphere (TOA) radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5) generation. We used output of a perturbed parameter ensemble (PPE) experiment conducted with an atmosphere-ocean general circulation model (AOGCM) without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5) was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude-longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.

  10. Effectiveness and limitations of parameter tuning in reducing biases of top-of-atmosphere radiation and clouds in MIROC version 5

    Directory of Open Access Journals (Sweden)

    T. Ogura

    2017-12-01

    Full Text Available This study discusses how much of the biases in top-of-atmosphere (TOA radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5 generation. We used output of a perturbed parameter ensemble (PPE experiment conducted with an atmosphere–ocean general circulation model (AOGCM without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5 was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude–longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.

  11. Tuning of light-graphene interactions

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    — Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through Fermi-level tuning enables electrooptical modulation......, optical-optical switching, and other optoelectronics applications. Except for the statistic gating and chemical doping, the Fermi level of graphene can also be optically tuned. With the aid of external optical pumping, electrons can be excited in the substrate, then move to the graphene layer, leading...... to the electrical doping in graphene. In this talk, I will firstly discuss how the graphene property changes when applying the optical pumping with different incident power. Then I will discuss graphene-silicon microring devices with having a high modulation depth and with a relatively low bias voltage. Finally, I...

  12. Comparative Analyses on OPR1000 Steam Generator Tube Rupture Event Emergency Operational Guideline

    International Nuclear Information System (INIS)

    Lee, Sang Won; Bae, Yeon Kyoung; Kim, Hyeong Teak

    2006-01-01

    The Steam Generator Tube Rupture (SGTR) event is one of the important scenarios in respect to the radiation release to the environment. When the SGTR occurs, containment integrity is not effective because of the direct bypass of containment via the ruptured steam generator to the MSSV and MSADV. To prevent this path, the Emergency Operational Guideline of OPR1000 indicates the use of Turbine Bypass Valves (TBVs) as an effective means to depressurize the main steam line and prevent the lifting of MSSV. However, the TBVs are not operable when the offsite power is not available (LOOP). In this situation, the RCS cool-down is achieved by opening the both intact and ruptured SG MSADV. But this action causes the large amount of radiation release to the environment. To minimize the radiation release to the environment, KSNP EOG adopts the improved strategy when the SGTR concurrently with LOOP is occurred. However, these procedures show some duplicated procedure and branch line that might confusing the operator for optimal recovery action. So, in this paper, the comparative analysis on SGTR and SGTR with LOOP is performed and optimized procedure is proposed

  13. Experience of steam generator tube examination in the hot laboratory of EDF: analysis of recent events concerning the secondary side

    International Nuclear Information System (INIS)

    Thebault, Y.; Bouvier, O. de; Boccanfuso, M.; Coquio, N.; Barbe, V.; Molinie, E.

    2011-01-01

    Until 2010, more than 60 steam generator (SG) tubes have been removed and analysed in the EDF hot laboratory of CEIDRE/Chinon. This article is particularly related to three recent events that lead to the extraction of several tubes dedicated to laboratory destructive examinations. The first event that constitutes a first occurrence on the EDF Park, concerns the detection of a circumferential crack on the external surface of a tube located at tube support plate elevation. After this observation, several tubes have been extracted from Bugey 3 and Fessenheim 2 nuclear power plants with steam generators equipped with 600 MA bundle. The other two events concern the consequences of chemical cleaning of the tube bundle steam generators. The examples chosen are from Cruas 4 et Chinon B2 units whose tubes were extracted following non destructive testing performed immediately after or at the completion of cycle following the chemical cleaning. In the case of Cruas 4, Eddy Current Testing (ET) were performed for requalification of steam Generators after chemical cleaning. They allowed the detection of an indication located at the bottom of tube for a large number of tubes; the ET signal was similar to that corresponding to 'deposit' corrosion. Moreover, inspections of Chinon-B2 SGs at the end of the operation cycle following the chemical cleaning, showed the presence of conductor deposits at the bottom of some tubes. The first part of this document presents the major results of laboratory examinations of the pulled tubes of Bugey 3 and Fessenheim 2 and their analysis. Hypothesis concerning damage mechanisms of the tubes are also proposed. The second part of the paper relates the results of the laboratory examinations of the pulled tubes of Cruas 4 and Chinon B 2 after chemical cleaning and their analysis. (authors)

  14. Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.

    Science.gov (United States)

    Abe, S

    1998-01-01

    In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.

  15. Monopoly provision of tune-ins

    Czech Academy of Sciences Publication Activity Database

    Celik, Levent

    -, č. 362 (2008), s. 1-31 ISSN 1211-3298 Institutional research plan: CEZ:MSM0021620846 Keywords : informative advertising * tune-ins * television station Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp362.pdf

  16. Gain and frequency tuning within the mouse cochlear apex

    Energy Technology Data Exchange (ETDEWEB)

    Oghalai, John S.; Raphael, Patrick D. [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Gao, Simon [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Department of Bioengineering, Rice University, Houston, Texas (United States); Lee, Hee Yoon [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Department of Electrical Engineering, Stanford University, Stanford, California (United States); Groves, Andrew K. [Department of Neuroscience, Department of Molecular and Human Genetics, and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas (United States); Zuo, Jian [Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee (United States); Applegate, Brian E. [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States)

    2015-12-31

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided by basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering.

  17. Gain and frequency tuning within the mouse cochlear apex

    International Nuclear Information System (INIS)

    Oghalai, John S.; Raphael, Patrick D.; Gao, Simon; Lee, Hee Yoon; Groves, Andrew K.; Zuo, Jian; Applegate, Brian E.

    2015-01-01

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided by basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering

  18. Disorder-tuned charge transport in organic semiconductors

    Science.gov (United States)

    Xu, Feng; Qiu, Dong; Yan, Dadong

    2013-02-01

    We propose that the polaron transport in organic semiconductors is remarkably tuned by the fluctuation of polarization energy. The tuning effect of energetic fluctuation not only causes a continuous transition from non-Arrhenius to Arrhenius temperature activated charge transport with increasing moderate disorder strengths but also results in a band-like conduction in the low disorder regime which benefits from the enhanced mobilities in shallow trap states. As a result, a unified description of polaron transport is obtained for a set of typical organic semiconductors.

  19. A hypothesis generation model of initiating events for nuclear power plant operators

    International Nuclear Information System (INIS)

    Sawhney, R.S.; Dodds, H.L.; Schryver, J.C.; Knee, H.E.

    1989-01-01

    The goal of existing alarm-filtering models is to provide the operator with the most accurate assessment of patterns of annunciated alarms. Some models are based on event-tree analysis, such as DuPont's Diagnosis of Multiple Alarms. Other models focus on improving hypothesis generation by deemphasizing alarms not relevant to the current plant scenario. Many such models utilize the alarm filtering system as a basis of dynamic prioritization. The Lisp-based alarm analysis model presented in this paper was developed for the Advanced Controls Program at Oak Ridge National Laboratory to dynamically prioritize hypotheses via an AFS by incorporating an unannunciated alarm analysis with other plant-based concepts. The objective of this effort is to develop an alarm analysis model that would allow greater flexibility and more accurate hypothesis generation than the prototype fault diagnosis model utilized in the Integrated Reactor Operator/System (INTEROPS) model. INTEROPS is a time-based predictive model of the nuclear power plant operator, which utilizes alarm information in a manner similar to the human operator. This is achieved by recoding the knowledge base from the personal computer-based expert system shell to a common Lisp structure, providing the ability to easily modify both the manner in which the knowledge is structured as well as the logic by which the program performs fault diagnosis

  20. Tuned and Balanced Redistributed Charge Scheme for Combined Quantum Mechanical and Molecular Mechanical (QM/MM) Methods and Fragment Methods: Tuning Based on the CM5 Charge Model.

    Science.gov (United States)

    Wang, Bo; Truhlar, Donald G

    2013-02-12

    Tuned and balanced redistributed charge schemes have been developed for modeling the electrostatic fields of bonds that are cut by a quantum mechanical-molecular mechanical boundary in combined quantum mechanical and molecular mechanical (QM/MM) methods. First, the charge is balanced by adjusting the charge on the MM boundary atom to conserve the total charge of the entire QM/MM system. In the balanced smeared redistributed charge (BSRC) scheme, the adjusted MM boundary charge is smeared with a smearing width of 1.0 Å and is distributed in equal portions to the midpoints of the bonds between the MM boundary atom and the MM atoms bonded to it; in the balanced redistributed charge-2 (BRC2) scheme, the adjusted MM boundary charge is distributed as point charges in equal portions to the MM atoms that are bonded to the MM boundary atom. The QM subsystem is capped by a fluorine atom that is tuned to reproduce the sum of partial atomic charges of the uncapped portion of the QM subsystem. The new aspect of the present study is a new way to carry out the tuning process; in particular, the CM5 charge model, rather than the Mulliken population analysis applied in previous studies, is used for tuning the capping atom that terminates the dangling bond of the QM region. The mean unsigned error (MUE) of the QM/MM deprotonation energy for a 15-system test suite of deprotonation reactions is 2.3 kcal/mol for the tuned BSRC scheme (TBSRC) and 2.4 kcal/mol for the tuned BRC2 scheme (TBRC2). As was the case for the original tuning method based on Mulliken charges, the new tuning method performs much better than using conventional hydrogen link atoms, which have an MUE on this test set of about 7 kcal/mol. However, the new scheme eliminates the need to use small basis sets, which can be problematic, and it allows one to be more consistent by tuning the parameters with whatever basis set is appropriate for applications. (Alternatively, since the tuning parameters and partial charges

  1. Assessing the thermal-hydraulic behaviour of steam generators in a CANDU-6 type NPP in the event of MSSV blockage on the open-setting

    International Nuclear Information System (INIS)

    Dinca, Elena

    2004-01-01

    This work aims at achieving an analysis regarding the thermal-hydraulic behaviour of a CANDU-6 type NPP in the event of the blockage on open-setting of an MSSV (Main Steam Safety Valve) for steam relief from steam generators. The systems studied are main steam and feedwater mixture in the secondary circuit, particularly being analyzed the behaviour of the steam generators as well as the primary heat transfer and the control system of heavy water pressure and inventory in the primary system. One supposes that the MSSV blockage occurs directly after its opening in the event of an accident that led to the a steam pressure rise in the steam generators up to the threshold value of MSSV o penning. The analysis was applied to two events of initiation which lead to MSSV o penning, namely a Class IV loss of electric supply and loss of vacuum in turbine condenser. In the simulation of the events selected for analysis a long elapse of time is supposed (3600 seconds) and no operator intervention while the NPP is operating at rating power and equilibrium fuel regime. Each of the two events were analyzed for two distinct sets of conditions of event initiation and evolution. The study was focussed on the behaviour of NPP, particularly of the steam generators, and on the estimation of the amount of water in the secondary circuit released into the atmosphere during the event. The analysis is of deterministic type and supplies information required by the Probabilistic Safety Assessment (PSA) applied to nuclear facilities in establishing the operation procedures and documentation. The analysis was based on design data for a CANDU-6 NPP and the HYDN3 code for thermal-hydraulic computation in CANDU type NPPs. In the paper there are presented the analysis, methodology, models, hypotheses and the input data as well as the analyzed cases. Within the computing code some models were developed to allow simulating the event sequences chosen for analyses. The results are plotted and

  2. A microcontroller based tuning mechanism for the magnetron

    International Nuclear Information System (INIS)

    Khan, A.M.; Mahfooz, M.; Hanumaiah, B.; Ganesh; Siddappa, K.

    2006-01-01

    In this paper we report on a control system developed to tune the magnetron frequency to get the maximum beam pulse in the microtron (electron accelerator facility at Mangalore University). The control system so designed consists of a microcontroller, a phase locked loop (PLL) and a digital to analog converter (DAC) to control the magnetron frequency. The voltage value given by the microcontroller through the DAC decides the reference frequency. The PLL gives the error voltage whenever there is difference between the reference and the magnetron frequencies. The microcontroller unit tracks the error voltage and tunes the magnetron with the help of a tuner mechanism connected through a stepper motor. The microcontroller also monitors the beam current level and accordingly adjusts the reference frequency to successfully tune the magnetron. (author)

  3. A Monte Carlo study on event-by-event transverse momentum fluctuation at RHIC

    International Nuclear Information System (INIS)

    Xu Mingmei

    2005-01-01

    The experimental observation on the multiplicity dependence of event-by-event transverse momentum fluctuation in relativistic heavy ion collisions is studied using Monte Carlo simulation. It is found that the Monte Carlo generator HIJING is unable to describe the experimental phenomenon well. A simple Monte Carlo model is proposed, which can recover the data and thus shed some light on the dynamical origin of the multiplicity dependence of event-by-event transverse momentum fluctuation. (authors)

  4. Stochastic generation of multi-site daily precipitation focusing on extreme events

    Directory of Open Access Journals (Sweden)

    G. Evin

    2018-01-01

    Full Text Available Many multi-site stochastic models have been proposed for the generation of daily precipitation, but they generally focus on the reproduction of low to high precipitation amounts at the stations concerned. This paper proposes significant extensions to the multi-site daily precipitation model introduced by Wilks, with the aim of reproducing the statistical features of extremely rare events (in terms of frequency and magnitude at different temporal and spatial scales. In particular, the first extended version integrates heavy-tailed distributions, spatial tail dependence, and temporal dependence in order to obtain a robust and appropriate representation of the most extreme precipitation fields. A second version enhances the first version using a disaggregation method. The performance of these models is compared at different temporal and spatial scales on a large region covering approximately half of Switzerland. While daily extremes are adequately reproduced at the stations by all models, including the benchmark Wilks version, extreme precipitation amounts at larger temporal scales (e.g., 3-day amounts are clearly underestimated when temporal dependence is ignored.

  5. A Stark-tuned, far-infrared laser for high frequency plasma diagnostics

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.; Rockmore, M.; Micai, K.; Krug, P.A.

    1992-03-01

    A Stark-tuned optically pumped far-infrared methanol laser operating at 119 micrometers has been built. The laser is designed to operate at high power while exhibiting a well-separated Stark doublet. At a pump power of 65 Watts and electric field of 1 kV/cm the laser has delivered over 100 mW c.w. while exhibiting a frequency splitting of 34 MHz. These parameters indicate that this laser would be suitable for use in the present generation of modulated interferometers on large thermonuclear plasma devices. The achieved modulation frequency is more than an order of magnitude higher than could be achieved using standard techniques

  6. Iterative Controller Tuning for Process with Fold Bifurcations

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Poulsen, Niels Kjølstad; Jørgensen, Sten Bay

    2007-01-01

    Processes involving fold bifurcation are notoriously difficult to control in the vicinity of the fold where most often optimal productivity is achieved . In cases with limited process insight a model based control synthesis is not possible. This paper uses a data driven approach with an improved...... version of iterative feedback tuning to optimizing a closed loop performance criterion, as a systematic tool for tuning process with fold bifurcations....

  7. Tuning and matching of the BPX ICH system

    International Nuclear Information System (INIS)

    Swain, D.W.

    1991-01-01

    Two methods of tuning and matching the ion cyclotron heating (ICH) antennas for the Burning Plasma Experiment (BPX) to the BPX plasma have been analyzed. Both appear to provide adequate tuning and matching capabilities. However, there are trade-offs between the frequency range that can be covered and the compactness of the high-voltage region of the transmission lines that makes up of the matching network. 4 refs., 5 figs

  8. Tuning controllers using the dual Youla parameterization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2000-01-01

    This paper describes the application of the Youla parameterization of all stabilizing controllers and the dual Youla parameterization of all systems stabilized by a given controller in connection with tuning of controllers. In the uncertain case, it is shown that the use of the Youla parameteriza......This paper describes the application of the Youla parameterization of all stabilizing controllers and the dual Youla parameterization of all systems stabilized by a given controller in connection with tuning of controllers. In the uncertain case, it is shown that the use of the Youla...

  9. Java EE 7 performance tuning and optimization

    CERN Document Server

    Oransa, Osama

    2014-01-01

    The book adopts a step-by-step approach, starting from building the basics and adding to it gradually by using different tools and examples. The book sequence is easy to follow and all topics are fully illustrated showing you how to make good use of different performance diagnostic tools. If you are an experienced Java developer, architect, team leader, consultant, support engineer, or anyone else who needs performance tuning in your Java applications, and in particular, Java enterprise applications, this book is for you. No prior experience of performance tuning is required.

  10. High-volume image quality assessment systems: tuning performance with an interactive data visualization tool

    Science.gov (United States)

    Bresnahan, Patricia A.; Pukinskis, Madeleine; Wiggins, Michael

    1999-03-01

    Image quality assessment systems differ greatly with respect to the number and types of mags they need to evaluate, and their overall architectures. Managers of these systems, however, all need to be able to tune and evaluate system performance, requirements often overlooked or under-designed during project planning. Performance tuning tools allow users to define acceptable quality standards for image features and attributes by adjusting parameter settings. Performance analysis tools allow users to evaluate and/or predict how well a system performs in a given parameter state. While image assessment algorithms are becoming quite sophisticated, duplicating or surpassing the human decision making process in their speed and reliability, they often require a greater investment in 'training' or fine tuning of parameters in order to achieve optimum performance. This process may involve the analysis of hundreds or thousands of images, generating a large database of files and statistics that can be difficult to sort through and interpret. Compounding the difficulty is the fact that personnel charged with tuning and maintaining the production system may not have the statistical or analytical background required for the task. Meanwhile, hardware innovations have greatly increased the volume of images that can be handled in a given time frame, magnifying the consequences of running a production site with an inadequately tuned system. In this paper, some general requirements for a performance evaluation and tuning data visualization system are discussed. A custom engineered solution to the tuning and evaluation problem is then presented, developed within the context of a high volume image quality assessment, data entry, OCR, and image archival system. A key factor influencing the design of the system was the context-dependent definition of image quality, as perceived by a human interpreter. This led to the development of a five-level, hierarchical approach to image quality

  11. A 21st Century Imperative: integrating intercultural competence in Tuning

    Directory of Open Access Journals (Sweden)

    Darla K. Deardorff

    2015-12-01

    Full Text Available Given the increasing demand for interculturally competent graduates and employees, it is incumbent upon the Tuning community to incorporate intercultural competence into Tuning Frameworks. With the growing diversity in the world today, beyond national diversity, intercultural competence cuts across disciplines, subjects, and contexts. This essay highlights the first research-based definition and framework of intercultural competence which can be translated into any subject and context and makes the case for why intercultural competence must be embedded into Tuning Frameworks around the world.

  12. The Magnetically-Tuned Transition-Edge Sensor

    Science.gov (United States)

    Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen J.; Busch, Sarah E.; Bandler, Simon R.; Adams, Joseph S.; Eckart, Megan E.; Chevenak, James A.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2014-01-01

    We present the first measurements on the proposed magnetically-tuned superconducting transition-edge sensor (MTES) and compare the modified resistive transition with the theoretical prediction. A TES's resistive transition is customarily characterized in terms of the unit less device parameters alpha and beta corresponding to the resistive response to changes in temperature and current respectively. We present a new relationship between measured IV quantities and the parameters alpha and beta and use these relations to confirm we have stably biased a TES with negative beta parameter with magnetic tuning. Motivated by access to this new unexplored parameter space, we investigate the conditions for bias stability of a TES taking into account both self and externally applied magnetic fields.

  13. Handling Data Skew in MapReduce Cluster by Using Partition Tuning

    Directory of Open Access Journals (Sweden)

    Yufei Gao

    2017-01-01

    Full Text Available The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH. In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN. We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM on healthcare data.

  14. Towards self-tuning residual generators for UAV control surface fault diagnosis

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren

    2013-01-01

    Control surface fault diagnosis is essential for timely detection of manoeuvring and stability risks for an unmanned aircraft. Timely detection is crucial since control surface related faults impact stability of flight and safety. Reliable diagnosis require well fitting dynamical models but with ...... flights with different members of a population of UAVs that have inherent model uncertainty from one member to another and from one flight to another. Events with actual faults on control surfaces demonstrates the efficacy of the approach....

  15. Basic controller tuning for large offshore wind turbines

    Directory of Open Access Journals (Sweden)

    K. O. Merz

    2016-09-01

    Full Text Available When a wind turbine operates above the rated wind speed, the blade pitch may be governed by a basic single-input–single-output PI controller, with the shaft speed as input. The performance of the wind turbine depends upon the tuning of the gains and filters of this controller. Rules of thumb, based upon pole placement, with a rigid model of the rotor, are inadequate for tuning the controller of large, flexible, offshore wind turbines. It is shown that the appropriate controller tuning is highly dependent upon the characteristics of the aeroelastic model: no single reference controller can be defined for use with all models. As an example, the ubiquitous National Renewable Energy Laboratory (NREL 5 MW wind turbine controller is unstable when paired with a fully flexible aeroelastic model. A methodical search is conducted, in order to find models with a minimum number of degrees of freedom, which can be used to tune the controller for a fully flexible aeroelastic model; this can be accomplished with a model containing 16–20 states. Transient aerodynamic effects, representing rotor-average properties, account for five of these states. A simple method is proposed to reduce the full transient aerodynamic model, and the associated turbulent wind spectra, to the rotor average. Ocean waves are also an important source of loading; it is recommended that the shaft speed signal be filtered such that wave-driven tower side-to-side vibrations do not appear in the PI controller output. An updated tuning for the NREL 5 MW controller is developed using a Pareto front technique. This fixes the instability and gives good performance with fully flexible aeroelastic models.

  16. Calibrated acoustic emission system records M -3.5 to M -8 events generated on a saw-cut granite sample

    Science.gov (United States)

    McLaskey, Gregory C.; Lockner, David A.

    2016-01-01

    Acoustic emission (AE) analyses have been used for decades for rock mechanics testing, but because AE systems are not typically calibrated, the absolute sizes of dynamic microcrack growth and other physical processes responsible for the generation of AEs are poorly constrained. We describe a calibration technique for the AE recording system as a whole (transducers + amplifiers + digitizers + sample + loading frame) that uses the impact of a 4.76-mm free-falling steel ball bearing as a reference source. We demonstrate the technique on a 76-mm diameter cylinder of westerly granite loaded in a triaxial deformation apparatus at 40 MPa confining pressure. The ball bearing is dropped inside a cavity within the sample while inside the pressure vessel. We compare this reference source to conventional AEs generated during loading of a saw-cut fault in a second granite sample. All located AEs occur on the saw-cut surface and have moment magnitudes ranging from M −5.7 down to at least M −8. Dynamic events rupturing the entire simulated fault surface (stick–slip events) have measurable stress drop and macroscopic slip and radiate seismic waves similar to those from a M −3.5 earthquake. The largest AE events that do not rupture the entire fault are M −5.7. For these events, we also estimate the corner frequency (200–300 kHz), and we assume the Brune model to estimate source dimensions of 4–6 mm. These AE sources are larger than the 0.2 mm grain size and smaller than the 76 × 152 mm fault surface.

  17. Technical fine-tuning problem in renormalized perturbation theory

    International Nuclear Information System (INIS)

    Foda, O.E.

    1983-01-01

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes

  18. Technical fine-tuning problem in renormalized perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E.

    1983-01-01

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.

  19. HELAC-Onia 2.0: an upgraded matrix-element and event generator for heavy quarkonium physics

    CERN Document Server

    Shao, Hua-Sheng

    2016-01-01

    We present an upgraded version (denoted as version 2.0) of the program HELAC-Onia for the automated computation of heavy-quarkonium helicity amplitudes within non-relativistic QCD framework. The new code has been designed to include many new and useful features for practical phenomenological simulations. It is designed for job submissions under cluster enviroment for parallel computations via Python scripts. We have interfaced HELAC-Onia to the parton shower Monte Carlo programs Pythia 8 and QEDPS to take into account the parton-shower effects. Moreover, the decay module guarantees that the program can perform the spin-entangled (cascade-)decay of heavy quarkonium after its generation. We have also implemented a reweighting method to automatically estimate the uncertainties from renormalization and/or factorization scales as well as parton-distribution functions to weighted or unweighted events. A futher update is the possiblity to generate one-dimensional or two-dimensional plots encoded in the analysis file...

  20. Research on generation mechanism of single event transient current generated in the semiconductor using ion accelerator

    International Nuclear Information System (INIS)

    Hirao, Toshio

    2007-01-01

    Single-event upset (SEU) is triggered when an amount of electric charges induced by energetic ion incidence exceeds a value known as a critical charge in a very short time period. Therefore, accurate evaluation of electric charge and understanding of basic mechanism of SEU are necessary for the improvement of SEU torrance of electronic devices. In this paper, the collected charges for the single event transient current induced on semiconductor by heavy ion microbeams, and application to use microbeam for single event studies are presented. (author)

  1. Cyto-molecular Tuning of Quantum Dots

    Science.gov (United States)

    Lee, Bong; Suresh, Sindhuja; Ekpenyong, Andrew

    Quantum dots (QDs) are semiconductor nanoparticles composed of groups II-VI or III-V elements, with physical dimensions smaller than the exciton Bohr radius, and between 1-10 nm. Their applications and promising myriad applications in photovoltaic cells, biomedical imaging, targeted drug delivery, quantum computing, etc, have led to much research on their interactions with other systems. For biological systems, research has focused on biocompatibility and cytotoxicity of QDs in the context of imaging/therapy. However, there is a paucity of work on how biological systems might be used to tune QDs. Here, we hypothesize that the photo-electronic properties of QDs can be tuned by biological macromolecules following controlled changes in cellular activities. Using CdSe/ZnS core-shell QDs, we perform spectroscopic analysis of optically excited colloidal QDs with and without promyelocytic HL60 cells. Preliminary results show shifts in the emission spectra of the colloidal dispersions with and without cells. We will present results for activated HL60-derived cells where specific macromolecules produced by these cells perturb the electric dipole moments of the excited QDs and the associated electric fields, in ways that constitute what we describe as cyto-molecular tuning. Startup funds from the College of Arts and Sciences, Creighton University (to AEE).

  2. Social cognition in autism: Face tuning.

    Science.gov (United States)

    Pavlova, Marina A; Guerreschi, Michele; Tagliavento, Lucia; Gitti, Filippo; Sokolov, Alexander N; Fallgatter, Andreas J; Fazzi, Elisa

    2017-05-26

    Faces convey valuable information for social cognition, effective interpersonal interaction, and non-verbal communication. Face perception is believed to be atypical in autism, but the origin of this deficit is controversial. Dominant featural face encoding is suggested to be responsible for face tuning scarcity. Here we used a recently developed Face-n-Food paradigm for studying face tuning in individuals with autistic spectrum disorders (ASD). The key benefit of these images is that single components do not explicitly trigger face processing. In a spontaneous recognition task, adolescents with autism and typically developing matched controls were presented with a set of Face-n-Food images in different degree resembling a face (slightly bordering on the Giuseppe Arcimboldo style). The set of images was shown in a predetermined order from the least to most resembling a face. Thresholds for recognition of the Face-n-Food images as a face in ASD individuals were substantially higher than in typically developing controls: they did not report seeing a face on the images, which controls easily recognized as a face, and gave overall fewer face responses. This outcome not only lends support to atypical face tuning, but provides novel insights into the origin of face encoding deficits in autism.

  3. Universality of the underlying event in p p collisions

    Science.gov (United States)

    Ortiz, Antonio; Palomo, Lizardo Valencia

    2017-12-01

    In this paper we study ATLAS results on underlying event in p p collisions at √{s }=0.9 , 7 and 13 TeV. We show that the center-of-mass energy dependences of the charged-particle production sensitive to the underlying event ("transverse" region) and to the hardest partonic interaction ("towards" and "away" regions) in p p collisions can be both understood in terms of the change of the inclusive average multiplicity. Within uncertainties, the corresponding particle production as a function of the leading charged particle shows no significant √{s }-dependence for the three regions once they are scaled according to the relative change in multiplicity. The scaling properties reported here are well reproduced by pythia 8.212 tune Monash 2013 and suggest an universality of the underlying event in hadronic interactions at high √{s }. Based on the simulations, we observed that the same scaling properties are also present in the average number of multipartonic interactions as a function of the leading charged particle. Moreover, the multiplicity distributions associated to the underlying event exhibit a Koba-Nielsen-Olesen scaling.

  4. Distributed Data Collection For Next Generation ATLAS EventIndex Project

    CERN Document Server

    Fernandez Casani, Alvaro; The ATLAS collaboration

    2018-01-01

    The ATLAS EventIndex currently runs in production in order to build a complete catalogue of events for experiments with large amounts of data. The current approach is to index all final produced data files at CERN Tier0, and at hundreds of grid sites, with a distributed data collection architecture using Object Stores to temporary maintain the conveyed information, with references to them sent with a Messaging System. The final backend of all the indexed data is a central Hadoop infrastructure at CERN; an Oracle relational database is used for faster access to a subset of this information. In the future of ATLAS, instead of files, the event should be the atomic information unit for metadata. This motivation arises in order to accommodate future data processing and storage technologies. Files will no longer be static quantities, possibly dynamically aggregating data, and also allowing event-level granularity processing in heavily parallel computing environments. It also simplifies the handling of loss and or e...

  5. AGS tune jump power supply design and test

    International Nuclear Information System (INIS)

    Mi, J.; Glenn, J.W.; Huang, H.; Marneris, I.; Rosas, P.; Sandberg, J.; Tan, Y.; Zhang, W.

    2011-01-01

    A horizontal tune jump system has been installed to overcome the horizontal intrinsic spin resonances, which requires jumping the horizontal tune 0.04 units 82 times, 41 up and 41 down. Two quadruple magnets have been installed in AGS ring to perform this. The pulsed magnet current ranges from about 140A near injection to about 1400A later. The current pulse rise and fall time are around 100uS and flat tops time is around 4mS. These quadruples have separated supplies. This tune jump pulse power supply employees all semiconductor parts as well as the main switches. During dummy load and magnet testing, the test results showed that the power supply could meet the specification. This article will describe some details of power supply simulation, design and testing. Some test waveforms and pictures are presented in this paper.

  6. Jet and underlying event properties as a function of charged-particle multiplicity in proton-proton collisions at sqrt(s) = 7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei; et al.,

    2013-12-17

    Characteristics of multi-particle production in proton-proton collisions at sqrt(s) = 7 TeV are studied as a function of the charged-particle multiplicity, N[ch]. The produced particles are separated into two classes: those belonging to jets and those belonging to the underlying event. Charged particles are measured with pseudorapidity abs(eta) < 2.4 and transverse momentum pt > 0.25 GeV. Jets are reconstructed from charged-particles only and required to have pt > 5 GeV. The distributions of jet pt, average pt of charged particles belonging to the underlying event or to jets, jet rates, and jet shapes are presented as functions of N[ch] and compared to the predictions of the PYTHIA and HERWIG event generators. Predictions without multi-parton interactions fail completely to describe the N[ch]-dependence observed in the data. For increasing N[ch], PYTHIA systematically predicts higher jet rates and harder pt spectra than seen in the data, whereas HERWIG shows the opposite trends. At the highest multiplicity, the data-model agreement is worse for most observables, indicating the need for further tuning and/or new model ingredients.

  7. Effect of tune modulation on the transverse stability of storage ring

    International Nuclear Information System (INIS)

    Yang Jiancheng; Xia Jiawen; Wu Junxia; Xia Guoxing; Liu Wei; Yin Xuejun; Liu Yong; Zhou Xuemei; Mao Lijun

    2004-01-01

    The transverse stability is a critical issue in circular accelerator. In this paper, authors analysed the effect of tune modulation on a FODO lattice with sextupole nonlinear through estimating the dynamic aperture including the influence of the distortion along the phase. It turned out that the tune modulation decreases the stability of particle in storage ring, the extent of this decrease depends largely on the amplitude and tune of modulation. (author)

  8. Algorithms for a Precise Determination of the Betatron Tune

    CERN Document Server

    Bartolini, R; Giovannozzi, Massimo; Todesco, Ezio; Scandale, Walter

    1996-01-01

    In circular accelerators the precise knowledge of the betatron tune is of paramount importance both for routine operation and for theoretical investigations. The tune is measured by sampling the transverse position of the beam for N turns and by performing the FFT of the stored data. One can also evaluate it by computing the Average Phase Advance (APA) over N turns. These approaches have an intrinsic error proportional to 1/N. However, there are special cases where either a better precision or a faster measurement is desired. More efficient algorithms can be used, as those suggested by E.Asseo [1] and recently by J. Laskar [2]. They provide tune estimates by far more precise than those of a plain FFT, as discussed in Ref. [3]. Another important isssue is the effect of the finite resolution of the instrumentation used to measure the beam position. This introduces a noise and the frequency response of the beam is modified [4,5} thus reducing the precision by which the tune is determined. In Section 2 we recall ...

  9. Phased antenna arrays for fast wave power generation

    International Nuclear Information System (INIS)

    Bosia, G.; Jacquinot, J.

    1991-01-01

    A method for the generation of travelling waves in the Ion Cyclotron frequency range in JET is presented. The success of the method relies on the control of the array toroidal current, which in turn, is obtained by a coordinated vectorial control of the array power sources and tuning networks. This method has general application to present and future ICRF arrays. For uninterrupted, periodically fed and resonant toroidal arrays, phased operation requires only conventional tuning devices. For localised arrays, phased operation is inefficient at low plasma coupling. This inefficiency can be however removed with the addition of external coupling structures either at the antenna or at the generator ends. The performances of JET A1 antennae in phased operation is presented. The design philosophy for the JET A2 phased arrays is also discussed. These methods are applicable and extensible to Next Step Devices design

  10. Tune and Orbit feedbacks performance: a user perspective

    CERN Document Server

    Ponce, L

    2012-01-01

    The presentation will present the performance and issues of tune and orbit feedbacks seen from the user (operation) perspective. Some statistics on the beam dumps causes will be presented to emphasize the two main limitations of the system : the issue on the tune measurement and the triggering of the QPS system of RQTs circuits. The possible improvements for 2012 will then be discussed together with the foreseen software changes for the orbit reference management.

  11. Measurement of the underlying event in the Drell-Yan process in proton-proton collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Benucci, Leonardo; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Ceard, Ludivine; De Favereau De Jeneret, Jerome; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Falkiewicz, Anna; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Lomidze, David; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Erdmann, Martin; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Olzem, Jan; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schröder, Matthias; Schum, Torben; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Berger, Joram; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Katkov, Igor; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Choudhary, Brajesh C; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Triossi, Andrea; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Franci, Daniele; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Trapani, Pier Paolo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Pela, Joao; Ribeiro, Pedro Quinaz; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bernet, Colin; Bialas, Wojciech; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Georgiou, Georgios; Gerwig, Hubert; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Guiducci, Luigi; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Hoffmann, Hans Falk; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Mavromanolakis, Georgios; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vichoudis, Paschalis; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Lecomte, Pierre; Lustermann, Werner; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Weng, Joanna; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Henderson, Conor; Avetisyan, Aram; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Bhattacharya, Saptaparna; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Caulfield, Matthew; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Robles, Jorge; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sfiligoi, Igor; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pivarski, James; Pordes, Ruth; Prokofyev, Oleg; Schwarz, Thomas; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Goldberg, Sean; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Schmitt, Michael Houston; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Sekmen, Sezen; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Silvestre, Catherine; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Peterman, Alison; Rossato, Kenneth; Rumerio, Paolo; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Sakumoto, Willis; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Atramentov, Oleksiy; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Richards, Alan; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Gurrola, Alfredo; Issah, Michael; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Conetti, Sergio; Cox, Bradley; Francis, Brian; Goadhouse, Stephen; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Bellinger, James Nugent; Bernardini, Jacopo; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Efron, Jonathan; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2012-09-20

    A measurement of the underlying event (UE) activity in proton-proton collisions at a centre-of-mass energy of 7 TeV is performed using Drell--Yan events in a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, collected by the CMS experiment at the LHC. The activity measured in the muonic final state (q q-bar to opposite sign muons) is corrected to the particle level and compared with the predictions of various Monte Carlo generators and hadronization models. The dependence of the UE activity on the dimuon invariant mass is well described by PYTHIA and HERWIG++ tunes derived from the leading jet/track approach, illustrating the universality of the UE activity. The UE activity is observed to be independent of the dimuon invariant mass in the region above 40 GeV, while a slow increase is observed with increasing transverse momentum of the dimuon system. The dependence of the UE activity on the transverse momentum of the dimuon system is accurately described by MADGRAPH, which simula...

  12. Mathematical foundations of event trees

    International Nuclear Information System (INIS)

    Papazoglou, Ioannis A.

    1998-01-01

    A mathematical foundation from first principles of event trees is presented. The main objective of this formulation is to offer a formal basis for developing automated computer assisted construction techniques for event trees. The mathematical theory of event trees is based on the correspondence between the paths of the tree and the elements of the outcome space of a joint event. The concept of a basic cylinder set is introduced to describe joint event outcomes conditional on specific outcomes of basic events or unconditional on the outcome of basic events. The concept of outcome space partition is used to describe the minimum amount of information intended to be preserved by the event tree representation. These concepts form the basis for an algorithm for systematic search for and generation of the most compact (reduced) form of an event tree consistent with the minimum amount of information the tree should preserve. This mathematical foundation allows for the development of techniques for automated generation of event trees corresponding to joint events which are formally described through other types of graphical models. Such a technique has been developed for complex systems described by functional blocks and it is reported elsewhere. On the quantification issue of event trees, a formal definition of a probability space corresponding to the event tree outcomes is provided. Finally, a short discussion is offered on the relationship of the presented mathematical theory with the more general use of event trees in reliability analysis of dynamic systems

  13. Tuned Chamber Core Panel Acoustic Test Results

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  14. Utilization of genetic algorithm in on-line tuning of fluid power servos

    Energy Technology Data Exchange (ETDEWEB)

    Halme, J.

    1997-12-31

    This study describes a robust and plausible method based on genetic algorithms suitable for tuning a regulator. The main advantages of the method presented is its robustness and easy-to-use feature. In this thesis the method is demonstrated by searching for appropriate control parameters of a state-feedback controller in a fluid power environment. To corroborate the robustness of the tuning method, two earlier studies are also presented in the appendix, where the presented tuning method is used in different kinds of regulator tuning situations. (orig.) 33 refs.

  15. Utilization of genetic algorithm in on-line tuning of fluid power servos

    Energy Technology Data Exchange (ETDEWEB)

    Halme, J

    1998-12-31

    This study describes a robust and plausible method based on genetic algorithms suitable for tuning a regulator. The main advantages of the method presented is its robustness and easy-to-use feature. In this thesis the method is demonstrated by searching for appropriate control parameters of a state-feedback controller in a fluid power environment. To corroborate the robustness of the tuning method, two earlier studies are also presented in the appendix, where the presented tuning method is used in different kinds of regulator tuning situations. (orig.) 33 refs.

  16. A calculation of baryon diffusion constant in hot and dense hadronic matter based on an event generator URASiMA

    International Nuclear Information System (INIS)

    Sasaki, N.; Miyamura, O.; Nonaka, C.; Muroya, S.

    2000-01-01

    We evaluate thermodynamical quantities and transport coefficient of a dense and hot hadronic matter based on an event generator URASiMA (Ultra-Relativistic AA collision Simulator based on Multiple Scattering Algorithm). The statistical ensembles in equilibrium with fixed temperature and chemical potential are generated by imposing periodic boundary condition to the simulation of URASiMA, where energy density and baryon number density is conserved. Achievement of the thermal equilibrium and the chemical equilibrium are confirmed by the common value of slope parameter in the energy distributions and the saturation of the numbers of contained particles, respectively. By using the generated ensembles, we investigate the temperature dependence and the chemical potential dependence of the baryon diffusion constant of a dense and hot hadronic matter. (author)

  17. Shallow Water Tuned Liquid Dampers

    DEFF Research Database (Denmark)

    Krabbenhøft, Jørgen

    that for realistic roughness parameters the bottom friction has very limited effect on the liquid sloshing behavior and can be neglected. Herby the postulate is verified. Based on the mathematical model three dimensionless parameters are derived showing that the response of the damper depends solely on ratio......The use of sloshing liquid as a passive means of suppressing the rolling motion of ships was proposed already in the late 19th century. Some hundred years later the use of liquid sloshing devices, often termed Tuned Liquid Dampers (TLD), began to find use in the civil engineering community....... The TLDs studied in this thesis essentially consist of a rectangular container partially filled with liquid in the form of plain tap water. The frequency of the liquid sloshing motion, which is adjusted by varying the length of the tank and the depth of the wa- ter, is tuned to the structural frequency...

  18. The Agency of Event

    DEFF Research Database (Denmark)

    Nicholas, Paul; Tamke, Martin; Riiber, Jacob

    2014-01-01

    This paper explores the notion of agency within event-based models. We present an event-based modeling approach that links interdependent generative, analytic and decision making sub-models within a system of exchange. Two case study projects demonstrate the underlying modeling concepts and metho...

  19. Closed-loop step response for tuning PID-fractional-order-filter controllers.

    Science.gov (United States)

    Amoura, Karima; Mansouri, Rachid; Bettayeb, Maâmar; Al-Saggaf, Ubaid M

    2016-09-01

    Analytical methods are usually applied for tuning fractional controllers. The present paper proposes an empirical method for tuning a new type of fractional controller known as PID-Fractional-Order-Filter (FOF-PID). Indeed, the setpoint overshoot method, initially introduced by Shamsuzzoha and Skogestad, has been adapted for tuning FOF-PID controller. Based on simulations for a range of first order with time delay processes, correlations have been derived to obtain PID-FOF controller parameters similar to those obtained by the Internal Model Control (IMC) tuning rule. The setpoint overshoot method requires only one closed-loop step response experiment using a proportional controller (P-controller). To highlight the potential of this method, simulation results have been compared with those obtained with the IMC method as well as other pertinent techniques. Various case studies have also been considered. The comparison has revealed that the proposed tuning method performs as good as the IMC. Moreover, it might offer a number of advantages over the IMC tuning rule. For instance, the parameters of the fractional controller are directly obtained from the setpoint closed-loop response data without the need of any model of the plant to be controlled. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Development of an On-Line Self-Tuning FPGA-PID-PWM Control Algorithm Design for DC-DC Buck Converter in Mobile Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Sabah Al-Araji

    2017-08-01

    Full Text Available This paper presents a new development of an on-line hybrid self-tuning control algorithm of the Field Programmable Gate Array - Proportional Integral Derivative - Pulse Width Modulation (FPGA-PID-PWM controller for DC-DC buck converter which is used in battery operation of mobile applications. The main goal in this work is to propose structure of the hybrid Bees-PSO tuning control algorithm which has a capability of quickly and precisely searching in the global regions in order to obtain optimal gain parameters for the proposed controller to generate the best voltage control action to achieve the desired performance of the Buck converter output. Matlab simulation results and Xilinx development tool Integrated Software Environment (ISE experimental work show the robustness and effectiveness of the proposed on-line hybrid Bees-PSO tuning control algorithm in terms of obtaining smooth and unsaturated state voltage control action and minimizing the tracking voltage error of the Buck converter output. Moreover, the fitness evaluation number is reduced.

  1. Light stops and fine-tuning in MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Cici, Ali; Kirca, Zerrin; Uen, Cem Salih [Uludag Univ., Department of Physics, Bursa (Turkey)

    2018-01-15

    We discuss the fine-tuning issue within the MSSM framework. Following the idea that the fine-tuning can measure effects of some missing mechanism, we impose non-universal gaugino masses at the GUT scale, and explore the low scale implications. We realize that the fine-tuning parametrized with Δ{sub EW} can be as low as zero. We consider the stop mass with a special importance and focus on the mass scales as m{sub t} ≤ 700 GeV, which are excluded by the current experiments when the stop decays into a neutralino along with a top quark or a chargino along with a bottom quark. We find that the stop mass can be as low as about 250 GeV with Δ{sub EW} ∝ 50. We find that the solutions in this region can be excluded only up to 60% when stop decays into a neutralino-top quark, and 50% when it decays into a chargino-b quark. Setting 65% CL to be potential exclusion and 95% to be pure exclusion limit such solutions will be tested in near future experiments, which are conducted with higher luminosity. In addition to stop, the region with low fine-tuning and light stops predicts masses for the other supersymmetric particles such as m{sub b} >or similar 700 GeV, m{sub τ} >or similar 1 TeV, m{sub χ{sub 1}{sup {sub ±}}} >or similar 120 GeV. The details for the mass scales and decay rates are also provided by tables of benchmark points. (orig.)

  2. Light stops and fine-tuning in MSSM

    Science.gov (United States)

    Çiçi, Ali; Kırca, Zerrin; Ün, Cem Salih

    2018-01-01

    We discuss the fine-tuning issue within the MSSM framework. Following the idea that the fine-tuning can measure effects of some missing mechanism, we impose non-universal gaugino masses at the GUT scale, and explore the low scale implications. We realize that the fine-tuning parametrized with Δ _{EW} can be as low as zero. We consider the stop mass with a special importance and focus on the mass scales as m_{\\tilde{t}} ≤ 700 GeV, which are excluded by the current experiments when the stop decays into a neutralino along with a top quark or a chargino along with a bottom quark. We find that the stop mass can be as low as about 250 GeV with Δ _{EW} ˜ 50. We find that the solutions in this region can be exluded only up to 60% when stop decays into a neutralino-top quark, and 50% when it decays into a chargino-b quark. Setting 65% CL to be potential exclusion and 95% to be pure exclusion limit such solutions will be tested in near future experiments, which are conducted with higher luminosity. In addition to stop, the region with low fine-tuning and light stops predicts masses for the other supersymmetric particles such as m_{\\tilde{b}} ≳ 700 GeV, m_{\\tilde{τ }} ≳ 1 TeV, m_{\\tilde{χ }1^{± }} ≳ 120 GeV. The details for the mass scales and decay rates are also provided by tables of benchmark points.

  3. Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model.

    Directory of Open Access Journals (Sweden)

    Samuel A Neymotin

    Full Text Available Ih channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4-12 Hz and gamma (25 Hz oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells, contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases.

  4. Towards an organization with a memory: exploring the organizational generation of adverse events in health care.

    Science.gov (United States)

    Smith, Denis; Toft, Brian

    2005-05-01

    The role of organizational factors in the generation of adverse events, and the manner in which such factors can also inhibit an organization's abilities to learn, have become important agenda items within health care. The government report 'An organization with a memory' highlighted many of the problems facing health care and suggested changes that need to be made if the sector is to learn effective lessons and prevent adverse events from occurring. This paper seeks to examine some of these organizational factors in more detail and suggests issues that managers need to consider as part of their wider strategies for the prevention and management of risk. The paper sets out five core elements that are held to be importance in shaping the manner in which the potential for risk is incubated within organizations. Although the paper focuses its attention on health care, the points made have validity across the public sector and into private sector organizations.

  5. Tuning the climate sensitivity of a global model to match 20th Century warming

    Science.gov (United States)

    Mauritsen, T.; Roeckner, E.

    2015-12-01

    A climate models ability to reproduce observed historical warming is sometimes viewed as a measure of quality. Yet, for practical reasons historical warming cannot be considered a purely empirical result of the modelling efforts because the desired result is known in advance and so is a potential target of tuning. Here we explain how the latest edition of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1.2) atmospheric model (ECHAM6.3) had its climate sensitivity systematically tuned to about 3 K; the MPI model to be used during CMIP6. This was deliberately done in order to improve the match to observed 20th Century warming over the previous model generation (MPI-ESM, ECHAM6.1) which warmed too much and had a sensitivity of 3.5 K. In the process we identified several controls on model cloud feedback that confirm recently proposed hypotheses concerning trade-wind cumulus and high-latitude mixed-phase clouds. We then evaluate the model fidelity with centennial global warming and discuss the relative importance of climate sensitivity, forcing and ocean heat uptake efficiency in determining the response as well as possible systematic biases. The activity of targeting historical warming during model development is polarizing the modeling community with 35 percent of modelers stating that 20th Century warming was rated very important to decisive, whereas 30 percent would not consider it at all. Likewise, opinions diverge as to which measures are legitimate means for improving the model match to observed warming. These results are from a survey conducted in conjunction with the first WCRP Workshop on Model Tuning in fall 2014 answered by 23 modelers. We argue that tuning or constructing models to match observed warming to some extent is practically unavoidable, and as such, in many cases might as well be done explicitly. For modeling groups that have the capability to tune both their aerosol forcing and climate sensitivity there is now a unique

  6. Implications for new physics from fine-tuning arguments: II. Little Higgs models

    International Nuclear Information System (INIS)

    Casas, J.A.; Espinosa, J.R.; Hidalgo, I.

    2005-01-01

    We examine the fine-tuning associated to electroweak breaking in Little Higgs scenarios and find it to be always substantial and, generically, much higher than suggested by the rough estimates usually made. This is due to implicit tunings between parameters that can be overlooked at first glance but show up in a more systematic analysis. Focusing on four popular and representative Little Higgs scenarios, we find that the fine-tuning is essentially comparable to that of the Little Hierarchy problem of the Standard Model (which these scenarios attempt to solve) and higher than in supersymmetric models. This does not demonstrate that all Little Higgs models are fine-tuned, but stresses the need of a careful analysis of this issue in model-building before claiming that a particular model is not fine-tuned. In this respect we identify the main sources of potential fine-tuning that should be watched out for, in order to construct a successful Little Higgs model, which seems to be a non-trivial goal. (author)

  7. From Single- to Multi-Objective Auto-Tuning of Programs: Advantages and Implications

    Directory of Open Access Journals (Sweden)

    Juan Durillo

    2014-01-01

    Full Text Available Automatic tuning (auto-tuning of software has emerged in recent years as a promising method that tries to automatically adapt the behaviour of a program to attain different performance objectives on a given computing system. This method is gaining momentum due to the increasing complexity of modern multicore-based hardware architectures. Many solutions to auto-tuning have been explored ranging from simple random search to more sophisticate methods like machine learning or evolutionary search. To this day, it is still unclear whether these approaches are general enough to encompass all the complexities of the problem (e.g. search space, parameters influencing the search space, input data sensitivity, etc., or which approach is best suited for a given problem. Furthermore, the growing interest in auto-tuning a program for several objectives is increasing this confusion even further. The goal of this paper is to formally describe the problem addressed by auto-tuning programs and review existing solutions highlighting the advantages and drawbacks of different techniques for single-objective as well as multi-objective auto-tuning approaches.

  8. Rising cyclin-CDK levels order cell cycle events.

    Directory of Open Access Journals (Sweden)

    Catherine Oikonomou

    Full Text Available Diverse mitotic events can be triggered in the correct order and time by a single cyclin-CDK. A single regulator could confer order and timing on multiple events if later events require higher cyclin-CDK than earlier events, so that gradually rising cyclin-CDK levels can sequentially trigger responsive events: the "quantitative model" of ordering.This 'quantitative model' makes predictions for the effect of locking cyclin at fixed levels for a protracted period: at low cyclin levels, early events should occur rapidly, while late events should be slow, defective, or highly variable (depending on threshold mechanism. We titrated the budding yeast mitotic cyclin Clb2 within its endogenous expression range to a stable, fixed level and measured time to occurrence of three mitotic events: growth depolarization, spindle formation, and spindle elongation, as a function of fixed Clb2 level. These events require increasingly more Clb2 according to their normal order of occurrence. Events occur efficiently and with low variability at fixed Clb2 levels similar to those observed when the events normally occur. A second prediction of the model is that increasing the rate of cyclin accumulation should globally advance timing of all events. Moderate (<2-fold overexpression of Clb2 accelerates all events of mitosis, resulting in consistently rapid sequential cell cycles. However, this moderate overexpression also causes a significant frequency of premature mitoses leading to inviability, suggesting that Clb2 expression level is optimized to balance the fitness costs of variability and catastrophe.We conclude that mitotic events are regulated by discrete cyclin-CDK thresholds. These thresholds are sequentially triggered as cyclin increases, yielding reliable order and timing. In many biological processes a graded input must be translated into discrete outputs. In such systems, expression of the central regulator is likely to be tuned to an optimum level, as we

  9. A new two-step tuning procedure for a photocathode gun

    International Nuclear Information System (INIS)

    Lal, Shankar; Pant, K.K.; Krishnagopal, S.

    2008-01-01

    An important aspect of the development of multi-cell RF accelerating structures is tuning the resonant frequency f of the operating mode, field balance e b , and waveguide to cavity coupling coefficient β to the desired values. Earlier theoretical analyses have not been able to predict all three parameters simultaneously for a coupled-cavity system. We have developed a generalized circuit analysis to predict f, e b , and β of a coupled structure, based on the RF properties of the individual, uncoupled, cells. This has been used to develop a simplified two-step tuning procedure to tune a BNL/SLAC/UCLA type 1.6 cell S-band photocathode gun by varying RF properties of individual half and full cells, which are easily measurable. This procedure has been validated by tuning two true-to-scale prototypes made of aluminum and ETP copper to the desired values of the RF parameters

  10. Tuned Normalization Explains the Size of Attention Modulations

    OpenAIRE

    Ni, Amy M.; Ray, Supratim; Maunsell, John H.R.

    2012-01-01

    The effect of attention on firing rates varies considerably within a single cortical area. The firing rate of some neurons is greatly modulated by attention while others are hardly affected. The reason for this variability across neurons is unknown. We found that the variability in attention modulation across neurons in area MT of macaques can be well explained by variability in the strength of tuned normalization across neurons. The presence of tuned normalization also explains a striking as...

  11. A Caveat Note on Tuning in the Development of Coupled Climate Models

    Science.gov (United States)

    Dommenget, Dietmar; Rezny, Michael

    2018-01-01

    State-of-the-art coupled general circulation models (CGCMs) have substantial errors in their simulations of climate. In particular, these errors can lead to large uncertainties in the simulated climate response (both globally and regionally) to a doubling of CO2. Currently, tuning of the parameterization schemes in CGCMs is a significant part of the developed. It is not clear whether such tuning actually improves models. The tuning process is (in general) neither documented, nor reproducible. Alternative methods such as flux correcting are not used nor is it clear if such methods would perform better. In this study, ensembles of perturbed physics experiments are performed with the Globally Resolved Energy Balance (GREB) model to test the impact of tuning. The work illustrates that tuning has, in average, limited skill given the complexity of the system, the limited computing resources, and the limited observations to optimize parameters. While tuning may improve model performance (such as reproducing observed past climate), it will not get closer to the "true" physics nor will it significantly improve future climate change projections. Tuning will introduce artificial compensating error interactions between submodels that will hamper further model development. In turn, flux corrections do perform well in most, but not all aspects. A main advantage of flux correction is that it is much cheaper, simpler, more transparent, and it does not introduce artificial error interactions between submodels. These GREB model experiments should be considered as a pilot study to motivate further CGCM studies that address the issues of model tuning.

  12. PID motion control tuning rules in a damping injection framework

    NARCIS (Netherlands)

    Tadele, T.S.; de Vries, Theodorus J.A.; Stramigioli, Stefano

    2013-01-01

    This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety

  13. A PLL based automated magnetron tuning mechanism for electron accelerators

    International Nuclear Information System (INIS)

    Khan, A M; Mahfooz, Mohammed; Sanjeev, Ganesh

    2008-01-01

    In this paper we report on a control system developed to tune the magnetron frequency to get the maximum beam pulse in a Microtron (an electron accelerator facility at Mangalore University). The control system so designed consists of a Microcontroller Unit (MCU), a Phase Locked Loop (PLL) and a Digital to Analog Converter (DAC) to track and tune the magnetron frequency. A PLL is used to track the deviation of the magnetron output frequency, and by monitoring the reflected wave voltage level, the microcontroller unit tunes the magnetron with the help of a tuner mechanism connected through a stepper motor.

  14. A PLL based automated magnetron tuning mechanism for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A M; Mahfooz, Mohammed [Dept. of Electronics, Mangalore University, Mangalagangotri, Karnataka State, India - 574 199 (India); Sanjeev, Ganesh [Microtron Centre, Mangalore University, Mangalagangotri, Karnataka State, India - 574 199 (India)], E-mail: mahfooz_81@yahoo.com

    2008-09-15

    In this paper we report on a control system developed to tune the magnetron frequency to get the maximum beam pulse in a Microtron (an electron accelerator facility at Mangalore University). The control system so designed consists of a Microcontroller Unit (MCU), a Phase Locked Loop (PLL) and a Digital to Analog Converter (DAC) to track and tune the magnetron frequency. A PLL is used to track the deviation of the magnetron output frequency, and by monitoring the reflected wave voltage level, the microcontroller unit tunes the magnetron with the help of a tuner mechanism connected through a stepper motor.

  15. A Design Algorithm using External Perturbation to Improve Iterative Feedback Tuning Convergence

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Hjalmarsson, Håkan; Poulsen, Niels Kjølstad

    2011-01-01

    Iterative Feedback Tuning constitutes an attractive control loop tuning method for processes in the absence of process insight. It is a purely data driven approach for optimization of the loop performance. The standard formulation ensures an unbiased estimate of the loop performance cost function...... gradient, which is used in a search algorithm for minimizing the performance cost. A slow rate of convergence of the tuning method is often experienced when tuning for disturbance rejection. This is due to a poor signal to noise ratio in the process data. A method is proposed for increasing the data...

  16. Automatic performance tuning of parallel and accelerated seismic imaging kernels

    KAUST Repository

    Haberdar, Hakan

    2014-01-01

    With the increased complexity and diversity of mainstream high performance computing systems, significant effort is required to tune parallel applications in order to achieve the best possible performance for each particular platform. This task becomes more and more challenging and requiring a larger set of skills. Automatic performance tuning is becoming a must for optimizing applications such as Reverse Time Migration (RTM) widely used in seismic imaging for oil and gas exploration. An empirical search based auto-tuning approach is applied to the MPI communication operations of the parallel isotropic and tilted transverse isotropic kernels. The application of auto-tuning using the Abstract Data and Communication Library improved the performance of the MPI communications as well as developer productivity by providing a higher level of abstraction. Keeping productivity in mind, we opted toward pragma based programming for accelerated computation on latest accelerated architectures such as GPUs using the fairly new OpenACC standard. The same auto-tuning approach is also applied to the OpenACC accelerated seismic code for optimizing the compute intensive kernel of the Reverse Time Migration application. The application of such technique resulted in an improved performance of the original code and its ability to adapt to different execution environments.

  17. Highly Reconfigurable Beamformer Stimulus Generator

    Science.gov (United States)

    Vaviļina, E.; Gaigals, G.

    2018-02-01

    The present paper proposes a highly reconfigurable beamformer stimulus generator of radar antenna array, which includes three main blocks: settings of antenna array, settings of objects (signal sources) and a beamforming simulator. Following from the configuration of antenna array and object settings, different stimulus can be generated as the input signal for a beamformer. This stimulus generator is developed under a greater concept with two utterly independent paths where one is the stimulus generator and the other is the hardware beamformer. Both paths can be complemented in final and in intermediate steps as well to check and improve system performance. This way the technology development process is promoted by making each of the future hardware steps more substantive. Stimulus generator configuration capabilities and test results are presented proving the application of the stimulus generator for FPGA based beamforming unit development and tuning as an alternative to an actual antenna system.

  18. Fast betatron tune controller for circulating beam in a synchrotron

    International Nuclear Information System (INIS)

    Endo, Takuyuki; Hatanaka, Kichiji; Sato, Kenji

    1997-01-01

    When rf quadrupole (RFQ) electric field is applied to the circulating beam in a synchrotron, an equation of motion is reduced to Mathieu's Equation. A new analytical method to obtain an approximate solution has been developed, while a numerical computation was usually applied. Translating the behavior of approximate solution into terms of an RFQ electric field and betatron oscillation, a fast tune control can be achieved by rapid tuning of both amplitude and frequency of rf voltage. This process could be applied to suppress a tune shift caused by a space charge effect and to control a slow beam extraction with a low ripple. We have started another analytical computation using Hamiltonian with perturbation of RFQ and the results of this computation also suggest that it is applicable to slow beam extraction. The fast tune controller has been constructed and the beam test will be performed at HIMAC synchrotron in cooperation of RCNP and NIRS. (author)

  19. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Science.gov (United States)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  20. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness.

    Science.gov (United States)

    Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan

    2014-11-01

    This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.

  1. Measurement of neutral strange particle production in the underlying event in proton-proton collisions at sqrt(s) = 7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei; et al.

    2013-09-01

    Measurements are presented of the production of primary K(S)0 and Lambda particles in proton-proton collisions at sqrt(s) = 7 TeV in the region transverse to the leading charged-particle jet in each event. The average multiplicity and average scalar transverse momentum sum of K(S)0 and Lambda particles measured at pseudorapidities abs(eta) < 2 rise with increasing charged-particle jet pt in the range 1-10 GeV and saturate in the region 10-50 GeV. The rise and saturation of the strange particle yields and transverse momentum sums in the underlying event are similar to those observed for inclusive charged particles, which confirms the impact-parameter picture of multiple parton interactions. The results are compared to recent tunes of the PYTHIA Monte Carlo event generator. The PYTHIA simulations underestimate the data by 15-30% for K(S)0 mesons and by about 50% for Lambda baryons, a deficit similar to that observed for the inclusive strange particle production in non-single-diffractive proton-proton collisions. The constant strange- to charged-particle activity ratios and the similar trends for mesons and baryons indicate that the multiparton-interaction dynamics is decoupled from parton hadronization, which occurs at a later stage.

  2. Search for Popcorn Mesons in Events with Two Charmed Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Hartfiel, Brandon; /SLAC

    2006-07-07

    The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

  3. Tuning for temporal interval in human apparent motion detection.

    Science.gov (United States)

    Bours, Roger J E; Stuur, Sanne; Lankheet, Martin J M

    2007-01-08

    Detection of apparent motion in random dot patterns requires correlation across time and space. It has been difficult to study the temporal requirements for the correlation step because motion detection also depends on temporal filtering preceding correlation and on integration at the next levels. To specifically study tuning for temporal interval in the correlation step, we performed an experiment in which prefiltering and postintegration were held constant and in which we used a motion stimulus containing coherent motion for a single interval value only. The stimulus consisted of a sparse random dot pattern in which each dot was presented in two frames only, separated by a specified interval. On each frame, half of the dots were refreshed and the other half was a displaced reincarnation of the pattern generated one or several frames earlier. Motion energy statistics in such a stimulus do not vary from frame to frame, and the directional bias in spatiotemporal correlations is similar for different interval settings. We measured coherence thresholds for left-right direction discrimination by varying motion coherence levels in a Quest staircase procedure, as a function of both step size and interval. Results show that highest sensitivity was found for an interval of 17-42 ms, irrespective of viewing distance. The falloff at longer intervals was much sharper than previously described. Tuning for temporal interval was largely, but not completely, independent of step size. The optimal temporal interval slightly decreased with increasing step size. Similarly, the optimal step size decreased with increasing temporal interval.

  4. Graphene Dirac point tuned by ferroelectric polarization field

    Science.gov (United States)

    Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-04-01

    Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.

  5. Tune-control improvements on the rapid-cycling synchrotron

    International Nuclear Information System (INIS)

    Potts, C.; Faber, M.; Gunderson, G.; Knott, M.; Voss, D.

    1981-01-01

    The as-built lattice of the Rapid-Cycling Synchrotron (RCS) had two sets of correction sextupoles and two sets of quadrupoles energized by dc power supplies to control the tune and the tune tilt. With this method of powering these magnets, adjustment of tune conditions during the accelerating cycle as needed was not possible. A set of dynamically programmable power supplies has been built and operated to provide the required chromaticity adjustment. The short accelerating time (16.7 ms) of the RCS and the inductance of the magnets dictated large transistor amplifier power supplies. The required time resolution and waveform flexibility indicated the desirability of computer control. Both the amplifiers and controls are described, along with resulting improvements in the beam performance. A set of octupole magnets and programmable power supplies with similar dynamic qualities have been constructed and installed to control the anticipated high-intensity transverse instability. This system will be operational in the spring of 1981

  6. Architecture of Automated Database Tuning Using SGA Parameters

    Directory of Open Access Journals (Sweden)

    Hitesh KUMAR SHARMA

    2012-05-01

    Full Text Available Business Data always growth from kilo byte, mega byte, giga byte, tera byte, peta byte, and so far. There is no way to avoid this increasing rate of data till business still running. Because of this issue, database tuning be critical part of a information system. Tuning a database in a cost-effective manner is a growing challenge. The total cost of ownership (TCO of information technology needs to be significantly reduced by minimizing people costs. In fact, mistakes in operations and administration of information systems are the single most reasons for system outage and unacceptable performance [3]. One way of addressing the challenge of total cost of ownership is by making information systems more self-managing. A particularly difficult piece of the ambitious vision of making database systems self-managing is the automation of database performance tuning. In this paper, we will explain the progress made thus far on this important problem. Specifically, we will propose the architecture and Algorithm for this problem.

  7. The Fine-Tuning of the Universe for Intelligent Life

    Science.gov (United States)

    Barnes, L. A.

    2012-06-01

    The fine-tuning of the universe for intelligent life has received a great deal of attention in recent years, both in the philosophical and scientific literature. The claim is that in the space of possible physical laws, parameters and initial conditions, the set that permits the evolution of intelligent life is very small. I present here a review of the scientific literature, outlining cases of fine-tuning in the classic works of Carter, Carr and Rees, and Barrow and Tipler, as well as more recent work. To sharpen the discussion, the role of the antagonist will be played by Victor Stenger's recent book The Fallacy of Fine-Tuning: Why the Universe is Not Designed for Us. Stenger claims that all known fine-tuning cases can be explained without the need for a multiverse. Many of Stenger's claims will be found to be highly problematic. We will touch on such issues as the logical necessity of the laws of nature; objectivity, invariance and symmetry; theoretical physics and possible universes; entropy in cosmology; cosmic inflation and initial conditions; galaxy formation; the cosmological constant; stars and their formation; the properties of elementary particles and their effect on chemistry and the macroscopic world; the origin of mass; grand unified theories; and the dimensionality of space and time. I also provide an assessment of the multiverse, noting the significant challenges that it must face. I do not attempt to defend any conclusion based on the fine-tuning of the universe for intelligent life. This paper can be viewed as a critique of Stenger's book, or read independently.

  8. Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model.

    Science.gov (United States)

    Brede, Markus; Kalloniatis, Alexander C

    2016-06-01

    We present an analysis of conditions under which the dynamics of a frustrated Kuramoto-or Kuramoto-Sakaguchi-model on sparse networks can be tuned to enhance synchronization. Using numerical optimization techniques, linear stability, and dimensional reduction analysis, a simple tuning scheme for setting node-specific frustration parameters as functions of native frequencies and degrees is developed. Finite-size scaling analysis reveals that even partial application of the tuning rule can significantly reduce the critical coupling for the onset of synchronization. In the second part of the paper, a codynamics is proposed, which allows a dynamic tuning of frustration parameters simultaneously with the ordinary Kuramoto dynamics. We find that such codynamics enhance synchronization when operating on slow time scales, and impede synchronization when operating on fast time scales relative to the Kuramoto dynamics.

  9. Improve performance of scanning probe microscopy by balancing tuning fork prongs

    International Nuclear Information System (INIS)

    Ng, Boon Ping; Zhang Ying; Wei Kok, Shaw; Chai Soh, Yeng

    2009-01-01

    This paper presents an approach for improving the Q-factor of tuning fork probe used in scanning probe microscopes. The improvement is achieved by balancing the fork prongs with extra mass attachment. An analytical model is proposed to characterize the Q-factor of a tuning fork probe with respect to the attachment of extra mass on the tuning fork prongs, and based on the model, the Q-factors of the unbalanced and balanced tuning fork probes are derived and compared. Experimental results showed that the model fits well the experimental data and the approach can improve the Q-factor by more than a factor of three. The effectiveness of the approach is further demonstrated by applying the balanced probe on an atomic force microscope to obtain improved topographic images.

  10. Auto-tuning Non-blocking Collective Communication Operations

    KAUST Repository

    Barigou, Youcef; Venkatesan, Vishwanath; Gabriel, Edgar

    2015-01-01

    Collective operations are widely used in large scale scientific applications, and critical to the scalability of these applications for large process counts. It has also been demonstrated that collective operations have to be carefully tuned for a given platform and application scenario to maximize their performance. Non-blocking collective operations extend the concept of collective operations by offering the additional benefit of being able to overlap communication and computation. This paper presents the automatic run-time tuning of non-blocking collective communication operations, which allows the communication library to choose the best performing implementation for a non-blocking collective operation on a case by case basis. The paper demonstrates that libraries using a single algorithm or implementation for a non-blocking collective operation will inevitably lead to suboptimal performance in many scenarios, and thus validate the necessity for run-time tuning of these operations. The benefits of the approach are further demonstrated for an application kernel using a multi-dimensional Fast Fourier Transform. The results obtained for the application scenario indicate a performance improvement of up to 40% compared to the current state of the art.

  11. Auto-tuning Non-blocking Collective Communication Operations

    KAUST Repository

    Barigou, Youcef

    2015-05-01

    Collective operations are widely used in large scale scientific applications, and critical to the scalability of these applications for large process counts. It has also been demonstrated that collective operations have to be carefully tuned for a given platform and application scenario to maximize their performance. Non-blocking collective operations extend the concept of collective operations by offering the additional benefit of being able to overlap communication and computation. This paper presents the automatic run-time tuning of non-blocking collective communication operations, which allows the communication library to choose the best performing implementation for a non-blocking collective operation on a case by case basis. The paper demonstrates that libraries using a single algorithm or implementation for a non-blocking collective operation will inevitably lead to suboptimal performance in many scenarios, and thus validate the necessity for run-time tuning of these operations. The benefits of the approach are further demonstrated for an application kernel using a multi-dimensional Fast Fourier Transform. The results obtained for the application scenario indicate a performance improvement of up to 40% compared to the current state of the art.

  12. Control of a Quadrotor Using a Smart Self-Tuning Fuzzy PID Controller

    Directory of Open Access Journals (Sweden)

    Deepak Gautam

    2013-11-01

    Full Text Available This paper deals with the modelling, simulation-based controller design and path planning of a four rotor helicopter known as a quadrotor. All the drags, aerodynamic, coriolis and gyroscopic effect are neglected. A Newton-Euler formulation is used to derive the mathematical model. A smart self-tuning fuzzy PID controller based on an EKF algorithm is proposed for the attitude and position control of the quadrotor. The PID gains are tuned using a self-tuning fuzzy algorithm. The self-tuning of fuzzy parameters is achieved based on an EKF algorithm. A smart selection technique and exclusive tuning of active fuzzy parameters is proposed to reduce the computational time. Dijkstra's algorithm is used for path planning in a closed and known environment filled with obstacles and/or boundaries. The Dijkstra algorithm helps avoid obstacle and find the shortest route from a given initial position to the final position.

  13. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

    International Nuclear Information System (INIS)

    Springer, H.K.; Miller, W.O.; Levatin, J.L.; Pertica, A.J.; Olivier, S.S.

    2010-01-01

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their

  14. The fine-tuning cost of the likelihood in SUSY models

    International Nuclear Information System (INIS)

    Ghilencea, D.M.; Ross, G.G.

    2013-01-01

    In SUSY models, the fine-tuning of the electroweak (EW) scale with respect to their parameters γ i ={m 0 ,m 1/2 ,μ 0 ,A 0 ,B 0 ,…} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Δ of the usual likelihood L and the traditional fine-tuning measure Δ of the EW scale. A similar result is obtained for the integrated likelihood over the set {γ i }, that can be written as a surface integral of the ratio L/Δ, with the surface in γ i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Δ or equivalently, a small χ new 2 =χ old 2 +2lnΔ. This shows the fine-tuning cost to the likelihood (χ new 2 ) of the EW scale stability enforced by SUSY, that is ignored in data fits. A good χ new 2 /d.o.f.≈1 thus demands SUSY models have a fine-tuning amount Δ≪exp(d.o.f./2), which provides a model-independent criterion for acceptable fine-tuning. If this criterion is not met, one can thus rule out SUSY models without a further χ 2 /d.o.f. analysis. Numerical methods to fit the data can easily be adapted to account for this effect.

  15. Wind tunnel tests with combined pitch and free-floating flap control: data-driven iterative feedforward controller tuning

    Directory of Open Access Journals (Sweden)

    S. T. Navalkar

    2016-10-01

    Full Text Available Wind turbine load alleviation has traditionally been addressed in the literature using either full-span pitch control, which has limited bandwidth, or trailing-edge flap control, which typically shows low control authority due to actuation constraints. This paper combines both methods and demonstrates the feasibility and advantages of such a combined control strategy on a scaled prototype in a series of wind tunnel tests. The pitchable blades of the test turbine are instrumented with free-floating flaps close to the tip, designed such that they aerodynamically magnify the low stroke of high-bandwidth actuators. The additional degree of freedom leads to aeroelastic coupling with the blade flexible modes. The inertia of the flaps was tuned such that instability occurs just beyond the operational envelope of the wind turbine; the system can however be stabilised using collocated closed-loop control. A feedforward controller is shown to be capable of significant reduction of the deterministic loads of the turbine. Iterative feedforward tuning, in combination with a stabilising feedback controller, is used to optimise the controller online in an automated manner, to maximise load reduction. Since the system is non-linear, the controller gains vary with wind speed; this paper also shows that iterative feedforward tuning is capable of generating the optimal gain schedule online.

  16. Measurement of jets produced in top quark events using the $e\\mu$ final state with 2 b-tagged jets in pp collisions at $\\sqrt{s }= $ 8 TeV with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00354197

    The transverse momentum (pT) and multiplicity of jets produced in top quark events are measured using 20.3 inverse femtobarns of pp collision data at a center-of-mass energy of 8 TeV. Jets are selected from top events requiring an opposite-charge $e\\mu$ pair and two b-tagged jets in the final state. The data are corrected to obtain the particle-level fiducial cross section for additional jets with rank 1-4, where rank=1 is the leading additional jet. These distributions are used to obtain the extra jet multiplicity as a function of minimum jet pT threshold. The results are compared with several next to leading order Monte Carlo generators. The resulting measurements can be used to tune Monte Carlo QCD modelling and may also reduce associated modelling uncertainties for LHC top quark physics measurements.

  17. Measurement of jets produced in top quark events using the $e\\mu$ final state with 2 $b$-tagged jets in $pp$ collisions at $\\sqrt{s}=8$ TeV with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00354197

    The transverse momentum (\\pt) and multiplicity of jets produced in top quark events are measured using 20.3 \\ifb of $pp$ collision data at a center-of-mass energy of \\rts=8 \\tev. Jets are selected from top events requiring an opposite-charge $e\\mu$ pair and two $b$-tagged jets in the final state. The data are corrected to obtain the particle-level fiducial cross section \\sigmapt for additional jets with rank 1-4, where rank=1 is the leading additional jet. These distributions are used to obtain the extra jet multiplicity as a function of minimum jet \\pt threshold. The results are compared with several next to leading order Monte Carlo generators. The resulting measurements can be used to tune Monte Carlo QCD modelling and may also reduce associated modelling uncertainties for LHC top quark physics measurements.

  18. Importance of beam-beam tune spread to collective beam-beam instability in hadron colliders

    International Nuclear Information System (INIS)

    Jin Lihui; Shi Jicong

    2004-01-01

    In hadron colliders, electron-beam compensation of beam-beam tune spread has been explored for a reduction of beam-beam effects. In this paper, effects of the tune-spread compensation on beam-beam instabilities were studied with a self-consistent beam-beam simulation in model lattices of Tevatron and Large Hodron Collider. It was found that the reduction of the tune spread with the electron-beam compensation could induce a coherent beam-beam instability. The merit of the compensation with different degrees of tune-spread reduction was evaluated based on beam-size growth. When two beams have a same betatron tune, the compensation could do more harm than good to the beams when only beam-beam effects are considered. If a tune split between two beams is large enough, the compensation with a small reduction of the tune spread could benefit beams as Landau damping suppresses the coherent beam-beam instability. The result indicates that nonlinear (nonintegrable) beam-beam effects could dominate beam dynamics and a reduction of beam-beam tune spread by introducing additional beam-beam interactions and reducing Landau damping may not improve the stability of beams

  19. Neural Networks for Self-tuning Control Systems

    Directory of Open Access Journals (Sweden)

    A. Noriega Ponce

    2004-01-01

    Full Text Available In this paper, we presented a self-tuning control algorithm based on a three layers perceptron type neural network. The proposed algorithm is advantageous in the sense that practically a previous training of the net is not required and some changes in the set-point are generally enough to adjust the learning coefficient. Optionally, it is possible to introduce a self-tuning mechanism of the learning coefficient although by the moment it is not possible to give final conclusions about this possibility. The proposed algorithm has the special feature that the regulation error instead of the net output error is retropropagated for the weighting coefficients modifications. 

  20. Adaptive control for a PWR using a self-tuning reference model concept

    International Nuclear Information System (INIS)

    Miley, G.H.; Park, G.T.; Kim, B.S.

    1992-01-01

    Possible applications of an adaptive control method to a pressurized-water reactor nuclear power plant are investigated. The self-tuning technique with a reference model concept is employed. This control algorithm is developed by combining the self-tuning controller with the model reference adaptive control. This approach overcomes the difficulties in choosing the appropriate weighting polynomials in the cost function of the self-tuning control

  1. The tuning algorithms used by the Donner 600 crystal tomograph

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.; Geyer, A.B.; Huesman, R.H.; Uber, D.C.

    1989-01-01

    The authors describe the computer algorithms used to adjust the energy thresholds and timing delays in the Donner 600 Crystal Tomograph. These thresholds and delays are adjusted using 1890 computer controlled digital to analog converters (DAC's) and a orbiting positron source. The energy threshold for each crystal is adjusted by measuring the counting rate of each crystal-crystal coincidence as a function of the DAC settings that control a pulse height window for the crystal in question. The DAC settings that correspond to the 511 keV photopeak are noted, thus determining the conversion from DAC setting to energy, and allowing the DAC's to be set to any desired energy window. The DAC settings controlling the timing delay for each channel are systematically adjusted to maximize the overall event rate. As these 1890 adjustments are coupled, the authors discuss the convergence of the tuning algorithms, and also report on the photomultiplier tube gain and timing variations over a period of 18 months

  2. The tuning algorithms used by the Donner 600 Crystal Tomograph

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.; Geyer, A.B.; Huesman, R.H.; Uber, D.C.

    1988-11-01

    We describe the computer algorithms used to adjust the energy thresholds and timing delays in the Donner 600 Crystal Tomograph. These thresholds and delays are adjusted using 1890 computer controlled digital to analog converters (DAC's) and a orbiting positron source. The energy threshold for each crystal is adjusted by measuring the counting rate of each crystal-crystal coincidence as a function of the DAC settings that control a pulse height window for the crystal in question. The DAC settings that correspond to the 511 keV photopeak are noted, thus determining the conversion from DAC setting to energy, and allowing the DAC's to be set to any desired energy window. The DAC settings controlling the timing delay for each channel are systematically adjusted to maximize the overall event rate. As these 1890 adjustments are coupled, we discuss the convergence of the tuning algorithms, and also report on the photomultiplier tube gain and timing variations over a period of 18 months. 7 refs., 6 figs

  3. Synchronous Parallel Emulation and Discrete Event Simulation System with Self-Contained Simulation Objects and Active Event Objects

    Science.gov (United States)

    Steinman, Jeffrey S. (Inventor)

    1998-01-01

    The present invention is embodied in a method of performing object-oriented simulation and a system having inter-connected processor nodes operating in parallel to simulate mutual interactions of a set of discrete simulation objects distributed among the nodes as a sequence of discrete events changing state variables of respective simulation objects so as to generate new event-defining messages addressed to respective ones of the nodes. The object-oriented simulation is performed at each one of the nodes by assigning passive self-contained simulation objects to each one of the nodes, responding to messages received at one node by generating corresponding active event objects having user-defined inherent capabilities and individual time stamps and corresponding to respective events affecting one of the passive self-contained simulation objects of the one node, restricting the respective passive self-contained simulation objects to only providing and receiving information from die respective active event objects, requesting information and changing variables within a passive self-contained simulation object by the active event object, and producing corresponding messages specifying events resulting therefrom by the active event objects.

  4. Tuning the LEDA RFQ 6.7 MeV accelerator

    International Nuclear Information System (INIS)

    Young, L.M.; Rybarcyk, L.

    1998-01-01

    This paper presents the results of tuning the 8 meter long Radio Frequency Quadrupole (RFQ) built for the Low Energy Demonstration Accelerator (LEDA). This 350-MHz RFQ is split into four 2-meter-long-RFQs. Then they are joined with resonant coupling to form an 8-meter-long RFQ. This improves both the longitudinal stability and the transverse stability of this long RFQ. The frequencies of the modes near the RFQ mode are measured. The authors show the effect on the RF fields of an error in the temperature of each one of the 2-meter-long-RFQs. Slug tuners distributed along the outer walls tune the RFQ. The program RFQTUNE is used to determine the length of the tuners. The tuners are machined to length when the final tuning is complete

  5. ZIF-8 gate tuning via terminal group modification: a computational study

    KAUST Repository

    Zheng, Bin; Wang, Lian Li; Du, Lifei; Huang, Kuo-Wei; Du, Huiling

    2016-01-01

    Tuning the pore structure of zeolitic imidazolate frameworks (ZIFs) enables unique control of their material properties. In this work, we used computational methods to examine the gate structure of ZIF-8 tuned by substitution terminal groups

  6. A tuning approach for offset-free MPC with conditional reference adaptation

    DEFF Research Database (Denmark)

    Waschl, Harald; Jørgensen, John Bagterp; Huusom, Jakob Kjøbsted

    2014-01-01

    Model predictive control has become a widely accepted strategy in industrial applications in the recent years. Often mentioned reasons for the success are the optimization based on a system model, consideration of constraints and an intuitive tuning process. However, as soon as unknown disturbances...... properties these controllers can be tuned separate and by known guidelines. To address conditions with active input constraints, additionally a conditional reference adaptation scheme is introduced. The tuning strategy is evaluated on a simulated linear Wood-Berry binary distillation column example....

  7. Arachne - A web-based event viewer for MINERvA

    International Nuclear Information System (INIS)

    Tagg, N.; Brangham, J.; Chvojka, J.; Clairemont, M.; Day, M.; Eberly, B.; Felix, J.; Fields, L.; Gago, A.M.; Gran, R.; Harris, D.A.

    2011-01-01

    Neutrino interaction events in the MINERvA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERvA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.

  8. Arachne—A web-based event viewer for MINERνA

    International Nuclear Information System (INIS)

    Tagg, N.; Brangham, J.; Chvojka, J.; Clairemont, M.; Day, M.; Eberly, B.; Felix, J.; Fields, L.; Gago, A.M.; Gran, R.; Harris, D.A.; Kordosky, M.; Lee, H.; Maggi, G.; Maher, E.; Mann, W.A.; Marshall, C.M.; McFarland, K.S.; McGowan, A.M.; Mislivec, A.

    2012-01-01

    Neutrino interaction events in the MINERνA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERνA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.

  9. Arachne - A web-based event viewer for MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Tagg, N.; /Otterbein Coll.; Brangham, J.; /Otterbein Coll.; Chvojka, J.; /Rochester U.; Clairemont, M.; /Otterbein Coll.; Day, M.; /Rochester U.; Eberly, B.; /Pittsburgh U.; Felix, J.; /Guanajuato U.; Fields, L.; /Northwestern U.; Gago, A.M.; /Lima, Pont. U. Catolica; Gran, R.; /Maryland U.; Harris, D.A.; /Fermilab /William-Mary Coll.

    2011-11-01

    Neutrino interaction events in the MINERvA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERvA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.

  10. HELAC-Onia 2.0: An upgraded matrix-element and event generator for heavy quarkonium physics

    Science.gov (United States)

    Shao, Hua-Sheng

    2016-01-01

    We present an upgraded version (denoted as version 2.0) of the program HELAC-ONIA for the automated computation of heavy-quarkonium helicity amplitudes within non-relativistic QCD framework. The new code has been designed to include many new and useful features for practical phenomenological simulations. It is designed for job submissions under cluster environment for parallel computations via PYTHON scripts. We have interfaced HELAC-ONIA to the parton shower Monte Carlo programs PYTHIA 8 and QEDPS to take into account the parton-shower effects. Moreover, the decay module guarantees that the program can perform the spin-entangled (cascade-)decay of heavy quarkonium after its generation. We have also implemented a reweighting method to automatically estimate the uncertainties from renormalization and/or factorization scales as well as parton-distribution functions to weighted or unweighted events. A further update is the possibility to generate one-dimensional or two-dimensional plots encoded in the analysis files on the fly. Some dedicated examples are given at the end of the writeup.

  11. Tuning the colors of c-Si solar cells by exploiting plasmonic effects

    Science.gov (United States)

    Peharz, G.; Grosschädl, B.; Prietl, C.; Waldhauser, W.; Wenzl, F. P.

    2016-09-01

    The color of a crystalline silicon (c-Si) solar cell is mainly determined by its anti-reflective coating. This is a lambda/4 coating made from a transparent dielectric material. The thickness of the anti-reflective coating is optimized for maximal photocurrent generation, resulting in the typical blue or black colors of c-Si solar cells. However, for building-integrated photovoltaic (BiPV) applications the color of the solar cells is demanded to be tunable - ideally by a cheap and flexible coating process on standard (low cost) c-Si solar cells. Such a coating can be realized by applying plasmonic coloring which is a rapidly growing technology for high-quality color filtering and rendering for different fields of application (displays, imaging,…). In this contribution, we present results of an approach for tuning the color of standard industrial c-Si solar cells that is based on coating them with metallic nano-particles. In particular, thin films (green and brownish/red. The position of the resonance peak in the reflection spectrum was found to be almost independent from the angle of incidence. This low angular sensitivity is a clear advantage compared to alternative color tuning methods, for which additional dielectric thin films are deposited on c-Si solar cells.

  12. PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems

    Directory of Open Access Journals (Sweden)

    Arturo Y. Jaen-Cuellar

    2013-09-01

    Full Text Available Performance improvement is the main goal of the study of PID control and much research has been conducted for this purpose. The PID filter is implemented in almost all industrial processes because of its well-known beneficial features. In general, the whole system's performance strongly depends on the controller's efficiency and hence the tuning process plays a key role in the system's behaviour. In this work, the servo systems will be analysed, specifically the positioning control systems. Among the existent tuning methods, the Gain-Phase Margin method based on Frequency Response analysis is the most adequate for controller tuning in positioning control systems. Nevertheless, this method can be improved by integrating an optimization technique. The novelty of this work is the development of a new methodology for PID control tuning by coupling the Gain-Phase Margin method with the Genetic Algorithms in which the micro-population concept and adaptive mutation probability are applied. Simulations using a positioning system model in MATLAB and experimental tests in two CNC machines and an industrial robot are carried out in order to show the effectiveness of the proposal. The obtained results are compared with both the classical Gain-Phase Margin tuning and with a recent PID controller optimization using Genetic Algorithms based on real codification. The three methodologies are implemented using software.

  13. Design of reactive power regulator of synchronous generators by considering grid impedance angle for characteristic index objectives

    DEFF Research Database (Denmark)

    Raboni, Pietro; Chaudhary, Sanjay K.; Chen, Zhe

    2016-01-01

    functions are formulated on the basis of the integral of an error. This difference makes them suitable for the cases where the entire step-response data series are unavailable. The performances of differently tuned regulators are compared considering a test system including a 100 kW Diesel Generator Set......Effects of low reactance to resistance ratio in distribution networks are widely studied but little work dealing with the tuning of voltage and reactive power regulators of small synchronous generators has been reported. This study endeavours the design of a proportional integral controller...

  14. Quantum-Tuned Two-Junction Solar Cells

    KAUST Repository

    Wang, Xihua

    2011-01-01

    We report quantum-size-effect tuned tandem solar cells. Our two-junction photovoltaic devices employ light-absorbing material of a single composition and use two rationally-selected nanoparticle sizes to harvest the sun’s broad spectrum.

  15. Tuning subwavelength-structured focus in the hyperbolic metamaterials

    Science.gov (United States)

    Pan, Rong; Tang, Zhixiang; Pan, Jin; Peng, Runwu

    2016-10-01

    In this paper, we have systematically investigated light propagating in the hyperbolic metamaterials (HMMs) covered by a subwavelength grating. Based on the equal-frequency contour analyses, light in the HMM is predicted to propagate along a defined direction because of its hyperbolic dispersion, which is similar to the self-collimating effects in photonic crystals. By using the finite-difference time-domain, numerical simulations demonstrate a subwavelength bright spot at the intersection of the adjacent directional beams. Different from the images in homogeneous media, the magnetic fields and electric fields at the spot are layered, especially for the electric fields Ez that is polarized to the propagating direction, i.e., the layer normal direction. Moreover, the Ez is hollow in the layer plane and is stronger than the other electric field component Ex. Therefore, the whole electric field is structured and its pattern can be tuned by the HMM's effective anisotropic electromagnetic parameters. Our results may be useful for generating subwavelength structured light.

  16. Highly Reconfigurable Beamformer Stimulus Generator

    Directory of Open Access Journals (Sweden)

    Vaviļina E.

    2018-02-01

    Full Text Available The present paper proposes a highly reconfigurable beamformer stimulus generator of radar antenna array, which includes three main blocks: settings of antenna array, settings of objects (signal sources and a beamforming simulator. Following from the configuration of antenna array and object settings, different stimulus can be generated as the input signal for a beamformer. This stimulus generator is developed under a greater concept with two utterly independent paths where one is the stimulus generator and the other is the hardware beamformer. Both paths can be complemented in final and in intermediate steps as well to check and improve system performance. This way the technology development process is promoted by making each of the future hardware steps more substantive. Stimulus generator configuration capabilities and test results are presented proving the application of the stimulus generator for FPGA based beamforming unit development and tuning as an alternative to an actual antenna system.

  17. Search for Evidence of Photoproduction of Higher Twist QCD Events at Experiment 683 at Fermi National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, Michael M. [Rice Univ., Houston, TX (United States)

    1996-01-01

    Experiment 683 at Fermilab Wide Band Photon Laboratory observed events via $\\gamma P \\to jets$ during the 1991-1992 fixed target run. The present analysis attempted to observe the higher-twist subprocess in QCD using that data to measure the $p_\\perp$ spectrum via a clustering algorithm tuned to optimize the distinctive topology of higher-twist events. Results indicate a substantial $k_\\perp$ promotion effect at lower $p_\\perp$ and a significant NLO contribution to the photoproduction.

  18. A novel technique for tuning of co-axial cavity of multi-beam klystron

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sukalyan, E-mail: sstechno18@gmail.com; Bandyopadhyay, Ayan Kumar; Pal, Debashis; Kant, Deepender; Joshi, Lalit Mohan; Kumar, Bijendra; Meena, Rakesh; Rawat, Vikram [Microwave Tubes Division, CSIR-CEERI, Pilani, Rajasthan-333031 (India)

    2016-03-09

    Multi-beam Klystrons (MBKs) have gained wide acceptances in the research sector for its inherent advantages. But developing a robust tuning technique for an MBK cavity of coaxial type has still remained a challenge as these designs are very prone to suffer from asymmetric field distribution with inductive tuning of the cavity. Such asymmetry leads to inhomogeneous beam-wave interaction, an undesirable phenomenon. Described herein is a new type of coaxial cavity that has the ability to suppress the asymmetry, thereby allowing tuning of the cavity with a single tuning post.

  19. ON-LINE NONLINEAR CHROMATICITY CORRECTION USING OFF-MOMENTUM TUNE RESPONSE MATRIX

    International Nuclear Information System (INIS)

    LUO, Y.; FISCHER, W.; MALISKY, N.; TEPIKIAN, S.; TROBJEVIC, D.

    2007-01-01

    In this article, we propose a method for the online nonlinear chromaticity correction at store in the Relativistic Heavy Ion Collider (RHIC). With 8 arc sextupole families in each RHIC ring, the nonlinear chromaticities can be minimized online by matching the off-momentum tunes onto the wanted tunes given by the linear chromaticities. The Newton method is used for this multi-dimensional nonlinear optimization, where the off-momentum tune response matrix with respect to sextupole strength changes is adopted. The off-momentum tune response matrix can be calculated with the online accelerator optics model or directly measured with the real beam. In this article, the correction algorithm for the RHIC is presented. Simulations are also carried out to verify the method. The preliminary results from the beam experiments taken place in the RHIC 2007 Au run are reviewed

  20. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms

    Directory of Open Access Journals (Sweden)

    Xin-Ping Wu

    2018-05-01

    Full Text Available Combined quantum mechanical and molecular mechanical (QM/MM methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM−MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM−MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM−MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.